

Modeling &Control of Launch Vehicles

Presented By: M. V. Dhekane

Deputy Director

Control Guidance & Simulation Entity, VSSC

Perspectives In Dynamical Systems & Control

Outline

ISRO Missions

ISRO Launch Vehicles

- Structure Configuration (PSLV / GSLV / RLV)
- Propulsion Configuration
- Aerodynamics
- Actuation Systems
- Navigation systems
- Trajectory Design Guidance & Control

Digital Auto-Pilot (DAP)

- Inputs for design
- Design problem
- Design specification
- Design methodology
- Control Configuration

Launch Vehicle Modelling

- □ Input Data
- **□** Assumptions
- □ Rigid Body rotational dynamics
- □ Slosh
- \Box Flexibility

Outline

RLV-TD (HEX) Mission

- **Nission profile**
- **-** Different phase during descent
- **RLV-TD dynamics**
- **Non-linear Control**
- **Design parameters**
- **Implementation aspect**
- **Control design & validation philosophy**
- **Post flight analysis**
- **Challenges in design**

ISRO Missions

- **Sun Synchronous Polar Orbit (SSPO)**
- **Eastward Missions – GTO - Elliptical Orbits(Moon Mission/Mars Mission)**
- **Space Capsule Recovery**
- **RLV – Technology Demonstrator**

ISRO Launch Vehicles

GSLV-M_k III Lift-off weight: 629 tonne Payload : 4 tonne **PSLV** into GTO GSLV Mk | & II Height: 42 Metre Lift-off Lift-off weight : 295 tonne weight : 414 tonne Payload: 1600 Kg into Payload : 2 to 2.5 tonne 620 KM Polar Orbit, into GTO τ. 1060 Kg into Height: 49 Metre Geosynchronous GSLV Transfer Orbit (GTO) 111 Height: 44 Metre **Barrett** $SUV-3$ **ASLV** N S D Lift-off Lift-off R ï INDIA weight : 39 tonne weight: 17 tonne A $\bf{0}$ Payload: 150 Kg (LEO)
Height: 23.5 Metre Payload: 40 Kg to Low Earth Orbit (LEO) W 哥 Height: 22 Metre ₹ 뵹 \overline{a} 12

PSLV Configuration

<i> Sensors

- **Inertial navigation system**
- **Gyros(Attitude)**
- **Accelerometers**

** Actuators **SITVC**

 (Secondary injection Thrust Vector Control)

- **Engine Gimbal Control**
- **Flex Nozzle control**

GSLV-MK2 Configuration

Definition (4L40+S139)+L37.5+C12.5

Sensors : RESINS at EB ,

 RGP at ½ M

Actuators: EGC(L40) EGC(L37.5),

 CSCE, OSS

Propulsion/Configuration

- **SLV-3:** Core $(S9) + 2^{nd}$ **stage solid** + 3rd **stage solid**
- **ASLV:** Core (S9) **+ 2 Strapons (S9) + Solid Upper Stage**
- **PSLV: Core S139 (Solid) + 6 Strapons + PS2 (L37.5) + PS3 (Solid) + PS4 (L2.5)**
- **GSLV: Core S139 (Solid) + 4 L40 + Cryo (C12)**
- **Mk3: Core S200 (Solid) + 2 L110 + Cryo (C25)**
- **RLV: Core + TDV (No Propulsion)**

Aerodynamics

- **SLV-3: Core with Fins**
- **ASLV: Core with 2 Strapons in 1st stage**
- **PSLV: Core alone & (Core + 6 Strapons)**
- **GSLV: Core + 4 liquid Strapons**

Actuation Systems :Thrust Vector Control

- **SITVC (Secondary Injected Thrust Vector Control)**
- **Engine Gimbal Control**
- \diamond **Flex Nozzle Control**
- **Vernier Engine Control**
- **☆ Reaction Control System (On-Off Control)**
- **Aerodynamic Surfaces**

Navigation System

- **RESINS: Redundant Strap-down Inertial Navigation System**
- **RGP: Rate Gyro Package**
- **LAP: Lateral Accelerometer Package**

Trajectory Design – Guidance & Control

Guidance : Point Mass Trajectory

– **Maximizing the payload**

Atmospheric Phase Flight

- **Dynamic Pressure Curve**
- **Structural Loads**
- **Heating Constraints**
- **Range Safety**

Control:

Attitude Dynamics

Launch Vehicle (Pitch/Yaw/Roll) –

- Rigid Body
- **❖ Slosh**
- **❖** Flexibility
- \triangle Engine dynamics (Actuator + Nozzle)

RLV-

- Longitudinal Dynamics
- Lateral/ Directional

Digital Auto-Pilot (DAP)

- **Launch Vehicle Autopilot is an inner loop of the Navigation, Guidance and Control (NGC) subsystem.**
- **Controls the Attitude of the vehicle in Pitch, Yaw and Roll channels from lift-off till end of flight.**
- **It ensures the stabilisation of the attitude in the presence of disturbing forces and moments caused by various sources. Steers the vehicle along a desired trajectory, maintaining the structural integrity.**

Inputs for the Design

- **Model of the System** to be controlled
	- *Plant* **:** Rigid body, Flexibility, Slosh Dynamics
	- *Actuators* **:** SITVC, EGS, FNC, RCS
	- *Sensors* **:** RGP,RESINS, LAP
- **Disturbances**

Thrust misalignment, CG offset, Differential Thrust, Winds

- **Tracking Commands** Generated by Guidance Law
- **Specifications**

Design Problem

- **Behavior of the output in presence of the disturbance may not be satisfactory**
- **Controller has to ensure satisfactory response of the system rejecting the disturbance**
- **System will be modeled by using differential equations**
- **The controller will process the input signal to achieve satisfactory output.**

Design Specifications

- **Primary Specification-**Tracing Error < 1 Degree
- **Robustness Specifications**
- **Rigid body**

Aero margin > 6 dB Phase margin > 30 Degree Gain margin > 6 dB

Bending modes

Phase Margin > 40 Deg. : *Phase Stabilisation*

Attend. margin > 6 dB : *Gain Stabilisation*

Slosh modes

Phase margin > 30 Degree

Design Methodology

• **Classical Design Technique**

Tracking Error Specification - Bandwidth / Damping Gain Design- PID

- **Frequency Domain Design** Roll off, Notch, Lag-Lead filter
- **Analysis using –** Root Locus, Bode plot, Nyquist plot

Control Configuration

• **Control Power Plant**

 Physical Location / Alignment Control Force / Moment Dynamics

• **Sensors**

Placement

Dynamics

• **Baffles**

Placement Characteristics Design and development of Autopilot consists following important elements.

i). Mathematical model of vehicle dynamics ii). Design to meet specifications iii). On-board implementation of Autopilot Algorithm iv). Validation

LAUNCH VEHICLE MODELLING

Launch Vehicle Modelling

Input Data:

 Plant Model :Mass, Length, Diameter, CG, MI of vehicle **Control Power Plant** :Actuator model (transfer function), Nozzle mass, length, Inertia **Sensor Dynamics** :Attitude & body rate transfer functions **Liquid Slosh** :Pendulum Mass, Length, Distance of pendulum hinge point from CG, Un damped natural frequency, Damping ratio ■ **Structures** :Bending mode Frequency, Generalized mass, Mode shape, Mode slope, Damping ratio

Launch Vehicle Modelling

Input Data:

- **Propulsion** :Thrust
- **Aerodynamic** :Aerodynamic (Lateral/Side) force coefficients, Center of Pressure
- **Trajectory** :Altitude, Mach Number, Inertial velocity
- **Atmosphere** :Density
- **Q Dispersion level : Specified Uncertainty bounds**

(example: Aero coefficients ±3%,

Bending mode frequency ±10% etc.)

Launch Vehicle Modeling

Assumptions:

Time Slice Approach:

Time varying mass and inertia properties are frozen over a short period of time (Short Period Dynamics)

Small Angle Approximation:

Deviations from Reference trajectories are small so that trigonometric nonlinearity, and higher order term's contributions are neglected.

Decoupling of Attitude Dynamics:

Due to axis symmetry of launch vehicles, Pitch/Yaw/Roll motions are assumed to be decoupled.

NOTE: There is significant amount of coupling in Yaw/Roll motion for aircraft.

Linear Time Invariant :

Non-linearity of actuator/sensors (Dead-zone, slew rate etc.) are neglected at design phase.

(All above assumptions lead to LTI systems properties.)

Rigid Body Rotational Dynamics

Rigid Body : Close loop system

Block Diagram: Close loop system (Rigid Body Only)

Root locus analysis

Nyquist Plot @Ign. + T sec

No. of open loop poles in RHP $: P = 1$ **# counter-clockwise encirclement : N =1**

Gain Design Method-1:

1.21 Characteristic equation:
$$
1 + K_P \left(\frac{\omega_a^2}{s^2 + 2\xi_a \omega_a s + \omega_a^2} \right) \left(\frac{\mu_c}{s^2 - \mu_a} \right) (1 + K_R s) = 0
$$

Reference equation:
$$
\left(s^2 + 2\xi_n \omega_n s + \omega_n^2 \right) \left(s^2 + as + b \right) = 0
$$

Reference equation : $(s^2 + 2\xi_n \omega_n s + \omega_n^2)(s^2 + as + b)$ $\int_{a}^{b} (s^2 + 2\xi_a \omega_a s + \omega_a^2) (s^2 - \mu_a^2)$
 $2\xi_n \omega_n s + \omega_n^2 (s^2 + as + b) = 0$ $\left(s^2 + 2\xi_n\omega_n s + \omega_n^2\right)\left(s\right)$
 $\xi_a, \omega_a, \mu_c, \mu_a, \xi_n,$ $s^2 + 2\xi_a \omega_a s + \omega_a^2 \left| s^2 \right|$
 $s^2 + 2\xi_n \omega_n s + \omega_n^2 (s^2 + as + b^2))$ $\left(s^2 + 2\xi_n\omega_n s + \omega_n^2\right)\left(s^2 + as + b\right) = 0$
 $\xi_a, \omega_a, \mu_c, \mu_\alpha, \xi_n, \omega_n$

Known variables : ξ_a , ω_a , μ_c , κ_R , a, b \mathcal{L}_a , ω_a , μ_c , μ_a , ξ_n , ω_n α

 $_p$, K_R Unknown variab les :

degree of ch. polynomial : 4

4
 $K_{\rm P}$ & $K_{\rm R}$ Rigid Body gain :

 $a, b:$ information of rest poles locations

Slosh

- **Lateral oscillations of liquids in tank is slosh**
- **Modelled by replacing liquid mass with rigid mass and a harmonic oscillator such as spring or pendulum**
- **[❖]** Pendulum parameters are function of tank shape **and liquid level**

Modeling Liquid Slosh

The Force & Moments produced by sloshing of the liquid fuel is analyzed by an equivalent Mass and Pendulum Or an equivalent Spring Mass Analogy.

Ref: NASA SP-106

Slosh Dynamics

$$
L_{pi}(s^2 + 2\zeta_{pi}\omega_{pi}s + \omega_{pi}^2)\Gamma_i = -(\dot{w} - U_0\dot{\theta}) + (\ell_{pi} - L_{pi})\ddot{\theta}
$$

where ,

- th $e^{i\theta}$: $e^{i\theta}$
 $e^{i\theta}$: *Length* of ith pendulum *pi* where,
 L_{pi} : Length
- th : Length of ith pendulum
: distance of ith pendulum hinge point from body cg *pi*
- th : distance of ith pendulum
: damping of ithPendulum \mathcal{L}_{pi}
- th : damping of ithPendulum
: Undamped natural Frequency of i ω_{pi} : Undamped natural Frequency of ith Pendulum \sum_{i} : Undamped natu
: Pendulum angle
- *i*
- : Lateral acceleration *w*
- U₀: Forward inertial velocity
- $\dot{\theta}$: attitude rate

NOTE: Complex Pole-zero pair is introduced in Rigid body dynamics by each Slosh mode.

Lag-lead compensator (phase margin improvement)

Lag-Lead Compensator Bode plot

Flexibility Dynamics

1. Generalized mode shape is a function of vehicle length and mass distribution etc. Since mass of vehicle is rapidly decreasing, Mode shape is changing w.r.t. time. (Predicted with uncertainty bounds)

2. Generalized Co-ordinate dynamics is represented by second order differential equation.

equation.
\n
$$
(s^{2} + 2\zeta^{(i)}\omega^{(i)}s + [\omega^{(i)}]^{2})q^{(i)} = -\frac{T_{c}}{M^{(i)}}\delta, \quad i = 1, 2, 3...
$$

3. Flexibility deflection is picked-up by attitude sensor & Flexibledeflection rate is picked-up by rate sensor.

$$
\dot{\theta} = \dot{\theta}_R + \sum_i \sigma_{RG}^{(i)} \dot{q}(i)
$$

$$
\theta = \theta_R + \sum_i \sigma_{PG}^{(i)} q(i)
$$
where, $\sigma^{(i)} = -\frac{\partial \phi^{(i)}}{\partial \ell}$

4. Complex Pole-zero pair is introduced in Rigid body dynamics by each Generalized Co-ordinate.

Bending Mode Stabilization

Gain Stabilization:

Attenuate control loop gain at desired frequency, to ensure stability regardless of control loop phase uncertainty. (Second/Higher BM are usually Gain stabilized)

Phase Stabilization:

Provide proper phase characteristics at desired frequency to obtain a close loop damping, that is greater than the passive damping. (First/Second BM are usually Gain stabilized)

Gain-Phase Stabilization:

A Rigid body/Flexible mode is said to be gain-phase stabilize if it is close loop stable with finite gain and phase margin.

Rigid Body + Flexibility

HEX-1 MISSION PROFILE

Different Phases of RLV during TDV alone Flight

Critical Regions of Flight during TDV alone Phase

Aerodynamic instability and Control requirement

Higher the aerodynamic instability faster is the divergence: requires quicker Control

$$
\mu_{\alpha} = 16, T_d = 0.33 \text{ s}
$$

 $\mu_{\alpha} = 0.75, T_d = 1.52 \text{ s}$

AND MARKET

win <mark>.</mark>
Hill 瓣

RLV-TD Pitch Dynamics

Longitudinal Dynamics characteristic equations

$$
\Delta(s) = (s^2 + 2\varsigma_s \omega_s s + \omega_s^2)(s^2 + 2\varsigma_p \omega_p s + \omega_p^2) = 0
$$

RLV-TD Yaw-Roll Dynamics

- State space model:
- **States:** p (roll rate), r (yaw rate), β (side-slip angle) and σ (bank angle)
- **Outputs:** σ' (bank rate), β' (side-slip rate), β (side-slip angle) and σ (bank angle)
- \cdot **Inputs:** Differential deflection of elevons (δ_e) and symmetric deflection of rudders $(\delta_{\rm r})$

$$
\begin{bmatrix} \dot{p} \\ \dot{r} \\ \dot{\beta} \\ \dot{\beta} \\ \dot{\gamma} \end{bmatrix} = \begin{bmatrix} L_p & L_r & L_{\sigma} & L_{\sigma} \\ N_p & N_r & N_{\sigma} & N_{\sigma} \\ \sin(\alpha_{trim}) + Y_p & -\cos(\alpha_{trim}) + Y_r & Y_{\beta} & Y_{\sigma} \\ \cos(\alpha_{trim}) & \sin(\alpha_{trim}) \end{bmatrix} \begin{bmatrix} p \\ r \\ \beta \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} L_{\delta_a} & L_{\delta_b} \\ N_{\delta_a} & N_{\delta_b} \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} \delta_e \\ \delta_r \\ \delta_r \end{bmatrix}
$$

-74.5
139.8

Yaw Roll Dynamics coupling

Forward Path Gain

Non-Linear Control

- Integrator limit
- Rate Control Limit
- Dead-zone

Design parameters

- Control Law- Error computation
- Gain Schedule
- Filters
- Integrator
- Nonlinear control Logics

Implementation Aspects

- Finite Word length Machine
- Memory and Execution Time
- Fixed point representation
- Accuracy and Scaling
- Overflow problems
- Transportation and computational delays

Validation

- Simulated Input Profile (SIP)
- OBC In Loop Simulation (OILS)
- Hardware In Loop Simulation (HLS)
- Actuator In Loop Simulation (ALS)
- Flight Test
- Post flight analysis Disturbance calculationmodel matching
- Model Update / Design Update

Post Flight Analysis

Post Flight Analysis

Post Flight Analysis

Challenges in Design

- Complexity of the model
- Robust Design Requirement
- Fault tolerance
- SISO to MIMO
- Unified Design Approach
- Design Automation
- Code Automation

• **Acknowledgement**

I would like to acknowledge my colleagues from Control Design division, CGDG, VSSC for their support in preparation of this course material.

Thank You