
Top Down Operator
Precedence

Vaughan R. Pratt
Massachusetts Institute of Technology

1. Survey of the Problem Domain.

There is little agreement on the extent
to which syntax should be a consideration
in the design and implementation of program-
ming languages. At one extreme, it is con-
sidered vitat, and one may go to any lengths
[Van Wijngaarden 1969, McKeeman 1970] to
provide adequate syntactic capabilities.
The other extreme is the spartan denial of
a need for a rich syntax [Minsky 1970]. In
between, we find some language implementers
willing to incorporate as much syntax as
possible provided they do not have to work
hard at it [Wirth 1971].

In this paper we present what should
be a satisfactory compromise for a res~ect-
ably large propo~tion-of language designers
and implementers. We have in mind particularly culties when tryi~g to reconcile the con-

of this kind of oversight is our universal
preoccupation with BNF grammars and their
various offspring: type 1 [Chomsky 1959],
indexed [Aho 1968], macro [Fischer 1968],
LR(k) [Knuth 1965], and LL(k) [Lewis 1968]
grammars, to name a few of the more prominent
ones , together with their related automata
and a large body of theorems. I am person-
ally enamored of automata theory per se,
but I am not impressed with the extent
to which it has so far been successfully
applied to the writing of compilers or
interpreters. Nor do I see a particularly
promising future in this direction. Rather,
I see automata theory as holding back the
development of ideas valuable to language
design that are not visibly in the domain
of automata theory.

Users of BNF grammars encounter diffi-

(i) - those who want to write translators
and interpreters (soft, firm or hardwired)
for new or extant languages without having
to acquire a large system to reduce the
labor, and

(ii) those who need a convenient yet
efficient language extension mechanism
accessible to the language user.

The approach described below is very
simple to understand, trivial to implement,
easy to use, extremely efficient in prac-
tice if not in theory, yet flexible
enough to meet most reasonable syntactic
needs of users in both categories (i) and
(ii) above. (What is “reasonable” is
addressed in more detail below) , More-
over, it deals nicely with error detec-
tion.

One may wonder why such an “obviougly”
utopian approach has not been generally
adopted already. I suspect the root cause

flitting goals of practical generality
(coping simultaneously with symbol tables,
data types and their inter-relations, reso-
lution of ambiguity, unpredictable demands
by the BNF user, top-down semantics, etc.)
and theoretical efficiency (the guarantee
that any translator using a given technique
will run in linear time and reasonable space,
regardless of the particular grammar used).
BNF grammars alone do not deal adequately
with either of these issues, and so they
are stretched in some directions to increase
generality and shrunk in others to improve
efficiency. 1 Both of these operations tend
to increase the size of the implementation
“life-support” system, that is, the soft-
ware needed to pre-proc.ess grammars and to
supervise the execution of the resulting
translator. This makes these methods
correspondingly less accessible and less
pleasant to use. Also , the stretching
operation is invariably done gingerly,
dealing only with those issues that have

Work reported herein was supported in part at Stanford by the National Science Foundation
under grant no GJ 992, and the Office of Naval Research under grant number N-OOO14-67-A-
0112-0057 NR 044-402; by IBM under a post-doctoral fellowship at Stanford; by the IBM T.J.
Watson Research Center, Yorktown Heights, N.Y,; and by Project MAC, an MIT research Program
sponsored by the Advanced Research Projects Agency, Department of Defense, under Office of

Naval Research Contract Number NOO014-70-0362-OO06 and the National Science Foundation under
contract number GJOO-4327. Reproduction in whole or in part is permitted for any purpose
of the United States Government.

Permission to make digital or hard copies of part or all of this work or personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.
© 1973 ACM 0-12345-678-9…$5.00

been anticipated, leaving no room for unexpect- lines on how to write modular. efficient.
ed needs.

I am thinking here particularly of the
work of Lewis and Stearns and their colleames
on LL(k) grammars, table grammars, and att~i-
buted translations. Their approach, while
retaining the precision characteristic of
the mathematical sciences (which is unusual
in what is really a computer-engineering
and human-engineering problem) , is tempered
with a sensitivity to the needs of transla-
tor writers that makes it perhaps the most
promising of the automata-theoretic
approaches . To demonstrate its practicality,
they have embodied their theory in an
efficient Algol compiler.

A number of down-to-earth issues are
not satisfactorily addressed by their system -
deficiencies which we propose to make up
in the approach below; they are as follows.

(i) From the point of view of the lan-
guage designer, implementer or extender,
writing an LL(k) grammar, and keeping it
LL(k) after extending it, seems to be a
black art, whose main redeeming feature is
that the life-support system can at least
localize the problems with a given grammar.
It would seem preferable, where possible,
to make it easier for the user to write
acceptable grammars on the first try, a
property of the approach to be presented
here.

(ii) There is no “escape clause” for
dealing with non-standard syntactic prob-
lems (e.g. Fortrafi formqt statements),
The procedural approach of this paper makes
it possible for the user to deal with
difficult problems in the same language
he uses for routine tasks.

(iii) The life-support system must be up,
running and debugged on the user’s compu-
ter before he can start to take advantage
of the technique. This may take more effort
than is justifiable for one-shot applications.
lie suggest an approach that requires only
a few lines of code for supporting soft-
ware.

(it) Lewis and Stearns consider only
translators, in the ‘context of their LL(k)
system; it remains to be determined how
effectively they can deal with interpreters.
The approach below is ideally suited for
interpreters, whether written in software,
firmware or hardware.

2. Three Syntactic Issues.

To cope with unanticipated syntactic
needs, we adopt the simple expedient of
allowing the language implementer to write
arbitrary programs. By itself, this would
represent a long step backwards; instead,
we offer in place of the rigid structure
of a BNF-oriented meta-language a modicum
of supporting software, and a set of guide-

compact and comprehensible translators and
interpreters while preserving the impression
that one is really writing a grammar rather
than a program.

The guidelines are based on some ele-
mentary assumptions about the primary syn-
tactic needs of the average programmer.

First, the programmer already under-
stands the semantics of both the problem
and the solution domains, so that it would
seem appropriate to tailor the syntax to
fit the semantics. Current practice entails
the reverse.

Second, it is convenient if the pro=
grammer can avoid having to make up a
special name for every object his program
computes. The usual way to do this is to
let the computation itself name the result -
e.g. the object which is the second argu-
ment of “+” in the computation “a+b*c” is
the result of the computation “b*c”. We
may regard the relation “is an argument of”
as defining a class of trees over computa-
tions ; the program then contains such
trees, which need conventions for express-
ing linearly.

Third, semantic objects may require
varying degrees[of annotation at each invo-
cation, depending on how far the particular
invocation differs in intent from the norm
(e.g. for loops that don’t start from 1,
or don~step by 1). The programmer needs
to be able to formulate these annotations
within the programming language.

There are clearly many more issues
than these in the design of programming
languages. However, these seem to be the
ones that have a significant impact on the
syntax aspects. Let us now draw inferences
from the above assumptions.

2.1 Lexical Semantics versus Syntactig
Semantic?

The traditional mechanism for assign-
ing meanings to programs is to associate
semantic rules with phrase-structure
rules, or equivalently, with classes of
phrases. This is inconsistent with the
following reasonable model of a programmer.

The programmer has in mind a set of
semantic objects. His natural inclination
is to talk about them by assigning them
names , or tokens. He then makes up pro-
grams using these tokens, tog,ether with
other tokens useful for program control,
and some purely syntactic tokens. (No
clear-cut boundary separates these classes,)
This suggests that it is more natural to
associate semantics with tokens thanwith
classes of phrases.

This argument is independent of
whether we specify program control expli-

42

citly, as in Algol-like languages, or
implicitly,” as in Planner-Conniver-like
languages. In either case, the programmer
wants to express his instructions or inten-
tions concerning certain objects.

When a given class of phrases is character
ized unambi~usly by the pr~sence of a parti-
cular token, the effect is the same, but this
is not always the case in a BNF-style
semantic specification, and I conjecture
that the difficulty of learning and using

a given language specified with a BNF
gratirnati incteases in proportion to the num-
ber of rules not identifiable by a single
token. The existence of an operator grammar
[Floyd 1963] for Algol 60 provides a plausi-
ble account of why people succeed in learn-
ing Algol, a process known not to be
strongly correlated with whether they have
seen the BNF of Algol.

The~e are two advantages of separating
semantics from syntax in this way. First,
phrase-structure rules interact more strong-
ly than individual tokens because rules can
share non-terminals whereas tokens have
nothing to share. So our assignment of
semantics to tokens has a much better chance
of being modular than an assignment to
rules. Thus one can tailor the language
to one’s needs by selecting from a library,
or writing, the semantics of just those
objects that one needs for the task in hand,
without having to worry about preordained
interactions between two semantic objects
at the syntactic level. Second, the lan-
guage designer is free to develop the
syntax of his language without concern for
how it will affect the semantics; instead,
the semantics will affect decisions about
the syntax. The next two issues ~linear-
izing trees and annotating tokens)
illustrate this point well. Thus syntax
is the servant of semantics, an appro-
priate relationship since the substance of
the message is conveyed with the semantics,
variations in syntax being an inessential
trimming added on human-engineering
grounds.

The idea of lexical semantics is
implicit in the usual approach to macro
generation, although the point usually goes
unmentioned. I suspect many people find
syntax macros [Leavenworth 1966]
appealing for reasons related to the above
discussion.

2.2 Conventions for Linearizing Trees .

We argued at the beginning of section
2 that in order to economize on names the
programmer resorted to the use of trees.
The precedent is a long history of use of
the same trick in natural language. Of
necessity (for one-dimensional channels)
the trees are mapped into strings for trans-
mission and decoded at the other end. We
are concerned with both the human and
computer engineering aspects of the coding.

We may as sume thetrees look like,

apply

/ \+

./’\; rea(\,

/ >,int

/“\, j

Y
I j\
XY1

e.g.

That is, every node is labelled with a
token whose arguments if any are its sub-
trees. Without further debate we shall
adopt the following conventions for encod-
ing trees as strings.

(i) The string contains every Occurrence
of the tokens in the tree. [which we cdl

the semantic tokens, whic~ include proced-
ural Items such as “if’’,’’;”) together with
some additional syntactic tokens where
necessary.

(ii) Subtrees map to contiguous sub-
strings containing no semantic token out-
side that subtree.

(iii) The order of arguments in the tree
is preserved. (Naturally these are orient-
ed trees in general.)

(iv) A given semantic token in the lang-
uage, together with any related syntactic
tokens , always appear in the same place
within the arguments; e.g. if we settle
for Tt+a,b”, we may not use “a+b” as well.
(This convention is not as strongly motiva-
ted as (i) -(iii); without it, however, we
must be overly restrictive in other areas
more important than this one.)

If we insist that every semantic token
take a fixed number of arguments, and that
it always precede all of its arguments
(prefix notation) we may unambiguously re-
cover the tree from the string (and
similarly for postfix) as is well known.
For a variable number cf arguments, the
LISP solution of having.syntactic tokens
(parentheses) at the beginning and end
of a subtree’s string will suffice.

Many people find neither solution
particularly easy to read. They prefer

2 2
“ ab + cd = 4 sin (a+b) “ to
II = ~ * a+b 2 *C +d 2 * 4 sin+ ab “p

or to “(= (+ (* a (+ b 2)) (* c (+ d 2)))
(* 4 (sin (+ a b)))) “,

although they will settle for
1! ahb+j + c*d+2 = 4*sin(a+b) “ in
lieu of the first if necessary. (But
I have recently encountered some LISP users

43

claiming the reverse, so I may be biased.) The idea is to assign data types to
classes and then to totally order the

An unambiguous compromise is to require classes. An example might be, in ascending
parentheses but move the tokens, as in

~$(~ab~]}~,,+ 2)).+ (c * (d ~ 2))) = (4 * (sin

order, Outcomes (e.g., the pseudo-result of
“print”), Booleans, Graphs (e.g. trees,

This is actually quite readable. lists. ulexes), Strings. Algebraic [e.g.
if not’ve;y writable, but it ~s-diffi~ul~~o ;’ tnteger;, complex nos~ poly~omials, reai
tell if the parentheses balance, and it
nearly doubles the number of symbols. Thu S
we seem forced inescapably into having to
solve the problem that operator precedence
was designed for, namely the association
problem. Given a substring AEB where A takes
a right argument, B a left, and E is an
expression, does E associate with A or B?

A simple convention would be to say E
always associates to the left. However, in
“print a + b“, it is clear that a is meant
to associate with “+”, not “print”. The
reason is that “(print a) + b“ does not
make any conventional sense, “print” being
a procedure not normally returning an
arithmetic value. The choice of “print
(a + b)” was made by taking into account
the data types of “print’”s right argument,
“+’”s left argument, and the types returned
by each. Thus the association is a function
of these four types (call them aA,rA,aB,rB

for the argument and result respectively of A
and B) that also takes into account the
legal coercions (implicit type conversions)
Of course, sometimes both associations
make sense,and sometimes neither. Also

‘A
or r ~ may depend on the type of E,

further complicating matters.
One way to resolve the issue is simply to
announce the outcome in advance for each
pair A and B, basing the choices on some
reasonable heuristics. Floyd [1963]
suggested this approach, called operator
precedence. The outcome was stored in a
table. Floyd also suggested a way of en-
coding this table that would work in a
small number of cases, namely that a number
should be associated with each argument
position by means of precedence functions
over tokens; these numbers are sometimes
called “binding powers”. Then E is
associated with the argument position
having the higher number. Ties need never
occur if the numbers are assigned care-
fully; alternatively, ties may be broken
by associating to the left, say. Floyd
showed that Algol 60 could be so treated.

One objection to this approach is
that there seems to be little guarantee
that one will always be able to find a
set of numbers consistent with one’s needs.
Another ob@ection is that the programmer
has to learn as many numbers as there are
argument positions, which for a respectable
language may be the order of a hundred. lie
present an approach to language design which
simultaneously solves both these problems,
without unduly restricting normal usage,
yet allows us to retain the numeric
approach to operator precedence.

arrays) and References (as on the left side
of an assignment.) We write
Strings c References , etc.

We now insist that the class of the
type at any argument that might participate
in an association problem not be less than
the class of the data type of the result of
the function taking that argument. This
rule applies to coercions as well. Thu S
we may use “<” since its argument types
(Algebraic) are each greater than its
result type (Boolean.) We may not write
“length XI’ (where x is a string or a graph)
since the argument type is less than the
result type. However, “ lx] ““ would be an
acceptable substitute for ‘Tlength x“ as its
argument cannot participate in an associa-
tion problem.

Finally, we adopt the convention that
when all four data types in an association
are in the same class, the association is
to the left.

These restrictions on the language,
while slightly irksome, are certainly not
as demanding as the LISP restriction that
every expression have parentheses around it.
Thus the following theorem should be a little
surprising, since it implies that the
programmer never need learn any associations!

Theorem 1. Given the above restrictions,
every association problem has at most one
solution consistent with the data types of
the associated operators.

Proof. Let . ..AEB. . . be such a problem,
~ppose E may associate with both A
and B. Hence because E associates with A,

[aA]~ [rA]~ [aB]& [rB] (type x is in class[x])

since coercion is non-increasing, and the
type class of the result of “...AE” is not
greater than [r], by an obvious inductive
proof. Also fo$ E with B, [aB]~ [rB]~ [aA]~

[rA] similarly. Thus [aA]=[aB], [rA]=[rB]>

and [aA]=[rB] , that is,all four are in the

same class. But the convention in this
case is that E must associate with A,
contradicting our assumption that E could
associate with B as well. a

This theorem implies that the program-
mer need not even think about association
except in the homogeneous case (all four
types in the same class), and then he just
remembers the left-associativity rule. More
simply, the rule is “always associate to the
left unless it doesn’t make sense”.

44

What he does have to remember is how to write
expressions containing a given token (e.g.
he must know that one writes “ x “, not
“length x“) and which coercions are allowed.
These sorts of facts are quite modular, being
contained in the description of the token
itself independently of the properties of
any other token, and should certainly be
easier to remember than numbers associated
with each argument.

Given all of the above, the obvious way
to parse strings (i.e. recover their trees)
is, for each association problem, to
associate to the left unless this yields
semantic nonsense. Unfortunately, nonsense
testing requires looking up the types rA
and a and verifying the existence of a
coerc!on from r

4
to a. For translation

this is not ser OUS, But for interpretation
it might slow things down significantly.
Fortunately, there is an efficient solution
that uses operator precedence functions.

Theorem 2. Given the above restrictions on
a language, there exists an assignment of
integers to the argument positions of each
token in the language such that the correct
association, if any, is always in the direc-
tion of the argument position with the
larger number, with ties being broken to the
left.

Proof. First assign even integers (to make
room for the followin~terpolations) to the
data type classes. Then to each argument
position assign an integer lying strictly
(where possible) between the integers
corresponding to the classes of the argument
and result types. To see that this assign-
ment has the desired property, consider the
homogeneous and non-homogeneous cases in
the problem “.. .AE”.. .” as before.

In the homogeneous case all four types
are in the same class and so the two numbers
must be equal, resulting in left association
as desired. If two of the data types are
in different classes, then one of the
inequalities in [aA]~[rA]2 [aB]L[rB]

(assuming E associates with A) must be strict.
If it is the first or third inequality,
then A’s number must be strictly greater
than B’s because of the strictness
condition for lying between different
argument and result type class numbers.
If it is the second inequality then A’s
number is greater than B’s because ATS
result type class number is greater than B’s
argument one. A similar argument holds if
E associates with B, completing the proof. u

Thus Theorem 1 takes care of what the
programmer needs to know, and Theorem 2
what the computer needs to know. In the
former case we are relying on the programmer’s
familiarity with the syntax of each of
his tokens; in Lhe latter, on the computer’s
agility with numbers. Theorem 2 establishes
that the two methods are equivalent.

Exceptions to the left association

rule for the homogeneous case may be made for
classes as a whole without upsetting theorem
2. This can be done by decrementing by 1
the numbers for argument positions to the
right of all semantic tokens in that class,
that is, the right binding powers. Then
the programmer must remember the classes for
which the exception holds. Applying this
trick to some tokens in a class but not to
others gives messy results, and so does not
seem worth the extra effort required to
remember the affected tokens,

The non-semantically motivated con-
ventions about and * and f may
be implemented ~f~rt%r’s~b~ividing the
appropriate classes (here the Booleans and
Algebraic) into pseudo-classes, e.g.
terms < factors < primaries, as in the BNF
for Algol 60. Then + is defined over
terms, * over factors and + over primaries,
with coercions allowed from primaries to
factors to terms. To be consistent with
Algol, the primaries should be a right
associative class.

While these remarks are not essential
to the basic approach, they do provide a
sense in which operator precedence is more
than just an ad hoc solution to the associa-
tion problem. Even if the language designers
find these guidelines too restrictive, it
would not contradict the fact that operator
precedence is in practice a quite satis-
factory solution, and we shall use it in the
approach below regardless of whether the
theoretical justification is reasonable.
Nevertheless we would be interested to see a
less restrictive set of conventions that
offer a degree of modularity comparable
with the above while retaining the use of
precedence functions. The approach of
recomputing the precedence functions for
every operator after one change to the grammar
is not modular, and does not
allow flexible access to individual items
in a library of semantic tokens.

An attractive alternative to precedence
functions would be to dispose of the ordering
and rely purely on the data types and legal
coercions to resolve associations. Cases
which did not have a unique answer would be
referred back to the programmer, which would
be acceptable in an on-line environment, but
undesirable in batch mode. Our concern about
efficiency for interpreters could be dealt
with by having the outcome of each associa-
tion problem marked at its occurrence, to
speed things up on subsequent encounters.
Pending such developments, operator precedence
seems to offer the best overall compromise
in terms of modularity, ease of use and
memorizing, and efficiency.

The theorems of this section may be
interpreted as theorems about BNF grammars,
with the non-terminals playing the role of
data type classes. However, this is really
a draw-back of BNF; the non-terminals tempt
one to try to say everything with just context-
free rules, which brings on the difficulties

45

mentioned in Section 1. It would seem
preferable to refer to the semantic
objects directly rather than to their
abstraction in an inadequate language.

2.3 Annotation

When a token has more than two argu-
ments, we lose the property of infix nota-
tion that the arguments are delimited.
This is a nice property to retain,
partly for readability, partly be-
cause complications arise, e.g. , if
,, _ It is to be used as both an infix
and a prefix operator~ “ (“ also has this
property; as an infix it denotes applica-
tion, as a prefix? a no-op. Accordingly
we require that all arguments be de-
limited by at least one token: such a
grammar Floyd [1963] calls an operator
grammar. Provided the number of argu-
ments remains fixed it should be clear
that no violenceis done by the extra
arguments to theorems 1 and 2P since
the string of tokens and arguments
including the two arguments at each
end plays the same syntactic role as
the single semantic token in the two-
argument case. We shall call the seman-
tic tokens associated with a delimiter
its parents.

An obvious choice of delimiters
is commas. However, this iS nQt
as valuable as a syntactic token that
documents the role of the argument
following it. For example, “if a then
b else c“ is more readable [by a
human) then “if a, b, C“. Other
examples are “print x format f“, “for
i from s to f by d while c do b“,
“log x base b“, “solve e using m“,
“x between y and Z’t, etc.

Sometimes arguments may be fre-
quently used constants, e.g.? “for
i from 1 to n by 1 while true do b“,
If an argument is uniquely identified
by its preceding delimiter, an obvious
trick is to permit the omission of
that argument and its token to denote
that a default value should be used.
Thus, we may abbreviate the previous
example to “fpr i to n do b~’, as in
extended Algol 68. Other obvious
defaults are “log x“ for “log x
base 2“, “if x then y’l far ‘(if x then
y else nil”, and sa on. Note that

various arguments now may be involved
in associations, depending on which
ones are absent.

Another situation is that of the
variable length parameter list, e.g. ,
“clear at b, Cf d“. Commas are more

appropriate here, although again we may
need more varietyP as in ‘Iturn on a Qn
b off g on m off p off t“ (in which the
unamed switches or bits are left as
they are) . All of these examples show
that we want to be able to handle quite

a variety of situations with default para-
meters and variable-length parameter lists.
No claim is made that the above examples
exhaust the possibilities, so our language
design should make provision not only
for the above, but for the unexpected as
well. This is one reason for preferring
a procedural embedding of semantics;
we can write arbitrary code to find all
the arguments when the language designer
feels the need to complicate things.

3. Implementation

In the preceding section we argued
for lexical semantics, operator prece-
dence and a variety of ways of supplying
arguments. Tn this sectionwe reduce this
to practice.

To combine lexical semantics with a
procedural approach, we assign to each
semantic token a program called its
semantic code, which contains almost all
the information about the token. To
translate or interpret a string of
tokens, execute the code of each token in
turn from left to right.

Many tokens will expect arguments,
which may occur before or after the token.
If the argument always comes before, as
with unary postfix operators such as
1!t 11., we may parse expressions using the
following one-state parser.

t)q~
left + run code;
advance

This parser is initially positioned
at the beginninq of the input. It runs
the code of the current token, stares
the result in a variable called ‘left’,
advances the input, and repeats the pro-
cess. If the input is exhausted, then
by default the parser halts and returns
the value of ‘left! . The variable
‘leftt may be consulted by the code of
the next tokenr which will use the value
of ‘left! as either the translation Or value
of the left-hand argument, depending on
whether it is translating or interpre.
ting.

Alternatively, all arguments may
appear on the right, as with unary pre-
fix operqtors such as ‘log’ and ‘sin~,
In this case the code of a prefix operatQr
can get its argument by calling the
code of the following token. This pro-
cess will continue recursively until a
token is encountered (e.g., a variable
or a constant) that does not require an
argument. The code of this token returns

46

the appropriate translation and then so
does the code of each of the other tokens,
in the reverse of the order in which they
were called.

Clearly we want to be able to deal
with a mixture of these two types of
tokens, together with tokens having both
kinds of arguments (infi operators).
This is where the problem of association
arises, for which we recommended operator
precedence. We add a state to the parser,
%hus :

B~o

‘ c -+ code; advance;
I left + run c

ql

rbp < lbp/

Starting in state qo, the parser inter-
prets a token after advancing past that
token, and then enters state ql. If a
certain condition is satisfied, the parser
returns to qO to process the next token:

otherwise it halts and returns the
value of left by default.

We shall also change our strategy
when asking for a right-hand argument,
making a recursive call of the parser it-
self rather than of the code of the next
token. In making this call we supply
the binding power associated with the
desired argument, which we call the rbp
(right binding power), wh~se value remains
fixed as this incarnation of the parser
runs. The lbp (left binding power~ is

a Property of the current token in the
input stream, and in general will change
each time state q is entered.
left binding powe~ ts tFieenlyp~&rty
of the token not in its semantic code.
To return to q

8
we require rbp ~ Ibp. Ig

this test fail , then by default the
parser returns the last value of ~left”
to whoever called it, which corresponds
to ‘A’ getting ‘E’ in ‘AEB~ if ‘A’
had called the parser tiiat read ‘E’.
If the test succeeds, the parser enters
state qo, in which case ‘B[gets ~E~
instead.

Because of the possibility of there
being several recursive calls of the
parser running simultaneously, a stack
of return addresses and right binding
powers must be used. This stack plays
essentially the same role as the stacks
described explicitly in other parsing
schemes.

lie can embellish the pa,rser a little
by having the edge leaving ql return to

‘A
rather than qo. This may appear

w steful since we have to repeat the
q -ql code on the q -q edge as Well.
H8wever, this chang & allows us to take
advantage of the distinction between

c1 and ql, namely that “left” is unde-
f!?ned in state q. and defined inq—
that is, some expression precedes 4
token interpreted during the q -q

LJtransition but not a token ink rp eted
during the q -q transition. We
will call th~ c~de denoted by a token
with (without) a Precedinq expression
i,ts left (nuli) d~notatio~ or-led (nud).
The machin~comes

ill
c+nud;
advance;
left+run c

q

rbp<,lbp/
c+~ed;

advance;
left+run c

or by split-
ting trans-
itions and
using a
stack instead
of variables
(the state =
the variable
on the stack) :

Lnud

led
c

L
advance;
run

left
rbp<lb /

It now makes sense for a token
to denote two different codes. For
example, the nud of ‘-! denotes
unary minus, and its led, binary
minus. We may do the same for ‘/’ (in-
teger-to-semaphore conversion as fn
Algol 68, versus division], ‘(’ (syntactic
grouping, as in a+(bxc), versus
applications of variables or constants
whose value is a function, as in Y(F) ,
(IX.X2] (3), etc.), and ‘ E ‘ (the

empty stxing versus the membership
relationl .

A possibly more important role
for nuds and leds is in errcm detec-
tion. If a token only has a nud and
is given a left argument, or only has a led
and is not given a left argument, or has
neither, therm on-existent semantic code
is invoked, which can be arranged to result
$n the calling of an error routine.

50 far we have assumed that
semantic code optionally calls the
parser once, and then retumxs the
appropriate translatiem. One is at
liberty to have more elaborate code,
however, when the code can read the
input (but not-backspace it) , request
and use arbitrary amounts of storage,
and carry out arbitrary computations
in whatever language is available
(for which an ideal choice is the
language being defined). These capa-
bilities give the apprQach the pQwer
of a Turing machine, to be used and
abused by the language implementer as
he sees fit. While one may object to

47

all this power on the ground that obscure
language descriptions can then be written,
for practical purposes the same objection
holds for BNF grammars, of which some quite
obscure yet brief examples exist. In
fact, the argument really runs the other
way; the cooperative language implementer
can use the extra power to produce more
comprehensible implementations, as
we shall see in section 4.

One use for this procedural
capability is for the semantic code to
read the delimiters and the arguments
following them if any. Clearly any
delimiter that might come directly
after an argument should have a left
binding power no greater than the binding
power for that argument. For example,
the nud of ‘if’, when encountered
in the context ‘if a then b else C(~
may call the parser for a~ verify that
‘ then’ is present, advance, call the
parser for ‘b’, test if ‘else! is pre-
sent and if so then advance and call the
parser a third time. (.This resolves
the “dangling else” in the usual way.]

The nud of ‘(’ will call the parser,
and then simply check that ‘)’ is pre=
sent and advance the input. Delimiters
of course may have multiple parents,
and even semantic code, such as ‘1’,
which might have a nud (’absolute Value
of’ as in ‘IX ~~~’)r~nd two parents, it-
self and !+’ !a+blc~ is shorthand

for ‘if a then b else c ‘]. The ease
with which mandatory and optional delimiters
are dealt with constitutes one of the
advantages of the top–down approach over
the conventional methods for implementing
operator precedence

The parser’s operation may perhaps be
better understood graphically. Consider
the example ‘if 3*a + b!+-3 = O then
print a + (b–1) else rewind’. We may
exhibit the tree recovered by the parser
from this expression as in the diagram
below. The tokens encountered during one
incarnation of the parser are enclosed in
a dotted circle, and are connected via
down-and-left links, while calls on the
parser are connected to their caller by
down-and-right links. Delimiters label
the links of the expression they precede,
if any. The no-op ‘(’ is included, although
it is not really a semantic object.

The major difference between the
approach described here and the usual
operator precedence scheme is that we have
modified the Flovd o~erator precedence parser
to work top-down, _implementing the stack by

means of recursion, a technique known as
recursive descent. This would appear to
be of no value if it is necessary to imple-
ment a stack anyway in order to deal with
the recursion. However, the crucial pro-
perty of recursive descent is that the stack
entries are no longer just operators or
operands, but the environments of the pro-
grams that called the parser recursively.
When the programs are very simple, and
only call the parser once, this environment
gives us no more information than if we
had semantic tokens themselves on the stack.
When we consider more complicated sorts of
constructions such as operators with various
default parameters the technique becomes
more interesting.

While the above account of the al-
gorithm should be more or less self-explana-
tory, it may be worth while summarizing the
properties of the algorithm a little more
urecisel~.
befiniti;n. An expression is a string S
such that there exists a token t and an
environment E in which if the parser is
started with the input at the beginning
of St, it will stop with the input at t,
and return the interpretation of S relative——
to E.
Properties. (i) When the semantic code of
a token t is run, it begins with the input
positioned just to the right of that token,
and it returns the interpretation of an
expression ending just b;fore the final
position of the input, and starting either
at t if t is a nud, or if t is a led then
at the beginning of the expression of which
‘left’ was the interpretation when the code
of t started.
(ii) When the parser returns the interpre-
tation of an expression S relative to en-
vironment E, S is immediately followed by
a token with lbp~rbp in E.
(iii) The led of a token is called only if
it immediately follows an expression whose
interpretation the parser has assigned to
‘left’.
(iv) The lbp of a token whose led has just
been called is greater than the rbp of the
current environment,
(v) Every expression is either returned
by the Parser or given to the following
l~d via- ’left’. -
[vi> A token used only as a nud does noc. .
need a left binding power.

These proverties are the ones that make
the algorithm useful. They are all straight-
forward to verify. Property (i) says that
a semantic token pushes the input pointer
off the right end of the expression whose
tree it is the root, Properties (ii), (iv)
and (v) together completely account for the
two possible fates of the ntents of ‘left’.
Property (iii) guarantees that when the
code of a led runs, it has its left hand

48

argument interpreted for it in ‘left’, There
is no guarantee that a nud is never preceded
an expression; instead, property (v) guards
against losing an expression in’left’ by
calling a nud which does not know the expres-
sion is there. Property (vi) says that
binding powers are only relevant when an
argument is involved.

4“ %%%% e~am~les we shall assume that
lbp,nud-and led ar~ reallv the functions
Ibp(token), nud(token) and led(token). To

call the parser and simultaneously establish
a value for rbp in the environment of the
parser, we write parse (rbp), passing rbp as
a parameter. when a led runs, its left hand
arguments interpretation is the value of
the variable left, which is local to the
parser callfig that led.

Tokens without an explicit nud are
assumed to have for their nud the value of
the variable ‘nonud’, and for their led,
‘noled’ . Also the variable
‘ self ‘ will have as value the token

whose code is missing when the error occurs.

In the language used for the semantic
code, we use a + b to define the value of
expression a to be the value of expression
b (not b itself); also, the value of a + b
is that of b. The value of an expression
is itself unless it has been defined ex-
plicitly by assignment or implicitly by
procedure definition; e.g., the value of
3 is 3, of 1+1, 2. We write ‘a’ to mean
the expression a whose value is a itself,
as distinct from the value of a, e.g.
II+l!must be evaluated twice to yield 2.

A string x is written “x” ; this differs
from ‘x’ only in that x’ is now assumed to
be a token, so that the value of “1+1” is
the token 1+1, which does not evaluate to
2 in general. To evaluate a, then b, re-
turning the value of b, write a;b. If the
value of a is wanted instead, write aGb.
(These are for side-effects.) We write (check
X) for (if token = xthen advance else
(print “missing”; print x ; halt)). Every-
thing else should be self-explanatory.
(Since this language is the one implemented
in the second example, it will not hurt to
see it defined and used during the first.)

by

We give specifications, using this
approach, of an on-line theorem prover, and
a fragment of a small general-purpose
programming language. The theorem prover
is to demonstrate that this approach is
useful for other applications than just
programming languages. The translator
demonstrates the flexibility of the approach.

For the theorem prover’s semantics, we
assume that we have the following primitives
available:

(i) generate;
~klk and also

this returns the bit string

doubles k, assumed 1 initially.

49

(ii) boole(m,x,y): forms the bitwise
boolean combination of strings x and Y,
where m is a string of four bits that
specifies the combination in the obvious
way (1000 = Q, 1110 = or, 1001 = eqv etc)o
If one string 1s exhaust= before t=other,
boole continues from the beginning of the
exhausted string, cycling until both strings
are exhausted simultaneously. Boole is not
defined for strings of other than O’s and 1’s.

(iii) x isvalid: a predicate that holds only
when x is a string of all ones.

We shall use these primitives to write

a prog~arn which will read a zero-th order
proposltlon, parse it, determine the truth-
table column for each subtree in the parse,
and print “theorem” or “non-theorem” when
“?” is encountered at the end of the proposi-
tion, depending on whether the whole tree
returns all ones.

The theorem prover is defined by
evaluating the following expression.

nonud + ‘if null led(self) then
nud(self) -+ generate

else (print self;
print “has no argument’’)’;

led(’’?”) + ‘if left isvalid then print “theorem”
else print “non-theorem”;
parse 1’;

lbp(’’?”) + 1;

nud(’’(”) + ‘parse O 6 check “)’”;
lbp(’’)”) + O;

led(’’-+”) i- ‘boole(’’llOl”, left, parse 1) ‘ ;
lbp(!!.+!!) +- 2;

led(’’v”) -+ ‘boole(’’lllO”, left, parse 3)’;
lbp(’’v”) +- 3;

led(’’A”) + ‘boole(’’1000”, left, parse 4) ‘ ;
lbp(’’A”) + 4;

nud(!!-!t) + ‘boole(’’OlOl”, parse 5, “O”)’ .

To run the theorem prover, evaluate

k+l; parse O .

For example, we might have the following
exchange:

(a+b)A(b+c)+(a+c)? theorem
a? non-theorem
av-a? theorem

until we turn the machine off somehow.

The first definition of the program
deals with new variables; which is anything
without a prior meaning that needs a nud.
The first new variable will get the constant
01 for its nud,the next 0011, then 00001111,
etc. Next, “?” is defined to work as a
delimiter; it responds to the value of its

left argument (the truth-table column for
the whole proposition), processes the next
proposition by calling the parser, and
returns the result to the next level parser.
This parser then passes it to the next “?”
as its left argument, and the process
con=ues, without building up a stack of
IT?f?!s since “?” is left associative.

Next, “(” is defined to interpret and
return an expression, skipping the follow-
ing “)” . The remaining definitions should
be self-explanatory. The reader interested
in how this approach to theorem-provers
works is on his own as we mainly concerned
here with the way in which the definitions
specify the syntax and semantics of the
language.

The overhead of this approach is
almost negligible. The parser spends
possibly four machine cycles or so per
token (not counting lexical analysis), and
the semantics can be seen to do almost
nothing; only when the strings get longer
than a computer word need we expect any
significant time to be spent by the logical
operations. For this particular interpreter,
this efficiency is irrelevant; however, for

a general-purpose interpreter, if we prepro-
cess the program so that the lexical items
become pointers into a symbol table, then
the efficiency of interpreting the resulting
string would be no worse than interpreting
a tree using a tree-traversing algorithm
as in LISP interpreters.

For the next example we describe a
translator from the language used in the
above to trees whose format is that of the
internal representation of LISP s-expressions,
an ideal intermediate language for most
compilers.

In this example we focus on the
versatility the procedural approach gives
us , and the power to improve the descrip-
tive capacity of the metalanguage that we
get from bootstrapping. Some of the
verbosity of the theorem prover can be
done away with in this way.

We present a subset of the definitions
of tokens of the language L; all of them
are defined in L, although in practice one
would begin with a host language H (say
the target language, here LISP) and write
as many definitions in H as are sufficient
to define the rest in L, We do not give
Che definitions of nilfix, prefix, infix
or infixr here; however, they perform
assignments to the appropriate objects;

e.g. (nilfix a b) performs nud(a)+’b’,
(prefix a b c) sets bp+b before performing
nud(a)+-’c’, (infix a b c) does the same as
(prefix a b c) except that the led is
defined instead and also lbp(a)+b is done,
and infixr is like infix except that
bp+b-1 replaces bp+b. The variable bp is
available for use for calling the parser
when reading c. Also (delim x) does
lbp(x)+-O. The function (a getlist b)

parses a list of expressions delimited by
a’s, parsing each one by calling parse b,
and it returns a LISP list of the results.

The object is to translate, for
example, a+b into (PLUS a b) , a;b into
(PROG2 a b), a&b into (PROG2 nil a b),
-a into (MINUS a) , Ax,y,z.a into
(LAMBDA (x y . . . z) a) , etc. These target
objects are LISP lists, so we will use “[”
to build them; [a,b,c] translates
into (LIST a b . . . c) .

A fragment of the definition of L:

nilfix right
infixr ;
infixr 6
prefix is

infix $
prefix delim
prefix ‘
delim ‘$
prefix [

j:;;: 1 $
$

prefix ~

::;;; ~ $

[“PARSE”, bp] $
1 [“PROG2”, left, right] $
1 [“PROG2”, nil, left, right] $
1 [“LIST”, right, ‘left’,

[“PARSE”, bp]] $
1 (print eval left; right) $
99 [“DELIM”, token G advance] $
0 [“QUOTE”, right 6 check “’”] $

0 (“LIST”
~ check

O (right G

2S (left .

(“ “ get
elle nil

“ “ getlist bp

“l’”) $

check “)”) $

f token # “)” then
ist O) 6 check “)”

$,
infix getlist 25 is “GETLIST” $
prefix if 2 [“COND”, [right,

check “then”; right]]
@ (if token = “else” then

(advance; [[right]])) $
delim then $
delim else $
nilfix advance [“ADVANCE”] $
prefix check 25 [“CHECK”, right] $
infix -+ 25 [t’SETQ”, left, parse(l)] $
prefix 1 0 [“LAMBDA”, “ “ getlist 25

G check “;”; right] $
prefix + 20 right $
infix + 20 is “PLUS” $
prefix - 20 [“MINUS”, right] $
infix - 20 is “DIFFERENCE” $
infix X 21 is “TIMES” $
infix + 21 is “QUOTIENT” $
infixr + 22 is “EXPT” $
infixr + 22 is “LOG”
prefix I O [“ABS”

delim
> ri~ht G check “ l“] $

infixr ~ $
14 is “APPEND” $

infixr . 14 is “CONS” $
prefix a 14 [“CAR”, right] $
prefix 6 14 [“CDR”, right] $
infix E 12 is “MEMBER” $
infix = 10 is “EOUAL” $
infix # 10 [“NOTti,[’’EQUAL’’,left,right] 1 $
infix ~ 10 is “LESSP” $
infix > 10 is “GREATERP”

and so on,

The reader may find some of the boot-
strapping a little confusing. Let us
consider the definitions of ‘right’ and ‘+’.
The former is equivalent to
nud(right) + ’[’’PARSE”, bp]’ .

50

The latter is equivalent to
nud(+) + ‘parse(20) ‘ and
led(+) + ‘[’’PLUS”, left, parse(20)] ,
because when the nud of right is
encountered while reading the definitions
of + , it is evaluated by the parser in
an environment where bp is 20 (assigned
by prefixlinfix).

It is worth noting how effectively we
made use of the bootstrapping capability
in defining “is”, which saved a considerable
amount of typing. With more work, one
could define even more exotic facilities.
A useful one would be the ability to
describe the argument structure of operators
using regular expressions.

The “is” facility is more declarative
than imperative in flavor, even though it
is a program. This is an instance of the
boundary between declarative and imperatives
becoming fuzzy. There do not appear to be
any reliable ways of distinguishing the two
in general.

5. Conclusions

6. Acknowledgments

I am indebted to a large number of
people who have discussed some of the
ideas in this paper with me. In particular
I must thank Michael Fischer for supplying
many valuable ideas relevant to the
implementation, and for much programming
help in defining and implementing CGOL, a
pilot language initially used to break in
and improve the system, but which we hope
to develop further in the future as a desirable
programming language for a large number of

classes of users.

7. References

Aho, A.V. 1968. Indexed Grammars. JACM ~,
4, 647-671

Chomsky, N. 1959. On certain formal properties
of grammar. Information and Control,
~, ~, 137-167.

Fischer, M.J. 1968. Macros with Grammar-
like Productions. Ph. D. T hesls,
Harvard University.

Floyd, R.W. 1963. Syntactic Analysis and
Operator Precedence. JACM 10, 3, 316-333.

Knuth, D.E. 1965. On the transl~ion of
lanwages from left to right, Informa-We argued that BNF-oriented approaches

to the writing of translators and interpreters tio~ a~d Control, 8, 6, 607-639
were not enjoying the success one might’
wish for. We recommended lexical semantics,
operator precedence and a flexible approach
to dealing with arguments. We presented a
trivial parsing algorithm for realizing
this approach, and gave examples of an
interpretive theorem prover and a trans-
lator based on this approach.

It is clear how this approach can be
used by translator writers. The modularity
of the approach also makes it ideal for
implementing extensible languages. The
triviality of the parser makes it easy to
implement either in software or hardware,
and efficient to operate. Attention was
paid to some aspects of error detection,
and it is clear that type checking
and the like, though not exemplified in the
above, can be handled in the semantic
code. And there is no doubt that the
procedural approach will allow us to do
anything any other system could do, although
conceivably not always as conveniently.

The system has so far found two
practical applications. One is as the
“front-end” for the SCRATCH-PAD system of
Greismer and Jenks at IBM Yorktown
Heights. The implementation was carried
out by Fred Blair. The other application
is the syntactic component of Project
MAC’s Mathlab system at MIT, MACSYMA,
where this approach added to MACSYMA
extension facilities not possible with
the previous precedence parser used in
MACSYMA. The implementer was Michael
Genesreth.

Leavenworth, B.N. SyntaF macros and extended
translation. CACM, ~, 11, 790-793. 1966.

Lewis, P.M., and R.E. Stearns. 1968. SYntax-
directed transduction, JACPI ~, 3, 465-488.

McKeeman, W.M., J.J. Horning and D.B. Wort-
manl 1970~ A Compiler Generator.
Prentice-Hall Inc. Englewood Cliffs, N.J.

Minsky. M.L. 1970. Form and Content in
bomputer Science. Turing Lecture, JACM
~, 2, 197-215.

Van WIJngaarden, A., B.J. Mailloux, J.E.L.
Peck and C.H.A. Koster. 1969. ReDort
on the Algorithmic Language ALG-
Mathematisch Centrum, Amsterdam,
MR 101.

Wirth, N. 1971. The programming language
PASCAL . Acts Informatica, ~, 35-68.

51

