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ABSTRACT

An arbitrary precision solution of uniform polyhedra and their duals is presented.
The solution is uniform for all polyhedra given by their kaleidoscopic construction, with
no need to ‘examine’ each polyhedron separately.

1. Introduction.

Uniform polyhedra, whose faces are regular and vertices equivalent, have been studied since antiq-
uity. Best known are the five Platonic solids and the 13 Archimedean solids. We then have the two infinite
families of uniform prisms and antiprisms. Allowing for star faces or vertices, we have the four Kepler-
Poinsot regular star polyhedra and a row of 53 nonconvex uniform polyhedra discovered in the 1880s and
the 1930s. The complete set appeared in print for the first time in 1953, in a paper by Coxeter, Longuet-
Higgins and Miller ([CLM], see also [S]).

Magnus Wenninger’s delightful book Polyhedron Models [W1], which appeared in 1971 but since
has been reprinted many times, contains photos and building instructions for cardboard models of these 75
uniform polyhedra. Reading the book, makes the mathematically minded reader wonder: How are the data
for the models obtained? For example, what makes 1. 1600030093 the proper circumradius for a great ret-
rosnub icosidodecahedron1 with edge length two?

It is easy to check, that these data originate in [CLM, Table 7]. Some of the circumradii are exact, as
they are given in terms of integers and radicals only, but few, as the one mentioned above, are given approx-
imately, to ten decimal digits. This may be considered perhaps accurate enough, but if one wants to incor-
porate polyhedra in a computer modeling software (cf. [Hy]), one would prefer to get the numbers in an
arbitrary precision, or in the maximum precision the computer can handle. Furthermore, one is interested
in exact, or maximum precision, values of other geometric data, such as the dihedral angles of the polyhe-
dra, and for these the only available data are for the regular and the convex cases, and are accurate to 1′′ (cf.
[CR, Table II] and [J, Table II]).

This problem was treated by Andrew Hume. His method is best described by a short quotation from
his report [Hm]:

In general, the data are solutions of equations found by examining the polyhedra (for example
[L, pp. 174-176]). The equations were solved at least three times using symbolic algebra sys-
tems...

Uniform polyhedra for which symbolic algebra systems are useful are the so-called snub polyhedra,
and the computations involve solving cubic or quartic equations. Hume’s solutions were used to create a
database of polyhedra, which is publicly available at netlib@research.att.com.

* In memoriam of my father, Gershon Har’El, who introduced me to spatial structures.

Geometriae Dedicata 47: 57-110, 1993.
1 This is the [W2] version of the polyhedron name.
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Our approach is quite different. Rather then separately examining individual polyhedra, we suggest a
uniform approach, which is easy to understand and easy to use, even with a hand-held calculator, and it
eliminates the need for a database for uniform polyhedra and their duals, since the fast iterative algorithm
may yield arbitrary precision data. Furthermore, it may be used in the same ease for convex as well as for
nonconvex polyhedra (which are not treated by [Hm]). A computer program, called kaleido (cf. [Ha]) and
publicly available at ftp@ftp.math.technion.ac.il, has been developed to compute the data of a uniform
polyhedron (and its dual), given either the vertex configuration, i.e, the enumeration of the polygons
appearing as faces incident at a vertex in the order in which they are found (cf. [CR, §2.9.2]), or the so-
called Wythoff symbol which describes the kaleidoscopic construction of the polyhedron (cf. [CLM, §3]).
Kaleido is also capable of computing the vertex and face coordinates and displaying a rotating wire-frame
image of each polyhedron.

We would like to express our gratitude to H. S. M. Coxeter, Branko Grünbaum and Andrew Hume,
for the very useful and enlightening comments.

2. The Fundamental System.

The uniform solution is based upon projecting the uniform polyhedron onto a concentric sphere,
decomposing each n-sided tile in the spherical tiling into 2n congruent right-angled spherical triangles, set-
ting the trigonometric equations and solving them iteratively. We shall explain the solution algorithm in the
next section. Here, we discuss the procedure of identifying the fundamental triangles and setting the funda-
mental equations.

Let us assume, for the moment, that we are investigating a convex uniform polyhedron, such that
each of its vertices is incident to m faces, with the ith face being a regular ni-gon, customarily denoted by
the Schläfli symbol {ni}. The cyclic list (n1. n2. . . . . nm) is the vertex configuration.

Projecting the polyhedron on a concentric sphere, we get a spherical tiling. Choose a vertex C, and
let Ai , for i = 1, . . . , m, be the incenter of the of the ith tile incident to C. Also, let Bi be the foot of the per-
pendicular from Ai to the arc separating the ith and (i + 1)st tiles (the (m + 1)st being identified as the first).
In fact, the spherical polygon A1 A2

. . . Am is the prototile of the dual tiling (cf. [GS, §1.2]). Also, the pla-
nar polygon B1 B2

. . . Bm is the so called vertex figure at C (cf. [C, §2.1]).

This way, we decompose the spherical tiling into right-angled spherical triangles, called the funda-
mental triangles: At each vertex C we get 2m fundamental triangles, arranged in congruent pairs Ai Bi−1C
and Ai BiC, for i = 1, . . . , m. The set of fundamental triangles will be called the fundamental triangulation.
Note that the same triangulation also arise from a similar decomposition of the dual tiling (cf. [GS], section
2.7).

Denote the sides and the angles of Ai BiC by ai , bi , ci , α i ,
π
2

, γ i , in the obvious manner (the right

angle is at Bi). From the definition of Ai , and the regularity of the face, we easily see

niα i = π , (1)

for i = 1, . . . , m. Furthermore, if we consider the angles of the fundamental triangles meeting at C, we get

Σ γ i = π . (2)

Finally, we use the fact that the edge CBi is shared by the two neighboring fundamental triangles Ai BiC
and Ai+1 BiC, and get ai = ai+1. Thus, all the ai’s are equal, and the common value, say a, satisfies

cos a =
cos α i

sin γ i
(3)

for i = 1, . . . , m, as may be easily deduced from the spherical law of cosines, or from Napier’s second rule
of circular parts (cf. [M]).

Thus, we get a system of 2m + 1 simultaneous equations (where m + 1 are linear and m are trigono-
metric) in the 2m + 1 unknowns α i , γ i and cos a. We name it the fundamental system, and we shall describe
its solution in the next section.

Once the fundamental system has been solved, the rest of the sides of the fundamental triangles may
be solved using similar formulas:
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cos ci =
cos γ i

sin α i

cos bi =
1

tan α i tan γ i

The solution of the fundamental triangles reflects directly on the problem of finding all the metrical
properties of the uniform polyhedron: Let R, ρ , ri , l, hi ,θ i , φ i , be respectively the circumradius (the distance
from the center to a vertex), the midradius (the distance from the center to an edge), the inradius (the dis-
tance from the center to the face), the semiedge, the facial inradius, the facial angle and the dihedral angle

(the angle between the the i’th and the i + 1’st faces). Then it is not hard to verify that
ρ
R

= cos a,
ri

ρ
= cos ci ,

l

ρ
= tan a,

hi

ri
= tan ci , θ i = π − 2α i , φ i = π − ci − ci+1.

The construction described above can be easily adjusted to accommodate nonconvex uniform polyhe-
dra2. Such polyhedra may have star polygons as faces, or have the faces meeting at a vertex surround it
more than once. In the former case ni may be taken fractional (with the denominator being the density of
the star face, cf. [C]), and in the latter case the right hand side of (2) is a multiple of π (with the multiplier
being the density of the star vertex). Finally, nonconvex polyhedra may have retrograde faces, as follows:
Choose an arbitrary orientation on the circumcircle of the vertex figure. The i’th face is said to be retro-
grade if the shorter of the the two arcs connecting Bi−1 to Bi is oppositely oriented. (We assume that at
least one face is not retrograde!) In this case we will represent a retrograde {n} by an {n′}, with n′ < 2 sat-

isfying
1

n
+

1

n′
= 1. This will make α ′ = π − α obtuse, and γ ′ = −γ negative, as required. We will reiterate

on these adjustments in the next section.

It is worthwhile to note that [CLM], p. 420, utilize the circumcircle of the vertex figure and elemen-
tary plane trigonometry to derive a set of equations which is essentially identical to our fundamental sys-
tem. They are also able to obtain, by elimination, a single quartic equation, and use it to to prove that their
list of snub polyhedra is complete (cf. [CLM], table 4). However, from our point of view, such derivation
obscures the tight relationship between uniform polyhedra and their fundamental triangulations, a relation-
ship which will be instrumental in section 4. Furthermore, the elimination method is not as uniform as the
iterative solution to be presented in section 3, since it has to be carried out afresh for each polyhedron type
and requires quite a few symbolic manipulations, algebraic and trigonometric.

3. The Iterative Solution.

We now describe the iterative solution of the fundamental system, based on well-known Newton’s
method for solving nonlinear equations. The general idea is to solve 2n of the unknown in terms of the
2n + 1’st, referred later as the independent unknown, and to compute the latter by iterative approximations.
One of the problems in such an approach is the choice of the independent unknown, and we will attend to it
shortly.

First, we notice that the α i’s are readily available from (1):

α i =
π
ni

(4)

for i = 1, . . . , m.

Furthermore, once one of the γ i’s, say γ1, is computed, all the rest are available from (3):

cos a =
cos α1

sin γ1
(5)

γ i = arc sin(
cos α i

cos a
) (6)

2 The corresponding spherical tiling consists of hollow tiles in the sense of [GMS] (cf. [GS], section 12.3),
and the fundamental triangulation be viewed as a multiple tiling of the sphere by triangles, or a triangulation of
a Riemann surface (cf. [GS], section 12.4)).



-4-

for i = 2, . . . , m.

Note that the inverse sine function in (6) has seemingly two values in the range (0, π ). However, it
may be easily observed that at most one of the γ i’s may be obtuse, and we may assume, without any loss of
generality, that γ i , for i = 2, . . . , m, are all acute.

Thus, (2) may be rewritten as

δ = π − Σ γ i = 0, (7)

where δ is a well defined function of γ1 only.

We recall Newton’s method for solving the equation f (x) = 0: Choose an initial approximation to the
root and then define a sequence of closer approximations using the recursion

x̂ = x −
f (x)

f ′(x)
(8)

Assume initially that the fundamental triangles are approximately planar. This motivates the initial
approximation

γ i = π
2

− α i.

for i = 1, . . . , m.

This certainly satisfies (5) and (6) (with cos a = 1), but as these values for the γ i’s are smaller than in
reality (as the sum of the angles in a spherical triangle exceeds π ), δ in (7) will not vanish, but rather be a
positive number, which motivates naming it the excess function. The iterative procedure will converge if
we are able to make the excess arbitrarily small. It may be shown, at least empirically, that in order to guar-
antee convergence it is sometimes necessary to choose γ1 as the biggest of the initial values, i.e., choose α1

to be the smallest of the α i’s, or, in view of (4), choose n1 to be the biggest of the ni’s.

This choice is the obvious the case for those polyhedra for which γ1 turn to be obtuse, in view of our
observation about the double-valuedness of the inverse sine function. Also, it may be shown that in the
general case, this choice also guarantees a faster convergence than then any other choice. We’ll see why it
happens once we developed the recursion formula.

To use (8), we have to differentiate the excess function; we have from (7),

−
dδ
dγ1

= 1 + Σ ′
dγ i

dγ1
(9)

(with the prime denoting summation over the range 2, . . . , m). However, in view of (5) and (6),

sin γ i =
sin γ1 cos α i

cos α1

which in turn implies, using logarithmic differentiation,

dγ i

dγ1
=

tan γ i

tan γ1
. (10)

Combining (7), (9) and (10) we get

−
δ
δ ′

= δ
tan γ1

Σ tan γ i

(with summation again over the full range 1, . . . , m, and δ ′ is the derivative in (9)).

Finally, we arrive at the required recursion for γ1:

γ̂1 = γ1 + δ
tan γ1

Σ tan γ i

In practice, we notice that the faces meeting at a vertex are not necessarily different, thus we may
group similar faces together, and adjust the above formulas to reflect the fact that at each vertex the polyhe-
dron can have mi faces each of which is a {ni}, with Σ mi = m. Furthermore, we handle retrograde faces
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by orienting the vertex figure so that the the first, thus biggest, face is not retrograde. Thus, ni is a positive
rational, and mi is a positive integer. d , the vertex density, is a non-negative integer.

To summarize, fundamental system

niα i = π

Σ miγ i = π d

cos α i

sin γ i
= cos a

where n1 = max ni , has the following iterative solution algorithm:

Step 1.

Choose the initial approximation γ i = π
2

− α i , where α i =
π
ni

.

Step 2.
Compute the excess δ = π d − Σ miγ i . If it is numerically small enough, finish. Otherwise, continue
to step 3.

Step 3.
Compute the next approximation to the independent unknown γ1 using the recursion

γ̂1 = γ1 + δ
tan γ1

Σ mi tan γ i

Step 4.
Compute cos a and γ i , i = 2, . . . , m, using

cos a =
cos α1

sin γ1

γ i = arc sin(
cos α i

cos a
)

Step 5.
Return to step 2.

We want to make an observation about the convergence of this algorithm. The increment in γ1 in step
3 may be very small even without the excess δ being small. This happens if the denominator Σ mi tan γ i is
large, unless the numerator tan γ1 behaves similarly. In such cases the algorithm converges slowly or even
diverges, and our choice for the independent unknown prevent them from occurring. By the way, choosing
cos a as the independent unknown creates similar problems and although it looks plausible and perhaps
more elegant (compare with the well known Lagrange multipliers ), it should be avoided. A mathemati-
cally rigorous proof of convergence is out of the scope of this paper; We will have to be satisfied by empiri-
cal convergence for all the finitely many uniform polyhedra (cf. [CLM], [S]).

Note that in few exceptional cases, the direct approach fails. In these cases, it happens that the vertex
density d is zero, and the faces incident at a vertex occur in several oppositely oriented pairs, and thus even
the initial approximation satisfies the fundamental system, which is obviously impossible, since, as we
already remarked, α i + γ i >

π
2

in a right-angled spherical triangle. It is interesting to note that these polyhe-

dra are exactly those which cannot be constructed directly using the Wythoff construction, to be presented in
the section 4. In section 5 we present an adjustment to the construction, which in turn leads to an adjust-
ment to the fundamental system, which makes it possible to handle these exceptions.

4. The Kaleidoscope.

We start by discussing the dihedral kaleidoscope. It consists of two hinged planar mirrors. The
reflections in these mirrors generate a group of isometries, which is finite if the dihedral angle of the kalei-

doscope is a rational submultiple of π , i.e., of the form
π
q

, where q is a rational greater than one. We now
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consider the meaning of these particular angles from additional points of view.

Intersect the kaleidoscope by a perpendicular plane, and choose a circle in this plane with center at
the corner. The kaleidoscope encloses a circular arc, and we may ask for the cases in which repeated reflec-
tions of this arc in the mirrors produce a finite covering of the circle. It is easy to see that a d-fold covering

obtained if q =
n

d
, where n and d are relatively prime positive integers, with n > d . In this case the the

kaleidoscope generates Dn, the dihedral group of order 2n, and the
π
q

=
π d

n
arc consists of d copies of the

fundamental domain of the group, a
π
n

arc.

Now, put a point object in a general position on the enclosed arc. Then, repeated reflections in the
mirrors will yield 2n points. which may naturally be viewed as the vertices of a 2n-gon, where adjacent
vertices belong to arcs which share an endpoint. Let the 2n-gon be C1C2

. . . C2n, where C1 is the point
object.

Note, that in two cases we get a smaller number of images: The first case is when C1 = C2 or
C1 = C2n, which means that C1 is a fixed point of one of the original reflections, or, geometrically, that the
point object is located on one of the mirrors. Then, we get n pairs of coincident adjacent vertices, which
means that n of the edges of the polygon are degenerate, and may be discarded. Thus, when the point object

is located on one of the mirrors, we get regular n-gon, with density d , customarily denoted by {
n

d
}, i. e.,

{q}. Note, that if {q} and {q′} satisfy
1

q
+

1

q′
= 1, they are two oppositely oriented copies of the same

polygon.

The other case is when Cn+1 = C1. This is only possible if the n + 1st arc coincides with the first, but
oppositely oriented. Thus, C1 is located on the bisecting plane of the kaleidoscope, and the reflection in this
plane belongs to to the dihedral group generated by the kaleidoscope. In this case we have no degenerate
edges, but rather a regular n-gon which is transversed twice. As the density of the compound is d , d has to

be even and each polygon has density
d

2
. Thus, when the point object is located on the bisector, we get a

double {
n

(d/2)
}, i.e., a double {2q}. It is easy to check that if the point object is similarly located but the

denominator d is odd, it traces a single regular 2n-gon with density d , i.e., a single {2q}.

In all the other cases the polygon is an irregular 2n-gon, however if we use only rotations (or any
ev en number of reflections) then the polygon C1C3

. . . C2n−1 is still regular, a {q}.

We now add a third mirror, and get the trihedral kaleidoscope, which consists of three concurrent
planar mirrors. The problem of finding conditions on the dihedral angles for the kaleidoscope to generate a
finite group of isometries was posed and solved by A. H. Schwarz in 1873. As we have already seen, it is
necessary that these angles are rational submultiples of π , but however this is not sufficient. Intersecting
the kaleidoscope by a sphere centered in its corner, Schwarz formulated the following problem: Enumerate

all convex spherical triangles PQR, with angles
π
p

,
π
q

and
π
r

(p,q,r are all rational greater than one), with

the property that when reflected in its sides any number of times, PQR produces a finite covering of the
sphere. Such a triangle is called a Schwarz triangle and is denoted by the symbol (p q r). It may be shown
that unless two of the angles are

π
2

(in which case the kaleidoscope generates the dihedral symmetry group),

p, q, and r may have as numerators the numbers 2, 3, 4 or 5, with the further stipulation that 4 and 5 cannot
occur together. The denominator has to be smaller than the numerator, and this makes the number of nondi-
hedral Schwarz triangles finite. A complete list of Schwarz triangles may be found in [C], table III, and in
appendix I.

Putting a point object C in the Schwarz triangle PQR, it is now reflected repeatedly to produce a
polyhedron, whose vertices are the images of the point object. As before, two vertices are considered adja-
cent if they belong to triangles which share an edge, and several vertices are incident to the same face if
they belong to triangles which share a vertex. Note that as in the previous discussion, the polyhedron may
be degenerate: Two images may coincide without a similar coincidence of the Schwarz triangles. This
means that the polyhedron may be split into several, not necessarily distinct, polyhedra. This phenomenon
is investigated in [CLM], and we will not discuss it here any detail (but see however section 5).
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The kaleidoscopic construction of polyhedra is named after Wythoff (1918) who was the first to use it
(in four dimensions, cf. [CLM], p. 406).

Assuming nondegeneracy, Wythoff construction is very useful in getting the topological invariants of
the traced polyhedra, that is, the covering density D and the Euler characteristic χ . Both values can be eas-
ily computed for the for the multiple tiling of the sphere by Schwarz triangle: D may be found from the
area of (p q r) and the order g of the symmetry group generated by the reflection in its sides:

4π D = g(
π
p

+
π
q

+
π
r

− π ),

or,

D =
g

4
(

1

p
+

1

q
+

1

r
− 1).

Note that the value of g is 4n , 24, 48 or 120 if the group is n-fold dihedral, tetrahedral, octahedral or icosa-
hedral, respectively. As pointed out in [CLM] (p. 412, 418, 425), this is also the correct value for the den-
sity of any polyhedron derivable from (p q r), except for the cases where the spherical polyhedron pos-
sesses faces which are hemispherical or concave (i.e., bigger than a hemisphere). In the former case, the
planar faces are incident at the center, and the density is not well-defined. In the latter case, the spherical
and planar faces occur on two different sides of the center, and the density of the planar polyhedron may be
computed by subtracting the density of the spherical polyhedron above from the number of concave faces
(see the tables in appendix II; in our notation, a face is concave if γ is obtuse, see section 3).

The Euler characteristic relates V , the number of vertices, E, the number of edges, and F , the number
of faces of any map drawn on a given closed surface by the famous Euler formula V − E + F = χ . Here,
we are considering a D-sheeted Riemann surface, which is triangulated by the Schwarz triangles, so that

F = g, E =
3g

2
, and V = V p + Vq + Vr , where Vq is the number of vertices with the angle

π
q

, i.e., Vq =
g

2nq
,

where nq is the numerator of q. Thus, we get the formula

χ =
g

2
(

1

n p
+

1

nq
+

1

nr
− 1)

This value is also inherited by any non-degenerate polyhedron derivable from ( p q r) (see the tables in ap-
pendix II; see section 5 for the degenerate cases). It is very interesting to note that χ depends upon the
numerators only. This means, for instance, that the convex Plato’s icosahedron and the star-cornered

Poinsot’s great icosahedron, derivable from (2 3 5) and (2 3
5

2
), have both Euler characteristic 2, and are

thus homeomorphic as closed surfaces, although their densities are much different (1 for the former, 7 for
the latter).

It is clear, that wherever we put a point C in the Schwarz triangle PQR, the traced polyhedron will be
isogonal, i. e., all its vertices will be equivalent under the action of the isometry group generated by the
three reflections. We will now discuss the positions of C which guarantee that the traced faces will be regu-
lar polygons, and study the corresponding spherical tiling and the fundamental triangulation and its triangu-
lar prototiles Ai BiC. As before, A1 A2

. . . will be the prototile of the dual tiling, and B1 B2
. . . the vertex fig-

ure.

4.1. C is at the vertex P of PQR.

Let A1 and A2 be the vertices Q and R respectively, and let B1 be the foot of the perpendicular from
P on QR.

The resulting fundamental equations are, setting p =
n

d
:

qα1 = rα2 = π ,

nγ1 + nγ2 = π d .

By reflecting PQR repeatedly in its sides, we get the sequences of vertices A1 A2 A3
. . . and B1 B2 B3

. . .,
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which repeat themselves after 2n terms.

The resulting polyhedron is denoted by the Wythoff symbol p|q r. Its vertex configuration is
(q. r. q. r. . . . . q. r) (2n terms), and its vertex density is d . The vertex figure and the dual prototile are 2n-
gons.

4.2. C is at the intersection of the side PQ with bisector of the opposite angle R.

Let A1, A2 and A3 be the vertices Q, R and P, and let B1 and B2 be the feet of the perpendiculars
from C on QR and RP, respectively.

The resulting fundamental equations are:

qα1 = 2rα2 = pα3 = π ,

γ1 + 2γ2 + γ3 = π .

By reflecting A2, B1 and B2 in QR, we get the images A4, B4 and B3, respectively.

The resulting polyhedron is denoted by the Wythoff symbol p q|r, and its vertex configuration is
(p. 2r. q. 2r). The vertex figure and the dual prototile are quadrilaterals.

4.3. C is at the incenter of PQR.

Let A1, A2 and A3 be the vertices P, Q and R, and let B1, B2 and B3 be the feet of the perpendicu-
lars from C on PQ, QR and RP, respectively.

The resulting fundamental equations are:

2pα1 = 2qα2 = 2rα3 = π ,

γ1 + γ2 + γ3 = π .

The resulting polyhedron is denoted by the Wythoff symbol p q r |, and its vertex configuration is
(2p. 2q. 2r). The vertex figure and the dual prototile are triangles.

4.4. C traces a snub polyhedron.

In the previous positions, the symmetry group of the polyhedron is generated by reflections. In partic-
ular, the polyhedron is reflexible. We now discuss a fourth position, which usually traces a chiral polyhe-
dron, i.e., a polyhedron with a symmetry group which consists of rotations only3. This is done by consider-
ing only images under an even number of reflections (as was done for the dihedral kaleidoscope). In this
case, it is easier to study the dual tiling directly, and to infer the existence of C without an actual construc-
tion.

Let O be the Fermat point of the Schwarz triangle PQR, i.e, the point where the sides subtend equal

angles (assuming it exists4). Reflect O in the sides and get an hexagon A1 A2
. . . A6 with angles

2π
3

,
2π
p

,

2π
3

,
2π
q

,
2π
3

and
2π
r

respectively, where odd indices refer to the images of O, and even indices refer to the

vertices P, Q and R. Reflecting this hexagon any even number of times, we get an isohedral, vertically reg-
ular tiling of the sphere, i.e., the dual of a uniform tiling. The latter consists of a {p}, a {q} and a {r} with
centers at P, Q and R, respectively, alternating with three, so-called snub, {3}’s. Let C be the common ver-
tex of these six polygons (since the snub {3}’s are congruent, it is located at the circumcenter of A1 A3 A5),
and let Bi , for i = 1, 2, . . . , 6, be the foot of the perpendicular from C to Ai Ai+1.

The resulting fundamental equations are:

3α1 = pα2 = qα4 = rα6 = π ,

3 However, (5/2 3 3) and (3/2 3/2 5/2) being isosceles, they yield reflexible snub polyhedra.
4 The existence of O is verified by a continuity argument, at least for the case where all the angles of PQR

are smaller then 2π /3 (this is not the case for (3/2 3/2 5/2) and (3/2 5/3 2)).
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3γ1 + γ2 + γ4 + γ6 = π .

Here, we counted one snub {3} thrice, because the snub {3}s are all congruent. The resulting snub polyhe-
dron is denoted by the Wythoff symbol | p q r, and its vertex configuration is (3. p. 3. q. 3. r). The vertex
figure and the dual prototile are hexagons.

Note that in all the cases, the occurrence of α = π
2

implies that the corresponding tile is a {2}, i.e., a

digon, and may be discarded.

5. Exceptional Polyhedra.

An polyhedron is orientable if its faces may be coherently oriented, that is, assigned orientations in
such a way that the orientations induced on an edge common to two faces are opposite. It is easy to verify,
that the Wythoff construction always yields orientable polyhedra, assuming that vertices which belong to
nonadjacent Schwarz triangles are considered distinct, even if they coincide. The number of the polyhe-
dron vertices may be readily found by dividing the order of the kaleidoscope symmetry group by the num-
ber of copies of adjacent Schwarz triangles which share a vertex, i. e., by two for p q|r or |p q r, and by n

for
n

d
|q r.

We will now discuss two particular cases where the Wythoff construction yields only pairs of coin-
ciding vertices, that, when identified, are the vertices of a nonorientable, or one-sided, polyhedron. In these
cases, the number of real vertices will be of course only a half of the expected number. The discussion is
based on the phenomenon, described in section 4, that a point object on the bisector of a dihedral kaleido-

scope with angle
π
q

, q rational with an even denominator, yields a double {2q}.

For conclusion, we shall have a brief, independent discussion about the solution for the only non-
Wythoffian polyhedron in existence.

5.1. Polyhedra p q r | with an even denominator.

Consider a Schwarz triangle PQR, with an angle
π
r

at R, r rational with an even denominator. Sup-

pose the point object C is located in the incenter of PQR. In particular, it lies on the bisector atR. As we
have seen, the images of C trace a {2p}, a {2q} and a {2r}, with centers at P, Q and R, respectively. How-
ev er, since r has an even denominator, we find that the face with center at R, which is traced by reflections
at RP and RQ only, is a double {2r}. When transversing it once, PQR is reflected in the bisector at R, and
the faces with centers at P and Q are reflected into two similar faces with centers at the images of P and Q.
Thus, in addition to the double {2r}, we have at C two { p}’s and two {q}’s, arranged in the cyclic order
(2r. p. q. 2r. q. p). By discarding the double {2r}’s, we get a single, one-sided polyhedron. The nonori-
entability is due to orientation reversal: Trying to find a coherent orientation on the faces and considering
the four faces incident at a vertex, we notice that two of them has to be retrograde, i.e., the vertex configura-
tion is (p. q. p′. q′). However, when considering the faces adjacent to a discarded double {2r}, none of the
four faces incident at a vertex may be retrograde.

It is interesting to note, that the enumeration of the faces at C does not define the polyhedron well,
and the direct algorithmic approach in section 3 fails. However, by taking the {2r}’s into account, and solv-
ing the equations set in section 4.3, the metrical properties of these exceptional polyhedra may be still com-
puted.

The Euler characteristic can be obtained from the basic value discussed in section 4: By considering
the fundamental triangulation and removing the double {2r}’s, the balance of edges and faces doesn’t
change, and the number of vertices is reduced by Vr (see section 4). Thus, we get for this case

χ =
g

2
(

1

n p
+

1

nq
− 1).

The density is not-well define, as these polyhedra do not produce an even covering of the sphere.
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5.2. Hemi polyhedra p p′|r.

Consider a Schwarz triangle PQR, where the angles
π
p

and
π
q

are complementary, and assume that

q = p′ < 2 < p. Reflecting the side PR in PQ, we get an arc which meets the extension of RQ beyond Q at
a point S. It is clear that the sides of the spherical triangle PSR are all arcs of symmetry of the group gener-

ated by PQR, and thus it is itself a Schwarz triangle, say (
p

2
s r), where s is a rational greater than one. It

follows that the incenter C of PSR is also the point where the side PQ of PQR meets the bisector of the
opposite angle. Thus, considering the polyhedra traced by the images of C, we find that the polyhedra

p p′|r and
p

2
s r | hav e the same vertices. Of course, the vertex configurations are different: ( p. 2r. p′. 2r)

for the former, (p. 2s. 2r) for the latter. Howev er, if s has an even denominator, the double {2s}’s in
p

2
s r |

may discarded as above, and we are left with the vertex configuration ( p. 2r. p′. 2r), that is p p′|r. The last
term of the vertex configuration may be written as 2r rather than (2r)′, because the {2r}’s are great circles,
and thus the same orientation can be designated either retrograde or not. This property of the {2r}’s fol-
lows from the observation that C is the incenter of the lune obtained by extending RP and RQ beyond P
and Q. The property that such polyhedra possess equatorial faces which separate them in half justifies
labeling them hemi.

It is interesting to note, that if s has an even denominator, than CPS is the Schwarz triangle (2 p 2s)
(or, the hemi polyhedron share the vertices with 2|p 2s), where 2s has an odd numerator. Howev er, it may
be shown that the only Schwarz triangle (2 p q) with q rational, greater than two, and with an even numera-

tor is (2 3 4). Thus, it follows that the only hemi polyhedron which is orientable is 3
3

2
|3 (cf. [CLM], p.

417).

In contrast to the previous case, it is easy to check that the metrical properties of the polyhedron
p p′|r are computable from its vertex configuration, once we write it (p. 2r. p′. 2r) rather than
(p. 2r. p′. (2r)′). In fact, just one step of the algorithm yields the exact result. The geometric reason behind
this contrast is related to the vertex figure of the two types of nonorientable polyhedra (cf. [CLM], p. 417
and 419): The vertex figure of a general pqr | is a crossed parallelogram, which is not determined given its
sides and its inscribability in a circle. However, the vertex figure of p p′|r is a crossed rectangle, and the
extra information that the crossed sides pass through the center of the circle does determine the vertex fig-
ure.

As the Wythoff construction generates an orientable two sided covering of p p′|r, its Euler character-
istic is half of the basic one, that is

χ =
g

4
(

2

n p
+

1

nr
− 1).

5.3. The last polyhedron |3
5

2

3

2

5

3
.

The only uniform polyhedron which has more than six faces at a vertex, and the only one which can-
not be constructed by the Wythoff construction (or a minute modification of it), has the vertex configuration

(4.
5

2
. 4. 3. 4.

5

3
. 4.

3

2
). Again, the enumeration of faces incident at a vertex does not determine the polyhe-

dron, and therefore a direct use of the uniform solution fails. However, by considering the Schwarz triangle

(3
5

2

5

3
) and its reflection in the perpendicular bisector of its shortest side (which is an arc of symmetry of

the generated group), it may be shown (cf. [CLM], section 11), that the oppositely oriented pairs of trian-

gles and pentagrams of |3
5

2

3

2

5

3
also belong to an enantiomorphous and vertex sharing pair of |3

5

2

5

3
’s.

Actually, both pentagrams belong to both snub polyhedra, with roles interchanged, and each triangle is a
non-snub triangle of one of the pair. We can conclude easily that the last uniform polyhedron is a second
instance of an orientable hemi polyhedron. Furthermore, solving the snub polyhedra as in section 4.4, we
can complete the solution by computing the triangulation of the extra squares using the fundamental equa-
tion (3), section 2. The Euler characteristic has the bizarre value of χ = −56, computable from the actual
counts of vertices, edges and faces.
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Appendix I: Schwarz Triangles.

To facilitate the enumeration of Schwarz triangles, one notices that for the covering to be simple,
(p q r) must be a Möbius triangle, that is, one of the triangles D1/n = (2 2 n) (with n = 2, 3, . . .),
T1 = (2 3 3), O1 = (2 3 4) and I1 = (2 3 5), which are the fundamental domains of the full dihedral, tetrahe-
dral, octahedral and icosahedral symmetry groups, respectively. A Schwarz triangle which produces a d-
fold covering of the sphere can be decomposed to d copies of one of the Möbius triangles. These proper-
ties may be used to synthesize Schwarz triangles, as we now explain.

Let

S1 = (p x r1 ; y v  w1)

and

S2 = (x′ q r2 ; u y w2)

be two Schwarz triangles (where we included in the symbol also the sides opposite the respective angles),

which have a common edge y and complementary angles
π
x

and
π
x′

. Then, S1 and S2 can be pasted along

the common edge, and produce a new triangle

S1 + S2 = (p q r ; u v  w),

where we have set

1

r
=

1

r1
+

1

r2
,

w = w1 + w2.

This is a Schwarz triangle if r > 1. As usual, 2S is a shorthand for S + S.

In few cases, S1 and S2 can be pasted together in more then one way, to produce several different
Schwarz triangles. In particular, if S1 and S2 are two copies of the same right-angled triangle
(p q 2 ; u v  w), with p, q > 2  and p ≠ q, they can be pasted along each of the legs, to produce two isosce-

les triangles, with the same area but different perimeter, namely (q q
p

2
; w w 2u) and (p p

q

2
; w w 2v).

Starting from the Möbius triangles we get the denumerable family of dihedral Schwarz triangles

Dd/n = (2 2
n

d
) (with d = 1, . . . , n − 1), and the tetrahedral, octahedral and icosahedral triangles listed in

tables 1 through 3. The triangles are arranged by increasing area: The area of Id , for instance, is d times
the area of I1. In the cases where there are several triangles with the same area, they are ordered by
increasing perimeter and distinguished from one another by a letter, e.g., I2a and I2b. The sides are given in
terms of the legs s, u and v of T1 and I1

5. Because of space considerations, we list just one of the several
ways to split each Schwarz triangle into smaller ones. It is interesting that every triangle (except the small-
est) can always be split into two triangular pieces, with only one exception: The the trirectangular triangle
D1/2, if considered as an icosaheral Schwarz triangle, can only be split into four pieces or more. The listed

splitting is the symmetric one: An equilateral triangle, (
5

2

5

2

5

2
), surrounded by three copies of its half, the

right-angled triangle (5
5

2
2). Triangles which belong to a proper symmetry subgroup are flagged.

5 It may be shown that cos 2s = −
1

3
, cos 2u =

√5

3
and cos 2v =

√5

5
.
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Table 1: Tetrahedral Schwarz Triangles
symbol sides splitting

T1 (3 3 2) s s π − 2s

T2 (3 3
3

2
) π − 2s π − 2s 2s 2T1

T3 (3 2
3

2
) s 2s π − s T1 + T2

T5 (2
3

2

3

2
) π − 2s π − s π − s T2 + T3

T6 (
3

2

3

2

3

2
) 2s 2s 2s 2T3

Table 2: Octahedral Schwarz Triangles
symbol sides splitting

O1 (4 3 2)
π
2

− s
π
4

s

O2a (3 3 2) s s π − 2s 2O1 T1

O2b (4 4
3

2
) s s

π
2

2O1

O3 (4 2 2)
π
4

π
2

π
2

O1 + O2a D1/4

O4a (3 3
3

2
) π − 2s π − 2s 2s 2O2a T2

O4b (4 3
4

3
) s

π
2

π − s O2a + O2b

O5 (4 2
3

2
)

π
2

− s π − s
3π
4

O1 + O4b

O6a (2 2 2)
π
2

π
2

π
2

2O3 D1/2

O6b (3 2
3

2
) s 2s π − s O2a + O4a T3

O7 (3 2
4

3
)

π
4

π − s
π
2

+ s O3 + O4b

O9 (2 2
4

3
)

π
2

π
2

3π
4

O4b + O5 D3/4

O10 (2
3

2

3

2
) π − 2s π − s π − s 2O5 T5

O11 (2
3

2

4

3
) s

3π
4

π
2

+ s O6b + O5

O12 (
3

2

3

2

3

2
) 2s 2s 2s 2O6b T6

O14 (
3

2

4

3

4

3
)

π
2

π − s π − s 2O7
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Table 3: Icosahedral Schwarz Triangles
symbol sides splitting

I1 (5 3 2) u v
π
2

− u − v

I2a (3 3
5

2
)

π
2

− u − v
π
2

− u − v 2u 2I1

I2b (5 5
3

2
)

π
2

− u − v
π
2

− u − v 2v 2I1

I3 (5
5

2
2) v

π
2

− v 2v I1 + I2b

I4 (5 3
5

3
)

π
2

− u − v 2v
π
2

+ u − v I2a + I2b

I6a (
5

2

5

2

5

2
) 2v 2v 2v 2I3

I6b (5 3
3

2
) 2u

π
2

+ u − v
π
2

− u + v I2a + I4

I6c (5 5
5

4
) 2v 2v π − 2v 2I3

I7 (3
5

2
2)

π
2

− v
π
2

− u
π
2

+ u − v I3 + I4

I8 (5
5

2

3

2
)

π
2

− u − v
π
2

− u + v π − 2v I2a + I6b

I9 (5 2
5

3
) v π − 2v

π
2

+ v I3 + I6c

I10a (3
5

2

5

3
) 2v

π
2

+ u − v
π
2

− u + v I4 + I6a

I10b (5 3
5

4
)

π
2

− u − v π − 2v
π
2

+ u + v I4 + I6c

I11 (5 2
3

2
) u

π
2

+ u + v π − v I1 + I10b

I13 (3 2
5

3
)

π
2

− v
π
2

− u + v
π
2

+ u I6b + I7

I14a (
5

2

5

2

3

2
)

π
2

+ u − v
π
2

+ u − v π − 2v 2I7

I14b (3 3
5

4
)

π
2

+ u − v
π
2

+ u − v π − 2u 2I7

I15 (2 2 2)
π
2

π
2

π
2

I6a + 3I3 D1/2

I16 (3
5

2

5

4
) 2v

π
2

− u + v
π
2

+ u + v I6a + I10a

I17 (
5

2
2

3

2
)

π
2

− u
π
2

− u + v
π
2

+ v I8 + I9

I18a (
5

2

5

3

5

3
) 2v π − 2v π − 2v 2I9

I18b (3
5

3

3

2
)

π
2

− u − v π − 2u
π
2

+ u + v I8 + I10b

I19 (3 2
5

4
) v

π
2

+ u + v π − u I9 + I10b

I21 (
5

2
2

5

4
)

π
2

− v π − 2v π − v I10b + I11

I22 (
5

2

3

2

3

2
) 2u

π
2

+ u + v
π
2

+ u + v 2I11

I23 (2
5

3

3

2
)

π
2

+ u − v
π
2

+ u
π
2

+ v I10a + I13

I26 (
5

3

5

3

3

2
)

π
2

− u + v
π
2

− u + v π − 2v 2I13

I27 (2
5

3

5

4
) 2v

π
2

+ v π − v I11 + I16

I29 (2
5

2

5

4
)

π
2

− u − v π − v π − u I11 + I18b

I32 (
5

3

3

2

5

4
)

π
2

+ u − v π − 2v
π
2

+ u + v I14a + I18a

I34 (
3

2

3

2

5

4
)

π
2

− u + v
π
2

− u + v π − 2u 2I17

I38 (
3

2

5

4

5

4
) 2v

π
2

+ u + v
π
2

+ u + v 2I19

I42 (
5

4

5

4

5

4
) π − 2v π − 2v π − 2v 2I21
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Appendix II: Uniform Polyhedra

In tables 4 to 8, we list the seventy-five nondihedral uniform polyhedra, as well as the five pentagonal
prisms and antiprisms, grouped by generating Schwarz triangles. For each polyhedron we indicate a figure
number in this appendix, its Wythoff and vertex configuration symbols, and the values of its Euler charac-
teristic χ and density D (if well-defined). Nonorientable polyhedra are marked by starring their character-
istic. For reference, we indicate for each polyhedron a figure number in [CLM], pp. 439-448, and a model
number in [W1]. The polyhedron names listed in tables 5 to 8 are taken from [W2], where they are attrib-
uted to Norman W. Johnson, but note they sometimes vary among authors. Our figures represent wire-
frame images of the listed uniform polyhedra and their duals (the latter are indicated by a starred figure
number6). Although the figures are two dimensional, depth is faithfully represented by the variable thick-
ness of the wires. The drawings were made using the UNIX7 utility pic, from directives generated by
kaleido (cf. [Ha]).

Table 4: Dihedral Uniform Polyhedra
name

dual
fig symbol χ D

pentagonal prism

pentagonal dipyramid
1 2 5|2 (4. 4. 5) 2 1

pentagonal antiprism

pentagonal deltohedron
2 |2 2 5  (3. 3. 3. 5) 2 1

D1/5

pentagrammic prism

pentagrammic dipyramid3 2
5

2
|2 (4. 4.

5

2
) 2 2

pentagrammic antiprism

pentagrammic deltohedron4 |2 2
5

2
(3. 3. 3.

5

2
) 2 2

D2/5

pentagrammic crossed antiprism

pentagrammic concave deltohedronD3/5 5 |2 2
5

3
(3. 3. 3.

5

3
) 2 3

Table 5: Tetrahedral Uniform Polyhedra
name

dual
fig symbol χ D ref

tetrahedron

tetrahedron
6 3|2 3 (3. 3. 3) 2 1 15,1

truncated tetrahedron

triakistetrahedron
7 2 3|3 (6. 6. 3) 2 1 16,6

T1

octahemioctahedron

octahemioctacronT2 8
3

2
3|3 (6.

3

2
. 6. 3) 0 37,68

tetrahemihexahedron

tetrahemihexacronT3 9
3

2
3|2 (4.

3

2
. 4. 3) 1* 36,67

6 The ten unbounded polyhedra in figures 8*,9*,20*,54*,56*,66*,68*,75*,76*,80* are different from their
[W2] counterparts. They use the more correctly shown faces of [W2], p. 103.

7 UNIX is a trademark of AT&T Bell Laboratories.
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Table 6: Octahedral Uniform Polyhedra
name

dual
fig symbol χ D ref

octahedron

cube
10 4|2 3 (3. 3. 3. 3) 2 1 17,2

cube

octahedron
11 3|2 4 (4. 4. 4) 2 1 18,3

cuboctahedron

rhombic dodecahedron
12 2|3 4 (3. 4. 3. 4) 2 1 19,11

truncated octahedron

tetrakishexahedron
13 2 4|3 (6. 6. 4) 2 1 20,7

truncated cube

triakisoctahedron
14 2 3|4 (8. 8. 3) 2 1 21,8

rhombicuboctahedron

deltoidal icositetrahedron
15 3 4|2 (4. 3. 4. 4) 2 1 22,13

truncated cuboctahedron

disdyakisdodecahedron
16 2 3 4| (4. 6. 8) 2 1 23,15

snub cube

pentagonal icositetrahedron
17 |2 3 4  (3. 3. 3. 3. 4) 2 1 24,17

O1

small cubicuboctahedron

small hexacronic icositetrahedronO2b 18
3

2
4|4 (8.

3

2
. 8. 4) −4 2 38,69

great cubicuboctahedron

great hexacronic icositetrahedron19 3 4|
4

3
(

8

3
. 3.

8

3
. 4) −4 4 50,77

cubohemioctahedron

hexahemioctacron20
4

3
4|3 (6.

4

3
. 6. 4) −2* 51,78

cubitruncated cuboctahedron

tetradyakishexahedron21
4

3
3 4| (

8

3
. 6. 8) −4 4 52,79

O4

great rhombicuboctahedron

great deltoidal icositetrahedron22
3

2
4|2 (4.

3

2
. 4. 4) 2 5 59,85

small rhombihexahedron

small rhombihexacron23
3

2
2 4| (8. 4.

8

7
.

4

3
) −6* 60,86

O5

stellated truncated hexahedron

great triakisoctahedron24 2 3|
4

3
(

8

3
.

8

3
. 3) 2 7 66,92

great truncated cuboctahedron

great disdyakisdodecahedron25
4

3
2 3| (

8

3
. 4. 6) 2 1 67,93

O7

great rhombihexahedron

great rhombihexacronO11 26
4

3

3

2
2| (4.

8

3
.

4

3
.

8

5
) −6* 82,103
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Table 7: Icosahedral Uniform Polyhedra
name

dual
fig symbol χ D ref

icosahedron

dodecahedron
27 5|2 3 (3. 3. 3. 3. 3) 2 1 25,4

dodecahedron

icosahedron
28 3|2 5 (5. 5. 5) 2 1 26,5

icosidodecahedron

rhombic triacontahedron
29 2|3 5 (3. 5. 3. 5) 2 1 28,12

truncated icosahedron

pentakisdodecahedron
30 2 5|3 (6. 6. 5) 2 1 27,9

truncated dodecahedron

triakisicosahedron
31 2 3|5 (10. 10. 3) 2 1 29,10

rhombicosidodecahedron

deltoidal hexecontahedron
32 3 5|2 (4. 3. 4. 5) 2 1 30,14

truncated icosidodechedon

disdyakistriacontahedron
33 2 3 5| (4. 6. 10) 2 1 31,16

snub dodecahedron

pentagonal hexecontahedron
34 |2 3 5  (3. 3. 3. 3. 5) 2 1 32,18

I1

small ditrigonal icosidodecahedron

small triambic icosahedron35 3|
5

2
3 (

5

2
. 3.

5

2
. 3.

5

2
. 3) −8 2 39,70

small icosicosidodecahedron

small icosacronic hexecontahedron36
5

2
3|3 (6.

5

2
. 6. 3) −8 2 40,71

small snub icosicosidodecahedron

small hexagonal hexecontahedron37 |
5

2
3 3  (3.

5

2
. 3. 3. 3. 3) −8 2 41,110

I2a

small dodecicosidodecahedron

small dodecacronic hexecontahedronI2b 38
3

2
5|5 (10.

3

2
. 10. 5) −16 2 42,72

small stellated dodecahedron

great dodecahedron39 5|2
5

2
(

5

2
.

5

2
.

5

2
.

5

2
.

5

2
) −6 3 43,20

great dodecahedron

small stellated dodecahedron40
5

2
|2 5 (5. 5. 5. 5. 5)/2 −6 3 44,21

dodecadodecahedron

medial rhombic triacontahedron41 2|
5

2
5 (

5

2
. 5.

5

2
. 5) −6 3 45,73

truncated great dodecahedron

small stellapentakisdodecahedron42 2
5

2
|5 (10. 10.

5

2
) −6 3 47,75

rhombidodecadodecahedron

medial deltoidal hexecontahedron43
5

2
5|2 (4.

5

2
. 4. 5) −6 3 48,76

small rhombidodecahedron

small rhombidodecacron44 2
5

2
5| (10. 4.

10

9
.

4

3
) −18* 46,74

snub dodecadodecahedron

medial pentagonal hexecontahedron45 |2
5

2
5 (3. 3.

5

2
. 3. 5) −6 3 49,111

I3
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Table 7: Icosahedral Uniform Polyhedra
name

dual
fig symbol χ D ref

ditrigonal dodecadodecahedron

medial triambic icosahedron46 3|
5

3
5 (

5

3
. 5.

5

3
. 5.

5

3
. 5) −16 4 53,80

great ditrigonal dodecicosidodecahedron

great ditrigonal dodecacronic hexecontahedron47 3 5|
5

3
(

10

3
. 3.

10

3
. 5) −16 4 54,81

small ditrigonal dodecicosidodecahedron

small ditrigonal dodecacronic hexecontahedron48
5

3
3|5 (10.

5

3
. 10. 3) −16 4 55,82

icosidodecadodecahedron

medial icosacronic hexecontahedron49
5

3
5|3 (6.

5

3
. 6. 5) −16 4 56,83

icositruncated dodecadodecahedron

tridyakisicosahedron50
5

3
3 5| (

10

3
. 6. 10) −16 4 57,84

snub icosidodecadodecahedron

medial hexagonal hexecontahedron51 |
5

3
3 5  (3.

5

3
. 3. 3. 3. 5) −16 4 58,112

I4

great ditrigonal icosidodecahedron

great triambic icosahedron52
3

2
|3 5 (3. 5. 3. 5. 3. 5)/2 −8 6 61,87

great icosicosidodecahedron

great icosacronic hexecontahedron53
3

2
5|3 (6.

3

2
. 6. 5) −8 6 62,88

small icosihemidodecahedron

small icosihemidodecacron54
3

2
3|5 (10.

3

2
. 10. 3) −4* 63,89

small dodecicosahedron

small dodecicosacron55
3

2
3 5| (10. 6.

10

9
.

6

5
) −28* 64,90

I6b

small dodecahemidodecahedron

small dodecahemidodecacronI6c 56
5

4
5|5 (10.

5

4
. 10. 5) −12* 65,91

great stellated dodecahedron

great icosahedron57 3|2
5

2
(

5

2
.

5

2
.

5

2
) 2 7 68,22

great icosahedron

great stellated dodecahedron58
5

2
|2 3 (3. 3. 3. 3. 3)/2 2 7 69,41

great icosidodecahedron

great rhombic triacontahedron59 2|
5

2
3 (

5

2
. 3.

5

2
. 3) 2 7 70,94

great truncated icosahedron

great stellapentakisdodecahedron60 2
5

2
|3 (6. 6.

5

2
) 2 7 71,95

rhombicosahedron

rhombicosacron61 2
5

2
3| (6. 4.

6

5
.

4

3
) −10* 72,96

great snub icosidodecahedron

great pentagonal hexecontahedron62 |2
5

2
3 (3. 3.

5

2
. 3. 3) 2 7 73,113

I7

small stellated truncated dodecahedron

great pentakisdodekahedron63 2 5|
5

3
(

10

3
.

10

3
. 5) −6 9 74,97

truncated dodecadodecahedron

medial disdyakistriacontahedron64
5

3
2 5| (

10

3
. 4. 10) −6 3 75,98

inverted snub dodecadodecahedron

medial inverted pentagonal hexecontahedron65 |
5

3
2 5  (3.

5

3
. 3. 3. 5) −6 9 76,114

I9

great dodecicosidodecahedron

great dodecacronic hexecontahedron66
5

2
3|

5

3
(

10

3
.

5

2
.

10

3
. 3) −16 10 77,99

small dodecahemicosahedron

small dodecahemicosacron67
5

3

5

2
|3 (6.

5

3
. 6.

5

2
) −8* 78,100

great dodecicosahedron

great dodecicosacron68
5

2

5

3
3| (6.

10

3
.

6

5
.

10

7
) −28* 79,101

great snub dodecicosidodecahedron

great hexagonal hexecontahedron69 |
5

3

5

2
3 (3.

5

3
. 3.

5

2
. 3. 3) −16 10 80,115

I10a
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Table 7: Icosahedral Uniform Polyhedra
name

dual
fig symbol χ D ref

great dodecahemicosahedron

great dodecahemicosacronI10b 70
5

4
5|3 (6.

5

4
. 6. 5) −8* 81,102

great stellated truncated dodecahedron

great triakisicosahedron71 2 3|
5

3
(

10

3
.

10

3
. 3) 2 13 83,104

great rhombicosidodecahedron

great deltoidal hexecontahedron72
5

3
3|2 (4.

5

3
. 4. 3) 2 13 84,105

great truncated icosidodecahedron

great disdyakistriacontahedron73
5

3
2 3| (

10

3
. 4. 6) 2 13 87,108

great inverted snub icosidodecahedron

great inverted pentagonal hexecontahedron74 |
5

3
2 3  (3.

5

3
. 3. 3. 3) 2 13 88,116

I13

great dodecahemidodecahedron

great dodecahemidodecacronI18a 75
5

3

5

2
|

5

3
(

10

3
.

5

3
.

10

3
.

5

2
) −12* 86,107

great icosihemidodecahedron

great icosihemidodecacronI18b 76
3

2
3|

5

3
(

10

3
.

3

2
.

10

3
. 3) −4* 85,106

small retrosnub icosicosidodecahedron

small hexagrammic hexecontahedronI22 77 |
3

2

3

2

5

2
(3.

3

2
. 3.

3

2
. 3. 5) −8 38 91,118

great rhombidodecahedron

great rhombidodecacron78
3

2

5

3
2| (4.

10

3
.

4

3
.

10

7
) −18* 89,109

great retrosnub icosidodecahedron

great pentagrammic hexecontahedron79 |
3

2

5

3
2 (3.

3

2
. 3.

5

3
. 3) 2 37 90,117

I23

Table 8: Non-Wythoffian Uniform Polyhedra
name

dual
fig symbol χ D ref

great dirhombicosidodecahedron

great dirhombicosidodecacron80 |
3

2

5

3
3

5

2
(4.

5

3
. 4. 3. 4.

5

2
. 4.

3

2
) −56 92,119
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(4.4.5)2 5|2

Fig. 1

(3.3.3.5)|2 2 5

Fig. 2

(4.4.5/2)2 5/2|2

Fig. 3

(4.4.5)2 5|2

Fig. 1*

(3.3.3.5)|2 2 5

Fig. 2*

(4.4.5/2)2 5/2|2

Fig. 3*
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(3.3.3.5/2)|2 2 5/2

Fig. 4

(3.3.3.5/3)|2 2 5/3

Fig. 5

(3.3.3)3|2 3

Fig. 6

(3.3.3.5/2)|2 2 5/2

Fig. 4*

(3.3.3.5/3)|2 2 5/3

Fig. 5*

(3.3.3)3|2 3

Fig. 6*
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(6.6.3)2 3|3

Fig. 7

(6.3/2.6.3)3/2 3|3

Fig. 8

(4.3/2.4.3)3/2 3|2

Fig. 9

(6.6.3)2 3|3

Fig. 7*

(6.3/2.6.3)3/2 3|3

Fig. 8*

(4.3/2.4.3)3/2 3|2

Fig. 9*
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(3.3.3.3)4|2 3

Fig. 10

(4.4.4)3|2 4

Fig. 11

(3.4.3.4)2|3 4

Fig. 12

(3.3.3.3)4|2 3

Fig. 10*

(4.4.4)3|2 4

Fig. 11*

(3.4.3.4)2|3 4

Fig. 12*
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(6.6.4)2 4|3

Fig. 13

(8.8.3)2 3|4

Fig. 14

(4.3.4.4)3 4|2

Fig. 15

(6.6.4)2 4|3

Fig. 13*

(8.8.3)2 3|4

Fig. 14*

(4.3.4.4)3 4|2

Fig. 15*
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(4.6.8)2 3 4|

Fig. 16

(3.3.3.3.4)|2 3 4

Fig. 17

(8.3/2.8.4)3/2 4|4

Fig. 18

(4.6.8)2 3 4|

Fig. 16*

(3.3.3.3.4)|2 3 4

Fig. 17*

(8.3/2.8.4)3/2 4|4

Fig. 18*
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(8/3.3.8/3.4)3 4|4/3

Fig. 19

(6.4/3.6.4)4/3 4|3

Fig. 20

(8/3.6.8)4/3 3 4|

Fig. 21

(8/3.3.8/3.4)3 4|4/3

Fig. 19*

(6.4/3.6.4)4/3 4|3

Fig. 20*

(8/3.6.8)4/3 3 4|

Fig. 21*
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(4.3/2.4.4)3/2 4|2

Fig. 22

(8.4.8/7.4/3)3/2 2 4|

Fig. 23

(8/3.8/3.3)2 3|4/3

Fig. 24

(4.3/2.4.4)3/2 4|2

Fig. 22*

(8.4.8/7.4/3)3/2 2 4|

Fig. 23*

(8/3.8/3.3)2 3|4/3

Fig. 24*
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(8/3.4.6)4/3 2 3|

Fig. 25

(4.8/3.4/3.8/5)4/3 3/2 2|

Fig. 26

(3.3.3.3.3)5|2 3

Fig. 27

(8/3.4.6)4/3 2 3|

Fig. 25*

(4.8/3.4/3.8/5)4/3 3/2 2|

Fig. 26*

(3.3.3.3.3)5|2 3

Fig. 27*
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(5.5.5)3|2 5

Fig. 28

(3.5.3.5)2|3 5

Fig. 29

(6.6.5)2 5|3

Fig. 30

(5.5.5)3|2 5

Fig. 28*

(3.5.3.5)2|3 5

Fig. 29*

(6.6.5)2 5|3

Fig. 30*
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(10.10.3)2 3|5

Fig. 31

(4.3.4.5)3 5|2

Fig. 32

(4.6.10)2 3 5|

Fig. 33

(10.10.3)2 3|5

Fig. 31*

(4.3.4.5)3 5|2

Fig. 32*

(4.6.10)2 3 5|

Fig. 33*
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(3.3.3.3.5)|2 3 5

Fig. 34

(5/2.3.5/2.3.5/2.3)3|5/2 3

Fig. 35

(6.5/2.6.3)5/2 3|3

Fig. 36

(3.3.3.3.5)|2 3 5

Fig. 34*

(5/2.3.5/2.3.5/2.3)3|5/2 3

Fig. 35*

(6.5/2.6.3)5/2 3|3

Fig. 36*
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(3.5/2.3.3.3.3)|5/2 3 3

Fig. 37

(10.3/2.10.5)3/2 5|5

Fig. 38

(5/2.5/2.5/2.5/2.5/2)5|2 5/2

Fig. 39

(3.5/2.3.3.3.3)|5/2 3 3

Fig. 37*

(10.3/2.10.5)3/2 5|5

Fig. 38*

(5/2.5/2.5/2.5/2.5/2)5|2 5/2

Fig. 39*
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(5.5.5.5.5)/25/2|2 5

Fig. 40

(5/2.5.5/2.5)2|5/2 5

Fig. 41

(10.10.5/2)2 5/2|5

Fig. 42

(5.5.5.5.5)/25/2|2 5

Fig. 40*

(5/2.5.5/2.5)2|5/2 5

Fig. 41*

(10.10.5/2)2 5/2|5

Fig. 42*
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(4.5/2.4.5)5/2 5|2

Fig. 43

(10.4.10/9.4/3)2 5/2 5|

Fig. 44

(3.3.5/2.3.5)|2 5/2 5

Fig. 45

(4.5/2.4.5)5/2 5|2

Fig. 43*

(10.4.10/9.4/3)2 5/2 5|

Fig. 44*

(3.3.5/2.3.5)|2 5/2 5

Fig. 45*
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(5/3.5.5/3.5.5/3.5)3|5/3 5

Fig. 46

(10/3.3.10/3.5)3 5|5/3

Fig. 47

(10.5/3.10.3)5/3 3|5

Fig. 48

(5/3.5.5/3.5.5/3.5)3|5/3 5

Fig. 46*

(10/3.3.10/3.5)3 5|5/3

Fig. 47*

(10.5/3.10.3)5/3 3|5

Fig. 48*
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(6.5/3.6.5)5/3 5|3

Fig. 49

(10/3.6.10)5/3 3 5|

Fig. 50

(3.5/3.3.3.3.5)|5/3 3 5

Fig. 51

(6.5/3.6.5)5/3 5|3

Fig. 49*

(10/3.6.10)5/3 3 5|

Fig. 50*

(3.5/3.3.3.3.5)|5/3 3 5

Fig. 51*
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(3.5.3.5.3.5)/23/2|3 5

Fig. 52

(6.3/2.6.5)3/2 5|3

Fig. 53

(10.3/2.10.3)3/2 3|5

Fig. 54

(3.5.3.5.3.5)/23/2|3 5

Fig. 52*

(6.3/2.6.5)3/2 5|3

Fig. 53*

(10.3/2.10.3)3/2 3|5

Fig. 54*
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(10.6.10/9.6/5)3/2 3 5|

Fig. 55

(10.5/4.10.5)5/4 5|5

Fig. 56

(5/2.5/2.5/2)3|2 5/2

Fig. 57

(10.6.10/9.6/5)3/2 3 5|

Fig. 55*

(10.5/4.10.5)5/4 5|5

Fig. 56*

(5/2.5/2.5/2)3|2 5/2

Fig. 57*
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(3.3.3.3.3)/25/2|2 3

Fig. 58

(5/2.3.5/2.3)2|5/2 3

Fig. 59

(6.6.5/2)2 5/2|3

Fig. 60

(3.3.3.3.3)/25/2|2 3

Fig. 58*

(5/2.3.5/2.3)2|5/2 3

Fig. 59*

(6.6.5/2)2 5/2|3

Fig. 60*
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(6.4.6/5.4/3)2 5/2 3|

Fig. 61

(3.3.5/2.3.3)|2 5/2 3

Fig. 62

(10/3.10/3.5)2 5|5/3

Fig. 63

(6.4.6/5.4/3)2 5/2 3|

Fig. 61*

(3.3.5/2.3.3)|2 5/2 3

Fig. 62*

(10/3.10/3.5)2 5|5/3

Fig. 63*
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(10/3.4.10)5/3 2 5|

Fig. 64

(3.5/3.3.3.5)|5/3 2 5

Fig. 65

(10/3.5/2.10/3.3)5/2 3|5/3

Fig. 66

(10/3.4.10)5/3 2 5|

Fig. 64*

(3.5/3.3.3.5)|5/3 2 5

Fig. 65*

(10/3.5/2.10/3.3)5/2 3|5/3

Fig. 66*
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(6.5/3.6.5/2)5/3 5/2|3

Fig. 67

(6.10/3.6/5.10/7)5/3 5/2 3|

Fig. 68

(3.5/3.3.5/2.3.3)|5/3 5/2 3

Fig. 69

(6.5/3.6.5/2)5/3 5/2|3

Fig. 67*

(6.10/3.6/5.10/7)5/3 5/2 3|

Fig. 68*

(3.5/3.3.5/2.3.3)|5/3 5/2 3

Fig. 69*
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(6.5/4.6.5)5/4 5|3

Fig. 70

(10/3.10/3.3)2 3|5/3

Fig. 71

(4.5/3.4.3)5/3 3|2

Fig. 72

(6.5/4.6.5)5/4 5|3

Fig. 70*

(10/3.10/3.3)2 3|5/3

Fig. 71*

(4.5/3.4.3)5/3 3|2

Fig. 72*
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(10/3.4.6)5/3 2 3|

Fig. 73

(3.5/3.3.3.3)|5/3 2 3

Fig. 74

(10/3.5/3.10/3.5/2)5/3 5/2|5/3

Fig. 75

(10/3.4.6)5/3 2 3|

Fig. 73*

(3.5/3.3.3.3)|5/3 2 3

Fig. 74*

(10/3.5/3.10/3.5/2)5/3 5/2|5/3

Fig. 75*



-45-

(10/3.3/2.10/3.3)3/2 3|5/3

Fig. 76

(3.3/2.3.3/2.3.5/2)|3/2 3/2 5/2

Fig. 77

(4.10/3.4/3.10/7)3/2 5/3 2|

Fig. 78

(10/3.3/2.10/3.3)3/2 3|5/3

Fig. 76*

(3.3/2.3.3/2.3.5/2)|3/2 3/2 5/2

Fig. 77*

(4.10/3.4/3.10/7)3/2 5/3 2|

Fig. 78*
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(3.3/2.3.5/3.3)|3/2 5/3 2

Fig. 79

(4.5/3.4.3.4.5/2.4.3/2)|3/2 5/3 3 5/2

Fig. 80

(3.3/2.3.5/3.3)|3/2 5/3 2

Fig. 79*

(4.5/3.4.3.4.5/2.4.3/2)|3/2 5/3 3 5/2

Fig. 80*


