
Electric Charge (Q or q)

- Conservation of Charge: <u>Net charge</u> cannot be created or destroyed
- SI Unit of charge: Coulomb (C)
 - -1 C is a HUGE charge; usually have μ C or nC
- Charge quantum: $e = 1.602 \times 10^{-19} C$
 - Proton charge = e
 - Electron charge = -e
- Can transfer electrons from one material to another by rubbing, etc., to get net charge
- Electrons can move through materials
 - Conductors: Some electrons move easily
 - Insulator: Limited or no electron motion

Electric Force - Coulomb's Law

- Charge creates electric field; second charge placed in field feels electric force
- \Rightarrow Charges exert electric force on each other
 - Charges of opposite sign attract each other
 - Charles of like sign repel each other
- Strength of force depends on amount of each charge and the distance between them
- Force exerted ON point charge Q₂ BY point charge Q₂ given by <u>Coulomb's Law</u>:

Coulomb's Law

Coulomb's Law Notes

• Constant k can be written as $\int_{0}^{1} -\varepsilon_{0} = 8.85 \text{ x } 10^{-12} \text{ C}^{2}/(\text{N} \cdot \text{m}^{2})$ - "Permittivity of vacuum"

$$k = \frac{1}{4\pi\varepsilon_0}$$

• Note that if $Q_1 \& Q_2$ have same sign, <u>direction</u> of F_{21} is same as r_{21} : repulsive force - If $Q_1 \& Q_2$ have opposite signs, <u>direction</u> of F_{21} is opposite to r_{21} : attractive force

Example

• What force does $Q_1 = -20 \ \mu C$ at the origin exert on $Q_2 = 1 \ \mu C$ at position $\vec{r_2} = 2m \ i + 2m \ j$?