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Abstract

The quality of AI opponents often leaves a lot to be desired,
which poses many attractive challenges for AI researchers. In
this respect, Turn-based Strategy (TBS) games are of particu-
lar interest. These games are focussed on high-level decision
making, rather than low-level behavioural actions. For effi-
ciently designing a TBS AI, in this paper we propose a game
AI architecture named ADAPTA (Allocation and Decomposi-
tion Architecture for Performing Tactical AI). It is based on
task decomposition using asset allocation, and promotes the
use of machine learning techniques. In our research we con-
centrated on one of the subtasks for the ADAPTA architecture,
namely the Extermination module, which is responsible for
combat behaviour. Our experiments show that ADAPTA can
successfully learn to outperform static opponents. It is also
capable of generating AIs which defeat a variety of static tac-
tics simultaneously.

Introduction
The present research is concerned with artificial intelligence
(AI) for turn-based strategy (TBS) games, such as CIVILIZA-
TION and HEROES OF MIGHT AND MAGIC. The AI for TBS
games offers many challenges, such as resource manage-
ment, forward planning, and decision making under uncer-
tainty, which a computer player must be able to master in
order to provide competitive play. Our goal is to create an
effective turn-based strategy computer player. To accom-
plish this, we employ learning techniques to generate the
computer player’s behaviour automatically.
As TBS games are in many ways related to real-time strat-

egy (RTS) games, the research challenges of these domains
are rather similar. Buro and Furtak (2003) define seven re-
search challenges for RTS games, six of which are also rele-
vant to the TBS domain. These are (1) Adversarial planning,
(2) Decision making under uncertainty, (3) Spatial reason-
ing, (4) Resource management, (5) Collaboration, and (6)
Adaptivity. While these six challenges are similar for both
genres, due to the increased ‘thinking time’ available, TBS
games may offer more depth in some of them.
The outline of this paper is as follows. First, we discuss

related work and provide a definition of the TBS game used
for this research. We explain the AI architecture designed
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for this game. Next, we describe how spatial reasoning is
used in our AI, followed by an overview of the learning al-
gorithm used to generate the behaviour of our AI automat-
ically. We discuss the experimental setup and the results
achieved. Finally, we provide conclusions.

Related Work
A significant portion of TBS game research employs the
technique of Case Based Reasoning (CBR). Two examples
are the work of Sánchez-Pelegrı́n, Gómez-Martı́n, and Dı́az-
Agudo (2005), who used CBR to develop an AI module
for an open source CIVILIZATION clone, and the work of
Obradović (2006), who focussed on learning high-level de-
cisions to model complex strategies used by human play-
ers accurately. In order to achieve visibly intelligent behav-
iour, Bryant and Miikulainen (2007) use human-generated
examples to guide a Lamarckian neuroevolution algorithm,
which trained an agent to play a simple TBS game. Their
experiments showed that their technique was able to ap-
proximate the example behaviour better than a backpropa-
gation algorithm, but that backpropagation agents achieved
better game performance. Ulam, Goel, and Jones (2004)
built a knowledge-based game agent for a TBS game using
model-based reflection and self-adaptation, combined with
reinforcement learning. The agent performed the task of de-
fending a city in FREECIV. Their results show that their ap-
proach performs very well and converges fast. Hinrichs and
Forbus (2007) combined a symbolic Hierarchical Task Net-
work (HTN) planning system with analogical learning and
qualitative modelling, and applied it to a resource manage-
ment task in FREECIV. They conclude that transfer learning,
i.e., training the system on a (separate) data set, improves
results, especially at the start of a game.

Game Definition
For this research, we have developed our own game defini-
tion, based on Nintendo’s ADVANCE WARS, which is a rela-
tively simple TBS game that still supports most of the major
features of the genre. Each of the 4 X’s (Exploration, Ex-
pansion, Exploitation, and Extermination) are represented
in some form in the environment. We named our version
SIMPLE WARS.
SIMPLE WARS takes place on a two-dimensional, tile-

based map, shown in Figure 1. A tile is of a predefined type,
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such as Road,Mountain, or River. Each type has its own set
of parameters, which define the characteristics of the tile,
such as the number of moves that it takes for a unit to move
over it, or the defense bonus that a unit receives while stand-
ing on it. By default, movement in the game can occur ei-
ther horizontally or vertically, but not diagonally. A defense
bonus lowers the amount of damage that the unit receives
in combat. Some tiles contain a base, for example a City,
which provides a certain amount of resources to the player
that controls the base, or a Factory, which can produce one
unit each turn. Each unit requires a specific amount of re-
sources to be built. A newly created unit is placed on the
same tile as the Factory that produced it.

Figure 1: SIMPLE WARS.

As is the case with bases and tiles, units come in sev-
eral types. Each type has different values for its parameters,
which include (1) the starting amount of health points for
the unit, (2) the number of moves it can make per turn, (3)
the amount of damage it can do to each type of unit, and (4)
the actions the unit can perform. Because a unit in the game
actually represents a squad of units, and damaging the unit
represents destroying a part of the squad, the effectiveness
of actions such as Attack (attacking another unit) is tied to
the number of health points that remains for the unit. Addi-
tionally, the effectiveness of an Attack depends on the types
of units involved.
The three types of units in this game are Infantry, Tank,

and Anti-Tank units. Of these, only the Infantry unit is ca-
pable of moving over Mountain tiles. None of these units
is able to move over Sea tiles. The units follow a rock-
paper-scissors approach, which means that each of the three
types is, where doing damage to the other two unit types is
concerned, stronger than one and weaker than the other (In-
fantry defeats Anti-Tank, Anti-Tank defeats Tank, and Tank
defeats Infantry).
Every turn, a player can build a single unit at each Factory

under control, and perform (1) a Move and (2) an Attack or
other action for each unit under control. An Attack action
can be performed without moving, but a unit cannot move
after performing this action. A tile can only contain a single
unit at any time. This implies that a Factory is unable to

produce a new unit whenever another unit is located at the
same tile as this Factory. Additionally, a moving unit is able
to pass through a tile occupied by a friendly unit, but not
through a tile occupied by an enemy unit.

The ADAPTA Architecture
In many commercial strategy games, the AI is implemented
using scripts. In order to keep the size of the AI man-
ageable, the complex task in the script can be decomposed
into several subtasks, which operate independently of each
other, and concentrate each on performing a specific part of
the complex task, without taking the other subtasks into ac-
count. While the goals of the subtasks are independent, they
all share the same environment, namely the game world.
Moreover, they need to share the finite number of assets (re-
sources and game objects) that are available. By nature, a
subtask only sees a part of the big picture, and is not con-
cerned with the overall path to victory. Therefore, separate
modules are required to keep track of the AI’s goals, to de-
termine which goals (and therefore, which subtasks) have
priority at a point in the game, and to allocate control over
the available assets to the different subtasks. Because these
modules keep track of the overall strategy, they are called
the strategic modules. The subtasks are called tactical mod-
ules, as they are each responsible for one type of tactics.
Combined, these modules make up the ADAPTA architec-
ture, which is depicted in Figure 2. The ADAPTA approach is
reminiscent of a goal-based RTS AI, which is used in some
commercial games, such as KOHAN 2 (Dill 2006).
In the ADAPTA architecture, the strategic AI acts as an

arbitrator between the different tactical modules. The As-
set Allocation Module decides which tactical module gets
control over which assets. This is achieved through auc-
tioning. Tactical modules generate bids, which consist of
one or more assets that a module wants to use, and a utility
value that the module assigns to these assets (e.g., it assigns
a high utility value to assets which it considers to be very
useful for achieving its goals). The Asset Allocation Mod-
ule uses these bids to find the allocation which maximises
‘social welfare.’ Bids are generated by the various tactical
modules, which are not concerned with the bids of compet-
ing modules. Therefore, the strategic layer contains a Utility
Management Module which weighs each bid’s utility value
according to the tactical module that generated it and the
overall goal of the game. After the assets have been allo-
cated, the Movement Order Module decides in which order
the actions generated by the tactical modules are executed.
The three main tasks of a tactical module are (1) bid gen-

eration, (2) utility calculation, and (3) action generation.

Figure 2: The ADAPTA Game AI architecture.
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1. A bid generator is responsible for submitting a set of bids
to the Asset Allocation module. These bids should repre-
sent the optimal (or near optimal) actions for a subset of
the available assets, according to a certain tactic.

2. A utility function calculates a numerical utility value
given a certain set of assets. This utility is used by the
strategic layer to determine asset allocation. Utilities
should provide an accurate measurement of the relative
effectiveness of a certain tactic, compared to other tactics
generated by the same module.

3. After the winning bids have been determined, game ac-
tions are generated by the module for the assets assigned.
These actions are submitted (along with the utility of the
associated bid) to the Movement Module in the strategic
layer, which executes them in a certain order.

Spatial Reasoning
As defined in the previous section, a tactical layer can con-
tain any number of tactical modules, and a module can be
responsible for any task. In this research we focus on the
creation of a single tactical module, which will serve as an
example of how tactical modules fit into the ADAPTA archi-
tecture. This example module is named the Extermination
module, as it is responsible for handling combat between
units. In our environment, this amounts to assigning Move
and Attack actions to each unit under the command of an AI.
We use influence maps (Tozour 2004) to determine the

optimal tile to perform an action. Traditionally, an influence
map assigns a value to each map tile to indicate the rela-
tive tactical influence that the player has on that tile. In our
approach, we let the influence value indicate the desirabil-
ity for a unit to move towards the tile. For TBS games, an
influence map is typically calculated just before making a
decision, so that it will, due to the turn-based nature, always
reflect the current game state. The influence map is calcu-
lated separately for each tile, as follows:

I(x, y) =
O∑

o

p(w(o), δ(o, x, y))

where O is the set of all objects used for this influence map,
p(W, d) is a propagation function of weight vector W and
distance d, w(o) converts object o into a vector of weights,
and δ(o, x, y) is a distance function calculating the distance
from object o to tile (x, y).
The behaviour of an influence map is defined by the two

aforementioned functions, (1) the distance function δ and
(2) the propagation function p. The distance function can be
a general distance metric, such as Euclidean or Manhattan
distance, or a domain-specific function, such as the number
of steps that a unit needs to get to the target tile. The prop-
agation function defines the influence that an object has on
each tile. It is a function of the distance between the game
object and current tile.
Because different types of game objects have different

effects on the game, the calculation of influences should
be performed differently for each type. Additionally, by
summing both positive and negative influences for different

types of objects in a single influence map, information may
be lost. For these reasons, multiple influence maps should
be maintained for different types of objects. These influence
maps can then be analysed on their own as well as combined
with others by a layering algorithm. A layering algorithm is
a function that combines the contents of a number of influ-
ence maps and combines them into a single, new influence
map. Figure 3 illustrates the process of layering two differ-
ent influence maps.

Figure 3: Layering two influence maps.

In our research, the layering algorithm is a neural network
with two outputs. This neural network generates two influ-
ence maps simultaneously, one of which indicates the prefer-
ability of moving to each tile, and the other doing the same
for attacking each tile. In this way, the task of the Exter-
mination module is reduced to selecting the tiles with the
highest influence from all possible targets for the Move and
Attack actions.

Adaptivity
The behaviour of an AI using the spatial reasoning approach
described in the previous section depends on the choices for
the propagation functions and layering algorithm, as well
as their weights. In previous work concerning influence
maps, weights were often chosen arbitrarily (Tozour 2004).
A different approach is to generate the weights automatically
(Sweetser 2006; Miles et al. 2007). This is what we do. In
order to keep the size of the search space manageable, we
limit ourselves to generating the weights, while the choices
of all functions remain fixed.
The learning algorithm we used is an evolutionary algo-

rithm (EA) (Yao 1999). In our approach, candidate solu-
tions, or individuals, represent a neural network as a string
of weights. Each generation, the effectiveness (or fitness) of
each of the individuals is determined according to a certain
fitness measure. Because the individuals define the behav-
iour of a game AI, their fitness can be determined by letting
these AIs play the game that they are intended for. In order
to attain consistent fitness values, all individuals are made to
play against the same opponent(s). An individual’s fitness is
defined as

Fi =

∑
j Rij +

∑
j Rji

2 · |Ri|
where Rij is the numerical value resulting from a game be-
tween players i and j, where player i has starting position
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1 and player j has starting position 2. The genetic opera-
tors chosen for the EA are capable of operating on neural
networks. A description of each of the operators, as well
as a detailed overview of the EA used, is given by Bergsma
(2008).

Experiment 1: Iterative Learning
For our experiments, we implemented a research environ-
ment in which the game SIMPLE WARS can be played be-
tween different AIs. It is impractical for the ADAPTA AI to
learn against human players. We decided to determine the
ability of the ADAPTA AI to defeat a certain tactic by letting
it play against other AI implementations, such as scripts. We
implemented a (rather simple) rush tactic to serve as an ini-
tial opponent. This tactic always makes its available units
move towards the nearest enemy unit, and attacks whenever
possible.
The goal of the game is to destroy 10 enemy units. This is

also the total amount of units a player is allowed to build dur-
ing the game. Because the game is played on a small map,
both players are only allowed to control 4 units at any time.
Both players start off without any units, but with 4 Facto-
ries, each of which is able to build all three unit types. Aside
from the 10-unit limitation, both players are given sufficient
resources to build 10 units at the start of the game.
Our goal is to improve iteratively the performance and

behaviour of the ADAPTA AI, as well as assessing to which
extent the results of the learning algorithm generalise over
different opponents. Therefore, after the ADAPTA AI has
learned to convincingly defeat the initial opponent, we
started a new run with the learned AI as the new opponent.
Again, when this opponent was convincingly defeated, we
replaced it with the newly generated AI. This process was
repeated until ten new AIs were generated. Such an ‘arms
race,’ in which a learning opponent must defeat opponents
generated in previous cycles, works well for many games
and game-like tasks (see for instance the work by Pollack
and Blair (1998) on BACKGAMMON and the work by Chel-
lapilla and Fogel (1999) on CHECKERS).
Note that no Fog of War (FoW) was used for this experi-

ment (nor for the second one). While experiments with FoW
were performed, their results were similar to the results de-
scribed below. A possible explanation for this is that, for this
environment, FoW has little effect on the game. More de-
tails concerning the FoW experiments are given by Bergsma
(2008).

Results and Discussion
Table 1 lists the final minimum, average, maximum, and op-
ponent fitness values for each iteration. The Rush AI is used
as the opponent in the first iteration, the AI generated against
the Rush AI is used as the opponent in the second iteration,
etc.
From Table 1 we conclude that, each iteration, the learn-

ing algorithm is successful in generating a solution which
outperforms its opponent. This can be derived from the fact
that the maximum fitness for each iteration is positive. To
compare the individual results, all eleven AIs (the Rush AI

Iter. Minimum Average Maximum Opponent
1 -0.293 0.129 0.473 -0.129
2 -0.275 0.059 0.326 -0.059
3 -0.060 0.155 0.486 -0.155
4 -0.416 -0.027 0.286 0.027
5 -0.021 0.318 0.591 -0.318
6 -0.252 0.141 0.500 -0.141
7 -0.533 0.057 0.357 -0.057
8 -0.022 0.025 0.302 -0.025
9 -0.425 0.053 0.300 -0.053
10 -0.212 0.111 0.457 -0.111

Table 1: Final fitness values for Experiment 1.

and the ten generated AIs) were made to play against each
other. For each of these AIs, their fitnesses against every
opponent is averaged in Figure 4. Here, iteration number 0
represents the Rush AI.

Figure 4: Average fitnesses of all AIs.

Figure 4 shows clearly that the overall performance of the
AIs does not increase with each iteration. Even though each
AI outperforms the AI from the previous iteration, the aver-
age fitnesses may go up or down. This fact suggests that the
results do not generalise well over the opponents from pre-
vious iterations. For a better understanding of these results,
we considered the types of tactics that the generated AIs use.
We found that the AIs can be divided into three categories,
each of which uses simple tactics.
1. The Defence tactic. This tactic keeps units close to each
other at the base, and only attacks when provoked. It is
used by AIs #1 and #5.

2. The Base Offence tactic. This tactic entails rushing the
enemy bases with all units, and attacking enemy units
whenever possible. It is used by AIs #2, #4, and #7.

3. The Unit Offence tactic. This tactic is similar to the Base
Offence tactic, but it moves towards enemy units instead
of bases. It is used by AIs #3, #6, #8, #9, and #10.
Figure 5 shows the performances for each of these types

of tactics against each of the others, as well as against the
Rush tactic. Each of the four graphs contains the average fit-
ness values for the corresponding tactic against each of the
four tactics. From this figure we can observe the follow-
ing. The Rush AI outperforms the Base Offence and Unit
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Offence tactics, but is outperformed by the Defence tactic.
In turn, the Defence tactic is outperformed by the Base and
Unit Defence tactics. This implies that none of the tactics
dominates the others. It seems that, as is the case with the
units, a rock-paper-scissors relationship exists at the level of
strategies.

Figure 5: Fitnesses between each type of tactic.

Experiment 2: Multi-Objective Learning
Because each generated AI’s performance was strongest
against their direct opponent, it is expected that an AI
which is learned against multiple opponents will be rela-
tively strong against all of them. If each of these opponents
uses a different tactic, the AI must learn to outperform them
simultaneously, which potentially results in a generalised
AI. In the second experiment we decided to generate an AI
against three of the different AIs from the first experiment,
namely #0 (the Rush AI), #1 (a Defence tactic) and #3 (A
Unit Offense tactic). The approach we used for this experi-
ment is based on the SPEA2 algorithm (Zitzler, Laumanns,
and Thiele 2001). It uses the concept of Pareto dominance
to establish an ordering between different individuals. An
individual is Pareto dominated if another individual’s fitness
values are at least equal to the corresponding fitness values
of the first individual, and at least one of them is greater. Us-
ing this concept, non-dominated individuals can objectively
be considered better than their dominated counterparts. This
approach is similar to a dominance tournament (Stanley and
Miikkulainen 2002).
The SPEA2 approach differs from regular EAs in two im-

portant ways. Firstly, aside from the regular population, an
archive containing non-dominated individuals is maintained.
Each new population is now generated using the individuals
from not just the population, but also from this archive. Sec-
ondly, two factors are used to determine the scalar fitness
value of individuals, namely (1) the number of individuals

which dominate this individual and (2) the location of this
individual in the fitness space.

Results and Discussion
At the end of the second experiment (which we ran only
once due to the time-intensive nature of the task), the learn-
ing algorithm had generated 28 non-dominated individuals.
To determine the quality of these AIs, they were played
against the test data, which consists of the previously gener-
ated AIs which were not used as training data (AIs #2 and
#4 through #10). The resulting averages of the fitness val-
ues against both the training and the test sets are displayed
in Figure 6. The test set averages are weighted according to
the prevalence of their corresponding tactic within this set.
Unsurprisingly, the results against the test set are gener-

ally lower than those against the training set. The results
show a clear favourite; NDI #32 outperforms the other AIs
by a wide margin. To obtain a more accurate measure of the
generated AIs’ performances, they were also made to play
each other in a tournament. Again, NDI #32 proved to be
the best-performing AI. The average fitness it achieved was
about 25% higher than that of the next best individual in this
test, NDI #13. This is quite a big difference.
Analysing the behaviour of NDI #32 shows an interesting

tactic. It does not simply rush toward enemy units or bases,
but it is not strictly defensive either. For the first few turns,
it does not move its units, until enemy units move into at-
tack range. Then, the AI sends all of its units towards these
enemy units. Because the enemy’s units move at different
rates and therefore do not arrive simultaneously, this results
in a material advantage as well as the initiative of attack.
This behaviour shows that the learning algorithm is able to
generate an AI which not only outperforms multiple tactics,
but does so using a new, somewhat more complicated tactic,
instead of an improved version of the previously generated
tactics.

Conclusions
The goal of this research was to generate automatically an
effective TBS AI player. To accomplish this, our approach
focussed on spatial reasoning, through the use of influence
mapping. We extended the influence mapping approach by
implementing an improved layering algorithm, and by cre-
ating a learning algorithm which generates the weights, and
therefore the behaviour, of the influence maps automatically.
We have also shown that influence maps can be used to de-
termine directly the behaviour of an AI player. Moreover,
in order to decompose the complex task of creating a TBS
AI player, we proposed the ADAPTA architecture. This ar-
chitecture makes it possible to concentrate AI design on a
single subtask. This promotes the possibility to implement
learning AIs.
In our experiments, we chose one subtask, namely an Ex-

termination module which is aimed at combat. For this sub-
task we learned new AIs using an evolutionary algorithm.
The results achieved showed that the ADAPTA AI is able to
generate tactics that defeat all single opponents. Moreover,
by learning against multiple opponents using different tac-
tics simultaneously, an AI was created which was able to
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Figure 6: Average fitness of each non-dominated individual against the training set and the test set. The latter is weighed
according to the prevalence of each tactic in the test set.

play at least equally well and outperform most of the previ-
ously generated AIs.
For future work, we intend to explore the capabilities

and limitations of the auctioning mechanism in the strategic
layer of the ADAPTA architecture, as this was not included
in the present research. Furthermore, we intend to explore
whether the successes achieved with learning of the Exter-
mination module can be repeated for the other modules.
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