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1. Introduction

Reduced descriptions of the MHD equations have a number of attractive featuresfor theoretical
and numerical calculations[1, 2, 3]. The goa of these descriptionsisareduced set of equations
which embody the most salient physics of MHD stability properties in magnetized, toroidal
plasmas. These reduced models eliminate the fast time-scale magnetosonic waves, which
significantly constrain the computational speed of solving the full MHD equations but do not
significantly contribute to instabilities. Strauss [1] introduced these models by reducing the
MHD equations using theinverse aspect ratio of thetorus as the expansion parameter. Hazeltine
and Meiss[2] furthered the basi ¢ physics understanding of reduced MHD by giving aderivation
using k| /%, asthe expansion parameter, which was introduced as a means to eliminate the fast
time scale associated with motions perpendicular to the magnetic field. Despite the success
in heuristically explaining the fundamental physics of reduced MHD equations, the equations
derived by Hazeltine and Meiss do not exhibit energy conservation or adivergence-freemagnetic
fieldto all orders. The goal of the present work isto derive aset of reduced equationsthat do not
have these inadequacies and therefore are more suitable for nonlinear numerical smulations.

2. Fundamentals of reduced MHD equations

The ordering used is designed to look at modes whose wavelengths are small compared to
the minor radius a (equilibrium scale length) and to the parallel wavelength, i.e, AL /)| ~ ¢
and A\ /a ~ ¢ where e < 1. The wavelength ordering is defined for directions relative to a
large-scale magnetic field.

To formally obtain the wavelength ordering described, we order first-order quantities
as Q1 = Qi (%1/e,),t1/e,1)) where the notation i, (i) denotes spatial dependence of
perturbed quantitiesin the direction perpendicular (parallel) to the zeroth-order magnetic field,
and ¢, and ¢ are the time scales associated with their respective spatial scales. This ordering
give 6@1 = (%ﬁL + 6“) Ql(:il,f\\)a where 6“ = 60(60 . ﬁ) and ﬁL = ﬁ — ﬁH' The
expansion parameter is given by the anisotropy of the perturbed response; therefore the zeroth-
order quantities are ordered smply as Qo = Qo (%, t) .

The MHD variables, p, p, B, V, 11, and II., which are the plasma density, pressure, mag-
netic field, flow velocity field, total stress tensor, and electron stress tensor respectively, are
ordered as described above. Note that no assumptions are made on the zeroth-order quantitiesa
priori (i.e., it isnot assumed that they satisfy the usual MHD equilibrium force balance). This
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derivation most significantly differsfrom previousderivationsof reduced equations by explicitly
retaining the zeroth-order and perpendicular time scales. They are kept here to elucidate the
motions on these time scales as well asthe desired ¢ time scale. The stresstensor I1 isthe sum
of both the ion and electron contributions and is ordered e. The resistivity n and the electron
stress tensor I1, are ordered 2.

We apply this ordering to the MHD equations including the anisotropic stress tensor, but
neglect heat flows. Taking ;.o = 1 we obtain in the lowest order

opo _ IR opy _ 0 IR
— % = o TV Vi, = =gt HapoVi -V
0By _ 0B, | B .1
—EQ:WLI+BQVL~V1, (1)

—6(2?0 + B3 /2) + (éo : 6) By = ,00% +V. (P1 + By §1)

We assume that the zeroth-order quantities do not vary on the perpendicular time scale
and assume wave-like solutions for the first-order quantities: py,pr, Vi, By ~ ¢! (F-#1-t) - p
perpendicular time scale average isintroduced as (Q), = ﬁ 7+ @ dt, Using this averaging
operator on Eg. (1) one can derive the longer time scale behavior of these |leading-order
equations. After taking this average, the terms on the right-hand side vanish and leave the
left-hand side of Eq. (1), which are the exact MHD equilibrium equations.

The perturbed parts of Egs. (1) can be seen to be the the leading order equations for
fast magnetosonic waves justifying the wave-like behavior assumed. To eliminate the fast,
perpendicular time scale in the equations (i.e., to obtain 0Q,/dt, = 0), we choose

6L~V)1:O(€), p1+§0'§120(6) (2)

as constraints on our equations, which must be satisfied to order e. These constraints form
the basis of the MHD equations reduction, and explicitly show the reduced MHD assumption
corresponds to fast magnetosonic waves equilibrating to the ideal MHD equilibrium.

In the next order, we will have fast magnetosonic waves for the second-order quantities.
Proceeding as before, we can eliminate these motions and are |eft with averages of first-order
guantities over thefast (¢ ) time scale. The remaining equations, which describe evolution on
the ¢, time-scale, will have 8 variables. Equations (2) and V - B = 0 introduce 3 constraints
which leaves 5 fundamental variables. We now wish to derive 5 equations to evolve scalar
variables on the ¢ time-scale, which satisfy our constraints,

3. Derivation of reduced MHD equations

Before beginning the derivation of these equations, we note that we will be keeping |ower-order
termsin the derivation in order to satisfy energy conservation. For smplicity, the termsthat are
kept will not be shown explicitly.

Proceeding as described, the pressure equation becomes

d . - S Vpr |2 - - J
%"‘(Vrv)}?o—i‘”YPT(VH'VI):(7—1) [ (J%”+| gi' )—H:V 1+ e : V—]. (3)
| 0 ne



1998 ICPP & 25th EPS CCFPP ----- Reduced MHD Equations for Low Aspect Ratio Devices

Here, we have defined

— —

d 0 By B
— = — 4+ (Vi-V), br=by+b ==+= =po+ 4
dtH 8t|‘ ( v )’ r 0 1= By By’ pPr="poT P ( )

The density equation when ordered issimilar to Eq. 3inform:

d
d’jl +prV Vi =0 (5)
H

Taking the parallel component of the momentum equation and ordering gives

dvj

Pr dt|_60.6p1_61.6pT_60.6.H (6)

where V| = Vi - bo.

To derive equations for the perpendicular components of the magnetic induction equation
and the momentum equation, it iseasier to recast the ordering processin termsof the electrostatic
and magnetic potentials. These are given by ® = €2¢ and A = A, + 24, such that the
electric and megnetic fields are £ = ¢ (=V1¢) + € (=V ¢ — 04/t + E*) and B =
V x Ay + eV x A,, where E* is the applied electric field which is ordered to be consistent
with the equilibrium Ohm’s law.

We now look at projections of Ohm’'s Law. The first and second-order Ohm'’s Law
perpendicular to B, dlows us to write

V» . BOXV¢+ ~ B|‘1b0><v¢

6}?7“ EQ X Lﬁ -1
= Vibo — - ne
o TR

Vib . 7

The last four terms are lower-order, but are kept to satisfy energy conservation. Note that this
equation satisfies our constraint V, - Vi = O(e) in Eq. (2). The component of Ohm's Law
along B, iswritten as

I R
S N Jj— —by-V-1I, 8
o1, Vo =1 | = -bo \% (8)

where Jr, = Jj,+Jj = V x Bo+ V1 x By, ¥ = — A = — A, - b, and .Jj , has been cancelled
with E4 - by + by/(ne) - V - Ilo. Here, the perturbed current has been denoted with a tilde
rather than a subscript 1 because it is of order unity.

I n ordering the momentum equation, fast magnetosonic waves appeared in thelowest order.
To eliminate these motions, we derive a vorticity equation from the quasineutrality condition,
V.J=0. Using the momentum equation to find ./, , we obtain

WhereéT = EO + El and pr = po + p1.
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Up to this point, B; has only been defined by B; = V| x A,. To make the perturbed
magnetlc field manlfestly dlvergencefreeto all orders, it isnecessary to keep alower order term
sothat B, = V x A,. Express ng A, in terms of two new scalar variables ¢ (poloidal flux)
and y (toroidal flux), Ay = —Q/JVC XV@, will alow aclosed set of equationsif v, y can be
related to the variables we are evolving. Applying by to therelation for A, gives one equation
U = (J7Y/By) (q¥ + x), where J is the Jacobian of the straight-field-line magnetic flux
coordinates iy, ©, (. These coordinates are based upon the axisymmetric equilibrium magnetic
field By = (V¢ — qVO) x Vb, where ¢ is the poloidal flux, © and ¢ are the poloidal and
toroidal angles respectively, and ¢ = ¢(v) is the safety factor. The other needed equatlon

comes from the constraint required to eliminate fast magnetosonic waves, p; = —B, - B;. To

order ¢, thisis
o p I 0 B qgw@ 0

e BB 81/1()( o)~ IBZ 3¢
where thetoroidal flux functionis I = RBreiqa and ¢g¥® isthe off-diagonal metric element.

(VBy) (10)

Energy conservation is obtained by multiplying Eq. (9) by —¢, Eq. (6) by V, Eq. (8) by
Jr,, adding the result to a manipulated from of Eqg. (3), and then integrating over all space. It
is also necessary when forming the energy integral, to keep only the leading order termsto J:
Jj = V2 + O(e). With this definition of .J;, one can form a divergence term that will cancel
when integrated over all space. The (nonlinear) integral that is conserved is

2 = 412 I\ |2
s (PTVID | pr | Vo] RAZ D1
/d x ( 2 + 252 + 5 Jio S-1) (11)

Thisintegral avoids the nonstandard conserved energy of the original reduced MHD derivation
[1].

Our reduced MHD equations are Egs. (3),(5), (6), (8), and (9). Because the aspect-ratio
of the plasma is not used as an expansion parameter, these equations are valid for low-aspect
ratio plasmas. It isalso possibleto self-consistently incorporate equilibrium flow profilesand to
introduce neoclassical effects such as poloidal flow damping, polarization current enhancement,
and bootstrap currents [3], which not included in resistive MHD. Further, linear layer physics
calculations of these equations show that one can reproduce the same linear stability criterion
as given in Glasser, Greene, and Johnson [4], who used the full MHD model.

References

[1] H.R. Strauss: Phys. Fluids 19, 134 (1976)

[2] R.D. Hazeltineand J.D. Meiss. Physics Reports, 121, 1 (1985);
R.D. Hazeltineand J.D. Meiss. Plasma Confinement. Addison-Wesley, 1992

[3] JD. Cdlen et.d.: in Plasma Physics and Controlled Nuclear Fusion Research, 1986,
Kyoto (IAEA, Vienna, 1987), Val. 2, p. 157.

[4] A.H. Glasser, JM. Greene and J.L. Johnson: Phys. Fluids 18, 875 (1975)

2037



