
Integration Workbook
Integration Workbook, Summer ’15

 @salesforcedocs
Last updated: June 30, 2015

https://twitter.com/salesforcedocs

© Copyright 2000–2015 salesforce.com, inc. All rights reserved. Salesforce is a registered trademark of salesforce.com, inc.,
as are other names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

Force.com Integration Workbook . 1

Before You Begin . 2

Tutorial #1: Create a New Heroku Application . 3

Step 1: Clone the GitHub Project . 3
Step 2: Create a Heroku Project . 3
Step 3: Test the Application . 4
Summary . 5

Tutorial #2: Connect the Warehouse App with an External Service 6

Step 1: Create an External ID Field on Invoice . 6
Step 2: Create a Remote Site Record . 6
Step 3: Create an Integration Apex Class . 7
Step 4: Test the @future Method . 9
Step 5: Create a Trigger to Call the @future Method . 10
Step 6: Test the Complete Integration Path . 11
Summary . 12

Tutorial #3: Update the Heroku App . 13

Step 1: Configure Your Connected App . 13
Step 2: Update Your Application with a New Branch . 13
Step 3: View the Invoice Information . 14
Summary . 15

Tutorial #4: Add Your App to Salesforce Using Force.com Canvas 16

Step 1: Update your Application with a New Branch . 16
Step 2: Edit the Connected App Details and Enable the App for Force.com Canvas 16
Step 3: Configure Access to Your Force.com Canvas App . 20
Step 4: Make Your Force.com Canvas App Available from the Chatter Tab 21
Step 5: Use Visualforce to Display the Canvas App on a Record . 21
Summary . 23

FORCE.COM INTEGRATION WORKBOOK

One of the most frequent tasks Force.com developers undertake is integrating Force.com apps with existing applications. The tutorials
within this workbook are designed to introduce the technologies and concepts required to achieve this functionality.

The Force.com Integration Workbook is intended to be the companion to the Force.com Workbook. The series of tutorials provided here
extend the Warehouse application by connecting it with a cloud-based fulfillment app.

Intended Audience

This workbook is intended for developers who are new to the Force.com platform but have basic working knowledge in Java.

Tell Me More....

This workbook is designed so that you can go through the steps as quickly as possible. At the end of some steps, there is an optional
Tell Me More section with supporting information.

• You can find the latest version of this and other workbooks at
https://developer.salesforce.com/page/Force.com_workbook.

• To learn more about Force.com and to access a rich set of resources, visit Salesforce Developers at
https://developer.salesforce.com.

1

https://developer.salesforce.com/page/Force.com_workbook
https://developer.salesforce.com/

BEFORE YOU BEGIN

Before you begin the tutorials, you’ll need to install the Warehouse data model in your organization, create a Heroku developer account,
and install the Heroku Toolbelt software on your local workstation.

Step 1: Install the Warehouse Data Model

This workbook uses a set of objects that represent a simple warehouse management system. To install these objects into your developer
organization:

1. If you don’t have a Developer Edition account, sign up for one at http://sforce.co/1ugNn2R.

2. Navigate to https://login.salesforce.com/packaging/installPackage.apexp?p0=04ti0000000Pi7P in your browser.

3. Log in using your Developer Edition organization username and password.

4. On the Package Installation Details page, click Continue.

5. Click Next. On the Security Level page, click Next. On the following page, click Install.

6. You’ll also want to add some sample records. Select the Warehouse app from the drop-down app menu in the upper-right corner
of your current Salesforce page.

7. Click the Data tab, and then click Create Data to add sample records.

Note: After you’ve gone through this workbook, you can uninstall the Warehouse data model and sample data from your
organization by navigating to Installed Packages under Setup and deleting the Warehouse package.

Step 2: Create a Heroku Account

Heroku is a cloud application platform separate from Force.com. It provides a powerful Platform as a Service for deploying applications
in a multitude of languages, including Java. It also enables you to easily deploy your applications with industry-standard tools, such as
Git. If you don’t already have a Heroku account you can create a free account as follows:

1. Navigate to http://heroku.com.

2. Click Sign Up.

3. Enter your email address.

4. Wait a few minutes for the confirmation email and follow the steps included in the email.

Step 3: Install the Heroku Toolbelt

The Heroku Toolbelt is a free set of software tools that you’ll need to work with Heroku. To install the Heroku Toolbelt:

1. Navigate to https://toolbelt.heroku.com.

2. Select your development platform (Mac OS X, Windows, Debian/Ubuntu).

3. Click the download button.

4. After the download finishes, run the downloaded install package on your local workstation and follow the steps to install.

2

http://sforce.co/1ugNn2R
https://login.salesforce.com/packaging/installPackage.apexp?p0=04ti0000000Pi7P
http://heroku.com
https://toolbelt.heroku.com

TUTORIAL #1: CREATE A NEW HEROKU APPLICATION

Heroku provides a powerful Platform as a Service for deploying applications in a multitude of languages, including Java. In this tutorial,
you create a Web application using the Java Spring MVC framework to mimic handling fulfillment requests from our Warehouse
application.

Familiarity with Java is helpful, but not required for this exercise. The tutorial starts with an application template to get you up and
running. You then walk through the steps to securely integrate the application with the Force.com platform.

Step 1: Clone the GitHub Project

Git is a distributed source control system with an emphasis on speed and ease of use. Heroku integrates directly into Git, allowing for
continuous deployment of your application by pushing changes into a Heroku repository. GitHub is a Web-based hosting service for Git
repositories.

You start with a pre-existing Spring MVC-based application stored on GitHub. Then, as you make changes, deploy them into your Heroku
account and see your updates available online via Heroku’s cloud framework.

1. Open a command line terminal. For Mac OS X users, this can be done by going to the Terminal program, under
Applications/Utilities. For PC users, this can be done by going to the Start Menu, and typing cmd into the Run dialog.

2. Once in the command line terminal, change to a directory where you want to download the example app. For example, if your
directory is “development,” type cd development.

3. Execute the following command:

git clone https://github.com/sbob-sfdc/spring-mvc-fulfillment-base

Git downloads the existing project into a new folder, spring-mvc-fulfillment-base.

Step 2: Create a Heroku Project

Now that you have the project locally, you need a place to deploy it that is accessible on the Web. In this step you deploy the app on
Heroku.

1. In the command line terminal, change directory to the spring-mvc-fulfillment-base folder you created in the last step:

cd spring-mvc-fulfillment-base

2. Execute the following command to log in to Heroku (followed by Heroku login credentials, if necessary):

heroku login

Heroku uses Git with SSH to deploy code. If you haven’t used SSH on this machine, you’ll need to create a public key after you provide
your Heroku login credentials. On Microsoft Windows, you might need to add your Git directory to your system path before you can
create a public key.

3. Execute the following command to create a new application on Heroku:

heroku create

3

Heroku creates a local Git repository as well as a new repository on its hosting framework, where you can push applications, and
adds the definition for that remote deployment for your local Git repository to understand. This makes it easy to leverage Git for
source control, make local edits, and deploy your application to the Heroku cloud.

All application names on Heroku must be unique, so you’ll see messages like the following when Heroku creates a new app:

Creating quiet-planet-3215... done

Important: The output above shows that the new application name is quiet-planet-3215. You might want to copy
and paste the generated name into a text file or otherwise make a note of it. Throughout this workbook, there are references
to the application name that look like {appname} that should be replaced with your application name. So, if your application
name is quiet-planet-3215, when a tutorial step prompts you to enter a URL with the format
https://{appname}.herokuapp.com/_auth, use:
https://quiet-planet-3215.herokuapp.com/_auth.

4. To deploy the local code to Heroku, execute the following command:

git push heroku master

If prompted, select Yes to verify the authenticity of heroku.com. The deployment process will take a while as it copies files, grabs
any required dependencies, compiles, and then deploys your application.

5. Once the process is complete, you can preview the existing application by executing:

heroku open

You can also simply open https://{appname}.herokuapp.com in a browser.

You now have a new Heroku application in the cloud. The first page should look like this:

Tell Me More...

Scroll back through the terminal log to the git push command, and you’ll see some magic. Early on, Heroku detects that the push
is a Spring MVC app, so it installs Maven, builds the app, and then gets it running for you, all with just a single command.

Step 3: Test the Application

This step shows you how to take your application for a quick test run to verify it’s working.

1. In a browser tab or window, navigate to https://{appname}.herokuapp.com.

2. Click Ajax @Controller Example.

4

Step 3: Test the ApplicationTutorial #1: Create a New Heroku Application

3. In another browser tab or window, open the Warehouse application on your Force.com instance.

4. Click Invoices and then select an existing invoice or create a new one if necessary.

5. In the browser URL bar, select the invoice record ID, which is everything after salesforce.com in the URL. It should look
something like a01E0000000diKc. Copy the ID to your clipboard.

6. Return to the browser window or tab showing your Heroku application.

7. Paste the invoice record ID into the field under Id.

8. Click Create. An order is created with the Invoice ID. Note that this order is distinct from a Salesforce order record.

9. Click OK. Your page looks something like:

Summary

Heroku’s polyglot design lets you easily deploy your applications with industry-standard tools, such as Git. Typically, teams use local
development environments, like Eclipse, and in fact Heroku has released an Eclipse plug-in for seamless integration with Eclipse. You
can also interact with Heroku on the command line and directly access logs and performance tools for your applications.

5

SummaryTutorial #1: Create a New Heroku Application

TUTORIAL #2: CONNECT THE WAREHOUSE APP WITH AN
EXTERNAL SERVICE

Force.com offers several ways to integrate with external systems. For example, without writing any code, you can declare workflow rules
that send outbound messages. You can implement more complex scenarios programmatically with Apex code.

This tutorial teaches you how to create a Web service callout to integrate the Warehouse app with the fulfillment application you deployed
in Tutorial 1. This fulfillment system, written in Java, is hosted on Heroku, but it could be any application with a Web service interface.

The following diagram illustrates the example scenario requirements: when an invoice’s status changes to Closed in your Force.com
system, the system sends a JSON-formatted message to the order fulfillment service running on Heroku, which then returns an order
ID to the Force.com system. The order ID is then added to the invoice.

Step 1: Create an External ID Field on Invoice

To start, create a custom field in the invoice custom object that can store the order ID returned by the Java app running on Heroku. The
field is an index into an external system, so it makes sense to make it an External ID.

1. Log in to your Salesforce organization.

2. Go to the Invoice Statement custom object from Setup by clicking Create > Objects > Invoice.

3. Scroll down to Custom Fields & Relationships, and then click New.

4. Select the Text field type, and then click Next.

5. Enter OrderId as the field label, and then enter 6 as the field length. Accept the default field name OrderId.

6. Select the External ID checkbox, and then click Next.

7. Click Next to accept the defaults, and then click Save.

Step 2: Create a Remote Site Record

The Force.com platform implements very conservative security controls. By default, Force.com prohibits callouts to external sites. This
step teaches you how to register the Heroku Java site in the Remote Site Settings page.

1. From Setup, click Security Controls > Remote Site Settings.

2. Click New Remote Site.

6

3. In the Remote Site Name field, enter FulfillmentWebService (no spaces).

4. In the Remote Site URL field, enter https://{appname}.herokuapp.com.

5. Click Save to accept the remaining default values.

Now any Apex code in your app can call the fulfillment Web service that you deployed in Tutorial 1.

Tell Me More...
Just for fun, you can delete this remote site record and create and test the callout in Step 3 and Step 4 below to observe the error message
that is generated when an app attempts to call a URL without permission. Don’t forget to come back and add the remote site record
again, though!

Step 3: Create an Integration Apex Class

Now that your app can access an external URL, it's time to implement the callout. Apex triggers are not permitted to make synchronous
Web service calls. This restriction ensures that a long-running Web service doesn’t hold a lock on a record within your Force.com app.

The steps in this tutorial teach you how to build out the correct approach, which is to create an Apex class with an asynchronous method
that uses the @future annotation, and then build a trigger to call the method as necessary. When the trigger calls the asynchronous
method, Force.com queues the call, executes the trigger, and then releases any record locks. Eventually, when the asynchronous call
reaches the top of the queue, Force.com executes the call and posts the invoice to the order fulfillment Web service running on Heroku.

Start by adding the code for the asynchronous method in a new Apex class.

1. From Setup, click Develop > Apex Classes.

2. Click New and paste in the following code:

public class Integration {

// The ExternalOrder class holds a string and integer
// received from the external fulfillment system.

public class ExternalOrder {
public String id {get; set;}
public Integer order_number {get; set;}

}

// The postOrder method integrates the local Force.com invoicing system
// with a remote fulfillment system; specifically, by posting data about
// closed orders to the remote system. Functionally, the method 1) prepares
// JSON-formatted data to send to the remote service, 2) makes an HTTP call
// to send the prepared data to the remote service, and then 3) processes
// any JSON-formatted data returned by the remote service to update the
// local Invoices with the corresponding external IDs in the remote system.

@future (callout=true) // indicates that this is an asynchronous call
public static void postOrder(List<Id> invoiceIds) {

// 1) see above

// Create a JSON generator object
JSONGenerator gen = JSON.createGenerator(true);

7

Step 3: Create an Integration Apex ClassTutorial #2: Connect the Warehouse App with an External
Service

// open the JSON generator
gen.writeStartArray();
// interate through the list of invoices passed in to the call
// writing each invoice ID to the array
for (Id invoiceId : invoiceIds) {

gen.writeStartObject();
gen.writeStringField('id', invoiceId);
gen.writeEndObject();

}
// close the JSON generator
gen.writeEndArray();
// create a string from the JSON generator
String jsonOrders = gen.getAsString();
// debugging call, which you can check in debug logs
System.debug('jsonOrders: ' + jsonOrders);

// 2) see above

// create an HTTPrequest object
HttpRequest req = new HttpRequest();
// set up the HTTP request with a method, endpoint, header, and body
req.setMethod('POST');
// DON'T FORGET TO UPDATE THE FOLLOWING LINE WITH YOUR APP NAME
req.setEndpoint('https://{appname}.herokuapp.com/order');
req.setHeader('Content-Type', 'application/json');
req.setBody(jsonOrders);
// create a new HTTP object
Http http = new Http();
// create a new HTTP response for receiving the remote response
// then use it to send the configured HTTPrequest
HTTPResponse res = http.send(req);
// debugging call, which you can check in debug logs
System.debug('Fulfillment service returned '+ res.getBody());

// 3) see above

// Examine the status code from the HTTPResponse
// If status code != 200, write debugging information, done
if (res.getStatusCode() != 200) {

System.debug('Error from ' + req.getEndpoint() + ' : ' +
res.getStatusCode() + ' ' + res.getStatus());

}
// If status code = 200, update each Invoice
// with the external ID returned by the fulfillment service.
else {

// Retrieve all of the Invoice records
// originally passed into the method call to prep for update.
List<Invoice__c> invoices =
[SELECT Id FROM Invoice__c WHERE Id IN :invoiceIds];

// Create a list of external orders by deserializing the
// JSON data returned by the fulfillment service.
List<ExternalOrder> orders =
(List<ExternalOrder>)JSON.deserialize(res.getBody(),
List<ExternalOrder>.class);

8

Step 3: Create an Integration Apex ClassTutorial #2: Connect the Warehouse App with an External
Service

// Create a map of Invoice IDs from the retrieved
// invoices list.
Map<Id, Invoice__c> invoiceMap =
new Map<Id, Invoice__c>(invoices);

// Update the order numbers in the invoices
for (ExternalOrder order : orders) {
Invoice__c invoice = invoiceMap.get(order.id);
invoice.OrderId__c = String.valueOf(order.order_number);

}
// Update all invoices in the database with a bulk update
update invoices;

}
}

}

Don’t forget to replace {appname} with your Heroku application name.

3. Click Save.

This code collects the necessary data for the remote service, makes the remote service HTTP call, and processes any data returned by
the remote service to update local invoices with the corresponding external IDs. See the embedded comments in the code for details.

Step 4: Test the @future Method

Before creating a trigger that calls an @future method, it’s best practice to interactively test the method by itself and validate that
the remote site settings are correctly configured. To test the method interactively, you can use the Developer Console.

1. Go to the Developer Console by clicking Your Name > Developer Console.

2. Click Debug > Open Execute Anonymous Window, and then enter the following code.

// Get an Invoice__c for testing
Invoice__c invoice = [SELECT ID FROM Invoice__c LIMIT 1];
// Call the postOrder method to test the asynchronous call
Integration.postOrder(new List<Id>{invoice.id});

This small snippet of Apex code retrieves the ID for a single invoice and calls your @future method using this ID.

3. Select the Open Log checkbox.

4. Click Execute. You should see two entries in the logs at the bottom of the page. Double click the second line — it should have
Future Handler as its operation and a status of Success.

9

Step 4: Test the @future MethodTutorial #2: Connect the Warehouse App with an External
Service

5. Select the Filter checkbox under the Execution Log, above the Logs list, and then type DEBUG as the filter text. Scroll down and
double click the last line of the execution log. You should see a popup window with the response from the fulfillment Web service
that looks something like:

08:08:42:962 USER_DEBUG [58]|DEBUG|Fulfillment service returned
[{"order_number":2,"id":"a01E0000009RpppIAC"}]

Now that you have a functional @future method that can call the fulfillment Web service, it's time to tie things together with a trigger.

Step 5: Create a Trigger to Call the @future Method

To create a trigger on the invoice object that calls the Integration.postOrder method that was created in Step 3, complete
the following steps:

1. Go to the invoice custom object from Setup by clicking Create > Objects > Invoice.

2. Scroll down to Triggers, click New, and then paste the following code in place of the trigger skeleton:

trigger HandleOrderUpdate on Invoice__c (after update) {

// Create a map of IDs to all of the *old* versions of records
// updated by the call that fires the trigger.
Map<ID, Invoice__c> oldMap = new Map<ID,
Invoice__c>(Trigger.old);

// Create an empty list of IDs
List<Id> invoiceIds = new List<Id>();

// Iterate through all of the *new* versions of Invoice__c
// records updated by the call that fires the trigger, adding
// corresponding IDs to the invoiceIds list, but *only* when an
// invoice's status changed from a non-"Closed" value to "Closed".
for (Invoice__c invoice: Trigger.new) {

if (invoice.status__c == 'Closed' && oldMap.get(invoice.Id).status__c !=
'Closed'){

invoiceIds.add(invoice.Id);
}

}
// If the list of IDs is not empty, call Integration.postOrder
// supplying the list of IDs for fulfillment.
if (invoiceIds.size() > 0) {

Integration.postOrder(invoiceIds);
}

}

3. Click Save.

The comments in the code explain what the code does. In particular, understand that Force.com triggers must be able to handle both
single-row and bulk updates because of the varying types of calls that can fire them (single-row or bulk update calls). The trigger creates
a list of invoice IDs that have been closed in this update, and then calls the @future method once, passing the list of IDs.

10

Step 5: Create a Trigger to Call the @future MethodTutorial #2: Connect the Warehouse App with an External
Service

Step 6: Test the Complete Integration Path

With the trigger in place, test the integration by firing the trigger.

1. Select the Warehouse app.

2. Click the Invoices tab.

3. Click one of the recent invoices and notice that there is no OrderId for the invoice.

4. If the Status is already Closed, double-click the word Closed, change it to Open and click Save.

5. Double-click the Status value, change it to Closed and click Save. This triggers the asynchronous callout.

6. Wait a few seconds and refresh the page in the browser.

7. You should see an external order ID appear in the OrderId field.

The following screen shows the Invoices tab before any changes have been made:

The following screen shows the Invoices tab after the asynchronous call has returned the new order ID:

11

Step 6: Test the Complete Integration PathTutorial #2: Connect the Warehouse App with an External
Service

Summary

Congratulations! Your app is sending invoices for fulfillment. You have successfully created an asynchronous Apex class that posted
invoice details to your fulfillment app hosted on Heroku. Of course, your external application could reside anywhere as long as you have
access via Web services. Your class uses open standards including JSON and REST to transmit data, and a trigger on invoices to execute
the process.

12

SummaryTutorial #2: Connect the Warehouse App with an External
Service

TUTORIAL #3: UPDATE THE HEROKU APP

You now have two sides of an integration in place: one running a Java endpoint on Heroku, and another in Force.com which communicates
with the endpoint when the appropriate changes take place. Now that you’ve got the connection in place, update the Heroku application
to retrieve the pertinent information and display it to the user.

Step 1: Configure Your Connected App

Before moving on, let’s go back to your Salesforce organization so that we can configure your connected app. At a high level, we will:

• Add your app to the available connected apps in your organization.

• Enable OAuth. External applications must authenticate remotely before they can access data. Force.com supports OAuth 2.0 (hereafter
referred to as OAuth) as an authentication mechanism.

Let’s go ahead and begin.

1. From Setup, click Create > Apps.

2. In the Connected Apps section, click New.

3. For Connected App Name, enter your app name.

4. Enter the API Name, used when referring to your app from a program. It defaults to a version of the name without spaces.

5. Provide your Contact Email.

6. Under API (Enable OAuth Settings) select Enable OAuth Settings.

7. For Callback URL, enter https://{appname}.herokuapp.com/_auth.

Note: Be sure to replace {appname} with your actual Heroku app name.

8. In the Selected OAuth Scopes field, select Full access (full) and Perform requests on your
behalf at any time (refresh_token, offline_access), and then add them to the selected OAuth scopes.

9. Click Save.

Step 2: Update Your Application with a New Branch

While you were creating a new Apex trigger on your Force.com instance, other developers added new functionality to the original project
and placed it into a specific branch on GitHub. Using this branch you can test out new features, specifically, your Heroku application’s
ability to directly access your Salesforce records. It’s easy to add this branch, called “full,” to your codebase:

1. Return to the command line, and make sure you’re in the spring-mvc-fulfillment-base folder.

2. Enter the following command to fetch the “full” branch and merge it with your master branch, all in one step:

git pull origin full

a. Before continuing, go back to your org.

b. From Setup, click Create > Apps.

c. In the Connected App Settings section, click your app name.

13

d. Next to Consumer Secret, click Click to reveal.

e. Use your keyboard controls to copy the number that appears.

3. You need to set your Access keys to your Heroku application. Enter:

heroku config:add OAUTH_CLIENT_KEY=PUBLICKEY OAUTH_CLIENT_SECRET=PRIVATEKEY

Replace PUBLICKEY with the Consumer Key. Similarly, replace PRIVATEKEY with the Consumer Secret. It may be
helpful to do this in a text editor before putting it on the command line.

4. Execute the following command to push the local changes to Heroku:

git push heroku master

5. In a browser tab or window, navigate to https://{appname}.herokuapp.com to see the changes (refresh your browser
if needed).

By adding an OAuth flow to your app, your app can request a user’s permission to work with session information without requiring the
third-party server to handle the user’s credentials. With this functionality added to the project, the fulfillment application can use the
Force.com REST API to access information directly from the user’s instance.

Tell Me More...

You can review all of the changes brought in by this branch on GitHub at:
https://github.com/sbob-sfdc/spring-mvc-fulfillment-base/compare/master...full. Notice that
the changes use the Force.com REST API to manipulate invoice records. Look at InvoiceServiceImpl.java in particular to see
how it creates, queries, retrieves and deletes invoices. This tutorial uses the findOrder() method only. The other methods are
included for your reference.

Step 3: View the Invoice Information

In the previous steps you added brand new functionality by merging a branch into your local code. The application now understands
how to use OAuth and how to access data from the Force.com platform. Now let’s view the invoice fields in your fulfillment app.

1. Navigate to your fulfillment app in the browser, and then refresh the page.

2. Click an order.

Notice that, given an ID, this code retrieves the corresponding invoice record. Because there might be mock ID's in the database that
are not in Force.com, the app handles the corresponding exception by showing default data. Adding the invoice to the model makes
it available to view. Now when you test the fulfillment application, it will show the invoice information currently in your Force.com
instance by grabbing the information via the REST API using the record ID. Your order detail page might look something like:

Tell Me More...

14

Step 3: View the Invoice InformationTutorial #3: Update the Heroku App

https://github.com/developerforce/spring-mvc-fulfillment-base/compare/master...full

Notice that the Web service call from Force.com to create orders is not secured. Securing the call goes beyond the scope of this workbook,
but a simple solution would be to set up a shared secret between the Force.com app and the fulfillment app. The Force.com app would
create an HMAC signature from the parameters in the request, using the secret, and the fulfillment app would verify the signature.

Summary

Congratulations! Your fulfillment app now retrieves invoice information via the Force.com REST API and displays it to the user. You
configured your app in Salesforce to use OAuth for authentication, and you added OAuth credentials to your app hosted on Heroku.
You can further modify your app to manipulate invoice information however you want.

15

SummaryTutorial #3: Update the Heroku App

TUTORIAL #4: ADD YOUR APP TO SALESFORCE USING
FORCE.COM CANVAS

You’ve done a lot already. Let’s go one step further and make your app accessible for your users right from within Salesforce. Force.com
Canvas enables you to easily integrate a third-party application in Salesforce. Force.com Canvas is a set of tools and JavaScript APIs that
you can use to expose an application as a canvas app. This means you can take your new or existing applications and make them available
to your users as part of their Salesforce experience.

Step 1: Update your Application with a New Branch

Earlier, we added a branch to the codebase named “full.” Now we’ll add one named “canvas.”

1. Return to the command line, and make sure you’re in the spring-mvc-fulfillment-base folder.

2. Enter the following command to fetch the canvas branch and merge it with your master branch, all in one step:

git pull origin canvas

3. Execute the following command to push the local changes to Heroku:

git push heroku master

4. In a browser tab or window, navigate to https://{appname}.herokuapp.com to see the changes (refresh your browser
if needed).

Tell Me More...

You can review all of the changes brought in by this branch on GitHub at
https://github.com/sbob-sfdc/spring-mvc-fulfillment-base/compare/full...canvas.

Notice that the new branch uses the signed request from the Force.com Canvas API and not the Heroku-initiated OAuth from Tutorial
3, Step 2. The new branch also uses the Force.com REST API to manipulate invoice records. Look at CanvasUiController.java
in particular to see how it retrieves, parses, and sets the signed request for use by the app. Also, order.jsp has changed to present
an easier-to-use screen on the invoice page layout. This tutorial has only set the signed request for use on the canvasui page and
the orders page in the app.

Step 2: Edit the Connected App Details and Enable the App for
Force.com Canvas

We’ve already configured your connected app. Now we need to enable and configure it for Force.com Canvas.

1. From Setup, click Create > Apps.

2. In the Connected App Settings section, select your application and click Edit.

3. In the Canvas App Settings section, select the Force.com Canvas checkbox.

4. In the Canvas App URL field, enter https://{appname}.herokuapp.com/canvasui.

5. In the Access Method field, select Signed Request (Post).

6. In the Locations field, select Chatter Tab and Visualforce Page, and then add them to the selected locations.

16

https://github.com/sbob-sfdc/spring-mvc-fulfillment-base/compare/full...canvas
http://Force.com

7. Click Save.

If you look at CanvasUiController.java, you’ll see something like the following, which shows Heroku obtaining a signed
request and validating it. We’re leveraging the OAUTH_CLIENT_SECRET Heroku key set in Tutorial 3, Step 2 to validate the signed
request.

@Controller
@RequestMapping(value="/canvasui")
public class CanvasUIController {

private static final String SIGNED_REQUEST = "signedRequestJson";
private CanvasContext cc = new CanvasContext();

@Autowired
private OrderService orderService;

@Autowired
private InvoiceService invoiceService;

private Validator validator;

@Autowired
public CanvasUIController(Validator validator) {

this.validator = validator;
}

@RequestMapping(method= RequestMethod.POST)
public String postSignedRequest(Model model,
@RequestParam(value="signed_request")String signedRequest, HttpServletRequest request){

String srJson = SignedRequest.verifyAndDecodeAsJson
(signedRequest, getConsumerSecret());

CanvasRequest cr = SignedRequest.verifyAndDecode(signedRequest, getConsumerSecret());

HttpSession session = request.getSession(true);
model.addAttribute(SIGNED_REQUEST, srJson);
cc = cr.getContext();
CanvasEnvironmentContext ce = cc.getEnvironmentContext();
Map<String, Object> params = ce.getParameters();
if (params.containsKey("orderId")) {

invoiceService.setSignedRequest(cr);
Integer orderId = Integer.parseInt(params.get("orderId").toString());
if(orderId != null) {

Order order = orderService.findOrder(orderId);
if (order == null) {

throw new ResourceNotFoundException(orderId);
}
model.addAttribute("order", order);

Invoice invoice;
try {

invoice = invoiceService.findInvoice(order.getId());
} catch (ApiException ae) {

// No match
invoice = new Invoice();

17

Step 2: Edit the Connected App Details and Enable the App
for Force.com Canvas

Tutorial #4: Add Your App to Salesforce Using Force.com
Canvas

}
model.addAttribute("invoice", invoice);

return "order";
}

}
return getOrdersPage(model);

}

@RequestMapping(method=RequestMethod.GET)
public String getOrdersPage(Model model) {

model.addAttribute("order", new Order());
model.addAttribute("orders", orderService.listOrders());

return "orders";
}

private static final String getConsumerSecret(){
String secret = System.getenv("OAUTH_CLIENT_SECRET");
if (null == secret){

throw new IllegalStateException("Client secret not found in environment.
You must define the OAUTH_CLIENT_SECRET environment variable.");

}
return secret;

}
}

After the validation, the signed request is passed to order.jsp, where the browser can access it.

<%@ page session="false" %>
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>
<%@ taglib uri="http://java.sun.com/jsp/jstl/fmt" prefix="fmt" %>
<%@ taglib prefix="form" uri="http://www.springframework.org/tags/form" %>

<html>
<head>
<title>Order</title>
<link rel="stylesheet" href="<c:url value="/resources/blueprint/screen.css" />"
type="text/css" media="screen, projection">
<link rel="stylesheet" href="<c:url value="/resources/blueprint/print.css" />"

type="text/css" media="print">
<!--[if lt IE 8]>
<link rel="stylesheet" href="<c:url value="/resources/blueprint/ie.css" />"
type="text/css" media="screen, projection">
<![endif]-->
<script type="text/javascript" src="<c:url value="/resources/jquery-1.4.min.js" /> ">
</script>
<script type="text/javascript" src="<c:url value="/resources/json.min.js" /> ">
</script>

<script type="text/javascript" src="<c:url value="/resources/canvas-all.js" /> ">

</script>
<script>

// Get the Signed Request from the CanvasUIController
var sr = JSON.parse('${not empty signedRequestJson?signedRequestJson:"{}"}');

18

Step 2: Edit the Connected App Details and Enable the App
for Force.com Canvas

Tutorial #4: Add Your App to Salesforce Using Force.com
Canvas

// Set handlers for the various buttons on the page
Sfdc.canvas(function() {

$('#finalizeButton').click(finalizeHandler);
$('#deleteButton').click(deleteHandler);

});

// This function will be called when the "Finalize" button is clicked.
// This shows using the Canvas Cross Domain API to hit the REST API
// for the invoice that the user is viewing. The call updates the
// Status__c field to "Shipped". If successful, the page is refreshed,
// and if there is an error it will alert the user.
function finalizeHandler(){

var invoiceUri=sr.context.links.sobjectUrl + "Invoice__c/${order.id}";
var body = {"Status__c":"Shipped"};
Sfdc.canvas.client.ajax(invoiceUri,{

client : sr.client,
method: 'PATCH',
contentType: "application/json",
data: JSON.stringify(body),
success : function() {

window.top.location.href = getRoot() + "/${order.id}";
},
error: function(){

alert("Error occurred updating local status.");
}

});
}

// This function will be called when the "Delete Order" button is clicked.
// It will delete the record from the Heroku database.
function deleteHandler(){

$.deleteJSON("/order/${order.orderId}", function(data) {
alert("Deleted order ${order.orderId}");
location.href = "/orderui";

}, function(data) {
alert("Error deleting order ${order.orderId}");

});
return false;

}

// This function gets the instance the user is on for a page referesh
function getRoot() {

return sr.client.instanceUrl;
}

</script>

</head>
<body>

<div id="bodyDiv" style="width:inherit;">
<div id="myPageBlockTable">

<h2 id="OrderTitle">
Order Number: <c:out value="${order.orderId}"/>

19

Step 2: Edit the Connected App Details and Enable the App
for Force.com Canvas

Tutorial #4: Add Your App to Salesforce Using Force.com
Canvas

</h2>
<table id="myTable" width="100%">

<col width="20%">
<tr><td class="myCol">Invoice Id:</td><td class="valueCol">
<c:out value="${invoice.id}"/></td></tr>
<tr><td class="myCol">Invoice Number:</td><td class="valueCol">
<c:out value="${invoice.number}"/></td></tr>

<tr><td class="myCol">Status:</td><td class="valueCol" valign="center">

<c:out value="${invoice.status}"/>
<!-- Display a green check if the order is Shipped, or a red x if

not shipped -->
<c:choose>

<c:when test="${invoice.status == 'Shipped'}">

</c:when>
<c:otherwise>

</c:otherwise>

</c:choose>
</td></tr>

</table>
<!-- Display the Back and Delete Order Button if viewed outside
of salesforce (no signed request). -->
<!-- Display the Finalize Button if viewed inside of salesforce and
the Status is not Shipped. -->
<c:choose>

<c:when test="${empty signedRequestJson}">
<button onclick="location.href='/orderui'">Back</button>
<button id="deleteButton">Delete Order</button>

</c:when>
<c:otherwise>

<c:if test="${invoice.status ne 'Shipped'}">
<button id="finalizeButton">Finalize</button>

</c:if>
</c:otherwise>

</c:choose>
</div>

</div>
</body>
</html>

Step 3: Configure Access to Your Force.com Canvas App

Because this app is designed for use by a specific audience, let’s give access only to the users who need it.

1. In Salesforce, from Setup, click Manage Apps > Connected Apps.

2. Click your app, and then click Edit.

3. In the Permitted Users field, select Admin approved users are pre-authorized. Click OK on the popup message that
appears.

4. Click Save.

20

Step 3: Configure Access to Your Force.com Canvas AppTutorial #4: Add Your App to Salesforce Using Force.com
Canvas

Now you’ll use profiles and permission sets to define who can see your canvas app. In this example, we’ll allow anyone with the
System Administrator profile to access the app.

5. In the Connected App Detail page’s Profiles related list, click Manage Profiles.

6. Select the System Administrator profile, and then click Save.

Your app is now available to anyone with the System Administrator profile.

Step 4: Make Your Force.com Canvas App Available from the Chatter
Tab

The values you selected in the Locations field when creating the connected app in Step 2: Edit the Connected App Details and
Enable the App for Force.com Canvas on page 16 determine where an installed canvas app appears. When an app is made available
to the Chatter tab, there’s nothing we need to do for this step. If you log into your Salesforce org and select the Chatter tab, you’ll see
that your canvas app appears in the app navigation list.

Note: When displaying the list of orders on the Chatter Tab, remember that orders.jsp has been set up to handle the signed
request POST. However, if you click into a record from this page, you are redirected to orderui, which uses OAuth. If the Heroku
OAuth flow is inactive, you may receive an error when viewing the individual order.

Click your app’s name. It should look something like this:

Step 5: Use Visualforce to Display the Canvas App on a Record

While you can certainly use the app based on the work completed so far, let’s take one more step and use Visualforce to display information
from your canvas app on the invoice record.

1. From Setup, click Develop > Pages.

2. Click New.

21

Step 4: Make Your Force.com Canvas App Available from
the Chatter Tab

Tutorial #4: Add Your App to Salesforce Using Force.com
Canvas

3. In Label, enter FulfillmentCanvas. You use this label to identify the page in Setup tools when performing actions such
as defining custom tabs or overriding standard buttons.

4. In Name, accept the default name FulfillmentCanvas.

5. Add the following markup to the Visualforce Markup box, making sure to replace {appname} with your Heroku application name,
and then click Save.

<apex:page standardController="Invoice__c">
<apex:canvasApp developerName="{appname}"

parameters="{'orderId':'{!Invoice__c.OrderId__c}'}" width="100%"/>
</apex:page>

Notice how the parameters tag in the apex:canvasApp component is set to
"{'orderId':'{!Invoice__c.OrderId__c}'}". This code sends a JSON object as part of the signed request to the
Heroku app when the page is loaded. In the signed request, the parameters object will look something like parameters :
{'orderId':'5'}, where '5' is the OrderId from the invoice record. Remember that this value is an external ID field that connects
the record in the Heroku database to the Salesforce invoice record. By delivering the OrderId to the Heroku app with the signed
request, the Heroku app can display the correct record on the invoice page layout.

Your page should look something like this:

Now let’s add your Visualforce page to the page layout.

6. From the Invoices tab, select a record.

7. Click Edit Layout and then Visualforce Pages.

8. Drag a section down to your page and name it Canvas Fulfillment.

a. Make sure to deselect Edit Page.

b. Select 1–Column for the layout.

9. Drag your FulfillmentCanvas page onto the new section.

10. Click the wrench to update your page properties. The width should be set to 100% and height set to 165 pixels.

11. Ensure that both Show scrollbars and Show label are deselected and click Save.

12. From Setup, click Create > Objects, and then click Invoice.

22

Step 5: Use Visualforce to Display the Canvas App on a
Record

Tutorial #4: Add Your App to Salesforce Using Force.com
Canvas

13. In the Custom Fields & Relationships section, click Status.

14. Add another picklist item named Shipped.

Now when users go to an invoice record, they’ll see the canvas app right on the record detail page:

Notice the Finalize button in the canvas app. If the invoice isn’t in 'Shipped' status, the red “X” and Finalize will show in the app. If you
click Finalize, Heroku uses the Force.com Canvas API to call the REST API and update the invoice Status field. Once the status is set to
'Shipped', the red “X” is replaced and Finalize is hidden.

Summary

Congratulations! With a combination of OAuth authentication, Force.com REST API, Apex triggers, @future callouts, the polyglot
framework of the Heroku platform, Force.com Canvas, and Visualforce, you created and deployed a bi-directional integration between
two clouds.

This workbook covers just one example of the many ways to integrate your applications with Salesforce. One integration technology
that we didn’t mention is the Streaming API that lets your application receive notifications from Force.com whenever a user changes
Salesforce data. You can use this in the fulfillment application to monitor when changes are made to invoices and to automatically
update the application pages accordingly. Visit https://developer.salesforce.com to learn more about all the ways you
can integrate your application with Salesforce.

23

SummaryTutorial #4: Add Your App to Salesforce Using Force.com
Canvas

https://developer.salesforce.com/

	Force.com Integration Workbook
	Before You Begin
	Tutorial #1: Create a New Heroku Application
	Step 1: Clone the GitHub Project
	Step 2: Create a Heroku Project
	Step 3: Test the Application
	Summary

	Tutorial #2: Connect the Warehouse App with an External Service
	Step 1: Create an External ID Field on Invoice
	Step 2: Create a Remote Site Record
	Step 3: Create an Integration Apex Class
	Step 4: Test the @future Method
	Step 5: Create a Trigger to Call the @future Method
	Step 6: Test the Complete Integration Path
	Summary

	Tutorial #3: Update the Heroku App
	Step 1: Configure Your Connected App
	Step 2: Update Your Application with a New Branch
	Step 3: View the Invoice Information
	Summary

	Tutorial #4: Add Your App to Salesforce Using Force.com Canvas
	Step 1: Update your Application with a New Branch
	Step 2: Edit the Connected App Details and Enable the App for Force.com Canvas
	Step 3: Configure Access to Your Force.com Canvas App
	Step 4: Make Your Force.com Canvas App Available from the Chatter Tab
	Step 5: Use Visualforce to Display the Canvas App on a Record
	Summary

