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ABSTRACT

This thesis is primarily concerned with some problems related to
both logic and number theory.

In chapter 1, Wilkie's problem,which asks whether the existence of
arbitrarily large prime numbers can be proved using only induction on
bounded ‘quantifier (4,) formulas together with the usval “algebraic"
axioms (in the first order language with <,+,.), is linked with a
question of Macintyre about the provability of the pigeon hole principle
in the same axiom system. Tt is shown that if an axiom schema asserting
a version of the pigeon hole principle for Ap formulas is added, then
it is possible to prove Sylvester's theorem that for v 2 x 3 1, some
number among y+l,y+2,...,y+x has a prime divisor p > x. Alternatively,
if function symbols corresponding to Grzegorczyk's £2 functions are
added (with their definitions) and induction allowed on bounded formulas
involving them, then the pigeon hole principle can be proved for such
formulas, and the existence of infinitely many primes.follows.

The problem of defining addition and multiplication on the natural
numbers N by first order formulas involving the predicate xly ("x
and y are coprime”) is considered in chapter 2. The predicates
z = xty , z = x.y are defined by bounded quantifier formulas involving
only € and L . As an application, a proof is given that the class
of all rudimentary (i.e., A, definable) sets of positive numbers is
contained in the class consisting of thé spectra Sé = {|M|: 4 finite, M ¢}
of those sentences ¢ having only graphs as models, with equality
between these classes if and only if S¢ is rudimentary for every first
order sentence ¢. An analegous result holds with partial orderings in

place of graphs. (It is noted in Appendix II that if every S¢ is

rudimentary, then NP # co-NP.)



Julia Robinson's questiqn whether +,. are definable by formulas
involving only L and successor, is shown to be equivalent to an open
problem in number theory, namely the conjecture that there is some k
such that every n € N is determined uniguely by the sequence of sets
of distinct primes 8428y5+++55,, where 8. = {p: p|n+i}. An
unconditional proof is given that the theory of N 1in this language is
undecidable.

In chapter 3 it is deduced from the linear case of Schinzel's
hypothesis H that =z = x,y isg definable in the language with =,+
and the predicate "x is a prime", but that the defining formula cannot
be existential, since the conjecture provides an algorithm for deciding

all existential sentences in this language.
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INTRODUCTION

The guiding philosophy underlying this thesis is the conviction
that significant connections between logic and number theory do
exist, and that the only way to find them is by actively searching
for them.

There are three chapters. Each is essentially independent of
the others (except that some definitions and simple results from the
early part of chapter 2 are assumed in chapter 3). However several
themes run through the work as a whole. One is the important role
that the prime divisors of comsecutive integers play. Another
(particularly in chapters 1 and 2) is the appearance of problems in
computational complexity theory intimately interwoven with the at
first sight seemingly unrelated questions under consideration.

A third theme - the goal of much of the work on definability
and (un)decidability - is the desirability of achieving a fuller
understanding of Zogieal redundancy in thé combined additive and
multiplicative structure of the natural numbers, its finite initial
segments, and nonstandard models of related axiom systems. Here by
"logical redundancy" is meant the ability to recover the whole
structure from seemingly (and in certain senses genuinely) weak parts
of it, through the use of first order definitions. Certainly thinking
about the structure of nonstandard models played a considerable role
in the development of the proofs of the definability and decidability
theorems in chapters 2 and 3.

The question of to what extent these "redundancy" properties are
shared by other finite structures (including "machines"), and the
related problem of '"measuring" the relative strengths of different

finite structure theories, are only touched on here, but in the author's
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view, they are potentially very important and worthy of intensive
study in their own right,

Finally, some conmnections between logic and number theory have
been found, and these will be described in the pages that follow,
however more and deeper links no doubt still remain hidden. The
author hopes that the present work will challenge its readers to

actively seek them.
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LOGIC NOTATION

Mand), vlor), ~(not), + (implies) <=> (if and only if), ¥(for every) ,
A(there exists).

tl¢ (¢ is syntatically provable from the awioms .},
MF=¢(xl,...,xn)[al,...,am] or just MF=¢(al,...,an)(¢(x1,...,xn) 18

true in the model M at Xp S 815.0.,% = a . Here @lseee,d E M.).

Note that there are some minor differences in notation between
chapters. (For example the by formulas of chapter 1 are called

bounded L_ = formulas in chapter 2.)
b | 3

Other notation:

[x] denotes the largest integer n < x.



CHAPTER 1 Bounded induction, the pigeon hole principle, and the

existence of arbitrarily large prime numbers.

One of the benefits the study of logic can bring to other areas
of mathematics is an understénding of which basic axioms are required to
derive any given theorem. Although there has been considerable success
in some areas (for example in general topology, infinite algebra and
set theory with the axiom of choice, and more recently in finite
combinatorics with variants of Ramsey's theorem - see Paris and
Harrington [1977]), very little of any significance is known about the
axiomatic requirements of number theory, where by "numbet-theory" we mean
that body of theorems about the natural numbers which is actually |

studied by number theorists. Even the case of the very basic theorem

that there exist arbitrarily large prime numbers, is not properly
understood. Wilkie [1977] highlighted the problem by asking whether
this can be proved using an axiom system similar to Peano Arithmetic
but having the restriction that the induction axiom is available only
where the induction hypothesis is a bounded formula., (A formula
¢(§) in the first order language with primitives =,g,+,.,0,1 is
bounded if every quantifier in ¢(§) occurs either in the form Yu g v
or in the form 3Ju g v, where these are abbreviations for VYu(u g Ve ua)
and Juf{u g v A ,..).) The eclass of all such formulas will he denoted
by Ap, and for definiteness we will consider the axiom system Ihg
consisting of:

0£0AR1 <50

Yx(x+0 = x A x.0 =0 A x.1 = x)

VexVy(x+1l =y+ 1+ x =y)

VeVy(x s y+1l <=> x gy Vx=y+1)

Ve Vy (x+(y+1) = (x+y)+1)

VxVy (x.(y+1) = (x.y) +x)

¥X(8(X,0) A ¥y(B(X,y) + 8(x,y+1)) + ¥yd(X,y))

for all &y formulas 8(?,3’7'),



together with the usual axioms for predicate calculus with identity.

Wilkie motivated his question by stating that

"An affirmative answer here (which unfortunately seems unlikely)
would, we believe, give an essentially new proof of the infinity of
primes, This is because all current proofs, as far as we know,
introduce funetions of exponential growth and it is known that
induction on bounded quantifier formulae, while natural and quite
strong in many respects, cannot define functions of greater than

polynomial growth."

The present author agrees that a proof using only TA; would
probably necessarily involve some new, and possibly poﬁerful, idea
(although he certainly does not think that a Proof of a negative answer
would be unfortunate). However as we shall see, the present lack of
a proof has more to do with our inability to prove a certain
combinatorial principle in T4y than with the lack of functions of
exponential growth,

The combinatorial principle referred to is a version of:

THE PIGEON HOLE PRINCIPLE: u pigeons cannot fit, one per hole, into

fewer than n holes.

Specifically it will be shown that the existence of arbitrarily
large primes can be proved if IAy is augmented by the axiom schema:
PHP (Ag) :

s -+
Yx Vy(\ful Sy Vu sy Ywey( G(x,y,ul,v) A B(x,y,uy,v) + Uy = u,)
AVus v Ivey 9(;,y,u,v) + Vvg v Jugy B(;,y,u,v)),
-5
for each by formuila 6(x,y,u,v).
Admittedly each instance of this schema can be proved if we add to

IAy an additional axiom asserting

Vx (2% exists).



However, TA, + PHP(AO)/}(VX(ZX ex18ts), as can easily be seen by
taking a nonstandard model <M,s,*+,-> of the theory of the natural
numbers <N,<,+,.> and considering the model
<A,g,+,.> }:mo + PHP(A4) +-;Vx (2% exists) formed by choosing
a € M\N and letting A = {b g M: 3neN (b < a™)}.

With the axiom system IA, + PHP(Ay) it is in fact possible to
prove:

SYLVESTER'S THEOREM: If 1 ¢ x s y +¢hen some number among

ytl,y+2,...,y+x has a prime divisor p > x.

5 since

The proof will be given in detail for the case y 3 x
this case establishes the existence of arbitrarily large primes in
T4y + PHP(Ap) in a relatively simple way, while still requiring many
of the essential ideas. §4 contains a sketch of how the method may
be extended to the general case, essentially by recasting a variant
of Sylvester's original argument as a proof in IAy + PHP(A4). Taking
y = x this case can be seen to include Chebychev's celebrated

theorem:

BERTRAND 'S POSTULATE: For every x : 1 there is aq prime p satisfying

X <p g 2x.

Presumably any of the standard "textbook' variants of the proof of
Bertrand's Postulate can be similarly recast (with more or less
difficulty).

As the reader may have surmised, it is mnot known whether PHP(AU)
can be proved from IAp. The question of whether the pigeon hole
principle can be proved by bounded induction seems to have first been
formulated by Angus Macintyre, who was led to it by the probiem of
proving that for each odd prime p there exist quadratic nonresidues
modulo p, that is, residue-clasges a(mod p) such that

Vx(_x2 Z a (mod p)).



As this problem raises some interesting (and relevant) matters it is
worth digressing for a moment to consider it.

As can easily be proved in I8y, for each prime p the (p-1)/2
numbers 12,22,...,((p -1)/252 are incongruent (mod p) and include a
representative of each quadratic residue a (mod p), that is, of each

residue class a # 0 (mod p) for which
Ix(x? = a (mod p)).

Thus (using the notation [1,n} = {1,2,...,n}) the function
£(x) = min{y: y = x? (mod p)} 1is a one to one map from [1,(p-1)/2]
onto those elements of [1,p-1] which are quadratic residues.
Obviously this is contrary to PHP(AU) if there are no quadratic non-
residues. Also the stronger result that there exist (p-1)/2 quadratic
nonresidues follows immediately using the following combinatorial
principle, in the statement of which f£: A++3 means that f is a one
to one map from the set A onto the set B.

BIJECTION EXTENSION PRINCIPLE: If A,B € [1,n] and f: A<+B then there

. . * oa
18 an extenston £ of £ such that £ : [1,n] + [1,n].
(More generally we could replace [1,n] by a finite set € .)

Clearly for the function £ considered above,
£ f(p-1)/2+1,p-1] ++{a e [1l,p~1]: Vx(x2 # 2 (mod ph)}

(or rather the restriction of f° to [{(p-1)/2+1,p-1] has this
property) and hence there is a one to one map From [1,{(p~1)/2] onto
the quadratic nonresidues.

At first sight the bijection extension principle would appear to
be quite powerful, since as far as the author is aware, it is not known
whether there ig a by formula 6(x,y,p) which (on the natural numbers

N) defines for each odd prime p a function y = gp(x) with

gy [1,{p~1}/2] « {a € [1,p~1]: ¥x(x? % a (mod P}

Certainly there is such a predicate ©6(x,y,p) in the class Ei



defined by Grzegorczyk [L1953], but although every predicate on N which
can be defined by a Ay formula is in Eﬁ, it is not known whether

these classes are equal, that is, whether A, = Ei. (Ritchie [1963]

showed that for N, Ei is identical with the class of predicates whose
characteristic functions can be computed by deterministic Turing

machines working in linear space, and in fact there is a function y = gp(x)

satisfying the above which can be computed nondeterministically ia linear

space and polynomial time (where these are measured, as usual, with respect
to the number of digits in x and p), but even in this case it is
not known whether all such functioms have A, definable graphs.)

Ei is defined to be the class of all predicates having £2
characteristic functions, where a function is in £2 if it can be
defined by the satisfaction of a finite sequence of the following
schemes:

(1) y= 0, z=1, z= x+y, z=x.y are in £ 2,
(2) Substitution: If =z = f(xl,...,xk,...,xm) and =z =g(y
are in gjz then z = f(xl""’kal’ g(ji,...,ym), Kpgps oo oX )

Zs in E 2,

(3) Limited recursion: If z = g(?), z = h(x,?,w) and =z = b(x,?)

are tn £ 2 then so also is the function z = f(x,?) satisfying:

(1) £00,%) = g

(ii) £(x+1,7) = h(x,y,E(x,y))

(ii1) £(x,5) < b(x,y).

(Note that it is easy to prove by induction on the complexity of
definition, that every g2 function has at most polynomial growth.)

Now suppose we associate a function symbol £ (say) with each §£?2
definition of a function, and turn each such definition into an axiom
DEF(f). If we add these axioms to IA; and allow induction on bounded
formulas B(QQy) involving the new function symbols as well as S,k

we obtain a new axiom system which will be denoted by Iﬁﬁ. Similarly



we can formulate a schema PHP(Ei) analogous to PHP(4,) by allowing
8(;}y,u,v) to have these new function symbols, and ask the obvious
question whether IEi - PHP(E%). The answer is affirmative and of course
it follows that IE_‘,% - thez;e exist arbitrarily large prime numbers.
Thus if one could show that every £2 definition (defining a funetion
y = g(X), say) corresponds to a b, formula ¢g(§}y) in such a way
that replacing every function symbel in the axioms  DEF(f) wsing the ¢£S
yields sentences provable in TAy, then it would follow that
1A, |-PHP(4q) and hence IA, | there exist arbitrarily large primes.

Although it seems unlikely that this approach can succeed, it does
suggest analysing IEi proofs of the existence of arbitrarily large
primes to see exactly which £2 funetions are involved.

A standard example of an £2 function not known to be definable by
a bounded formula is w(x), the number of primes not exceeding x. (A
proof that y = w(x) cannot be defined by a bounded formula would help
explain why no computationally efficient formulas for w(x) or its
"inverse'" y = P, the nth prime number, have been found.)

This leads the author to conjecture that there should be a proof of
the existence of arbitrarily large primes in which tha only §2
function required is w(x), that is that

IAg(m) + def(n) F there exist arbitrarily large primes,

where IAO(H) denotes TIA, with induction allowed on bounded formulas

involving €,+,-,7, and def{w) 1is an axiom asserting that n(0) = 0 and

for every X,
m(x) +1, if x+l is prime,
mx+1) =

m(x), otherwise.

Before proceeding further, a few words on the interdependence of

the sections of this chapter would seem to be in order. §1 contains a



resume of Sylvester's method and its history. This may or may not help
the reader understand the proof of the existence of arbitrarily large
primes in IA; + PHP(4A,) given in §3, which technically depends

only on some basic properties of 1A, dealt with in $§2. It is
therefore possible to omit §1 and go straight on to §2 and §3, coming
back only to provide the background for the 18, + PHP(4,) proof of
Sylvester's theorem sketched in §4, or "to see where it all comes from'".
§5 is devoted to a discussion of census functions with the theorem that
IEi I-PHP(Ei) as.a corollary, (§5 is independent of all other sectioms.)
§6 contains the proof of a lemma about the sums which can be defined by
by formulas in models of IA;. This lemma is used im §4 but its proof

is deferred in order to be able to make use of the results in §5.



§1. Historical perspective,

The number theoretic idea underlying the IA, + PHP(A,)  proof of
the existence of arbitrary large primes to be given in §3 comes from
Sylvester [1891]. This paper (which admittedly is somewhat eccentric)
seems to have been sadly neglected by most 20th century number theorists,
even to the extent that this fundamental idea is often credited to a
living mathematician., However the principle is clearly stated there in
a footnote as follows:

"The author was wandering in an endless maze in his attempts at a
general proof of his theorem, until in an auspicious hour when taking a
walk on the Bambury road (which leads out of Oxford) the Law of
Ademption flashed upon his brain: meaning thereby the law (the nerve,
50 to say, of the preceeding investigation) that <f qll the-ferms of a
natural arithmetical series be increased by the same quantity so as to
Yorm a second such series, no prime mmber can enter in q higher power
as a faetor of the product of the terms in this latter series, when a
suitable term has been taken away from it, then the highest poweyr which
enters as a factor into the product of the terms of the original series."

Sylvester goes on to explain:

"The whole matter is thus made to rest on ... {Tschebyscheff's)
superior limit to the sum of the logarithms of the primes not exceeding
a given number, from which ... a superior limit may be deduced to the
number of such primes."

To understand this in the case of the arithmetic progressions
1,2,...,x and y+1l,y+2,...,y+x, let [z]P denote the largest ﬁower
of the prime p which divides 2z, and {z}p ‘denote the exponent of p

in z, so

‘{z}p

Now consider the products:



T s =10 & [s], & (y+id= T 1 [y+i]..
Lsisx psy+x lgisx P

Sylvester's crucial observation was that for each prime p,

W 1 {[s]_ = 10 [y+i] (1)
lsisx P

where wp is the largest single factor on the right hand side of this
inequality (and thus will not occur if the corresponding term y+m
is deleted from the arithmetic progression ).

This was proved using the fact that

{ 1 s} = § [{ssx: pk|s}| = 3 [x/pk}. (2)

lgssx k321 k31

By the maximality of wp, if wp|y-+m then for all k,

Pk|Y'*m'*j <=3 Pk[j . (for 1 g i g x-m)
and pkly-{—m-j <=2 pk|j (for 1 g3 g ml).

Thus,

SR S T [Ce-m)/pN]

{ T (y+Dd}
P 1gjgx-m P kx1

m<igx

{0 (Y ={ T i} =T [w-1/p5
1€i<m Poigism-r P ke
and therefore
{0 (yed} o= {w} + 5 ([(@-12/p"] + [(x-m)/p"])
15isx P PPy
s {wl + Xy o= {wl +{ 1 s}
o'p kél-Fpk PP icsex P

which implies (1).
From (1) it follows that if no prime divisor of the numbers

y+l,y+2,...,y+x exceeds x. then

(n w){ 0 s)z T (y+i) (3)
pEX 1$5€x% Igigx
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and hence

( il (y+i)) . O I s ) 2 T (y+i) (&)
x-E(x)<isx ) 1$s€x 1€isx
for any function E(x) 2 w(x) (where w(x) =|{p € x: p prime}|).

(4) can be rewritten as
xiy!l 2 (x+y-E(x))!

But Chebychev had already shown how to prove =(x) s Ax(log x)~! via
the bound E log p € Bx (where A, B are constants and log denotes
<
the 1ogarit€éxto base e). Taking x sufficiently large and
E(x) = Ax(log x)"! with a "good" value of A (1 < A < 2 log 2) one can
show that (4) fails for y 2 x by applying Stirling's asymptotic
formula for =x!, or alternatively just the weak version
log(x!) = x log x -x+o0(x). (The latter can easily be proved by
X
comparing Y log n with j log t dt. The notation g(x) = o(£(x))
lsngx 1
means g(x)/f(x) +0 as x +=.) This proves Sylvester's theorem for
all but finitely many values of x. (Actually Sylvester used a slightly
different argument aimed at making the checking of these cases easier.)
If yz2x" for m a sufficiently large constant then the same
result can be obtained by means of much simpler bounds. For example

suppose we take the trivial upper bound E(x) = [x/2]+1 2 w(x) and

simplify (4) to:

y[x/2]+1 < 5 yx (s)

.

or in logarithmic form:

([x/2] +Dlog v + x log x 2 x log v. (5a)

Clearly (5a) fails for all y > x™, provided m » 2 and x is
sufficiently large, and thus establishes Sylvester's theorem in this case.

Superficially (that is, as written) the above proofs appear to
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involve numbers greater than 2% (as the products in (1) %o (4) can
have values of this order), and as was noted in the introduction the
existence of numbers of this size for all x cannot be proved in
Iay + PHP(Ap).

However there is still some hope since the logarithmic version

of (1) namely:

logw + J {s} logpz Yoo {y+i} log p (1la)
P 1¢58x P 1gigx P

and also the logarithmic version of (4) involve "quantities" whose
values can be bounded by a polynomial in x. This suggests using

"approximate logarittms", that is functions taking values which are

rational numbers in the sense of the model under consideration, and
which behave in the way one would expect approximations to logarithms
to behave. Tor the logician it should perhaps be mentioned that the
making of approximations which are most naturally viewed at the
logarithmic level (because the error can then be written as a term
rather than as a facﬁor) is crucial for many arguments in prime number
theory. The built in tolerance to errors of the magnitude is the
reason we will be able to make do with "approximations" which are not
very good. This is important for our work with IAy; because it does
not seem to be known even whether the predicate y = [x log 2] can be
defined on N by a A, formula, although it is in £§§. In other words,
the approximations to the function vy = log x which are known to be
definable by 4y formulas are rather inaccurate. Tor this and other
reasons, the use of approximate logarithms (which is a fairly obvious
technique for Peano Arithmetic - see for example Woods [1977]) appears

- to deserve some care when applied to Ia,.

Fortunately however, we will be able to postpone these considerations

to §4, since for the special case of Sylvester's theorem with y o>

(m sufficiently large) the crudeness of the bounds which suffice allows
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the use of integer valued approximate logarithms which can be obtained
relatively easily (provided we use base 2 rather than e).

There is still one further difficulty. The logarithmic version
of the proof sketched above involves establishing inequalities by
manipulating sums having a large number of terms (interchanging double

summations, etc.), and as yet there is no known way of defining the

predicate z = z £(1) on N by a A, formula, given an arbitrary
isx
function y = £(i) defined by a AO formula, let alone a proof that

this can be done using only the axioms of IAy + PHP(AL). (For N
this is another special case of the Ay =§;§ problem.) We will side
step this problem by "unravelling" the inequalities to find the under-

lying "eomparison map". This is possible because the inequalities were

proved in the first place by comparing terms in some order, and is

useful because in the cases considered below the comparison map is A

definable.
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52, Some functions available in Idq..

Although it is not possible to prove in IA, that
VxVy3z(z = 2),
it Zs possible to define the predicate z = %7 by a 4, formula which
provably satisfies the usual inductive definition whenever x° does

exist.

PROPOSITION 2.1 There is a Ay formula =z = x”  such that

16y | z = x is a partial function, and

IAD l" Vx(l = x0 A Yy Vz(z = }{y >z, X = XY'*'l)).

For a proof see Dimitracopoulos [1980]. Note that any other Ay formula
with the same propertyris IAy provably equivalent to z = ®'. The
other properties of exponentiation which could reasonably be expected
to hold in I4; can fairly obviously also be proved so we will use
these freely,

In particular we can define by a Ay formula an "inverse" function
vy = [logK z] (vwhich is provably total) by taking y to be the largest
number such that x’ £ z. It is very important here to realise that
[log ] should be considered as a single symbol as it does nof seem to
be at all clear that even log, z can be given a reasonable meaning for
an arbitrary model of TAy (unlike the situatiom for, say, Peano
Arithmetic). Thus notation such as [logz z], although intended to be
suggestive, should not be taken too literally.

To make it easier to indicate what techniques are available in I,
ve will now consider a fixed model M F L4y, although the procedures
described are quité uniform and could be handled syntactically., The
further down we go in M(that is, towards 0) the more the behaviour of the
initial segments is comgelle& tﬁ approach that of the initial segments in

models of Peano Arithmetic. (In fact, M will always have am initial

segment which is a model of Peano Arithmetic - see for example Lessan
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[1978], proposition 4,1.7.) Thus we will be concerned with the "top"
section of M.

The ability to code "finite" sequences of numbers by a single
number is rather limited in -IAD (since in general it is to be expected
that giving a distinct code number to each sequence of 0's and 1's
of length x will require code numbers up to at least 2%¥-1). However
the technique can be applied if the length of the sequence and the size
of its elements are sufficiently small. By a by sequence we will mean
a function taking a value u; €M for each ie[1,d] (for some d e M)
which is defined on M by a by formula {possibly involving parameters).
A by function will be a function defined om M (or some obvious subset)
by a A, formula (again possibly with parameters).

LEMMA 2.2 For each n e N there is g by funetion g, (c,i,a)
with the property that if a e M and Upslp,...,by T8 any A, sequence
with d & [logya]/([log,[log,al]l +1) and .each ;< [10gza]n, then

there exists ¢ € M gsuch that
Vie [1,d] (ui = gn(c,l,a)).

Proof:

Let b = [1og2 a]n. ¢ will be the number having Uglg-y«--U;  as

the digits of its representation to base b, so we take

[b{’_ 1} - L_l]

That c exists can be established by using induction on ] to prove

L]

gn(c,i,a)

that for each j e [L,d] there is a number c. < bd with digits

]
u.u, _...,u. to base b. Since
J ]°1 1 .
) n[log, a]/([log [log, 2]l +1)
bl < % ¢ [log, a] 2
n{log, a]
< 2 2 g a

the quantifiers in the induction hypothesis can be bounded by a”
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(which exists in M since me N and M 1is closed under multiplicatien).

Thus the proof only requires IA;.

Of course coding is important not only as a means of quantifying
over known A, sequences but also as a technique for constructing
new A, sequences. In particular the coding technique used in lemma 2.2
enables us to define sums of terms from an arbitrary Ay sequence having
considerably more elements than the sequences comsidered in its
statement. (Later in section 6 it will be shown that sums of sequences
having much larger elements can also be handled.)
LEMMA 2.3 If Uyslysens,lly is a Ay sequence in M with

d ¢ [log, a]k and each u, < [log, al®™ for some n,k e N, a £ M, then

there is a A, sequence (with elements denoted by) ¥ us, j e [1,4],
1£1¢]
such that ) u, = v, and for all j e [1,d-1],
15151
Yoou. = Y w4+
1sis1 b 1sigy t e

Let d, = [log2 a]/([log2 al] +1).
If d £ d; we simply prove the existence of a number coding a sequence
ViaVosee sy with v, = u; and vj+1 = vy + Uiy for all j e [1,d-1].

This can be done since if each ug € [Iog2 a]™ then each Vs < [log2 a}n+l.

The result is extended to the case d ¢ dg for k=2"¢eN by

induction on m wusing a "divide and conquer" argument. Suppose the
g q PP

lemma has been proved for all AD sequences ul,uz,...,ud with d ¢ dl.
15 a A

k
(where d; ¢ [log, a] for some k e N). If Wy aWps e e s Wy o

2

sequence of length d ¢ dl and there is some n e N such that each

w, < [Iog2 a]n, then I w, can be defined by:

1€1€]
1 ow, = 7§ Y W ) W, .
Y. . p + . .
15igi * Oss<[j/d;] lsisd, sdy*+i 1gigj-d, dpti
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where d, = [j/d;]d;. Clearly the inner and final sums can be handled

by the induction hypothesis. So also can the sum Z , since
DsS<[j/d1]
each of its terms is of the form:
+
w . < d;[log al? ¢ [log a]k n
- sd.+1 2 2 3
lgigd, 1
and there are at most d;  of them,
The properties z w, =1 and Z w., = E W, + w. are
l1gic1 lgigi+l  © <ig; J*l
£ig $i€] 1£i5j

inherited from the similar properties possessed by the sums with at

most dl terms.

A different sort of coding is used to give A, definitions of

the functions:

pn(x) the n th prime divisor of x (in order of magnifude)

the mumber of (distinet) prime divisors of x.

v(x)
LEMMA 2.4 For every x e M there is some c € M such that
(i) If p <8 the least prime divisor of x then ¢ =1 (mod p).

(ii) If p < q are prime divisors of x, ¢ = n (mod p), and there

tHt

18 no prime r|x with P<r<gqg, then ¢ = n+1 (mod q).

Proof:
Develop enough of the Chinese remainder theorem in IAg to prove

the existence of c.

Clearly if n < p and plx then p = pn(x) <=> ¢ = n (mod p).

Also,

n = v(x) <=> p (%) 15 the largest prime divisor of x.
n g

It should be remarked that, subject to the limitations imposed by
the fact that models need not be closed under Functions of faster than
polynomial growth, the development of the properties of congruences and
primes (up until the problem of the existence of "infinity" many) proceeds

quite smoothly in IA,. For example (essentially) the standard proofs
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that the usual definitions of the primes are equivalent, and that every

¥ » 1 has at least one prime divisor, work. Some models of weaker

axiom systems {(notably the system with induction restricted to quantifier
free formulas studied by Wilkie [1977] and Shepherdson [1965})do not

have these properties. (See for example the appendix to Woods [1977]1.)
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§3. The pigeon hole principle and arbitrarily large primes,

We are now in a position to give an I8, + PHP(A;)  proof of the
existence of arbitrarily large primes. In fact the argument below
shows in IA, + PHP(A.,), that for all x,y at least one of the numbers
y+l,y+2,...,y+x is divisible by some prime p > x, provided that
y >x° and x > C where C is some fixed (standard) natural number,
The condition x > C can be removed by:

LEMMA 3.1 Suppose M FEIAy and x e N. Then for every y e M with
vzxz21l,at least one of the mmbersy+1,y+2,...,vy+x has a prime
divisor p > x.

If y e N this is just Sylvester's theorem for N, so suppose
y € M\ N (that is, y dis nonstandard). If v(y+i) > x for some
i e [l,x] then we are done, while if w(y+i) < x for all i ¢ [1,x],
then assign to each y+1i the least prime p such that pelyi-i for
some nonstandard power pe. (Some such p must exist since the
product of a standard number of standard numbers isg standard.) The x
primes p obtained in this way are distinct, since otherwise
pe|(y+i1) - (y+i2) =1 -1i, € N for some pe € M\ N. Thus at least one
of them satisfies p > x.

(This argument is adapted from Grimm [1969].)

THEOREM 3.2 IA, + PHP(Ap) | ¥x3p(p > x A p s prime).

Proof:

We will construct a Ay formula 8{(u,v,x,y) such that it can be
proved in TIA, that if p £ x for all prime divisors p of
y+l,y+2,...,y+x, then {<u,v>: 8(u,v,x,y)} 1is the graph of a one-to-

one map from f[1,a] into [1,b], where

a = x{log2 v]

o
I

= 2x[log, x] + ([x/2] + 1){log, y].
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If a > b, this is clearly contrary to PHP(Ap). But for y 2 x°

(x - [x/2] - 1)[Yog, y] 2 5(x - [x/2] -1)[1c:g_2 x]

> 2x[log, x]

provided x > C, where C & N is a suitably chosen constant, and
therefore a > b.

To construct the map from [l,a] to [1,b] we first subdivide [1,a]
into x (dijoint) intervals Ai’ i=1,2,...,x, each of length
[Ail = [log, y], and [1,b] dinte x intervals B, t=1,2,...,x, each

of length |Br| = 2[log, x], followed by [x/2]+1 intervals

C., i =1,2,...,[x/2] +1, each of length ICiI = [log, y].

Al hg Ajz , A A
X-1 X
I S~ ' a
[log,y]
B, B, B B B C
VR x-1"x 1 %, C[x/2]+1
— { . : € 0 0 mredeie} + t 4 e —————y
1 ' S~ b
2[log,x] [log,v]
Each Ai is now subdivided in a manner determined by the prime
e.
power decomposition y+i = il p.J, the idea being to

e. 1538v(y+i)
represent factors ij of this product by lengths corresponding roughly

to their logarithms. (The indexing Pj’ j=1,2,...,9(y+i) of the prime
divisors of y+i is available in IA, by lemma 2.4.) A, is divided
into nonempty subintervals Aij’ j=1,2,...,h, with

- e {[lo .J+1) for j <h

o | - {: 5{1og, py] j<h,

g eh({log2 ph]-+1) for j = h.

By lemma 2.3 the sum et([log2 pt]-kl) makes sense in 14,

1stg]
and the endpoints of the Aij's form a A, sequence. Also it can easily

be proved in LA, that

) e.([log p.]+1) > [log, y]
C1sjsu(y+iy J
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so it is possible to "earry out" this construction for some h g vly+i).

Each Aij is then further subdivided into subintervals Aijk with
e.
lAijkl = [log2 pj]-+1, correronding to the factors Ps of ij. (In

the case of Aih we construct as many disjoint subintervals of length

[log2 pj]-fl as there is space for, allowing the final Aihk to have

,Aijk, < [log2 Pyl *1.)

A,
=
A Aiz
A
Lill Ailz Ai21
— 3 !0-!4.7 } {—_i.¢~—|—___f_,v_..-—,—._..__4__.-.¢_.+__‘
— (. ——
[log,p, J+1 [log,p,]+1 [log,p, ]+1
(last interval truncated due to "lack of space')
Similarly each Br is subdivided using the prime power decomposition
e
of r = I pss, first inte intervals Brs’ § = 1,2,...,v(r), with
1$55v(r)
= 1 L] .
lBrs’ es([log2 ps]-rl), and a "left over' interval Bru(r)+1 (p0551bly

empty), and then (for s < v(r}) into subintervals Brst’ t = 1,2,...,es,

with fBrst, = [log2 ps]-+l. The first of these subdivisions can always

be carried out since

L ellog, p1+1) s T 2e [log_ p_]
1sssv(r) ° 2 s 1$s5v(r)  ° zZ s

"

2[log2 r] ¢ 2[10g2 x].

The elements (if any) of the "left over" interval B will not
rv(r)+1

occur in the range of the function to be constructed,
B :
= .

B B

rl r v(r) By v(r)+

A VAN

(ru r12 7 {
e S N S N + ' = e 4 { —

[10g2P1]+1 [log2 pv(r)]+l "left over'" interval.



Notice that each interval A.. ,B (s
: 1jk’ rst

a prime by this construction, so these primes can be used as labels on

21

€ v(r)) 1is assocciated with

the elements in these intervals. Give labels 2,3,5,...,2i-1,...,2[x/2] +1

to the elements im the intervals C3€5:Cq, ..

-’Ci,--l,cix/2]+l

respectively. Only elements having prime labels < x will occur in the

range and domain of the one-to-one function f which we will now

construct. f will preserve labels and can therefore be defined

separately for each label p £ x.

* .
Fix p £ x and consider the least number i  with the property:

Vi e [1,x] VYm( f”y+i+pmy+i*).

Define £ on the interval Ai*j with label p

to be a one-to-one map

into the interval Ci with label p. This can be done uniformly using

a Ay formula since we can define the endpoints of the intervals and then

map consecutive elements to consecutive elements,

these 1in Ci because

lAi*jl g |Ai* = [Iog2 y] = ICi|.

To define £ on the remaining elements of [1,a]

it suffices to define a one-to-one map taking each Aijk(i # i) witch

There are enough of

with label p,

label p to some B with the same label. B has enough elements
rst rst
because
IAijk | s [10g2 pl+1 = |Brst|'
In fact we can map A.. to some B with t = k. To see this
1jk rst

observe that for amy given i,k, if there exists j such that

has label p, then pk|y+-i. But then pkly4'i* 50 pkili-i*[,

ot

therefore either i = i  + zpk for some =z g [(x-iw)/Pk], or 1

*
for some z ¢ [i /pk]. Also

ds( B has label p) <=> kar

sk

<= 32 &

b

[x/p%] (1 = 2p%) ,

ijk

and
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and [(x—ih)/pk] + [ih/pk] 3 [x/pk], so there is an obvious one-to-one
map from {i: i # i A 3j( Ay Pas label p )} into
{r: 3s( B ok has label p)}:
This completes the by definition of a function f mapping those
elements of [1,a] which have labels p < x, one-to-ome into [1,b]. But

every element of [1,a] has a label which is a prime divisor of some

number among y+l,y+2,...,y+x, so if these have no prime divisor

greater than x, then f is defined on all of [1,a], which is contrary

to PHP(Ap) if a > b.



23

§4, Approximate logarithms and Sylvester's theorem

To obtain a proof of the general case of Sylvester's theorem using
only I4; + PHP(4A,)} we will need:

(I) more "accurate" apéroximate logarithms than those used in §3,

(IT) some way of getting around the requirement (indicated in §1)

for a good upper bound on w(x).

Fix ME Ihy, a e M\ {0,1,2}, n e N\ {0}, and let Q+(M) denote the
set of nonnegative rational numbers in the sense of M, We will now
construct a &; function log™: {x e Q+(M): x 31} + Q+(M). More precisely,
the construction gives a A, formula with parameter a, which defines a
map taking each ordered pairs <b,c> with b,ec € M, bz c, to some
<u,v> ¢ MxM with 1og* %— = %—.

The intention is that log®x should "behave like" an approximation
to log x with error less than a fraction K[logza]_n of its value for x
large, where K € N is a constant. The definition could be extended to

*

all of Q (M) \ {0} by taking log for b < c.

%# b _
- = log

£

b
We first defime a "Ap " functiom 1og+x for x e Q+(M) with

1 £ x < 4, by considering a grid of squares "under the graph" of the

function ¥y =-%, the sides of the squares being parallel to the axes and

of length h = 1/2k, vhere k & M satisfies 25 ! < {logza]n <€ ok

%
(Recall that 1log x = J %—dt.)
i

For 1 ¢ x <4 we put:

+ 1
log x = E EM_T_“%] .h? ,
1¢§5 [ (x-1)/n] K1FIDIR

that is, we count the number of complete squares of area h? which lie
entirely in the region under the graph. Since [(x-1}/h] < 6[10g2a]n

1 ' n .
and [;l+jh)é] ¢ 2[log a]”, the sum in brackets can be handled by lemma

2.3.
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+ . . . .
Heuristically we expect that log x will behave like an approximation

-n i
ta "log x" aceurate to within C[logza] for some € e N, since the
number of squares which lie partially in the region under the graph is
£ C[logza]n for some ¢ e N, and these therefore represent an area

=

< C[logza]"n. What we will actually show in LA, is that for

log+(x.y) = log+x + log+y, (1)

where = means that the two sides differ by at most C[lugza]mn for

ry

some constant C e N independent of x,y,a,M.

Note that it is trivial to verify directly from the definition of

10g+ that if Xy = u/2k s X < (u+l)/2k with u £ M, then log+x = 10g+x1

and log+(x.y) = 1og+(x1.y) (for 1 g v < 2). Therefore we may suppose
k+l

that x = u/?_k for some u £ M, where obviously u < 2 for

1l £ x g 2.

XY 1 x Xy
Since J E-dt = J g-dt + J E-dt » proving (1) corresponds to
1 1 X
showing
Xy y
J ldt=J Ioae
t 1
X 1 1
in the standard case, which is of course dene by putting t, = t/x.

The effect of this change of variable is to transform the square grid
(with sides = h) under the graph of -% into a rectangular grid (with
vertical sides = xh and horizontal sides = h/x)} under the graph of %i'
The area (= 1og+(x.y) - 1og+x) represented by the complete
rectangles of this sort which lie entirely in the region corresponding

¥y
to J 1 dt1 can be compared with the approximation log+y to
1

¥y
J L dt, obtained by counting complete gquares in a square grid with

sides = h, without going beyond IA,. To do this consider a common

refinement of these square and rectangular grids consisting of a grid of
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squares with sides h, = h/(u.Zk), where x = u/2k. Since
1

hl 5 1/23k+l

> 1/(2”[log2a]3n), the number of squares in this common
refinement is small enough to enable lemma 2.3 to be used to count the
number of these ''captured" when the square grid with side h 1is used
and compare this with the number captured when using the rectangular
grid. The details of the formal proof are more appropriate to a tedious
first course in integral calculus so are omitted.

Now to define log*x for all x e Q+(M),x > 1, write x = 20w

where m e M and w = x/2m S Q+(M) with 1 g w < 2, and put
log x = m.log+2 + log+w = [logzx].10g+2 + 10g+w.

LEMMA 4.1 1og*1 = 0, and for all =x,y & Q+(M),x,y x> 1,
log*x + log*y = 10g*(x.y).
(That is, Ilug*x + log*y - log*(x.y)] < K[logza]"n for some
constant K e N.)

Suppose X = 2b.u, ¥y = 2%.v where b,c e M and

lsu<2,1csv<2, 50 x.y-= 2b+c.u.v.
If 2 £ u.v < 4, then
log*(x.y) = (bi—cd-l).10g+2 + log+ Eéz .
But by (1), log+2 + log+ Eézl = log+(u.v), 50

log*(x.y) = (b+~c).log+2 + log+(u.v).

The same is trivially true if 1 g u.v < 2, and therefore by (1),
log*(x.y) = (b.16g+2 + log+u) + (C.log+2 + 1og+v)

= log*x + log*y.

Notice also that for every i ¢ N and every standard rational



26

€ > 0 there is some j e N (independent of M) such that log*i can be
made to approximate log k to within e simply by taking a > j.
(More precisely the cut in the standard rationals determined by log®i can
be brought to within € of the real number log i.) We will assume in
future that a 1is large enough to validate any standard avithmetic we
do with 1og*.

At this stage it is conmvenient to state the following improvement of
lemma 2.3, the proof of which will be deferred until §6.
LEMMA 4.2 If Up,Upyennslly 18 a Ay sequence of elements of M where

d g [logza]n “and each u; Su for some a,u e M, n £ N, then there is

a Ay sequence Z u., j =1,2,...,d such that . E u; = uy and
1817 : 15ig1
Z u, = X u, + Ui for all j e [1,d~1].
1€igj+ I1gig]
Lemma 4,2 will enable us to define Z log™i. Consider the points
1sigx

X € Q+(M) at which there is a "jump" in the value of the "step function"
U + .
log*x. From the definitions of 1Dg* and log it can be seen that these

jumps occur at:

tep i T ez B g B2, 32
2~ 2 2" 2% 2° 2
m m m
e, 2™ Ty Zr-, 2™ 4 2 i , 2™ 3'ﬁ L T
2< 2 2
(2}
where me M, and % € M satisfies 2kq1 < [1ogza]n < 2k. Let

ViaVoseaesVy be a list of the points v e M, v < x, at which

log*(v+1) > log*v.' From (2) it is easily seen that:

(i) wv. =3 for j <2

(ii) The numbers vj+-1, 2k < jgd forma A, sequence comprised of

that part of list (2) which lies between 2k4-l and x.

Therefore d g Zk([ldgzx] + 1) ¢ 2[log2a]n.([logzx] + 1).
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Recalling that each 1og*vj = uj/Q2k for some uj £ M we see that we can

make the definition:

E lcg“i = Z-Zk E (v.-v._l)u. + (x-—vd)log*x,
1isx 1sjsa 1T

where v, = 0. The sum on the right can be handled by lemma 4.2, so it

is obvious that X 10g*i will have the desired inductive properties.
1€1igx N .
Next, define a partial function exp w for Q (M) by taking

exp*w to be the least x & M such that log*x 2 w. Observe that
expﬁlog*x = vd-kl.

Now suppose X 2 2k, x £ M, and 1og*(x-kl) > 1og*x (or equivalently,

expﬂlogx(x+l) = %+ 1). Then the distance between x+1 = Vd-+l ‘and

exp log x = Vgt 1 is

*® W W W [10g2}{] -k
exp log (x+1) - exp log x = 2 s (3)

and from the definitions of 1og* and 1og+ it can be seen that

) [logyx] +k

log*(x-+1) - log*x I .Z—ZR,
i x+1
[1Dg2x] -k ol [10g2x]-k
sa 2 -(x+1).2° < (x+1).(log (x+1) ~log x) s 2
(4)

We are now able to prove a log+ analogue of the relation

y logi=x1logx-x+o(x). By r=s+0(t) we will mean that
1<igx -
the terms r,s,t satisfy Ir-s] § Kt for some constant K € N
(independent of M and the variables occurring in T,8,t).
LEMMA 4.3 For all x > [log,al”",
x[1log,x]

z 1og*i =x log x-% + 0 -
1sisx [1og,al

Proof:




Let o(x) = (x-#l)log*x - exp*log*x and let

Y(x) = z ‘ log*i - a(x).
i
X

. |
> 2% then by (3) and (4),

g(x+1) - g(x) =

log*(x~+l), if log*(x4-l) = log*x
{ 2k |

log*(x-Pl) + 0(x.2 °%), if log*(x-kl) > log*x.

Using this it can be shown induction on x > 2k that

- 21c)

Y(x) - v(2%) = o(|{;: 2 ¢ v, < xH.x.2

(x[logzxj)
O__M——_I:L-'
[log,a]

) x[log,x]
O(%klogk(2k) o
[1og2a]n

Therefore,  Y(x)

0 x[logzx]
=0 ([logza] [logz[logza]] + —-—————-)

{1ogza]n
x[log, x]
2
= = for x [logza]zn.
n
[log a]
But by (3)3
. [1og2x] -k
o(x) = x log'x-x + 0([log,x] + 2 ),
so for all x 3 [logza]zn,
x[log,x]

g log™i = o(x) +¥(x) = x log"x-x + O [logza}n

Sigx

Our aim now will be to sketch an argument showing the existence

of an IA, + PHP(4,) proof of:

SYLVESTER'S THEOREM: If 1 g x g y then some nwnber among

y+rLyy+2,...,y+x has a prime divisor P > X.

28
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In view of lemma 3.1 we may suppose that x 2 K for any fixed

K & N. Also, the method of §3 extends readily to the case vy 2 x*"F

s
where & > 0 is any sufficigntly small standard ratiomal number.

(This will be left to the reader. Hint: use a better, but still

trivial, bound on n(x), for example w(x) < x/3, together with more
"accurate" approximate logarithms than those used in §3. Actually at the
expense of doing some extra number theory for N, any £ < 1 can be

shown to work.) We can therefore assume that y+x 2 x2"F.

We now turn to the question of the need for a '"good”" upper bound
on m(x) 1in the case y+x < x>"%. Before considering LA, + PHP(AL)
we will investigate how good am upper bound on 7(x) is required for
the standard proof of Sylvester’s theorem for N described in §1, and
how this can be obtained. Actually we will work with the closely
related function 8(x) = ) 1log p rather than =(x) since this will be

psX
more convenient later, (It is relatively easy to prove

1(x) = f(X) + o(n(x)).)
og X
Under the assumption that y+1,y+2,...,y+x all have no prime

divisor p > x, inequality (%) of §1 asserts (in logarithmic form):

z log w_ + E log 1 = z log i (5)
PEX 1S1isx y<igydx

where w_  1is the largest power of p which divides some y+1i. Since

WP £ y+x < "% we see that if p > xl—E/z = x, (say) then either
w =p or w_=1. Therefore
P P
. i-e/2 2-€ . .
E log p + x leg(x™ 7) + E log i 2 z log i
Xg<psx lgisx y<igy+x

so E log p + E log 1 + o{x) = z log i 2 E log 1. (6)
p<x 15igx _ y<igy+x x<ig2x

Using E log 1 = x log x-x + o{x) it follows that:
1€igx



E log p 2 (2 log 2)x + o(x),
psx

so a contradiction will be obtained if it can be shown that

Y log p < Ax + o(x) for some constant A < 2 log 2.
psx

REMARK 4.4 TIf we do not make the assumption that no prime divisor of

y+1l,y+2,...,y+x exceeds x then instead of (5) we obtain:

E log w + 2 log 1 2 E log 1.
pSxty P eiex y<igy+x

Taking y = x it follows frem this (as above) that

Y log p z (log 2)x + o(x).
PsX

This proves proposition 4.2 of chapter 2 of this thesis.
Sylvester's method can also be used to give an upper bound omn

z log p. Our starting point is the method used to prove imequality
psX

(1) of 51. Recall that this asserted that

W I [s] =2 1 [y+i] _.
1€igx P

A close examination of the proof shows that we also have:

[s]_s 0 [y+i] .
1sigx P

Furthermore, if p > x and ply+i for some i e[l,x], then

o

( i [S])S I [y +1i]
1<s$x P 1gigx P

Taking y = x we see that

f
el

since each [s]

T »p .(r I s)js T (x+1i),
X<psL2x 1€88x 1gisx

or in logarithmic form:

) log p + Z log i ¢ § log i,
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from which it cen easily be deduced that

E log p £ (2 log 2)x + o(x).
psx

This, of course, is not good enough for our purposes since we require a

constant strictly less than 2 log 2.

There are several ways to produce the slight improvement required.
One approach 1is to take heed of the implication in the quotation from
Sylvester given in §1 that the method applies to arithmetic progressions
other than y+1l,y+2,...,y+x. Indeed if vy 1is odd then all the primes

P e [y+l,y+2x] will lie in the arithmetic progression:
Y*‘2=Y+4,---=}'+2i:---:y+zx:

while as before

n [s]_ g T [y+-zi]p for all primes p # 2.

15isx

Thus for y = x (and odd) it follows that

In é). I s« T (x+2i)Y. T s .
X<p£3x 1€88x 1$igx 1€s$x 2

But from equation (2) of §1 we know that

log| @ 5] ) [x/Z%]log 2 g x log 2,
1§85x% 2 1gks [logyx]
s0 z log p + z log i ¢ Z log(x+21i) + x log 2 {(7)
x<pg3x 1¢igx 1g1igx
But E log(2i-1) = z log i - z log 2i,
1gigx lsig2x lgisx
= ¥ logi- § logi-=xlog2, (8)
1£is2x 15isx
50 Z log(x+2i) = z log i - E o log i - x log 2,
1gigx x<ig3x x/2<ig3ix/2
Putting Ul(x) = z log i and

15igx/3



u,{x) = Z log i - Z log i, it follows that
x/3<isx x/6<igx/2

Y logp+ a,(3x) ¢ a,(3x).
X<ps$3x .

Hence for arbitrary x,

) log p + 0, (x/3%) 5 0,(x/3) + 0(log %),
IvC/EiJ'*'JL<13:$:%:/3J
and thus
L logp+ ] 0, (x/37) ¢ 0,(x/30) + 0(log x) (D)
pSX js [Logyx] ig flogzx]
But since ) logi==xlogx-x+ o( X ), | (10}
1sisx log x

- ¢l 1 X
o,{x) —Ul(x) = (—2— log 3 + 5 log 2)x + O(log x) s 50

2 (Gg(x/3j) - Ul(x/Bj)) = () -}3-)-(l log 3 + L log 2)x + of{x)

. : 2 3
js [Logzx] j3

(% log 3 + % log 2)x + o(x)

rof Lo

Therefore, Y log p s (% log 3 + % log 2)x + o(x), and as the reader
pEx

may check, % log 3 + % log 2 < 2 log 2. (Note the use of an error
bound better than o(x) im (10). This is of course possible since the
actual error is O(log x) by Stirling's formula.)

THEOREM 4.5 1&g + PHP(A,) |- Sylvester's theorem.

Proof: (Sketch.)

Let META, + PHP(A), 2 e M, and n e N. (We will choose a, n

™

explicitly later.) Define log* as above and let UI, Ué be the 1og*
analogues of o;, 0,. Then the "starred" version of (9) is

] 1ogp v | o) (x/37) ¢ ] 3 x/30) ¢ o). (DF
psx js{logax] i [logqx]

There is a way of Znterpreting this inequality which is viable in LAy,

Observe first that multiplying by 2k, where as before 2°7! < a g Zk,
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converts the inequality into one involving sums of terms of the form
R e
22klogki and 22klog*p, and by the definition of 1og’ all such terms
are elements of M (rather than just Q+(M)). For the same reason the
sums
b= 7 2% (x/3), o= 2%, (x/39)
b [10333(} ig [logyx]
can be defined using lemma 4.2, For suitably chosen b;, ¢; approximately
equal to b,c, the proof of (9)¥ (as indicated for (9) above) can be

turned into the comstruction of a one~to-one comparison map:

f1: [1,b] — [,e)]> Y Ap

pEx

where {Ap; P prime A p § x} s a set of disjoint subintervals of

dgfinable.

(o)) with lengths |a | = 2"log™p and £, is 8,

The construction of £, is very similar to the construction of the
map f used in §3. [1,b;] 1is first subdivided into intervals of length

roughly 22kdf(x/33) = Z' 22k10g*i, then into intervals of length

o lsisx/ad
log”i, and these are then subdivided into intervals of

+1

approximately 22

length exactly 22klog*pm (except where we "run out of space')

e
corresponding to the prime factors of i = I p ™ . Since the

ismev(i) ™
starred version of the equation log(w.z) = log w + log z 1is only

K

[logza]#
constant K € N, we will actually start from intervals slightly smaller

approximate, namely Ilog*(w.z) - 10g*w - log*zI< for some

than 22k10g*i §0 as to ensure that we always "use up" all the space

available in the interval. Since z e s ﬂogzx] we have
tgmsv(i)

z e log' p_ 3 loghi - K[logzx].[logza]-n,
) m m
1smsv(i)

so it suffices to reduce the length from 22k10g*i to
. + . .
22klog"1 - Zk lK[logzx] , (that is, to use approximately

log“i - K[logzx]-[logga]‘n in place of log*i.) This reduction corresponds
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. 1+ 1
to taking b, = b - 2k+1K[10g23] ¥ [x/3J+ ]. Clearly the
js[loggx]

reduced length subintervals can be"marked out” using a A, function, and
24 ] H

: . . x[logzx]
b, = 22k Z UI(X/3J) + O ——————
. n

i< [logyx] [10gza]

Similarly [1,c;] is subdivided into intervals of length either

k

22k log 2 or approximately 22 log*(xj-bzi), where xj is an odd

number divisible by 3 approximating x/33+1. {(These can be marked off

by a Ay function since the function Y log (2i-1) can be defined,
igigz
either directly in the same way as E log”i, or alternatively via (8)
lsisx

at the expense of introducing an O(X.[logza]-n) error.) This time the
intervals of length 22k log*(xj-rzi) will have to be expanded to

ensure that there is "enough space" for subintervals of length 22k log*p
corresponding to all of the prime factors of xj-+21. However for

X 2 [1og2a}n we can still choose:

. . x[logyx]
ey = o2k Y UE(x/BJ) * Of—— }}-
jS[logax] [logza]

The functiomn f, maps subintervals of [l,bl] with length o2k log*p
to subintervals of [1,c1] with the same length in an almost
completely analogous fashion to the function constructed ia §3 (with
intervals of length {1og2p] + 1),

In a similar way, under the assumption that no prime P> x is a

divisor of x+1,x+2,...,x+y, the proof of a starred version of (6),

namely:

g . x . . X
Y log"(w+i) < E log (y*i) £ § log'p+ | log i+ 0([1782-}-{—]—)

1gigx lgigx p<x 1<1igx

can be interpreted as defining a one-to-one Ay  comparison map
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f2: [1Jb :}_}' []_,C2] ™~ U B b)

psx
- x[logzx]
vhere b, = 22k Y log (x+i) + 0 ———4———5
1§igx [logoal
. x[logpx]
ey = 22k E log™i + 0O Tosox] + R
1$isx O82 [logza]n

and {BP: P prime A Pp £ x} 1is a set of disjoint intervals with
Bpr1 [1=C1] = ¢ and lengths [BPI = sz log*p. As with the Ap's
there are A; functions mapping {p ¢ x: p prime}! to the end points
of the Bé's, but note that we are not assuming that the Ap's or
Bp's can be A, indexed by any interval [1,m]. Obviously however

there is a one-to-one AD function

with g BP — Ap for each p g x,
Now it is possible, in effect, to add inequalities (6) and (9)7.

More precisely, the inequality:

) o (x/37) + T log¥(x+i) (11)
js[logax] 1gisgx
. . x [Log,x]
) U;(x/BJ) + )} logti + o0 D;{ ATt e
j€{logyx] 1€igx E2 [logza]n

follows by PHP(A;) once we construct a one-to-ome 4, function

£: 11,by #b,] — [1,e,+c,] by taking

fl(X) . if x e [1,b1],
£(x) =9 ep + £,(x-by) if x e [b+1, by+b,] A £,(x-by) € [L,c,],

g(fz(x-bl)) if x e [b]_'Fl, b]_'l'bz] A fz(x‘*bl) £ U B
; psx

Il

But now choose a = x, n = 2, so that the error term in (11) is



16

x[logzx] % )
0 ———— | = o2
[logza}n ('ﬂogle

which is neglible compared with x. Estimating both sides of (11)

using the relation

. * X
Z log"i = x log'x-x + O(:_——HMJ
1isx [logyx]

obtained from lemma 4.3 (for the same values of a,n) now shows (by

arithmetic already done gbove) that

* 3 % 1 ¥ X
(2 log™2 7 log™3 5 log"2)x £ C TTEEEET for some C ¢ N

But this is false for all x » Cygs, where Cy e N is a constant,
contrary to our earlier observation that x can be assumed larger than

any such Cjp.
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§5. Counting the pigeons -

census functions and the pigeon hole principle.

The problem of proving the pigecn hole principle in IA; suggests
introducing a new {undefined) function symbol £ and then considering
the axiom system IAy(£) obtained from IAy by allowing induction omn
Ag(f) formulas, that is, on bounded forﬁulas in which f as well as
+ and . may occur. Specifically, let PHP(f) be a sentence
saying:

Yn(f does not map [1,n] one-to-one into [1,n~1]).
Does IAy(£)|- PHP(£)?

Obviously an affirmative answer here would imply IAOF PHP(A (),
however a negative answer seems more likely in view of a conditional
result due to Alex Wilkie based on a conjecture which appears (implicitly)
in Cook and Reckhow [1979]. Consider one of the standard axiomatisations
of the propositional calculus and a doubly indexed set of propositional
variables Aij,i,j e N.

CONJECTURE 5.1 For each m e N there exist arbitrarily large numbers

n e N such that every proof in proposition caleulus of the tautology
ign jsn-1 ij kgn=~1 :|'_<J:{.n ik ik

has more than n™ symbols.

In other words, the conjecture states that the time required to
write out the shortest proof of this formula for a given value of n
cannot be bounded by a polynomial in n (or alternatively by a
polynomial in the length of the formula). WNote that the formula
embodies the pigeon hole principle for [0,n] and is therefore a
tautology by virtue of the truth of the principle for N.

PROPOSITION 5.2 (Wilkie) The above conjecture implies

I8o(£) P¥PHP(E) .

Now comsider any predicate e(x,§) in some language for N. The
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census function Cq for B(X,;) (with respect to x) is defined by
ce(x,;) = [{j e [1,x]: B(j,§)}], or alternatively (with models other

than N in mind) by:

Il

ce(O,;) 0

ce(x,§)4-1 if 8(x+1,§) holds,

¢y (x+1,5) {. .
ce(x,y) otherwise,

Let def(ce) be an axiom asserting that this definition is satisfied.
In what follows, bounded formulas involving f,g,%,.,€ will be called
bo(f,g) formulas, and Ia,(f,g) will denote the axiom system similar
to T4, but with induction allowed on 4,(f,g) formulas.
THEOREM 5.3 Let 0(x,y) be the 8o(E) Sformula £(x) sy and let
ce(x,y') be a function symbol for the corresponding census function
with respect to x). Then
Thp(£,c,) + def(ca)[-PHP(f).

Working in IAO(f,ce) + def(ca), suppose to the contrary that
£f: [1,0] + [1,n-1] and is one-to-one. The idea is to remove
£(1),£(2),... from [I,n-1] one step at a time, closing up the gaps
so caused as we go, until after n-2 steps we are left with a one-to-
one map from [n=~1,n] into {1} which can trivially be proved to be

e

impossible. At the ith step we will have the function f; defined on
[i+1,n] by:

£1(x) = £(x) - ¢, (i,£(x)).
1 a

(Intuitively £, (x) = £(x) - |15 e [1,i]: £(j) < £(x) )
Clearly the predicate y = fz(x) can be defined by a A,(f,c,) formula
with variables x,y,i, provided that we can show ce(i,f(x)) s f(x) for

all ign-2,xel[i+1,n]. Intuitively we should have ce(i,y) £y for

all y, since as f is one-to-one we would expect that

cg(x,y) = [{j e [1,x]: £(i) ¢ y}| = 143 € [1,5]: 3z € [1,x](£(z) = i,



in other words, that ce(x,y) is the census function with respect to
y of the formula 3z e[1,x](£(z} = y). We now show that ce(x,y) has
the inductive properties defininmg that cemsus function.

Firstly, ce(x,O) =0 b§ a trivial inducfion on x. We will also

use induction on x to prove:

1 if 3z e [1,x](i(2) =y+1),

cp(ryH) = egly) + {
0 if dz e [1,x](£(z) # y+1).

This is trivially true for x = 0 since both sides are zero. Suppose

the equation holds for x. We want to show

1 if 3z efl,x+1](f(2) y+1),
ce(x+l,y+l) - ce(x+1,y) = '{

0 if Vz e[l,x+1 (£(z) # y+1).

From the definition of ¢ we know that

&
1 if f£(x+1l) s v,
ce(x+l,y) = eglx,y) +
0 if f£(x+l) > vy,
and
1 if f£(x+l) g y+1,
ce(x+1,y+l) = ce(x,y+l) + {
0 if F(x+1) > y+1.
Therefore
1 if f£(x+l) = y+1,
ce(x+l,y+1) - ce(x+1,y) = ce(x,y+1) - ce(x,y) + {
0 if E(xt+l) # y+1.
and hence by the induction hypothesis,
if dz efl,x](£(z) = y+1)

1
ce(x+l,y+1) - ce(x+l,y) = {
0 if Vz e[l,x](£(z) # y+1)
+{

1 if f(x+l) = y+1

0 if f(x+l) # y+1.
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Since f is one-to-one the terms omr the right cannot both be nonzero,

80
Cif dz e [1,x+1](f(z) = y+1),

1
ce(x+1,y+l) - ca(x+l,y) = {
0 if Vz e [1,x+1](f(z) # y+1J,

as required. Thus ce(x,y) is the census function with respect to
y for the formula 3z g x(f(z) = y).
That ca(x,y) €y for all x,y now follows by a trivial induction

on y. More generally we can show that for all X,¥1:¥9s
Y]_ g Yz - ce(x:yE) ‘CE}(X,YI) g }’2 "yl. (1)

(Let ¥ = y1t+k and use induction on k. Equality holds for &k = O,
50 suppose ca(x,y1+k) —ca(x,yl) ¢ k. Then there ce(x,yl+k+1)s ce(x,yl+k)-+l,
it follows that ce(x,y1+k+l) -ca(x,yl)s k+1.)

Similarly

Y, < ¥y A V2 e [1,x]{£(2) # y,) + eglx,y,) ~eglx,y,) <y, -y -

Since f 1is one-to-omne, Yz ef1,i](£(z) # £(i+1)), so it follows that for

all 1i,vy,

£(i+1) > vy + £(i+1) -ca(i,f(i+1)) >y ~ce(i,y).

But by (1),

£(i+1) s y + £(i+1) meg (1, £(i+1)) < y-ca(i,y),

S50

£(i+1) 5y <=> £(i+l) =g (1,£(3+1)) ¢ y -cgld,y). (2)

afa

Using this we can now show that f; can be "produced" in the way

stated at the beginning, namely that f; = £, and on [i+2,n],

) fj.j(x)—l if fj(x) > £ (it1),
fi+1(x) = (3)

£ . % E
£.(x) - if E1(x) < £.(i+1),

ota

From the way fi was actually defined, this is equivalent to
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ce(i,f(x))d-l if £(x) —ce(i,f(x)) > £(i+1) ~c8(i,f(i+1}),
ce(i—l-l,f(x)) = (4)

ce(i,f(x)) otherwise.

But by definition

o ce(i,f(x))d-l if fi(i+1) g £(x),
ce(i+1,f(x)) = {

ce(i,f(x)) otherwise,

so (4) follows immediately from (2}.
To complete the proof we will prove the following hypothesis by
induction on i € n-2:

% . . R . . .
IH(i): f; 78 one—to-one anc 1ts range s coutained in [1l,n-i-1].

{Recall that the domain of definition of fz is  [i+l,n].)
As fE = £, TH(0) holds, so suppose TIH(i) is satisfied. Since

fi is one-to-one, we know from (3) that for all x e [i+2,n],
fz(x) if f"i'(x) < f’i"(i+1),
Fip () = . . _
fi(x) -1 if fi(x) > fi(i+l) R
so we see immediately that for x £ [i+2,n], either

fi+1(x) = fi(x) 21 or fi+1(x) = fi(x) -1 = fi(1+l) z 1.

Also, either f. . (x) = £.(x) g £.(i+1) -1 g n- (i+1) -1, or
1+1 i ) 1

fi+1

in [1,n - (i+1) -1].

(x) = f’i"(x) -1 < n-(i+l) -1. Thus the range of f;ﬂ is contained

% . .
Now suPpose fi+1(g) = fi+1(y) for some x,y e[i+2,a] with = # y.
Since f; is one-to-one we may assume without loss of generality that

% %
fi(x) < fi(y). Clearly we must then have

fi+1(x) = fi(x) < fi(i+1) < fi(y) -1 = fi+1(y)’ so f. (x) < f. (y)

1+] i+l
trary to th tion that £, = £ . i -
contrary to the assumption tha l+1(x) 1+1(y) Thusg f1+1 is one

to-one and TH(i+1) Tholds.

By IH{mn-2), f;_z has range {1} and f;_z is one-to-one. But
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the domain of f;uz is [n-1,n] so this is impossible, completing the

proof of PHP(f),

REMARK: A similar argument shows that the theorem remains true 1if 8(x,y)

is taken to be dz ¢ [1,y]1(£(z) = x), instead of f(x) < y.

COROLLARY 5.4 IEZ |- PHP(E2)

Proof:

Using essentially the standard argument (see Grzegorczyk [1953]) it
can be shown that for each bounded formula ¢(%) involving (funetion
symbols for) £2 functions there is an £2 function X¢ which can be
proved in IE£ to be the characteristic function for ¢. Therefore we
will refer to such formulag p as Ei formulas.

Recall that PHP(E%) states:

Ve Yy(Vu; 5 yVu, € yVv g y(B(;;y,ul,v) A 8(x,y,up,v) » up = u,)
AVYusyIvsgy G(X,y,u,v) +VWwsyJusgy 8(§;y,u,v)),
2 -+
for each €2 formula B(x,y,u,v).

. . -+ .
Working in IE%, suppose 6(x,y,u,v) 1is an éfi formula and that,

contrary to PHP(E%), for some values of the parameters ;,y,
. -
glu) = miaf{v: 8(X,y,u,v)}

defines a function g: [0,¥] + [0,y] which is one-to-one but not onto.
Let £(u) = g(u)+1 and a = y+1 so f£: [1,n] + [1,n] is also one-
to-one but not onto. We may suppose (by redefining f at £ 1(n) if
this exists) that f: [I,n] + [1,n-1].

Let ¢(§;y,u,v) be an Ei Jformula defining the predicate f(u) 5 v.
The census function ce(§,y,u,v) for 9 with respect to u has the
£2 .definition:

¢y(¥,7,0,%) =0

c¢(x,y,u+1,v) = c¢(x,y,u,v) + X¢(x,y,u+l,v)
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where X¢ is the £2 characteristic function of ¢. Thus in Ig2
we can apply induction to bo(f,e,) formulas and deduce by theorem 5.3

u
that PHP(f) holds, contradicting our assumption that PHP(Ei) fails,

In Iﬁi we can also prove the following version of the pigeon hole
principle provided A,B and f are defined by Efé formulas (with

parameters allowed):

If BCAC [1,n], B# A, and £: A =+ B, then f s not one-to-one.

This is because we have £2 census functions cA(x), cB(x) for
A and B, so taking c&l to be the one-to-one function with Tange A

defined by:

cgl(y) = min{x: cA(x) =y},

we can prove in I€Z that if f is one-to-one then for some k,m with

k > m, the function ey chl: [L,k] » [1,m] (formed by composition of
functions) is one-to-one (and onto) which is contrary to corellary 5.4,
Similarly the bijection extension principle, namely:
If A,BC [1,n] and £: A ~+ B then there 18 an exctension f
of £ such that f£°: [1,n] [1,n], is available in IEZ for A,B,f
with Efi definitions. For (working in IEi) suppose there is some
bijection f: A ++ B vwhere A,B c [1,n]. Then (as above) there is some

k such that

chcgl: [1,k] <> [1,k].

(Intuitively k = |a] = [3].) Denoting the complements of A,B by

A',B', it can be proved that the E 2 functions

CA.(x) = x —cA(x), CB'(X) = x-cB(x)
have the property that CA}: [1,n-k] ++ [1,n]NA and
Cﬁ}: [1,a-k] ++ [1,n]~B, and therefore

cg}CA.: [1,n] 4 + [1,n]<B.
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Thus we can take

£(x) if x e A,
fb‘(x) -
cﬁ?cAr(x) if x g [1,u]~A,

As indicated in the introduction, a special case of the 4, = Eg
problem asks whether for each predicate B(;;y) defined on N by a
8g formula, the corresponding census function ce(x,;) has the
property that the predicate z = cB(x,;) can also be defined by a
A, formula. One can "strengthen' this question to asking whether there
is some uniform way of defining the census function. For example is

there some bounded formula ¢(x,y,A) 1in a new unary predicate variable

A (as well as +,-,5) such that for all A < N,x,z € N,
z = cA(x) <=> $(x,z,A)?
The following corollary gives a conditional answer to an axiomatic

version of this preblem (in obvious notation).

COROLLARY 5.5 If eonjecture 5.1 is true then

TAg(A) £6(0,0,4) A Vx ¥2(4(x,z,4) +
(p(x+l,2+1,A) <=> A(x+1)) A (d{x+l,z,A) <=> ~4A(x+1)))
for any Ap(A) formula ¢(x,z,A).

Suppose the contrary held. Then replacing A(v) in ¢(x,z,A) by
the formula £(v) $y would yield a 4,(f) definition oﬁ z = ce(x,y)
(where - 8(x,y) is £(x) ¢ y), and we would have IAD(f)|~def(cB).
Therefore by theorem 5.3, IAD(f)[-PHP(f) in contradiction to proposition

5.2,
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6, On summing sequences

In this section we will consider the problem of summing a i
SEqUEence Uj,Up,...,lUy in a model MF=IAO with 4 g [logza]n for
gsome a e M, n ¢ N. But first we will prove the following number
theoretic lemma:

LEMMA 6.1 There 25 some C & N such that

IAD|~Vx3y(y= I p Ay > x).
psC[log,x]

Let x; € MF=IAO. (The constant C produced by the proof will
clearly be independent of the choice of M.) Imn order to prove the
lemma for x = x; we may suppose that X, € M\N, since if X, EN
then the result follows immediately by standard number theory (for
example, remark 4.4).

Define an approximate logarithm function 1og* as in §4 using
a = [10g2x0]2 and n = 2. Then for x g a there is a by definition
of the sum z 10g*p by lemma 2.3, and using the method described in
the proof ofpiieorem 4.4 we can prove a * analogue of the result of
remark 4.4, namely that Z 10g*p z Cpx for all x € [2,a], where

psx

C; 1is some fixed standard rational number. Similarly a * analogue of

G

inequality (9) of §4 can be proved leading to the result:

) log'p < C,x for some fixed C; € N, and all x ¢ a.
psx

In both cases the pigeon hole principle is used to establish the
. . . . * .
relevant inequality (for example, inequality (9) of 84 in the second
case) but each of these applications of the pigeon hole principle

applies to a Ap function

f: [L,m] — [1,m,] with m;, W, € a ¢ [logzxo]zn

for some n e N, and can therefore be handled by theorem 5.3, since
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the census function for the formula f(x) £ v can obviously be
defined using lemma 2.3. Similarly all uses of lemma 4.4 in the
original arguments can be replaced by uses of lemma 2.3, since taking

a < [1og2x0]2 ensures that the size of the terms to be summed will be

sufficiently small.

%
Now choose C e N large enough so that Z log'p > {1+e)x for
p2Cx

all x g a/C, where € > 0 is some standard rational number. In

o

particular this inequality will be satisfied for x = [Iogzxo]. Thus

* %
(1+g) [Llog,xy] < z log'p < D log x,
psC[logyxg]
where D > C Cl/log 2, D e N.

Using the fact that |10g*(u.v)-1Dg"u:—log”v]s
. [logza]z

for some constant A £ N, it follows by induction on i g C[log x,l

that:
dv g xg+€ ( v 18 squarefree A Vp( p is prime + ( ply <==>p ¢ 1))
A (l+E)[log2x0} - A < log'y * Z Iog*p <D 1og*x0
[10g2a]2 i<p<C[log,x,]
- Al
[log a]?
Taking i = [logzxo], it follows that a number y = I p
psC[logZx]

exists, and that [log,x,] < log*y so x, < Y.
REMARK: Notice that the product version of Sylvester's method
(deseribed in §1) does not seem to be applicable, since it would involve
[logy[logyx]]
numbers of size [log,x,]: (that is roughly x, ) which
need not exist in M.
We can now prove:

LEMMA 4.2 If MRIA, and UpsUps...,u, TS @ Ay sequence of elements

d
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of M with d g [logza]n and each u, §u for some a, u e M, n e N,

then there 15 « Ay sequence E u., j =1i,2,...,d, such that
1€1g]
Y oou, =g and for all j e [1,d-1],
1gis1
E u, = E u. + u. .
1gigjar b o1gigy 2 AT

Proof:

Clearly if the sum exists its value will be ¢ [logza]nu =y
(say). By lemma 6.1 there is some C € N such that there exists
yeM with y= T P > v. The idea is to do the summation

psC[log,v]
mod p for each of these primes p. Let (x)p denote the least number
w such that x = w (mod p). Then for each p ¢ C[log,v], the
numbers (ul)p, (UZ)p""’(ud)p form a A, sequence having p as a

parameter in its definition. Since each (ui) ¢ C[log,v] the sum
P

E (u;) can be defined for j ¢ [1,d] wusing lemma 2.3. Now write:
1gisj ' P

z (mod p)).

HE

z s v AV¥p(p is prime A ply — § (ui)
15i5j P

More precisely a unique =z satisfying the right hand side of
this equivalence can be proved to exist by induction on j, and a

similar induction shows

z u., = E u, +u, .
o . +
lg1g g+l t 1153 * I+t

The lemma fails if the condition that there be some
upper bound u on the elements of the Ay sequence is omitted,
Obviously if the by sequenFe UpsUpsemeylly has no maximum
element (that is, if M = {x e M: Ji ¢ [1,d] ( x g ui)}) then

Z u. cannot exist for all j, since if it did we could prove by a
1$1¢]
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Ay induction on d-3j that wu. g Z u. € z uy for all

b T -
j € [1,d], which is impossible. Therefore the problem amounts to
showing that such &, sequences do exist in some model M (and that

it is possible to have d ¢ [logza]n for some a e M, n e N). This

has been done by:

PARIS, J.B.; KIRBY, L.A.S., I - Collection schemas in arithmetic.

Logic Colloquium '77, North Holland, 1978.
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§7. The future?

Wilkie's gquestion of whether

IAg |- there exist arbitrarily large prime numbers
remains an intrigueing problem. On the one hand there is the theorem
of Alex Wilkie that the existence of arbitrarily large primes
cannot be proved by induction on open formulas (together with the
usual "algebraic"axioms ) which has recently been extended by Zofia
 Adamowicz (unpublished) te induction on certain formulas with simple
quantifier prefixes. On the other hand there is the possibility that
the number theoretic properties of TIA; (which as we have seen are
quite strong in some ways) may be powerful enough to prove the theorem.
However even if this does transpire, the story cannot end there. For
consider Linnik's theorem (see for example Prachar [1958]}) that there
is some comstant C such that for all a,b e N with a coprime to b,
there exists a prime p = a (mod b), p < bc. In view of this theorem
it is just as sensible to ask whether

IAg - Dirichlet's theorem
that is, the theorem which states that if a,b are coprime then there
exist arbitrarily large primes p = a2 (mod b).

Of course there are numerous other examples of number theoretic
properties which hold in every structure of the form
{(beM: dne N(b g a™)}, wvhere M is a model of (say) Peano arithmetic
and a & M, but for which no proof in IA; 1is known. The really
important problem would seem to be to find a proof that some "natural’
property of this sort cannot be proved im TIhAy. Other possible
examples include additive basis theorems such as that of Schnirelmann
[1933] which states that there is some constant C such that every
x € N, x 2 2, can be written as a sum of primes x = p,; + Py *eent B
with n £ C, or even the analogous result with squarefree numberis

instead of primes. (There do exist arbitrarily large squarefree numbers
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in any model of TIA,.)

The proof that IAj|- Sylvester's theorem also suggests some
lines of further enquiry. As the reader may have noticéd, much of
the proof hinged on aveiding explicit use of the bijection extension
principle,
PROBLEM: TIs the bijection ewtension prineiple a conservative extension
of I, + PHP(Aq) <In the sense that adding new function symbols

f for the functions whose existence is demanded by the

LsEps
prineiple, and allowing induction on b,(E £, ...) formulas, cannot
prove any extra theorvems in the original language?

Of course this would follow from a proof of by = Si which did
not go beyond the capabilities of LAy + PHP(A,), but perhaps this is
more than is needed.

The IA, + PHP(4A,;) proofs of the existence of arbitrarily large
primes also seem to make essential use of argument by contradiction,
since if we do not assume that y+l,y+2,...,y+x have no prime
divisor greater than x then we have no way of proving that the
function to which we wish to apply the pigeon hole principle is
properly defined. This motivates the following question:

PROBLEM: Can classical IAy + PHP(A,) be intepreted in intuitionigtic
IAy + PHP(A,)?

(Where intuitionistic L4y + PHP(A,) 1is defined in an obvious manner,)
0f course we have the usual (Godel) interpretation of classical Thg

in intuitionistic IA,, so this question may have to await the solution

of the IA, = PHP(AO) problem. On the other hand it might conceivably

provide valuable imsight into that problem.
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CHAPTER 2 Definability properties of the coprimeness predicate.

This chapter describes some of the logical properties of the two place
predicate 1 defined for natural numbers x,y by:

x Ly <> x and y hav;e no common prime divisor.

Throughout La,B . will denote the language consisting of all

yrrea

formulas which can be constructed {(according to the usual‘rules) from the
logical symbols V¥,3,7,A,V, =+ ; variables x,y,z,... dintended to range
over the natural numbers N ; and the predicates or operations o,B,...,Y.
For example, L_ ,,,l is the language with equality {(x=y ) and
divisibility (‘x| y) predicates, and the successor operation (x"=x+1),.

Given a language L for N, a basic "first question" is whether
addition and multiplication are L definable, that is, are there L
formulas ¢A(x,y,z), ¢M(x,y,z) such that for all =x,yv,2 e N,
¢Aﬁx,y,z) <= x+y=z and ¢M(x,y,z) <= x,y=2? If so, then a second
basic question is: what sort of defining formulas are possible? Julia
Robinson [1949] made a fundamental contribution to this subject when she
investigated these questions for various languages, and in particular
proved that addition and multiplication are L. y definable. If we
regard ° and | as weak primitives of an additive and multiplicative
kind respectively, then we see that in a certain sense this theorem isg

stronger than the corresponding results for L( s L + 1 L_, and
< 2Ty e

L, . For successor can be defined from < which in turn is L_ N

<3 )

definable, but g 1is not L_ , definable, nor is addition L_ definable.
_, "

Similarly divisibility is L_  definable, but multiplication is oot L[
)

definable. Thus a matural way to attempt to strengthen the theorem is to
replace | by a new "weaker" primitive which is L| definable, but which,
by itself, is not strong enough to allow | to be defined. The
comprimeness predicate being an obvious candidate, Julia Robinson asked

in her paper whether multiplication (and therefore addition) can be defined

in L | or even whether multiplication is L_ N definable. The
y 2 Tt
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preéent chapter is primarily devoted to these questions and the
intermediate problem of defining multiplication in Lé,l'
In 51 two simple proofs of the L=,+’l definability of multiplication
are given. Correspondence with Professor Robinson has revealed that the
second of these was discovered independently (and much earlier) by her but
has not previously been published. A stronger theorem, namely that
addition and mu}tiplication can be defined by bounded Ls,L formulas, is
proved in §4 by a more complicated argument. In faet, a relation on N
can be defined by a bounded LS + . formula if and only if it can be

* )

defined by a bounded L% formula, where é is the preordering defined by:
};gy-<=a x=yv(xsy AxLy).

(A preordering is a binary relation which can be extended to a linear
* * . - * a
ordering. Note that < 1is not transitive.) As the relations on N which

can be defined by bounded L., formulas were shown by Bennett [1962] to

gy,
be precisely the rudimentary predicates of computational complexity theory,
this theorem yields a new characterisation of these. TIn particular it
follows that every rudimentary set of positive natural numbers is the
spectrum of a sentence ¢ of the predicate calculus with a single binary
predicate symbol v (say). (The spectrum of a sentence ¢ is taken here
to be the set {|M|:MF ¢} comprised of the cardinalities of the domains
of 2ll finite normal models M of ¢.) Furthermore it is shown that ¢
may be chosen in such a way that all finite normal models of ¢ are praphs
(that is, ,have y symmetric and antirgflexive) and that similar results
held for partial orderings and quasiofderings[

Concerning the original problem about the properties of L - it is
proved in §2 that there cannot be any algorithm for deciding whether
arbitrary sentences of this language are true. Also, Julia Robinson's
question about the L=,’,l definability of multiplication turns out to be

equivalent to an open problem in number theory. Indeed all of the

following statements are equivalent:
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(i) z=x.y is L_ N (or L, L) definable.
I ] E
(ii)  z = x+y 1is L_, N (or L, J_) definable,
(iid) x s ¥y is L (for L ) definable.
. =,7,41 7,1
(iv) x=vy is L, i definable.
(v) There is some k e N such that every natural wnunber x <ig
determined uniquely by the sequence SU’ S areis Sk of sets

of (distinct) prime numbers defined by §; = 1{p:p | x+1}.

In view of the classical theorem of Stdrmer [1897] which states that
for any x there are at ﬁost finitély many numbers which produce the same
sets 8,5, 5, as x, and the (admittedly limited) numerical evidence which
can be extracted from the tables compiled by Lehmer [1964], it seems
plausible to conjecture that (v) may be true for quite small values of Ak.
This conviction is streng;hened by the fact that statement (v) (with k=20
for x sufficiently large) is a consequence of a general conjecture of-
Hall and Schinzel about the magnitude of the solutions of certain
diophantine equations. The truth of (i)} - (v) would also follow from an
affirmative answer to a question posed recently by Erdds [1980], who asked

whether there is some k such that every natural number x is determined

uniquely by U Si'
isgk
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§0. Two facts about langauges for number theory.

As a preliminary we will list two "pieces of folklaw" which have
consequences for many languages which describe the natural numbers. The
first is a corollary of MatﬁaéeviE's negative solution to Hilbert's "tenth
problem" about the existence of an algorithm for deciding whether a
polynomial equation with integer coefficients has a solution in N. (An
account of this work may be found in Davis [1973].)

An existential formula is one of the form ja'q(:b where Q(g) is
quantifier free. For any language L, the existential L theory of N
consists of all existential sentences of L which are true of N. A theory
T is decidable if there is an algorithm for deciding whether an arbitrary
sentence ig in T,

PROPOSITION 0.1 If the existential L_ theory of N <s

"'su:Bs"'aT

decidable then at least one of the predicates Zz=xX+y, z=x.y cammot be

defined by an existential TL_ 0.8 v formula.
Taly by eney
Proof:
Set A(x,y,z) < z=x+y and M(x,y,z) <> z=x.y. For each
L., . sentence Y of the form
T
5 + -
Jw (P(w) = Q(w)}) (*)

there is an effectively found equivalent L_ Ay Sentence of the form

-+ I -+ -+ .

dy A wh(y) where each U (y) is of one of the forms A(y.,v.,v.),
h=1 h 1 ] k

M(yi,yj, yk), =y (The reason for including this last form is that
x=1 <= Judv (hu=v A X.u=u A X.v = v).)

Now if ¢A(x,y,z) and ¢M(x,y,z) are existential L=,&,B,---,Y

definitions for A(x,y,z) and M(x,v,z) respectively, then each wh(§)
of-the form A(yi,yj, yk) can be replaced by ¢A(yi,yj, yk), and
similarly each wh(§) of the form M(yi,yj, yk) can be replaced by
QM(yi,yj, yk). The resulting sentence is clearly equivalent both to ¥

and to an effectively found existential L_ - ¥ sentence. Thus if
Tsa Py e vy
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the existential L_ theory of N is decidable then there is a

—:G)B: sy Y

decision procedure for T._ + . » Sentences of form (*). But since the

2 3 »

terms P(%), Q@) are (essentially) arbitrary polynomials, this
contradicts Matijasevic's thedrem.

Consider any language with a symbol (g, say) intended to demote an
ordering or preordering, A quantified variable ¥Yx or 3x is bounded by
y {with respect to ¢) in a formula ¥ if it hegins a subformula of ¥ of the
form Vx(x £y > 4) or Ix(xsy A_¢). (These will be abbreviated to
Vx ¢ y¢ and 3x <y ¢.) A formula ¢ 1is bounded if every quantified
variable in Y 1is bounded by some variable., If only one of the primitive
symbols of the language denotes an ordering or preordering, "bounded"™ will,
of course, mean bounded with respect to that symbol.

The basic idea behind the next proposition already appears in the
literature, for example in work of Paris and Dimitracopoulos [??77].
However the proof will be sketched here as we will later make use of the
technique and it is desirable to emphasise ome of its subtleties,

PROPOSITION 0.2  If the predicates z=x+y, z=x.y are definable by

formula is

bounded LS,G,B,---,Y Formuilas then every bounded L$,+,

equivalent to an effectively found bounded 1, formula,

S.0,B,. ..,

Proof:

Taking A(x,y,z), M(x,v,2) as in the previous proof, it suffices to

show that each bounded L, . formula wﬁ?)‘ is equivalent to an
ar k]
effectively found bounded L< AM formula ¢*G;).
w H
m
Note that y{w,,w_ ,...,w ) <= Vv 0.(s) where
1 2 m . 1
1=1
- m . -+
B.Gr) <= A (w, gw.) A YW, Woyeeey,w ), S50 We may consider each B8, (w)
k! j=1 3 1 17 2 m 1
j#i

separately. Clearly all terms occuring in Bi(g) can be bounded by a
polynomial in w., and indeed (at the expense of treating the first few
values of W, separately) it can be assumed that the bound is _W? for

some constant n e N.
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. . . - .
Replacing the operations + and . in Gi(w) by the predicates
A,M using quantified variables bounded by a new variable e, yields a

bounded L<

~ Y

N .
7
ALM formula pi(w, ¢) such that
-+ . -+ +
Yw Ve Z Wy (pi(w, g) <= Gi(w)) .

2 .
But each number less than ([ﬁ‘i] + 1) has a representation

)8, ...a, to base [,/071] + 1, the digits of which are numbers

a, s [ﬁi], and 1t is easy to see that there are bounded Ls,A,M

(bA(;’;’Z’Wi)’ ¢_M(;,_§,§,wi), $_ (?,;,wi) such that for any three numbers

2n . .
]+ cas L
less than ([1/'171] 1) with representations X X, Xon s V1Y, Yon

x
QbA(x]: 2 '." 3 XZT.'L’ Yl, Y23°"’Y2ns 213 22:-°', z?_n)

= + = ..
S Xy Epe X, TV Y, Yon = %1 %, Zon® BtC

Also (and this point is very important) there is a bounded L( AN
Dol } 3

formula nf{x, T':l)_, Wi) such that

e
<=> < . = - N
n{x, a, wi) X £ v A x a)a, &211

By quantifying over 2n-tuples 21385000, 2 in place of numbers less than

2n

([ﬁi] + 1) and using ¢A, qu, ¢ instead of A,M,< where appropriate,

we can now obviously construct a bounded L formula equivalent to

<,A,M

pi(g, ([‘/ﬁi] + l)zn__ 1), and therefore equivalent to Gi(i_c*).
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§1. Addition and coprimeness.

We now give two different ways of defining multiplication by an

L . N formula. The observation underlying the first of these is:
R IR

LEMMA 1.1 Given a sequence of numbers Vg SV See. <V there exist

numbers x,c such that for all y, if x + Vo £V E X+ then

v Lo <> iy = x + vi).

Proof:

Let Wy ¥ W be the numbers between v, and v which are

et W

not vi's, and choose a sequence of k+1 distinct primes pj such that

pj * T (v.-wg). By the Chinese remainder theorem there exists a

1€n 1
number X = -ug(modpj) for all j. But it is easy to check that if
c= I p, them =x,c have the required property.
jsk d
THEOREM 1.2 z = x.y 7§ L_ 1 definable.
- ] ¥
Proof:

Since z = x.y is I definable (see Tarski [1949] or

ot |

Robinson [1949]) it suffices to show that the divisibility predicate a[b

is L definable.
=,+!J‘

It is claimed that a[b if and only if there exist =x,c 'such that

(i) xLecA (x+Db)Le

(ii) If xgsu<u ¢x+b and u,u, are consecutive numbers
coprime to c then u, = u + a.

To see this note that (i) and (ii) describes the pattern:

a a a
ke * # . - r i us=—uzs =a
i~1
X = u ) g, e | u_=x+h
YT
b

where the numbers between x and x + b which are coprime to c are
X =up<u Su, <...<w =X F b. Obviously if such a pattern exists
then a|b. Conversely, if alb then lemma 1.1 ensures that such a

pattern does exist.
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Since £ 1is L_ + definable (i} and (ii) can clearly be expressed

3

by L formulas so the theorem follows.

Analysing the above argument shows that x.y = z <= 3w y(x, 7y, z, w)

for some bounded L i formula 4¢{x,y, z,w) . Our second proof of

£,

theorem 1.2 will do better than this.

THEOREM 1.3 z = x.y <5 definable by a bounded L Fformula,

sty d

Proof (also found by J. Robinson):

Note first that

It

x =0 <= VYy g x (v 2 %)
x=1<>ax=0A Vv sx{y=0Vy=x)
X isaprime <> x=0A=x=1AVy sx(y=0VylxVvys=x).
By Schnirelmann's theorem [1933] there is a natural number n such

that every number x 2 2 1is the sum of fewer than n primes. Thus the

product of any two numbers x,y > 2 can be expressed in the form

Xy = (p1+...+pm).(q1+---+qk) = E p;-d.

where x = L S 2 TR - T the pi's and qj's are primes,

m

and m,k < n. Since the sum Z P -q; has fewer than n2 terms the
i,]

theorem will follow if it can be shown that there is a bounded L< N

L

formula which defines =z = p.q for all primes p,q. But z = p.q<=

z 18 the least number greater than both p and q such that
~zlpA-zlgq AVygsz(yipAyigq>yLz).

Recalling proposition 0.2 and noting that x 1 y can be defined by a

bounded L< ‘. formula we have:

COROLLARY 1.3 A4 relation on N ‘can be defined by a bounded Lo,

H) H

formula if and only if it ean be defined by a bounded L, Fformula.

2Tyl

In the course of settling Hilbert's tenth problem Matijasevid proved
the following theorem. {See, for example, Davis [1973].)

PROPOSITION 1.4  (Matijasevié) Every bounded L, ., formula is

’ E)

equivalent to an existential L, . formula.

~y s
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However the analogue of this fails for L. . since z = x.y cannot be
~ 5 3

defined by an existential L b1 formula. This follows from a result of
bl ] ]
Bel'tyukov [1976] and Lipshitz [1978]. (See also Wilkie [??27].)

theory

PROPOSITION 1.5 (Bel'tyukov, Lipshitz) The existential L, .

s
L | 3

of N <8 decidable.

COROLLARY 1.6 The existential L_ ol theory of N 18 decidable.

3 L]

Proof:

We transform the decision problem for existential L., N sentences

~r 3

into a decision problem for certain existential L sentences.

rd
< 4+, ,|

~3

Given any existential L | sentence ¢, there is an effectively found

~r 2

k
equivalent sentence of the form 3; Y ¢i(§), where each ¢i(§) is a
i=1

finite conjunction of atomic and negated atomic formulas. If all unnegated
atomic formulas of the form s 1 t (s and t terms) are replaced by
Ja(s | a A t| a’) and all negated atomic formulas of the form =s L t are

replaced by 3Ja 3b(1a| b A a] 5 A al t), then the resulting L<

~ 2

+,7,]
sentence (equivalent to ¢) is clearly equivalent to an effectively found

existential L sentence.

g 'i's’sl

X

Applying proposition 0.1 gives immediately:

COROLLARY 1.7 =z = X.y cannot be defined by an existential L

“<-3+3"L

Fformuia.
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§2. Successor and coprimeness.

We begin by defining some notation which will he used throughout this
section.

P iz the set of all priﬁe numbers. (p and q will always denote
elements of P.)

v(x) is the number of distinct prime divisors of x.

&y = vwix) = viy)

X~y <> x and y have the same (distinct) prime divisors.
§y<?wmvyAx+l~y+lA“.Ax+n~y+ru
(Thus x=y+.“+w%;1y+xEy—h..+xTy-*x~y+xmyJ
For x#0, % % and ¥ will denote, respectively, the ~, 7 and
A equivalence classes of which x is a representative, and we will write

|y or x|y if Vper? (p,x 4~p]y). Let P = {p:peP}. Elements of

mi

will be denoted by the capital letters U,V,W,X,Y,Z. Thus, for example,

avi

Z = {p":meN ~{0}} for some prime p, and Z | x <= Blx <— p | x.

The reason for imtroducing these concepts is that with the exception
of =, %, v(x) and P, they are all easy to define in L',L' In particular
we have:

(i) x~y <= Vz(z L x <= z 1 y)

(ii) EI y <= Vz(z L y+z t x)

EP <= VyVe(yLz+y L xVezelxAyhy L x)

mi

(iii)
(iv) x=0 <= VYy(y L 5 v V¥z(y 1 2)).
Consequently when constructing ”L',L formulas" we may use the expressions
on the left of (i), (i1), (iii), terms 0,1, 2,... {(that is, 0,0;,Cfi...),
the cabital letter notatiqn for elements of P, and, for each fizxed m & N,
the predicates x ~y and o= 5.
Let N ={Z:xeN{0}}, N = (E:x e N ~{0}}, §"={F":x e § “{0}}].

Notice that the map vmliN + N defined by v_l(v(x)) =% is a bijection

and may thus be used to induce operations +,+ on N 5o that

i

= -1 . R .
<N, =,+,+> under v ~, This is the basic observation

<N, T R ’

2 3
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underlying the proofs in this section. It will be shown below that when

and

mil

+

mi
hetll

considered as predicates on N, the expressions X = ¥,

X.y = 2 can be defined by L, N formulas, and hence there is an
]

effective way of transforming any sentence ¢ of 1_ + into an
i TaTy "

7’: - =
equivalent L, sentence ¥ asserting <N, =, +, .> F P. Thus we will
b ]

be able to deduce the undecidability of the L N theory of N from the

L]

3

known undecidability of the L_ + theory. Also, the existence of these
)

formulas reduces the problem of the L, N definability of 2z = x.y, etec.,
3

to the question of whether the isomorphism u_l (or equivalently the
predicate vy = v{x)) is L”l definable.

To ease notational problems we will adopt the following conventions:
(i) if B(yl,..., yn) is an L_ .. definable predicate and

3 x

¥ ,...,% e N then N F (Kil,...,ﬁn) will be used as an abbreviation for

<N, =, +, -> l= B{yl,...,yn) [il"”’i‘n] .

(1i) If v = Y(xl,...,xn) is an L_ .- definable function, then
Ty Ty
X )} will denote the element ¥ e N which satisfies

1
N Ey= Yc;l""’ §n) . (Por example, X+ 1 is the element ¥ for which

NEF=%+ D).

=
o

Ml
n
<

(iii) We will write X g ; instead of

LEMMA 2.1 X5y 28 L,  definable.
¥

Proof:

* -
Write x ¢ y if there exists u such that for

fu = {<X,¥>:X|x AYly AX#ﬁAY%ﬁAHz(EsﬁAﬂuAXIz'AY[z')}

one of the following is satisfied:

(1) =2z v 2lx A 2|y) and £ is the grﬁph of a one~to-one function
mapping {X: X|x A X#2} dnto {Y:Y|y A Y#3).

(ii)  2lx a-2ly and £ 1s the graph of a one~to-one function mapping
{X:X|x A X# 2} onto a proper subset of {Y:7Y|y}.

(iii) = 2|x A 2|y and £, 1s the graph of a one-to-one function with

range contained in {Y: Y|y A Y#2} and domain equal to {X: X[x}~ {W}
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for some W|x.

& .
Obviously x € y can be defined by an 1 N formula. Also, for any
3

numbers x,y if x § vy then x # 0, vy # 0 and there is a one-to-one map
from {q: q|x} into {3:aqly}, so v{x) ¢ v(y) and therefore X<y,

On the other hand, if X <y then x # 0, vy # 0 and v(x) < v(y), so
it is possible to choose a one-to-one map taking each prime q|x to a prime

rq|y, and having the additional property that if qu then Ié==q. Now

choose for each gq|x a prime pq satisfying

P ~1 (mod q)

g

;1 mod T
( q)

1 (mod s) for all other primes sl|x.y.

1]

Such primes Py exist by virtue of the Chinese remainder thecrem (which is
used to combine these congruences into a single congruence of the form
p = a(mod b) with a 1 b) and Dirichlet's theorem that if a L b then
there are infinitely many primes p = a(mod b). (A proof of Dirichlet's
theorem may be found in Shapiro {1950].) Noting that
p = 1 (mods) => pm 2 ~1 (mods) for all m and all s > 2, it is easy to
check that u = T P has the property required to make =x 2 V.

q|x®

- *
Thus, X £y < X £ V.

wil

LEMMA 2.2 +y =2z and X.y=2% are L, . definable.

]

Proof:

We simply extend the trick of coding one-to-one mappings of prime
divisors developed in lemma 2.1 to define +,.- on N in the same way that

one defines +,- for cardinal arithmetic in set theory. For example,

X.y =2 1if and only if there exist some representatives x,y, z of these

equivalence classes such that
{<x,Y,Z2>:X|xA Y]y A zZ|lz A W@=2aA%x|lw ay|w)]

is the graph of a one-to-one function from {<X,Y>:X[xAY|y} onto

{z:2]|z}.

is L N definable, and addition is L,
] . vyt

Sl

In faect, since X £
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[&h]

definable, it is sufficient just to defime X.y =

s Ty

It follows immediately from these lemmas that for each L_

formula tp(xl,...,xn) there is an effectively found L, . formula
: ]

%
W (xl,...,xn) such that
w*(xl,...,xn) <= EI:U)(}_—{I,...,']:{H) .

In particular, since <N, =,+, .> = <N,=, +,.>, we have thus proved:

THEOREM 2,3  For every sentence ¢ of L_ . . there is an effectively

3 >

found sentence V* of L, -, such that ¢ <= B,
-]

COROLLARY 2.4 fThe L N theory of N <s undecidable.
. H]

It seems prudent at this stage to eliminate any further "coding"
difficulties by proving_a general coding lemma (lemma 2.6) which will be
more than adequate for the purposes of this paper. As a preliminary we
define &:P + § by taking 6(p) = p+1 for all primes p, and prove:
LEMMA 2.5 y = 6(7) <ts L"l definable. (More precisely, the predieate
XePAy = §(k) <s L, | definable.)

Let z(x,vy,7Z) be the formula:

Z = x /\y=?/\VW(Z=W’+§[WA(G|x+?

woy.

It is claimed that vy = 6(Z) <= Ix T(x, v, Z).
To check this, suppose first that for some 2Z, C(x,y, Z) is satisfied

by <x,y>= <x1, ¥,% s <x2,y2> . Then (taking w = X, in ;(xl,yl, Z)) we

see that i'cl | X, and (taking w = XI in C(}:z,yz, Z)) it follows that

L L — i t -S o
*, SO X, %, that is, vy, ~ 7,

LN L Similarly, x
Thus if 3x §(x,y,,2) holds then {y:3x &(x,y,2)} = ?1, so it
suffices to show Ix U(x,p+1, Z) for the prime p with

Z=ﬁ-={pm:m>0}.

But x = p~1 has this property. For using the fact that w’ =2 1if and

only if w = pm—l for some m > 0, it can be seen that r[(p-1,p+1, Z)

is equivalent to ¥m> O( ‘p—1|Pm—l A (pm-l|p-1 + p+ llpm+1)) , and as
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p-*llpm-l, this in turn is equivalent to the formula:
Ym>0(VgeP( me 1(med g) + p = 1{mod q))—
VaeP(p= -1(mod q) +p" = ~1 (mod q))),
which is true.

LEMMA 2.6 For each n e N there 15 an L, N Formmla en(xl,...,xn,to

»

with the property that for every finite set R c N x N x..,x N (n copies

of N) there is some @& € N such that for every v e 14,
Vxl... Vxn (<§1,..., fn> eR <= Bn(xl,..., x v)).

Proof:

It suffices to prove the lemma for n = 2 since the general case

then follows by induction, defining 6 . Dby:

8n+1(x1,...,xn+l,u) <> 3v(8n(x1,...,xn,\ﬂ Aez(xn+1,v,tﬂ).

The proof has two parts. The first describes how to "decode" an arbitrary
T e N to obtain a finite set RE cN x N in such a way that when

X.>eR_. isg

considered as a predicate in Xps Xy U, the expression <§1, s
u

L”l definable. TIn the second part it is shown that if Re { x § 1is
finite then a code U with R_ =R can always be found.

As an aid to decoding U, define @ nb for a,be N by
T=3anb<> yzed( Zle <= Z|a A 2|b). (If &,b are regarded as

denoting subsets of P then 2 n b denotes their intersection). For

ZeN, We?P define (E)U EN by:

V2e P ( 2[(x); <= (Z#ZAZAWAZIE) vV (2=2AW]2)).

((E)w corresponds to the subset of P ohtained by replacing W by 2
in the set denoted by &, if W occurs there, and by suppressing any

occurrence of 2 otherwise,)

A=)

. . . . *
We also introduce an L, N definable partial ordering < on by

E]

taking

*
Z, <z, <> §(z) < 8z, ,

1

where 2@ = G(Z) <= 3db(a = b A b = 6§(2)). In other words, if Z1==ET,ZO==13q
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%
with P, P, prime, then 21 < 22 if and only if P, * 1 has fewer
(distinct) prime divisors than p2+1.

The first step in decoding an arbitrary 4 e ¥ is to check whether

there exist W,XeP and E,EEN such that a = E,
{z eP:z{a} = (W,X}ul(YeP:Y|a}u{zeP : 2|b)},

and this set is totally ordered by ?2 with W p X < Y *é Z for all

Y|E, ZIE If not, put RG = ¢. If so, then regard W as a surrogalte for
Z (this is needed because, as in the proof of lemma 2.1, it is necessary
to treat 2 as a special case) and define Rﬁ by:

> € R <= there exist Y|E, Z|b such that

= =
X5 %,

Y[8(2) A X, = (§(X) nE(Y)), A X, = (6(0) n 6(2)), .

In view of lemma 2.5 it is obvious that there is an L' N formula
1]

82(}:1, X, u) such that
Vxl Vx2(<§1,522> E Rﬁ <> ez(xl,xz, u)) .
To complete the proof it suffices to show that for every finite
RcNx N there is some © e § such that R = Rﬁ' If elements of N are
thought of as denoting sets of primes then any such R may be regarded as
a binary relation between subsets of some finite set S cP. Choose a prime
w ¢ § as the surrogate for 2 and form a new relation R* by replacing 2
by w at each occurrence of 2 in the subsets related by R. Thus R® is
a relation between "subsets" ¥ of 5% = Su{w} ~ {2}. Enumerate all of
these as S'rl, §2 seres §m' Now using the Chinese remainder theorem and
Dirichlet's theorem choose, in turn, odd primes
r<s, <s, <...<sm<t1<t2<...<tm satisfying:
(1) r = -1 (mod q) for all primes q e $%,
(ii) For i=1,2,...,m,
s; = - 1 (fnod q). for all primes q|yi ,
£ -1 (mod q) for all other primes q[r+ 1.

(iii) TFor j=1,2,...,m,

t, = -1 (mod q) for all primes q[yj,
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tj # -1 (mod q) for all other primes qr+1,

-1 (mod si) for all i such that <§i, §j >eg R,

£ -1 (mod Si) for all i such that <=§i, ﬁj > ¢ R.

. — % — k% % ko
(iv w < r < s < 8, < ,..<8§
1 2 m
% — ®  — % * o
< < t, - < ...< & .
1 2 m

This last condition can be satisfied by adding, at each stage,

sufficiently many extra congruences of the form:

» or t, = -1 (mod q), q prime.

T, 5, ;

i
Teking W=w, X=Tr,a= I g  p= T t. it is now easy to
check that R = RG for u = w.r.a.hb

LEMMA 2.7 For each n eN there is an L N

-]

formula xn(x,y,lﬂ with the
property that for any finite set R c§ x N there is some u € N such
that Vx¥y(<%, 3> e R <> x (x,7, 1) )

With 8n+2 as in lemma 2.6, take xn(x,y5 u) to be the formula:

T
Jz 3$(x:zf\_/\ (wi~y+i)/\e

20 (z,wo,wl,.--,wn,u)) .

k2

This works because of the obvious correspondence between ﬁn and

<y, v*l,...,y+n>, and the fact that = equivalence classes are unions of ~
equivalence classes so X can be used as a "representative" for X.
To complete the preparations for our final theorem about definability

in L, | we require a simple number theoretic lemma.
3

LEMMA 2.8 If a Z b and a # b then

T p % i p ¢ Ja-b|
psk+l pla(a+1)...(a+k) ‘
Proof:
In fact £ can be replaced by [. If pgk+1 then p divides at
least one of the k+1 numbers a, a+l,...,a+k. Also if p[a+~i for

some 1 ¢ k, then since a E b, it follows that plbi—i and hence

p | |a~b]
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THEOREM 2.9 The following statements ave equivalent:

I
2

(1) x=y 18 L N definable.

(i1) Z =X,y 18 L’ N (or 1 , i) definable.

N
1

{(iii) x+y 18 L’ l (or L_ , J_) def-inable._

(iv) X<y s L’ B {or L_

; J‘) definable.

{v) Jk VxWy( % f'Y + X = v).
N

Proof:

Obviously - (v) + (i), while (ii) -+ (iii) follows from the 1L_
. =37,

definability of addition (Robimson [1949]), and (iii) + (iv) is a

consequence of the L_ _ definability of <. Thus it will suffice to show

>
(1) » (v) and (iv) + (v) = (ii).
(i) ~ (v):

Suppose ¢(x,y) 1is an L',L definition of equality, and let k be
the largest number for which the variable y followed by &k successor
symbols occurs in ¢(x,y). Since all atomic subformulas of ¢(x,y) (and

d »”r

in particular all those containing v) are of the form u """ 1 v

(u and v wvariables) it is eclear that
Vyvz( y >z ¥x(¢(x, y) <= i(x, z)) ).
Replacing ¢ by = in this formula we see that
Yyvz( yri;z +y = z).

(iv) + (v):
This can be proved by an extension of the argument used to show
(i) + (v), however it seems easier to consider a nonstandard model

<M, =, +, +> of the L_ + . theory of N.

] ]

Suppose (v) fails. Then

ME Vk 3x 3y(x <y A x ?ry).
()

Take a nonstandard number c e M and let a,b €M have the property that

MEa<baanr~hb.
2c

By lemma 2.8, b—a 1is nonstandard. This allows us to define a
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bijection £:M ~+~ M by:

flate+]) = b+C+J' for all standard (positive,
E(b+c+j) =a+c+] negative, or zero) integers j,
£(d) = d, otherwise.

Clearly f 1is an automorphism of <M, =,”,1>, but f does not

preserve £, so this relation cannot be L_ . definable.
3 >

(v) ~ (ii):

Suppose that VYyYz( y 1: z +y =2z), Then for every v # 0 the rl\cl
equivalence class ?k contains only the single element vy, so by lemma 2.7
the L”_L formula xk(x, ¥, u) has the property that for any finite set
R c Nx (N ~ {0}) there is some u & N such that

VxVy( <X, y> € R <= }(k(x, v, u)).

It follows that the isomorphism U...]_’ or more precisely, the predicate

il
i
<

_l(y) (which is the same as v(x) = v) 1is L’ N definable. TFor
3

=y l(y) if and only if x =1 Ay =0 or there is some finite set

Bl
|

RcNx N such that

(1) R <5 the graph of a one-to-one function,

(2) <Z, 1> & R (that is, <v '(1), 1> ¢ R)

(3) ¥z<EV¥w (<EZ,w>eR + <2’,w > & R)

(4) <X,y> e R,

Appealing to lemma 2.2 where necessary, it is clear that the existence
of an R satisfying (1) - (4) can be asserted by an L, N formula.

But Z = Xy <>
= ._]_ = “‘"1 = -“1 — —
Cdudvdw( o=V @ AvV=EY (YY) AT=v {(z) Aw = u.v )

so multiplication is L, N definable,
2

This last theorem shows that settling the question of the L, N

)
definability of multiplication is tantamount to establishing the truth or
otherwise of the number theoretic problem (v). It seems untreasonable to

expect that the latter problem (and therefore the former) can be handled

without the use of nontrivial number theoretic methods.



POSTCRIPT: Recently the author has learned that Denis Richard has
independently obtained a different proof of the undecidability of the

L_ N theory of N (cf. corollary 2.4). His proof is based on the

* 2

following number theoretiec fact:
PROPOSITION (Birkhoff and Vandiver [1904]) Suppose a > b, a L b, and

n > 2. Then except for the single case a = 2, b =1, n = 6, there is

always some prime pla™-b" such that p/f a®-bd" for all me [1,n-1].

This also has the interesting consequence that all numbers x of

the form x = pn*-l, p € P have the property:

Vy(xﬁgfy +x = ¥).

69
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H[

§3. A number theoretic interlude

It is timely now to survey what is currently known (for k fixed)
about how large Ia-—bl must be if a E'b with a # b. If a,b have

this property then from lemma‘2.8,

,a-—bl pla(a+1) C(atk) (1
which suggests seeking good lower bounds on the product
n P
plaa+l)...(atk) (2)

As will be seen below, it follows from a conjecture of Hall and Schinzel

that this approach should actually succeed in proving the conjecture

Jdk Ya Yb{(a ~h > a = b).
k

For k > 1, the bounds on (2) discussed here are all due to Langevin
{1975a], [1975b] and [1979], however as it seems desirable to collect the
relevant details in one place, their derivation will be described.

The following lemmas will enable us to concentrate on bounding

1 D I bp o
pla(a+1) and p]a(a+2) For any A £ N 1let S(A) = {p: HaEA(p]a)}_

LEMMA 3.1  Suppose A =UA, S{a,a+1,...,a+k} where the A.'s are all
i

patrwige disjoint. Then

-+l ;1 07

z k 1p€S@)

m
peSA) T

Proof:

Any prime p divides at most [k/p] + 1 of the numbers a, a+l,..., atk
and at least [k/p] of the numbers 2,3, 4,...,k, so

P[k/P]

T n P
psk .\ peS(a)

] S(A F
ipe (i)

h

PRI p k-1 I )
sk oeswy K pes@)

LEMMA 3.2  Suppose g(a) tis a nondecreasing function such that for all a,

)

The only subsequent use made of the material in this section is in the proof
of the L. L definability of addition and multiplication given in §4. An
alternative proof ‘of that theorem which does not rely on the present section

mavyr +hn Fanmd A9n anmandiw T
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P]a(afl) > (g(a))”  and PP an? .

Then for all k 2z 1,

I P N
pla(a+1)...(a+k) s (3)

and for k=2 or kx4, 15k,

I
(a+l)...(a+k
e LV : )

Proof:
Since 2 is the only prime which can divide more than one of the

numbers a, a+l, a+2,

I p z T p T p I p
plala+l) (a+2) *Lplata+1l) L\ pl(at1) (at2) /| plata+2) },

50

np 1 3 1 3
pla(atl) (a+2) ~ /7 (g(a))” = /e (g(a))” for I>1.

Writing
U {a+2i, a+2i+1}, 4if k = 2m+1,
igm
{a,a+l,...,a+k} =
U {a+2i, a+2i+1} U{a+2m, a+2m+l, a+2m+2},
i<m
if k=2m+2,

(3) follows by lemma 3.1. The proof of (4) is similar.

For n=1,2, bounds on are given by theorems 7 and 8

I
p|a(a+n)p
of Lehmer [1964].  These yield:

Z logp > %(1—0(1)) logloga, for n=1,2. {5)
pla(a+n)

{Lehmer's work also gives the corresponding result for n=4.) o(l)
here denotes some real valued function of a which tends to zero as

a -+ e, Similarly, Dk(l) will denote some function of a,k which, for
each fixed k, tends to zero as a-+ o,

By lemma 3.2 we obtain for all k=21, Langevin's result:



logp > -1%}- (1-0(1))logloga ~ klogk

pla(a+l). .. (a+k)

(6)
k+1
> ~5= (l—ok(l))log log a,
and for i ¢k with k=2 or k34, the analogous inequality:
k
| a(at1).. . (a+k) logp > 3 (l-o0(1))logloga-klogk
P (a+1) : (7
> Egag (1)) log log a.
3 k

Combining (1) and (6) gives:

PROPOSITION 3.3  For every real number e > 0, and every k 2 1, there

exists ak(s) such that for all a > ak(s) and all b # a,

k+1
3

a b ~+ 1ogla~b[ > (1-¢s)logloga.

Lehmexr deduced his inequalities (5) from properties of the Pell
equation:

x° - dy° =1 (8)

using Stérmer's observation that if =x=2a+1 then for some vy, and

i P
some d%[a(a+l) s

(x-1) (x+1) = 4a(a+l) = dy°
; I =
so x,y,d satisfy (8). (For p]a(a+2)p take x=a+1.} An
alternative approach used by Langevin is to consider the Mordell
equation:
yz = x> +m . (9)
Let v be the least number such that for some w,

4alatn) = (2a+n)> - n° = vw° (10)

. ‘
Then v|(2 ) and multiplying (10) by v? yvields:

In.p
p]a(a+n)

(v(2a+m))? = ()’ + (vm)2. | (11)

That is, = = vw, y = v(2a+n) is a solution of (9) with m = (v’n)2 £ 0

THEOREM 3.4 If there exist positive real valued constants Cﬂ,ﬁ- such

that

D

¥z # 0(Fx(y2- 22 = x3) + 2P 5 ¢y (12)

72
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then there is a constant a;, such that for k>4 D-35,
Ya > 2, Yb(a z b+ a=h).

Proof:

-1 -
Applying (12) to (11) shows vD Tz CO(2a+n)n D,

" pla(agn)l} 2 _]2-_ (Cn(23+n))1/(ZD—2)

where Cn> 0 depends only on n. Taking n=1,2 it follows by lemma

3.2 that for each k21 there is a constant Cl’:>0 such that

p ® (k+1)/(4D-4)
p I a(agl) ... (a+k) 2 Ck a

(This inequality is impliecit in Langevin [1979].) Thus there is some

ag such that for all a > ags

i _ _
Pla(a+1).1.).(a+k) >a for k= [4D~5] + 1.

But if a 2 b with b#a and a > a, then we may suppose without loss
of generality that a > b and therefore amb>p|a(a£l).?.(a+k) > a
which is impossible.

The hypothesis of theorem 3.4 (with D=6) is a consequence of the
following conjecture attributed by Langevin [1975b}to Hall and Schinzel:
CONJECTURE (Hall and Schinzel) For any pair of natural numbers n>1,
m> 1, there 15 a constant C, such that for all integers =x,y with

n mb
|<" -y |

Xt # ym, » C max{|x[ﬂ, Iylm}.
Thus it follows from this conjecture (with mn=23, m=2) that if a is
sufficiently large them a is determined uniquely by the sequence
SD’ 51,...,520 where Si= {p: p|.a+3'_}. Although at present the
hypothesis of theorem 3.4 remains unproved, Stark [1973] has shown that
for every real number e > 0 there is a constant C(g) suech that aill
integer solutions of (9) with m# 0 satisfy

log |m] + C(e) > (1-e) loglogmax{|x|, |y]}.
Applying this to (11) yields:

21log(vn) + C(e) > (1-e) log log (v(2a+n)) ,

from which it follows that
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1 1
pla(a+n)10gp > Z’(l 0(1))log log (2a+n) +logn . (13)

As noted by Langevin [1975b], if b>a and we take n=b-a then

(13) becomes

p!gb logp +-'% log(h-a) > %—(1-0(1)}1og10g(a+h)

and hence by (1),
a ~b'+ log(b-a) > é-(l-o(l))loglog(a+b),

giving a bound for the case k=0 which was omitted from propesition

3.3. (The existence of a conmstant C>0 such that for a # b,
a~bh + loglb-al > C log log(a+h)

wa; also proved by Erdés and Shorey [1976] using a different method.)
(13) also provides an alternative starting point for obtaining
weaker versions (with %—replaced by-%) of the inequalities (6) and (7).
This version of (7) is, nevertheless, quite suitable for use in the
proofs of the definability results given in the next section. However
the reader is warmned that the Lﬂ,l defining formulas for addition and
multiplication produced in this way may be much longer, not only because
larger values of k must be used, but more importantly because it would

seem a must be taken much larger in order to reduce the o(l) term to

a reasonable size if onme starts with Stark's work rather than Lehmer's.
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§4. Order and comprimeness.

We now turn to the problem of givimg szl, defintions of addition
and multiplication. The basic idea is to exploit the fact that if |a-—b|
is small with respect to a suitably chosen function of a and k then we
certainly do have:

a b+a="=n.

k
For technical reasons it will be desirable to exclude certain
"troublesome" primes from the discussion by using a slightly weaker

equivalence relation than ~, namely that defined between integers a and

b (for a given gq) by:
q
a~b <= {p: p|a A p* gl = {p: P]b A P* ql.

We will alsc want an analogue of x which applies to arithmetic
progressions other than a, a+l,..., atk, (To make it easier to obtain
bounded formulas this will be defined using a, a-d, a-2d,..., a~kd rather

than a, atd, a+2d,..., atkd.) Put:

q ] q
a b <= a~b A a-d ~ b-d A...Aa-kd ~ b-kd ,

k,a,q

LEMMA 4.1 For k=2 or k x4 and any real number ¢ >0, there is

some ak(E) such that for all primes q, and all a,b with a> ak(s),

I
alc,l,q b + log Ia b| > 3 (L-¢)logloga V a=h

Proof:

Suppose a, 7 qb with q prime. The argument used to prove
2 H .

lemma 2.8 shows that if a#b then
10g|a-—bl > z log p,

pla(a-1)... (a=k)
p#q

W

logp - logk
| aa-1)...(a-k)
(a-1i)

for some i < k, since either qsk or g divides at most one of the
numbers a+i, igk. The result now follows by inequality (7) of §3.

On several occassions we will have cause to use Chebychev's weak
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version of the Prime Number theorem (see for example, Hardy and Wright

[1979] or §4 of chapter 1 of this thesis).

PROPOSTTION 4.2 (Chebychev) There is a constant A >0 sush that for

all x 2, ] logp > Ax.
psx

LEMMA 4.3 There is a constant B such that for all primes q and all

a,b,k with k > B loga,

kyl,q
Proof:
Suppose that a > b and a, 7 qb for k=[Bloga] +1. Then
3 3
log(a-b) 2 J logp
pla(a~1)...(a~k)

p#q

z Z logp - logk (as in lemma 2.8)
psk

> Alk - logk > (A/2)k

for B (and therefore k) sufficiently large, where A is the constant

in proposition 4.2. Thus
(A/2)k < log(a=b) < loga < B Lk

which is false for B > 2/A.

REMARK: The statement of lemma 4.3 remains true if loga 1is replaced by
(loga).(loglogeﬂ_l. (The extra details may be found in Langevin [1979],
theorem 11.)

-~ k,d

Let w % denote the equivalence class to which w belongs.

k,d,q
LEMMA 4.4 There exists k e N such that for any prime q and any number
¥y ©f u is the smallest number for which the elements of W= {w: USWE Y}

belong to distinet 1,q equivalence classes, and ¢ denotes the

ordering induced on Y=5{§1{’1’q:xae:w} by the ordering < on W, then
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the triple <Y,g,q> determines y wuniquely, that is, no other number y
can give rise to the same triple in this way.

We will assume throughout that y is sufficiently large, since if
the lemma is true for all vy > Yq with k=k0, then it is true for all
vy with k=max{k0, yo} . Under this assumption, it will be shown that the
lemma holds for &k 2 4.

Suppose ¥y, < ¥, both give rise to <Y, g, q> for some prime q, with

u,, W, and u,, W, corresponding to vy

5 9 v, respectively. Since

1 1?
IW1| = |y} = |W2[, it follows that y -4, =y,-u, =m (say) and thus

W, = {Yl, }Tl‘ls---, Yl"m}, W2={Yz’ yz-l,..., yz"m}. As the orderings on

Wl, W2 induce the same ordering on Y, we see that for each i gm,
.kaqu .k,l,q . 4 .
y, -1 = y,-1 S0y, -1 ¥, " 1. Hence ¥, m,T,q Yy -

To obtain a contradiction by lemma 4.3 we need only show m>Blog ¥, -

This is the case for k24, since if m<y, then there is some we W
» 2 2

1

such that w -1, and therefore by lemma 4.1 (with e < 74_)’

k,1,q "2

4(1-e)/3 4(1-e)/3

u, =1 < w- (logw) £y, - (logy,)

4(1-e)/3

so m=y,-u, > (logyz) -1 >Blogy, -

We are now ready to investigate the definability properties of L, L
-~y

Clearly (ecf. §1 and §2) each of the following predicates can be defined
by bounded LS,_L formula:

X 1§ squarefree

x € P (that is, x <Zs prime)

X 18 squarefree‘ A x|y .

Observe also that if d|a and kdsa then {a, a-d, a-24,...,a-kd}

consists of the largest k+1 elements of fw:wsa/\d[w}. Using this
fact it is easily seen that for each fixed k & ¥ there is a bounded LS,J.

formula which defines the predicate:

d 18 squarefree A dla A a b .

k,d,q



Similarly, for each fixed k e N we can construct a bounded L,

~

formula which defines the predicate:

. £ ~
d s squarefree A.dla A k,d;q(a) VY eV 7

where £ _ q is the mapping which "identifies" the equivalence
2 »

class Ek’d’q with the k+1 tuple

<Vp, vl,...,vk> =<1 p, Pssvrs I P>
pla  pla-d p|a-kd
p/q plq plq

the elements of which are either squarefree or zero (adopting the
convention that T p =0).

pfq
LEMMA 4.5 The predicate q & P Aq.y = z can be defined by a

bounded L, . formula.

Proof:

Fix Ik and suppose the prime gq|z. Consider the triple <Z,g,q>
constructed by taking wu, to be the least multiple of g such that

all elements of

We = {w: u, swgza q|w} = {z,z—q,z—zq,...,u*}

belong to distinct k,g,q equivalence classes, setting
Z = {Gk,q,q: we W,}, and letting < denote the ordering induced on
Z by the natural ordering £ om W,.

Now if =z = q.y and <Y,s,q> is the triple constructed from vy
as described in lemma 414, then identifying Y and Z with the
corresponding sets of k+1 tuples.of squarefree {or zero) numbers,

it is clear that <Y,g,q> = <Z,£,q>. Also for each fixed k, there

is obviously a bounded L_

~ 3

formula wk(q,y,z) which holds if and
only if q € P, q|z, and the triples <Y,g,q>, <Z,g£,q> constructed
from y and =z in the ways described above are equal.

But by lemma 4.4, v 1is uniquely determined by <¥,g,g> provided



k was chosen sufficiently large. Thus for some k g N,
Vq ¥y Va(p, (q,y,2) <=> q e P A q.y = 2) .

Recall that our goal is.to prove:
THEOREM 4.6 z = x.y and z = x+y can be defined by bounded L,

formulas.

In view of lemma &.5 this is easily seen to be equivalent to the
following theorem (the proof of which does not depend on the previous

lemmas) .

Let a(q,y,z) be the predicate defined by
alq,y,z) <=> qe P A q.y = z.

THEOREM 4.7 z = x.y and z = x + y ecan be defined by bounded Ls
formulas.

Theorem 4.7 will be proved via several lemmas. The first two of
these show that there are Ls,u formulas having &ll variables bounded
by a parameter w, which define x.y =z and x + y = z provided w
is somewhat larger tham z, and which cannot be satisfied by any
triple x,&,z not possessing the properties x.y =z, x +y = z
respectively.

LEMMA 4.8  There 15 a bounded L_ N

3

Formula ¢M(x,y,z,w) and

constants m, C > 0 such that
Yw Yx Yy Vz(cp_M(w,x,y,z) + X,y = z) (1)
Yw iz ¥y Va(x.y = z A 2z £ w.(C log w) 2 fbm(x,y,z,w)). (2}

Clearly there is a bounded L, « formula ¢M(x,y,z,w) which is

=

satisfied if and omly if either
x=0vy=0)raz=0 vick=1ay=1arz=1)

or X § 2z, ¥ £ 2z and there exist squarefree numbers dy,d, € w such

PR
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(1) z<djAz<dyndLd,

(ii) For each prime p]dld2 there exist primes q,r with

q.X £ WA g.x =1 (mod p),

r.y s w Art.y 1 (mod p),
and q.r.z2 £ w A g.r.z2 =1 (mod p).
For example, for p,q,r primes,
q.T.2 £ W A ¢g.T.2 = 1 (mod p) <=>

Ju s w3Iv £ w plu-1 A alg,v,u) A alr,z,v)).

Now suppose ¢M(x,y,z,w) holds. Then for each prime pldldz,

Hl

q.v.X.¥y =1 = q.r.2z (mod p)

and therefore x.y = z (mod p) (since q.r L p). Hence
®X.¥ = z {(mod dldz) and as both sides of this congruence are less
than d,d, it follows that x.y = z. This establishes (1).

On the other hand, suppose x.y = z > 1. By proposition 4.2,

if C 1is sufficiently large then

Cz3 log z < il p and hence szlog z < i p
p<Clog = p<C log =
plz

Therefore it is possible to choose coprime squarefree numbers
d,,d, such that did, Lz, z < di < Cz log z (for 1 =1,2)
and all primes p|d1d2 satisfy p < € log =z.

But by a theorem of Linnik (see, for e#ample, Prachar [1957])
there is a constant m > 1 such that for any pair of numbers a,b

a {(mod b).

with a L b there is a prime q < p satisfying gq
Thus for each p|d1d2 there exist primes g, r < pm < (C log z)™
such that ¢q = x~1 (mod p) and T = y‘l (mod p) where x~! and
y~1 denote natural numbers satisfying x7!.x = 1 (mod p),

=1 {(mod p), and hence ¢q.x = 1 (mod p), r.y = 1 (mod p), and

v
&
ni

= I (mod p).

H3
;1
&
H
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Clearly if =z g w. (C log W)—zm then (provided C 1is large
enough) gq.X, r.y and q.r.z are all less than ﬁ, s0
¢M(x,y,z,w) is satisfied.

Readers familiar with Robinmson [1949] will notice that the proof
of the above lemma is an adaption of the proof of the L,,|
definability of =x.y = z found in that paper. The essential
difference is that here q and r are chosen to be primes so that
only the predicate a(q,y,z) is required. A second difference is
that to get a good upper bound on the least w which will work, the
definition has been used modulo p for a sufficient number of small
primes p. (Although it does simplify matters later, this second
step is not absolutely necessary - without it theorems 4.6 and 4.7
could still be proved by iterating the construction used in lemma
4.10 helow.)

Notice also that z = x.y <=> BWd%Jx,y,z,w). In view of
Julia Robinson's observation that z = x+vy is L_ , , definable

>

since for =z # O,
Xty =z <=> (x.z+1).(y.2+1) = (x.y+1).22 + 1,

we have thus already proved (by a somewhat longer route than is

necessary) that both z = x.y and gz = X+y are L< o and hence

]

L, N definable. In order to proceed towards obtaining bounded
<
definitions, we now adapt the L_ ., , definition of additiom just

mentioned using much the same techniques as for the previous lemma.
LEMMA 4.9 There is a bounded L, formla ¢A(x,y,z,w) and

-y '
constants C and m (the same as in lemma &.8) such that

Yw ¥x Yy Vz (qu(x,y,z,w) >x+ty = z) (3)

~-2m-1

YwyxVyVe (x+y = 2 A z £ w.(C log w) - dJA_(x,y,z,w)). (4)

Proof:

Note first that there is a bounded L o formula V(s,t,p,w)

~ 3

Bl
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such that VYp e P Y5 V¥t Vw( U(s,t,p,w) + s = t (mod p)) (5)

and if s,t £ w.(C log w)_zm%l then for all primes p 5 C log w,

= t (mod p) + y(s,t,p,w). (6)

n
El

For if p is prime then
§ = t (mod p) <=> (p[s A plt) v 3v.< p (p|v.s-1 A plv.t-1),

and replacing the two occurrences of . in this second formula by the

use of ¢M(...,w) yields a predicate ¢(s,t,p,w) which can

obviously be defined by a bounded L. a formula. Applying lemma 4.8
)

shows that 1v(s,t,p,w) has properties (5) and (6).

Now consider the expression:

M|

y (mod p) A ¢ = z (mod p)
(7}

Ja <p3db <p3e <p ( az x (mod p} A Db
Ala.c+1).(b.c+1) 2 (a.b+1).c.c+1 (mod p)).

Let 6(x,y,z,p,w) be the bounded L_ a formula obtained from this by
~

replacing . by ¢M(...,w), and = by ¢(...,w). Take ¢A(x,y,z,w)

to be a bounded L, “ formula which asserts that there exists a

~

squarefree number d < w such that d 1 z, 2.x <d, 2.y <d, z < d,
and Vp € P (p[d + 0(x,y,z,p,w)).

If ¢A(x,y,z,w) holds then for every prime piq,
(x.z2+1).(y.z2+1) 2 (x.y+1).22+1 (mod p) and therefore since =z L p,
x+y = z {mod p). Hence x+yZz (mod d) and thus x+y = z.

On the other hand if x+vy = z then (7) is clearly satisfied

for all primes p, and thus 8{x,v,z,p,w) holds for all W,p with

p<Clog 2z, z <w(C log W) A1s0 {as in the proof of the
previous lemma) there is a squarefree number d 1 p such that
p<C log z
plz

2.z <d <w, so ¢,(x,y,z,w) is satisfied.
A o

Let + , . denote the partial functions (extendible to +,.)
W w

defined by
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x + y =z <=> ¢A(x,y,z,w)

X . y =z <=> ¢M(st=Z:W)

vhere ¢A,¢M are the formulas constructed in lemmas 4.8 and 4.9.
Denote by h(w) the largest number h £ w such that for all
X, ¥,2 € h:

(xty=z+rx+y=z)Al{x.t=z+x.vy=z),
w W

For each w, the interval [0O,h(w)] is the largest initial segment of
[0,w] on which ¢A’¢M correctly define the addition amd multiplication
predicates A,M, Our problem is to "extend" these definitions to the
whole of [0,w].

The predicate v = h(w) can be defined by a bounded L,

formula. Indeed if ; g are commutative and 0 o7 =0 for all ¥y
(as is the case with the definitions ¢A’¢M actually constructed in
the proofs above), then it is obvious that h(w) 1is the largest
number h € w such that

(i) Vz s h Vx gz 3dysz (2 =x 5 ¥)

(i) Ve s h¥x ¢ 2z (x #0 +3q ¢ 2z Jrex (z = x.q ar)).

((i) and (ii) say that subtraction and division work.)

Also by lemmas 4.8 and 4.9, h(w) z w(C log w) Ml Applying
Bertrand's postulate (see for example Hardy and Wright [1979] or
chapter 1 of this thesis) that for every x % 2 there is a prime
with x < p < 2x, it follows that if w is sufficiently large then
there is a prime ©p such that -

h(w) 2 w(C log W) ™1 2 2/u>p > /w

But for w less than any fixed bound, it is clearly possible to
"write out'" the addition and multiplication tables up to w as

bounded L formulas and incorporate these in ¢A and ¢M’ so it can
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be assumed that for every w > 1 there is a prime p with
/w<pshw.

The technique used in Fhe proof of proposition 0.2 allows us to
define the addition and multiplication relations on an isemorphic:

oba
r

of the interval [0,a?] by means of L formulas in

2

which all quantified variables are bounded by a. (The elements of
[O,az]* are 4 tuples of numbers <« {Jgj treated as the digits of
the base [ /;j-+1 representation of a single number.) Replacing
AM by ¢A’¢M we see that there are bounded LS q formulas

3

¢;(X,Y,Z,w,a), ¢;(X,Y,Z,W,a) (where X,Y,Z2 denote 4 tuples) such

that
tb:(X,Y,Z,w,h(w)) G [O,h(w)z]*F X+Y = 7
b (X,Y,2,w,h(0)) <= [0,h(w)2]"E x.¥ = z.

. * . .
Similarly, if for uv € [O,w] we use u to denote the corresponding

element of [0,h(w)2]", then there is a bounded L., formula

s |

n{u,U,w) such that for all u e [O,h(w)z]‘,

o

nlu,U,w) <=> U =u ,

kS
Thus n defines the isomorphism u -+ u for u ¢ hiw).

W2 ()2

*
W b1
We want to define u * A and M
4 - - = ~tu
A and M here. are dafined
. h(w) . i
[ h(w) r here by
) * &~
A and M are [Vl g Py
d ,
already defined
v N Vn’
here. - /-
/, ,

Isomorphism (for A,M) defined by n(u,U,w).
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Our strategy is to "extend" the definition given by n(u,T,w)

by constructing a new bounded L< o formula nx(u,U,w) which

, ] 83
defines the isomorphism u + u  for all u £ w.

LEMMA 4.10 There 18 a bounded L, o formula n*(u,U,w) such that
— Y <,

te

Yo Yu e [0,w] YUe [0,h(w)2]" (U = v <= n*(u,U,w)).

Essentially what we will do is to use bounded Ls,a formulas to
associate certain elements and subsets of [0,h(w)] with each

u e [0,w] in such a way that these elements and subsets of [o,h(s)]

determine u uniquely in the interval [0,h(w)2], and thus their images

under * (which is already defined on [0,h(w)] by nlu,U,w)) will
completely determine o in {O,h(w)z]*. (The novelty of the argument
lies in the use of sets, rather than just a fixed finite number of

elements, to determine u.)

It is claimed that for all u e [O,w], U ¢ [O,h(w)z]*, U=y

if and only if U dis the least element of [D,'t":(w)?-]z'r possessing the

following three properties:

(1) If p is the largest prime s h(w) and t 1s the largest
number such that p.t < u, then £ s the largest element of
[0,0(0)2]"  for which [0,0G0)2] Ep* .t < v,

(I Fssu (2.5 = u) <= [0,b(w)2]"E Ts<U (2.5 = V).

(I11) For i = 0,1,2 and all primes q $ h{w),

dsgu (g.(3.8+1) < u Amqg.(3.5+i+1) < u) <=>

[0.8(n)2]7F 365U (¢.(37.5+i") < U A-q". (3%.5+i% +1%) < ).

ofa

Taking U = u obviously satisfies (I}, (II), (II), so it

suffices to show that mo U < u  has these three properties. Suppose

U <u satisfies (1), (II) and (III). Since U < U, we must have

wla
W

U=v for some v <u. By (II), 2 s u-v, while by (1),

Pt <v<usgp(t+l) so u-v <pg h(w). Hence by Bertrand's
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postulate there is some prime q < h(w) such thar qQ £ u-v < 2q.
But now suppose gs; <'u € q(sl-kl) and qs, < v q(52-+1),
Then

s, + @ < v+ (u-v) < q(s, +1) + 2q

50 q(sz-il) <u < q(52-+3) and thus s, =s,+1l or s, = 8, +2.
In either case s, # sz(mod 3) so (III) fails.

Note that in (I), (II), (III) all terms of the form x are
restricted to x € h{w). (In this case of (I) to get t € hiw) we
make use of the assumption, justified above, that vV < p § h(w) and
therefore t < Vw < h(w).) Consequently since U = u* is defined on
[0,8(w)] by the formula n(u,U,w), and addition and multiplication
predicates are defined on [O,h(w)z]* by ¢X,¢;, all expressions in
(1), (IT), (III) beginning with [O,h(w)z]*}= can be replaced by
bounded Ls,a formulas. Since all occurrences of . 1in (I), (11),
(I1I) involve multiplication by a prime, and there is no nontrivial
use of +, it is now clear that a suitable bounded Ls,a formula

%*
n (u,U,w) can be constructed.

Completion of the proof of theorems 4.6 and 4.7:

To complete the proof that x+y = z and X.y = 2 can be

defined by bounded L_ formulas (and therefore also by bounded
R

L, N formulas) it is only necessary to observe that for all x,y 5 =z,
oy

X+y =z <=>

- i wfa
i

WsxWNcyIFse(X=x AY=7y Az z“A¢Z(x,Y,z,z))

X.y =z <=>

L. 3 ol

WsxX syIsz( Xx=x AY=y Az z"/\q:M(x,Y,z,z))

I

K
w

where U = u 1is being used as an abbreviation for n“(u,U,z), and

X,Y,Z2 are 4 tuples of variables each of which is bounded by =z.
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REMARK: The use of Linnik's (or some weaker) bound on the least prime

p = a (mod b) in proving the above theorems can be avoided by

appealing to the analogous ?esult for squarefree numbers, which, at

least at present, 1s easier to prove. (See Pracher [1958] or

Erdds [1960].) The argument is modified as follows: having first proved
lemma 4.5, thatrlemma is used to give a similar proof that the predicate

q 78 squarefree A q.y = z

is definable by a bounded L N formula. The proofs of theorems 4.7
and 4.8 can then be reworked using this predicate instead of a, and
squarefree numbers instead of primes at the appropriate places. (The

original theorem 4.8 can of course  be recovered as a corollary of

theorem 4.7.)

Applying proposition 0.2 to theorem 4.7 yields:

COROLLARY 4.11 A4 relation on N ecan be defined by a bounded 1

9+3

formula <f and only if it ean be defined by a bounded Ls,L' formula.
In order to deduce the same result with a single binary relation

in place of <.L we will use the following approximation to Goldbach's

conjecture obtained by the use of "sieve' methods. (z rTeadable

introduction to these can be found in Gel'fond and Linmik [1962].)

PROPOSITION 4.12 (Brun [1920]) There is a mumber k & N with the

property that for every n e N there exist numbers q,r with

2n = q+1, such that every prime plqr satisfies p 2 (Zn)l/k.
Define the preordering < by:
X ﬁ Yy <=> xR <y AX Ly .

n . ., . £ ¥
The reader is reminded that < 15 nmot transitive. (x ¢ v < z should

be read as x % v Ay P zZ.)
LEMMA 4.13  There is a number g e N such that for all x,y with

x <y there exist numbers ZgsZyseeesZy with m £ g satisfying:

3"
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Furthermore, the numbers z, may be chosen to be alternately even and

odd.

Proof:

Take g = (.‘21~:—2)k + 2k where k satisfies proposition 4.12. If

e )

Ir ol ~ "
y-x=h gg we have x <x+1 < x+2 <«..<x+h =1y 30 we may

SuUppose Y-—X 2 g (2k—2)k+21{. Let

(y=x) - (2k~-2) if this is even,
2n

]

(y-x)-(2k-2)~-1, otherwise,

so 2n > (21{—2)1(. By proposition 4.12 there exist gq,r such that
2n = g+r and all primes plqr satisfy p 2 (21:1)1/k > 2k=-2. (In
particular, since k » 2 we have P> 2, s0 g,r are both odd.)
Observe that each prime plq can divide at most ome of the numbers

¥, x+1,...,x+ 2k~ 2, and that gq has fewer than k prime divisors.
It follows that x+1i L q for at least k of the numbers

i= O,l,...;Zk—?.. Similarly, x+2n+1 L r for at least k of these
i's. Hence there is some i g 2k-2 such that x+1i L q and
x+2n+i L r. Taking z = x+i+q =x+2n+i-r exhibits a number

satisfying x+1 < z < x+2n+1i and having the opposite parity to

x+1i. Thus the sequence

aba wla ala
FI9

* Y W w ., ® , W o, W
K <X+l < x+2 <., < x+i <z <x+2n+i<x+2m+i+1 <.

ot
(3

P y—?_i‘—y—li‘- v

of at most 2k+ 2 elements has the required properties.

PROBLEM: What ©s the smallest value of g for which this lemma is
true? (The author conje'c-tufes: If  y-x>1 then some z in the

interval x < z <y s coprime to both x and y.)

H) 3

THEOREM &.14 A relation on N can be defined by a bounded L,
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formula if and only <if it can be defined by a bounded L, formula,
<

e -~

where € s the preordering defined by:

X

A

ye=>xXx=2y v (X S$YyAXLY)

Proof:

Obviously, x = y <=> ¥ SYAYEE

xJ_y<=>-1K=y/\(X§YVY§X)
and for g satisfying lemma 4.13,
1 KN o *
x5y <=> Hzg_l gy HngZ g zg~1 .3z 5 z5 (% € z)
) kG . * W v & .
Vxgy ¢ <=> Vzg_l £y Vzg_z € Zy) ¥z, § 2z, Vx s zl;¢
% *
v B <= < < Az % dx 2 =
3xgy‘¢ <=> Hzg_l £y 3zg_2 S, z €z, b
where the variables Zl’zz"'°’ZQ“l are chosen from those which do

not occur in  ¢.

Hence the theorem follows from corollary 4.11 by induction on
the complexity of bounded Ls,L formulas.

As mentioned in the introduction, a relation on N is rudimentary
if and only if it can be defined by a bounded L5,+,- formula. By
a rudimentary graph G we will mean a structure <N,Y> where Y 1is
a two place, symmetriec, antireflexive, rudimentary relatiom.

(Vertices x,y € N are joined by an edge if and only if xYy.) Let
G demote the restriction of G to [0,n].

Now consider the rudimentary graph G = <N,Y> where Y 1is the
symmetric relation defined by requiring xYy and yYx to hold
between numﬂers ¥,y with x ¢y if and only if one of the following
is. satisfied:

(i) x and y are both odd and x L y.

(ii) x 1s odd, y s even, and x L y.

(iii) x = 0, v # 0, and y 8 even.
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THEOREM 4.15  The rudimentary graph G defined above has the

property that for every rudimentary predicate p(xl,...,xk) there Zs
an effectively found LY fbrmula ¢(x1,...,xk) such that for all

nz 5, ad all x esX € [0,n],

1

D(Xl:--'sxk) <=> Gn }=¢(X1:---sxk)-

By corollary 4.11, a predicate p(xl,...,xk) is rudimentary if
and only if it can be defined by a bounded LS,L formula, so the
theorem will follow by induction on the complexity of such formulas if
it can be shown that there are LY formulas @S(x,y), ¢l(x,y) such

that for all n : 5, and all x,y e [0,n],

x £y ¢=> G [=¢$(x.y)
X Ly <=> Gn |=lbl (x,y).

To avoid continually writing “GnF ", for the rest of this proof
variables_ X,¥,2 etec. will range over the elements of some fixed
initial segment of N containing {0,1,2,3,4,5}. (These initial
segments are the intervals [O,n], n > 5, and XN itself.) However the
formulas produced will be independent of which initial Segment is

used. We hegin with some less ambitious definitions:

(1) X =y <=> Ya(xyz <=> yyz)
(ii) x = 1 <=> vy = x A Va(azyx <=> z = ¥V z=13x))
(iii}) x = 0 <=> %Yl Aax = 1.

To verify (i) check that for ail x and -y with x.< vy (say),
(x¥z <=> yYz) fails for =z = 0 (if X,y have opposite parity), for
z=y-1 (if x,y are both even), or for z = x+ 1 (if X,y are hoth
odd). (i) and (ii) follow from the fact that for x = 1 there is a
unique number z # x (namely z = 0) such that =zY¥x, but this cannot

happen for x # 1, since if x 1is odd then -zYx holds for =z = 0,2,
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while if =x 1is even then -zYx holds (with =z # x) for =z = 2,4
except for the cases x = 0,2,4 which can be dealt with ﬁy examining

the picture:

GS:

Note now that x %5 even <=> x = 0 V xYO
and if x,y are both odd them x Ly <=> xvy.
Also, x 75 a power of an odd prime <=>

x I8 odd A Vy Ez( y.z areodd Ay iz-+ylzVazlx),

and if .y is odd then

x'm}lr <=> x 185 odd A Yz{ z Z5 odd ~ (é L x <=> 2z 1 y)).
Using these equivalences we can-define the odd primes, since

" X 18 an odd prime <=>

X 15 a power of an odd prime Ax #LA
Yz(z # x A 2z ~ x +—3w(xTw A=zYw)).

(To see this take w to be the even number =z-1.)

Note that the predicates v = 2 , x = 3 can be defined since

x =3 1if and only if x 1is odd and there exists a unique even number
y # 0 (namely y = 2) such that xYy. Also for x evem,

31x <=>x =2 Vv 3Yx .
Now suppose x 1is even, 31x, and p is an odd prime # 3. Then
D £ x <=> pyx V ¥(p,x) ,
where W{p,x) is the formula:

dz w( z Zs odd A w i even A pYw A ~zYw A 2Yx
AYq( q 25 an odd prime A-~qlz + qYy })

Clearly pYx => p ¢ x. Also if z,w are as required by y(p,x)
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then zlw but =~zYw so w < z, and since pYw and z¥x it follaws
that p < w < z < x.

On the other hand, suppose p £ X. If p* ¥ then pYx. If plx
we have two possibilities:

Case 1 p < 3" < x for some n > 1.

n_ 1 or 3

Then eilther pY(Bn-l) or pY(3n-5) so choosing w = 3 -5
as appropriate, and z = 3" satisfies Uip,x).

Case 2 3" < P <X < 3n+1 for some n 2 1.

Then §-< 3, but since p|x it follows that x = 2p. Either 2p-1 or
2p~5 is divisible by 3 (and if p = 5 then it is the former) so

choosing 2 to be that one of these, and

2p-6>p 1f p =217,
2p--2>p if P =5,

satisfies W(p,x) since p < w < 2p, and thus p Lw.
Cbserve that
X 18 @ power of 2 <=>x I8 even A 3Lx A

Yq( q 75 an odd prime # 3 A g £ x + q¥x ).

Now if x is even and p is an odd prime, then

P £ x <=> pYx V

Py

dz Jw( w 28 a power of 2 A z 28 odd A pYuw A zYx A= zY¥w ).

For clearly pYx =+ p £ x, while if the second disjunct of this
definition is satisfied then p < 2" <z < x for some n,z., Conversely
if p<x and p/n then pYx, while if plx then Zp £ ¥ so there
exists n with p < 2" < 2p £ ¥, and taking z = x-1 , w = 2"
satisfies the second disjunct above,

Also for x even and p an odd prime,

p Lx <=>pY¥x Vap £ x,
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Finally if x (say) is even and y is odd, then

x Ly <=>Yp( pis an odd prime ~p L x Vp 1L 7¥),

and since the case where x,y are both odd has already been dealt

with, the existence of an Ly formula ¢i(x,y) satisfying

Y Vy(x Ly <=> $, (x,v))

clearly follows.
We next define for each fixed natural number k 2 1 a preordering

€ on the even matural numbers by
k
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x f y<=>x=yV3Jz(x L 2 A z¥y A=zYx),
X £ y<=>xgyvVv3Iz(ziseven AxXx gz Azgy).
k+1 k 1 k

In the notation of lemma 4.11, for x,y both even we have x sy if
k
and only if for some m £ k there exists a sequence of alternatively

o * *

even and odd numbers zo,zl,...,z2m such that x = zg < zl<...<zZm =y,

Thus if k is sufficiently large then for all even numbers Ky Vs

X<y <=>x £7y.
k

Now for = odd and y even,

X £y <=>3Jz(.z 28 even A XYz A zZ £ ¥)

(as can be seen by taking z = x+1 if this exists) and
Yy £ X <=>ax £ V.
Finally, if x and y are both odd,

¥ $y<=>x=yVdz(ziseven AxXx<zAzgy).

Since all cases have now been covered it is clear that there 1is

an LY formula ¢<(x,y) such that

Yx Vy(x ¢ y <= ¢ _({x,y))

REMARK: With the exception of the trivial case n =0 , the
restriction n % 5 in the above theorm is unavoidable since every
graph with at least 2 and at most 5 vertices admits a nontrivial
automorphisﬁ which obviously cannot preserve .

To complete this section we will sketch the proof of the analogue

of theorem 4.15 for a rudimentary partial ordering.

THEOREM &4.16  There is a rudimentary partial ordering H = <N,(g)>

such that (5) is emtendible to <, and if H ~denotes the restriction
of H® to [0,n],then for every rudimentary predicate p(xl,. - ,xm)

there 1g an I_@ formula  ¢(x ,... ,xm) with the property that for
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1,...,}:m £ n,

p(xl,.,.gxm) <=> Hm F=¢(x1,...,xm).

Proof:

As the reader should by now be well versed in the sort of
techniques used, only a sketch will be provided.

To define (:) we will construct a rudimentary directed graph
having N as its set of points,with the property that there is a
directed edge fxom y to x 1f and only if x is an immediate
(:)-predecessor of y. Then we will have z(:)y if and only if-

X =y or there is a directed path from vy to x. (Some care is needed
here as "path" is a second order concept. However the paths in the
directed graph constructed will be "trivial enough" to allow the
existence of a path from y to x to be described easily by an

L Formula, thus making (:) rudimentary.)

§yhy

The basic constituents of the directed graph will be of the form:

and will be called sextets. The poimnts in the 4,5,...,9 positions
(called i-points, i = 4,5,...,9) will be comsecutive numbers (greater
than 3) congruent to 4,5,...,9 (mod 6) respectively.

The idea is to ensure that  €,1 can be recovered from (:) on
[0,n]. For example, for n = 9 {(mod 6) it will be possible to define
£ since it will be arranged that:

(i}  The predicate "x is a 4-point" is %:) definable in H .

(i1) () linearly orders the 4-points.

(iii) This fact can be used to linearly order the 9-points

93
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(which will be the maximal points of the (:) ordering).

(iv)  The sextet to which a point x belongs is then determined

uniquely by the smallest 9-point above x.

As the asymmetry of the sextet allows < to be defined on the sextet,

conditions (i)-(iv) will make it possible (for n = 9 (mod 6)) to give
an %:> definition of £ on [0,n] which is independent of n.

Now comsider the partial ordering n® = <N,C) > corresponding to
the following directed graph:

6m+9 '

6m+7

15 .

Ho: 13 14 12

11

> Bottom section.
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Clearly this partial ordering satisfies {(i)-(iv) for n = 9 (mod 6&).
The addition of the special bottom section makes it easy-to comply
with (i). (Hint: first define the predicate x = 0,)

If n =9 (mod 6) then only part of the uppermost sextet is

ineluded in H;. These "partial sextets" are of the forms:

n =6 (mod 6) )

5 (mod 6) n

111

4 (mod &)

Hi

¢ camn still be defined on Hi in these cases (this is left for the
reader to check} and hence there is a single I(:) formula which
defines € on Hg in all cases.

However L cannot be defined on all Hz by a single It:)
formula (as can easily be seen by comsidering nonstandard models),
so to produce a partial ordering 1 = <N,C)> such that 1 can be
defined on all Hn by a single L() formula we will add new edges
to the directed graph for H° while at the same time preserving the
definition of ¢ (forrexample, in the case of n £ 9 (mod 6)
preserving (1)}-(iv)).

1f p(# 2,3) 1is a prime less than x and p|x then we will add
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an edge from x's sextet (or two edges from the preceeding sextet) to
the point p in such a way that information about exactly which
element{s) of x's sextet is (are) multiple(s) of p 1is coded into
the corresponding partial ordering (:).

The only points in a sextet which can be on the "receiving" end
of these additional edges will be those which are primes, and these

can only be 5-points or 7-points (since if p > 5 is prime then

121

p =5 (mod 6) or p = 7 (mod 6) ). These prime points will not be on

the "transmitting" end of any additional edges and will constitute

exactly the minimal points of the (:) partial ordering (aside from 0).

Possible receiving points
for additional edges.

Thus given x,y it will be possible to decide whether x 1 v
from the minimal (prime) points lying under the sextets of x and
y (and/or the sextets immediately preceeding these). HNote that it is
trivial to decide whether 2 or 3 divides x from x's positionm in
the sextet,

Suppose plx where 5 5 p < x. Then unless x 1is a 4-point,
add an edge from x to p. If x is a 4-point then add edges from
the 6- and 8- points of the preceeding sextet (that is from the
numbers x -2, x~4) to p. No confusion between these two cases can
arise, because if p > 5 then p can divide at most one of the
numbers x,x-1,x-2,...,x-6, while if p =125 and plx'hwhere x 1is
a 44pdint, then p will divide x ~5, that is the S-point of the
preceeding sextet, and (see the example below) the resulting partial

ordering is the same as if the two additionalredges from x-2,x-4 to



p were left out,

Apart from this case, none of the additional edges is redundant
(that is, an omissiom would.change (:) } so the requirement that
information be coded into the partial ordering about which element(s)
of x's sextet is (are) divisible by p 1is satisfied. (To check
this use the minimality of primes and the fact that if p > 5 then
p can divide at most one element of a sextet.)

EXAMPLES:

plx

%'s sextet

p's sextet

P b
x =5 {(mod 6) ' x = 4 (mod 6)
p =7 (mod 6) p =25 (mod 6)

(If p =5 there is also an

edge from x-3 to p.)



Let B = <Ng(:)> be the partial ordering obtained from H° by
adding edges as described above. Then there is an LC) formula
which defines L imn all Hn's. It is left to the reader to verify

that the definition of £ on [0,n] has been preserved.

68
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§5. Applications to spectrum problems.

Consider any language L of first order predicate calculus
(with or without identity). A model M will be said to be normal
if for each pair a,b e M with a # b there is some formula

w(u,vl,...,vk) of L and elements Cys--05€ € M such that

M F=w(a,c1,...,c-) and M F=ww(b,c1,...,ck).

Obviously if the identity relation = can be defined on M by an L
formula then M 1is normal. {Conversely if M 1is a finite normal
model then = can be defined on M by some L formula, but in general
this formula will of course depend on M.)

The spectrum of a sentence ¢ of L is the set of positive

natural numbers:

5 {|M|: M is a finite normal model of ¢}.

§
Let

S5 =1{8: ¢ is a sentence of some first order languagel,

¢
The spectrum problem (Scholz [1952]) is to characterise &. Some
characterisations are known. For example, & = NEXP where NEXP is
the class consisting of all sets § c N \ﬁﬂ with the property
that there are a nondeterministic Turing machine TS and a comstant

¢ (dependent on §) such that Tq will accept the binary

representation of any element of S with n digits (and no others)
in time 2°". (See Jones and Selman [1974].) However although it

has long been known that the class

RUD = {R € N\{0}: x ¢ R is a rudimentary predicate}

is contained in S, it is not known whether this containment is strict.

A-proof that 5 = RUD would settle, in the negative, the P = NP

problem in computational complexity theory. In fact it would follow

not only that NP # co-NP, but also that the polynomial time hierarchy



100

of Stockmeyer [1976] would collapse at some level higher than this.
(For details see chapter 4. A general discussion of the P = NP
problem may be found in Hoperoft and Uilman [1979].)

Analogues of the spectrum problem can be obtained by starting

with some theory T in a first order language L, and defining the

T-spectrum of a sentence ¢ to be:

T:

" {[M[: M is a finite normal model of Tu{¢l}}.

S

The problem is to characterise

T

5 = {5¢: ¢ 1is an L sentencel.

T
For example, suppose L 1is the language L=,Y with two binary
predicate symbols and that T 1is axiomatized by the axioms of
equality (for =) plus the sentence

Vx Vy(xyy <=> yyx) A Vx(axyx) ()

Then <V,=,Y> is a normal model of T if and only if <V,Y> is a
graph. (Normal here simply implies = is interpreted by identity.)
Thus = e Si if and only if some graph with n vertices has the
first order "property" ¢, and the spectrum preblem is to characterise
the sets 8- which can be obtained in this way.

¢

If instead we use the language LY and take T to be the theory
with (t) as its only axiom, then <V,Y> 1is a normal model of T
if and only if <V,Y> 1is a graph in which no two vertices are joined
by edges to exactly the same set of vertices. (We will call <V,v>
a normal graph in these circumstances.)

Similarly other examples yielding nomtrivial specfrum problems
are obtained by taking L to be L and T to be the theory of
partial orderings, or the theory of quasiorderings. (a quastordering
is a preordering which can be extended to just one linear ordering,
that is, one whose transitive closure is a linear ordering.)

As a final example consider the language L M (where

£,4,
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A(x,y,2) <=> x+y =z and M(X,y,2) <=> x.y = z) and let T be the

theory FA of finite arithmetic:

FA = {p: v is an L_ sentence A VneN { <[0,n], s,A,M>F=¢)}.

£,A,M

In this case ST = RUD by virtue of the second part of the following
lemma which states that FA is categorical in every finite
cardinality.

LEMMA 5.1 There is a finite set I of avioms in the language

Ls,A,M such that

(i) For each m e N, <[0,n], <,A,M> FI .,
‘s .. £ K % .
(ii) BEvery finite normal model <X,s ,A ,M > of I with
cardinality n is tsomorphic to <[0,n-1], s,A,M>.

Proof:

The axioms in I describe the basic "algebraic" properties
of £,A,M, and assert that A and M satisfy the inductive
definitions of addition and multiplication as far as is possible in a

finite initial segment of N, (ii) is proved by induction on n.

Now if R & RUD then (by proposition 0.2) there is a bounded

Ls,A,M formula wR(x) such that

Yon(n € R <=> ¢R(n"l))=

and it follows by the lemma that R = SFA, where ¢ is the sentence

P

IxVy(y ¢ x) A l#R(K)).

%
On the other hand, if ¢ 15 an L_ ALM gsentence and ¢ (x) 1is the
A | >

bounded formula obtained from ¢ by bounding all quantifiers in ¢
by x {(where x is & variable mnot occurring in ¢) then

nE SgA <=> Jxgn(n=x+1 A ¢*(x)).

Thus SFA =RUD.
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(Note also that, as mentioned earlier,RUD < 5, since for all ¢,
S¢ = S¢AU e § where ¢ 1is the conjunction of the axioms in z.)

An obvious guestion now is to ask how RUD is related to the
other theories T cited above as examples.
THEOREM 5.2 If T <s the theory of graphs, the theory of normal
graphs, the theory of quasiorderings, or the theory of partial
orderings, then RUD C S

Proof:

Since RUD = SFA it will suffice to show that in each case

5, : 0
S%A c T* Therefore suppose ¥ 1s an LS,A,M sentence and take @

to be ¥ A ¢ where o is the conjunction of the axioms I for TA

given by lemma 5.1. Fix three formulas ¢<(x,y), ¢A(x,y,z), ¢M(x,y,z)
*

in the language L corresponding to T, and let ¢ be the L

sentence obtained by replacing all occurrences of g,A,M in wo by

¢s’¢A’¢m in the obvious way. By lemma 5.1, SE* E.S$A3 since 1f

& ® Kk %
<Kyena> Flp then taking < ,A ,M to be the predicates defined on X

£ Kk &
by ¢<,¢A,¢M vields a model <X,g ,A ,M > of FA (with the same
cardinality) in which ¢ is satisfied.
Thus we will have ST = SFA if we can choose ¢ ,¢,,0 havin
w* tp S’A’M g
the property that for each n & N~{0} there is some model <K,...>\=T
' * K %
with [K[ = n such that <X,< ,A ,M > ~ <[0,n-1], ¢,A,M>. But for
T the theory of graphs (or normal graphs), partial orderings or
quasiorderings, the existence of formulas ¢<’¢A’¢M pessessing this
property is guaranteed by theorems 4.15, 4,16 and 4.14 respectively.
(Note that the preordering < in theorem 4.14 is a quasiordering by

lemma 4.13., Also strictly speaking in the case of (normal) graph theory

the construction fails because it is impossible to define ¢<’¢A’¢M

which willrwork for n = 2,3,4,5. However theorem 4.15 does allow the

*
construction of a sentence ¥ such that ST and SPA differ only

b P
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on [1,5] and it is easy to do a "finite modification” on this sentence
7“ - L »
so that for n £ 5 the normal models of ¢ with exactly n distinct

elements will be all the (normal) graphs with n vertices if

FA

mE Slp , and nonexistent otherwise. Since there are normal graphs with
. . T FA
1,2,3,4 and 5 vertices, we will then have S¢* = SW )

COROLLARY 5.3 FEvery R & RUD can be represented in the form R = 5

b

where ¢ <2 a sentence of first order predicate calculus with only a
stngle binary predicate symbol.

This corollary shows that the RUD = 5 problem would be settled
in the negative if it could be shown that there is some S5 € S which
cannot be represented in the form 5 = S¢ for any sentence ¢
involving only a single binary predicate symbol. Similarly it follows
from theorem 5.2 that RUD # 5§ if St # S where T 1is the theory of
graphs, normal graphs, partial orderings or quasiorderings, since in
each case ST € 5. 1In fact to prove the existence of a nonrudimentary
spectrum it would suffice to show that one of these theories T has
the property that for each n e N there is a sentence ¢ such that
T T

S¢ # S¢

quantifier free and each Qi denotes a block of similar gquantifiers

for all sentences ¢ of the form QIQz"'QnX where X 1s

of the Form 33...3 or VYY...¥Y. This is because (as shown in Harrow
[1978], theorem 3) the assumption that S = RUD implies the existence
of an absolute bound on the number of changes of quantifier (but not

(t)

the total number of quantifiers' ‘, see Wilkie [1979]) required in giving

* a2 bounded L< {or L } definition wR(x) for any R & RUD.

sty $,A,M
This bound implies the existence of a similar (but larger) bound on
the number of blocks of quantifiers whieh need appear in the premnex
*
normal forms of the sentences constructed im the proof of theorem

5.2.

It should alsc be mentioned that Fagin [1975] has conjectured

{3

at least if the matrix is an L_ . formula.

3 L)
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that for each k there is some element of & which is not the spectrum
of any sentence having only k-ary predicate symbols. He highlighted the
nature of the problem by proving:

PROPOSITION 5.4 (Fagin [1975]) For every S e S there 18 some k ¢ N~{0}

such that {n*: n e St e Sp wvhere T 1is the theory of graphs.

An easy modification of Fagin's argument shows that the same is
true if T 1is the theory of mormal graphs. Furtﬁermore, the theories
of quasiorderings and partial orderings have similar properties since:
LEMMA 5.5 If T,,T,,T, are the theories of graphs, quasiorderings,
and partial orderings respectively, then For all S,

(i) S e STl + {2n: ne S} e ST2

. 2.
(i) S e Srl + {n%: n e 8} e STa.

Proof:

(1) Tt will suffice to show that there are 1L formulas

¢G(X),¢Y(X,y) such that:

(I) Tor any graph <G,¥Y> it is possible to econstruct a quasiordering
*
<Q,4> with |Q| = 2|¢| on which ¢G’¢W define a subset G < Q
. . % x k&
and a2 binary relation Y cn G with <G ,¥ > = <G,Y>,
(IT) There is an L sentence which if satisfied by a quasiordering
£ %

k%
<Q ,% > will ensure that the structure <G ,Y¥ > defined by

bt 1is a graph with 216”| = Q.

Given <G,Y> to construct <Q, %> let Q = GUH where GNH = ¢
and |H| = |G| = n (say). Linearly order Q as

hl < B, < h2 £ g, £...8h g gn where hl""’hn and gl,...,g

n n

are the elements of H and G respectively (in some order). Now
define a quasiordering £ on Q by:

h; £ h <=> i g ]

£ gj <=> {1 g 3 A ging) vis=j
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hi £ gj <=> i = j
g % hj <=> j=1i+1
Clearly for all =x,y € Q,
xsy <= dw(xdzAzgwAwg y) ()

so the ¢ -least and ¢ - least-but-one elements h,,g; are L

definable, But

xeG<=>x=glV"t'n1-,<x ()
and for x,y e G,
XYy <=> (xyVyg x)Ax =y, (+4)

which proves (I).

Also we can define the predicate y = x”, that is, y 1is the
immediate £ - successor of x, by an L  formula, so using the
definitions for G and g, given above, there is an L sentence
which says:

g, EG A Vx(ax & G <=> Jy & G(y = x”)).

Clearly if a quasiordering <Q ,$?> satisfies the comjunction of this
sentence with the sentence saying that the formula on the right of (¥)
defines a linear ordering, then the formula ¢G(x) given by (+) will
define a subset G* E_Q* with 2[G*| = |Q|, and on G* the formula
on the right of (it) will define a relation v" such that <G*,Y*>

is a graph.

(1i) The second part of the lemma can be proved in a similar way by
considering Fhe following method for coding an arbitrary graph <G,Y>
with iG[ = n inkto a partial ordering <Q,{> with Q = G6UH, where
GNH =¢ and |H| = n®-n. The partial ordering < is defined so as
to associate the elements of H in a two-to-one fashion with the

(unordered) pairs of elements of G. Each pair {a,b} ¢ G 1is associated

with two distinct elements h;,h, € H in one of the following twe
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ways:

Case 1. a7¥Yh Case 2. =4aYh

£ is taken to be the (reflexive) partial ordering generated by the
directed graph containing just the edges required by these two cases.
Since there are n{n-1)/2 unordered pairs from G, this is possible
if and only if |H| = n(n-1).

The rest of the details are left to the reader.

Now suppose T is one of the theories considered in theorem

5.2. Then

ST CRUD <=> ST = RUD,.

Tor if § € S, then by proposition 5.4 and lemma 5.5 there are non-
zero natural numbers j,k such that {jnk: nesSie 5&. Thus if

S C RUD then {jnk: ne S} eRUD., But it is easy to see that if
{jnk: n € 8} can be defined by a bounded L_ . formula, then 8§

- 3

can also be defined by a bounded L$,+’_ formula, so 85 € RUD.
Combining this observation with theorem 5.2 yields:
THEOREM 5.6 S=RUD <=> E& = RUD, for T the theory of graphs,
normal graphs, quastorderings, or partial orderings.
Thus (using the equivalence of RUD and E%A) the problem of
whether S # RUD can be viewed as a question asking whether graph
theory, the theory of partial orderings, gtc;, are each more complex

than the theory of finite arithmetic, in the sense that they generate

a broader class of spectra.
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Obviously there is much more to be learnt about the classes of
spectra generated by fhe various theories of finite structures, and
the relationships between these classes. It might be interesting to
know, for example, what can-be said about the spectra genmerated by

field theory, group theory, the theory of trees, etc..
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CHAPTER 3  Some.logical consequences of the linear case of

Schinzel's hypothesis H,

Let L==+,P be the first order language for N (or more
generally for some model of Peano arithmetic, PA) with primitive
symbols =,+, and the predicate P(x) defined by:

P(x) <=> x s a prime rumber.

Obviously several famous open problems in number theory can be
expressed by very simple formulas in this language. For example
noting that the predicates XSy ,x=0,x=1, x=2 ..., y=2x,y=3x%,...
all have existential (or quantifier free) L_, . definitions we

3 H

have:

Vxdp(p 2z x A B(p) A P(p+2))
(There exist infinitely many twin primes.)
dx Yy 3p(p 2 y A P(p) A P(p+2x))
(1im inf(pi+1 -pi) < R, where P denotes the i th prime number. )
Yx(x 2 2 + 3p3q(P(p) A B(q) A 2x = p+q))

(Goldbach's conjecture. )

This suggests the following question:

Open problem: Is there some L, P gentence ¢ such that

PA | ¢ ?
(Recall that by a well known theorem of Presburger [1930] the
L=’+ theory of N is identical with the L=’+ consequences of PA
and therefore decidable.)
In this chapter a partial amswer to this question is deduced from

the following conjecture (in which Z[x] denotes the ring of all

polynomials over the integers 2):
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HYPOTHESIS H (Schinzel) Let fi(X)’fz(x)=""fn(X) be irreducible

polynomials in Z[x] with positive leading coefficients and

suppose that

VWl Ix(yf] I fi(x) ),

1£€15n

then there emiét'infinitely many mmbers x for which

fl(x),fz(x),...,fn(x) are all primes.

Actually we will require only the linear case where
fl(x),fz(x),.;.,fn(x) are all polynomials of degree 1:

CONJECTURE H (Dickson [1904] If al,az,...,an,bl,bz,...,bn e Z

with all a, > 0 and

vy #13x(yf =& (a;x + b))
1gign

then there exist infinitely many wnumbers =x such that a;x + by

is prime for all 1.

REMARK: Wote that in each case the conjecture states that an

obviously necessary condition for the existence of primes is also

sufficient, Also the words "infinitely many' are actually redundant -

see Schinzel and Sierpinski [1958]. Special cases of He include

Dirichlet's theorem on the existence of infinitely many primes

p = a (mod b) provided a and b are coprime, the twin primes

conjecture, and the conjecture that there exist arbitrarily long

arithmetic progressions consisting entirely of prime numbers.
Assuming HL has the following consequence for N:

THEOREM 1 If H 15 true then the predicate =z = x.y can be

defined by an L formula.

=J+SP

However the definition cannot be an existential formula since:

THEOREM 2 If HL is true then the ewistential L_ fp theory of

|

N is decidable.

In fact it will be easy (and left to the reader) to check that
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the proof of theorem 1 shows that there is an L_ + D formula which
3 L

defines 2z = x.y on any model of the I._ + p Ccomnsequences of
BERE

. X ] .
PA + HL (or indeed of IA_0 + Yx (2% exists) + HL) where HL is a

single sentence expressing the conjecture HL. (Note that here 2

will be interpreted as "integers in the sense of the model".)

+

Therefore turning any undecidable L . sentence into an IL_ +p
27 e

sentence in the obvious way gives:

COROLLARY 3 If PA + Hy is consistent then there is some L_ .

3t

P
sentence ¢ such that PA K¢ .

Similarly the proof of theorem 2 will show that the existential

L_ theory of W is the set of existential sentences ¢ such that

PA + Hl + HZ + B} + . [¢
(assuming this axiom system is sound, where nHi, i E-N, is an
enumeration of the instances of HL with u,al,az,...,an,bl,bz,...,bn
standard integers. (Actually PA can be replaced here by an

axiom system considerably weaker than IAO.)

The proofs of theorems 1 and 2 depend on the following lemma (in
which = denotes the identity relation between polynomials).

PROPOSITION 4 (Schinzel [1961]) Suppose alx-+bl,azx-kbz,...,anx-kbn

satisfy the conditions of H and let c1x+d1,c2x+d2,...,cmx td_
be in Z[x] with e >0 and c.x + dj # a;x+b, for all 1,j.
Then W implies the ewistence of infinitely many wmumbers x such

that:

(1) a,x+b. is a prime for each i e [1,n].

(ii) cjx+dj is composite for each 3 ¢ [1,m].

Using this we now prove:
LEMMA 5 H implies that for all as1, n e N, there exist n+1l
i ) . - = 21 g
consecutive prime mmbers PgsPpa-sPy with P; "Pj, = 2ia  for
all 1 e [1,n].
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Take the polynomials x,x+2a,...,x+1(i+1)a,...,x+n(n+l)a as
the a,x + bi's and the Polynomials x+m with 0 < m < n(n+l)a,
m # i(i+1l)a for all 1, as the cjx + dés. We need only check that
for every prime p there is some =x such that
vi £ n { p [ (x+i(i+l)a) ), in other words that there is some
residue class x (mod p) such that x # -i(i+1l)a (mod p) for all 1.
But clearly the residue class of =-i(itl)a (mod p) is determined by
that of 1 (mod p), so since 1 =0 (mod p) and i = -1 (mod p} both
produce -i(i+l)a = 0 (mod p) we see that -i(i+l)a takes fewer than
p values {mod p). Therefore such an =x exists,
THEOREM 1 H implies that z = x.y can be defined by an L___’ :

formula,

Proof:

Since 2z = x.y can be defined by an L, ! formula (see
2

Robinson [1949] or chapter 2 of this thesis) it suffices to show that

the predicate al|b is L=,+,P definable. Suppose a|b with
n = % (and b # 0). Then assuming H, it follows by lemma 5 that a
pattern of the following sort exists:
2a La ba b=na
(" N\ . N A 3\
P, P, P, Py Py =9 =1

where PgsP1s--«sP, are consecutive prime numbers with
P; Py < 2ia, Conversely if such a pattern exists then obviously
a]b. But we can construct an L_ #,p formula ¢(a,b) asserting that
a 4
there exist primes Py <P <4, <4 such that
(1) Py:Py are consecutive primes A P, =P, * 2a,
(ii) q_,,4 are consecutive primes A Q= q_, * 2b,

(iii) Vp Vr Vs ( Pp P <T <8 <gqAp,r,s are consecutive primes

+ s-r = r-p + 2a).
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Clearly, alb <=> d(a,b).

THEOREM 2 H implies tha# the ewistential L=,+,P theory of N
is decidable.
Proof:
Suppose ¢ 1is an existential L=,+,P sentence. Using the
equivalences:
(p + %) <=> X vay, A0 v XD <=> ) A aX,

A0 AX) <=>aP VaX, XAy p) <=> (XA v (X A p),

we can effectively find an equivalent sentence in disjunctive normzl

Form:

Fx(h, () v 9,0V, ..ve_(3)),

+ . . . . .
where each wj(x) 1s a conjunction of atomic and negated atomic
formulas of the forms:

PO agtayx; +a,x +... + a_x )

- P( by +byx; +box,+ ... + b x )

2 nn
+ + + =
Coptoyx, Fe,x, ... + cnxn 0
+ + =
-1d0 dlx1-+d2x2 . + dnxn 8]

where we have taken the liberty of replacing terms by linear
polynomials with coefficients in Z, so ai’bi £ N and Ci’di e Z.

But since

FW, v () <=> Fep, GOV, VIR (B,

. .. I - .
the individual disjuncts waj(;) can be considered separately, so
it suffices to show that there is an algorithm for deciding whether

or not a system of relations of the form:



-5
P( ap + Z aixl) s ace A,
1<lgn
.
“P( by + [ box; ), b e B,
l1g1gn
-
cy + Z clxi =0, ceC,
l1gs1ign
.
nd, * Z d.;x, = 0, d e D,
1€1sn

+ + .. .
with A, B C n® 1, c,D C 7™ 1 finite sets, has a simultaneous

. + n
solution X e N .

At the expense of some more ''separating out" of disjuncts we may

replace the inequalities

(dg + [ dpxy > Ov{(-dg) + ] (=d)x; > 0),

1€ign L
(1
+
cy * 1<§<n c;x; =0, c e C,
d, + d.x. >0 d )
0 1<§<n it 3 d e D

We will actually consider systems of this sort where A,B {(as
well as C,D) are allowed to be finite subsets of Zn+1, but with

the following added requirement:

113
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RESTRICTION R: For every ae A, B e B, the system (1) must contain:

i = K. ' - .,
(1) (a -ky) + Z a;x; >0 for some ki € W,
1€1¢n

(i1) (by-my) + ¥ b.x, > 0 for some mg e N.

+
b a
1£1én

It will be left to the reader to verify that this regquirement can be
preserved through all the reductions made below.

We will also assume that if any Z, g, g, or 4 is zero apart
(possibly) from the first term ags bD, c, oOr do (respectively) then
the truth or falsity of the relevant formula is determined immediately.
If it is false then the system has no solution. If it is true then the
formula is deleted.

Now congider two cases:

Case 1 C # @.
Multiplying equations by -1 and renumbering variables (if

necessary) we may suppose that the system contains an equation

- +* - G - [
with cg >0, for some ¢ & C. Thus if ¥ is a solution of (1), then

I

% Z & _ *
+ ;X 0 (mod cn). (2)

But we can test effectively whether this congruence has a solution, and

if so, find a finite set E of solutions f = <X1,X2,...,Xn_1> such

e

. = w ) v .
that E 1includes each solution X{mod cn) with 0 £ Xi <c for all i. DNow

S T . . -
if % 1is a solution of (1) then there is some ¢t g 2" 1, X e E, such

that:
+ x i
X, = Xi cnti for i e [L,n-1],
-1 * % % _
® = (cg + ) Cixi) - ) e s (B)E

e 151ign—-1 l1<ign~1
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Thus system (1) has a solution if and only if for some f € E there
exists a solution of the system {called (1),) obtained from (1) by
X

substituting the expressions on the right of (3), for the variables
) X

X e in (1), and adjoining the inequality:

12

1 * * *
1-- (CG + Z ciXi) - Z cit. > 0.
c 1€1¢n-1 1g1sn~-1

may now be

Clearly the systems (1l)s in the variables ti’tz""’t
X

n-1

considered individually, and each is of the form (1) but with one less

variable.

Continuing in this way we either decide that the sfstem has or
does not have a solution, or eventually arrive at:
Case II C = ¢.

Here the system is of the form:

o

P( a, + Z a X, ), € A,
1gi¢n
e
-P( by + } bx, ), DbeB, (4}

. . =+
We may assume that there is mo ap = 0. For since O £ A, the system

of linear inequalities

N
ag + E a.x. # 0, a e A,
151ign

+
certainly has an (effectively found) solution X € N" (since some
.
¥ ¢ N' 1lies outside the union of the n-1 dimensional "subspaces”

comprised of the rational solutions of the equations

ag + E a;x; = 0), and clearly all H; g N satisfy
1gign -
(Ax. =X.+t.) vV(x. =0 vx, =1v...vx.= X.-1},
A i i ;1 i i i

Thus the problem reduces to comsidering:
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(i) the systems obtained from (4) by replacing some x; with a
number < X.,
i
(ii) the system with variables ¢ obtained from (4) by putting

X = Xi b for 1 e [1,x].

But the systems in (i) have fewer than n variables, while the system

in (ii} satisfies the requirement that all constant terms be nonzero,

since

ok
where ap + 2 aiX. 7 0,

We can also assume that every dy € O, since if d, > 0 then

+ Y dix, >0 <=
c i1
lg1gn

(} d;x. > 0) v (iZ d;x; =0) v (1L + g dox, = 0)V...v((dy-1) + E d.x, = 0),
1

so we may reduce the problem to comsidering the system with

d, + Z dixi > 0 replaced by Z dixi >0, and d, systems of
1gisx 1£ign

the form to which case I applies. (Note that each time we return to

0

Case I the number of variables is reduced by the procedure used there,
sa the "complexity" of the systems which need be considered is

decreased.)

We now have only systems of the form:

Plag+ ) a.x.), ac A, (ay # 0),
1sisn * T
P( b b b
-P( 0 * ; % Y, b e B, (5)

-+
d, + Y d.x. >0 , d e D, (dy £ 0},

left to consider, where by the restriction R introduced earlier there



are inequalities present which imply aj + Z a;x; >0 and
N N 1£ign
by + E bixi 2 0 €for all ae A, b eB. Nowlet
1gign
5 = {p: P(p) A 33 e A ( plag )}. Consider the system of relations:

-+
ag + Y a.,x, #0 (mod p), peES, 2acA,
: i1
1€1gn
- =
ag + z a x; # by + E bixi, a e A, bedB, (6)
15isn 1€isn
dy + Z d;x; > 0, d eD
l1£18n
Since x = 0 (mod p) <=> Jz(x = z +z+...+2) ,
p times

there is clearly an L_ ., sentence which expresses the statement that
]
system (6) has a solution. But using Presburger's algorithm we can
decide effectively whether a given L_ , sentence is: true and thus
3
whether (6) has a solution. If it does not have a solutiom, then the
only way (5) can have a solution is if some a, + Z a;%; = P for
1£isn
some prime p e §. Therefore the problem can be reduced to

considering the ‘|S|.|A| systems obtained by adding one of the possib

equations of the form

(aD-p) + z a;x; = Q
lgign

to (5), and of course case I applies to all of these.

I1f (6) does have a solution, then some such solution f can
gbviously be found effectively. It is claimed that in this case (5)
will also have a solution (provided HL igs true), To prove this we

will applf proposition 4 to the polynomials (in x):

ag + ( Z a.X.yx , 3 A,
; L1
1gign
(7
by + ( Z b.X;)x , beB.
1$1sn

117
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The restriction R introduced earlier and the requirement that dy s 0

ensure that Z aiXi >0 and z biXi > 0. To check that the
1<isn 1€ign
product of the polynomials in the first line of (7) has no fixed

divisor (other than 1), suppose that some prime p|+ﬁ (ap + ( Z aiXi)x)
‘ achA 1fign

for every x ¢ N. Taking x = 0 we see that P € 5, while taking x = 1

shows that pl+H (ao + ) aiXi), that is, that

agh 1€isn N
ag + 2 aiXi = 0 (mod p) for scme a e A, which is impossible since
18ign
X 1is a solution of (6).

Thus assumin it follows from proposition 4 that x > O can
g prop

be chosen satisfying:

PCag + § a,(X,x), 3eca,

lgisn
- -
“P( by + )} B.(X.x)) , b € B,
; itti
1%1sn

Taking x, = Xix gives a solution of (5) since

dg + § d.x, =dj + ( Z d.X,)x
1£14n 1£15n
2 dy + Z d.X, >0,
151n
(because X is a solution of {6) and thus Z diXi> - dy 2 0).

Having proved theorem 2 it now follows immediately (by proposition
0.1 of chapter 2) that:
COROLLARY 6 If H 18 true then =z = x.y cawmot be defined by an

extstential L_ - formula.

":+:P
REMARK: The argument above is easily extended to give a decision
procedure for all L_ + p cSentences of the form ﬁ%H;@(%};} where
=~ LI
-+ =+ . PR o
¢{(x,y) 1is quantifier free and 3xi denotes Vz£3xi 2z, {(where z;

. + > . =~ ., -
does not occur in ¢(x,y)), that ie, I is the quantifier:

there exist infinitely many X
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Corollary 6 can alse be proved for L formulas with only 3 and

£,+,F

3 quantifiers, by analysing.the properties of predicates defined by
such formulas.

The theorems proved above suggest asking what the situation
regarding decidability is for the languages L=,’,P’ LS,P (in the
notation of chapter 2). In the first case we have
THEOREM 7 HL implies that the L.

This can be proved directly by quantifier elimination, but in

, p theory of N is decidable.

view of theorem 2 it also follows from the general result:

PROPOSITION 8 (Hanf [1965], Thomas [1978]) Let P(x) be any unary

predicate on N. Then the L, theory of N s decidable Zf and

only if the existential L, p theory of W <s decidable.

Open Question: Is the L theory of N undecidable?
g,P Y

As observed by Thomas t1978], this question has a negative
answer if Hy fails so badly that 1lim inf(pi+1 ~pi) = o (where
p; denotes the i th prime).

It also seems worthwhile to remark that although it is obviously
hopeless to seek unconditional proofs of the decidability results

above using only currently known number theory, it does not seem quite

so implausible that a proof of the undecidability of the L_

theory of N might be obtained without going very far beyond what is
currently known about primes. Certainly there are other ways of
deducing the undecidability result from HL. For example, it is a
consequence of the conjecture:

If t is divisible by all prime wumbers < n then there exists
a sequence of n consecutive prime rumbers in arithmetic progression
with cormon difference- r. (This states that arithmetic progressions
of consecutive primes of all conceivable sorts exist, and is a

consequence of H_ - see Schinzel and Sierpinski [1958].)

L

Finally there is the question of what natural axiom systems it
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is reasonable to expect HL (or H for that matter) to be provable

in (assuming it is true). Let IZ, be the axiom system similar to

the system IA; defined in chapter 1, but with induction allowed

for induction hypotheses expressed by L, formulas, that is, formulas
of the form 3;6(§}y), where B(Q,y) is a A, formula.

(Intuitively II, corresponds to doing inductive arguments with
recursively enumerable ﬁredicates as the induction hypotheses - a large
proportion of known number theory can be developed this way.)
CONJECTURE: IZ; [ H

(where H_  denotes the single sentence expressing the conjecture,

as described above).
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APPENDIX I An alternative proof that addition and multiplication can

be defined by bounded L i formulas.

3

Since the proof of theorem 1.3 shows that =z = x.y can be

defined by a bounded L_ formula where A(x,y,z) <=> x+y = z, it

AL L
suffices to prove that =z = x+y can be defined by a bounded L.

]
formula,

Recall that for all real numbers a,b the integer part sign

[ ] has the property:
[a] + [b] ¢ [a+b] ¢ [a] + [b] + 1.

LEMMA z = x+y 1if and only <f =z <s the least mumber such that:

(1) x

"N

Z Ay € 2

1

(ID) z = x+y (mod 6)

(I11) For every prime p § z, p ¥ 7, either

21z (X Y1 (m
51 2 1+ B] (mod 1)
or [-E-]‘[%]+[%]+1(mod 7).

Proof:

Obviously z = x+y satisfies (I), (II), (III), so it is only
necessary to show that if =z < x+y at least one of these must fail.
Suppose z < x+y satisfies (I) and (II). Then by (II), x+y-2z = 6m
for some m 2 1. But for any n 2 1 there is a prime p with
n < p s 2n by Bertrand's postulate (a theorem of Chebychev - see, for
example, Hardy and Wright [1979] or chapter 1 of this thesis). Hence
for any m 2 1 there is a pfime p # 7 with '%uls p € 3m, and thus
some prime p # 7 satisfies 2p € x+y -z £ 4p.-

But then 2 g [+ X . 2l < 4
P P P
' z X,y z
so 2+ |—=] £ [=2+Z] 25+ [
E s &+ 2]

and 1+ [5) < B+ 31 o5+ (5,
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In other words,

z X

{E} - [E] - [%] = “13-2:“33*41 or -5,
Hence

2o .
(51 - [ [51 # 0,1 (mod 7),

and since p € X+y-2z § z2+z-z2 = g {(by (1)), condition (III) fails.

THEOREM z = x+y can be defined by a bounded LS.l formula.
We show that conditions (I), (II), (III) in the lemma can be
defined by bounded LS’l formulas,

As the predicates y = x’, x = 0 are definable by bounded L

formulas, x 2 i (mod 6) can be defined for 1=20,1,...,5 using:

x 21 (mod 6) <=> x =1 Vv (x 26 A=(2 4 x-1) A={(3 L x-i)).

Thus x+y z (mod 6) can be defined by a bounded L_ i formula, since

3

x+y E z{mod 6) <=> v (x = i(mod 6)A y = j{mod 6) A z = k{mod 6)).
1,j,ks5
i+j=k(mod 6)

Similarly condition (IIT) will be expressible by a bounded

L_ N formula if it can be shown that for j = 0,1,...,6,

p I8 prime Ap # 7 A [-;E] = i (mod 7)

can be defined by a bounded L_ N formula. But this is the case

since the predicate p <5 prime can obviously be handled (as in §1),
and [g] = i (mod 7) for a prime P # 7 if and only if there exists
U s x with =p L uA-7 1L u such that there are exactly i distinet

-

numbers v satisfying u < v g x A-p 1L v. (To see this consider the

numbers:

u=7pw < p{Tw+1) < p(7w+2)<,  <p(Pw+1i) < % < p{7w+i+ 1))
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REMARK:  This method can be refined to show that the full stength of
L (with £) is not required to define the addition and multiplication
predicates on [0,n]. Write PIS x for p e S A plx, where. § is a
set of primes. Then there ére L, .

\’ ,'
S
such that for all n and all x,y,z ¢ [o,n],

formulas ¢A(x,y,z), ¢m(x3y:z)

Xty z <=3 <[Osn}: 3 :[S = f=dJA(X,y,Z)

x.¥ z <=> <[0,n], % :‘S > =¢|M(XJYJZJ

provided A{p: P £ C log n} € 8 (where C 1is a suitably large constant,
for example C > 1).

This is because for y ¢ 2C logn the definition of =x+y = z
given above requires only a knowledge of which numbers are divisible
by primes p £ C log n. Thus there is an L formula 8(z,v,p)

such that for all primes p < C logn and all =z,y,

8{z,y,p) <=> y < p Az =y (mod p).

Also since the predicates x+y = z and thus x.y = z can be
defined on [0,2C log n], it is possible to define =x+y = z (mod p) and

x.y = z (mod p) (the latter in two steps) for all x,y e [0,n],p s C log n,

and hence obtain definitioms for x+y = 2 and x.y =2z on [0,n] from
the equivalences:

z {(mad p))

15

xty =z <=>VYp £C logn(x+y

z (mod p)).

Xx.y=z<=>Y¥Y¥psClogn(x.y

Using these ideas, the method can also be extended to show that

there are bounded L_ N formulas wA(x,y,z), wM(x,y,z) with the

~2

property that if a suitable axiom ¢ defining L, for example:
Ve Vy (x Ly <=> V2(3ulx = z.u) A vy = z.v) + z = 1)),

is gdded to the axiom system IAy considered in chapter 1, then

IAg + ¢ | VxVyVa(x+y = z <=> v, Ge,y,2)),

I

A, + ¢ F ¥xVyValx .y = z <=> wM(x,y,z)).
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APPENDIX II Some problems in computational complexity

As mentioned in chapter 2 a positive solution to the RUD = §
problem would solve several dpen problems in computational complexity
theory. For a start the class of all sets § of positive integers such
that 5 can be accepted or rejected by some deterministic Turing machine
using linear working space (or equivalently such that S has an Ei
definition) is easily seen to‘include RUD and to be contained in 5.

Thus we have:
RUD(= 4, sets) C linear space(=E2 sets) < S(= NEXP),

where it is not known whether linear space = NEXP or whether
RUD = linear space.

A proof that RUD = S would also settle the P = NP problem which
asks whether every 5 C N which can be accepted in polynomial time by
some nondeterministic Turing machine (that is, every 8 e NP) is a
member of the class P of all sets which can be accepted (or rejected)
in polynomial time by a deterministic Turing machine. Let
co-NP = {N~8: S &€ NP}. At present it is not known whether
NP = co -NP, although P = NP =NP = co~-NP since if 8 £ P then
obviously N-~85 e P. These problems were generalised by Stockmeyer

[1976]. The Stockmeyer polynomial time hierarchy is defined by taking

P _ P

ZO = HU P,

S5 e ZP <=
nt+l

8 s accepted in polynomial itime by some nondeterministic Turing

. . P
machine using an oracle A e L

P P
il = :
i1 {N S: 5S¢ 2n+1}.
The problem of whether the classes Iy € 2? €I, €... forma strict

P ! EP -

hierarchy is open. Let A = gL Since EE = NP it is obvious

u nt,
n Tl

that NP = AP <=> NP = co -NP. Also as observed by Paris and
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Dimitracopoulos [7777], the sets 5 & aF  are precisely those subsets
of N with the property that S = {x: ¢(x)} for some ¢(x)} of the
form:

[log,x]™ [log,x]™ [log,x]™ N
Q,y; § x Q,¥, § % e Qy 5 x Alx,y) (1)

where Ql’Qz""’Qs denote quantifiers (Y o ,me N, and A <s

a quantifier free L., . formula.
~ L

Furthermore, the polynomial time hierarchy collapses at some point
. P _ P _ IIP . . .
(that is, A" = o= I for some u) if and only if a fixed bound
independent of S can be placed of the number of quantifiers required
in (1).
An analogous open problem for A, formulas is whether there is

some fixed k such that every R e RUD can be defined by a formula

of the form:

ng{l) Sx:q-g(z) £ x ..ng(k) s x plx,v) (2)
where Qig(l) £ x denotes a block of similar bounded quantifiers of
the form 3v§i) £ x HV(i) £ X ... 3v§i) £ x or
vai) £ x Vvéi) £x ... Vvii) £ x ,and p is.a quantifier free 1L_ .

formula. A bound k on the number of changes of quantifier does exist if
RUD = itinear space, as is shown in Harrow [1978)}. (Wilkie [1979] has
proved it is not possible to put a bound on the number of individual
quantifiers.)

On the other hand Paris and Dimitracopoulos [????] show that for
every k there is some formula ¢k(x) of type (1) which cannot be

defined by any bounded ﬁ< .. formula with only k changes of

e [log,x]
quantifier. This is because it is possible to use numbers u < x

as codes for sequences v VL § X and thus replace blocks of

) . [log,x]
guantifiers of the form Qvi £ x by single quantifiers Qu £ x ;

170"
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to obtain a sort of universal formuila Tk(x,n) with
T (x, 8) <= 6(x)

for all €(x) of form (2) having Codel numbers @ sufficiently small

compared with x.

THEOREM 1 RUD = § => NP # co - NP,
Suppose RUD = 5. Thean RUD = Z7Zneqr space so there exists
some fixed %k such that every R £ RUD can be defined by some formula

of form (2)., Thus there is some formula ¢k(x) of form (1) such thar

the set

5 = {x: ¢k(x)} £ RUD,

that is, there is some 8 = AP such that S £ RUD. But since
NP C NEXP = § = RUD, we see that § f NP, so NP # AP, that is,

NP # co - NP.

Not only does assuming RUD = § ensure the existence of an upper
bound on k inm (2), but it also implies a lower bound, namely that
some bounded L_ + . formula ¢(x) is not equivalent to any bounded

~3 3

diophantine formula:

+
Hvl £ x 3v2 $ X ... 3v. € x Mx,v)

where A 1is quantifier free and can be assumed without loss of generality
to be an equation between two polynomials.
For all such formulas obviously define sets § & NP, and NP # NEXP-
by a well known nondeterministic time hierarchy theorem.
Finally it should be remarked that assuming the emistééce of an
upper boﬁnd on k allows us to deduce Hn(zi = 4.
P

For suppose S € A". Then S 1is defined by some formula ¢(x) of

the form:
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[logzx]m {logzx]m [1og2x]m .
Qy, § % Q,y, § x e Qy fx Alx,y).
We need only show that an upper bound can be placed on the s required

here. Let 8(x,z) be the bounded L, . formula:

L]

.+
Qy] § 2 Qyyp § 2 ... Q.y, § z AMx,y).

Choose a suitable polynomial p(x,z) coding ordered pairs <x,z> by
the single numbers p(x,z), with p(x,2z) s ¢z2 (C constant) whenever x < z.

Obviously we can find a bounded formula 9 (w) such that:
8 (p(x,z)) <=> 8(x,z).

But if every bounded L., formula is equivalent to one with only k

~) 3

changes of quantifier then 8" (w) can be assumed to be of the form:

1 2
ng( ) fw ng( ) £W ... ng(k) £ w plw,v)
. ‘s . . +(1)
where p(w,v) is quantifier free. Using coding,each block in £w
of quantifiers of the form ingl) £ w ingl) £w ... inil) £ w can

be replaced by a single quantifier of the form Q.y. € w . Thus 8 (w)
P y q Y3

is equivalent to some formula of the form:

T T r F
Qy; s W Qy, swo... ey § wopw,y)

n
o [log,w]
where pl(w,y) is a formula with all quantifiers bounded by w

for some n, and the number of these quantifiers is less than some

bound independent of S. (This is possible since there is a polynomial

bound on the time required, given the y;'s, to compute the sequences

coded by the yi's and then determine whether

REINO RN

p(w,g) is satisfied.)

Clearly it follows that

[1og2x]m - {logzx]m
p(x) <=> 8(x,x ) <=> 0 (p(x,x )y <=>

]m'i'l ]m+1

[log,x [log,x [1og2x]m+1 N
Qy, § x Q¥ € x e Quyy $x p,(x,y)
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[1082X]n
where all the quantifiers in p, are bounded by =x for

some n, and their number does not depend on 8.
In particular it follows from this that:

THEOREM 2. RUD = § => :—in(;:fl = oy,

(that is, the Stockmeyer polynomial time hierarchy collapses if RUD = 5).
0f course by theorem 1 we must have =n > 1, but this could

conceivably be consistent with the conjecture of Baker and Selman [1979]

P P P
¥ =
that Iy AT # 22.
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