
Building Skills in Object-Oriented Design
Release 2.2.1-Python

Steven F. Lott

March 14, 2015

CONTENTS

I Front Matter 3

1 Preface 5
1.1 Why Read This Book? . 5
1.2 Audience . 6
1.3 Organization of This Book . 7
1.4 Why This Subject? . 9
1.5 Programming Style . 9
1.6 Conventions Used in This Book . 10
1.7 Acknowledgements . 11

2 Foundations 13
2.1 Problem Statement . 13
2.2 Our Simulation Application . 15
2.3 Soapbox on Use Cases . 15
2.4 Solution Approach . 16
2.5 Methodology, Technique and Process . 17
2.6 Deliverables . 22

II Roulette 25

3 Roulette Details 29
3.1 Roulette Game . 29
3.2 Available Bets in Roulette . 29
3.3 Some Betting Strategies . 32

4 Roulette Solution Overview 35
4.1 Preliminary Survey of Classes . 35
4.2 Preliminary Roulette Class Structure . 36
4.3 A Walkthrough of Roulette . 37
4.4 Roulette Solution Questions and Answers . 38

5 Outcome Class 41
5.1 Outcome Overview . 41
5.2 Design Decision – Object Identity . 41
5.3 Outcome Design . 44
5.4 Outcome Deliverables . 45
5.5 Message Formatting . 45

6 Bin Class 47
6.1 Bin Overview . 47

i

6.2 Design Decision – Choosing A Collection . 47
6.3 Bin Questions and Answers . 48
6.4 Bin Design . 48
6.5 Bin Deliverables . 50

7 Wheel Class 51
7.1 Wheel Overview . 51
7.2 Wheel Design . 52
7.3 Non-Random Design . 53
7.4 Wheel Deliverables . 54

8 Bin Builder Class 55
8.1 Bin Builder Overview . 55
8.2 Bin Builder Algorithms . 56
8.3 BinBuilder Design . 59
8.4 Bin Builder Deliverables . 59
8.5 Internationalization and Localization . 60

9 Roulette Bet Class 61
9.1 Roulette Bet Overview . 61
9.2 Design Decision – Create or Locate an Outcome . 61
9.3 Design Decision – Where to Keep the Outcome Map . 62
9.4 Roulette Bet Questions and Answers . 63
9.5 Roulette Bet Design . 64
9.6 Roulette Bet Deliverables . 65

10 Roulette Table Class 67
10.1 Roulette Table Overview . 67
10.2 InvalidBet Exception Design . 68
10.3 Roulette Table Design . 69
10.4 Roulette Table Deliverables . 69

11 Roulette Game Class 71
11.1 Roulette Game Overview . 71
11.2 Passenger57 Design . 72
11.3 Roulette Game Design . 73
11.4 Roulette Game Questions and Answers . 74
11.5 Roulette Game Deliverables . 74
11.6 Additional Roulette Design Considerations . 75

12 Review of Testability 77
12.1 Testability Overview . 77
12.2 Test-Driven Design . 78
12.3 Capturing Pseudo-Radom Data . 79
12.4 Testability Questions and Answers . 79
12.5 Testable Random Events Design . 80
12.6 Testability Deliverables . 81

13 Player Class 83
13.1 Roulette Player Overview . 83
13.2 Player Design . 85
13.3 Martingale Player Design . 86
13.4 Player Deliverables . 87

14 Overall Simulation Control 89

ii

14.1 Simulation Control Overview . 89
14.2 Simulation Terms . 89
14.3 Simulator Design . 91
14.4 Player Rework . 93
14.5 Simulation Control Deliverables . 93

15 SevenReds Player Class 95
15.1 SevenReds Player Overview . 95
15.2 SevenReds Design . 96
15.3 Player Rework . 97
15.4 Game Rework . 97
15.5 SevenReds Player Deliverables . 97

16 Statistical Measures 99
16.1 Statistics Overview . 99
16.2 Some Foundations . 100
16.3 Statistical Algorithms . 101
16.4 IntegerStatistics Design . 102
16.5 Statistics Deliverables . 103

17 Random Player Class 105
17.1 Random Player Overview . 105
17.2 Random Player Design . 106
17.3 Random Player Deliverables . 106

18 Player 1-3-2-6 Class 107
18.1 Player 1-3-2-6 Overview . 107
18.2 On Polymorphism . 108
18.3 Player 1-3-2-6 Questions and Answers . 109
18.4 Player1326 State Design . 110
18.5 Player1326 No Wins Design . 111
18.6 Player1326 One Win Design . 111
18.7 Player1326 Two Wins Design . 111
18.8 Player1326 Three Wins . 112
18.9 Player1326 Design . 112
18.10 Player 1-3-2-6 Deliverables . 113
18.11 Advanced Exercise – Refactoring . 113
18.12 Advanced Exercise – Less Object Creation . 113

19 Cancellation Player Class 115
19.1 Cancellation Player Overview . 115
19.2 PlayerCancellation Design . 115
19.3 Cancellation Player Deliverables . 116

20 Fibonacci Player Class 117
20.1 Fibonacci Player Overview . 117
20.2 PlayerFibonacci Design . 118
20.3 Fibonacci Player Deliverables . 118

21 Conclusion 121

III Craps 123

22 Craps Details 127

iii

22.1 Craps Game . 127
22.2 Creating A Dice Frequency Distribution . 128
22.3 Available Bets . 128
22.4 Some Betting Strategies . 131
22.5 Wrong Betting . 131

23 Craps Solution Overview 133
23.1 Preliminary Survey of Classes . 133
23.2 Preliminary Class Structure . 134
23.3 A Walkthrough of Craps . 134
23.4 Craps Solution Questions and Answers . 135

24 Outcome Class 137
24.1 Outcome Overview . 137
24.2 Overloaded Methods . 139
24.3 Outcome Rework . 139
24.4 Outcome Deliverables . 140
24.5 Advanced Exercise . 140

25 Throw Class 141
25.1 Throw Overview . 141
25.2 Throw Design . 142
25.3 Natural Throw Design . 143
25.4 Craps Throw Design . 144
25.5 Eleven Throw Design . 144
25.6 Point Throw Design . 145
25.7 Craps Game Design . 146
25.8 Throw Deliverables . 147

26 Dice Class 149
26.1 Dice Overview . 149
26.2 Throw Rework . 150
26.3 NumberPair Design . 150
26.4 Dice Design . 151
26.5 Dice Deliverables . 152
26.6 Dice Optimization . 152

27 Throw Builder Class 155
27.1 Throw Builder Overview . 155
27.2 Outcomes with Variable Odds . 156
27.3 Refactoring The Outcome Hierarchy . 157
27.4 Soapbox on Subclasses . 158
27.5 Soapbox on Architecture . 159
27.6 Throw Builder Questions and Answers . 161
27.7 Soapbox on Justification . 161
27.8 Design Light . 163
27.9 Design Heavy . 163
27.10 Common Design . 164
27.11 Throw-Builder Deliverables . 166

28 Bet Class 167
28.1 Bet Overview . 167
28.2 Bet Rework . 167
28.3 CommissionBet Design . 168
28.4 Bet Deliverables . 168

iv

29 Craps Table Class 169
29.1 Craps Table Overview . 169
29.2 Design Decision – Table vs. Game Responsibility . 170
29.3 Design Decision – Allowable Outcomes . 170
29.4 CrapsGame Stub . 171
29.5 CrapsTable Design . 171
29.6 Craps Table Deliverables . 172

30 CrapsGame Class 173
30.1 Game State . 173
30.2 Game State Class Hierarchy . 175
30.3 Resolving Bets . 176
30.4 Moveable Bets . 177
30.5 Design Decision – Win, Lose, Wait . 177
30.6 Additional Craps Design . 179
30.7 Craps Game Implementation Overview . 180
30.8 Throw Rework . 180
30.9 ThrowBuilder Rework . 182
30.10 Bet Rework . 183
30.11 CrapsPlayer Class Stub . 183
30.12 CrapsGameState Class . 184
30.13 CrapsGamePointOff Class . 185
30.14 CrapsGamePointOn Class . 186
30.15 CrapsGame Class . 188
30.16 Craps Game Deliverables . 190
30.17 Optional Working Bets . 190

31 CrapsPlayer Class 191
31.1 Craps Player Overview . 191
31.2 CrapsPlayer Superclass Design . 192
31.3 CrapsPlayerPass Subclass . 193
31.4 Craps Martingale Subclass . 193
31.5 Craps Player Deliverables . 194

32 Design Cleanup and Refactoring 195
32.1 Design Review . 195
32.2 RandomEventFactory Design . 199
32.3 Wheel Class Design . 200
32.4 Table Class . 201
32.5 Game Class . 203
32.6 RouletteGame Class . 204
32.7 CrapsGame Class . 204
32.8 Refactoring Deliverables . 205

33 Simple Craps Players 207
33.1 Simple Craps Players Overview . 207
33.2 CrapsPlayer Design . 208
33.3 CrapsSimplePlayer superclass . 208
33.4 Craps Martingale Player . 209
33.5 Player1326 State . 210
33.6 Craps1326 Player . 211
33.7 CrapsCancellation Player . 212
33.8 Simple Craps Players Deliverables . 212

34 Roll-Counting Player Class 215

v

34.1 Roll-Counting Overview . 215
34.2 BettingStrategy Design . 217
34.3 NoChangeBetting Class . 217
34.4 MartingaleBetting Class . 218
34.5 Bet1326Betting Class . 219
34.6 CrapsOneBetPlayer class . 220
34.7 CrapsTwoBetPlayer class . 221
34.8 CrapsSevenCountPlayer class . 222
34.9 Roll-Counting Deliverables . 223

35 Conclusion 225

IV Blackjack 227

36 Blackjack Details 231
36.1 Blackjack Game . 231
36.2 Available Bets and Choices . 233
36.3 Betting Strategies . 233

37 Blackjack Solution Overview 235
37.1 Preliminary Survey of Classes . 235
37.2 Preliminary Class Structure . 236
37.3 A Walkthrough . 236
37.4 Blackjack Solution Questions and Answers . 238

38 Card, Deck and Shoe Classes 239
38.1 Card, Deck and Shoe Overview . 239
38.2 Card-Deck-Shoe Questions and Answers . 240
38.3 Card Superclass . 241
38.4 FaceCard Class . 243
38.5 AceCard Class . 243
38.6 Deck class . 243
38.7 Shoe class . 244
38.8 Card-Deck-Shoe Deliverables . 245

39 Hand and Outcome Classes 247
39.1 Hand Overview . 247
39.2 Hand Total Class Design . 250
39.3 Hand Hard Total Class Design . 250
39.4 Hand Soft Total Class Design . 250
39.5 Card Class Updates . 251
39.6 Hand Class Design . 251
39.7 Hand Deliverables . 253

40 Blackjack Table Class 255
40.1 Blackjack Table Overview . 255
40.2 BlackjackTable Class . 255
40.3 Hand Rework . 256
40.4 Blackjack Table Deliverables . 256

41 Blackjack Game Class 259
41.1 Blackjack Game Overview . 259
41.2 Blackjack Collaboration . 260
41.3 Dealer Rules . 262

vi

41.4 BlackjackPlayer Class . 262
41.5 Card Rework . 264
41.6 Hand Rework . 264
41.7 BlackjackGame Class . 264
41.8 Blackjack Game Deliverables . 266

42 Simple Blackjack Player Class 269
42.1 Blackjack Player Overview . 269
42.2 SimpleBlackjackPlayer Design . 270
42.3 Blackjack Player Deliverables . 271

43 Variant Game Rules 273
43.1 Variant Game Overview . 273
43.2 BlackjackGame Rework . 274
43.3 OneDeckGame Class . 274
43.4 Variant Game Deliverables . 274

44 Conclusion 275

V Fit and Finish 277

45 Python unittest Testing 281
45.1 Dependencies . 282
45.2 Example . 282

46 Python doctest Testing 285
46.1 Example . 286
46.2 Add the Test Framework . 288
46.3 Mixed unittest and doctest . 288

47 Python Documentation 291
47.1 Basic RST Markup . 292
47.2 RST Field Markup . 294
47.3 Class Example . 295

VI Back Matter 299

48 Bibliography 301
48.1 Use Cases . 301
48.2 Computer Science . 301
48.3 Design Patterns . 301
48.4 Statistics . 301
48.5 Python . 301
48.6 Java . 301
48.7 Casino Games . 301

49 Toolset 303

50 Indices and tables 305

Bibliography 307

vii

viii

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Step-by-Step Construction of A Complete Application

Legal Notice This work is licensed under a Creative Commons License. You are free
to copy, distribute, display, and perform the work under the following conditions:

• Attribution. You must give the original author, Steven F. Lott, credit.

• Noncommercial. You may not use this work for commercial purposes.

• No Derivative Works. You may not alter, transform, or build upon this work.

For any reuse or distribution, you must make clear to others the license terms of this work.

CONTENTS 1

http://creativecommons.org/licenses/by-nc-nd/2.0/
http://creativecommons.org/licenses/by-nc-nd/2.0/

Building Skills in Object-Oriented Design, Release 2.2.1-Python

2 CONTENTS

Part I

Front Matter

3

CHAPTER

ONE

PREFACE

Pensés, The Provincial Letters: Provincial letter 16, p. 571.

The present letter is a very long one, simply because I had no leisure to make it shorter.

– BLAISE PASCAL

1.1 Why Read This Book?

The coffee-shop reason for reading this book is to provide the beginning designer with a sequence of interesting
and moderately complex exercises in OO design.

If that’s all you needed to know, skip to the next chapter. It’s okay. We don’t mind.

The Problem. Some software developers find themselves stalled when trying to do object-oriented (OO)
design. As programmers, they’ve understood the syntax of a programming language, and pieced together
small examples. However, it is often difficult to take the next step to becoming a designer. The transition
from guided learning of language features to self-directed design work is often ignored. Programmers are left
to struggle through their first design projects without appropriate skills or support.

This may be you. You’ve learned the language, but you can’t take the next step.

While it is critically important to read examples of good design, a finished product doesn’t reveal the author’s
decision-making process that created the design. There’s little support that helps a programmer come to
understand the design process that leads to a final product.

The most notable consequence of this skills gap is some n00b programmers will create of software that is far
more complex than necessary to effectively solve a given problem. This, in turn, leads to software with high
maintenance costs stemming from the low quality. It also leads to an unfair indictment of OO technology;
this is usually voiced as “we tried OO programming and it failed.”

Unrealistic Expectations. As programming team leaders, educators and consultants, we find that software
development training is focused on the programming tools, but does not expose the process of creating a
design. We all start out building software designed by someone else. What’s involved in design?

In the building trades, we would neither expect nor allow apprentice plumbers to design the sanitary sewage
system for an urban office building. Yet, in too many Information Technology (IT) departments, software
developers are expected to leap from basic training in their tools to application design.

To continue this rant, we also find that some managers are entrusted with significant projects, but are
uncomfortable with OO design on modern high-performance hardware. They tend to focus their design
energies on the kinds of software architectures that were appropriate when the enterprise owned a single
computer, when 64 megabytes of memory was all the enterprise would ever need, and centralized disk storage

5

Building Skills in Object-Oriented Design, Release 2.2.1-Python

was charged back to end user departments at a rate of pennies per track per month. In some organizations,
there are a few enduring symptoms of this mind set in some of the ways that “end-user computing” is
separated from “enterprise computing”; we relegate everything non-mainframe to second class status.

Management discomfort with OO technology surfaces in many ways. One shocking comment was that
“no application needs more than six classes.” A consequence of this management attitude is an unrealistic
expectation for schedule and the evolution of the deliverables.

Closing the Skills Gap. The deepeer answer on the intent of this book is to help you, the beginning
designer, by giving you a sequence of interesting and moderately complex exercises in OO design. The
exercises are not focused on a language, but on a design process. The exercises are not hypothetical, but
must lead directly to working programs.

The long answer is that this book will make you work.

This book can also help managers develop a level of comfort with the process of OO software development.
The applications we will build are a step above trivial, and will require some careful thought and design.
Further, because the applications are largely recreational in nature, they are interesting and engaging. This
book allows the reader to explore the processes and artifacts of OO design before project deadlines make
good design seem impossible.

We hope to prevent managers from saying the following: “We had a good design, but were forced to compro-
mise it to meet our schedule.” As consultants, we find this to be a sad statement of management’s emphasis
of one near-term goal over long-term value. In one case, this was the result of a series of poorly-informed
management decisions compounded on weak design skills. One of the root causes was the inability of the
designers and managers to agree to a suitable course of action when a new kind of requirement made devas-
tating changes to an existing design. We believe that more informed managers would have made a decision
that created better long-term value.

1.2 Audience

Our primary audience – you – includes programmers who are new to OO programming.

You need to have an exposure to the language, but you need more time to understand objects and object-
orientation. We will provide exercises that have four key features: just complex enough to require careful
design work, just fun enough to be engaging, easy enough that results are available immediately, and can be
built in simple stages.

In our effort to support you, we’ll provide a few additional details on language features. We’ll mark these
as “Tips”. For more advanced students, these tips will be review material. We will not provide a thorough
background in any programming language. The student is expected to know the basics of the language and
tools.

Helpful additional skills include using one of the various unit test and documentation frameworks available.
We’ve included information in the appendices.

OO Misdirection. Have you found your first exposure to objects to be more distasteful than empowering?
Why does this happen?

Some instructors preface a course on a language (like Python or Java) with an extensive presentations on
object orientation. It’s not easy to grasp OO design concepts before getting to the language fundamentals.
In some cases, this leaves students lost as to how they will accomplish the noble and lofty goals of OO.

Other instructors leave OO for last, exposing the procedural side of the language first, and treating objects
as a kind of add-on. This leaves students feeling that objects are optional. Additionally, some very skilled
instructors are not skilled developers, and will often show examples that don’t reflect currently accepted best
practices.

6 Chapter 1. Preface

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Classroom Use. Instructors are always looking for classroom projects that are engaging, comprehensible,
and focus on perfecting language skills. Many real-world applications require considerable explanation of
the problem domain; the time spent reviewing background information detracts from the time available to
do the relevant programming. While all application programming requires some domain knowledge, the idea
behind these exercises is to pick a domain that many people know a little bit about. This allows an instructor
to use some or all of these exercises without wasting precious classroom time on incidental details required
to understand the problem.

Skills. This book assumes an introductory level of skill in an OO programming language.

We provide specific examples in Python (at least version 2.5).

Student skills we expect include the following. If you can’t do these things, this book is too advanced. Close
it now.

• Create source files, compile and run application programs. While this may seem obvious, we don’t
discuss any integrated development environment (IDE). We have to assume these basic skills are
present.

• Use of the core procedural programming constructs: variables, statements, exceptions, functions. We
will not, for example, spend any time on design of loops that terminate properly.

• Some exposure to class definitions and subclasses. This includes managing the basic features of in-
heritance, as well as overloaded method names. We will avoid Python-unique features like multiple
inheritance and callable objects, and focus on that subset of Python features that map directly to Java.
For the Python equivalent of overloaded methods, we will assume that Python programmers can make
use of default parameter values and named parameters.

• Some exposure to the various collections frameworks. For Java programmers, this means the classes
in the java.util package. For Python programmers, this means the built-in sequence and mapping
types.

• Optionally, some experience with a unit testing framework. See the appendices for supplemental
exercises if you aren’t familiar with Python’s unittest or doctest or Java’s JUnit.

• Optionally, some experience writing formal documentation. For Java programmers, this means
javadoc comments. For Python programmers, this often means Epydoc or a similar documentation
package. See the appendices for supplemental exerises if you aren’t familiar with formal, deliverable
documentation.

Language Details. There are two editions of this book, one emphasizing Python syntax and the other
emphasizing Java syntax. Both books come from a common source, so that the OO Design issues are central
and the language nuances are segregated.

1.3 Organization of This Book

This book presents a series of exercises to build simulations of the common, popular casino table games:
Roulette, Craps and Blackjack. Each simulation can be extended to include variations on the player’s betting
system. With a simple statistical approach, we can show the realistic expectations for any betting system.
Each of these games has a separate part in this book. Each part consists of a number of individual exercises
to build the entire simulation. The completed project results in an application that can provide simple
tabular results that shows the average losses expected from each betting strategy.

The interesting degree of freedom in each of the simulations is the player’s betting strategy. The design will
permit easy adaptation and maintenance of the player’s strategies. The resulting application program can
be extended by inserting additional betting systems, which allows exploration of what (if any) player actions
can minimize the losses.

1.3. Organization of This Book 7

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Roulette. For those who’ve never been in a casino, or seen movies that have casinos in them, Roulette is
the game with the big wheel. They spin the wheel and toss in a marble. When the wheel stops spinning,
the bin in which the marble rests defines the winning outcomes.

People who bet on the right things get money. People who bet on the wrong things lose money.

Starting in Roulette, we proceed slowly, building up the necessary application one class at a time. Since this
is the simplest game, the individual classes reflect that simplicity. We focus on isolation of responsibilities,
creating a considerable number of classes. The idea is to build skills in object design by applying those skills
to a number of classes.

The first chapter of the part provides details on the game of Roulette and the problem that the simulation
solves. The second chapter is an overview of the solution, setting out the highest-level design for the
application software. This chapter includes a technique for doing a “walk-through” of the design to be
confident that the design will actually solve the problem.

Each of the remaining sixteen chapters is a design and programming exercise to be completed by the student.
Plus or minus a Frequently Asked Questions (FAQ) section, each chapter has the same basic structure: an
overview of the components being designed, some design details, and a summary of the deliverables to be
built. The overview section presents some justification and rationale for the design. This material should
help the student understand why the particular design was chosen. The design section provides a more
detailed specification of the class or classes to be built. This will include some technical information on Java
or Python implementation techniques.

Craps. For those who’ve never been in a casino, or seen the play “Guys and Dolls”, Craps is the game with
the dice. A player shoots the dice. Sometimes there’s a great deal of shouting and clapping. A throw of the
dice may – or may not – resolve bets. Additionally, a throw of the dice may also change the state of the
game. A casino provides a number of visual cues as to the state of the game and the various bets.

In Craps, we build on the design patterns from Roulette. Craps, however, is a stateful game, so there is a
more sophisticated design to handle the interactions between dice, game state and player. We exploit the
State design pattern to show how the design pattern can be applied to this simple situation.

The first chapter is background information on the game of Craps, and the problem that the simulation solves.
The second chapter is an overview of the solution, setting out the highest-level design for the application
software. This chapter also provides a “walk-through” of the design.

Each of the remaining eleven chapters is an exercise to be completed by the student. Each chapter has the
same basic structure: an overview of the component being designed, some design details, and a summary of
the deliverables to be built.

Blackjack. For those who’ve never been in a casino, or seen a movie with Blackjack, Blackjack is a game
with cards. The dealer deals two cards to themselves and each player. One of the dealer’s card is up and
one is down, providing a little bit of information on the dealer’s hand. The players may ask for additional
cards, or keep the hand they’ve got.

The idea is to build a hand that’s close to 21 points, but not more than 21. In Craps and Roulette there are
a lot of bets, but few player decisions. In Blackjack, there are few bets, but really complex player decisions.

In Blackjack, the game states are more sophisticated than Craps or Roulette. In casino gift shops, you
can buy small summary cards that enumerate all possible game states and responses. The more advanced
student can tackle these sophisticated playing strategies. For the less advanced student we will simplify the
strategies down to a few key conditions.

The first two chapters are background information on the game of Blackjack, the problem that the simulation
solves, and an overview of the solution, setting out the highest-level design for the application software. Each
of the remaining six chapters is an exercise to be completed by the student. Since this is more advanced
material, and builds on previous work, this part has many simple deliverables compressed into the individual
chapters.

8 Chapter 1. Preface

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Fit and Finish. We include several fit-and-finish issues in Fit and Finish. This includes more information
and examples on unit testing and documentation.

Additionally, we cover some “main program” issues required to knit all of the software components together
into a finished whole.

1.4 Why This Subject?

Casino table games may seem like an odd choice of subject matter for programming exercises. We find that
casino games have a number of advantages for teaching OO design and OO programming.

• Casino games have an almost ideal level of complexity. If they were too simple, the house edge would
be too obvious and people would not play them. If they were too complex, people would not enjoy
them as simple recreation. Years (centuries?) of experience in the gaming industry has fine-tuned the
table games to fit nicely with the limits of our human intellect.

• Simulation of discrete phenomena lies at the origin of OO programming. We have found it easier to mo-
tivate, explain and justify OO design when solving simulation problems. The student can then leverage
this insight into other applications of OO programming for more common transactional applications.

• The results are sophisticated but easy to interpret. Probability theory has been applied by others to
develop precise expectations for each game. These simulations should produce results consistent with
the known probabilities. This book will skim over the probability theory in order to focus on the
programming. For a few exercises, the theoretical results will be provided to serve as checks on the
correctness of the student’s work.

• They’re more fun than most other programming problems.

This book does not endorse casino gaming. Indeed, one of the messages of this book is that all casino games
are biased against the player. Even the most casual study of the results of the exercises will allow the student
to see the magnitude of the house edge in each of the games presented.

1.5 Programming Style

We have to adopt a style for each of the languages we’re presenting. We won’t present a complete set of coding
standards; we will omit a number of issues that should be standardized. Some IT shops have documents
they call “coding standards”, but are little more than descriptive style guides. What follows is not this kind
of style guide; instead, it is some justification of the style we use for the examples in this book.

Just to continune this rant, we find that source code examples speak louder than any gratuitously detailed
“specification” of the desired style. We find that some IT organizations waste time trying to write definitions
of the preferred style. A good example trumps the description of the example. In particular, as consultants,
we are often asked to provide standards to an inexperienced team of programmers. While the programmers
only look at the examples (often cutting and pasting them), some managers prefer to spend money on empty
verbiage peripheral to the useful example.

Terminology. We tend to prefer Java-centric terminology: “field” and “method”. Occasionally, we will em-
phasize the differences between Java and Python by using the Python terms “attribute”, “instance variable”
or “method function” .

Naming Style. We avoid using complex prefixes for variable names. In particular, we find prefixes to be
little more than visual clutter. For example, an integer parameter with the amount of a bet might be called
pi_amount where the prefix indicates the scope (p for a parameter) and type (i for an integer).

1.4. Why This Subject? 9

Building Skills in Object-Oriented Design, Release 2.2.1-Python

This style of name is only appropriate for primitive types, and doesn’t address complex data structures well
at all. How does one name a parameter that is a LinkedList of Sets of Outcomes? In Java programs, the
variables are formally declared, therefore, we find that we don’t need additional cues for their data type.

In some cases, prefixes are used to denote the scope of an instance variables. Variable names might include
a cryptic one-letter prefix like “f” to denote an instance variable; sometimes programmers will use “my” or
“the” as an English-like prefix. We prefer to reduce clutter.

In Python, instance variables are always qualified, typically by self., making the scope very clear.

Generally, method functions (and classes) should be short enough and simple enough that complex naviga-
tional aids are not necessary.

1.6 Conventions Used in This Book

Here is a Python example.

Typical Python Example

from collections import defaultdict
combo = defaultdict(int)
for i in range(1,7):

for j in range(1,7):
roll= i+j
combo[roll] += 1

for n in range(2,13):
print "%d %.2f%%" % (n, combo[n]/36.0)

1. We create a Python dictionary, a map from key to value. We use the collections.defaultdict so
that missing keys are created in the dictionary with an initial value created by the int() function.

2. We iterate through all combinations of two dice, using variables i and j to represent each die.

3. We sum the dice to create a roll. We increment the value in the dictionary based on the roll.

4. Finally, we print each member of the resulting dictionary.

The output from the above program will be shown as follows:

2 0.03%
3 0.06%
4 0.08%
5 0.11%
6 0.14%
7 0.17%
8 0.14%
9 0.11%
10 0.08%
11 0.06%
12 0.03%

We will use the following type styles for references to a specific Class, method(), or variable.

Most of the design specifications will provide Java-style method and variable descriptions. Python doesn’t
use type specifications, and Python programmers will have to translate the Java specifications into Python
by removing the type names.

10 Chapter 1. Preface

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Sidebars

When we do have a significant digression, it will appear in a sidebar, like this.

Tip: Tip
There will be design tips, and warnings, in the material for each exercise. These reflect considerations and
lessons learned that aren’t typically clear to starting OO designers.

1.7 Acknowledgements

We would like to thank Chuck Pyrak for putting us up to this. His idea of a One Room Schoolhouse to teach
Java to an audience at multiple skill levels was a great idea. Additionally, our colleagues who collaborated
through BLOKI brought infinte wisdom and insight to a complex and difficult project.

Thanks to Dion Dock and Robert Lucente for comments and corrections.

1.7. Acknowledgements 11

Building Skills in Object-Oriented Design, Release 2.2.1-Python

12 Chapter 1. Preface

CHAPTER

TWO

FOUNDATIONS

We’ll set our goal by presenting several elements that make up a complete problem statement: a context
in which the problem arises, the problem, the forces that influence the choice of solution, the solution that
balances the forces, and some consequences of the chosen solution.

Based on the problem statement, we’ll present the high-level use case that this software implements. The
use case is almost too trivial to bother defining. However, we have seen many projects run aground because
they lacked even the most rudimentary description of the actor, the system and how the system helps the
actor create value.

We will summarize the approach to the solution, describing the overall strategy that we will follow. This is
a kind of overall design pattern that we’ll use to establish some areas of responsibility.

We will also describe the technical foundations. In this case, they are not terribly complex, but this is an
important part of describing any software solution, no matter how simple.

We will dance around the methodology issue. Our intent is not to sell a particular methodology, but to
provide some perspective on how we broke the work into manageable pieces.

Finally, we’ll present some important parts of getting started on the solution. These are more specific,
technical considerations that define common aspects of our approach.

2.1 Problem Statement

We’ll start with a big-picture overview of our problem. We’ll present the context in which the problem arises,
a summary of the problem, and a “business use case”. This will show how our application is used.

We can then dig into the details of our application.

Important: Fools Rush In
It’s important not to rush in to programming.

Here’s the rule: The first person to cut code loses.

Be sure you understand the problem being solved and how software solves that problem.

Context. Our context is the “classic” casino table games played against the house, including Roulette,
Craps and Blackjack. We want to explore the consequences of various betting strategies for these casino
games.

Questions include “How well does the Cancellation strategy work?” “How well does the Martingale strategy
works for the Come Line odds bet in Craps?” “How well does this Blackjack strategy I found on the Internet
compare with the strategy card I bought in the gift shop?”

13

Building Skills in Object-Oriented Design, Release 2.2.1-Python

A close parallel to this is exploring variations in rules and how these different rules have an influence on
outcomes. Questions include “What should we do with the 2x and 10x odds offers in Craps?” “How should
we modify our play for a single-deck Blackjack game with 6:5 blackjack odds?”

Our context does not include exploring or designing new casino games. Our context also excludes multi-
player games like poker. We would like to be able to include additional against-the-house games like Pai
Gow Poker, Caribbean Stud Poker, and Baccarat.

Problem. Our problem is to answer the following question: For a given game, what player strategies produce
the best results?

Forces. There are a number of forces that influence our choice of solution. First, we want an application
that is relatively simple to build. Instead of producing an interactive user interface, we will produce raw data
and statistical summaries. If we have little interaction, a command-line interface will work perfectly. We
can have the user specify a player strategy and the application respond with a presentation of the results.
If the results are tab-delimited, they can be pasted into a spreadsheet for further analysis.

Another force that influences our choice of solution is the need to be platform and language agnostic. In
this case, we have selected an approach that works well on POSIX-compliant operating systems (i.e., Linux,
MacOS, and all of the proprietary UNIX variants), and also works on non-compliant operating systems (i.e.,
all of the Windows versions). We have chosen two OO languages that work identically on both platform
families: Java and Python.

We also need to strike a balance between interesting programming, probability theory and statistics. On one
hand, the simplicity of these games means that complete analyses have been done using probability theory.
However, that’s not a very interesting programming exercise, so we will ignore the pure probability theory
route in favor of learning OO design and programming.

Another force is the desire to reflect actual game play. While a long-running simulation of thousands of
invidual cycles of play will approach the theoretical results, people typically don’t spend more than a few
hours at a table game. If, for example, a Roulette wheel is spun once each minute, a player is unlikely to see
more that 480 spins in an eight-hour evening at a casino. Additionally, many players have a fixed budget,
and the betting is confined by table limits. Finally, we need to address the subject of “money management”:
a player may elect to stop playing when they are ahead. This structures our statistical analysis: we must
simulate sessions of play that are limited in time, the amount lost and the amount won.

High-Level Use Case. The high-level (or “business”) use case is an overall cycle of investigation . From
this overall view, the actor’s goal is to find an optimal strategy for a given game.

Here’s the scenario we’re imagining.

Business Use Case

1. Actor. Researches alternative strategies. Uses IDE to build new classes for a simulator.

2. IDE. Creates new classes for the simulator.

3. Actor. Runs the simulator with selection of game and strategy.

4. Simulator. Responds with statistical results.

5. Actor. Evaluates the results. Uses a spreadsheet or other tool for analysis and visualization.

Consequences. We’re going build the simulator application that supports this high-level (or “business”)
use case.

We’re not going to build the IDE to build the new classes. Any IDE should work.

Additionally, we won’t address how to analyze the results.

14 Chapter 2. Foundations

Building Skills in Object-Oriented Design, Release 2.2.1-Python

One of the most important consequences of our solution is that we will build an application into which new
player betting strategies can be inserted. Clever gamblers invent new strategies all the time.

We will not know all of the available strategies in advance, so we will not be able to fully specify all of
the various design details in advance. Instead, we will find ourselves reworking some parts of the solution,
to support a new player betting strategy. This forces us to take an Agile approach to the design and
implementation.

2.2 Our Simulation Application

The previous section was a fluffy overview of what we’re trying to accomplish. It sets some goals and provides
a detailed context for who’s using this application and why.

Armed with that informatin, we can look at the simulation application we’re going to write.

Our simulation application will allow a programmer to experiment with different casino game betting strate-
gies. We’ll build a simple, command-line simulator that provides a reliable, accurate model of the game.
We need to be able to easily pick one of a variety of player betting strategies, play a number of simulated
rounds of the game, and produce a statistical summary of the results of that betting strategy.

This leads us to a small essential use case. There is a single actor, the “investigator”. The actor’s goal is
to see the expected results of using a particular strategy for a particular game. The typical scenario is the
following.

Essential Use Case

1. Actor. Specifies which game and betting strategy to test.

The game may require additional parameters, like betting limits.

The strategy may need additional parameters, like an initial budget, or stake.

2. System. Responds with a statistical summary of the outcomes after a fixed number of cycles (spins,
or throws or hands). The number of cycles needs to be small (on the order of 200, to reflect only a few
hours of play).

On Simplicity. Yes, this use case is very simple. It’s a command-line application: it’s supposed to be
simple.

The point is to explore OO design, not development of a fancy GUI or web application.

Simplicity is a virtue. You can add a fancy GUI or web presentation of the results later. First, create some
results.

2.3 Soapbox on Use Cases

We feel that the use case technique is badly abused by some IT organizations. Quoting from
[Jacobson95]. “A use case is a sequence of transactions in a system whose task is to yield a result
of measurable value to an individual actor of the system.”

A use case will clearly identify an actor, define the value created, and define a sequence of
transactions. A use case will be a kind of system test specification. A use case will define the
system’s behavior, and define why an actor bothers to interact with it.

A use case is not a specification, and does not replace ordinary design. We have had experiences
with customers who simply retitle their traditional procedural programming specifications as “use

2.2. Our Simulation Application 15

Building Skills in Object-Oriented Design, Release 2.2.1-Python

cases”. We hypothesize that this comes from an unwillingness to separate problem definition from
solution definition. The consequence is a conflation of use case, technical background, design and
programming specifications into gargantuan documents that defy the ability of programmers or
users to comprehend them.

There are a number of common problems with use cases that will make the design job more
difficult. Each of these defects should lead to review of the use case with the authors to see what,
if anything, they can do to rework the use case to be more complete.

• No Actor. Without an actor, it’s impossible to tell who is getting value from the interaction.
A catch-all title like “the user” indicates a use case written from the point of view of the
database or the application software, not an actual person. An actor can be an interface
with other software, in which case, the actual software needs to be named. Without knowing
the actor, you will have trouble deciding which classes are clients and which classes provide
the lower-level services of the application.

• No Value Proposition. There are two basic kinds of value: information for decision-
making or actions taken as the result of decision-making. People interact with software
because there are decisions the software cannot make or there are actions the actor cannot
make. Some use cases include value-less activities like logging in, or committing a transac-
tion, or clicking “Okay” to continue. These are parts of operating scenarios, not statements
of value that show how the actor is happier or more successful. Without a value proposition,
you will have no clue as to what problem the software solves, or what it eventually does for
the actor.

• No Interactions. If the entire body of the use case is a series of steps the application
performs, we are suspicious of the focus. We prefer a use case to emphasize interaction with
the actor. Complex algorithms or interface specifications should be part of an appendix
or supplemental document. Without any interaction, it isn’t clear how the actor uses the
software.

We also try to make a distinction between detailed operating scenarios and use cases. We have
seen customers write documents they call “detailed use cases” that describe the behavior of
individual graphical user interface widgets or panels. We prefer to call these scenarios, since they
don’t describe measuable business value, but instead describe technical interactions.

2.4 Solution Approach

From reading the problem and use case information, we can identify at least the following four general
elements to our application.

• The game being simulated. This includes the various elements of the game: the wheel, the dice, the
cards, the table and the bets.

• The player being simulated. This includes the various decisions the player makes based on the state
of the game, and the various rules of the betting system the player is following.

• The statistics being collected.

• An overall control component which processes the game, collects the statistics and writes the details
or the final summary.

When we look at common design patterns, the Model-View-Control pattern often helps to structure ap-
plications. A more sophisticated, transactional application may require a more complex structure. However,
in this case, the game, the player, and the statistics are the model. The command line selection of player
and the reporting of raw data is the view. The overall control component creates the various objects to start
the simulation.

16 Chapter 2. Foundations

Building Skills in Object-Oriented Design, Release 2.2.1-Python

While interesting, we will not pursue the design of a general-purpose simulation framework. Nor will we use
any of the available general frameworks. While these are handy and powerful tools, we want to focus on
developing application software “from scratch” (or de novo) as a learning exercise.

Our solution will depend heavily on desktop integration: the actor will use their IDE to create a strategy
and build a new version of the application program. Once the application is built, the actor can run the
application from the command line, collecting the output file. The statistical results file can be analyzed
using a spreadsheet application. There are at least three separate application programs involved: the IDE
(including editor and compiler), the simulator, the spreadsheet used for analysis.

A typical execution of the simulator will look like the following example.

Sample Execution

python -m casino.craps --Dplayer.name="Player1326" >details.log

1. We select the main simulator control using the package casino and the module craps.

2. We define the player to use, player.name="Player1326". The main method will use this parameter
to create objects and execute the simulation.

3. We collect the raw data in a file named details.log.

We are intentionally limiting our approach to a simple command-line application using the default language
libraries. Avoiding additional libraries assures a “lowest-common denominator” multi-platform application.
For Java, this standard is the J2SE set of libraries; we won’t use any J2EE extensions. For Python, it is the
base installation.

There are a number of more technical considerations that we will expand in Deliverables. These include the
use of an overall simulation framework and an approach for unit testing.

Among the topics this book deals with in a casual – possibly misleading – manner are probability and
statitics. Experts will spot a number of gaps in our exposition. For example, there isn’t a compelling need
for simulation of the simpler games of Craps and Roulette, since they can be completely analyzed. However,
our primary objective is to study programming, not casino games, therefore we don’t mind solving known
problems again. We are aware that our statistical analysis has a number of deficiencies. We will avoid any
deeper investigation into statistics.

2.5 Methodology, Technique and Process

We want to focus on technical skills; we won’t follow any particular software development methodology too
closely. We hesitate to endorse a specific methodology; doing so inevitably alienates readers who embrace
a different methodology. To continue this rant, we find that almost everyone has an existing notion of
the proper way to organize software development work. This leads to the common practice of customizing
methodologies, in most cases without a deep background in the methodology or the changes being made.

We prefer to lift up a few techniques which have a great deal of benefit.

• Incremental Development. Each chapter is a “sprint” that produces some collection of deliverables.
Each part is a complete release.

• Unit Testing. We don’t dwell on test-driven development, but each chapter explicitly requires unit
tests for the classes built.

• Embedded Documentation. We provide appendices on how to use Epydoc or javadoc to create usable
API documents.

2.5. Methodology, Technique and Process 17

Building Skills in Object-Oriented Design, Release 2.2.1-Python

The exercises are presented as if we are doing a kind of iterative design with very, very small deliverables.
We present the exercises like this for a number of reasons.

First, we find that beginning designers work best with immediate feedback on their design decisions. While
we present the design in considerable detail, we do not present the final code. Programmers new to OO
design will benefit from repeated exposure to the transformation of problem statement through design to
code.

Second, for iterative or agile methodologies, this presentation parallels the way software is developed. A
project manager may use larger collections of deliverables. However, the actual creation of functional source
eventually decomposes into classes, fields and methods. For project managers, this exposition will help them
see where and how rework can occur; giving them a chance to plan for the kind of learning that occur in
most projects.

Third, for project teams using a strict waterfall methodology – with all design work completed before any
programming work – the book can be read in a slightly different order. From each exercise chapter, read
only the overview and design sections. From that information, integrate the complete design. Then proceed
through the deliverables sections of each chapter, removing duplicates and building only the final form of
the deliverables based on the complete design. This will show how design rework arises as part of a waterfall
methodology.

This section addresses a number of methodology or process topics:

• Quality, in general

• Rework

• Technical Decision-Making

• Reuse

• Design Patterns

2.5.1 On Quality

Our approach to overall quality assurance is relatively simple. We feel that a focus on unit testing and
documetation covers most of the generally accepted quality factors. The Software Engineering Institute
(SEI) published a quality measures taxonomy. While officially “legacy”, it still provides an exhaustive list of
quality attributes. These are broadly grouped into five categories. Our approach covers most of those five
categories reasonably well.

• Need Satisfaction. Does the software meet the need? We start with a problem statement, define the
use case, and then write software which is narrowly focused on the actor’s needs. By developing our
application in small increments, we can ask ourself at each step, “Does this meet the actor’s needs?”
It’s fairly easy to keep a software development project focused when we have use cases to describe our
goals.

• Performance. We don’t address this specifically in this book. However, the presence of extensive
unit tests allows us to alter the implemention of classes to change the overall performance of our
application. As long as the resulting class still passes the unit tests, we can develop numerous alternative
implementations to optimize speed, memory use, input/output, or any other resource.

• Maintenance. Software is something that is frequently changed. It changes when we uncover bugs.
More commonly, it changes when our understanding of the problem, the actor or the use case changes.
In many cases, our initial solution merely clarifies the actor’s thinking, and we have to alter the software
to reflect a deeper understanding of the problem.

Maintenance is just another cycle of the iterative approach we’ve chosen in this book. We pick a
feature, create or modify classes, and then create or modify the unit tests. In the case of bug fixing,
we often add unit tests to demonstrate the bug, and then fix our classes to pass the revised unit tests.

18 Chapter 2. Foundations

Building Skills in Object-Oriented Design, Release 2.2.1-Python

• Adaptation. Adaptation refers to our need to adapt our software to changes in the environment. The
environment includes interfaces, the operating system or platform, even the number of users is part of
the environment. When we address issues of interoperability with other software, portability to new
operating systems, scalability for more users, we are addressing adaptation issues.

We chose Python and Java to avoid having interoperability and portability issues; these platforms
give admirable support for many scalability issues. Generally, a well-written piece of software can be
reused. While this book doesn’t focus on reuse, Java and Python are biased toward writing reusable
software.

• Organizational. There are some organizational quality factors: cost of ownership and productivity
of the developers creating it. We don’t address these directly. Our approach, however, of developing
software incrementally often leads to good developer productivity.

Our approach (Incremental, Unit Testing, Embedded Documentation) assures high quality in four of the five
quality areas. Incremental development is a way to focus on need satisfaction. Unit testing helps us optimize
resource use, and do maintenance well. Our choices of tools and platforms help us address adaptation.

The organizational impact of these techniques isn’t so clear. It is easy to mis-manage a team and turn
incremental development into a quagmire of too much planning for too little delivered software. It is all too
common to declare that the effort spent writing unit test code is “wasted”.

Ultimately, this is a book on OO design. How people organize themselves to build software is beyond our
scope.

2.5.2 On Rework

In Problem Statement, we described the problem. In Solution Approach, we provided an overview of the
solution. The following parts will guide you through an incremental design process; a process that involves
learning and exploring. This means that we will coach you to build classes and then modify those classes
based on lessons learned during later steps in the design process. See our Soapbox on Rework for an opinion
on the absolute necessity for design rework.

We don’t simply present a completed design. We feel that it is very important follow a realistic problem-
solving trajectory so that beginning designers are exposed to the decisions involved in creating a complete
design. In our experience, all problems involve a considerable amount of “learn as you go”.

We want to reflect this in our series of exercises. In many respects, a successful OO design is one that
respects the degrees of ignorance that people have when starting to build software. We will try to present
the exercises in a way that teaches the reader how to manage ignorance and still develop valuable software.

Soapbox on Rework

We consider design rework to be so important, we will summarize the idea here.

Important: The best way to learn is to make mistakes.
Rework is a consequence of learning.
All of software development can be described as various forms of knowledge capture. A project begins
with many kinds of ignorance and takes steps to reduce that ignorance. Some of those steps should
involve revising or consolidating previous learnings.
A project without rework is suspiciously under-engineered.

For some, the word rework has a negative connotation. If you find the word distasteful, please replace every
occurance with any of the synonyms: adaptation, evolution, enhancement, mutation. We prefer the slightly
negative connotation of the word rework because it helps managers realize the importance of incremental
learning and how it changes the requirements, the design and the resulting software.

2.5. Methodology, Technique and Process 19

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Since learning will involve mistakes, good management plans for the costs and risks of those mistakes.
Generally, our approach is to manage our ignorance; we try to create a design such that correcting a mistake
only fixes a few classes.

We often observe denial of the amount of ignorance involved in creating IT solutions. It is sometimes very
difficult to make it clear that if the problem was well-understood, or the solution was well-defined there would
be immediately applicable off-the-shelf or open-source solutions. The absence of a ready-to-hand solution
generally means the problem is hard. It also means that there are several degrees of ignorance: ignorance
of the problem, solution and technology; not to mention ignorance of the amount of ignorance involved in
each of these areas.

We see a number of consequences of denying the degrees of ignorance.

• Programmers. For programmers, experienced in non-OO (e.g. procedural) environments, one conse-
qunece is that they find learning OO design is difficult and frustrating. Our advice is that since this
is new, you have to make mistakes or you won’t learn effectively. Allow yourself to explore and make
mistakes; feel free to rework your solutions to make them better. Above all, do not attempt to design
a solution that is complete and perfect the very first time. We can’t emphasize enough the need to do
design many times before understanding what is important and what is not important in coping with
ignorance.

• Managers. For managers, experienced in non-object implementation, the design rework appears to
be contrary to a fanciful expectation of reduced development effort from OO techniques. The usual
form for the complaint is the following: “I thought that OO design was supposed to be easier than
non-OO design.” We’re not sure where the expectation originates, but good design takes time, and
learning to do good design seems to require making mistakes. Every project needs a budget for making
the necessary mistakes, reworking bad ideas to make them good and searching for simplifications.

• Economics. Often, management attempts the false economy of attempting to minimize rework by
resorting to a waterfall methodology. The idea is that having the design complete before attempting
to do any development somehow magically prevents design rework. We don’t see that this waterfall
approach minimizes rework; rather, we see it shifting the rework forward in the process. There are two
issues ignored by this approach: how we grow to understand the problem domain and providing an
appropriate level of design detail.

We find that any initial “high-level” design can miss details of the problem domain, and this leads to rework.
Forbidding rework amounts to mandating a full understanding of the problem. In most cases, our users
do not fully understand their problem any more than our developers understand our users. Generally, it is
very hard to understand the problem, or the solution. We find that hands-on use of preliminary versions of
software can help more than endless conversations about what could be built.

In the programming arena, we find that Java and Python (and their associated libraries) are so powerful
that detailed design is done at the level of individual language statements. This leads us to write the
program either in English prose or UML diagrams (sometimes both) before writing the program in the
final programming language. We often develop a strong commitment to the initial design, and subsequent
revisions are merely transliterations with no time permitted for substantial revisions. While we have written
the program two or three times over, the additional quality isn’t worth doubling or tripling the workload.
We feel that the original workload should be managed as planned cycles of work and rework.

20 Chapter 2. Foundations

Building Skills in Object-Oriented Design, Release 2.2.1-Python

War Story on Bad Design

In one advanced programming course, we observed the following sad scenario. The instructor pro-
vided an excellent background in how to create abstract data type (ADT) definitions for the purely
mathematical objects of scalar, vector and matrix. The idea was to leverage the ADTs to implement
more complex operations like matrix multiplication, inversion and Gaussian elimination. The audience,
primarily engineers, seemed to understand how this applied to things they did every day. The first
solution, presented after a week of work, began with the following statement: “Rather than think it
through from the basic definitions of matrix and vector, I looked around in my drawer and found an old
FORTRAN program and rewrote that, basically transliterating the FORTRAN.” We think that a lack
of experience in the process of software design makes it seem that copying an inappropriate solution is
more effective than designing a good solution from scratch.

2.5.3 On Decision-Making

Many of the chapters will include some lengthy design decisions that appear to be little more than hand-
wringning over nuances. While this is true to an extent, we need to emphasize our technique for doing
appropriate hand-wringing over OO design. We call it “Looking For The Big Simple”, and find that managers
don’t often permit the careful enumeration of all the alternatives and the itemization of the pros and cons
of each choice. We have worked with managers who capriciously play their “schedule” or “budget” trump
cards, stopping useful discussion of alternatives. This may stem from a fundamental discomfort with the
technology, and a consequent discomfort of appearing lost in front of team members and direct reports. Our
suggestion in this book can be summarized as follows:

Important: Good Design
Good OO design comes from a good process for technical decision-making.

First, admit what we don’t know, and then take steps to reduce our degrees of ignorance.

Which means not saying “work smarter not harder” unless we also provide the time and budget to actually
get smarter. The learning process, as with all things, must be planned and managed. Our lesson learned
from Blaise Pascal is that a little more time spent on design can result in considerable simplification, which
will reduce development and maintenance costs.

It’s also important to note that no one in the real world is omniscient. Some of the exercises include
intentional dead-ends. As a practical matter, we can rarely foresee all of the consequences of a design
decision.

2.5.4 On Reuse

While there is a great deal of commonality among the three games, the exercises do not start with an emphasis
on constructing a general framework. We find that too much generalization and too much emphasis on reuse
is not appropriate for beginning object designers. See Soapbox on Reuse for an opinion on reuse. Additionally,
we find that projects that begin with too-lofty reuse goals often fail to deliver valuable solutions in a timely
fashion. We prefer not to start out with a goal that amounts to boiling the ocean to make a pot of tea.

2.5. Methodology, Technique and Process 21

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Soapbox on Reuse

While a promise of OO design is reuse, this needs to be tempered with some pragmatic considerations.
There are two important areas of reuse: reusing a class specification to create objects with common
structure and behavior, and using inheritance to reuse structure and behavior among multiple classes
of objects. Beyond these two areas, reuse can create more cost than value.
The first step in reuse comes from isolating responsibilities to create classes of objects. Generally, a
number of objects that have common structure and behavior is a kind of reuse. When these objects
cooperate to achieve the desired results, this is sometimes called emergent behavior: no single class
contains the overall functionality, it grew from the interactions among the various objects.
This is sometimes called inversion of control.
When the application grows and evolves, we can preserve some class declarations, reusing them in the
next revision of the application. This reduces the cost and risks associated with software change. Class
definitions are the most fundamental and valuable kind of reuse.
Another vehicle for OO resuse is inheritance. The simple subclass-superclass relationship yields a form
of reuse; a class hierarchy with six subclasses will share the superclass code seven times over. This, by
itself, has tremendous benefits.
We caution against any larger scope of reuse. Sharing classes between projects may or may not work
out well. The complexity of achieving inter-project reuse can be paralyzing to first-time designers.
Often, different projects reflect different points of view, and the amount of sharing is limited by these
points of view. As an example, consider a product in a business context. An external customer’s view
of the product (shaped by sales and marketing) may be very different from the internal views of the
same product. Internal views of the product (for example, finance, legal, manufacturing, shipping,
support) may be very different from each other. Reconciling these views may be far more challenging
than a single software development project. For that reason, we don’t encourage this broader view of
reuse.

2.5.5 On Design Patterns

These exercises will refer to several of the “Gang of Four” design patterns in [Gamma95]. The Design Patterns
book is not a prerequisite; we use it as reference material to provide additional insight into the design patterns
used here. We feel that use of common design patterns significantly expands the programmer’s repertoire of
techniques. We note where they are appropriate, and provide some guidance in their implementation.

In addition, we reference several other design patterns which are not as well documented. These are, in some
cases, patterns of bad design more than patterns of good design.

2.6 Deliverables

Each chapter defines the classes to be built and the unit testing that is expected. A third deliverable is
merely implied. The purpose of each chapter is to write the source files for one or more classes, the source
files for one or more unit tests, and assure that a minimal set of API documentation is available.

• Source Files. The source files are the most important deliverable. In effect, this is the working
application program. Generally, you will be running this application from within your Integrated
Development Environment (IDE). You may want to create a stand-alone program.

In the case of Java, we might also deliver the collection of class files. Additionally, we might bundle
the class files into an executable JAR file. The source is the principle deliverable; anyone should be
able to produce class and JAR files using readily available tools.

In the case of Python, it’s the packages of .py files. There really isn’t much more to deliver. The
interested student might want to look at the Python distutils and setuptools to create a distribution

22 Chapter 2. Foundations

Building Skills in Object-Oriented Design, Release 2.2.1-Python

kit, or possibly a Python .egg file.

• Unit Test Files. The deliverables section of each chapter summarizes the unit testing that is expected,
in addition to the classes to be built. We feel that unit testing is a critical skill, and emphasize it
throughout the inividual exercises. We don’t endorse a particular technology for implementing the
unit tests. There are several approaches to unit testing that are in common use.

For formal testing of some class, X, we create a separate class, TestX, which creates instances of X and
exercises those instances to be sure they work. In Java, this is often done with JUnit. In Python, the
unittest module is the mechanism for doing formal unit tests. Additionally, many Python developers
also use the doctest module to assure that the sample code in the docstrings is actually correct. We
cover these technologies in the appendices.

• Documentation. The job isn’t over until the paperwork is done. In the case of Java and Python,
the internal documentation is generally built from specially formatted blocks of comments within the
source itself. Java programmers can use the javadoc tool to create documentation from the program
source. Python programmers can use Epydoc (or sphinx) to create similar documentation.

2.6. Deliverables 23

Building Skills in Object-Oriented Design, Release 2.2.1-Python

24 Chapter 2. Foundations

Part II

Roulette

25

Building Skills in Object-Oriented Design, Release 2.2.1-Python

This part describes the game of Roulette. Roulette is the game with the big wheel. They spin the wheel,
toss in a marble and wait for the wheel to stop spinning.

Roulette is – essentially – a stateless game with numerous bets and a very simple process for game play.

The chapters of this part present the details on the game, an overview of the solution, and a series of sixteen
exercises to build a complete simulation of the game, plus a variety of betting strategies. Each exercise
chapter builds at least one class, plus unit tests; in some cases, this includes rework of previous deliverables.

27

Building Skills in Object-Oriented Design, Release 2.2.1-Python

28

CHAPTER

THREE

ROULETTE DETAILS

In the first section, Roulette Game, we will present a summary of the game of Roulette as played in most
American casinos.

We will follow this with a review the various bets available on the Roulette table in Available Bets in Roulette.
The definition of the various bets is an interesting programming exercise, and the first four exercise chapters
will focus on this.

In Some Betting Strategies, we will describe some common betting strategies that we will simulate. The
betting strategies are interesting and moderately complex algorithms for changing the amount that is used
for each bet in an attempt to recoup losses.

3.1 Roulette Game

The game of Roulette centers around a wheel with thirty-eight numbered bins. The numbers include 0, 00
(double zero), 1 through 36. The table has a surface marked with spaces on which players can place bets.
The spaces include the 38 numbers, plus a variety of additional bets, which will be detailed below.

After the bets are placed by the players, the wheel is spun by the house, a small ball is dropped into the
spinning wheel; when the wheel stops spinning, the ball will come to rest in one of the thirty-eight numbered
bins, defining the winning number. The winning number and all of the related winning bets are paid off; the
losing bets are collected. Roulette bets are all paid off using odds, which will be detailed with each of the
bets, below.

The numbers from 1 to 36 are colored red and black in an arbitrary pattern. They fit into various ranges, as
well as being even or odd, which defines many of the winning bets related to a given number. The numbers
0 and 00 are colored green, they fit into none of the ranges, and are considered to be neither even nor odd.
There are relatively few bets related to the zeroes. The geometry of the betting locations on the table defines
the relationships between number bets.

Note: American Rules
There are slight variations in Roulette between American and European casinos. We’ll focus strictly on the
American version.

3.2 Available Bets in Roulette

There are a variety of bets available on the Roulette table. Each bet has a payout, which is stated as n :1
where n is the multiplier that defines the amount won based on the amount bet.

29

Building Skills in Object-Oriented Design, Release 2.2.1-Python

A $5 bet at 2:1 will win $10. After you are paid, there will be $15 sitting on the table, your original $5 bet,
plus your $10 additional winnings.

Note: Odds
Not all games state their odds using this convention. Some games state the odds as “2 for 1”. This means
that the total left on the table after the bets are paid will be two times the original bet. So a $5 bet will
win $5, there will be $10 sitting on the table.

Figure 3.1: Roulette Table Layout

The table is divided into two classes of bets. The “inside” bets are the 38 numbers and small groups of
numbers; these bets all have relatively high odds. The “outside” bets are large groups of numbers, and have
relatively low odds. If you are new to casino gambling, see Odds and Payouts for more information on odds
and why they are offered.

30 Chapter 3. Roulette Details

Building Skills in Object-Oriented Design, Release 2.2.1-Python

• A “straight bet” is a bet on a single number. There are 38 possible bets, and they pay odds of 35 to
1. Each bin on the wheel pays one of the straight bets.

• A “split bet” is a bet on an adjacent pair of numbers. It pays 17:1. The table layout has the numbers
arranged sequentially in three columns and twelve rows. Adjacent numbers are in the same row or
column. The number 5 is adjacent to 4, 6, 2, 8; the number 1 is adjacent to 2 and 4. There are 114 of
these split bet combinations. Each bin on the wheel pays from two to four of the available split bets.
Any of two bins can make a split bet a winner.

• A “street bet” includes the three numbers in a single row, which pays 11:1. There are twelve of these
bets on the table. A single bin selects one street bet; any of three bins make a street bet a winner.

• A square of four numbers is called a “corner bet” and pays 8:1. There are 22 of these bets available.

• At one end of the layout, it is possible to place a bet on the Five numbers 0, 00, 1, 2 and 3. This pays
6:1. It is the only combination bet that includes 0 or 00.

• A “line bet” is a six number block, which pays 5:1. It is essentially two adjacent street bets. There are
11 such combinations.

The following bets are the “outside” bets. Each of these involves a group of twelve to eighteen related
numbers. None of these outside bets includes 0 or 00. The only way to bet on 0 or 00 is to place a straight
bet on the number itself, or use the five-number combination bet.

• Any of the three 12-number ranges (1-12, 13-24, 25-36) pays 2:1. There are just three of these bets.

• The layout offers the three 12-number columns at 2:1 odds. All of the numbers in a given column
have the same remainder when divided by three. Column 1 contains 1, 4, 7, etc., all of which have a
remainder of 1 when divided by 3.

• There are two 18-number ranges: 1-18 is called low, 19-36 is called high. These are called even money
bets because they pay at 1:1 odds.

• The individual numbers are colored red or black in an arbitrary pattern. Note that 0 and 00 are colored
green. The bets on red or black are even money bets, which pay at 1:1 odds.

• The numbers (other than 0 and 00) are also either even or odd. These bets are also even money bets.

3.2. Available Bets in Roulette 31

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Odds and Payouts

Not all of the Roulette outcomes are equal probability. Let’s compare a “split bet” on 1-2 and a even
money bet on red.

• The split bet wins if either 1 or 2 comes up on the wheel. This is 2 of the 38 outcomes, or a 1/19
probability, 5.26%.

• The red bet wins if any of the 18 red numbers come up on the wheel. The is 18 of the 38 outcomes,
or a 9/19 probability, 47.4%.

Clearly, the red bet is going to win almost ten times more often than the 1-2 bet. As an inducement
to place bets on rare occurences, the house offers a higher payout on those bets. Since the 1-2 split bet
wins is so rarely, they will pay you 17 times what you bet. On the other hand, since the red bet wins
so frequently, they will only pay back what you bet.
You’ll notice that the odds of winning the 1-2 split bet is 1 chance in 19, but they pay you 17 times
your bet. Since your bet is still sitting on the table, it looks like 18 times your bet. It still isn’t 19
times your bet. This discrepency between the actual probability and the payout odds is sometimes
called the house edge. It varies widely among the various bets in the game of Roulette. For example,
the 5-way bet has 5/38 ways of winning, but pays only 6:1. There is only a 13.2% chance of winning,
but they pay you as if you had a 16.7% chance, keeping the 3.5% difference. You have a 5.26% chance
to win a split bet, but the house pays as if it were a 5.88% chance, a .62% discrepency in the odds.
The smallest discrepency between actual chances of winning (47.4%) and the payout odds (50%) is
available on the even money bets: red, black, even, odd, high or low. All the betting systems that we
will look at focus on these bets alone, since the house edge is the smallest.

3.3 Some Betting Strategies

Perhaps because Roulette is a relatively simple game, elaborate betting systems have evolved around it.
Searches on the Internet turn up a many copies of the same basic descriptions for a number of betting
systems. Our purpose is not to uncover the actual history of these systems, but to exploit them for simple
OO design exercises. Feel free to research additional betting systems or invent your own.

Martingale. The Martingale system starts with a base wagering amount, w, and a count of the number of
losses, c, initially 0. Each loss doubles the bet.

Any given spin will place an amount of w × 2c on a 1:1 proposition (for example, red). When a bet wins,
the loss count is reset to zero; resetting the bet to the base amount, w. This assures that a single win will
recoup all losses.

Note that the casinos effectively prevent successful use of this system by imposing a table limit. At a $10
Roulette table, the limit may be as low as $1,000. A Martingale bettor who lost six times in a row would
be facing a $640 bet, and after the seventh loss, their next bet would exceed the table limit. At that point,
the player is unable to recoup all of their losses. Seven losses in a row is only a 1 in 128 probability; making
this a relatively likely situation.

Waiting. Another system is to wait until some number of losses have elapsed. For example, wait until
the wheel has spun seven reds in a row, and then bet on black. This can be combined with the Martingale
system to double the bet on each loss as well as waiting for seven reds before betting on black.

This “wait for a favorable state” strategy is based on a confusion between the outcome of each individual
spin and the overall odds of given collections of spins. If the wheel has spun seven reds in a row, it’s “due”
to spin black.

1-3-2-6 System. Another betting system is called the 1-3-2-6 system. The idea is to avoid the doubling
of the bet at each loss and running into the table limit. Rather than attempt to recoup all losses in a single
win, this system looks to recoup all losses by waiting for four wins in a row.

32 Chapter 3. Roulette Details

Building Skills in Object-Oriented Design, Release 2.2.1-Python

The sequence of numbers (1, 3, 2 and 6) are the multipliers to use when placing bets after winning. At each
loss, the sequence resets to the multiplier of 1. At each win, the multiplier is advanced through the sequence.
After one win, the bet is now 3w. After a second win, the bet is reduced to 2w, and the winnings of 4w are
“taken down” or removed from play. In the event of a third win, the bet is advanced to 6w. Should there
be a fourth win, the player has doubled their money, and the sequence resets.

Cancellation. Another method for tracking the lost bets is called the Cancellation system or the Labouchere
system. The player starts with a betting budget allocated as a series of numbers. The usual example is 1,
2, 3, 4, 5, 6, 7, 8, 9.

Each bet is sum of the first and last numbers in the last. In this case 1+9 is 10. At a win, cancel the
two numbers used to make the bet. In the event of all the numbers being cancelled, reset the sequence of
numbers and start again. For each loss, however, add the amount of the bet to the end of the sequence as a
loss to be recouped.

Here’s an example of the cancellation system using 1, 2, 3, 4, 5, 6, 7, 8, 9.

1. Bet 1+9. A win. Cancel 1 and 9, leaving 2, 3, 4, 5, 6, 7, 8.

2. Bet 2+8. A loss. Add 10, leaving 2, 3, 4, 5, 6, 7, 8, 10.

3. Bet 2+10. A loss. Add 12, leaving 2, 3, 4, 5, 6, 7, 8, 10, 12.

4. Bet 2+12. A win. Cancel 2 and 12, leaving 3, 4, 5, 6, 7, 8, 10.

5. Next bet will be 3+10.

A player could use the Fibonacci Sequence to structure a series of bets in a kind of cancellation system. The
Fibonacci Sequence is 1, 1, 2, 3, 5, 8, 13, ...

At each loss, the sum of the previous two bets – the next numbers in the sequence – becomes the new bet
amount. In the event of a win, we simply revert to the base betting amount. This allows the player to easily
track our accumulated losses, with bets that could recoup those losses through a series of wins.

3.3. Some Betting Strategies 33

Building Skills in Object-Oriented Design, Release 2.2.1-Python

34 Chapter 3. Roulette Details

CHAPTER

FOUR

ROULETTE SOLUTION OVERVIEW

The first section, Preliminary Survey of Classes, is a survey of the classes gleaned from the general problem
statement. Refer to Problem Statement as well as the problem details in Roulette Details. This survey is
drawn from a quick overview of the key nouns in these sections.

We’ll amplify this survery with some details of the class definitions in Preliminary Roulette Class Structure.

Given this preliminary of the candidate classes, A Walkthrough of Roulette is a walkthrough of the possible
design that will refine the definitions, and give us some assurance that we have a reasonable architecture.
We will make some changes to the preliminary class list, revising and expanding on our survey.

We will also include a number of questions and answers about this preliminary design information. This
should help clarify the design presentation and set the stage for the various development exercises in the
chapters that follow.

4.1 Preliminary Survey of Classes

To provide a starting point for the development effort, we have to identify the objects and define their
responsibilities. The central principle behind the allocation of responsibility is encapsulation; we do this by
attempting to isolate the information or isolate the processing that must be done. Encapsulation assures that
the methods of a class are the exclusive users of the fields of that class. It also makes each class very loosely
coupled with other classes; this permits change without a ripple through the application. For example, each
Outcome contains both the name and the payout odds. That way each Outcome can be used to compute a
winning amount, and no other element of the simulation needs to share the odds information or the payout
calculation.

In a few cases, we have looked forward to anticipate some future considerations. One such consideration
is the house rake, also known as the vigorish, vig, or commission. In some games, the house makes a 5%
deduction from some payouts. This complexity is best isolated in the Outcome class. Roulette doesn’t have
any need for a rake, since the presence of the 0 and 00 on the wheel gives the house a little over 5% edge on
each bet. We’ll design our class so that this can be added later when we implement Craps.

In reading the background information and the problem statement, we noticed a number of nouns that
seemed to be important parts of the game we are simulating.

• Wheel

• Bet

• Bin

• Table

• Red

• Black

35

Building Skills in Object-Oriented Design, Release 2.2.1-Python

• Green

• Number

• Odds

• Player

• House

One common development milestone is to be able to develop a class model in the Unified Modeling Language
(UML) to describe the relationships among the various nouns in the problem statement. Building (and
interpreting) this model takes some experience with OO programming. In this first part, we’ll avoid doing
extensive modeling. Instead we’ll simply identify some basic design principles. We’ll focus in on the most
important of these nouns and describe the kinds of classes that you will build.

4.2 Preliminary Roulette Class Structure

We’ll summarize some of the classes and responsibilities that we can identify from the problem statement.
This is not the complete list of classes we need to build. As we work through the exercises, we’ll discover
additional classes and rework some of these preliminary classes more than once.

We’ll describe each class with respect to the responsibility allocated to the class and the collaborators. Some
collabotors are used by an object to get work done. We have a number of “uses-used by” collaborative
relationships among our various classes.

Outcome Responsibilities.

A name for the bet and the payout odds. This isolates the calculation of the payout amount.
Example: “Red”, “1:1”.

Collaborators.

Collected by Wheel into the bins that reflect the bets that win; collected by Table into the
available bets for the Player; used by Game to compute the amount won from the amount
that was bet.

Wheel Responsibilities.

Selects the Outcome s that win. This isolates the use of a random number generator to
select Outcomes; and it encapsulates the set of winning Outcomes that are associated with
each individual number on the wheel. Example: the “1” bin has the following winning
Outcomes: “1”, “Red”, “Odd”, “Low”, “Column 1”, “Dozen 1-12”, “Split 1-2”, “Split 1-4”,
“Street 1-2-3”, “Corner 1-2-4-5”, “Five Bet”, “Line 1-2-3-4-5-6”, “00-0-1-2-3”, “Dozen 1”,
“Low” and “Column 1”.

Collaborators.

Collects the Outcomes into bins; used by the overall Game to get a next set of winning
Outcomes.

Table Responsibilities.

A collection of bets placed on Outcomes by a Player. This isolates the set of possible bets
and the management of the amounts currently at risk on each bet. This also serves as the
interface between the Player and the other elements of the game.

Collaborators.

Collects the Outcomes; used by Player to place a bet amount on a specific Outcome; used
by Game to compute the amount won from the amount that was bet.

36 Chapter 4. Roulette Solution Overview

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Player Responsibilities.

Places bets on Outcomes, updates the stake with amounts won and lost.

Collaborators.

Uses Table to place bets on Outcomes; used by Game to record wins and losses.

Game Responsibilities.

Runs the game: gets bets from Player, spins Wheel, collects losing bets, pays winning bets.
This encapsulates the basic sequence of play into a single class.

Collaborators.

Uses Wheel, Table, Outcome, Player. The overall statistical analysis will play a finite
number of games and collect the final value of the Player‘s stake.

The class Player has the most important responsibility in the application, since we expect to update the
algorithms this class uses to place different kinds of bets. Clearly, we need to cleanly encapsulate the Player,
so that changes to this class have no ripple effect in other classes of the application.

4.3 A Walkthrough of Roulette

A good preliminary task is to review these responsibilities to confirm that a complete cycle of play is possible.
This will help provide some design details for each class. It will also provide some insight into classes that
may be missing from this overview.

A good way to structure this task is to do a Class-Reponsibility-Collaborators (CRC) walkthrough.

As preparation, get some 5” x 8” notecards. On each card, write down the name of a class, the responsibilities
and the collaborators. Leave plenty of room around the responsibilities and collaborators to write notes.
We’ve only identified five classes, so far, but others always show up during the walkthrough.

During the walkthrough, we identify areas of responsibility, allocate them to classes of objects and define any
collaborating objects. An area of responsibility is a thing to do, a piece of information, a result. Sometimes
a big piece of responsibility can be broken down into smaller pieces, and those smaller pieces assigned to
other classes. There are a lot of reasons for decomposing, the purpose of this book is to explore many of
them in depth. Therefore, we won’t justify any of our suggestions until later in the book. For now, follow
along closely to get a sense of where the exercises will be leading.

The basic processing outline is the responsibility of the Game class. To start, locate the Game card.

1. Our preliminary note was that this class “Runs the game.” The responsibilities section has a summary
of four steps involved in running the game.

2. The first step is “gets bets from :class:Player‘.” Find the Player card.

3. Does a Player collaborate with a Game to place bets? If not, update the cards as necessary to include
this.

4. One of the responsibilities of a Player is to place bets. The step in the responsibility statement is
merely “Places bets on :class:”Outcome‘s.” Looking at the classes, we note that the Table contains
the amounts placed on the Bets. Fix the collaboration information on the Player to name the Table
class. Find the Table card.

5. Does a Table collaborate with a Player to accept the bets? If not, update the cards as necessary to
include this.

6. What card has responsibility for the amount of the bet? It looks like Table. We note one small
problem: the Table contains the collection of amounts bet on Outcomes.

4.3. A Walkthrough of Roulette 37

Building Skills in Object-Oriented Design, Release 2.2.1-Python

What class contains the individual “amount bet on an Outcome?” This class appears to be missing.
We’ll call this new class Bet and start a new card. We know one responsibility is to hold the amount
bet on a particular Outcome.

We know three collaborators: the amount is paired with an Outcome, all of the Bet s are collected by
a Table, and the Bet s are created by a Player. We’ll update all of the existing cards to name their
collaboration with Bet.

7. What card has responsibility for keeping all of the Bets? Does Table list that as a responsibility? We
should update these cards to clarify this collaboration.

You should continue this tour, working your way through spinning the Wheel to get a list of winning Outcomes.
From there, the Game can get all of the Bets from the Table and see which are based on winning Outcomes
and which are based on losing Outcomes. The Game can notify the Player of each losing Bet, and notify the
Player of each winning Bet, using the Outcome to compute the winning amount.

This walkthrough will give you an overview of some of the interactions among the objects in the working
application. You may uncover additional design ideas from this walkthrough. The most important outcome
of the walkthrough is a clear sense of the responsibilities and the collaborations required to create the
necessary application behavior.

4.4 Roulette Solution Questions and Answers

Why does the Game class run the sequence of steps? Isn’t that the responsibility of some “main program?”

Coffee Shop Answer. We haven’t finished designing the entire application, so we need to reflect
our own ignorance of how the final application will be assembled from the various parts. Rather
than allocate too many responsibilities to Game, and possibly finding conflicts or complication,
we’d rather allocate too few responsibilities until we know more.

From another point of view, designing the main program is premature because we haven’t finished
designing the entire application. We anticipate a Game object being invoked from some statistical
data gathering object to run one game. The data gathering object will then get the final stake
from the player and record this. Game ‘s responsibilities are focused on playing the game itself.
We’ll need to add a responsibility to Game to collaborate with the data gathering class to run a
number of games as a “session”.

Deeper Answer. In procedural programming (especially in languages like COBOL), the “main
program” is allocated almost all of the responsibilities. These procedural main programs usually
contain a number of elements, all of which are very tightly coupled. We have seen highly skilled
programmers who are able to limit the amount of work done in the main program, even in proce-
dural languages. In OO languages, it becomes possible for even moderately skilled programmers
to reduce the main program to a short list of object constructors, with the real work delegated
to the objects. We find that “main program” classes are relatively hard to reuse, and prefer to
keep them as short as possible.

Why is Outcome a separate class? Each object that is an instance of Outcome only has two attributes; why
not use an array of Strings for the names, and a parallel array of integers for the odds?

Representation. We prefer not to decompose an object into separate data elements. If we do
decompose this object, we will have to ask which class would own these two arrays? If Wheel
keeps these, then Table becomes very tightly coupled to these two arrays that should be Wheel
‘s responsibility. If Table keeps these, then Wheel is priviledged to know details of how Table is
implemented. If we need to change these arrays to another storage structure, two classes would
change instead of one.

38 Chapter 4. Roulette Solution Overview

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Having the name and odds in a single Outcome object allows us to change the representation of
an Outcome. For example, we might replace the String as the identification of the outcome, with
a collection of the individual numbers that comprise this outcome. This would identify a straight
bet by the single winning number; an even money bet would be identified by an array of the 18
winning numbers.

Responsibility. he principle of isolating responsibility would be broken by this “two parallel
arrays” design because now the Game class would need to know how to compute odds. In more
complex games, there would be the added complication of figuring the rake. Consider a game
where the Player‘s strategy depends on the potential payout. Now the Game and the Player
both have copies of the algorithm for computing the payout. A change to one must be paired
with a change to the other.

The alternative we have chosen is to encapsulate the payout algorithm along with the relevant
data items in a single bundle.

If Outcome encapsulates the function to compute the amount won, isn’t it just a glorified subroutine?

In a limited way, yes. A class can be thought of as a glorified subroutine library that captures
and isolates data elements along with their associated functions. For some new designers, this is
a helpful summary of the basic principle of encapsulation. Inheritance and subclasses, however,
make a class more powerful than a simple subroutine library with private data. Inheritance is a
way to create a family of closely-related subroutine libraries in a simple way that is validated by
the compiler.

What is the distinction between an Outcome and a Bet?

We need to describe the propositions on the table on which you can place bets. The propositions
are distinct from an actual amount of money wagered on a proposition. There are a lot of terms
to choose from, including bet, wager, proposition, place, location, or outcome. We opted for using
Outcome because it seemed to express the open-ended nature of a potential outcome, different
from an amount bet on a potential outcome. In a way, we’re considering the Outcome as an
abstract possibility, and the Bet as a concrete action taken by a player.

Also, as we expand this simulation to cover other games, we will find that the randomized outcome
is not something we can directly bet on. In Roulette, however, all outcomes are something we
can be bet on, as well as a great many combinations of outcomes. We will revisit this design
decision as we move on to other games.

Why are the classes so small?

First-time designers of OO applications are sometimes uncomfortable with the notion of emergent
behavior. In procedural programming languages, the application’s features are always embodied
in a few key procedures. Sometimes a single procedure, named main.

A good OO design partitions responsibility. In many cases, this subdivision of the application’s
features means that the overall behavior is not captured in one central place. Rather, it emerges
from the interactions of a number of objects.

We have found that smaller elements, with very finely divided responsibilities, are more flexible
and permit change. If a change will only alter a portion of a large class, it can make that portion
incompatible with other portions of the same class. A symptom of this is a bewildering nest of
if-statements to sort out the various alternatives. When the design is decomposed down more
finely, a change can be more easily isolated to a single class. A much simpler sequence of if-
statements can be focused on selecting the proper class, which can then simply carry out the
desired functions.

4.4. Roulette Solution Questions and Answers 39

Building Skills in Object-Oriented Design, Release 2.2.1-Python

40 Chapter 4. Roulette Solution Overview

CHAPTER

FIVE

OUTCOME CLASS

In addition to defining the fundamental Outcome on which all gambling is based, this chapter provides a
sidebar discussion on the notion of object identity and object equality. This is important because we will be
dealing with a number of individual Outcome objects, and we need to be sure we can test for equality of two
different objects. This is different from the test for identity.

5.1 Outcome Overview

The first class we will tackle is a small class that encapsulates each outcome. This class will contain the
name of the outcome as a String, and the odds that are paid as an integer. We will use these objects when
placing a bet and also when defining the Roulette wheel.

There will be several hundred instances of this class on a given Roulette table. The bins on the wheel,
similarly, collect various Outcomes together. The minimum set of Outcome instances we will need are the 38
numbers, Red and Black. The other instances add details to our simulation.

In Roulette, the amount won is a simple multiplication of the amount bet and the odds. In other games,
however, there may be a more complex calculation because the house keeps 5% of the winnings, called the
“rake”. While it is not part of Roulette, it is good to have our Outcome class designed to cope with these
more complex payout rules.

Also, we know that other casino games, like Craps, are stateful. An Outcome may change the game state.
We can foresee reworking this class to add in the necessary features to change the state of the game.

While we are also aware that some odds are not stated as x:1, we won’t include these other kinds of odds
in this initial design. Since all Roulette odds are x:1, we’ll simply assume that the denominator is always
1. We can forsee reworking this class to handle more complex odds, but we don’t need to handle the other
cases yet.

5.2 Design Decision – Object Identity

Our design will depend on matching Outcome objects. We’ll be testing objects for equality.

The player will be placing bets that contain Outcomes; the table will be holding bets. The wheel will select
the winning Outcomes. We need a simple test to see if two objects of the Outcome class are the same.

Was the Outcome for a bet equal to the Outcome contained in a spin of the wheel?

It turns out that this comparison between objects has some subtlety to it.

Outcomes have Names. Since each instance of Outcome has a distinct Outcome.name attribute, it seems
simple enough to compare names. This is one sense of “equal” that seems to be appropriate.

41

Building Skills in Object-Oriented Design, Release 2.2.1-Python

To do object comparison correclty in Python, we must provide the __eq__() and __ne__() method which
compares the Outcome.name attribute.

However, simply comparing outcome names isn’t – in the long run – going to work out well.

More than equal. We’ll be creating collections of Outcome objects, and we may need to create sets or
maps where hash codes are used in addition to the simple equality tests.

As we look forward, the Python set and dict depend on a __hash__() method and an __eq__() method
of each object in the collection.

The Hash Code Problem. Every object has a hash code. The hash code is simply a unique integer,
perhaps the address of the object, perhaps some summary of the bits that make up the object. The default
rule is this:

Distinct objects will have distinct hash codes

The default rule makes it possible for us to accidentally create objects that appear to be the same thing, but
– internally – have different hash codes.

In Python, if we do nothing special, the __eq__() test will simply compare the object id values. These
object id values are unique to each distinct object, irrespective of the attribute values.

This default behavior of objects is shown by the following example:

Object Identity

>>> oc1= Outcome("Any Craps", 8)
>>> oc2= Outcome("Any Craps", 8)
>>> oc1 == oc2
False
>>> id(oc1)
6291728
>>> id(oc2)
6291760

Each individual Outcome object has a distinct distinct hashcode. This makes them not equal according to
the default methods inherited from object. However, we would like to have two of these objects test as
equal.

This example shows that we can have two objects that appear equal, but don’t compare as equal.

Layers of Meaning. The real issue is that we have three distinct layers of meaning for comparing objects
to see if they are “equal”.

• Compare as Equal. We can call this “attribute equality”.

The __eq__() method returns True. When we use the == operator, this is evaluated by using the
__eq__() method. This must be overridden by a class to implement attribute equality.

• Have the same hash code. We can call this “hash equality”. This has to include attribute equality.

The __hash__(self)() method for several objects that represent the same Outcome have the same
hash code.

• Are references to the same object. We can call this “identity”.

We can test that two objects are the same by using the is comparison between two objects.

When we use the is comparison, we’re asserting that the two variables are references to the same
object. This is the identity comparison.

42 Chapter 5. Outcome Class

Building Skills in Object-Oriented Design, Release 2.2.1-Python

If we pursue this as an implementation, we have to be sure we don’t casually create instances of
Outcome. Rather than create them all over our application, we need to have a single source for the
“official” instances of Outcome.

Problem. Which should we implement, hash equality or object identity?

Forces. There are two broad implementation choices for making sure that our objects both provide appro-
priate hash values and pass equality tests.

1. Object Identity. We can make sure that all of the parts of our application share the same Outcome
objects. Two references to the same object will pass any identity test and will also have the same hash
code.

This requires that we have a pool of outcomes and each Outcome is – effectively – a Singleton instance.
We have to be sure that our application has only one instance of Outcome("1", 35), and that object
is shared by the Wheel, the Player and any Bets that are made.

We have to be sure to never create additional Outcome objects; there would be confusion between two
discrete instances that happened to have the same name and odds.

We have to avoid casually creating new instances of the Outcome class.

Assuring that we work with single instances of each Outcome fits with the Don’t Repeat Yourself (DRY)
principle: we only create each Outcome once.

2. Hash Equality. We can make sure that all instances of an Outcome act like they are the same object.
That is, they have the same hash value and they test true for equality. They may not be two references
to the same underlying object, but they pass the hash and equality tests, making them equal for all
practical purposes.

This allows us to create additional Outcome objects, confident they will behave appropriately.

This, however, also requires that we include the odds when creating an outcome. This gets wordy
and unpleasant because we have the various outcomes and odds stated in more than one place in our
application. This would break the Don’t Repeat Yourself (DRY) principle.

The DRY principle is so important that this alternative is really unacceptable.

Solution. We have to assure that we’re sharing single instances of Outcome objects. We have several choices
for assuring that we have exactly one instance of each Outcome.

• Global Outcome Objects. We can declare global variables for the various outcomes and use those
global objects as needed.

Generally, globals variables are often undesirable because changes to those variables can have unex-
pected consequences in a large application.

Global constants are no problem at all. The pool of Outcome instances are proper constant values used
to create bins and bets.

• Outcome Factory Object. We can create a class which is a Factory for individual Outcome objects.
When some part of the application asked for an Outcome which didn’t yet exist, the Factory would
create it, save it, and return a reference to it. When some part of the application asked for an Outcome
which already exists, the Factory would return a reference to the existing object.

This centralizes the pool of global objects into a single object, the Factory.

• Singleton Outcome Class. A Singleton class creates and maintains a single instance of itself. This
requires that the class have a static getInstance() method that is a reference to the one-and-only
instance of the class.

This saves us from creating global variables. Instead, each class definition contains it’s own private
reference to the one-and-only object of that class.

5.2. Design Decision – Object Identity 43

Building Skills in Object-Oriented Design, Release 2.2.1-Python

However, this has the profound disadvantage that each distinct outcome would need to be a distinct
subclass of Outcome. This is an unappealing level of complexity.

All of these are acceptable techniques for implementing object identity. We don’t have to choose one at the
current time.

Consequences. The most important consequence of this design decision is that we’re going to evenually
create some global definitions of Outcomes, or a Factory object that centralizes Outcome creation.

We may also need to add the necessary static variable and static getInstance() method.

5.3 Outcome Design

class Outcome

Outcome contains a single outcome on which a bet can be placed.

In Roulette, each spin of the wheel has a number of Outcomes with bets that will be paid off.

For example, the “1” bin has the following winning Outcomes: “1”, “Red”, “Odd”, “Low”, “Column 1”,
“Dozen 1-12”, “Split 1-2”, “Split 1-4”, “Street 1-2-3”, “Corner 1-2-4-5”, “Five Bet”, “Line 1-2-3-4-5-6”,
“00-0-1-2-3”, “Dozen 1”, “Low” and “Column 1”. All of these bets will payoff if the wheel spins a “1”.

5.3.1 Fields

Outcome.name
Holds the name of the Outcome. Examples include "1", "Red".

Outcome.odds
Holds the payout odds for this Outcome. Most odds are stated as 1:1 or 17:1, we only keep the
numerator (17) and assume the denominator is 1.

We can use name to provide hash codes and do equality tests.

5.3.2 Constructors

Outcome.__init__(self, name, odds)

Parameters

• name (str) – The name of this outcome

• odds (int) – The payout odds of this outcome.

Sets the instance name and odds from the parameter name and odds.

5.3.3 Methods

For now, we’ll assume that we’re going to have global instances of each Outcome.

Outcome.winAmount(self, amount) → amount
Multiply this Outcome‘s odds by the given amount. The product is returned.

Parameters amount (number) – amount being bet

Outcome.__eq__(self, other) → boolean
Compare the name attributes of self and other.

44 Chapter 5. Outcome Class

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Parameters other (Outcome) – Another Outcome to compare against.

Returns True if this name matches the other name.

Return type bool

Outcome.__ne__(self, other) → boolean
Compare the name attributes of self and other.

Parameters other (Outcome) – Another Outcome to compare against.

Returns True if this name does not match the other name.

Return type bool

Outcome.__str__(self) → string
Easy-to-read representation of this outcome.

Python formatting is most easily done with the % operator. For some tips on how to do this, see
Message Formatting.

Returns String of the form name (odds:1).

Return type str

This easy-to-read String output method is essential. This should return a String representation of the name
and the odds. A form that looks like 1-2 Split (17:1) works nicely.

5.4 Outcome Deliverables

There are two deliverables for this exercise. Both will have Javadoc comments or Python docstrings.

• The Outcome class.

• A class which performs a unit test of the Outcome class. The unit test should create a three instances of
Outcome, two of which have the same name. It should use a number of individual tests to establish that
two Outcome with the same name will test true for equality, have the same hash code, and establish
that the winAmount() method works correctly.

5.5 Message Formatting

For the very-new-to-Python, there are few variations on creating a formatted string.

Generally, we simply use something like this.

def __str__(self):
return "%s (%d:1)" % (self.name, self.odds)

5.4. Outcome Deliverables 45

Building Skills in Object-Oriented Design, Release 2.2.1-Python

46 Chapter 5. Outcome Class

CHAPTER

SIX

BIN CLASS

This chapter will present the design for the Bin class. In addition to that, we’ll examine the collection classes
available in Java and Python. We’ll also present present some questions and answers on this particular class
and the process of creating a design.

6.1 Bin Overview

The Roulette wheel has 38 bins, identified with a number and a color. Each of these bins defines a number
of closely related winning Outcome s. At this time, we won’t enumerate each of the 38 Bins of the wheel and
each of the winning Outcomes (from two to fourteen in each Bin); we’ll save that for a later exercise.

At this time, we’ll define the Bin class, and use this class to contain a number of Outcome objects.

Two of the Bins have relatively few Outcomes. Specifically, the 0 Bin only contains the basic “0” Outcome and
the “00-0-1-2-3” Outcome . The 00 Bin , similarly, only contains the basic “00” Outcome and the “00-0-1-2-3”
Outcome .

The other 36 Bins contain the straight bet, split bets, street bet, corner bets, line bets and various outside
bets (column, dozen, even or odd, red or black, high or low) that will win if this Bin is selected. Each number
bin has from 12 to 14 individual winning Outcomes.

Some Outcomes, like “red” or “black”, occur in as many as 18 individual Bins. Other Outcomes, like the
straight bet numbers, each occur in only a single Bin. We will have to be sure that our Outcome objects are
shared appropriately by the Bins.

Since a Bin is just a collection of individual Outcome objects, we have to select a collection class to contain
the objects. In Java we have five basic choices, with some variations based on performance needs. In Python,
we have two basic choices.

6.2 Design Decision – Choosing A Collection

There are five basic Python types that are a containers for other objects.

• Immutable Sequence tuple. A tuple is immutable sequence of objects. This is a good candidate
for the kind of collection we need, since the elements of a Bin don’t change. Howver, a tuple allows
duplicates and retains things in a specific order; we can’t tolerate duplicates, and order doesn’t matter.

• Mutable Sequence list. A list is a sequence of objects that can be changed. While handy for the
initial construction of the bin, this isn’t really useful because the contents of a bin don’t change once
they have been enumerated.

• Mapping dict. A dict associates a key with a value. This key-value pair is called an item in the
map. We don’t need this feature at all. A map does more than we need for representing a Bin.

47

Building Skills in Object-Oriented Design, Release 2.2.1-Python

• Mutable Set set. A set is a mutable collection of objects. Duplicates aren’t allowed, and there’s no
inherent ordering. This looks close to what we need.

• Immutable Set frozenset. A frozenset is an immutable collection of objects. Duplicates aren’t
allowed, and there’s no inherent ordering. This looks close to what we need.

Having looked at the fundamental collection varieties, we will elect to use a frozenset.

6.3 Bin Questions and Answers

Why wasn’t Bin in the design overview?

The definition of the Roulette game did mention the 38 bins of the wheel. However, when
identifying the nouns, it didn’t seem important. Then, as we started designing the Wheel class,
the description of the wheel as 38 bins came more fully into focus. Rework of the preliminary
design is part of detailed design. This is the first of several instances of rework.

Why introduce an entire class for the bins of the wheel? Why can’t the wheel be an array of 38 individual
arrays?

There are two reasons for introducing Bin as a separate class: to improve the fidelity of our
object model of the problem, and to reduce the complexity of the Wheel class. The definition of
the game describes the wheel as having 38 bins, each bin causes a number of individual Outcomes
to win. Without thinking too deeply, we opted to define the Bin class to hold a collection of
Outcomes. At the present time, we can’t foresee a lot of processing that is the responsibility of
a Bin. But allocating a class permits us some flexibility in assigning responsibilities there in the
future.

Additionally, looking forward, it is clear that the Wheel class will use a random number generator
and will pick a winning Bin. In order to keep this crisp definition of responsibilities for the Wheel
class, it makes sense to delegate all of the remaining details to another class.

Isn’t an entire class for bins a lot of overhead?

The short answer is no, class definitions are almost no overhead at all. Class definitions are part
of the compiler’s world; at run-time they amount to a few simple persistent objects that define
the class. It’s the class instances that cause run-time overhead.

In a system where were are counting individual instruction executions at the hardware level,
this additional class may slow things down somewhat. In most cases, however, the extra few
instructions required to delegate a method to an internal object is offset by the benefits gained
from additional flexibility.

How can you introduce Set, List, Vector when these don’t appear in the problem?

We have to make a distinction between the classes that are uncovered during analysis of the
problem in general, and classes are that just part of the implementation of this particular solution.
This emphasizes the distinction between the problem as described by users and a solution as
designed by software developers. The collections framework are part of a solution, and hinted at
by the definition of the problem. Generally, these solution-oriented classes are part of frameworks
or libraries that came with our tools, or that we can license for use in our application. The
problem-oriented classes, however, are usually unique to our problem.

6.4 Bin Design

class Bin

48 Chapter 6. Bin Class

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Bin contains a collection of Outcomes which reflect the winning bets that are paid for a particular bin on a
Roulette wheel. In Roulette, each spin of the wheel has a number of Outcome s. Example: A spin of 1, selects
the “1” bin with the following winning Outcomes: “1” , “Red” , “Odd” , “Low” , “Column 1” , “Dozen 1-12”
, “Split 1-2” , “Split 1-4” , “Street 1-2-3” , “Corner 1-2-4-5” , “Five Bet” , “Line 1-2-3-4-5-6” , “00-0-1-2-3”
, “Dozen 1” , “Low” and “Column 1” . These are collected into a single Bin .

6.4.1 Fields

Bin.outcomes
A frozenset that holds the collection of individual Outcomes.

6.4.2 Constructors

Python programmers should provide an initializer that uses the * modifier so that all of the individual
arguments appear as a single list within the initializer.

Bin.__init__(self, * outcomes)

Parameters outcomes – any number of outcomes used to populate the Bin initially.

This constructor can be used as follows.

Python Bin Construction

five= Outcome("00-0-1-2-3", 6)
zero= Bin(Outcome("0",35), five)
zerozero= Bin(Outcome("00",35), five)

1. zero is based on references to two objects: the “0” Outcome and the “00-0-1-2-3” Outcome.

2. zerozero is based on references to two objects: the “00” Outcome and the “00-0-1-2-3” Outcome.

6.4.3 Methods

Bin.add(self, outcome)
Adds an Outcome to this Bin. This can be used by a builder to construct all of the bets in this Bin.
Since this class is really just a façade over the underlying collection object, this method could simply
delegate the real work to the underlying collection.

Note that a frozenset is immutable; unlike a list it does not have an append() method. Instead,
a new frozenset can be constructed by using the | operator which creates a new frozenset from a
frozenset and a frozenset or set

>>> zero= Outcome("0",35)
>>> zerozero= Outcome("00",35)
>>> b = frozenset([zero])
>>> b
frozenset([<roulette.Outcome object at 0x6002d0>])
>>> map(str,b)
['0 (35:1)']
>>> b |= set([zerozero])
>>> map(str,b)
['0 (35:1)', '00 (35:1)']

6.4. Bin Design 49

Building Skills in Object-Oriented Design, Release 2.2.1-Python

>>> b
frozenset([<roulette.Outcome object at 0x6002d0>, <roulette.Outcome object at 0x600330>])

Parameters outcome (Outcome) – An outcome to add to this Bin

Bin.__str__(self) → str
An easy-to-read representation of the list of Outcomes in this Bin.

A handy technique for displaying collections is the following. This maps the str() function to each
element of Bin.outcomes, then joins the resulting string with ", " separators

', '.join(map(str,self.outcomes))

Returns String of the form [outcome, outcome, ...].

Return type str

6.5 Bin Deliverables

There are two deliverables for this exercise. Both will have Javadoc comments or Python docstrings.

• The Bin class.

• A class which performs a unit test of the Bin class. The unit test should create several instances of
Outcome, two instances of Bin and establish that Bin s can be constructed from the Outcomes.

Programmers who are new to OO techniques are sometimes confused when reusing individual Outcome
instances. This unit test is a good place to examine the ways in which object references are shared. A
single Outcome object can be referenced by several Bins. We will make increasing use of this in later
sections.

50 Chapter 6. Bin Class

CHAPTER

SEVEN

WHEEL CLASS

This chapter builds on the previous two chapters, creating a more complete composite object from the
Outcome and Bin classes we have already defined. We’ll introduce some basic subclass constructor techniques,
also.

7.1 Wheel Overview

The wheel has two responsibilities: it is a container for the Bins and it picks one Bin at random. We’ll also
have to look at how to initialize the various Bins that comprise a standard Roulette wheel.

7.1.1 The Container Responsibility

Since the Wheel is 38 Bins, it is a collection. We can review our survey of available collections in Design
Decision – Choosing A Collection for some guidance here.

In this case, the choice of the winning Bin will be selected by a random numeric index. We need some kind
of sequential collection.

This makes an immutable tuple very appealing. This is a subclass of collections.Sequence and has the
features we’re looking for.

One consequence of using a sequential collection is that we have to choose an index for the various Bins.
Each Bin contains a variety of individual Outcomes. However, each single number Outcome will be unique to
each Bin.

The index values of 1 to 36 become the index to their respective Bins. The Bin at index 1 is the only bin
which contains Outcome("1", 35).

We have a small problem, however, with 0 and 00: we need two separate indexes. While 0 is a valid index,
what do we do with 00?

Enumerate some possible solutions before reading on.

Since the index of the Bin doesn’t have any significance at all, we can assign the Bin that has the 00 Outcome
to position 37 in the Vector. This gives us a unique place for all 38 Bins.

7.1.2 The Random Bin Selection Responsibility

In order for the Wheel to select a Bin at random, we’ll need a random number from 0 to 37 that we can use
an an index.

51

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Python programmers can use the random module. This module offers a Random.choice() function which
picks a random value from a sequence. This is ideal for returning a randomly selected Bin from our list of
Bins.

Testability. Note that testing a class using random numbers isn’t really the best policy. To do testing
properly, we’ll need to create a non-random random number generator that we can use in place of the
published library random number generator.

To create a non-random random-number generator, we can so something like the following.

1. Design our Wheel to accept a Random Number Generator that in inserted by the main program. For
testing a non-random generator is used. For real simulation, a proper random generator is used.

2. Create a subclass of the system-supplied random number generator. One that Override a few methods
required for testing.

7.1.3 Constructing a Wheel

Each instance of Bin has a list of Outcomes. The 0 and 00 Bin s only have two Outcome s. The other numbers
have anywhere from twelve to fourteen Outcomes.

Constructing the entire collection of Bins would be a tedious undertaking. We’ll apply a common OO
principle of deferred binding and work on that algorithm later, after we have the basic design for the Wheel
finished.

7.2 Wheel Design

class Wheel

Wheel contains the 38 individual bins on a Roulette wheel, plus a random number generator. It can select
a Bin at random, simulating a spin of the Roulette wheel.

7.2.1 Fields

Wheel.bins
Contains the individual Bin instances.

This is a tuple of 38 elements. This can be built with tuple(Bin() for i in range(38))

Wheel.rng
The random number generator to use to select a Bin from the bins collection.

This is not always simply random.Random(). For testing, we need to inject a non-random random
number generator in place of the system random number generator.

7.2.2 Constructors

Wheel.__init__(self, rng)

Parameters rng (random.Random) – A “random” number generator. For testing, this may
be a non-random number generator.

Creates a new wheel with 38 empty Bins. It will also create a new random number generator instance.

At the present time, this does not do the full initialization of the Bins. We’ll rework this in a future
exercise.

52 Chapter 7. Wheel Class

Building Skills in Object-Oriented Design, Release 2.2.1-Python

7.2.3 Methods

Bin.addOutcome(number, outcome)
Adds the given Outcome to the Bin with the given number.

Parameters

• bin (int) – bin number, in the range zero to 37 inclusive.

• outcome (Outcome) – The Outcome to add to this Bin

Bin.next() → Bin
Generates a random number between 0 and 37, and returns the randomly selected Bin.

The Random.choice() function of the random module will select one of the available Bin s from the
bins list.

Returns A Bin selected at random from the wheel.

Return type Bin

Bin.get(bin) → Bin
Returns the given Bin from the internal collection.

Parameters bin (int) – bin number, in the range zero to 37 inclusive.

Returns The requested Bin.

Return type Bin

7.3 Non-Random Design

We need a controlled kind of random number generation for testing purposes.

We’ll define a class NonRandom that extends random.Random, but provides a more testable sequence of values.
One approach is to simply return a given integer value.

7.3.1 Fields

NonRandom.value
The non-random value to return.

7.3.2 Constructors

NonRandom.__init__(self)
Creates a non-random “random” number generator.

7.3.3 Methods

NonRandom.setSeed(self, value)
Saves this value as the next value to return.

Parameters value (long) – the value to return next.

NonRandom.choice(self, sequence) → item
Use the given seed value as an index and return the requested item from the sequence.

7.3. Non-Random Design 53

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Parameters sequence – the sequence of values from which a random value is selected.

7.4 Wheel Deliverables

There are three deliverables for this exercise. The new class and the unit test will have Javadoc comments
or Python docstrings.

• The Wheel class.

• A class which performs a unit test of building the Wheel class. The unit test should create several
instances of Outcome, two instances of Bin, and an instance of Wheel. The unit test should establish
that Bins can be added to the Wheel.

• A Non-Random Random Number Generator class, to be used for testing.

• A class which tests the Wheel and NonRandom class by selecting values from a Wheel object.

54 Chapter 7. Wheel Class

CHAPTER

EIGHT

BIN BUILDER CLASS

This is a rather long chapter, which describes a number of design considerations surrounding Outcome, Bin
and Wheel. The second section presents a number of algorithms to group Outcomes based on the geometry of
the table. These algorithms are presented at a high level, leaving much of the detailed design to the student.

8.1 Bin Builder Overview

It is clear that enumerating each Outcome in the 38 Bins is a tedious undertaking. Most Bins contain about
fourteen individual Outcomes.

It is often helpful to create a class that is used to build an instance of another class. This is a design pattern
sometimes called a Builder. We’ll design an object that builds the various Bins and assigns them to the
Wheel. This will fill the need left open in the Wheel Class.

Additionally, we note that the complex algorithms to construct the Bins are only tangential to the operation
of the Wheel object. While not essential to the design of the Wheel class, we find it is often helpful to
segregate these rather complex builder methods into a separate class.

The BinBuilder class will have a method that enumerates the contents of each of the 36 number Bins,
building the individual Outcome instances. We can then assign these Outcome objects to the Bins of a Wheel
instance. We will use a number of steps to create the various types of Outcomes, and depend on the Wheel
to assign each Outcome object to the correct Bin.

The Roulette Outcomes. Looking at the Available Bets in Roulette gives us a number of geometric rules
for determining the various Outcomes that are combinations of individual numbers. These rules apply to the
numbers from one to thirty-six. A different – and much simpler – set of rules applies to 0 and 00. First,
we’ll survey the table geometry, then we’ll develop specific algorithms for each kind of bet.

• Split Bets. Each number is adjacent to two, three or four other numbers. The four corners (1, 3,
34, and 36) only participate in two split bets. The center column of numbers (5, 8, 11, ..., 32) each
participate in four split bets. The remaining “edge” numbers participate in three split bets. While
this is moderately complex, the bulk of the layout (from 4 to 32) can be handled with a simple rule
to distinguish the center column from the edge columns. The ends (1, 2, 3, 34, 35 and 36) are a little
more complex.

• Street Bets. Each number is a member of one of the twelve street bets.

• Corner Bets. Each number is a member of one, two or four corner bets. As with split bets, the bulk
of the layout can be handled with a simple rule to distinguish the column, and hence the “corners”. A
number in the center column (5, 8, 11, ..., 32) is a member of four corners. At the ends, 1, 3, 34, and
36, are members of just one corner. All of the remaining numbers are along an edge and are members
of two corners.

55

Building Skills in Object-Oriented Design, Release 2.2.1-Python

• Line Bets. Six numbers comprise a line; each number is a member of one or two lines. The ends (1,
2, 3 and 34, 35, 36) are each part of a single line. The remaining 10 rows are each part of two lines.

• Dozen Bets. Each number is a member of one of the three dozens. The three ranges are from 1 to
12, 13 to 24 and 25 to 36, making it very easy to associate numbers and ranges.

• Column Bets. Each number is a member of one of the three columns. Each of the columns has a
number numeric relationship. The values are 3c+ 1, 3c+ 2, and 3c+ 3, where 0 ≤ c < 12.

• The Even-Money Bets. These include Red, Black, Even, Odd, High, Low. Each number has three
of the six possible even money Outcome s. An easy way to handle these is to create the 6 individual
Outcome instances. For each number, n, individual if-statements can be used to determine which of
the Outcome objects are associated with the given Bin.

The Bins for zero and double zero can easily be enumerated. Each bin has a straight number bet Outcome,
plus the Five Bet Outcome (00-0-1-2-3, which pays 6:1).

One other thing we’ll probably want are handy names for the various kinds of odds. While can define an
Outcome as Outcome("Number 1", 35) , this is a little opaque. A slightly nicer form is Outcome("Number
1", RouletteGame.StraightBet). These are specific to a game, not general features of all Outcomes. We
haven’t designed the game yet, but we can provide a stub class with these these outcome odds definitions.

8.2 Bin Builder Algorithms

This section provides the algorithms for nine kinds of bets.

8.2.1 Generating Straight Bets

Straight bet Outcomes are the easiest to generate.

For All Numbers. For each number, n, 1 ≤ n < 37:

Create Outcome. Create an Outcome from the number, n, with odds of 35:l.

Assign to Bin. Assign this new Outcome to Bin n.

Zero. Create an Outcome from the “0” with odds of 35:l. Assign this to Bin 0.

Double Zero. Create an Outcome from the “00” with odds of 35:l. Assign this to Bin 37.

8.2.2 Generating Split Bets

Split bet Outcomes are more complex because of the various cases: corners, edges and down-the-middle.

We note that there are two kinds of split bets:

• left-right pairs. These pairs all have the form (n , n +1).

• up-down paris. These paris have the form (n , n +3).

We can look at the number 5 as being part of 4 different pairs: (4,4+1), (5,5+1), (2,2+3), (5,5+3). The
corner number 1 is part of 2 split bets: (1,1+1), (1,1+3).

We can generate the “left-right” split bets by iterating through the left two columns; the numbers 1, 4, 7,
..., 34 and 2, 5, 8, ..., 35.

For All Rows. For each row, r, where 0 ≤ r < 12:

56 Chapter 8. Bin Builder Class

Building Skills in Object-Oriented Design, Release 2.2.1-Python

First Column Number. Set n← 3r + 1. This will create values 1, 4, 7, ..., 34.

Column 1-2 Split. Create a “n, n +1” split Outcome with odds of 17:1.

Assign to Bins. Associate this object with two Bins: n and n +1.

Second Column Number. Set n← 3r + 2. This will create values 2, 5, 8, ..., 35.

Column 2-3 Split. Create a “n , n +1” split Outcome.

Assign to Bins. Associate this object to two Bins: n and n +1.

A similar algorithm must be used for the numbers 1 through 33, to generate the “up-down” split bets. For
each number, n, we generate a “n, n +3” split bet. This Outcome belongs to two Bins: n and n +3.

8.2.3 Generating Street Bets

Street bet Outcomes are very simple.

We can generate the street bets by iterating through the twelve rows of the layout.

For All Rows. For each row, r, 0 ≤ r < 12:

First Column Number. Set n← 3r + 1. This will create values 1, 4, 7, ..., 34.

Street. Create a “n, n +1, n +2” street Outcome with odds of 11:1.

Assign to Bins. Associate this object to three Bins: n, n +1, n +2.

8.2.4 Generating Corner Bets

Corner bet Outcomes are as complex as split bets because of the various cases: corners, edges and down-
the-middle.

Eacn corner has four numbers, n , n +1, n +3, n +4. This is two numbers in the same row, and two numbers
in the next higher row.

We can generate the corner bets by iterating through the numbers 1, 4, 7, ..., 31 and 2, 5, 8, ..., 32. For each
number, n, we generate four corner bets: “n , n +1, n+3 , n +4‘” corner bet. This Outcome object belongs
to four Bins.

We generate corner bets by iterating through the various corners based on rows and columns. There is room
for two corners within the three columns of the layout: one corner starts at column 1 and the other corner
starts at column 2. There is room for 11 corners within the 12 rows of the layout.

For All Lines Between Rows. For each row, r, 0 ≤ r < 11:

First Column Number. Set r ← 3r + 1. This will create values 1, 4, 7, ..., 31.

Column 1-2 Corner. Create a “n , n +1, n +3, n +4” corner Outcome with odds of
8:1.

Assign to Bins. Associate this object to four Bins: n, n +1, n +3, n +4.

Second Column Number. Set n← 3r + 2. This will create values 2, 5, 8, ..., 32.

Column 2-3 Corner. Create a “n , n +1, n +3, n +4‘” corner Outcome withs odds
of 8:1.

Assign to Bins. Associate this object to four Bins: n, n +1, n +3, n +4.

8.2. Bin Builder Algorithms 57

Building Skills in Object-Oriented Design, Release 2.2.1-Python

8.2.5 Generating Line Bets

Line bet Outcomes are similar to street bets. However, these are based around the 11 lines between the 12
rows.

For lines s numbered 0 to 10, the numbers on the line bet can be computed as follows: 3s+1, 3s+2, 3s+3,
3s+ 4, 3s+ 5, 3s+ 6. This Outcome object belongs to six individual Bins.

For All Lines Between Rows. For each row, r, 0 ≤ r < 11:

First Column Number. Set n← 3r + 1. This will create values 1, 4, 7, ..., 31.

Line. Create a “n, n +1, n +2, n +3, n +4, n +5‘ line Outcome withs odds of 5:1.

Assign to Bins. Associate this object to six Bins: n, n +1, n +2, n +3, n +4, n +5.

8.2.6 Generating Dozen Bets

Dozen bet Outcomes require enumerating all twelve numbers in each of three groups.

For All Dozens. For each dozen, d, 0 ≤ d < 3:

Create Dozen. Create an Outcome for dozen d +1 with odds of 2:1.

For All Numbers. For each number, m, 0 ≤ m < 12:

Assign to Bin. Associate this object to Bin 12d+m+ 1.

8.2.7 Generating Column Bets

Column bet Outcomes require enumerating all twelve numbers in each of three groups. While the outline of
the algorithm is the same as the dozen bets, the enumeration of the individual numbers in the inner loop is
slightly different.

For All Columns. For each column, c, 0 ≤ c < 3:

Create Column. Create an Outcome for column c +1 with odds of 2:1.

For All Rows. For each row, r, 0 ≤ r < 12:

Assign to Bin. Associate this object to Bin 3r + c+ 1.

8.2.8 Generating Even-Money Bets

The even money bet Outcomes are relatively easy to generate.

Create the Red outcome, with odds of 1:1.

Create the Black outcome, with odds of 1:1.

Create the Even outcome, with odds of 1:1.

Create the Odd outcome, with odds of 1:1.

Create the High outcome, with odds of 1:1.

Create the Low outcome, with odds of 1:1.

For All Numbers. For each number, n, 1 ≤ n < 37:

58 Chapter 8. Bin Builder Class

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Low? If 1 ≤ n < 19, associate the low Outcome with Bin n.

High? Otherwise, 19 ≤ n < 37, associate the high Outcome with Bin n.

Even? If nmod2 = 0, associate the even Outcome with Bin n.

Odd? Otherwise, nmod2 ̸= 0, associate the odd Outcome with Bin n.

Red? If n is one of 1, 3, 5, 7, 9, 12, 14, 16, 18, 19, 21, 23, 25, 27, 30, 32, 34, or 36,
associate the red Outcome with Bin n.

Black? Otherwise, associate the black Outcome with Bin n.

8.3 BinBuilder Design

class BinBuilder

BinBuilder creates the Outcomes for all of the 38 individual Bin on a Roulette wheel.

8.3.1 Constructors

BinBuilder.__init__(self)
Initializes the BinBuilder.

8.3.2 Methods

BinBuilder.buildBins(self, wheel)
Creates the Outcome instances and uses the addOutcome() method to place each Outcome in the
appropropriate Bin of wheel .

Parameters wheel (Wheel) – TheWheel with Bins that must be populated with Outcomes.

There should be separate methods to generate the straight bets, split bets, street bets, corner bets, line bets,
dozen bets and column bets, even money bets and the special case of zero and double zero.

Each of the methods will be relatively simple and easy to unit test. Details are provided in Bin Builder
Algorithms.

8.4 Bin Builder Deliverables

There are three deliverables for this exercise. The new classes will have Javadoc comments or Python
docstrings.

• The BinBuilder class.

• A class which performs a unit test of the BinBuilder class. The unit test invoke each of the various
methods that create Outcome instances.

• Rework the unit test of the Wheel class. The unit test should create and initialize a Wheel. It can use
the Wheel.getBin() method to check selected Bins for the correct Outcomes.

8.3. BinBuilder Design 59

Building Skills in Object-Oriented Design, Release 2.2.1-Python

8.5 Internationalization and Localization

An an advanced topic, we need to avoid hard coding the names of the bets. Both Java and Python provide
extensive tools for localization (l10n) of programs. Since both applications already use Unicode strings, they
support non-Latin characters, handling much of the internationalization (i18n) part of the process.

Python localization depends on the locale and gettext modules. The locale module provides a number of
functions and constants to help format dates and times for the user’s selected locale. The gettext module
provides a mechanism for getting translated text from a message catalog with messages in a variety of
languages.

We won’t dwell on the l10n issue. However, the right preparation for l10n is to isolate all Strings used for
messages, and format all dates and numbers with formatters found in the locale module. In this case, our
Outcome names may be displayed, and should be isolated into a separate object. Even something as simple
as blackBetName = _("Black") will set the stage for fetching strings from a gettext message catalog.

In order to define the _(string) function, the following fragment should be used. While not ubiquitous
in Python programs, doing this now establishes a standard practice that will permit easy localization of an
application program.

import gettext
gettext.NullTranslations().install()
print _("String To Be Translated")

1. This constructs an instance of NullTranslations. This is then installed as a function named _(),
which finds a translation for the default C-locale string. This class does nothing; but it can be replaced
with the GNUTranslations class, which uses a message catalog to replace the default strings with
localized strings.

2. This shows how to use the _() function to translate a default C-locale string to a localized string.

60 Chapter 8. Bin Builder Class

CHAPTER

NINE

ROULETTE BET CLASS

In addition to the design of the Bet class, this chapter also presents some additional questions and answers
on the nature of an object, identity and state change. This continues some of the ideas from Design Decision
– Object Identity.

9.1 Roulette Bet Overview

A Bet is an amount that the player has wagered on a specific Outcome. This class has the responsibilty for
maintaining the association between an amount, an Outcome, and a specific Player.

This is the classic record declaration: a passive association among data elements. The only methods we can
see are three pairs of getters and setters to get and set each of the three attributes.

The general scenario is to have a Player construct a number of Bet instances. The wheel is spun to select
a winning Bin. Then each of the Bet objects will be checked to see if they are winners or losers.

A winning Bet has an Outcome that matches one in the winning Bin; winners will return money to the
Player. All other bets aren’t in the winning Bin; they are losers, which removes the money from the
Player.

Locating Outcomes. We have a design decision to make. Do we create a fresh Outcome object with each
Bet or do we locate an existing Outcome object?

9.2 Design Decision – Create or Locate an Outcome

Building a Bet involves two parts: an Outcome and an amount.

Problem. Do we get an create an Outcome object with a Bet? Or do we locate an Outcome object in some
collection or as a variable?

Forces. One option is to create an Outcome object as part of constructing a Bet object.

Here’s what it might look like in Python.

my_bet= Bet(Outcome("red", 2), 25)

One unfortunate feature of this is that we have to repeat the odds when creating an Outcome. This violates
the DRY principle.

The other option is to locate an existing Outcome object as part of creating a Bet instance.

Here’s what it might look like in Python.

61

Building Skills in Object-Oriented Design, Release 2.2.1-Python

my_bet= Bet(someSource["red"], 25)

Solution. We want to get a complete Outcome from just the name of the outcome. The will prevent
repeating the odds information.

Consequence. There are several consequences to this decision.

• We need to pick a collection. When we look at the collections (see Design Decision – Choosing A
Collection) we can see that a Map from name to complete Outcome instance is ideal. This helps us
associate a Bet with an Outcome given just the name of the Outcome.

• Some object needs to build the collection of distinct Outcomes.

• Some object needs to maintain the collection of Outcomes for use by the Player in building Bets.

If the builder and maintainer are the same object, then things would be somewhat simpler because all the
responsibilities would fall into a single place.

9.3 Design Decision – Where to Keep the Outcome Map

Building a Bet involves two parts: an Outcome and an amount. Since we can’t create an outcome, we need
to get an outcome from some other object. There are several objects that could contain this Outcome map.

Problem. What class contains the mapping from name to Outcome so we can reuse references to those
objects?

Forces. In Outcome Class we looked at three ways to achieve a single instance of an Outcome. This assured
that we could have multiple references to a single instance of an Outcome. We’ll modify that list slightly and
reuse it here.

• Global Outcome Mapping. We can declare some global mapping object to keep references to out
Outcomes. This object is more-or-less immutable, once the initial set of Outcomes have been built.

It’s not a global variable, so it is a usable technique.

• Outcome Factory Object. We can define a class which produces references to Outcomes as needed. By
using this object, we can be sure we’re getting a reference to the one-and-only instance of the Outcome.

• The Outcome Class Itself. We can define the Outcome class to retain a static mapping to each Outcome
that gets created. By using the static Outcome.getInstance() method, we can be sure we’re getting
a reference to the one-and-only instance of the Outcome.

This, however, limits our ability to create subclasses of Outcome.

After creating the BinBuilder, we can see that we – in effect – chose the Factory design for creating
Outcome instances.

However, the class:BinBuilder doesn’t – currently – have a handy mapping so that we can look up an Outcome
based on the name of the outcome. But is this the right place to do the lookup? What about the Wheel?

Alternative Solutions. We have a number of potential ways to gather all Outcome objects that were
created by the BinBuilder.

• Clearly, the BinBuilder can create the mapping from name to each distinct Outcome. To do this, we’d
have to do several things.

First, we expand the BinBuilder to keep a simple Map of the various Outcomes that are being assigned
via the Wheel.add() method.

Second, we would have to add specific Outcome getters to the BinBuilder. We could, for example,
include a getOutcome() method that returns an Outcome based on its name.

62 Chapter 9. Roulette Bet Class

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Here’s what it might look like in Python.

class BinBuilder(object):
...
def apply(self, outcome, bin, wheel):

self.all_outcomes.add(outcome)
wheel.add(bin, outcome)

def getOutcome(self, name):
...

• Access the Wheel. A better choice is to get Outcome obects from the Wheel. To do this, we’d have to
do several things.

First, we expand the Wheel to keep a simple Map of the various Outcomes created by the BinBuilder.
This Map would be maintained by the Wheel.add().

Second, we would have to add specific Outcome getters to the Wheel. We could, for example, include
a getOutcome() method that returns an Outcome based on its name.

In Python, for example, we might a a method function like the following to Wheel.

class Wheel(object):
...
def add(self, bin, outcome):

self.all_outcomes.add(outcome)
...

def getOutcome(self, name):
return set([oc for oc in self.all_outcomes if oc.name.lower().contains(name.lower())])

Solution. The allocation of responsibility seems to be a toss-up. We can see that the amount of programming
is almost identical. This means that the real question is one of clarity: which allocation more clearly states
our intention?

The Wheel is a first-class part of the game of Roulette. It showed up in our initial noun analysis. The
BinBuilder was an implementation convenience to separate the one-time construction of the Bins from the
overall work of the Wheel.

Since Wheel is a first-class part of the problem, we should augment the Wheel to keep track of our individual
Outcome objects by name.

9.4 Roulette Bet Questions and Answers

Why not update each Outcome with the amount of the bet?

We are isolating the static definition of the Outcome from the presence or absence of an amount
wagered. Note that the Outcome is shared by the wheel’s Bin s, and the available betting spaces
on the Table, possibly even the Player class. Also, if we have multiple Player, then we need to
distinguish bets placed by the individual players.

Changing a field’s value has an implication that the thing has changed state. In Roulette, there
isn’t any state change in the definition of an Outcome. However, when we look at Craps, we will
see that changes in the game’s state will enable and disable whole sets of Outcome s.

Does an individual bet really have unique identity? Isn’t it just anonymous money?

Yes, the money is anonymous. In a casino, the chips all look alike. However, the placement of the
bet, really does have unique identity. A Bet is owned by a particular player, it lasts for a specific
duration, it has a final outcome of won or lost. When we want to create summary statistics, we

9.4. Roulette Bet Questions and Answers 63

Building Skills in Object-Oriented Design, Release 2.2.1-Python

could do this by saving the individual Bet objects. We could update each Bet with a won or lost
indicator, then we can total the wins and losses.

This points up another reason why we know a Bet is an object in its own right: it changes state.
A bet that has been placed can change to a bet that was won or a bet that was lost.

9.5 Roulette Bet Design

class Bet

Bet associates an amount and an Outcome. In a future round of design, we can also associate a Bet with a
Player.

9.5.1 Fields

Bet.amountBet
The amount of the bet.

Bet.outcome
The Outcome on which the bet is placed.

9.5.2 Constructors

Bet.__init__(self, amount, outcome)

Parameters

• amount (int) – The amount of the bet.

• outcome (Outcome) – The Outcome we’re betting on.

Create a new Bet of a specific amount on a specific outcome.

For these first exercises, we’ll omit the Player. We’ll come back to this class when necessary, and add that
capability back in to this class.

9.5.3 Methods

Bet.winAmount(self) → int

Returns amount won

Return type int

Uses the Outcome‘s winAmount to compute the amount won, given the amount of this bet. Note
that the amount bet must also be added in. A 1:1 outcome (e.g. a bet on Red) pays the amount
bet plus the amount won.

Bet.loseAmount(self) → int

Returns amount lost

Return type int

Returns the amount bet as the amount lost. This is the cost of placing the bet.

Bet.__str__(self) → str

64 Chapter 9. Roulette Bet Class

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Returns string representation of this bet with the form "amount on outcome"

Return type str

Returns a string representation of this bet. Note that this method will delegate the much of the
work to the __str__() method of the Outcome.

9.6 Roulette Bet Deliverables

There are four deliverables for this exercise. The new classes will have Javadoc comments or Python doc-
strings.

• The expanded Wheel class which creates a mapping of string name to Outcome.

• Expanded unit tests of Wheel that confirm that the mapping is being built correctly.

• The Bet class.

• A class which performs a unit test of the Bet class. The unit test should create a couple instances of
Outcome, and establish that the winAmount() and loseAmount() methods work correctly.

9.6. Roulette Bet Deliverables 65

Building Skills in Object-Oriented Design, Release 2.2.1-Python

66 Chapter 9. Roulette Bet Class

CHAPTER

TEN

ROULETTE TABLE CLASS

This section provides the design for the Table to hold the bets. It also introduces the concepts behind
exception handling, and the proper role of exceptions.

10.1 Roulette Table Overview

The Table has the responsibility to keep the Bets created by the Player. Additionally, the house imposes
table limits on the minimum amount that must be bet and the maximum that can be bet. Clearly, the Table
has all the information required to evaluation these conditions.

Note: Betting Constraints
Casinos prevent the Martingale betting system from working by imposing a table limit on each game. To
cover the cost of operating the table game, the casino also imposes a minimum bet. Typically, the maximum
is a multiplier of the minimum bet, often in the range of 10 to 50; a table with a $5 minimum might have a
$200 limit, a $10 minimum may have only a $300 limit.

It isn’t clear where the responsibility lies for determining winning and losing bets. The money placed on
Bets on the Table is “at risk” of being lost. If the bet is a winner, the house pays the Player an amount
based on the Outcome‘s odds and the Bet‘s amount. If the bet is a loser, the amount of the Bet is forfeit
by the Player. Looking forward to stateful games like Craps, we’ll place the responsibility for determining
winners and losers with the game, and not with the Table object.

We’ll wait, then, until we write the game to finalize paying winning bets and collecting losing bets.

Winning vs. Losing. Our second open question is the timing of the payment for the bet from the player’s
stake. In a casino, the payment to the casino – effectively – happens when the bet is placed on the table. In
our Roulette simulation, this is a subtlety that doesn’t have any practical consequences. We could deduct
the money as part of Bet creation, or we could deduct the money as part of resolving the spin of the wheel.
In other games, however, there may several events and several opportunities for placing additional bets. For
example, splitting a hand in blackjack, or placing additional odds bets in Craps.

Because we can’t allow a player to bet more than their stake, we should deduct the payment as the Bet is
created.

A consequence of this is a change to our definition of the Bet class. We don’t need to compute the amount
that is lost. We’re not going to deduct the money when the bet resolved, we’re going to deduct the money
from the Player‘s stake as part of creating the Bet. This will become part of the design of Player and Bet.

Looking forward a little, a stateful game like Craps will introduce a subtle distinction that may be appropriate
for a future subclass of Table. When the game is in the point off state, some of the bets on the table are
not allowed, and others become inactive. When the game is in the point on state, all bets are allowed and

67

Building Skills in Object-Oriented Design, Release 2.2.1-Python

active. In Craps parlance, some bets are “not working” or “working” depending on the game state. This
does not apply to the version of Table that will support Roulette.

Container Implementation. A Table is a collection of Bets. We need to choose a concrete class for the
collection of the bets. We can review the survey of collections in Design Decision – Choosing A Collection
for some guidance here.

In this case, the bets are placed in no particular order, and are simply visited in an arbitrary order for
resolution. Bets don’t have specific names.

Since the number of bets varies, we can’t use a Python tuple; a list will do.

Table Limits. Table limits can be checked by providing a public method isValid() that compares the
total of a new prospective amount plus all existing Bet s to the table limit. This can be used by the Player
to evaluate each potential bet prior to creating it.

In the unlikely event of the Player object creating an illegal Bet, we can also throw (or raise) an exception
to indicate that we have a design error that was not detected via unit testing. This should be a subclass of
Exception that has enough information to debug the problem with the Player that attempted to place the
illegal bet.

Additionally, the game can check the overall state of a Player‘s Bets to be sure that the table minimum
is met. We’ll need to provide a public method isValid() that is used by the game. In the event of the
minimum not being met, there are serious design issues, and an exception should be thrown. Generally, this
situation arises because of a bug where the Player should have declined to bet rather than placing incorrect
bets that don’t meet the table minimum.

Bet Resolution. An important consideration is the collaboration between Table and some potential game
class for resolving bets.

The Table has the collection of Bets, each of which has a specific Outcome.

The Wheel selects a Bin, which has a collection of Outcomes. All bets with a winning outcome will be
resolved as a winner.

So we’ll have multiple Outcomes in the winning Bin to be matched against multiple Bets active on the Table.

Because some games are stateful, and the winning and losing bets depend on game state, we will defer the
details of this collaboration design until we get to the Game class. For now, we’ll simply collect the Bets.

Adding and Removing Bets. A Table contains Bets. Instances of Bet are added by a Player . Later,
Bets will be removed from the Table by the Game. When a bet is resolved, it must be deleted. Some games,
like Roulette resolve all bets with each spin. Other games, like Craps, involve multiple rounds of placing
and resolving some bets, and leaving other bets in play.

For Bet deletion to work, we have to provide a method to remove a bet. When we look at Game and bet
resolution we’ll return to bet deletion. It’s import not to over-design this class at this time; we will often
add features as we develop designs for additional use cases.

10.2 InvalidBet Exception Design

exception InvalidBet
InvalidBet is raised when the Player attempts to place a bet which exceeds the table’s limit.

This class simply inherits all features of its superclass.

68 Chapter 10. Roulette Table Class

Building Skills in Object-Oriented Design, Release 2.2.1-Python

10.3 Roulette Table Design

class Table

Table contains all the Bet s created by the Player. A table also has a betting limit, and the sum of all of
a player’s bets must be less than or equal to this limit. We assume a single Player in the simulation.

10.3.1 Fields

Table.limit
This is the table limit. The sum of a Player ‘s bets must be less than or equal to this limit.

Table.bets
This is a list of the Bets currently active. These will result in either wins or losses to the Player.

10.3.2 Constructors

Table.Table()
Creates an empty list of bets.

Methods

Table.isValid(self, bet) → boolean

Parameters bet (Bet) – A Bet instance to be validated.

Validates this bet. If the sum of all bets is less than or equal to the table limit, then the bet is
valid, return true. Otherwise, return false.

Table.placeBet(self, bet)

Parameters bet (Bet) – A Bet instance to be validated.

Raises InvalidBet

Adds this bet to the list of working bets. If the sum of all bets is greater than the table limit,
then an exception should be thrown (Java) or raised (Python). This is a rare circumstance, and
indicates a bug in the Player more than anything else.

Table.__iter__() → iter
Returns an iterator over the available list of Bet instances. This simply returns the iterator over the
list of Bet objects.

Note that we need to be able remove Bets from the table. Consequently, we have to update the list,
which requires that we create a copy of the list. This is done with bets[:].

Returns iterator over all bets

Table.__str__() → str
Return String representation of all current bets.

10.4 Roulette Table Deliverables

There are three deliverables for this exercise. Each of these will have complete Javadoc comments or Python
docstring comments.

10.3. Roulette Table Design 69

Building Skills in Object-Oriented Design, Release 2.2.1-Python

• An InvalidBet exception class. This is a simple subclass of Exception.

Since there’s no unique programming here, there’s no compelling need to construct a unit test.

• The Table class.

• A class which performs a unit test of the Table class. The unit test should create at least two instances
of Bet, and establish that these Bet s are managed by the table correctly.

70 Chapter 10. Roulette Table Class

CHAPTER

ELEVEN

ROULETTE GAME CLASS

Between Player and Game, we have a chicken-and-egg design problem. In this chapter, we’ll describe the
design for Game in detail. However, in order to create the deliverables, we have to create a version of Player
that we can use just to get started. In the long run, we’ll need to create a sophisticated hierarchy of players.
Rather than digress too far, we’ll create a simple player, Pssenger57 (they always bet on black), which will
be the basis for further design in later chapters.

11.1 Roulette Game Overview

The RouletteGame‘s responsibility is to cycle through the various steps of the game procedure, getting bets
from the player, spinning the wheel and resolving the bets. This is an active class that makes use of the
classes we have built so far. The hallmark of an active class is longer or more complex methods. This is
distinct from most of the classes we have considered so far, which have relatively trivial methods that are
little more than getters and setters of instance variables.

The sequence of operations in one round of the game is the following.

A Single Round of Roulette

1. Place Bets. Notify the Player to create Bet s. The real work of placing bets is delegated to the
Player class. Note that the money is committed at this point; they player’s stake should be reduced
as part of creating a Bet.

2. Spin Wheel. Get the next spin of the Wheel, giving the winning Bin, w. This is a collection of
individual Outcome‘s which will be winners.

3. Resolve All Bets.

For each Bet, b placed by the Player:

(a) Winner? If Bet b‘s Outcome is in the winning Bin, w, then notify the Player that Bet b was a
winner and update the Player‘s stake.

(b) Loser? If Bet b‘s Outcome is not in the winning Bin, w, then notify the Player that Bet b was
a loser. This allows the Player to update the betting amount for the next round.

Matching Algorithm. This Game class will have the responsibility for matching the collection of Outcomes
in the Bin of the Wheel with the collection of Outcomes of the Bets on the Table. We have two collections
that must be matched: Bin and Table. We’ll need to structure a loop or nested loops to compare individual
elements from these two collections.

• Driven by Bin. We could use a loop to visit each Outcome in the winning Bin.

71

Building Skills in Object-Oriented Design, Release 2.2.1-Python

For each Outcome, we would then visit each of the Bets contained by the Table. A Bet‘s Outcome that
matches the Bin‘s Outcome is a winner and is paid off. The other bets are losers. This involves two
nested loops: one to visit the winning Outcomes of a Bin and one to visit the Bet s of a Table.

• Driven by Table. The alternative is to visit each Bet contained by the Table.

Since the winning Bin is has a Set of Outcomes, we can exploit set membership methods to test for
presence or absence of an Bet‘s Outcome in the winning Bin‘s Set. If the Bin contains the Outcome,
the Bet is a winner; otherwise the Bet is a loser. This only requires a single loop to visit the Bet s of
a Table.

Player Interface. The Game collaborates with Player. We have a “chicken and egg” problem in decom-
posing the relationship between these classes. We note that the Player is really a complete hierarchy of
subclasses, each of which provides a different betting strategy. For the purposes of making the Game work,
we can develop our unit tests with a stub for Player that simply places a single kind of Bet. We’ll call this
player “Passenger57” because it always bets on Black. In several future exercises, we’ll revisit this design to
make more sophisticated players.

For some additional design considerations, see Additional Roulette Design Considerations. This provides
some more advanced game options that our current design can be made to support. We’ll leave this as an
exercise for the more advanced student.

11.2 Passenger57 Design

class Passenger57

Passenger57 constructs a Bet based on the Outcome named "Black". This is a very persistent player.

We’ll need a source for the Black outcome. We have several choices; we looked at these in Roulette Bet Class.
We will query the Wheel for the needed Outcome object.

In the long run, we’ll have to define a Player superclass, and make Passenger57 class a proper subclass of
Player. However, our focus now is on getting the Game designed and built.

11.2.1 Fields

Passenger57.black
This is the outcome on which this player focuses their betting.

This Player will get this from the Wheel using a well-known bet name.

Passenger57.table
The Table that is used to place individual Bets.

11.2.2 Constructors

Passenger57.__init__(self, table)

Parameters table (Table) – A Table instance on which bets are placed.

Constructs the Player with a specific table for placing bets. This also creates the “black”
Outcome. This is saved in a variable named Passenger57.black for use in creating bets.

72 Chapter 11. Roulette Game Class

Building Skills in Object-Oriented Design, Release 2.2.1-Python

11.2.3 Methods

Passenger57.placeBets(self)

Updates the Table with the various bets. This version creates a Bet instance from the black
Outcome. It uses Table placeBet() to place that bet.

Passenger57.win(self, bet)

Parameters bet (Bet) – The bet which won.

Notification from the Game that the Bet was a winner. The amount of money won is available
via a the winAmount() method of theBet.

Passenger57.lose(self, bet)

Parameters bet (Bet) – The bet which won.

Notification from the Game that the Bet was a loser.

11.3 Roulette Game Design

class Game

Game manages the sequence of actions that defines the game of Roulette. This includes notifying the Player
to place bets, spinning the Wheel and resolving the Bets actually present on the Table.

11.3.1 Fields

wheel
The Wheel that returns a randomly selected Bin of Outcomes.

table
The Table which contains the Bets placed by the Player.

player
The Player which creates Bets at the Table.

11.3.2 Constructors

We based the Roulette Game constructor on a design that allows any of the fields to be replaced.
This is the Strategy design pattern. Each of these collaborating objects is a replaceable strategy,
and can be changed by the client that uses this game.

Additionally, we specifically do not include the Player instance in the constructor. The Game
exists independently of any particular Player, and we defer binding the Player and Game until
we are gathering statistical samples.

Game.__init__(self, wheel, table)

Parameters

• wheel (Wheel) – The wheel which produces random events

• table (Table) – The table which holds bets to be resolved.

Constructs a new Game, using a given Wheel and Table.

11.3. Roulette Game Design 73

Building Skills in Object-Oriented Design, Release 2.2.1-Python

11.3.3 Methods

cycle(self, player)

Parameters player (Player) – the individual player that places bets, receives winnings and
pays losses.

This will execute a single cycle of play with a given Player. It will call thePlayer‘s placeBets()
method to get bets. It will call theWheel‘s next() method to get the next winning Bin.

It will then call theTable‘s iterator to get an Iterator over the Bets. Stepping through this
Iterator returns the individual Bet objects. If the winning Bin contains the Outcome, call the
thePlayer win() method otherwise call the thePlayer lose() method.

11.4 Roulette Game Questions and Answers

Why are Table and Wheel part of the constructor while Player is given as part of the cycle() method?

We are making a subtle distinction between the casino table game (a Roulette table, wheel, plus
casino staff to support it) and having a player step up to the table and play the game. The game
exists without any particular player. By setting up our classes to parallel the physical entities,
we give ourselves the flexibility to have multiple players without a significant rewrite. We allow
ourselves to support multiple concurrent players or multiple simulations each using a different
player object.

Also, as we look forward to the structure of the future simulation, we note that the game objects
are largely fixed, but there will be a parade of variations on the player. We would like a main
program that simplifies inserting a new player subclass with minimal disruption.

Why do we have to include the odds with the Outcome ? This pairing makes it difficult to create an Outcome
from scratch.

The odds are an essential ingredient in the Outcome . It turns out that we want a short-hand
name for each Outcome. We have three ways to provide a short name.

• A variable name. Since each variable is owned by a specific class instance, we need to
allocate this to some class. The Wheel or the BinBuilder make the most sense for owning
this variable.

• A key in a mapping. In this case, we need to allocate the mapping to some class. Again,
the Wheel or BinBuilder make the most sense for owning the mapping.

• A method which returns the Outcome . The method can use a fixed variable or can get a
value from a mapping.

11.5 Roulette Game Deliverables

There are three deliverables for this exercise. The stub does not need documentation, but the other classes
do need complete Javadoc or Python docstrings.

• The Passenger57 class. We will rework this design later. This class always places a bet on Black.
Since this is simply used to test Game , it doesn’t deserve a very sophisticated unit test of its own. It
will be replaced in a future exercise.

• The RouletteGame class.

74 Chapter 11. Roulette Game Class

Building Skills in Object-Oriented Design, Release 2.2.1-Python

• A class which performs a demonstration of the Game class. This demo program creates the Wheel , the
stub Passenger57 and the Table . It creates the Game object and cycles a few times. Note that the
Wheel returns random results, making a formal test rather difficult. We’ll address this testability issue
in the next chapter.

11.6 Additional Roulette Design Considerations

In European casinos, the wheel has a single zero. In some casinos, the zero outcome has a special en prison
rule: all losing bets are split and only half the money is lost, the other half is a push and is returned to the
player. The following design notes discuss the implementation of this additional rule.

This is a payout variation that depends on a single Outcome. We will need an additional subclass of Outcome
that has a more sophisticated losing amount method: it would push half of the amount back to the Player‘s
stake. We’ll call this subclass the the PrisonOutcome class.

In this case, we have a kind of hybrid resolution: it is a partial loss of the bet. In order to handle this,
we’ll need to have a loss() method in Bet as well as a win() method. Generally, the loss() method does
nothing (since the money was removed from the Player‘s stake when the bet was created.) However, for
the PrisonOutcome class, the loss() method returns half the money to the Player.

We can also introduce a subclass of BinBuilder that creates only the single zero, and uses this new
PrisonOutcome subclass of Outcome for that single zero. We can call this the EuroBinBuilder . The
EuroBinBuilder does not create the five-way Outcome of 00-0-1-2-3, either; it creates a four-way for 0-1-2-3.

After introducing these two subclasses, we would then adjust Game to invoke the loss() method of each
losing Bet, in case it resulted in a push. For an American-style casino, the loss() method does nothing.
For a European-style casino, the los() method for an ordinary Outcome also does nothing, but the los()
for a PrisonOutcome would implement the additional rule pushing half the bet back to the Player . The
special behavior for zero then emerges from the collaboration between the various classes.

We haven’t designed the Player yet, but we would have to bear this push rule in mind when designing the
player.

The uniform interface between Outcome and PrisonOutcome is a design pattern called polymorphism. We
will return to this principle many times.

11.6. Additional Roulette Design Considerations 75

Building Skills in Object-Oriented Design, Release 2.2.1-Python

76 Chapter 11. Roulette Game Class

CHAPTER

TWELVE

REVIEW OF TESTABILITY

This chapter presents some design rework and implementation rework for testability purposes. While testa-
bility is very important, new programmers can be slowed to a crawl by the mechanics of building test drivers
and test cases. We prefer to emphasize the basic design considerations first, and address testability as a
feature to be added to a working class.

Additionally, we’ll address some issues in construction of class instances and an idealized structure for the
main procedure.

12.1 Testability Overview

Without pausing, we charged past the elephant standing in the saloon. It’s time to pause a moment a take
a quick glance back at the pachyderm we ignored.

Back in Wheel Class we skipped over the problem of testing an application that includes a random number
generator (RNG). There are two questions raised:

1. How can we develop formalized unit tests when we can’t predict the random outcomes? This is a serious
testability issue in randomized simulations. This question also arises when considering interactive
applications, particularly for performance tests of web applications where requests are received at
random intervals.

2. Are the numbers really random? This is a more subtle issue, and is only relevant for more serious
applications. Cryptographic, applications may care more deeply about the randomness of random
numbers. This is a large subject, and well beyond the scope of this book. We’ll just assume that our
random number generator is good enough.

To address the testing issue, we need to develop some scaffolding that permits controlled testing. There are
three approaches to replacing the random behavior with something more controlled.

• One approach is to create a subclass of Wheel to create a more testable version without the random
number generator. This MockWheel call be used to test classes that require a specific sequence of
outcomes.

• A second approach is to record the sequence of random numbers actually generated from a particular
seed value and use this to define the exected test results.

• Instead of changing Wheel or analyzing the results of a random number generator, we can define a
subclass of java.util.Random (or Python’s random.Random) that isn’t actually random. Without
much analysis, we suggest this in Wheel Class.

This is called the Mock Objects approach. We created a Mock Random Number Generator.

77

Building Skills in Object-Oriented Design, Release 2.2.1-Python

On Random Numbers

Random numbers aren’t actually “random”. Since they are generated by an algorithm, they are some-
times called pseudo-random. The distinction is important because pseudo-random numbers are gener-
ated in a fixed sequence from a given seed value. Computing the next value in the sequence involves
a simple calculation that is expected to overflow the available number of bits of precision leaving ap-
parently random bits as the next value. This leads to results which, while predictable, are arbitrary
enough that they pass rigorous statistical tests and are indistinguishable from data created by random
processes.
We can make an application less predictable by choosing a very hard to predict seed value. One
popular choice for the seed is the system clock. In some operating systems a special device is available
for producing random seed values. In Linux this is typically /dev/random.
As a consequence, we can make an application more predictable by setting a fixed seed value and noting
the sequence of numbers generated. We can write a short demonstration program to see the effect of
setting a fixed seed. This will also give us a set of predictable answers for unit testing.

12.2 Test-Driven Design

Good testability is achieved when there are no changes to the target software. For this reason, we don’t
want to have two versions of Wheel.

Instead of having two versions of Wheel, it’s slightly better to have a random number generator that creates
a known sequence with which we can test. To get this known sequence, we have a choice between creating
a non-random subclass of java.util.Random or controlling the seed for the random number generator used
by Wheel. Both will produce a known sequence of non-random values.

An important consequence of these design decisions is that we have to make the random number generator
in Wheel visible. This creates a tension between the encapsulation principle and the testability principle.

By Encapsulation we mean the design strategy where we define a class to encapsulate the details of it’s
implementation. It’s unclear if the random number generator is an implementation detail or an explicit part
of the wheel.

Generally, for must of the normal use cases, the Wheel‘s random number generator is an invisible imple-
mentation detail. However, for testing purposes, the random number generator needs to be a configurable
feature of the Wheel instance.

Our favorite approach to making something more visible is to provide default values in the constructor for
the object.

class Wheel(object):
def __init___(self, rng=None):

self.rng= rng if rng is not None else random.Random()
... rest of Wheel construction ...

Note: Python Subclass Design
Because of the late binding in Python, and the lack of compile-time type checking, we don’t have to use
strict subclass inheritance to replace the Python random number generator with our own non-random number
generator. We only have to provide a class with the minimal interface that our application requires.

While legal, we prefer not to bypass the inheritance tree in Python. We find that applications are much
easier to maintain if reasonable care is taken to assure that the classes and interfaces are matched up as
precisely as possible. In this case, we’ll want to make our non-random generator a strict subclass of the
Random class.

78 Chapter 12. Review of Testability

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Note that the Mock Objects approach follows the principle of deferred binding or dependency injection. A
class doesn’t choose which implementation it will use; the decision is made somewhere else in the application.
Ideally, by the user.

We’ve allowed the following options.

• Wheel can be built with an instance of Random initialized with a given seed.

• Wheel can be build with instance of a new subclass, NonRandom.

• Wheel can create it’s own random number generator if no other choice is given.

12.3 Capturing Pseudo-Radom Data

We’ll need to build and execute a program that reveals the fixed sequence of spins that are created by the
non-random number generator.

Create an instance of NonRandom or Random. Set the seed of the this random number generator to a fixed
value, for example, 3.

Create an instance of Wheel using this non-random number generator.

Call the Wheel.next() method six times, and print the winning Bin instances. This sequence will always
be the result for a seed value of 3.

This discovery procedure will give you the results needed to create unit tests for Wheel and anything that
uses it, for example, Game.

12.4 Testability Questions and Answers

Why are we making the random number generator more visible? Isn’t object design about encapsulation?

Encapsulation isn’t the same thing as “information hiding” . For some people, the information
hiding concept can be a useful way to begin to learn about encapsulation. However, information
hiding is misleading because it is often taken to exremes. In this case, we want to encapsulate the
bins of the wheel and the procedure for selecting the winning bin into a single object. However,
the exact random-number generator (RNG) is a separate component, allowing us to bind any
suitable RNG.

Consider the situation where we are generating random numbers for a cryptographic application.
In this case, the built-in random number generator may not be random enough. In this case, we
may have a third-party Super-Random-Generator that should replace the built-in generator. We
would prefer to minimize the changes required to introduce this new class.

Our initial design has isolated the changes to the Wheel, but required us to change the constructor.
Since we are changing the source code for a class, we must to unit test that change. Further, we
are also obligated unit test all of the classes that depend on this class. Changing the source for
a class deep within the application forces us to endure the consequence of retesting every class
that depends on this deeply buried class. This is too much work to simply replace one object
with another.

We do, however, have an alternative. We can change the top-level main() method, altering the
concrete object instances that compose the working application. By making the change at the
top of the application, we don’t need to change a deeply buried class and unit test all the classes

12.3. Capturing Pseudo-Radom Data 79

Building Skills in Object-Oriented Design, Release 2.2.1-Python

that depend on the changed class. Instead, we are simply choosing among objects with the same
superclass or interface.

This is why we feel that constructors should be made very visible using the various design patterns
for Factories and Builders. Further, we look at the main method as a kind of master Builder
that assembles the objects that comprise the current execution of our application.

See our Roulette Solution Questions and Answers FAQ for more on this subject.

Looking ahead, we will have additional notes on this topic as we add the SevenReds Player Class
subclass of Player.

If setting the seed works so well, why make a non-random subclass?

While setting the seed is an excellent method for setting up a unit test, not everyone is comfortable
with random number generators. The presence of an arbitrary but predictable sequence of values
looks too much like luck for some Quality Assurance (QA) managers. While the algorithms for
both Python and Java random number generators are published and well-understood, this isn’t
always sufficiently clear and convincing for non-mathematicians. It’s often seems simpler to build
a non-random subclass than to control the existing class.

From another point of view, creating a subclass of a built-in class is a necessary skill. The random
number generators are easy classes to extend. Extending the abstract collection classes is also a
very useful skill, but somewhat more complex than extending the random number generator.

12.5 Testable Random Events Design

We’ll present the design modification for Wheel first. This will be followed by design information for
NonRandom in both Java and Python.

12.5.1 Wheel Rework

Wheel contains the 38 individual bins on a Roulette wheel, plus a random number generator. It can select
a Bin at random, simulating a spin of the Roulette wheel.

Note that we will be rewriting some methods to change their implementation. The external definitions of
the methods don’t change, but the implementations can (and do) change. This is the real strength of OO
design. Once we have a well-defined interface (defined by the public methods and attributes), we are free to
change the implementation as necessary.

This kind of rework – making a fundamental change to the implementation without touching the interface
– is essential to successful OO programming.

Constructors

Wheel.__init__(rng=None)
Create a wheel with the given random number generator. This will define the various bins and outcomes
using an instance of BinBuilder.

Parameters rng (random.Random) – Random number generator

Note: Common n00b Mistake
Note that you cannot provide an instance of random.Random as the default argument. A
random.Random is a mutable object, and using a mutable object as a default value of a function

80 Chapter 12. Review of Testability

Building Skills in Object-Oriented Design, Release 2.2.1-Python

will lead to weird problems because that single object instance will be reused for every Wheel built
during testing and actual simulation runs.

12.6 Testability Deliverables

There are three deliverables for this exercise. All of these deliverables need appropriate Javadoc comments
or Python docstrings.

• A modified design for Wheel. This add the second constructor that allows us to omit the random
number generator when constructing Wheel.

• Revised unit tests for Wheel based on the fixed sequence of responses from the non-random number
generator.

• Revised unit tests for Game based on this revised version of Wheel based on the fixed sequence of
responses from the non-random number generator.

12.6. Testability Deliverables 81

Building Skills in Object-Oriented Design, Release 2.2.1-Python

82 Chapter 12. Review of Testability

CHAPTER

THIRTEEN

PLAYER CLASS

The variations on Player, all of which reflect different betting strategies, is the heart of this application. In
Roulette Game Class, we roughed out a stub class for Player. In this chapter, we will complete that design.
We will also expand on it to implement the Matingale betting strategy.

13.1 Roulette Player Overview

We have now built enough infrastructure that we can begin to add a variety of players and see how their
betting strategies work. Each player is betting algorithm that we will evaluate by looking at the player’s
stake to see how much they win, and how long they play before they run out of time or go broke.

The Player has the responsibility to create bets and manage the amount of their stake. To create bets, the
player must create legal bets from known Outcomes and stay within table limits. To manage their stake, the
player must deduct money when creating a bet, accept winnings or pushes, report on the current value of
the stake, and leave the table when they are out of money.

We have an interface that was roughed out as part of the design of Game and Table. In designing Game, we
put a placeBets() method in Player to place all bets. We expected the Player to create Bet s and use
the placeBet() method of Table class to save all of the individual Bets.

In an earlier exercise, we built a stub version of Player in order to test Game. See Passenger57 Design.
When we finish creating the final superclass, Player, we will also revise our Passenger57 to be a subclass of
Player, and rerun our unit tests to be sure that our more complete design still handles the basic test cases
correctly.

Objectives. Our objective is to have a new abstract class, Player, with two new concrete subclasses: a
revision to Passenger57 and a new player that follows the Martingale betting system.

We’ll defer some of the design required to collect detailed measurements for statistical analysis. In this first
release, we’ll simply place bets.

There are four design issues tied up in Player : tracking stake, keeping within table limits, leaving the table,
and creating bets. We’ll tackle them in separate subsections.

Tracking the Stake. One of the more important features we need to add to Player are the methods to
track the player’s stake. The initial value of the stake is the player’s budget. There are two significant
changes to the stake.

• Each bet placed will deduct the bet amount from the Player‘s stake. We are stopped from placing
bets when our stake is less than the table minimum.

• Each win will credit the stake. The Outcome will compute this amount for us.

• Additionally, a push will put the original bet amount back. This is a kind of win with no odds applied.

83

Building Skills in Object-Oriented Design, Release 2.2.1-Python

We’ll have to design an interface that will create Bet s, reducing the stake. and will be used by Game to
notify the Player of the amount won.

Additionally, we will need a method to reset the stake to the starting amount. This will be used as part of
data collection for the overall simulation.‘

Table Limits. Once we have our superclass, we can then define the Martingale player as a subclass. This
player doubles their bet on every loss, and resets their bet to a base amount on every win. In the event of
a long sequence of losses, this player will have their bets rejected as over the table limit. This raises the
question of how the table limit is represented and how conformance with the table limit is assured. We put
a preliminary design in place in Roulette Table Class. There are several places where we could isolate this
responsibility.

1. The Player stops placing bets when they are over the Table limit. In this case, we will be delegating
responsibility to the Player hierarchy. In a casino, a sign is posted on the table, and both players
and casino staff enforce this rule. This can be modeled by providing a method in Table that simply
returns the table limit for use by the Player to keep bets within the limit.

2. The Table provides a “valid bet” method. This reflects a more general situation where a stateful game
has bets that change. In Craps, for example, most bets cannot be placed until a point is established.

3. The Table throws an “illegal bet” exception when an illegal bet is placed. While permissable, this kind
of use for exceptions pushes the envelope on clarity and simplicity. One viewpoint is that exceptions
should be reserved for situations that are truly unexpected. In this case, we expect to run into the
table limit situation fairly often using Martigale betting.

We recommend the second choice: adding a isValid() method to the Table class. This has the consequence
of allocating responsibility to Table , and permits us to have more advanced games where some bets are
not allowed during some game states. It also obligates Player to validate each bet with the Table. It also
means that at some point, the player may be unable to place a legal bet.

We could also implement this by adding to the responsibilities of the existing placeBet() method. For
example, we could return true if the bet was accepted, and false if the bet violated the limits or other
game state rules. We prefer to isolate responsibility and create a second method rather than pile too much
into a single method.

Leaving the Table. In enumerating the consequences of checking for legal bets, we also uncovered the issue
of the Player leaving the game. We can identify a number of possible reasons for leaving: out of money,
out of time, won enough, and unwilling to place a legal bet. Since this decision is private to the Player , we
need a way of alerting the Game that the Player is finished placing bets.

There are three mechanisms for alerting the Game that the Player is finished placing bets.

1. Expand the responsibilities of the placeBets() to also indicate if the player wishes to continue or
is withdrawing from the game. While most table games require bets on each round, it is possible
to step up to a table and watch play before placing a bet. This is one classic strategy for winning
at blackjack: one player sits at the table, placing small bets and counting cards, while a confederate
places large bets only when the deck is favorable. We really have three player conditions: watching,
betting and finished playing. It becomes complex trying to bundle all this extra responsibility into the
placeBets() method.

2. Add another method to Player that the Game can use to determine if the Player will continue or stop
playing. This can be used for a player who is placing no bets while waiting; for example, a player who
is waiting for the Roulette wheel to spin red seven times in a row before betting on black.

3. The Player can throw an exception when they are done playing. This is an exceptional situation: it
occurs exactly once in each simulation. However, it is a well-defined condition, and doesn’t deserve to
be called “exceptional” . It is merely a terminating condition for the game.

84 Chapter 13. Player Class

Building Skills in Object-Oriented Design, Release 2.2.1-Python

We recommend adding a method to Player to indicate when Player is done playing. This gives the most
flexibility, and it permits Game to cycle until the player withdraws from the game.

A consequence of this decision is to rework the Game class to allow the player to exit. This is relatively small
change to interrogate the Player before asking the player to place bets.

Note: Design Evolution
In this case, these were situations which we didn’t discover during the initial design. It helped to have some
experience with the classes in order to determine the proper allocation of responsibilities. While design
walkthroughs are helpful, an alternative is a “prototype”, a piece of software that is incomplete and can be
disposed of. The earlier exercise created a version of Game that was incomplete, and a version of PlayerStub
that will have to be disposed of.

Creating Bets from Outcomes. Generally, a Player will have a few Outcomes on which they are betting.
Many systems are similar to the Martingale system, and place bets on only one of the Outcomes. These
Outcome objects are usually created during player initialization. From these Outcome s, the Player can
create the individual Bet instances based on their betting strategy.

13.2 Player Design

class Player

We’ll design the base class of Player and a specific subclass, Martingale. This will give us a working player
that we can test with.

Player places bets in Roulette. This an abstract class, with no actual body for the placeBets() method.
However, this class does implement the basic win() method used by all subclasses.

13.2.1 Fields

Player.stake
The player’s current stake. Initialized to the player’s starting budget.

Player.roundsToGo
The number of rounds left to play. Initialized by the overall simulation control to the maximum number
of rounds to play. In Roulette, this is spins. In Craps, this is the number of throws of the dice, which
may be a large number of quick games or a small number of long-running games. In Craps, this is the
number of cards played, which may be large number of hands or small number of multi-card hands.

Player.table
The Table used to place individual Bets. The Table contains the current Wheel from which the player
can get Outcomes used to build Bets.

13.2.2 Constructors

Player.__init__(self, table)
Constructs the Player with a specific Table for placing Bets.

Parameters table (Table) – the table to use

13.2. Player Design 85

Building Skills in Object-Oriented Design, Release 2.2.1-Python

13.2.3 Methods

Player.playing(self) → boolean

Returns true while the player is still active.

Player.placeBets(self)

Updates the Table with the various Bet s.

When designing the Table, we decided that we needed to deduct the amount of a bet from the
stake when the bet is created. See the Table Roulette Table Overview for more information.

Player.win(self, bet)

Parameters bet (Bet) – The bet which won

Notification from the Game that the Bet was a winner. The amount of money won is available
via bet method winAmount().

Player.lose(self, bet)

Parameters bet (Bet) – The bet which won

Notification from the Game that the Bet was a loser. Note that the amount was already deducted
from the stake when the bet was created.

13.3 Martingale Player Design

class Martingale

Martingale is a Player who places bets in Roulette. This player doubles their bet on every loss and resets
their bet to a base amount on each win.

13.3.1 Fields

Martingale.lossCount
The number of losses. This is the number of times to double the bet.

Martingale.betMultiple
The the bet multiplier, based on the number of losses. This starts at 1, and is reset to 1 on each win.
It is doubled in each loss. This is always equal to 2lossCount.

13.3.2 Methods

Martingale.placeBets(self)

Updates the Table with a bet on “black”. The amount bet is 2lossCount, which is the value of
betMultiple.

Martingale.win(self, bet)

Parameters bet (Bet) – The bet which won

Uses the superclass win() method to update the stake with an amount won. This method then
resets lossCount to zero, and resets betMultiple to 1.

Martingale.lose(self, bet)

86 Chapter 13. Player Class

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Parameters bet (Bet) – The bet which won

Uses the superclass lose() to do whatever bookkeeping the superclass already does. Increments
lossCount by 1 and doubles betMultiple.

13.4 Player Deliverables

There are six deliverables for this exercise. The new classes must have Javadoc comments or Python doc-
strings.

• The Player abstract superclass. Since this class doesn’t have a body for the placeBets(), it can’t be
unit tested directly.

• A revised Passenger57 class. This version will be a proper subclass of Player, but still place bets on
black until the stake is exhausted. The existing unit test for Passenger57 should continue to work
correctly after these changes.

• The Martingale subclass of Player.

• A unit test class for Martingale. This test should synthesize a fixed list of Outcome s, Bin s, and
calls a Martingale instance with various sequences of reds and blacks to assure that the bet doubles
appropriately on each loss, and is reset on each win.

• A revised Game class. This will check the player’s playing() method before calling placeBets(), and
do nothing if the player withdraws. It will also call the player’s win() and lose() methods for winning
and losing bets.

• A unit test class for the revised Game class. Using a non-random generator for Wheel, this should be
able to confirm correct operation of the Game for a number of bets.

13.4. Player Deliverables 87

Building Skills in Object-Oriented Design, Release 2.2.1-Python

88 Chapter 13. Player Class

CHAPTER

FOURTEEN

OVERALL SIMULATION CONTROL

This section starts to address the overall “main program” that pulls the various classes together to create a
finished application. Additionally, we’ll also address some issues in how Java handles collections of primitive
data types like integers.

14.1 Simulation Control Overview

We can now use our application to generate some more usable results. We can perform a number of simulation
runs and evaluate the long-term prospects for the Martingale betting system. We want to know a few things
about the game:

• How long can we play with a given budget? In other words, how many spins before we’ve lost our
stake.

• How much we can realistically hope to win? How large a streak can we hope for? How far ahead can
we hope to get before we should quit?

The Simulator will be an active class with a number of responsibilities

• Create the Wheel, Table and Game objects.

• Simulate a number of sessions (typically 100), saving the maximum stake and length of each session.

• For each session: initialize the Player and Game , cycle the game a number of times, collect the size of
the Player ‘s stake after each cycle.

• Write a final summary of the results.

At this point, we’ll need for formalize some definitions, just to be crystal clear on the responisbility allocation.

14.2 Simulation Terms

cycle

A single cycle of betting and bet resolution. This depends on a single random event: a spin of
the wheel or a throw of the dice. Also known as a round of play.

session

One or more cycles. The session begins with a player having their full stake. A session ends
when the play elects to leave or can no longer participate. A player may elect to leave because of
elapsed time (typically 250 cycles), or they have won a statistically significant amount. A player
can no longer participate when their stake is too small to make the minimum bet for the table.

game

89

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Some games have intermediate groupings of events between an individual cycles and an entire
session. Blackjack has hands where a number of player decisions and a number of random events
contribute to the payoff. Craps has a game, which starts with the dice roll when the point is
off, and ends when the point is made or the shooter gets Craps; consequently, any number of
individual dice rolls can make up a game. Some bets are placed on the overall game, while others
are placed on individual dice rolls.

The sequence of operations for the simulator looks like this.

Controlling the Simulation

1. Empty List of Maxima. Create an empty maxima list. This is the maximum stake at the end of
each session.

2. Empty List of Durations. Create an empty durations list. This is the duration of each session,
measured in the number of cycles of play before the player withdrew or ran out of money.

3. For All Sessions. For each of 100 sessions:

Empty List of Stake Details. Create an empty list to hold the history of stake values for
this session. This is raw data that we will summarize into two metrics for the session: max-
imum stake and duration. We could also have two simple variables to record the maximum
stake and count the number of spins for the duratioon. However, the list allows us to gather
other statistics, like maximum win or maximum loss.

While The Player Is Active.

Play One Cycle. Play one cycle of the game. See the definition in Roulette Game
Class.

Save Outcomes. Save the player’s current stake in the list of stake values for this
session. An alternative is to update the maximum to be the larger of the current
stake and the maximum, and increment the duration.

Get Maximum. Get the maximum stake from the list of stake values. Save the maximum
stake metric in the maxima list.

Get Duration. Get the length of the list of stake values. Save the duration metric in the
durations list. Durations less than the maximum mean the strategy went bust.

4. Statistical Description of Maxima. Compute the average and standard deviation of the values in
the maxima list.

5. Statistical Description of Durations. Compute the average and standard deviation of values in
the durations list.

Both this overall Simulator and the Game collaborate with the Player. The Simulator‘s collaboration,
however, initalizes the Player and then monitors the changes to the Player‘s stake. We have to design two
interfaces for this collaboration.

Player Initialization. The Simulator will initialize a Player for 250 cycles of play, assuming about one
cycle each minute, and about four hours of patience. We will also initialize the player with a generous budget
of the table limit, 100 betting units. For a $10 table, this is $1,000 bankroll.

Currently, the Player class is designed to play one session and stop when their duration is reached or their
stake is reduced to zero. We have two alternatives for reinitializing the Player at the beginning of each
session.

1. Provide some setters that allow a client class like this overall simulator control to reset the stake and
roundsToGo values of a Player.

90 Chapter 14. Overall Simulation Control

Building Skills in Object-Oriented Design, Release 2.2.1-Python

2. Provide a Factory that allows a client class to create new, freshly initialized instances of Player.

While the first solution is quite simple, there are some advantages to creating a PlayerFactory. If we create
an Abstract Factory, we have a single place that creates all Players.

Further, when we add new player subclasses, we introduce these new subclasses by creating a new subclass
of the factory. In this case, however, only the main program creates instances of Player, reducing the value
of the factory. While design of a Factory is a good exercise, we can scrape by with adding setter methods
to the Player class.

Player Interrogation. The Simulator will interrogate the Player after each cycle and capture the current
stake. An easy way to manage this detailed data is to create a List that contains the stake at the end of
each cycle. The length of this list and the maximum value in this list are the two metrics the Simulator
gathers for each session.

Our list of maxima and durations are created sequentially during the session and summarized sequentially
at the end of the session. A Java LinkedList will do everything we need. For a deeper discussion on the
alternatives available in the collections framework, see Design Decision – Choosing A Collection.

Statistical Summary. The Simulator will interrogate the Player after each cycle and capture the current
stake. We don’t want the sequence of stakes for each cycle, however, we want a summary of all the cycles in
the session. We can save the length of the sequence as well as the maximum of the sequence to determine these
two aggregate performance parameters for each session. Our objective is to run several session simulations
to get averages and a standard deviations for duration and maximum stake. This means that the Simulator
needs to retain these statistical samples. We will defer the detailed design of the statistical processing, and
simply keep the duration and maximum values in Lists for this first round of design.

14.3 Simulator Design

class Simulator

Simulator exercises the Roulette simulation with a given Player placing bets. It reports raw statistics on
a number of sessions of play.

Handling Lists of Values in Java

Java programmers can’t easily accumulate a List of int values. This is because a primitive int value
is not an object. The usual solution is to make an Integer value from the int, and put the Integer
object into the list.
When getting values back out of the list, there is a two-step dance: cast the item in the list to be an
Integer, then get the int value of that object. The following examples show this as two steps.

for(Iterator<Integer> i = someList.iterator(); i.hasNext();) {
int value = i.next().intValue();
... processing of value ...

}

14.3.1 Fields

Simulator.initDuration
The duration value to use when initializing a Player for a session. A default value of 250 is a good
choice here.

14.3. Simulator Design 91

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Simulator.initStake
The stake value to use when initializing a Player for a session. This is a count of the number of bets
placed; i.e., 100 $10 bets is $1000 stake. A default value of 100 is sensible.

Simulator.samples
The number of game cycles to simulate. A default value of 50 makes sense.

Simulator.durations
A List of lengths of time the Player remained in the game. Each session of play producrs a duration
metric, which are collected into this list.

Simulator.maxima
A List of maximum stakes for each Player. Each session of play producrs a maximum stake metric,
which are collected into this list.

Simulator.player
The Player; essentially, the betting strategy we are simulating.

Simulator.game
The casino game we are simulating. This is an instance of Game, which embodies the various rules, the
Table and the Wheel.

14.3.2 Constructors

Simulator.__init__(self, game, player)
Saves the Player and Game instances so we can gather statistics on the performance of the player’s
betting strategy.

Parameters

• game (Game) – The Game we’re simulating. This includes the Table and Wheel.

• player (Player) – The Player. This encapsulates the betting strategy.

14.3.3 Methods

Simulator.session(self) → list

Returns list of stake values.

Return type list

Executes a single game session. The Player is initialized with their initial stake and initial cycles
to go. An empty List of stake values is created. The session loop executes until the Player
playing() returns false. This loop executes the Game cycle(); then it gets the stake from the
Player and appends this amount to the List of stake values. The List of individual stake values
is returned as the result of the session of play.

Simulator.gather(self)

Executes the number of games sessions in samples. Each game session returns a List of stake
values. When the session is over (either the play reached their time limit or their stake was
spent), then the length of the session List and the maximum value in the session List are the
resulting duration and maximum metrics. These two metrics are appended to the durations list
and the maxima list.

A client class will either display the durations and maxima raw metrics or produce statistical
summaries.

92 Chapter 14. Overall Simulation Control

Building Skills in Object-Oriented Design, Release 2.2.1-Python

14.4 Player Rework

The current design for the Player doesn’t provide all the methods we need.

We’ll can add two new methods: one will set the stake and the other will set the roundsToGo.

Player.setStake(self, stake)

Parameters stake (integer) – the Player’s initial stake

Player.setRounds(self, rounds)

Parameters rounds (integer) – the Player’s duration of play

14.5 Simulation Control Deliverables

There are five deliverables for this exercise. Each of these classes needs complete Javadoc or Python docstring
comments.

• Revision to the Player class. Don’t forget to update unit tests.

• The Simulator class.

• The expected outcomes from the non-random wheel can be rather complex to predict. Because of this,
one of the deliverables is a demonstration program that enumerates the actual sequence of non-random
spins. From this we can derive the sequence of wins and losses, and the sequence of Player bets. This
will allow us to predict the final outcome from a single session.

• A unit test of the Simulator class that uses the non-random generator to produce the predictable
sequence of spins and bets.

• A main application function that creates the necessary objects, runs the Simulator‘s gather()method,
and writes the available outputs to sys.stdout

For this initial demonstration program, it should simply print the list of maxima, and the list of session
lengths. This raw data can be redirected to a file, loaded into a spreadsheet and analyzed.

14.4. Player Rework 93

Building Skills in Object-Oriented Design, Release 2.2.1-Python

94 Chapter 14. Overall Simulation Control

CHAPTER

FIFTEEN

SEVENREDS PLAYER CLASS

This section introduces an additional specialization of the Martingale strategy. Additionally, we’ll also
address some issues in how an overall application is composed of individual class instances. Adding this new
subclass should be a small change to the main application class.

15.1 SevenReds Player Overview

The SevenReds player waits for seven red wins in a row before betting black. This is a subclass of Player.
We can create a subclass of our main Simulator to use this new SevenReds class.

We note that Passenger57‘s betting is stateless: this class places the same bets over and over until they are
cleaned out or their playing session ends.

The Martingale player’s betting, however, is stateful. This player changes the bet based on wins and losses.
The state is a loss counter than resets to zero on each win, and increments on each loss.

Our SevenReds player will have two states: waiting and betting. In the waiting state, they are simply
counting the number of reds. In the betting state, they have seen seven reds and are now playing the
Martingale system on black. We will defer serious analysis of this stateful betting until some of the more
sophisticated subclasses of Player. For now, we will simply use an integer to count the number of reds.

Game Changes. Currently, a Player is not informed of the final outcome unless they place a bet. We
designed the Game to evaluate the Bet instances and notify the Player of just their Bets that were wins or
losses. We will need to add a method to Player to be given the overall list of winning Outcomes even when
the Player has not placed a bet.

Once we have updated the design of Game to notify Player, we can add the new SevenReds class. Note that
we are can intoduce each new betting strategy via creation of new subclasses. A relatively straightforward
update to our simulation main program allows us to use these new subclasses. The previously working
subclasses are left in place, allowing graceful evolution by adding features with minimal rework of existing
classes.

In addition to waiting for the wheel to spin seven reds, we will also follow the Martingale betting system to
track our wins and losses, assuring that a single win will recoup all of our losses. This makes SevenReds a
further specialization of Martingale. We will be using the basic features of Martingale, but doing additional
processing to determine if we should place a bet or not.

Introducing a new subclass should be done by upgrading the main program. See Soapbox on Composition
for comments on the ideal structure for a main program. Additionally, see the Roulette Solution Questions
and Answers FAQ entry.

95

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Soapbox on Composition

Generally, a solution is composed of a number of objects. However, the consequences of this are often
misunderstood. Since the solution is a composition of objects, it falls on the main method to do just
the composition and nothing more.
Our ideal main program creates and composes the working set of objects. In this case, it should
decode the command-line parameters, and use this information to create and initialize the simulation
objects, then start the processing. For these simple exercises, however, we’re omitting the parsing of
command-line parameters, and simply creating the necessary objects directly.
Our main program should, therefore, look something like the following:

theRNG= random.Random()
theWheel= Wheel(theRNG)
theTable= Table()
theGame= Game(theWheel, theTable)
thePlayer= SevenReds(table)
sim= new Simulator(theGame, thePlayer)
sim.gather()

1. The theRNG variable can also be initialized to an instance of NonRandom. The idea is that we
build up the functionality of Wheel by composition. We compose the wheel of the bins plus the
number generator.

2. the thePlayer variable can also be Martingale or Passenger57. Again, we have assembled the
final simulation by composition of a Wheel (and its generator), the Table and the specific Player
algorithm.

3. This is the actual work of the application, done by the Simulator, using the Game and Player
objects built by main.

In many instances, the construction of objects is not done directly by the main method. Instead, the
main method will construct a base group of Abstract Factory and Builder objects. Given these objects
and the command-line parameters, the application objects can be built. The application objects then
collaborate to perform the required functions.

15.2 SevenReds Design

class SevenReds

SevenReds is a Martingale player who places bets in Roulette. This player waits until the wheel has spun
red seven times in a row before betting black.

15.2.1 Fields

SevenReds.redCount
The number of reds yet to go. This starts at 7 , is reset to 7 on each non-red outcome, and decrements
by 1 on each red outcome.

Note that this class inherits betMultiple. This is initially 1, doubles with each loss and is reset to one on
each win.

15.2.2 Methods

SevenReds.placeBets(self)

96 Chapter 15. SevenReds Player Class

Building Skills in Object-Oriented Design, Release 2.2.1-Python

If redCount is zero, this places a bet on black, using the bet multiplier.

SevenReds.winners(self, outcomes)

Parameters outcomes (Set of Outcome) – The Outcome set from a Bin.

This is notification from the Game of all the winning outcomes. If this vector includes red,
redCount is decremented. Otherwise, redCount is reset to 7.

15.3 Player Rework

We’ll need to revise the Player class to add the following method. The superclass version doesn’t do anything
with this information. Some subclasses, however, will process this.

Player.winners(self, outcomes)

Parameters outcomes (Set of Outcome) – The set of Outcome instances that are part of
the current win.

The game will notify a player of each spin using this method. This will be invoked even if the
player places no bets.

15.4 Game Rework

We’ll need to revise the Game class to extend the cycle method. This method must provide the winning bin’s
Outcome set.

15.5 SevenReds Player Deliverables

There are six deliverables from this exercise. The new classes will require complete Javadoc comments or
Python docstrings.

• A revision to the Player to add the Player.winners() method. The superclass version doesn’t do
anything with this information. Some subclasses, however, will process this.

• A revision to the Player unit tests.

• A revision to the Game class. This will call the winners() with the winning Bin instance before paying
off the bets.

• The SevenReds subclass of Player.

• A unit test of the SevenReds class. This test should synthesize a fixed list of Outcomes, Bins and the
call a SevenReds instance with various sequences of reds and blacks. One test cases can assure that no
bet is placed until 7 reds have been seen. Another test case can assure that the bets double (following
the Martingale betting strategy) on each loss.

• A main application function that creates the necessary objects, runs the Simulator‘s gather()method,
and writes the available outputs to sys.stdout

For this initial demonstration program, it should simply print the list of maxima, and the list of session
lengths. This raw data can be redirected to a file, loaded into a spreadsheet and analyzed.

15.3. Player Rework 97

Building Skills in Object-Oriented Design, Release 2.2.1-Python

98 Chapter 15. SevenReds Player Class

CHAPTER

SIXTEEN

STATISTICAL MEASURES

This section presents two ordinary statistical algorithms: mean and standard deviation. In one sense, this
section could be treated as optional. Instead of having the simulator present useful summary statistics, raw
data can be put into a spreadsheet for creating the statistics.

However, the process of designing these statistical processing classes is very interesting. This chapter exam-
ines some ways to add features to the built-in collection classes.

16.1 Statistics Overview

Currently, the Simulator class collects two Lists. One has the length of a session, the other has the
maximum stake during a session. We need to create some descriptive statistics to summarize these stakes
and session lengths.

On Statistics

In principle, we could apply basic probability theory to predict the statistics generated by this simula-
tion. Indeed, some of the statistics we are gathering are almost matters of definition, rather than actual
unknown data. We are, however, much more interested in the development of the software than we
are in applying probability theory to a relatively simple casino game. As a consequence, the statistical
analysis here is a little off-base.
In spite of our problems, we will build a relatively simple-minded set of descriptive statistics. We will
average two metrics: the peak stake for a session and the duration of the session. Both of these values
have some statistical problems. The peak stake, for instance, is already a summary number. We have
to be cautious in our use of summarized numbers, since we have lost any sense of the frequency with
which the peaks occured. For example, a player may last 250 cycles of play, with a peak stake of 130.
We don’t know if that peak occurred once or 100 times out of that 250. Additionally, the length of
the session has an upper bound on the number of cycles. This forces the distribution of values to be
skewed away from the predictable distribution.

We will design a Statistics class with responsibility to retain and summarize a list of numbers and produce
the average (also known as the mean) and standard deviation. The Simulator can then use this this
Statistics class to get an average of the maximum stakes from the list of session-level measures. The
Simulator can also apply this Statistics class to the list of session durations to see an average length of
game play before going broke.

We can encapsulate this statistical processing in two ways: we could extend an existing class or we could
delegate the statistical functions to a separate class. If we extend the library java.util.List, we can add
the needed statistical summary features; given this new class, we can replace the original List of sample
values with a StatisticalList that both saves the values and computes descriptive statistics. In addition

99

Building Skills in Object-Oriented Design, Release 2.2.1-Python

to delegation, we have two choices for implementation of this extended version of List, giving us three
alternative designs.

1. Extend LinkedList. In this case, we are simply adding two new methods to the existing LinkedList
implementation. However, our new methods would not apply to ArrayList or Vector.

2. Extend AbstractList. However, in doing this we would need to provide the implementation details
of the list structure itself. In effect, we would reimplement LinkedList or ArrayList.

3. Create a separate class that computes statistics on a List given as an argument to the methods of the
statistical class. In this case, our statistical methods will work with any subclass that implements the
interface List. This can be applied to any of LinkedList, ArrayList or Vector.

Alternative three – a separate statistical class – has the most reuse potential. We’ll create a simple class
with two methods: mean() and stdev() to compute the mean and standard deviation of a List of Integer
objects. This can be used in a variety of contexts, and allows us the freedom to switch List implementation
classes without any other changes.

The detailed algorithms for mean and standard deviation are provided in Statistical Algorithms.

Since our processes are relative simple, stateless algorithms, we don’t need any instance variables. Conse-
quently, we’ll never need to create an instance of this class. As with Java.lang.Math , all of these methods
can be declared as static, making them features of the class itself.

16.2 Some Foundations

For those programmers new to statistics, this section covers the Sigma operator, Σ.
n∑

i=0

f(i)

The Σ operator has three parts to it. Below it is a bound variable, i, and the starting value for the range,
written as i = 0. Above it is the ending value for the range, usually something like n. To the right is some
function to execute for each value of the bound variable. In this case, a generic function, f(i) is shown. This
is read as “sum f (i) for i in the range 0 to n”.

One common definition of Σ uses a closed range, including the end values of 0 and n . However, since this is
not a helpful definition for software, we will define Σ to use a half-open interval. It has exactly n elements,
including 0 and n -1; mathematically, 0 ≤ i < n.

Consequently, we prefer the following notation, but it is not often used. Since statistical and mathematical
texts often used 1-based indexing, some care is required when translating formulae to programming languages
that use 0-based indexing. ∑

0≤i<n

f(i)

Our two statistical algorithms have a form more like the following function. In this we are applying some
function, f , to each value, xi of an list, x.

When computing the mean, as a special case, there is no function applied to the values in the list. When
computing standard deviation, the function involves subtracting and multiplying.∑

0≤i<n

f(xi)

We can transform this definition directly into a for loop that sets the bound variable to all of the values in
the range, and does some processing on each value of the List of Integers.

100 Chapter 16. Statistical Measures

Building Skills in Object-Oriented Design, Release 2.2.1-Python

This is the Python implementation of Sigma. This computes two values, the sum, s and the number of
elements, n.

s= sum(theList)
n = len(theList)

When computing the standard deviation, we do something like the following

s= sum(f(x) for x in theList)
n = len(theList)

Where the f(x) calculuation computes the measure of deviation from the average.

16.3 Statistical Algorithms

16.3.1 Mean

Computing the mean of a list of values is relatively simple. The mean is the sum of the values divided by
the number of values in the list. Since the statistical formula is so closely related to the actual loop, we’ll
provide the formula, followed by an overview of the code.

µx =

∑
0≤i<n

xi

n

The definition of the Σ mathematical operator leads us to the following method for computing the mean:

Computing The Mean of a List, X, with n elements.

1. Initialize. Set s← 0.

2. Iterate. For each value, xi in the list:

Sum and Count. Set s← s+ xi.

3. Result. Return s÷ n.

16.3.2 Standard Deviation

The standard deviation can be done a few ways. We’ll use the formula shown below. This computes a
deviation measurement as the square of the difference between each sample and the mean.

The sum of these measurements is then divided by the number of values times the number of degrees of
freedom to get a standardized deviation measurement.

Again, the formula summarizes the loop, so we’ll show the formula followed by an overview of the code.

σx =

√√√√√
∑

0≤i<n

(xi − µx)
2

n− 1

The definition of the Σ mathematical operator leads us to the following method for computing the standard
deviation:

16.3. Statistical Algorithms 101

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Computing Standard Deviation of a List, X, with n elements.

1. Get the Mean. Compute the mean, m gets mean(x).

2. Initialize. Set s← 0.

3. Iterate. For each value, xi in the list:

Difference. Compute the difference from the mean, d← xi −m.

Sums. Compute the sum, s← s+ d2.

This is typically done as d*d in Java, since there is no “squared” operator. In Python, this
can be d**2.

4. Variance. Set v ← s÷ (n− 1). This n− 1 value reflects the statistical notion of “degrees of freedom”,
which is beyond the scope of this book.

5. Result. Return the square root of the variance,
√
v.

Tip: Math Functions
For programmers new to Python, the math module contains the math.sqrt(), which computes square roots.

16.4 IntegerStatistics Design

class IntegerStatistics

IntegerStatistics computes several simple descriptive statistics of Integer values in a List.

In Python, we don’t actually need a class definition, we can simply declare two functions outside any class.
However, to be consistent with Java, it’s easier to define these functions in a class.

16.4.1 Constructors

Since this class has entirely static methods, it doesn’t really need a constructor.

16.4.2 Methods

IntegerStatistics.mean(values)
This requires the @staticmethod decorator.

Parameters values (list) – The list of values we are summarizing.

Computes the mean of the List of Integer values.

IntegerStatistics.stdev(values)
This requires the @staticmethod decorator.

Parameters values (list) – The list of values we are summarizing.

Computes the standard deviation of the List of Integer values.

102 Chapter 16. Statistical Measures

Building Skills in Object-Oriented Design, Release 2.2.1-Python

16.5 Statistics Deliverables

There are three deliverables for this exercise. These classes will include the complete Javadoc comments or
Python dostring.

• The IntegerStatistics class.

• A unit test of the IntegerStatistics class.

Prepare some simple list (or tuple) of test data.

The results can be checked with a spreadsheet

• An update to the overall Simulator that gets uses an IntegerStatistics object to compute the mean
and standard deviation of the peak stake. It also computest the mean and standard deviation of the
length of each session of play.

Here is some standard deviation unit test data.
Sample Value
9
8
5
9
9
4
5
8
10
7
8
8

Here are some intermediate results and the correct answers given to 6 significant digits. Your answers should
be the same to the precision shown.

sum 90

count 12

mean 7.5

sum d*d 608.668

stdev 1.88293

16.5. Statistics Deliverables 103

Building Skills in Object-Oriented Design, Release 2.2.1-Python

104 Chapter 16. Statistical Measures

CHAPTER

SEVENTEEN

RANDOM PLAYER CLASS

This section will introduce a simple subclass of Player who bets at random.

17.1 Random Player Overview

One possible betting strategy is to bet completely randomly. This serves as an interesting benchmark for
other betting strategies.

We’ll write a subclass of Player which steps through all of the bets available on the Wheel, selecting one
or more of the available outcomes at random. This Player, like others, will have a fixed initial stake and a
limited amount of time to play.

The Wheel class can provide an Iterator over the collection of Bin instances. We could revise Wheel to
provide a binIterator() method that we can use to return all of the Bins. From each Bin, we will need an
iterator we can use to return all of the Outcomes.

To collect a list of all possible Outcomes, we would use the following algorithm:

Locating all Outcomes

1. Empty List of Outcomes. Create an empty set of all Outcomes, all_OC.

2. Get Bin Iterator. Get the Iterator from the Wheel that lists all Bins.

3. For each Bin.

Get Outcome Iterator. Get the Iterator that lists all Outcomes.

For each Outcome.

Save Outcome. Save a reference to each Outcome in the set of all known outcomes, all_OC.

To place a random bet, we would use the following algorithm:

Placing a Random Bet

1. Get the size of the pool of all possible Outcome s, s.

2. Get a random number, u, from zero to the total size-1. That is, 0 <= u <= s -1.

3. Return element u from the pool of Outcome s.

105

Building Skills in Object-Oriented Design, Release 2.2.1-Python

17.2 Random Player Design

class PlayerRandom

PlayerRandom is a Player who places bets in Roulette. This player makes random bets around the layout.

17.2.1 Fields

PlayerRandom.rng
A Random Number Generator which will return the next random number.

17.2.2 Constructors

PlayerRandom.__init__(table, rng)
This uses the super() construct to invoke the superclass constructor using the Table. Then it saves
the random number generator. This could be an instance of either Random or NonRandom.

Parameters

• table (Table) – The Table which will accept the bests.

• rng (random.Random) – A :class:random.Random‘ random number generator.

17.2.3 Methods

PlayerRandom.placeBets(self)

Updates the Table with a randomly placed bet.

17.3 Random Player Deliverables

There are five deliverables from this exercise. The new classes need Javadoc comments or Python docstrings.

• Updates to the class Bin to return an iterator over available Outcomes. Updates to unittests for the
class Bin, also.

• Updates to the Wheel to return an iterator over available Bins. Updates to the unittests for the class
Wheel, also.

• The PlayerRandom class.

• A unit test of the PlayerRandom class. This should use the NonRandom number generator to iterate
through all possible Outcomes.

• An update to the overall Simulator that uses the PlayerRandom.

106 Chapter 17. Random Player Class

CHAPTER

EIGHTEEN

PLAYER 1-3-2-6 CLASS

This section will describe a player who has a complex internal state. We will also digress on the way the
states can be modeled using a group of polymorphic classes. This section also has an advanced exercise that
shows some alternative implementations for the state objects, using the Singleton design pattern.

18.1 Player 1-3-2-6 Overview

On the Internet, we found descriptions of a betting system called the “1-3-2-6” system. This system looks to
recoup losses by waiting for four wins in a row. The sequence of numbers (1, 3, 2 and 6) are the multipliers
to use when placing bets after winning. At each loss, the sequence resets to the multiplier of 1. At each
win, the multiplier is advanced. After one win, the bet is now 3x. After a second win, the bet is reduced to
2x, and the winnings of 4x are “taken down” or removed from play. In the event of a third win, the bet is
advanced to 6x. Should there be a fourth win, the player has doubled their money, and the sequence resets.

This betting system makes our player more stateful than in previous betting systems. When designing
SevenReds, we noted that this player was stateful; that case, the state was a simple count.

In this case, the description of the betting system seems to identify four states: no wins, one win, two wins,
and three wins. In each of these states, we have specific bets to place, and state transition rules that tell us
what to do next. The following table summarizes the states, the bets and the transition rules.

Table 18.1: 1-3-2-6 Betting States
Next State

State Bet On Win On Loss
No Wins 1 One Win No Wins
One Win 3 Two Wins No Wins
Two Wins 2 Three Wins No Wins
Three Wins 6 No Wins No Wins

When we are in a given state, the table gives us the amount to bet in the Bet column. If this bet wins, we
transition to the state named in the On Win column, otherwise, we transition to the state named in the On
Loss column. We always start in the No Wins state.

Design Pattern. We can exploit the State design pattern to implemente this more sophisticated player.
This pattern suggests that we design a hierarchy of classes to represent these four states. Each state will
have a slightly different bet amount, and different state transition rules. Each individual state class will be
relatively simple, but we will have isolated the processing unique to each state into separate classes.

One of the consequences of the State design pattern is that it obligates us to define the interface between
the Player and the object that holds the Player‘s current state.

It seems best to have the state object follow our table and provide three methods: currentBet(), nextWon(),
and nextLost(). The Player can use these methods of the state object to place bets and pick a new state.

107

Building Skills in Object-Oriented Design, Release 2.2.1-Python

• A state’s currentBet() method will construct a Bet from an Outcome that the Player keeps, and the
multiplier that is unique to the state. As the state changes, the multiplier moves between 1, 3, 2 and
6.

• A state’s nextWon() method constructs a new state object based on the state transition table when
the last bet was a winner.

• A state’s nextLost() method constructs a new state based on the state transition table when the last
bet was a loser. In this case, all of the various states create a new instance of the NoWins object,
resetting the multiplier to 1 and starting the sequence over again.

18.2 On Polymorphism

One very important note is that we never have to check the class of any object. This is so important, we
will repeat it here.

Important: We don’t use isistance().
We use polymorphism and design all subclasses to have the same interface.

Python relies on duck typing (“if it walks like a duck and quacks like a duck, it is a duck”).

Additionally, Python relies on the principle that it’s better to seek forgiveness than ask permission.

What this translates to is an approach where an object’s methods are simply invoked. If the object imple-
ments the methods, then it walked like a duck and – for all practical purposes – actually was a duck. If the
method is not implemented, the application has a serious design problem and needs to crash.

We find that isinstance() is sometimes used by beginning programmers who have failed to properly delegate
processing to the subclass.

Often, when a responsibility has been left out of the class hierarchy, it is allocated to the client object. The
typical Pretty-Poor Polymorphism looks like the following:

class SomeClient(object):
def someMethod(self):

if isinstance(x, AClass):
Special Case that should have been part of AClass

In all cases, uses of isinstance() must be examined critically.

This will usually lead to refactoring the special case out of the collaborating class. There will be three
changes as part of the refactoring.

1. We will move the special-case the functionality into the class being referenced by instanceof. In the
above example, the special case is moved to AClass.

2. We will usually have to add default processing to the superclass of AClass so that all other sibling
classes of AClass lack this special-case feature.

3. We simply call the refactored method from the client class.

This refactoring leads to a class hierarchy that has the property of being polymorphic: all of the subclasses
have the same interface: all objects of any class in the hierarchy are interchangable. Each object is, therefore,
responsible for correct behavior. More important, a client object does not need to know which subclass the
object is a member of: it simply invokes methods which are defined with a uniform interface across all
subclasses.

108 Chapter 18. Player 1-3-2-6 Class

Building Skills in Object-Oriented Design, Release 2.2.1-Python

18.3 Player 1-3-2-6 Questions and Answers

Why code the state as objects?

The reason for encoding the states as objects is to encapsulate the information and the behavior
associated with that state. In this case, we have both the bet amount and the rules for transition
to next state. While simple, these are still unique to each state.

Since this is a book on design, we feel compelled to present the best design. In games like
blackjack, the player’s state may have much more complex information or behavior. In those
games, this design pattern will be very helpful. In this one case only, the design pattern appears
to be over-engineered.

We will use this same design pattern to model the state changes in the Craps game itself. In
the case of the Craps game, there is additional information as well as behavior changes. When
the state changes, bets are won or lost, bets are working or not, and outcomes are allowed or
prohibited.

Isn’t it simpler to code the state as a number? We can just increment when we win, and reset to zero when
we lose.

The answer to all “isn’t it simpler” questions is “yes, but...” In this case, the full answer is “Yes,
but what happens when you add a state or the states become more complex?”

This question arises frequently in OO programming. Variations on this question include “Why
is this an entire object?” and “Isn’t an object over-engineering this primitive type?” See Design
Decision – Object Identity FAQ entry on the Outcome class for additional background on object
identity.

Our goal in OO design is to isolate responsibility. First, and most important, we can unambigu-
ously isolate the responsibilities for each individual state. Second, we find that it is very common
that only one state changes, or new states get added. Given these two conditions, the best object
model is separate state objects.

Doesn’t this create a vast number of state objects?

Yes.

There are two usual follow-up questions: “Aren’t all those objects a lot of memory overhead?” or ”...a lot of
processing overhead?”

Since Java and Python remove unused objects, the old state definitions are cleaned up by the
garbage collection thread. A few tests will demonstrate that the Java memory management is
efficient and reliable.

Object creation is an overhead that we can control. One common approach is to use the Sin-
gleton design pattern. In this case, this should be appropriate because we only want a single
instance of each of these state classes.

Note that using the Singleton design pattern doesn’t change any interfaces except the initial-
ization of the Player1326 object with the starting state.

Is Polymorphism necessary?

In some design patterns, like State and Command, it is essential that all subclasses have the
same interface and be uniform, indistinguishable, almost anonymous instances. Because of this
polymorphic property, the objects can be invoked in a completely uniform way.

In our exercise, we will design a number of different states for the player. Each state has the same
interface. The actual values for the instance variables and the actual operation implemented by

18.3. Player 1-3-2-6 Questions and Answers 109

Building Skills in Object-Oriented Design, Release 2.2.1-Python

a subclass method will be unique. Since the interfaces are uniform, however, we can trust all
state objects to behave properly.

There are numerous designs where polymorphism doesn’t matter at all. In many cases, the
anonymous uniformity of subclasses isn’t relevant. When we move on to example other casino
games, we will see many examples of non-polymorphic class hierarchies. This will be due to the
profound differences between the various games and their level of interaction with the players.

18.4 Player1326 State Design

class Player1326State

Player1326State is the superclass for all of the states in the 1-3-2-6 betting system.

18.4.1 Fields

Player1326State.player
The Player1326 player who is currently in this state. This player will be used to provide the Outcome
that will be used to create the Bet.

18.4.2 Constructors

Player1326State.__init__(self, player)

The constructor for this class saves the Player1326 which will be used to provide the Outcome
on which we will bet.

18.4.3 Methods

Player1326State.currentBet(self) → Bet
Constructs a new Bet from the player’s preferred Outcome. Each subclass has a different multiplier
used when creating this Bet.

In Python, this method should return NotImplemented. This is a big debugging aid, it helps us locate
subclasses which did not provide a method body. This raise statement is the functional equivalent of
the Java abstract declaration.

Player1326State.nextWon(self) → Player1326State
Constructs the new Player1326State instance to be used when the bet was a winner.

In Python, this method should return NotImplemented. This is a big debugging aid, it helps us locate
subclasses which did not provide a method body. This raise statement is the functional equivalent of
the Java abstract declaration.

Player1326State.nextLost(self) → Player1326State

Constructs the new Player1326State instance to be used when the bet was a loser. This method
is the same for each subclass: it creates a new instance of Player1326NoWins.

This defined in the superclass to assure that it is available for each subclass.

110 Chapter 18. Player 1-3-2-6 Class

Building Skills in Object-Oriented Design, Release 2.2.1-Python

18.5 Player1326 No Wins Design

class Player1326NoWins

Player1326NoWins defines the bet and state transition rules in the 1-3-2-6 betting system. When there are
no wins, the base bet value of 1 is used.

18.5.1 Methods

Player1326NoWins.currentBet(self) → Bet

Constructs a new Bet from the player’s outcome information. The bet multiplier is 1.

Player1326NoWins.nextWon(self) → Player1326State

Constructs the new Player1326OneWin instance to be used when the bet was a winner.

18.6 Player1326 One Win Design

class Player1326OneWin

Player1326OneWin defines the bet and state transition rules in the 1-3-2-6 betting system. When there is
one wins, the base bet value of 3 is used.

18.6.1 Methods

Player1326OneWin.currentBet(self) → Bet

Constructs a new Bet from the player’s outcome information. The bet multiplier is 3.

Player1326OneWin.nextWon(self) → Player1326State

Constructs the new Player1326TwoWins instance to be used when the bet was a winner.

18.7 Player1326 Two Wins Design

class Player1326TwoWins

Player1326TwoWins defines the bet and state transition rules in the 1-3-2-6 betting system. When there are
two wins, the base bet value of 2 is used.

18.7.1 Methods

Player1326TwoWins.currentBet(self) → Bet

Constructs a new Bet from the player’s outcome information. The bet multiplier is 2.

Player1326TwoWins.nextWon(self) → Player1326State

Constructs the new Player1326ThreeWins instance to be used when the bet was a winner.

18.5. Player1326 No Wins Design 111

Building Skills in Object-Oriented Design, Release 2.2.1-Python

18.8 Player1326 Three Wins

class Player1326ThreeWins

Player1326ThreeWins defines the bet and state transition rules in the 1-3-2-6 betting system. When there
are three wins, the base bet value of 6 is used.

18.8.1 Methods

Player1326ThreeWins.currentBet(self) → Bet

Constructs a new Bet from the player’s outcome information. The bet multiplier is 6.

Player1326ThreeWins.nextWon(self) → Player1326State

Constructs the new Player1326NoWins instance to be used when the bet was a winner.

An alternative is to update the player to indicate that the player is finished playing.

18.9 Player1326 Design

class Player1326

Player1326 follows the 1-3-2-6 betting system. The player has a preferred Outcome, an even money bet like
red, black, even, odd, high or low. The player also has a current betting state that determines the current
bet to place, and what next state applies when the bet has won or lost.

18.9.1 Fields

Player1326.outcome
This is the player’s preferred Outcome. During construction, the Player must fetch this from the Wheel.

Player1326.state
This is the current state of the 1-3-2-6 betting system. It will be an instance of a subclass of
Player1326State. This will be one of the four states: No Wins, One Win, Two Wins or Three
Wins.

18.9.2 Constructors

Player1326.__init__(self)

Initializes the state and the outcome. The state is set to the initial state of an instance of Player1326NoWins.

The outcome is set to some even money proposition, for example "Black".

18.9.3 Methods

Player1326.placeBets(self)

Updates the Table with a bet created by the current state. This method delegates the bet
creation to state object’s currentBet() method.

Player1326.win(self, bet)

112 Chapter 18. Player 1-3-2-6 Class

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Parameters bet (Bet) – The Bet which won

Uses the superclass method to update the stake with an amount won. Uses the current state to
determine what the next state will be by calling state‘s objects nextWon() method and saving
the new state in state

Player1326.lose(self, bet)

Parameters bet (Bet) – The Bet which lost

Uses the current state to determine what the next state will be. This method delegates the next
state decision to state object’s nextLost() method, saving the result in state.

18.10 Player 1-3-2-6 Deliverables

There are eight deliverables for this exercise. Additionally, there is an optional, more advanced design
exercise in a separate section.

• The five classes that make up the Player1326State class hierarchy.

• The Player1326 class.

• A Unit test for the entire Player1326State class hierarchy. It’s possible to unit test each state class,
but they’re so simple that it’s often easier to simply test the entire hierarchy.

• A unit test of the Player1326 class. This test should synthesize a fixed list of Outcomes, Bins, and
calls a Player1326 instance with various sequences of reds and blacks. There are 16 different sequences
of four winning and losing bets. These range from four losses in a row to four wins in a row.

• An update to the overall Simulator that uses the Player1326.

18.11 Advanced Exercise – Refactoring

Initially, each subclass of Player1326State has a unique currentBet() method.

This class can be simplified slightly to have the bet multiplier coded as an instance variable, betAmount.
The currentBet() method can be refactored into the superclass to use the betAmount value.

This would simplify each subclass to be only a constructor that sets the betAmount multiplier to a value of
1, 3, 2 or 6.

Similarly, we could have the next state after winning defined as an instance variable, nextStateWin. We can
initialized this during construction. Then the nextWon() method could also be refactored into the superclass,
and would return the value of the nextStateWin instance variable.

The deliverable for this exercise is an alternative Player1326State class using just one class and distinct
constructors that create each state object with an appropriate bet multipler and and next state win value.

18.12 Advanced Exercise – Less Object Creation

The object creation for each state change can make this player rather slow.

There are a few design pattens that can reduce the number of objects that need to be created.

18.10. Player 1-3-2-6 Deliverables 113

Building Skills in Object-Oriented Design, Release 2.2.1-Python

1. Global objects for the distinct state objects.

While truly global objects are usually a mistake, we can justify this by claiming that we’re only creating
objects that are shared among a few objects.

2. The Singleton design pattern.

With some cleverness, this can be made transparent in Python. However, it’s easiest to make this
explicit, by defining a formal instance() method that fetches (or creates) the one-and-only instance
of the class.

3. A Factory object that produces state objects. This Factory can retain a small pool of object instances,
eliminating needless object construction.

The deliverables for this exercise are revisions to the Player1326State class hierarchy to implement the
Factory design pattern. This will not change any of the existing unit tests, demonstrations or application
programs.

18.12.1 Player1326 State Factory Design

Player1326StateFactory.values
This is a map from a class name to an object instance.

Player1326StateFactory.__init__(self)

Create a new mapping from the class name to object instance. There are only four objects, so
this is relatively simple.

Player1326StateFactory.get(self, name) → Player1326State

Parameters name (String) – name of one of the subclasses of Player1326State.

Return the Player1326State instance for the given class name.

114 Chapter 18. Player 1-3-2-6 Class

CHAPTER

NINETEEN

CANCELLATION PLAYER CLASS

This section will describe a player who has a complex internal state that can be modeled using existing
library classes.

19.1 Cancellation Player Overview

One method for tracking the lost bets is called the “cancellation” system or the “Labouchere” system. The
player starts with a betting budget allocated as a series of numbers.

The usual example sequence is [1, 2, 3, 4, 5, 6].

Each bet will be the sum of the first and last numbers in the last.

In this example, the end values of 1+6 leads the player to bet 7.

When the player wins, the player cancels the two numbers used to make the bet. In the event that all the
numbers are cancelled, the player has doubled their money, and can retire from the table happy.

For each loss, however, the player adds the amount of the bet to the end of the sequence; this is a loss to be
recouped. This adds the loss to the amount bet to assure that the next winning bet both recoups the most
recent loss and provides a gain. Multiple winning bets will recoup multiple losses, supplemented with small
gains.

Example. Here’s an example of the cancellation system using [1, 2, 3, 4, 5, 6]

1. Bet 1+6. A win. Cancel 1 and 6 leaving [2, 3, 4, 5]

2. Bet 2+5. A loss. Add 7 leaving [2, 3, 4, 5, 7]

3. Bet 2+7. A loss. Add 9 leaving [2, 3, 4, 5, 7, 9]

4. Bet 2+9. A win. Cancel 2 and 9 leaving [3, 4, 5, 7]

5. Next bet will be 3+7.

State. The player’s state is a list of individual bet amounts. This list grows and shrinks; when it is empty,
the player leaves the table. We can keep a List of individual bet amounts. The total bet will be the first
and last elements of this list. Wins will remove elements from the collection; losses will add elements to the
collection. Since we will be accessing elements in an arbitrary order, we will want to use an ArrayList. We
can define the player’s state with a simple list of values.

19.2 PlayerCancellation Design

class PlayerCancellation

115

Building Skills in Object-Oriented Design, Release 2.2.1-Python

PlayerCancellation uses the cancellation betting system. This player allocates their available budget into
a sequence of bets that have an accelerating potential gain as well as recouping any losses.

19.2.1 Fields

PlayerCancellation.sequence
This List keeps the bet amounts; wins are removed from this list and losses are appended to this list.
THe current bet is the first value plus the last value.

PlayerCancellation.outcome
This is the player’s preferred Outcome.

19.2.2 Constructors

PlayerCancellation.__init__(self)

This uses the PlayerCancellation.resetSequence() method to initalize the sequence of num-
bers used to establish the bet amount. This also picks a suitable even money Outcome, for
example, black.

19.2.3 Methods

PlayerCancellation.resetSequence(self)

Puts the initial sequence of six Integer instances into the sequence variable. These Integers
are built from the values 1 through 6.

PlayerCancellation.placeBets(self)

Creates a bet from the sum of the first and last values of sequence and the preferred outcome.

PlayerCancellation.win(self, bet)

Parameters bet (Bet) – The bet which won

Uses the superclass method to update the stake with an amount won. It then removes the fist
and last element from sequence.

PlayerCancellation.lose(self, bet)

Parameters bet (Bet) – The bet which lost

Uses the superclass method to update the stake with an amount lost. It then appends the sum
of the first and list elements of sequence to the end of sequence as a new Integer value.

19.3 Cancellation Player Deliverables

There are three deliverables for this exercise.

• The PlayerCancellation class.

• A unit test of the PlayerCancellation class. This test should synthesize a fixed list of Outcomes, Bin
s, and calls a PlayerCancellation instance with various sequences of reds and blacks. There are 16
different sequences of four winning and losing bets. These range from four losses in a row to four wins
in a row. This should be sufficient to exercise the class and see the changes in the bet amount.

• An update to the overall Simulator that uses the PlayerCancellation.

116 Chapter 19. Cancellation Player Class

CHAPTER

TWENTY

FIBONACCI PLAYER CLASS

This section will describe a player who has an internal state that can be modeled using methods and simple
values instead of state objects.

This is a variation on the Martingale System. See Martingale Player Design for more information.

20.1 Fibonacci Player Overview

A player could use the Fibonacci Sequence to structure a series of bets in a kind of cancellation system. The
Fibonacci Sequence is

• 1

• 1

• 2

• 3

• 5

• 8

• 13

• ...

At each loss, the sum of the previous two bets is used, which is the next number in the sequence. In the
event of a win, we revert to the basic bet.

Example. Here’s an example of the Fibonacci system.

1. Bet 1. A win.

2. Bet 1. A loss. The next value in the sequence is 1.

3. Bet 1. A loss. The next value in the sequence is 2.

4. Bet 2. A loss. The next value in the sequence will be 3

5. Bet 3. In the event of a loss, the next bet is 5. Otherwise, the bet is 1.

State. In order to compute the Fibonacci sequence, we need to retain the two previous bets as the player’s
state. In the event of a win, we revert to the basic bet value of 1.

In the event of a loss, we can update the two numbers to show the next step in the sequence. The player’s
state is just these two numeric values.

117

Building Skills in Object-Oriented Design, Release 2.2.1-Python

20.2 PlayerFibonacci Design

class PlayerFibonacci

PlayerFibonacci uses the Fibonacci betting system. This player allocates their available budget into a
sequence of bets that have an accelerating potential gain.

20.2.1 Fields

PlayerFibonacci.recent
This is the most recent bet amount. Initially, this is 1.

PlayerFibonacci.previous
This is the bet amount previous to the most recent bet amount. Initially, this is zero.

20.2.2 Constructors

PlayerFibonacci.__init__(self)

Initialize the Fibonacci player.

20.2.3 Methods

PlayerFibonacci.win(self, bet)

Parameters bet (Bet) – The bet which won

Uses the superclass method to update the stake with an amount won. It resets recent and
previous to their initial values of 1 and 0.

PlayerFibonacci.lose(self, bet)

Parameters bet (Bet) – The bet which lost

Uses the superclass method to update the stake with an amount lost. This will go “forwards” in
the sequence. It updates recent and previous as follows.

next← recent+ previous

previous← recent

recent← next

param bet The Bet which lost.

type bet Bet

20.3 Fibonacci Player Deliverables

There are three deliverables for this exercise.

• The PlayerFibonacci class.

• A unit test of the PlayerFibonacci class. This test should synthesize a fixed list of Outcomes, Bins,
and calls a PlayerFibonacci instance with various sequences of reds and blacks. There are 16 different
sequences of four winning and losing bets. These range from four losses in a row to four wins in a row.
This should be sufficient to exercise the class and see the changes in the bet amount.

118 Chapter 20. Fibonacci Player Class

Building Skills in Object-Oriented Design, Release 2.2.1-Python

• An update to the overall Simulator that uses the PlayerFibonacci.

20.3. Fibonacci Player Deliverables 119

Building Skills in Object-Oriented Design, Release 2.2.1-Python

120 Chapter 20. Fibonacci Player Class

CHAPTER

TWENTYONE

CONCLUSION

The game of Roulette has given us an opportunity to build an application with a considerable number of
classes and objects. It is comfortably large, but not complex; we have built tremendous fidelity to a real-world
problem. Finally, this program produces moderately interesting simulation results.

We note that a great many of our design decisions were not easy to make without exploring a great deal of
the overall application’s design. There are two ways to do this exploration: design everything in advance or
design just enough but remain tolerant of our own ignorance.

Experienced designers can often design an entire, complex application before building any software. The
process of doing this design, however, is internally iterative. Some parts are designed in detail, with tolerance
for future changes; then other parts are designed in detail and the two design elements reconciled.

For new designers, we can’t give enough emphasis to the importance of creating a trial design, exploring the
consequences of that design, and then doing rework of that design. Too often, we have seen trial designs
finalized into deliverables with no opportunity for meaningful rework. In Review of Testability, we presented
one common kind of rework to support more complete testing. In Player Class, we presented another kind
of rework to advance a design from a stub to a complete implementation.

We also feel compelled to point out the distinction between relatively active and passive classes in this design.
We had several passive classes, like Outcome, Bet and Table, which had few responsibilities beyond collecting
a number of related attributes and providing simple functions. We also had several complex, active classes,
like Game, BinBuilder and all of the variations on Player. These classes, typically, had fewer attributes
and more complex methods. In the middle of the spectrum is the Wheel. We find this distinction to be an
enduring feature of OO design: there are things and actors; the things tend to be passive, acted upon by the
actors. The overall system behavior emerges from the collaboration among all of the objects in the system;
primarily – but not exclusively – the behavior of the active classes.

121

Building Skills in Object-Oriented Design, Release 2.2.1-Python

122 Chapter 21. Conclusion

Part III

Craps

123

Building Skills in Object-Oriented Design, Release 2.2.1-Python

This part describes parts of the more complex game of Craps. Craps is played with dice. A player throws the
dice; sometimes it’s an immediate win (or loss). Other times, the number on the dice become the “point”,
and you contine throwing dice until you make your point or crap out.

Craps is a game with two states and a number of state-change rules. It has a variety betting alternatives,
some of which are quite complex.

The chapters of this part presents the details on the game, an overview of the solution, and a series of eleven
exercises to build a complete simulation of the game, with a variety of betting strategies. The exercises in
this part are more advanced; unlike Roulette, we will often combine several classes into a single batch of
deliverables.

There are several examples of rework in this part, some of them quite extensive. This kind of rework
reflects three more advanced scenarios: refactoring to generalize and add features, renaming to rationalize
the architecture, and refactoring to extract features. Each of these is the result of learning; they are design
issues that can’t easily be located or explained in advance.

125

Building Skills in Object-Oriented Design, Release 2.2.1-Python

126

CHAPTER

TWENTYTWO

CRAPS DETAILS

In the first section we will present elements of the game of Craps. Craps is a stateful game, and we’ll describe
the state changes in some detail.

We will review some of the bets available on the Craps table in some depth. Craps offers some very obscure
bets, and part of this obscurity stems from the opaque names for the various bets. Creating this wide variety
of bets is an interesting programming exercise, and the first four exercise chapters will focus on this.

Finally, we will describe some common betting strategies that we will simulate. The betting strategies
described in Roulette will be applied to Craps bets, forcing us to examine the Roulette solution for reuse
opportunities.

22.1 Craps Game

Craps centers around a pair of dice with six sides. The 36 combinations form eleven numbers from 2 to 12;
additionally, if the two die are equal, this is called a hardways , because the number was made “the hard
way” . The table has a surface marked with spaces on which players can place bets . The names of the
bets are opaque, and form an obscure jargon. There are several broad classification of bets, including those
which follow the sequence of dice throws that make up a complete game , propositions based on only the
next throw of the dice, and hardways bets. These bets will be defined more completely, below.

When the bets are placed, the dice are thrown by one of the players. This number resolves the one-roll
bets that are winners or losers; it also determines the state change in the game, which may resolve any
game-based winners and losers. The first roll of the dice can be an immediate win or loss for the game, or
it can establish the point for the following rounds of this game. Subsequent rolls either make the point and
win the game, roll a seven and lose the game, or the game continues. When the game is won, the winning
player continues to shoot; a losing player passes the dice around the table to the next player.

In addition to the bets marked on the table, there are some additional bets which are not marked on the
table. Some of these are called odds bets, or free odds bets, and pay off at odds that depend on the dice, not
on the bet itself. An odds bet must be associated with a bet called a line bet, and are said to be “behind”
the original bet; they can be called “behind the line odds” bets. The four line bets will be defined more
fully, below.

Note: Casino Variation
There are slight variations in the bets available in different casinos. We’ll focus on a common subset of bets.

The dice form a frequency distribution with values from 2 to 12. An interesting preliminary exercise is to
produce a table of this distribution with a small demonstration program. This frequency distribution is
central to understanding the often cryptic rules for Craps. See Creating A Dice Frequency Distribution for
a small application to develop this frequency distribution.

127

Building Skills in Object-Oriented Design, Release 2.2.1-Python

The Craps game has two states: point off and point on . When a player begins a game, the point is off; the
initial throw of the dice is called the “come out roll” . The number thrown on the dice determines the next
state, and also the bets that win or lose. The rules are summarized in the following table.

Table 22.1: Craps Game States
State Roll Bet Resolution Next State
Point Off; the Come Out Roll.
Only Pass and Don’t Pass bets
allowed.

2, 3, 12 “Craps”: Pass bets lose, Don’t
Pass bets win.

Point Off

7, 11 “Winner”: Pass bets win, Don’t
Pass bets lose.

Point Off

4, 5, 6,
8, 9, 10

Point On the
number rolled,
p.

Point On.
Any additional bets may be placed.

2, 3, 12 Nothing Point still on

11 Nothing Point still on
7 “Loser”: all bets lose. The table

is cleared.
Point Off

Point, p “Winner”: point is made, Pass
bets win, Don’t Pass bets lose.

Point Off

Non-p
number

Nothing; Come bets are
activated

Point still on

There is a symmetry to these rules. The most frequent number, 7, is either an immediate winner or an
immediate loser. The next most frequent numbers are the six point numbers, 4, 5, 6, 8, 9, 10, which form
three sets: 4 and 10 are high odds, 5 and 9 are middle odds, 6 and 8 are low odds. The relatively rare
numbers (2, 3, 11 and 12) are handled specially on the first roll only, otherwise they are ignored. Because of
the small distinction made between the craps numbers (2, 3 and 12), and 11, there is an obscure “C-E” bet
to cover both craps and eleven.

22.2 Creating A Dice Frequency Distribution

Since Python is interpreted, you can enter the following directly in the interpreter and get the frequency of
each number.

In Python, you will have to write and run a short program to produce the frequency distribution.

from collections import defaultdict
freq= defaultdict(int)
for d1 in range(6):

for d2 in range(6):
n= d1+d2+2
freq[n] += 1

print freq

22.3 Available Bets

There are four broad classification of bets: those which follow the sequence of dice throws that make up a
complete game, those based on just the next throw of the dice (called proposition bets), the hardways bets
and the unmarked bets. The game bets are called line bets, can be supplemented with additional odds bets,

128 Chapter 22. Craps Details

Building Skills in Object-Oriented Design, Release 2.2.1-Python

placed behind the line bet. There are actually two sets of game bets based on the pass line and the come
line.

The following illustration shows the left half of a typical craps table layout. On the left are the game bets.
On the right (in the center of the table) are the single-roll propositions.

Figure 22.1: Craps Table Layout

Game Bets. The Game bets have two states. There is a set of bets allowed for the first roll, called the
“come out” roll. If a point is established a number of additional bets become available. These are the pass
line bets.

In addition to the basic pass line bets, there are also come line bets, which are similar to game bets.

Come Out Roll. When the point is off, the player will be making the come out roll, and only certain bets
are available. Once the point is on, all bets are available.

The bets which are allowed on the come out roll are the Pass Line and Don’t Pass Line bets. These bets
follow the action of the player’s game. There are several possible outcomes for these two bets.

• Player throws craps (2, 3, or 12). A Pass Line bet loses. A Don’t Pass Line bet wins even money on
2 or 3; however, on 12, it returns the bet. This last case is called a “push” ; this rule is noted on the
table by the “bar 12” legend in the Don’t Pass area.

• Player throws 7 or 11. A Pass Line bet wins even money. A Don’t Pass Line bet loses.

• Player throws a point number. The point is now on. A large white token, marked “on” is placed in
one of the six numbered boxes to announce the point. The player can now place an additional odds
bet behind the line. Placing a bet behind the Pass Line is called “buying odds on the point”. Placing
a bet behind the Don’t Pass Line is called “laying odds against the point”.

Point Rolls. Once the point is on, there are three possible outcomes.

• The player makes the point before rolling 7. A Pass Line bet wins even money. A Don’t Pass Line bet
loses. The point determines the odds used to pay the behind the Pass Line odds bet.

• The player throws 7 before making the point. A Pass Line bet loses. A Don’t Pass Line bet pays even
money. The point determines the odds used to pay the behind the Don’t Pass Line odds bet.

• The player throws a number other than 7 and the point: the game continues.

Come Line Bets. Once the point is on, the bets labeled Come and Don’t Come are allowed. These bets
effectively form a game parallel to the main game, using a come point instead of the main game point.
Instead of dropping the large “on” token in a numbered square on the layout, the house will move the

22.3. Available Bets 129

Building Skills in Object-Oriented Design, Release 2.2.1-Python

individual Come and Don’t Come bets from their starting line into the numbered boxes (4, 5, 6, 8, 9, 10) to
show which bets are placed on each point number. There are several possible outcomes for these two bets.

• Player throws craps (2, 3, or 12). A Come Line bet loses. A Don’t Come bet wins even money on 2 or
3; it is a push on 12. Established come point bets in the numbered squares remain.

• Player throws 11. A Come Line bet wins even money. A Don’t Come bet loses. Established come
point bets in the numbered squares remain.

• Player throws a point number (4, 5, 6, 8, 9, or 10). Any come bets in that numbered box are winners
– the come point was made – and the point determines the odds used to pay the behind the line odds.
(Note that if this is the point for the main game, there will be no bets in the box, instead the large
“on” token will be sitting there.) New bets are moved from the Come Line and Don’t Come Line to
the numbered box, indicating that this bet is waiting on that point number to be made. Additional
behind the line odds bets can now be placed. If the main game’s point was made, the “on” token will
be removed (and flipped over to say “off”), and the next roll will be a come out roll for the main game.
These bets (with the exception of the free odds behind a Come Line bet) are still working bets.

• The player throws 7 before making the main point. A Come bet loses. A Don’t Come bet pays even
money. The bets in the numbered boxes are all losers.

Propositions. There are also a number of one-roll propositions, including the individual numbers 2, 3, 7,
11, 12; also field (2, 3, 4, 9, 10, 11 or 12), any craps (2, 3 or 12), the horn (2, 3, 11 or 12), and a hop bet.
These bets have no minimum, allowing a player to cover a number of them inexpensively.

Hardways. There are four hardways bets. These are bets that 4, 6, 8 or 10 will come up on two equal die
(the hard way) before they come up on two unequal die (the easy way) or before a 7 is rolled. Hard 6, for
example, is a bet that the pair (3,3) will be rolled before any of the other four combinations (1,5), (2,4),
(5,1), (4,2) that total 6, or any of the 6 combinations that total 7. These bets can only be placed when the
point is on, but they are neither single-roll propositions, nor are they tied to the game point.

Unmarked Bets. There are additional unmarked bets. One is to make a “place bet” on a number; these
bets have a different set of odds than the odds bets behind a line bet. Other unmarked bets are to “buy” a
number or “lay” a number, both of which involve paying a commission on the bet. Typically, only the six
and eight are bought, and they can only be bought when they are not the point.

For programmers new to casino gambling, see Odds and Payouts for more information on odds payments for
the various kinds of bets.

130 Chapter 22. Craps Details

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Odds and Payouts

Not all of the Craps outcomes are equal probability. Some of the bets pay fixed odds, defined as part
of the bet. Other bets pay odds that depend on the point established.
The basic Pass Line, Don’t Pass, Come Line and Don’t Come bets are even money bets. A $5 bet wins
an additional $5.
The odds of winning a Pass Line bet is 49.3%. The 1:1 payout does not reflect the actual probability
of winning.
The points of 4 and 10 have odds of 3 in 36 to win and 6 in 36 to lose. The points of 5 and 9 have odds
of 4 in 36 to win and 6 in 36 to lose. The points of 6 and 8 have odds of 5 in 36 to win and 6 in 36 to
lose. The odds, therefore are 2:1, 3:2 and 6:5 for these behind-the-line odds bets, respectively.
The combination of a Pass Line bet plus odds behind the line provides the narrowest house edge. For
example, a bet on the Pass Line has an expected return of -1.414%. If we place double odds behind
the line with an expected return of 0, the net expected return for the combination is -0.471%.
The various proposition bets have odds stated on the table. Note that these rarely reflect the actual
odds of winning. For example, a bet on 12 is a 1/36 probability, but only pays 30:1.
There are 1/36 ways to win a hard six or hard eight bet, 10/36 ways to loose and the remaining 25
outcomes are indeterminate. While a hard 6 or hard 8 should pay 10:1, the actual payment is 9:1.
Similarly for a hard 4 or hard 10: they should pay 8:1, the actual payment is 7:1.

22.4 Some Betting Strategies

All of the Roulette betting strategies apply to Craps. However, the additional complication of Craps is the
ability to have multiple working bets by placing additional bets during the game. The most important of
these additional bets are the behind the line odds bets. Since these are paid at proper odds, they are the
most desirable bets on the layout. The player, therefore, should place a Line bet, followed by a behind the
line odds bet.

The other commonly used additional bets are the Come (or Don’t Come) bets. These increase the number
of working bets. Since the additional odds bets for these pay proper odds, they are also highly desirable. A
player can place a Come bet, followed by a behind the line odds bet on the specific number rolled.

Beyond this, there are the various proposition and hardways bets that can be placed in addition to other
bets. While these propositions have odds that are incorrect, some players will count the number of throws
in game, and place a “7” bet if the game lasts more than six throws. This is a form of betting against one’s
self: there is a Pass Line bet that the game will be won, diluted by a 7 bet that the game will be lost. While
the common rationale is that the second bet protects against a loss, it also reduces the potential win. We
can simulate this kind of betting and examine the potential outcomes.

22.5 Wrong Betting

Craps has two forms of odds betting: right and wrong. The Pass Line and Come Line, as well as buying
odds, are all “right”. The Don’t Pass, Don’t Come and Laying Odds are all “wrong”. Sometimes wrong
betting is also called “the dark side”.

Right betting involves odds that provide a large reward for a small wager. The odds on a Pass Line bet for
the number 4 are 2:1, you will win double your bet if the point is made. You put up $10 at risk to make $20.

Wrong betting involves odds that provide a small reward for a large wager. The odds on a Don’t Pass Line
bet for the number 4 are described as “laid at 2:1” – in effect it is a 1:2 bet, you will win half of what you
bet if the point is missed. You put $20 at risk to make $10.

22.4. Some Betting Strategies 131

Building Skills in Object-Oriented Design, Release 2.2.1-Python

This distinction can be ignored by novice programmers. None of our simulated players are wrong bettors,
since this involves putting a large amount at risk for a small payout, which violates one of the basic rules of
gambling.

132 Chapter 22. Craps Details

CHAPTER

TWENTYTHREE

CRAPS SOLUTION OVERVIEW

We will present a survey of the classes gleaned from the general problem statement in Problem Statement as
well as the problem details in Craps Details. This survey is drawn from a quick overview of the key nouns
in these sections.

Given this survey of the candidate classes, we will then do a walkthrough to refine the definitions, and assure
ourselves that we have a reasonable architecture. We will make some changes to the preliminary class list,
revising and expanding on our survey.

We will also include a number of questions and answers about this preliminary design information. This
should help clarify the design presentation and set the stage for the various development exercises in the
chapters that follow.

23.1 Preliminary Survey of Classes

We have divided up the responsibilities to provide a starting point for the development effort. The central
principle behind the allocation of responsibility is encapsulation . In reading the background information
and the problem statement, we noticed a number of nouns that seemed to be important parts of the Craps
game.

• Dice

• Bet

• Table

• Point

• Proposition

• Number

• Odds

• Player

• House

The following table summarizes some of the classes and responsibilities that we can identify from the problem
statement. This is not the complete list of classes we need to build. As we work through the exercises, we’ll
discover additional classes and rework some of these classes more than once.

We also have a legacy of classes available from the Roulette solution. We would like to build on this
infrastructure as much as possible.

133

Building Skills in Object-Oriented Design, Release 2.2.1-Python

23.2 Preliminary Class Structure

Outcome Responsibilities

A name for a particular betting opportunity. Most outcomes have fixed odds, but the behind
the line odds bets have odds that depend on a point value.

Collaborators

Collected by Table into the available bets for the Player; used by Game to compute the
amount won from the amount that was bet.

Dice Responsibilities

Selects any winning propositions as well as next state of the game.

Collaborators

Used by the overall Game to get a next set of winning Outcome s, as well as change the state
of the Game .

Table Responsibilities

A collection of bets placed on Outcome s by a Player . This isolates the set of possible bets
and the management of the amounts currently at risk on each bet. This also serves as the
interface between the Player and the other elements of the game.

Collaborators

Collects the Outcome s; used by Player to place a bet amount on a specific Outcome ; used
by Game to compute the amount won from the amount that was bet.

Player Responsibilities

Places bets on Outcome s, updates the stake with amounts won and lost. This is the most
important responsibility in the application, since we expect to update the algorithms this
class uses to place different kinds of bets. Clearly, we need to cleanly encapsulate the Player
, so that changes to this class have no ripple effect in other classes of the application.

Collaborators

Uses Table to place Bet s on preferred Outcome s; used by Game to record wins and losses.

Game Responsibilities

Runs the game: gets bets from Player , throws the Dice , updates the state of the game,
collects losing bets, pays winning bets. This encapsulates the basic sequence of play into
a single class. The overall statistical analysis is based on playing a finite number of games
and seeing the final value of the Player ‘s stake.

Collaborators

Uses Dice , Table , Outcome , Player .

23.3 A Walkthrough of Craps

A good preliminary task is to review these responsibilities to confirm that a complete cycle of play is possible.
This will help provide some design details for each class. It will also provide some insight into classes that
may be missing from this overview. A good way to structure this task is to do a CRC walkthrough. For
more information on this technique see A Walkthrough of Roulette .

The basic processing outline is the responsibility of the Game class. To start, locate the Game card.

134 Chapter 23. Craps Solution Overview

Building Skills in Object-Oriented Design, Release 2.2.1-Python

1. Our preliminary note was that this class “Runs the game.” The responsibilities section has a summary
of five steps involved in running the game.

2. The first step is “gets bets from :class:Player‘.” Find the Player card.

3. Does a Player collaborate with a Game to place bets? Note that the game state influences the allowed
bets. Does Game collaborate with Player to provide the state information? If not, add this information
to one or both cards.

4. The Game‘s second step is to throw the Dice. Is this collaboration on the Dice card?

5. The Game‘s third step is to update the state of the game. While the state appears to be internal to
the Game, requiring no collaboration, we note that the Player needs to know the state, and therefore
should collaborate with Game. Be sure this collaboration is documented.

6. The Game‘s fourth and fifth steps are to pay winning bets and collect losing bets. Does the Game
collaborate with the Table to get the working bets? If not, update the collaborations.

Something we’ll need to consider is the complex relationship between the dice, the number rolled on the
dice, the game state and the various bets. In Roulette, the wheel picked a random Bin which had a simple
list of winning bets; all other bets were losers. In Craps, however, we find that we have game bets that are
based on changes to the game state, not simply the number on the dice. The random outcome is used to
resolve one-roll proposition bets, resolve hardways bets, change the game state, and resolve game bets.

We also note that the house moves Come Line (and Don’t Come) bets from the Come Line to the numbered
spaces. In effect, the bet is changed from one Outcome to another Outcome . This means that a Bet has a
kind of state change, in addition to the Game ‘s state change and any possible Player state change.

Important: Stateful Objects
To continue this rant, we find that most interesting IT applications involve stateful objects. Everything
that has a state or status, or can be updated, is stateful. Often, designers overlook these state changes,
describing them as “simple updates”. However, state changes are almost universally accompanied by rules
that determine legal changes, events that precipitate changes, and actions that accompany a state change.
Belittling stateful objects causes designers to overlook these additional details. The consequence of ignoring
state is software that performs invalid or unexpected state transitions. These kinds of bugs are often insidious,
and difficult to debug.

A walkthrough will give you an overview of the interactions among the objects in the working application.
You may uncover additional design ideas from this walkthrough. The most important outcome of the
walkthrough is a clear sense of the responsibilities and the collaborations required to create the necessary
application behavior.

23.4 Craps Solution Questions and Answers

Why is Outcome a separate class? Each object that is an instance of Outcome is merely a number from 2 to
12.

Here we have complex interdependency between the dice, the game states, the bets and outcomes.
An outcome has different meanings in different game states: sometimes a 7 is an immediate
winner, other times it as an immediate loser. Clearly, we need to isolate these various rules into
separate objects to be sure that we have captured them accurately without any confusion, gaps
or conflicts.

We can foresee three general kinds of Outcome s: the propositions that are resolved by a single
throw of the dice, the hardways that are resolved periodically, and the game bets which are

23.4. Craps Solution Questions and Answers 135

Building Skills in Object-Oriented Design, Release 2.2.1-Python

resolved when a point is made or missed. Some of the outcomes are only available in certain
game states.

The alternative is deeply nested if-statements. Multiple objects introduce some additional details
in the form of class declarations, but objects have the advantage of clearly isolating responsibil-
ities, making us more confident that our design will work properly. If-statements only conflate
all of the various conditions into a tangle that includes a huge risk of missing an important and
rare condition.

See the discussion under Design Decision – Object Identity for more discussion on object identity
and why each Outcome is a separate object.

What is the difference between Dice and Wheel? Don’t they both represent simple collections with random
selection?

Perhaps. At the present time, the distinction appears to be in the initialization of the two
collections of Bins of the Wheel or Throws of the Dice. We’ll revisit the question in some depth
in Soapbox on Overengineering.

Generally, we are slow to merge classes together without evidence that they are really the same
thing. In this case, they appear very similar, so we will note the similarities and differences as we
work through the design details. There is a fine line between putting too many things together
and splitting too many things apart. Generally, the mistake we see most often is putting too
many things together, and resolving the differences through complex if-statements and other
hidden processing logic.

136 Chapter 23. Craps Solution Overview

CHAPTER

TWENTYFOUR

OUTCOME CLASS

This chapter will examine the Outcome class, and its suitability for the game of Craps. We’ll present some
additional code samples to show a way to handle the different kinds of constuctors that this class will need.

24.1 Outcome Overview

For Craps, we have to be careful to disentangle the random events produced by the Dice and the outcomes on
which a Player creates a Bet. In Roulette, this relationship was simple: a Bin was a container of Outcomes;
a player’s Bet referenced one of these Outcomes. In Craps, however, we have one-roll outcomes, hardways
outcomes, plus outcomes that aren’t resolved until the end of the game. Keeping this in mind, we’ll defer
details of dice and game problem until later, and focus on just the bet Outcomes first.

Varietals. There is a rich variety of bet Outcomes. We’ll itemize them so that we can confirm the respon-
sibilities for this class.

• The Line Bets: these are the Pass Line, Don’t Pass Line, Come Line, Don’t Come Line. These outcomes
have fixed odds of 1:1.

• The four Hardways bets: 4, 6, 8 and 10. These outcomes also have fixed odds which depend on the
number.

• The various one-roll propositions. All of these have fixed odds. These are most like the original Outcome
used for Roulette.

• The six Come-point bets (4, 5, 6, 8, 9 and 10). Each of these has fixed odds. Also, the initial line bet
is moved to a point number from the Come Line bet, based on the number shown on the dice. We’ll
examine these is some detail, below.

• The Odds bets placed behind the Line bets. These have odds based on the point, not the outcome
itself. We’ll have to look at these more closely, also.

• The six Placed Numbers have odds are based on the number placed. These outcomes have fixed odds.
Once the bet is placed, these bets are resolved when the number is rolled or when a game losing seven
is rolled.

• The Buy and Lay bets require a commission payment, called a vigorish, when the bet is placed. The
outcomes have simple, fixed odds. As with the placed number bets, these bets are resolved when the
number is rolled or when a game losing seven is rolled.

Looking more closely at the bets with payout odds that depend on the point rolled, we note that the Come
Line (and Don’t Come) odds bets are moved to a specific number when that point is established. For
example, the player places a Come bet, the dice roll is a 4; the come bet is moved into the box labeled “4”.
Any additional odds bet is placed in this box, also.

137

Building Skills in Object-Oriented Design, Release 2.2.1-Python

This leaves us with the Pass Line and Don’t Pass Line odds bet, which also depend on the point rolled. In
this case, the bets are effectively moved to a specific numbered box. In a casino, a large, white, “on” token
in placed in the box. The effect is that same as if the house had moved all the Pass Line bets. The odds
bet, while physically behind the Pass Line, is effectively in the box identified by the point. Again, the bet
is moved from the 1:1 Pass Line to one of the six numbered boxes; any odds bet that is added will be on a
single Outcome with fixed odds.

In this case, the existing Outcome class still serves many of our needs. Looking forward, we will have to
rework Bet to provide a method that will change to a different Outcome. This will move a line bets to one
of the six numbered point boxes.

Additional Features. There are two additional responsibilities that we will need in the Outcome class:
more complex odds and a house commission. In Roulette, all odds were stated as n :1, and our winAmount()
depended on that. In craps, many of the odds have non-unit denominators. Example odds include 6:5, 3:2,
7:6, 9:5. In a casino, the bets are multiples of $5, $6 or $10 to accomodate the fractions.

• Complex Odds. In our simulation, we are faced with two choices for managing these more complex
odds: exact fractions or approximate floating-point values. Since exact rational fractions are not part
of the Java class library, we’ll use simple double values instead of int values for the player’s stake and
the amount won or lost.

An interesting additional feature is to use rational numbers for the stakes and amounts. There are a
number of rational number classes available on the Internet, any of which would be suitable for this
problem. We will leave it to the interested student to replace the double values with Rational values
for the player’s stake and the amounts won and lost with each bet.

In Java, we will have to replace many instances of int with double. This is an unpleasant change,
but a consequence of starting out with a built-in primitive type. The only effective escape from this
kind of change is to use a class in all cases instead of a primitive type. This would allow us to use
different subclasses as our design evolved. If, for example, we use java.lang.Number, we can switch
to any subclass without a complex or sweeping change. The down-side of using a class in Python is
that the built-in expression syntax only applies to primitive types. With primitive types we can write
a + b . With the “language” classes like Integer, we have to write something like new Integer(
a.intValue() + b.intValue()). Withbclasses like BigInteger, we can write something like a.add(
b) .

In Python, we don’t have static compile-time type checking. We can easily replace an integer result
with a double result with no impact throughout the application.

• Commission Payments. The second extension we have to consider is for the two bets which have a
commission when they are created: buy bets and lay bets. The buy bet involves an extra 5% placed
with the bet: the player puts down $21, a $20 bet and a $1 commission. A lay bet, which is a wrong
bet, involves a risk of a large amount of money against a small win, and the commission is based on the
potential winning. For a 2:3 wrong bet, the commission is 5% of the outcome; the player puts down
$31 to win $20 if the point is not made.

In both buy and lay cases, the Player sees a price to create a bet of a given amount. Indeed, this
generalizes nicely to all other bets. Most bets are simple and the price is the amount of the bet. For
buy bets, however, the price is 5% of the amount of the bet; for lay bets, the price is 5% of the possible
payout. The open question is the proper allocation of responsibility for this price. Is the price related
to the Outcome or the Bet?

When we look at the buy and lay bets, we see that they are based on existing point number Outcome
s and share the same odds. However, there are three very different ways create a Bet on one of these
point number Outcome s: a bet on the Pass Line (or Don’t Pass Line), a bet on the Come Line (or
Don’t Come Line), and a buy (or lay) bet on the number. When we bet via the Pass Line or Come
Line, the Line bet was moved to the point number, and the odds bet follows the Line bet. For this
reason, the price is a feature of creating the Bet. Therefore, we’ll consider the commission as the price

138 Chapter 24. Outcome Class

Building Skills in Object-Oriented Design, Release 2.2.1-Python

of creating a bet and defer it to the Bet class design.

We observe that the slight error in the Line bet odds is the house’s edge on the Line bet. When we
put an odds bet behind the line, the more correct odds dilutes this edge. When we buy a number, on
the other hand, the odds are correct and the house takes the commission directly.

24.2 Overloaded Methods

We’ll be extending the definition of Outcome. We don’t want to disturb the simple case of Roulette when we
add the more complex case of Craps. We’ll do this with an overloaded constructor; a single method name
that two different sets of parameters.

In Python, we use optional parameters to provide default values. We declare the default value as part of the
method definition. This works well when we are initializing values to any of the immutable object classes. It
doesn’t, however, work well for mutable lists and mappings; these must be handled specially. The following
example shows a simple required argument, followed by an optional argument.

class SomeClass:
def __init__(self, reqArg, optArg=1):

initialize using reqArg and optArg

Note that Python mutable types (lists, sets, maps) should not be provided as default values for an initializer.
This is because one initialization object is created when the class is defined, and all instances will share this
singleton initializer object. To avoid this undesirable sharing of an instance of the default value, we have to
do the following.

class SomeClass:
def __init__(self, aList=None):

if aList:
initialize using aList

else:
default initialization using a fresh []

24.3 Outcome Rework

Outcome contains a single outcome on which a bet can be placed. In Roulette, each spin of the wheel has
a number of Outcomes. For example, the “1” bin has the following winning Outcomes: “1”, “Red”, “Odd”,
“Low”, “Column 1”, “Dozen 1-12”, “Split 1-2”, “Split 1-4”, “Street 1-2-3”, “Corner 1-2-4-5”, “Five Bet”,
“Line 1-2-3-4-5-6”, “00-0-1-2-3”, “Dozen 1”, “Low” and “Column 1” .

24.3.1 Fields

Outcome.name
Holds the name of the Outcome. Examples include "1", "Red", "Pass Line".

Outcome.numerator
Holds the numerator portion of odds for this Outcome. This is the multiplier in the odds fraction.
For right bets in Craps, this is larger than the denominator. For wrong bets, it is smaller than the
denominator.

Outcome.denominator
Holds the denominator portion of odds for this Outcome. For Roulette, this is always 1.

24.2. Overloaded Methods 139

Building Skills in Object-Oriented Design, Release 2.2.1-Python

24.3.2 Constructors

Outcome.__init__(name, numerator, denominator=1)

Parameters

• numerator (integer) – the payout odds numerator

• denominator (integer) – the payout odds denominator

Sets the name and odds from the parameters. Example 1: 6:5 is a right bet, the player will win 6 for
each 5 that is bet. Example 2: 2:3 is a wrong bet, they player will win 2 for each 3 that is bet.

24.3.3 Methods

Outcome.winAmount(self, amount)

Parameters amount (integer) – amount of the bet

Returns the product of this Outcome‘s odds numerator by the given amount, divided by the odds
denominator.

Outcome.__str__(self) → string

An easy-to-read String output method is also very handy. This should return a String repre-
sentation of the name and the odds. A form that looks like 1-2 Split (17:1) works nicely.

24.4 Outcome Deliverables

There are three deliverables for this exercise.

• The revised Outcome class that handles more complex odds and returns type double from winAmount().

• A class which performs a unit test of the Outcome class. The unit test should create a couple instances
of Outcome, and establish that the winAmount() method works correctly.

• A revision to each subclass of Player to correctly implement the revised result from winAmount().
Currently, there are six subclasses of Player : Passenger57, SevenReds, PlayerRandom, Player1326,
PlayerCancellation, and PlayerFibonacci.

24.5 Advanced Exercise

For the more advanced student, locate or develop a class to work with rational numbers, represented as an
integer numerator and denominator. Use this for all stakes, odds and bet payoffs, replacing any double
variables.

140 Chapter 24. Outcome Class

CHAPTER

TWENTYFIVE

THROW CLASS

In Craps, a throw of the dice may change the state of the game. This close relationship between the Throw
and CrapsGame leads to another chicken-and-egg design problem. We’ll design Throw in detail, but provide
a rough stub for CrapsGame.

Additionally, this chapter will introduce the subtle issue of over-engineering when doing design work. We’ll
revist these issues a number of times in order to provde examples of good design and the issues that can
lead to poor design.

25.1 Throw Overview

The pair of dice can throw a total of 36 unique combinations. These are summarized into fifteen distinct
outcomes: the eleven numbers from 2 to 12, plus the four hardways variations for 4, 6, 8 and 10.

In Roulette, the randomized positions on the wheel were called Bin s and each one had a very simple
collection of winning Outcome s. In Craps, however, the randomized throws of the dice serve three purposes:
they resolve simple one-roll proposition bets, they may resolve hardways bets, and they change the game
state (which may resolve game bets). From this we can allocate three responsibilities. We’ll look at each of
these responsibilities individually.

One-Throw Propositions. A Throw of the dice includes a collection of proposition Outcomes which are
immediate winners. This collection will be some combination of 2, 3, 7, 11, 12, Field, Any Craps, or Horn.
For completeness, we note that each throw could also contain one of the 21 hop-bet Outcomes; however, we’ll
ignore the hop bets.

Multi-Throw Propositions. A Throw of the dice may resolve hardways bets (as well as place bets and
buy bets). There are three possible conditions for a given throw: some bets may be winners, some bets may
be losers, and some bets may remain unresolved. This tells us that a Throw may be more than a simple
collection of winning Outcomes. A Throw must also contain a list of losing Outcomes. For example, any of
the two easy 8 rolls (6-2 or 5-3) would contain winning Outcomes for the place-8 bet and buy-8 bet, as well
as a losing Outcome for a hardways-8 bet. The hard 8 roll (4-4), however, would contain winning Outcome s
for the place-8 bet, buy-8 bet, and hardways-8 bet

Game State Change. Most importantly, a Throw of the dice can lead to a state change of the Game. This
may resolve game-level bets. From the Craps Game, we see that the state changes depend on both the Game
state plus the kind of Throw. The rules identify the following species of Throw.

• Craps. These are throws of 2, 3 or 12. On a come-out roll, this is an immediate loss. On any other
roll, this is ignored. There are 4 of these throws.

• Natural. This is a throw of 7. On a come-out roll, this is an immediate win. On any other roll, this
is an immediate loss and a change of state. There are 6 of these throws.

141

Building Skills in Object-Oriented Design, Release 2.2.1-Python

• Eleven. This is a throw of 11. On a come-out roll, this is an immediate win. On any other roll, this
is ignored. There are 2 of these throws.

• Point. This is a throw of 4, 5, 6, 8, 9, or 10. On a come-out roll, this estanblishes the point, and
changes the game state. On any other roll, this is is compared against the established point: if it
matches, this is a win and a change of game state. Otherwise, it doesn’t match and no game state
change occurs. There are a total of 24 of these throws, with actual frequencies between three and five.

The state change can be implemented by defining methods in Game that match the varieties of Throw. We
can imagine that the design for Game will have four methods: craps(), natural(), eleven(), and point().
Each kind of Throw will call the matching method of Game, leading to state changes, and possibly game bet
resolution.

The game state changes lead us to design a hierarchy of Throw classes to enumerate the four basic kinds of
throws. We can then initialize a Dice object with 36 Throw objects, each of the appropriate subclass. When
all of the subclasses have an identical interface, this embodies the principle of polymorphism. For additional
information, see On Polymorphism.

In looking around, we have a potential naming problem: both a wheel’s Bin and the dice’s Throw are somehow
instances of a common abstraction. Looking forward, we may wind up wrestling with a deck of cards trying
to invent a common nomenclature for all of these randomizers. They create random events, and this leads
us to a possible superclass for Bin and Throw: RandomEvent.

Currently, we can’t identify any features that we can refactor up into the superclass. Rather than over-
engineer this, we’ll hold off on complicating the design until we find something else that is common between
our sources of random events. See the Soapbox on Over-Engineering as a continuation of this rant.

Soapbox on Over-Engineering

Some of the horror stories of failed OO design projects seem to have over-engineering as the root cause.
Over-engineering often includes the creation of superclasses and interfaces to embody potentially useful
features. We suggest examining all engineering efforts by asking “does it solve a real problem?” Focus
on potential value tends to dilute the creation of real value.
We note that software is developed to solve a particular problem. If a design consideration does not
help solve the problem as presented, we have to classify the design as potential over-engineering. The
most common response to this classification is that we will tend to focus too narrowly and build a
point solution; the presumption is that point solutions are not as adaptable as something more broadly
focused.
Our experience is that when the object design focuses on tangible real-world objects, and models those
objects with a high degree of fidelity, these objects are very adaptable; they can be applied to solve a
number of real-world problems. When the object design includes a number of irrelevant considerations,
it takes too much effort to solve the initial problem, diluting the value of the software.
Additionally, some over-engineering is the result of conflating a number of features into a single class.
We prefer to add features slowly so as to clearly separate the various concerns. As an example, it is
very easy to conflate Bet and Outcome into a single class, losing site of the fact that bet amounts can
change, but the definition of the outcome itself is invariant.

25.2 Throw Design

class Throw

Throw is the superclass for the various throws of the dice. Each subclass is a different grouping of the
numbers, based on the rules for Craps.

142 Chapter 25. Throw Class

Building Skills in Object-Oriented Design, Release 2.2.1-Python

25.2.1 Fields

Throw.outcomes
A Set of one-roll Outcomes that win with this throw.

Throw.d1
One of the two die values, from 1 to 6.

Throw.d2
The other of the two die values, from 1 to 6.

25.2.2 Constructors

Throw.__init__(self, d1, d2, * outcomes)
Creates this throw, and associates the given Set of Outcomes that are winning propositions.

Parameters

• d1 – The value of one die

• d2 – The value of the other die

• outcomes – The various outcomes for this Throw

25.2.3 Methods

Throw.hard(self) → boolean

Returns true if d1 is equal to d2. This helps determine if hardways bets have been won or lost.

Throw.updateGame(self, game)

Parameters game (CrapsGame) – the Game to be updated based on this throw.

Calls one of the Game state change methods: craps(), natural(), eleven(), point(). This
may change the game state and resolve bets.

Throw.__str__(self) → String

An easy-to-read String output method is also very handy. This should return a String repre-
sentation of the dice. A form that looks like 1,2 works nicely.

25.3 Natural Throw Design

class NaturalThrow

Natural Throw is a subclass of Throw for the natural number, 7.

25.3.1 Constructors

NaturalThrow.__init__(self, d1, d2)

Parameters

• d1 – The value of one die

• d2 – The value of the other die

25.3. Natural Throw Design 143

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Creates this throw. The constraint is that d1 + d2 = 7. If the constraint is not satisfied, simply
raise an exception.

This uses the superclass constructor to add appropriate Outcomes for a throw of 7.

25.3.2 Methods

NaturalThrow.hard(self) → boolean

A natural 7 is odd, and can never be made “the hard way”. This method always returns false.

NaturalThrow.updateGame(self, game)

Parameters game (CrapsGame) – the Game to be updated based on this throw.

Calls the natural() method of a game Game. This may change the game state and resolve bets.

25.4 Craps Throw Design

class CrapsThrow

Craps Throw is a subclass of Throw for the craps numbers 2, 3 and 12.

25.4.1 Constructors

CrapsThrow.__init__(self, d1, d2)

Parameters

• d1 – The value of one die

• d2 – The value of the other die

Creates this throw. The constraint is that d1 + d2 ∈ {2, 3, 12}. If the constraint is not satisfied,
simply raise an exception.

This uses the superclass constructor to add appropriate Outcomes for a throw of craps.

25.4.2 Methods

CrapsThrow.hard(self) → boolean

The craps numbers are never part of “hardways” bets. This method always returns false.

CrapsThrow.updateGame(self, game)

Parameters game (CrapsGame) – the Game to be updated based on this throw.

Calls the craps() method of a game Game. This may change the game state and resolve bets.

25.5 Eleven Throw Design

class ElevenThrow

Eleven Throw is a subclass of Throw for the number, 11. This is special because 11 has one effect on a
come-out roll and a different effect on point rolls.

144 Chapter 25. Throw Class

Building Skills in Object-Oriented Design, Release 2.2.1-Python

25.5.1 Constructors

ElevenThrow.__init__(self, d1, d2)

Parameters

• d1 – The value of one die

• d2 – The value of the other die

Creates this throw. The constraint is that d1+ d2 = 11. If the constraint is not satisfied, simply
raise an exception.

This uses the superclass constructor to add appropriate Outcomes for a throw of 11.

25.5.2 Methods

ElevenThrow.hard(self) → boolean

Eleven is odd and never part of “hardways” bets. This method always returns false.

ElevenThrow.updateGame(self, game)

Parameters game (CrapsGame) – the Game to be updated based on this throw.

Calls the eleven() method of a game Game. This may change the game state and resolve bets.

25.6 Point Throw Design

class PointThrow

Point Throw is a subclass of Throw for the point numbers 4, 5, 6, 8, 9 or 10.

25.6.1 Constructors

PointThrow.__init__(self, d1, d2)

Parameters

• d1 – The value of one die

• d2 – The value of the other die

Creates this throw. The constraint is that d1 + d2 ∈ {4, 5, 6, 8, 9, 10}. If the constraint is not
satisfied, simply raise an exception.

This uses the superclass constructor to add appropriate Outcomes for a throw of craps.

25.6.2 Methods

PointThrow.hard(self) → boolean

Eleven is odd and never part of “hardways” bets. This method always returns false.

Returns true if d1 is equal to d2. This helps determine if hardways bets have been won or lost.

PointThrow.updateGame(self, game)

Parameters game (CrapsGame) – the Game to be updated based on this throw.

25.6. Point Throw Design 145

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Calls the point() method of a game Game. This may change the game state and resolve bets.

25.7 Craps Game Design

class CrapsGame

CrapsGame is a preliminary design for the game of Craps. This initial design contains the interface used by
the Throw class hierarchy to implement game state changes.

25.7.1 Fields

GrapsGame.point
The current point. This will be replaced by a proper State design pattern.

25.7.2 Constructors

CrapsGame.__init__(self)

Creates this Game. This will be replaced by a constructor that uses Dice and CrapsTable.

25.7.3 Methods

CrapsGame.craps(self)

Resolves all current 1-roll bets.

If the point is zero, this was a come out roll: Pass Line bets are an immediate loss, Don’t Pass
Line bets are an immediate win.

If the point is non-zero, Come Line bets are an immediate loss; Don’t Come Line bets are an
immediate win.

The state doesn’t change.

A future version will delegate responsibility to the craps() method of a current state object.

CrapsGame.natural(self)

Resolves all current 1-roll bets.

If the point is zero, this was a come out roll: Pass Line bets are an immediate win; Don’t Pass
Line bets are an immediate loss.

If the point is non-zero, Come Line bets are an immediate win; Don’t Come bets are an immediate
loss; the point is also reset to zero because the game is over.

Also, hardways bets are all losses.

A future version will delegate responsibility to the natural() method of a current state object.

CrapsGame.eleven(self)

Resolves all current 1-roll bets.

If the point is zero, this is a come out roll: Pass Line bets are an immediate win; Don’t Pass Line
bets are an immediate loss.

146 Chapter 25. Throw Class

Building Skills in Object-Oriented Design, Release 2.2.1-Python

If the point is non-zero, Come Line bets are an immediate win; Don’t Come bets are an immediate
loss.

The game state doesn’t change.

A future version will delegate responsibility to the eleven() method of a current state object.

CrapsGame.point(self, point)

Parameters point (integer) – The point value to set.

Resolves all current 1-roll bets.

If the point was zero, this is a come out roll, and the value of the dice establishes the point.

If the point was non-zero and this throw matches the point the game is over: Pass Line bets and
associated odds bets are winners; Don’t Pass bets and associated odds bets are losers; the point
is reset to zero.

Finally, if the point is non-zero and this throw does not match the point, the state doesn’t change;
however, Come point and Don’t come point bets may be resolved. Additionally, hardways bets
may be resolved.

A future version will delegate responsibility to the current state’s point() method to advance
the game state.

Throw.__str__(self) → String

An easy-to-read String output method is also very handy. This should return a String repre-
sentation of the current state. The stub version of this class has no internal state object. This
class can simply return a string representation of the point; and the string "Point Off" when
point is zero.

25.8 Throw Deliverables

There are eleven deliverables for this exercise.

• A stub class for CrapsGame with the various methods invoked by the throws. The design information
includes details on bet resolution that doesn’t need to be fully implemented at the present time. For
this stub class, the change to the point variable is required for unit testing. The other information
should be captured as comments and output statements that help confirm the correct behavior of the
game.

• The Throw superclass, and the four subclasses: CrapsThrow, NaturalThrow, ElventThrow,
PointThrow.

• Five classes which perform unit tests on the various classes of the Throw class hierarchy.

25.8. Throw Deliverables 147

Building Skills in Object-Oriented Design, Release 2.2.1-Python

148 Chapter 25. Throw Class

CHAPTER

TWENTYSIX

DICE CLASS

Unlike Roulette, where a single Bin could be identified by the number in the bin, dice use a pair of numbers.
In this chapter, we design Dice, as well as designing an inner class that is used only to make a single key
out of a composite object.

26.1 Dice Overview

The dice have two responsibilities: they are a container for the Throw s and they pick one of the Throws at
random.

We find that we have a potential naming problem: both a Wheel and the Dice are somehow instances of a
common abstraction. Looking forward, we may wind up wrestling with a deck of cards trying to invent a
common nomenclature for the classes. They create random events, and this leads us to a possible superclass:
Randomizer. Rather than over-engineer this, we’ll hold off on adding this design element until we find
something else that is common among them. See Soapbox on Over-Engineering for some additional opinions
on this subject.

Container. Since the Dice have 36 possible Throws, it is a collection. We can review our survey of the
collections in Design Decision – Choosing A Collection for some guidance here. In this case, we note that
the choice of Throw can be selected by a random numeric index.

For Python programmers, this makes the a list very appealing.

After selection a collection type, we must then deciding how to index each Throw in the Dice collection.
Recall that in Roulette, we had 38 numbers: 1 to 36, plus 0 and 00. By using 37 for the index of the Bin
that contained 00, we had a simple integer index for each Bin.

For Craps it seems better to use a two-part index with the values of two independent dice.

Index Choices. In this case, we have two choices for computing the index into the collection,

• We can rethink our use of a simple sequential structure. If we use a Map, we can use an object
representing the pair of numbers as an index instead of a single int value.

• We have to compute a unique index position from the two dice values.

Decision Forces. There are a number of considerations to choosing between these two representations.

1. If we create a new class to contain each unique pair of integers, we can then use that object to be the
index for a Map. The Map associates this “pair of numbers” object with its Throw.

In Python, a tuple does this job nicely. We don’t need to define a whole new class.

We can pick one of the existing NumberPair objects at random from the collection of keys for the Map
that contains the individual Throws.

149

Building Skills in Object-Oriented Design, Release 2.2.1-Python

2. We can transform the two numeric dice values to a single index value for the sequence. This is a
technique called Key Address Transformation; we transform the keys into the address (or index) of the
data.

We create the index, i, from two dice, d1, d2, via a simple linear equation: i = 6(d1 − 1) + (d2 − 1).

We can reverse this calculation to determine the two dice values from an index. d1 = ⌊i÷ 6⌋+ 1; d2 =
(i mod 6) + 1.

Because of encapsulation, the choice of algorithm is completely hidden within the implementation of Dice.

While the numeric calculation seems simple, it doesn’t obviously scale to larger collections of dice very well.
While Craps is a two-dice game, we can imagine simulating a game with larger number of dice, making this
technique complex.

Solution. Our recommendation is to encapsulate the pair of dice in a tuple instance. We can use this
object as index into a dict that associates a tuple with a Throw.

More advanced students can create a class hierarchy for Dice that includes all of the various implementations
as alternative subclasses.

Random Selection. The random number generator in random.Random helps us locate a Throw at random.

First, we can get the list of keys from the dict that associates a tuple of dice numbers with a Throw.

Second, we use Random.choice() to pick one of these tuples.

We use this randomly selected tuple to return the selected Throw.

26.2 Throw Rework

We need to update Throw to return an appropriate key object.

There are two parts to this. First, we need a “getter” to return the key.

We’ll add a method to Throw to return the tuple that is a key for this Throw.

Throw.getKey(self) → tuple

Second, we need to update the Throw constructor to create the key when the Throw is being built. This will
allow all parts of the application to share references to a single instance of the key.

26.3 NumberPair Design

class NumberPair

In Python, it’s often easiest to use a “named tuple” rather than use a simple tuple.

from collections import namedtuple
NumberPair = namedtuple('NumberPair', ['d1','d2'])

This can make the tuple slightly easier to work with.

26.3.1 Fields

NumberPair.d1
Contains the face of one die.

150 Chapter 26. Dice Class

Building Skills in Object-Oriented Design, Release 2.2.1-Python

NumberPair.d2
Contains the face of the other die.

These attributes are built for us by the collections.namedtuple function.

26.3.2 Constructors

The constructor are built for us by the collections.namedtuple function.

26.4 Dice Design

class Dice

Dice contains the 36 individual throws of two dice, plus a random number generator. It can select a Throw
at random, simulating a throw of the Craps dice.

26.4.1 Fields

Dice.throws
This is a dict that associates a NumberPair with a Throw.

Dice.rng
An instance of random.Random

Generates the next random number, used to select a Throw from the throws collection.

26.4.2 Constructors

Dice.__init__(self, rng=None)
Build the dictionary of Throw instances.

Parameters rng (random.Random) – The random number generator to use.

At the present time, this does not do the full initialization of all of the Throws. We’re only
building the features of Dice related to random selection. We’ll extend this class in a future
exercise.

26.4.3 Methods

addThrow(self, throw)

Parameters throw (Throw) – The Throw to add.

Adds the given Throw to the mapping maintained by this instance of Dice. The key for this
Throw is available from the Throw.getKey() method.

next(self) → Throw
Returns the randomly selected Throw.

First, get the list of keys from the throws.

The random.Random.choice() method will select one of the available keys from the the list.

This is used to get the corresponding Throw from the throws Map.

26.4. Dice Design 151

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Dice.getThrow(self, d1, d2) → Throw

Parameters

• d1 – The value of one die

• d2 – The other die

While not needed by the application, unit tests may need a method to return a specific Throw
rather than a randomly selected Throw.

This method takes a particular combination of dice, locates (or creates) a NumberPair, and
returns the appropriate Throw.

26.5 Dice Deliverables

There are three deliverables for this exercise. In considering the unit test requirements, we note that we will
have to follow the design of the Wheel class for convenient testability: we will need a way to get a particular
Throw from the Dice, as well as replacing the random number generator with one that produces a known
sequence of numbers.

• The Dice class.

• A class which performs a unit test of building the Dice class. The unit test should create several
instances of Outcome, two instances of Throw, and an instance of Dice. The unit test should establish
that Throws can be added to the Dice.

• A class which performs a demonstration of selecting non-random values from the Dice class. By setting
a particular seed, the Throws will be returned in a fixed order. To discover this non-random order, a
demonstration should be built which includes the following.

1. Create several instances of Outcome.

2. Create two instances of Throw that use the available Outcomes.

3. Create one instance of Dice that uses the two Throws.

4. A number of calls to the next() method should return randomly selected Throws.

Note that the sequence of random numbers is fixed by the seed value. The default constructor for a
random number generator creates a seed based on the system clock. If your unit test sets a particular
seed value, you will get a fixed sequence of numbers that can be used to get a consistent result.

26.6 Dice Optimization

First, we note that premature optimization is a common trap.

“We should forget about small efficiencies, say about 97% of the time: premature optimization
is the root of all evil. Yet we should not pass up our opportunities in that critical 3%. A
good programmer will not be lulled into complacency by such reasoning, he will be wise to look
carefully at the critical code; but only after that code has been identified”

—Donald Knuth

“Structured Programming with Goto Statements”. Computing Surveys 6:4 (1974), 261-301.

In this exercise, it appears that the NumberPair is superfluous.

We can work directly with a list of Throws, bypassing any mapping between NumberPair and Throw.

152 Chapter 26. Dice Class

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Removing this needless code is an exercise that should be considered, but not done at this time. In the
Design Cleanup and Refactoring chapter, we’ll clean up this design to remove several things which – in
retrospect – will be poor design decisions.

26.6. Dice Optimization 153

Building Skills in Object-Oriented Design, Release 2.2.1-Python

154 Chapter 26. Dice Class

CHAPTER

TWENTYSEVEN

THROW BUILDER CLASS

This chapter identifies some subtleties of bets in Craps, and proposes some rather involved design rework
to resolve the issues that are raised. Specifically, we didn’t allow for an Outcome to have odds based on a
throw of the dice. We’ll need to add this feature carefully.

We’ll present two solutions: “Design Heavy” and “Design Light”. While we recommend “Design Heavy”, we
find that many programmers and project managers object to the apparent over-engineering of the approach.
We have found that it is almost impossible justify the design heavy approach. See our Soapbox on Justifi-
cation for more on this common blind spot. Instead, we provide the “light” alternative, which will become
increasingly unwieldy throughout this part. At some point, we will eventually be forced to adopt the design
heavy approach.

We’ll present sidebars on the proper design of subclasses and the proper architecture for the packages that
make up an application. Additionally, we’ll provide a brief FAQ on the design issues raised.

27.1 Throw Builder Overview

Enumerating each Outcome in the 36 Throws could be a tedious undertaking. It may be slightly simpler to
hand-code the various combinations., For complete flexibility, we’ll design a Builder to enumerate all of the
Throws and their associated list of Outcomes. This will build the Dice, finishing the elements we deferred
from Dice Class.

The 36 ways the dice fall can be summarized into 15 kinds of Throw, with a fixed distribution of probabilities.
We could develop a Builder class that enumerates the 36 individual Throws, assigning the appropriate
attribute values to each object. An alternative is for a Builder class to step through the 15 kinds of Throws,
creating the proper number of instances of each kind. It seems slightly simpler to examine each pair of dice
and determine which kind of Throw to build.

The proposition bets define eight one-roll Outcomes that need to be assigned to the various Throw instances
we are building. We will share references to the following Outcome objects among the Throws:

• The number 2, with 30:1 odds.

• The number 3, with 15:1 odds.

• The number 7, with 4:1 odds.

• The number 11, with 15:1 odds.

• The number 12, with 30:1 odds.

• The “any craps” outcome, with 7:1 odds. This belongs to throws for 2, 3 and 12.

• The “horn” outcome, with two sets of odds. This belongs to throws for 2, 3, 11 and 12. For 2 and 12,
the odds are 27:4; for 3 and 11, the odds are 3:1.

155

Building Skills in Object-Oriented Design, Release 2.2.1-Python

• The “field” outcome, with two sets of odds. This belongs to throws for 2, 3, 4, 9, 10, 11 and 12. For 2
and 12, this pays 2:1, all others pay even money (1:1).

We can use the following algorithm for building the Dice.

Building Dice

For All Faces Of Die 1. For all d1, such that 1 ≤ d1 < 7:

For All Faces Of A Die 2. For d2, such that 1 ≤ d2 < 7:

Sum the Dice. Compute the sum, s← d1 + d2.

Craps? If s is in 2, 3, and 12, we create a CrapsThrow instance. This will include a
reference to one of the 2, 3 or 12 Outcome s, plus references to the Any Craps, Horn
and Field Outcomes.

Point? For s in 4, 5, 6, 8, 9, and 10 we will create a PointThrow instance.

Hard? When d1 = d2, this is a hard 4, 6, 8 or 10.

Easy? Otherwise, d1 ̸= d2, this is an easy 4, 6, 8 or 10.

Field? For s in 4, 9 and 10 we include a refrence to the Field Outcome. Note that 2,
3, and 12 Field outcomes where handled above under Craps.

Natural? For s of 7, we create a NaturalThrow instance. This will also include a
reference to the 7 Outcome.

Eleven? For s of 11, we create an ElevenThrow instance. This will include references
to the 11, Horn and Field Outcomes.

27.2 Outcomes with Variable Odds

Our detailed examination of the bets has turned up an interesting fact about Field bets and Horn bets: these
bets also have payoffs that depend on the number on the dice. In our earlier Outcome Class, we missed this
nuance, and did not provide for a Dice.winAmount() method that depends on the Dice. We’ll present the
solution to this as a fairly formal procedure that we find helps to resolve these kind of design issues.

Problem Statement. Unlike the Pass Line and Come Line bets, Field bets and Horn bets have payoffs
that depend on the number currently showing on the dice. Unlike Come Line bets, these bets are not moved
on the table to a new Outcome when the point is established. How do we compute the win amount for Field
and Horn bets?

Context. Our design objective is to have a Bet reference a single Outcome object. The Bet is compared
with a Set of winning Outcomes. We’d like to have a single horn Outcome object and field Outcome object
shared by multiple instances of Throw to make this comparison work in a simple, general way.

As an example, the player can place a bet on the Field Outcome, which is shared by all of the field numbers
(2, 3, 4, 9, 10, 11, 12). The problem we have is that for 2 and 12, the outcome pays 2:1 and for the other
field numbers it pays 1:1, and our design only has a single set of payout odds.

Forces. In order to handle this neatly, we have two choices.

• One choice is to have two Outcomes bundled into a single bet. This allows us to create a Bet that
includes both the low-odds field outcome (3, 4, 9, 10 and 11) plus the high-odds field outcome (2 and
12). One of the nice features of this is that it is a small expansion to Bet. However, further research
shows us that there are casino-specific variations on the field bet, including the possibility of three
separate Outcomes for those casinos that pay 3:1 on 12. This makes construction of the Bet rather

156 Chapter 27. Throw Builder Class

Building Skills in Object-Oriented Design, Release 2.2.1-Python

complex, and dilutes the responsibility for creating a proper Bet. Once we put multiple Outcomes into
a Bet, we need to assign responsibility for keeping the bundle of Field Outcomes together.

Pursuing this further, we could expand Outcome to follow the Composite design pattern. We could
introduce a subclass which was a bundle of multiple Outcomes. This would allow us to keep Bet very
simple, but we still have to construct appropriate composite Outcome instances for the purpose of
creating Bets. Rather than dive into allocating this responsibility, we’ll look at other alternatives, and
see if something turns up that doesn’t add as much complexity.

• Another approach is to add an optional argument to Outcome that uses the current Throw to calculate
the win amount.

This allows us to have a single field bet Outcome with different odds for the various numbers in
the field. This further allows us to create slightly different field bet Outcome class definitions for
the casino-specific variations on the rules.

Solution. Our first design decision, then, is to add an additional method to Outcome that calculates the
win amount given the current Throw.

Consequences. There are a number of consequences of this design decision. The next design problem we
have to solve is where in the Outcome class hierarchy do we add this additional winAmount() method? After
that, we will need to determine the signature of the revised winAmount() method. This leads us to two
rounds of additional problem-solving.

27.3 Refactoring The Outcome Hierarchy

Consequent Problem: Class Hierarchy. While it appears simplest to add a “variable odds” subclass
of Outcome with a new method that uses the number on the dice, we find that there are some additional
considerations.

Our design depends on polymorphism among objects of the Outcome class: all instances have the same
interface. In order to maintain this polymorphism, we need to add this new method to the superclass. The
superclass version of the new winAmount() based on the Craps Throw can return an answer computed by
the original winAmount() method. We can then override this in a subclass for Field and Horn bets in Craps.

An alternative is to break polymorphism and create a Craps-specific Outcome subclass. This would ripple
out to Throw, Bet, Table, Player. This is an unpleasant cascade of change, easily avoided by assuring that
the entire Outcome class hierarchy is polymorphic.

Solution. Our second design decision, then, is to insert the change at the top of the Outcome class hierarchy,
and override this new winAmount() method in just the few subclasses that we use to create Horn and Field
Outcomes.

• The Horn bet’s winAmount() method applies one of two odds, based on the event’s value.

• The Field bet may have any of two or three odds, depending on the casino’s house rules. It is difficult
to identify a lot of commonality between Horn bets and Field bets. Faced with these irreconcilable
differences, we will need two different winAmount() methods, leading us to create two subclasses:
OutcomeField and OutcomeHorn.

The differences are minor, merely a list of numbers and odds. However, our design objective is to minimize
if-statements. We prefer many simple classes over a single class with even a moderately complex method.

Consequent Problem: Dependencies. We’ve decided to add a dependency to the
Outcome.winAmount(); specifically, we’ve made it dependent on a Throw object. While this works well
for Craps, it makes very little sense for Roulette.

27.3. Refactoring The Outcome Hierarchy 157

Building Skills in Object-Oriented Design, Release 2.2.1-Python

To allow the games to evolve independently, we should not have any dependencies between games. This
means that a general-purpose class like Outcome can’t depend on a game-specific class like Throw. A general-
purpose class has to depend on some a superclass (or interface) that encompasses the Craps-specific Throw
as well as the Roulette-specific Bin.

Additional Classes. To break the dependency between a general-purposes class and a game-specific class,
we need introduce a superclass that includes both Throw and Bin as subclasses. This will Outcome to work
with either Craps and Roulette; keeping them independent of each other.

We could call the parent class a RandomEvent. This new class would have an integer event identifier: either
the wheel’s bin number or the total of the two dice. Given this new superclass, we could then rearrange
both Throw and Bin to be subclasses of RandomEvent. This would also force us to rework parts of Wheel
that creates the Bins.

A benefit of creating a RandomEvent class hierarchy is that we can change the new winAmount() method
to compute the win amount given a RandomEvent instead of a highly Craps-specific Throw. This makes the
winAmount() method far more generally useful, and keeps Craps and Roulette separate from each other.

This technique of reworking Throw and Bin to be subclasses of a common superclass is a fairly common kind
of generalization refactoring. We observe that more experienced designers develop an ability to locate this
kind of commonality.

Less experienced designers tend to conflate too many nearly-common features into a single class, leading to a
brittle design that cannot easily be reworked. In our example, we considered lifting one common attribute to
the superclass so that a related class (Outcome) could operate on instances of these two classes in a uniform
manner. For more information on this rework, see Soapbox on Subclasses.

Approaches. We will present two alternative designs paths: minimal rework, and a design that is at the
fringe of over-engineering. The minimal design effort has one unpleasant consequence: Roulette’s Outcome
instances depend on the Craps-related Throw class. This leads to an entanglement between Roulette and
Craps around a feature that is really a special case for Craps only. This kind of entanglement may limit our
ability to successfully reuse these classes. See Soapbox on Architecture for a discussion on this issue. The
possible over-engineering prevents this entanglement. We consider this separation very desirable, even in an
application as small as this exercise.

27.4 Soapbox on Subclasses

Designers new to OO techniques are sometimes uncomfortable with the notion of highly-
specialized subclasses. We’ll touch on two reasons why specialized subclasses are far superior
to the alternatives.

One approach to creating common features is to add nested if-statements instead of creating
subclasses. In our example, we might have elected to add if-statements that would determine
if this was a variable-odds outcome, and then determine which of the available odds would be
used. The first test (for being a variable-odds outcome) is, in effect, a determination of the
subclass of Outcome. Since an object’s membership in a class determines the available methods,
there’s no reason to test for membership. In most cases, a test for membership in a class is also
done at construction time. If we use that initial decision to select the subclass (with appropriate
subclass-specific methods) we do not repeat that decision every time a method is invoked. This
is the efficiency rationale for introducing a subclass to handle these special cases.

The more fundamental reason is that specialized subclasses usually represent distinct kinds of
real-world things, which we are modeling in software-world. In contrast, a procedural view-
point is that the variant behavior is a special case: a condition or situation that requires unique
processing. This view often confuses the implementation of the special case (via an if-statement)
with the nature of the specialization. In our case, we have a number of distinct things, some

158 Chapter 27. Throw Builder Class

Building Skills in Object-Oriented Design, Release 2.2.1-Python

of which are related because they have common attributes and behavior. The Outcome is fairly
intangible, so the notion of commonality can be difficult to see. Contrast this with Dice and
Wheel, which are tangible, and are obviously different things, however they have common behavior
and a common relationship with a casino game.

Design Aid. Sometimes it helps to visualize this by getting pads of different-colored sticky
paper, and making a mockup of the object structure on whiteboard. Each class is represented by
a different color of paper. Each individual object is an individual slip of sticky paper. To show
the relationship of Dice, Throw and Outcome, we draw a large space on the board for an instance
of Dice which has smaller spaces for 36 individual Throws.

In one Throw instance, we put a sticky for Outcome s 2, Field, Horn, and Any Craps. We use three
colors of stickies to show that 2 and Any Craps are ordinary Outcome s, Field is one subclass and
Horn is another subclass.

In another Throw instance, we put a sticky for Outcome 7, using the color of sticky for ordinary
Outcomes.

This can help to show what the final game object will be examining to evaluate winning bets.
The game object will have a list of winning Outcomes and bet Outcome s actually on the table.
When a 2 is thrown, the game process will pick up each of the stickies, compare the winning
Outcome s to the bets, and then use the method appropriate to the color of the sticky when
computing the results of the bet.

27.5 Soapbox on Architecture

There are a number of advanced considerations behind the Design Heavy section. This is a
digression on architecture and packages of classes. While this is beyond the basics of OO design,
it is a kind of justification for the architecture we’ve chosen.

A good design balances a number of forces. One example of this is our use of a class hierarchy
to decompose a problem into related class descriptions, coupled with the collaboration among
individual objects to compose the desired solution. The desired behavior emerges from this
tension between decomposition of the class design and composition of the objects to create the
desired behavior.

Another example of this decomposition vs. composition is the organization of our classes into
packages. We have, in this book, avoided discussion of how we package classes. It is a more
subtle aspect of a good design, consequently we find it challenging to articulate sound principles
behind the layers and partitions of a good collection of packages. There are some design patterns
that give us packaging guidance, however.

Design Patterns. One packaging pattern is the 5-Layer Design, which encourages us to
separate our design into layers of view, control, model, access and persistence. For our current
application, the view is the output log written to System.out, the control is the overall main
method and the Simulation class, the model is the casino game model. We don’t have any data
access or data persistence issues, but these are often implemented with JDBC and a relational
database.

While one of the most helpful architectural patterns, this version of the 5-Layer Design still
leaves us with some unsatisfying gaps. For example, common or infrastructure elements don’t
have a proper home. They seem to form another layer (or set of layers). Further, the model
layer often decomposes into domain elements, plus elements which are specializations focused on
unique features of the business, customer, vendor or product.

Another packaging pattern is the Sibling Partition, which encourages us to separate our
application-specific elements to make them parallel siblings of a superclass so that we can more

27.5. Soapbox on Architecture 159

Building Skills in Object-Oriented Design, Release 2.2.1-Python

easily add new applications or remove obsolete applications. In this case, each casino game is
a separate application of our casino game simulator. At some point, we may want to isolate
one of the games to reuse just the classes of that game in another application. By making the
games proper siblings of each other, and children of an abstract parent, they can be more easily
separated.

General vs. Specific. Applying these layered design and application partitioning design pat-
terns causes us to examine our casino game model more closely and further sub-divide the model
into game-specific and game-independent elements. If necessary, we can further subdivide the
general elements into those that are part of the problem domain (casino games) and those that
are even more general application infrastructure (e.g., simulation and statistics). Our ideal is
to have a tidy, short list of classes that provides a complete game simulation. We can cut our
current design into three parts: Roulette, Craps and application infrastructure. This allows us
to compose Roulette from the Roulette-specific classes and the general infrastructure classes,
without including any of the Craps-specific classes.

The following architecture diagram captures a way to structure the packages of these applications.

Our class definitions have implicitly followed this architecture, working from general to game-
and player-specific classes. Note that our low-level classes evolved through several increments.
We find this to be superior to attempting to design the general classes from the outset: it avoids
any over-engineering of the supporting infrastructure. Additionally, we we careful to assure that
our top-level classes contain minimal processing, and are are compositions of lower-level object
instances.

Dependencies. A very good design could carefully formalize this aspect of the architecture by
assuring that there are minimal references between layers and partitions, and all references are
“downward” references from application-specific to general infrastructure packages. In our case,
the Simulator should have access only to Player and Game layers.

Two Game partitions should be separate with no references between these packages.

Finally, we would like to assure that the Player and Game don’t have invalid “upward” references
to the Simulator. There are some tools that can enforce this architectural separation aspect of
the design. Lacking tools, we need to exercise some discipline to honor the layers and partitions.

160 Chapter 27. Throw Builder Class

Building Skills in Object-Oriented Design, Release 2.2.1-Python

27.6 Throw Builder Questions and Answers

Why is do we need RandomEvent? Isn’t this overengineering?

Clean separation between Craps and Roulette isn’t necessary, but is highly desirable. We pre-
fer not to have Roulette classes depend in any way on Craps classes. Instead of having them
entangled, we factor out the entanglement and make a new class from this. This is also called
reducing the coupling between classes. We prefer the term “entanglement” because it has a
suitably negative connotation.

Didn’t we notice the need for this RandomEvent class back in Soapbox on Overengineering? Why was it a
bad idea then and a good idea now?

Some experienced designers immediately notice this kind of commonality between Throw and Bin,
and can handle it without getting badly side-tracked. However, some beginning designers can
spend too much time searching for this kind of commonality. We’ve seen examples of improper
factoring where classes were combined in an early phase of design, only to lead to expensive
rework when distinctions were uncovered later, invalidating large parts of the design. We prefer
to wait until we are sure we’ve understood the problem and the solution before committing to a
particular class design.

Isn’t the goal to leave Roulette alone? Isn’t the ideal to extend the design with subclasses, leaving the
original design in place?

Yes, the goal is to extend a design via subclasses. But, this is only possible if the original design
is suitable for extension by subclassing. We find that it is very difficult to create a design that
both solves a problem and can be extended to solve a number of related problems.

Note that a general, extensible design has two independent feature sets. On one level it solves a
useful problem. Often, this is a difficult problem in its own right, and requires considerable skill
merely to ferret out the actual problem and craft a usable solution within budget, time and skill
constraints.

On another, deeper level, our ideal design can be extended. This is a different kind of problem
that requires us to consider the various kinds of design mutations that may occur as the software
is maintained and adapted. This requires some in-depth knowledge of the problem domain. We
need to know how the current problem is a specialization of other more general problems. We
also need to note how our solution is only one of many solutions to the current problem. We
have two dimensions of generalization: problem generalization as well as solution generalization.

Our initial design for roulette just barely provided the first level of solution. We didn’t make any
effort to plan for generalization. The “Design Heavy” solution generalizes Roulette to make it
more suitable for Craps, also. Looking forward, we’ll have to make even more adjustments before
we have a very tidy, general solution.

27.7 Soapbox on Justification

It is very difficult to justify design rework. Most managers and designers share a common blind-
spot on the amount of evidence required to justify rework. The conversations have the following
form.

Architect. We need to disentangle Roulette and Craps so that Craps is not a subclass of
Roulette. I’ve got a revised design that will take X hours of effort to implement.

Manager. I’ll need some justification. Why do we have to fix it?

27.6. Throw Builder Questions and Answers 161

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Architect. The structure is illogical: Craps isn’t a special case of Roulette, they’re independent
specializations of something more general.

Manager. Illogical isn’t a good enough justification. Our overall problem domain always con-
tains illogical special cases and user-oriented considerations. You’ll have to provide something
more concrete.

Architect. Okay, in addition to being illogical, it will become too complex: in the future, we’ll
probably have trouble implementing other games.

Manager. How much trouble? Will it be more than X hours of effort?

Architect. When we include maintenance, adaptation and debugging, the potential future cost
is probably larger than 2X hours of effort. And it’s illogical.

Manager. Probably larger? We can’t justify rework based on probable costs. You’ll need
something tangible. Will it save us any lines of code?

Architect. No, it will add lines of code. But it will reduce maintenance and adaptation costs
because it will be more logical.

Manager. I conclude that the change is unjustified.

In many cases, we have a manager who’s mind is made up and who won’t be swayed by facts. This
is generally a symptom of an organization that is thinking-impaired. Typically, it is impossible
to engage project managers further than this. However, in some cases, conversation continues in
the following vein.

Architect. Unjustified? Okay, please define what constitutes adequate justification for improve-
ments?

Manager. Real savings of effort is the only justification for disrupting the schedule.

Architect. And future effort doesn’t count?

Manager. The probability of savings in the future isn’t tangible.

Architect. And more logical doesn’t count?

Manager. If course not; it doesn’t result in real schedule savings.

Architect. Real schedule savings? That’s absurd. The schedule is a notional projection of
possible effort. A possible reduction in the possible effort is just as real as the schedule.

Manager. Wouldn’t it be simpler to...?

For reasons we don’t fully understand, a schedule becomes a kind of established fact. Any change
to the schedule requires other established facts, not the conjecture of design. For some reason,
the idea that the schedule is only a conjecture, based on a previously conjectured design doesn’t
seem to sway managers from clinging to the schedule. This makes it nearly impossible to justifiy
making a design change. The only way to accumulate enough evidence is to make the design
change and then measure the impact of the change. In effect, no level of proof can ever override
the precedence-setting fact of the schedule.

To continue this rant, the same kind of “inadequate evidence” issue seems to surround all tech-
nology changes. We have had conversations like the one shown above regarding object-oriented
design, the use of objects in relational databases, the use of object-oriented databases, the use
of open-source software, and the use of the star-schema data model for reporting and analysis.
For many people, it seems that change can only be considered based on established facts; we
observe that these facts can only be established by making a change. While this chicken-and-egg
problem is easily resolved by recognizing that the current architecture or schedule is actually not
an established fact, this is a difficult mental step to take.

162 Chapter 27. Throw Builder Class

Building Skills in Object-Oriented Design, Release 2.2.1-Python

As a final complaint, we note that “wouldn’t it be simpler” is best described as a management
trump card. The point is rarely an effort to reduce code complexity, but to promote management
understanding of the design. While this is a noble effort, there is sometimes a communication
gap between designers and managers. It is incumbent both on designers to communicate fully,
and on managers to provide time, budget and positive reinforcement for detailed communication
of design considerations and consequences.

27.8 Design Light

In order to get the Craps game to work, we can minimize the amount of design. This minimal rework is a
revision to Outcome.

This is followed by Common Design: the two subclasses of Outcome (OutcomeField, and OutcomeHorn), and
the initializer for Dice.

This minimal design effort has one unpleasant consequence: Roulette’s Outcome instances will depend on
the Craps-specific Throw class. This entangles Roulette and Craps around a feature that is really a special
case for Craps only. This kind of entanglement often limits our ability to successfully package and reuse
these classes.

27.8.1 Outcome Rework

The class Outcome needs a method to compute the win amount based on a Throw.

In Python, we use optional parameters to achieve the same degree of flexibility.

Outcome.winAmount(self, throw=None) → int
Returns the product this Outcome‘s odds numerator by the given amount, divided by the odds denom-
inator.

Parameters throw (Throw) – An optional Throw that determines the actual odds to use.
If not provided, this Outcome‘s odds are used.

For Craps Horn bet and Field bets, a subclass will override this method to check the specific
value of the throw and compute appropriate odds.

27.9 Design Heavy

In order to produce a solution that has a better architecture with more reusable components, we need to do
some additional generalization. This design effort disentangles Roulette and Craps; they will not share the
Throw class that should only be part of Craps. Instead, the highly reused Outcome class depends only on a
new superclass, RandomEvent, which is not specific to either game.

Given the new generalization, RandomEvent, we can rework the Outcome to use this for computing win
amounts. We will have to rework Bin, Wheel, and Throw to make proper use of this new superclass.

Then we can move to the Common Design features: the craps-specific subclasses (OutcomeField, and
OutcomeHorn), and the initializer for Dice.

27.9.1 RandomEvent class

class RandomEvent

27.8. Design Light 163

Building Skills in Object-Oriented Design, Release 2.2.1-Python

The class RandomEvent is the superclass for the random events on which a player bets. This includes Bin of
a Roulette wheel and Throw of Craps dice.

Fields

The most notable common feature between a Bin and a Throw is that both have a collection of Outcomes.
This common set can be moved to this superclas from the subclasses.

RandomEvent.outcomes
A frozenset that holds the collection of individual Outcomes.

27.9.2 Bin Rework

The class Bin needs to be a subclass of RandomEvent.

The set of outcomes is removed from Bin; it’s defined in RandomEvent.

27.9.3 Throw Rework

The class Throw needs to be a subclass of RandomEvent.

The set of outcomes is removed from Throw; it’s defined in RandomEvent.

27.9.4 Outcome Rework

The class Outcome needs a method to compute the win amount based on a RandomEvent.

In Python, we use optional parameters to achieve the same degree of flexibility.

Outcome.winAmount(self, RandomEvent=None) → int
Returns the product this Outcome‘s odds numerator by the given amount, divided by the odds denom-
inator.

Parameters event (Throw) – An optional RandomEvent that determines the actual odds
to use. If not provided, this Outcome‘s odds are used.

For Craps Horn bet and Field bets, a subclass will override this method to check the specific
value of the event and compute appropriate odds.

27.10 Common Design

27.10.1 OutcomeField Design

class OutcomeField

OutcomeField contains a single outcome for a field bets that has a number of different odds, and the odds
used depend on a RandomEvent.

164 Chapter 27. Throw Builder Class

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Methods

OutcomeField.winAmount(self, throw=None) → int
Returns the product this Outcome‘s odds numerator by the given amount, divided by the odds denom-
inator.

Parameters throw (Throw) – An optional Throw that determines the actual odds to use.
If not provided, this Outcome‘s odds are used.

OutcomeField.__str__(self) → string
This should return a String representation of the name and the odds. A form that looks like Field
(1:1, 2 and 12 2:1) works nicely.

27.10.2 OutcomeHorn Design

class OutcomeHorn

OutcomeHorn contains a single outcome for a Horn bet that has a number of different odds, and the odds
used depend on a RandomEvent.

Methods

OutcomeHorn.winAmount(self, throw=None) → int
Returns the product this Outcome‘s odds numerator by the given amount, divided by the odds denom-
inator.

Parameters throw (Throw) – An optional Throw that determines the actual odds to use.
If not provided, this Outcome‘s odds are used.

OutcomeHorn.__str__(self) → string
This should return a String representation of the name and the odds. A form that looks like Horn
(27:4, 3:1) works nicely.

27.10.3 ThrowBuilder class

class ThrowBuilder

ThrowBuilder initializes the 36 Throws, each initialized with the appropriate Outcomes. Subclasses can
override this to reflect different casino-specific rules for odds on Field bets.

Constructors

ThrowBuilder.__init__(self)

Initializes the ThrowBuilder.

Methods

ThrowBuilder.buildThrows(self, dice)

Creates the 8 one-roll Outcome instances (2, 3, 7, 11, 12, Field, Horn, Any Craps).

It then creates each of the 36 Throws, each of which has the appropriate combination of Outcomes.
The Throws are assigned to dice.

27.10. Common Design 165

Building Skills in Object-Oriented Design, Release 2.2.1-Python

27.11 Throw-Builder Deliverables

There are two deliverables for the light version of this exercise.

• Rework the Outcome class to add the new winAmount() method that uses a Throw.

• Rework the Outcome class unit test to exercise the new winAmount() method that uses a Throw. For
all current subclasses of Outcome, the results of both versions of the winAmount() method produce the
same results.

There are five deliverables for the heavy version of this exercise.

• Create the RandomEvent class.

• Rework the Bin class to be a subclass of RandomEvent. The existing unit tests for Bin should continue
to work correctly.

• Rework the Throw class to be a subclass of RandomEvent. The existing unit tests should continue to
work correctly.

• Rework the Outcome class to add the new winAmount() method that uses a RandomEvent.

• Rework the Outcome class unit test to exercise the new winAmount() method that uses a RandomEvent.
For all current subclasses of Outcome, the results of both versions of the winAmount() method produce
the same results.

There a six common deliverables no matter which approach you take.

• Create the OutcomeField class.

• Create a unit test for the OutcomeField class. Two instances of Throw are required: a 2 and a 3. This
should confirm that there are different values for winAmount() for the two different Throw instances.

• Create the OutcomeHorn class.

• Create a unit test for the OutcomeHorn class. Two instances of Throw are required: a 2 and a 3. This
should confirm that there are different values for winAmount() for the two different Throw instances.

• Create the ThrowBuilder. This was our objective, after all.

• Rework the unit test of the Dice class. The unit test should create and initialize a Dice. It can use
the getThrow() method to check selected Throws for the correct Outcomes.

The correct distribution of throws is as follows. This information will help confirm the results of
ThrowBuilder.
Throw Frequency
2 1
3 2
easy 4 2
hard 4 1
5 4
easy 6 4
hard 6 1
7 6
easy 8 4
hard 8 1
9 4
easy 10 2
hard 10 1
11 2
12 1

166 Chapter 27. Throw Builder Class

CHAPTER

TWENTYEIGHT

BET CLASS

This chapter will examine the Bet class, and its suitability for the game of Craps. We’ll expand the design
to handle additional complications present in real casino games.

28.1 Bet Overview

A Bet is an amount that the player has wagered on a specific Outcome. This is a simple association of an
amount, an Outcome, and a specific Player.

When considering the various line bet outcomes (Pass Line, Come Line, Don’t Pass and Don’t Come), we
noted that when a point was established the bet was either a winner or a loser, or it was moved from the line
to a particular number based on the throw of the dice. We’ll need to add this responsibility to our existing
definition of Bet. This responsibility can be implemented as a setOutcome() method that leaves the amount
intact, but changes the Outcome from the initial Pass Line or Come Line to a specific point outcome.

A complexity of placing bets in Craps is the commission (or vigorish) required for Buy bets and Lay bets.
This is a 5% fee, in addition to the bet amount. A player puts $21 down, which is a $20 bet and a $1
commission. We’ll need to add a a commission or vig responsibility to our definition of Bet.

This price to place a bet generalizes nicely to all other bets. For most bets, the price is simply the amount
of the bet. For Buy bets, the price is 5% higher than the amount of the bet; for Lay bets, the price depends
on the odds. This adds a new method to Bet that computes the price of the bet. This has a ripple effect
throughout our Player hierarchy to reflect this notion of the price of a bet. We will have to make a series
of updates to properly deduct the price from the player’s stake instead of deducting the amount of the bet.

There are two parts to creating a proper Craps bet: a revision of the base Bet to separate the price from the
amount bet, and a CommissionBet subclass to compute prices properly for the more complex Craps bets.

28.2 Bet Rework

Bet associates an amount and an Outcome. The Game may move a Bet to a different Outcome to reflect a
change in the odds used to resolve the Bet. In a future round of design, we can also associate a it with a
Player.

28.2.1 Methods

Bet.setOutcome(self, outcome)

Parameters outcome (Outcome) – The new outcome for this bet amount

Sets the Outcome for this bet. This has the effect of moving the bet to another Outcome.

167

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Bet.price(self) → int

Computes the price for this bet. For most bets, the price is the amount. Subclasses can override
this to handle buy and lay bets where the price includes a 5% commission on the potential
winnings.

For Buy and Lay bets, a $20 bet has a price of $21.

28.3 CommissionBet Design

class CommissionBet

CommissionBet is a Bet with a commission payment (or vigorish) that determines the price for placing the
bet.

28.3.1 Fields

CommissionBet.vig
Holds the amount of the vigorish. This is almost universally 5%.

28.3.2 Methods

Bet.price(self) → int

Computes the price for this bet. There are two variations: Buy bets and Lay bets.

A Buy bet is a right bet; it has a numerator greater than or equal to the denominator (for
example, 2:1 odds, which risks 1 to win 2), the price is 5% of the amount bet. A $20 Buy bet
has a price of $21.

A Lay bet is a wrong bet; it has a denominator greater than the numerator (for example, 2:3
odds, which risks 3 to win 2), the price is 5% of 2/3 of the amount. A $30 bet Layed at 2:3 odds
has a price of $31, the $30 bet, plus the vig of 5% of $20 payout.

28.4 Bet Deliverables

There are three deliverables for this exercise.

• The revised Bet class.

• The new CommissionBet subclass. This computes a price that is 5% of the bet amount.

• A class which performs a unit test of the various Bet classes. The unit test should create a couple
instances of Outcome, and establish that the winAmount() and price() methods work correctly. It
should also reset the Outcome associated with a Bet

We could rework the entire Player class hierarchy for Roulette to compute the Bet‘s price in the
placeBets(), and deduct that price from the player’s stake. For Roulette, however, this subtlety is at
the fringe of over-engineering, as no bet in Roulette has a commission.

168 Chapter 28. Bet Class

CHAPTER

TWENTYNINE

CRAPS TABLE CLASS

In Roulette, the table was a passive repository for Bets. In Craps, however, the table and game must
collaborate to accept or reject bets based on the state of the game. This validation includes rules based on
the total amount bet as well as rules for the individual bets.

In Throw Class, we roughed out a stub version of CrapsGame that could be used to test Throw. In this
section, we will extend this stub with additional features required by the table.

29.1 Craps Table Overview

The Table is where the Bets are placed. The money placed on Bets on the Table is “at risk”; these bets
either win an amount based on the odds, or lose the amount placed by the player.

• The Don’t Come and Don’t Pass bets may be returned, called a “push”.

• The Buy and Lay bets include a commission (or vigorish) to place the bet; the commission is lost
money; the balance of the bet, however, may win or lose.

The responsibility for a push is something we can allocate to Game, the commission price belongs to Bet.

Some Bets (specifically Pass, Don’t Pass, Come and Don’t Come) may have their Outcome changed. The
use case works like this.

1. The bet is created by the Player with one Outcome, for example, “Pass”. The Table accepts this bet.

2. That bet may be resolved as an immediate winner or loser. The Game and Throw will determine if
the Bet is a winner as placed.

More commonly, the Bet may be changed to a new Outcome, possibly with different odds.

In a casino, the chips initially placed on Come Line and Don’t Come bets are relocated to a point
number box to show this change. In the case of Pass Line and Don’t Pass bets, the “On” marker is
placed on the table to show an implicit movement of all of those line bets.

The change is the responsibility of the Game; however, the Table must provide an iterator over the line bets
that the Game will move.

Game State. Each change to the game state changes the allowed bets as well as the active bets. When the
point is off, most of the bets on the table are not allowed, and some others are inactive, or not “working”.

When a point is established, all bets are allowed, and all bets are active. We’ll examine the rules in detail,
below.

The Table must be able to reject bets which are inappropriate for the current Game state.

169

Building Skills in Object-Oriented Design, Release 2.2.1-Python

29.2 Design Decision – Table vs. Game Responsibility

We’ve identified two responsibilities that are part of handling Craps:

• changing Bets,

• inactivating outcomes and rejecting bets based on Game state.

Clearly, these require additional collaboration between Game and Table. We will have to add methods to
CrapsGame that will allow or deny some bets, as well as methods that will active or deactive some bets.

We have to choose where in the class hierarchy we will retrofit this additional collaboration.

Problem. Should we put these new responsibilities at a high-enough level that we’ll add table and game
collaboriation to the Table class used for Roulette?

Forces. If we do add this for Roulette, we could simply return true from the method that validates the
allowed bets, since all bets are allowed in Roulette.

However, our overall application design does not depend on all subclasses of Game and Table being polymor-
phic; we will never mix and match different combinations of Craps Table and Roulette Game.

Solution. Because we don’t need polymorphism between Craps and Roulette, we can create a subclass of
Table with a more complex interface and leave Roulette untouched. Perhaps we’ll call it CrapsTable.

29.3 Design Decision – Allowable Outcomes

After deciding to create a CrapsTable subclass, we have several consequent decisions. First, we turn the
interesting question of how best to allocate responsibility for keeping the list of Outcomes which change with
the game state.

Problem. Which class determines the valid and invalid Outcomes?

Forces. We can see three places to place this responsibility.

1. We could make CrapsTable responsible; it could have methods to return the lists of Outcomes that are
allowed or not allowed. CrapsGame can make a call to get the list of Outcomes and make the changes.
Making each change would involve the CrapsTable a second time to mark the individual Outcomes.
This information is then used by the CrapsTable to validate individual Bets.

2. We could CrapsGame responsible; it could invoke a method of CrapsTable that changes a single Outcome
‘s state to makt it inactive. This information is then used by the CrapsTable to validate individual
Bets.

3. An appealing choice is to have the validBet() method of CrapsTable depend on CrapsGame to
determine which bets are allowed or denied. In this case, CrapsGame has the responsibility to respond
to requests from either CrapsTable or Player regarding a specific Outcomes.

The third choice seems to focus bet-handling responsibility mostly on CrapsGame.

Solution We need to place a valid method in the CrapsTable; but the Table simply delegates the details
to the CrapsGame. This allows the Player to deal directly with the Table. But it centralizes the actual
decision-making on the Game.

Consequences. The game must move Outcomes for certain kinds of bets. Additionally, the CrapsTable‘s
isValid() method will use the CrapsGame to both check the validity of individual bets as well as the entire
set of bets created by a player. The first check allows or denies individual bets, something CrapsTable must
do in collaboration with CrapsGame. For the second check, the CrapsTable assures that the total of the bets
is within the table limits; something for which only the table has the information required.

170 Chapter 29. Craps Table Class

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Allowed Bets. The rule for allowed and non-allowed bets is relatively simple. When the game state has no
point (also known as the come out roll), only Pass Line and Don’t Pass bets are allowed, all other bets are
not allowed. When the point is on, all bets are allowed. We’ll have to add an isAllowed() to CrapsGame,
which CrapsTable will use when the player attempts to place a bet.

Working Bets. The rule for working and non-working bets is also relatively simple. On the come out roll,
all odds bets placed behind any of the six Come Point numbers are not working. This rule only applies
to odds behind Come Point bets; odds behind Don’t Come bets are always working. We’ll have to add an
isWorking() to CrapsGame, which CrapsTable will use when iterating through working bets.

The sequence of events that can lead to this condition is as follows. First, the player places a Come Line
bet, the dice roll is 4, 5, 6, 8, 9 or 10, and establishes a point; the bet is moved to one of the six come points.
Second, the player creates an additional odds bet placed behind this come point bet. Third, the main game
point is a winner, changing the game state so the next roll is a come out roll. In this state, any additional
odds behind a come point bet will be non-working bets on the come-out roll.

This kind of exceptional subtlety is one of the important reasons why object-oriented programming can be
more successful than procedural programming. In this case, we can isolate this state-specific processing to
the CrapsGame. We can also provide the interface to the CrapsTable that makes this responsibility explicit
and easy to use.

29.4 CrapsGame Stub

CrapsGame is a preliminary design for the game of Craps. In addition to features required by the Throw, this
version includes features required by the CrapsTable class.

29.4.1 Methods

CrapsGame.isAllowed(self, outcome) → boolean

Parameters outcome (Outcome) – An Outcome that may be allowed or not allowed, de-
pending on the game state.

Determines if the Outcome is allowed in the current state of the game. When the point is zero,
it is the come out roll, and only Pass, Don’t Pass, Come and Don’t Come bets are allowed.
Otherwise, all bets are allowed.

CrapsGame.isWorking(self, outcome) → boolean

Parameters outcome (Outcome) – An Outcome that may be allowed or not allowed, de-
pending on the game state.

Determines if the Outcome is working in the current state of the game. When the point is zero, it
is the come out roll, odds bets placed behind any of the six come point numbers are not working.

29.5 CrapsTable Design

CrapsTable is a subclass of Table that has an association with a CrapsGame object. As a Table, it contains
all the Bets created by the Player. It also has a betting limit, and the sum of all of a player’s bets must be
less than or equal to this limit. We assume a single Player in the simulation.

29.4. CrapsGame Stub 171

Building Skills in Object-Oriented Design, Release 2.2.1-Python

29.5.1 Fields

CrapsTable.game
The CrapsGame used to determine if a given bet is allowed or working in a particular game state.

29.5.2 Constructors

CrapsTable.__init__(self, game)

Parameters game (CrapsGame) – The CrapsGame instance that controls the state of this
table

Uses the superclass for initialization of the empty LinkedList of bets.

29.5.3 Methods

CrapsTable.isValid(self, bet) → boolean

Parameters bet (Bet) – The bet to validate.

Validates this bet by checking with the CrapsGame to see if the bet is valid; it returns true if the
bet is valid, false otherwise.

CrapsTable.allValid(self) → boolean

This uses the superclass to see if the sum of all bets is less than or equal to the table limit. If
the individual bet outcomes are also valid, return true. Otherwise, return false.

29.6 Craps Table Deliverables

There are three deliverables for this exercise.

• A revision of the stub CrapsGame class to add methods for validating bets in different game states. In
the stub, the point value of 0 means that only the “Pass Line” and “Don’t Pass Line” bets are valid,
where a point value of non-zero means all bets are valid.

• The CrapsTable subclass.

• A class which performs a unit test of the CrapsTable class. The unit test should create a couple
instances of Bet, and establish that these Bets are managed by the table correctly.

For testing purposes, it is easiest to have the test method simply set the the point variable in the
CrapsGame instance to force a change in the game state. While public instance variables are considered
by some to be a bad policy, they facilitate the creation of unit test classes.

172 Chapter 29. Craps Table Class

CHAPTER

THIRTY

CRAPSGAME CLASS

In Throw Class, we roughed out a stub version of CrapsGame that could be used to test Throw. We extended
that stub in Craps Table Class. In this chapter, we will revise the game to provide the complete process
for Craps. This involves a number of features, and we will have a state hierarchy as well as the Game class
itself.

In the process of completing the design for CrapsGame, we will uncover another subtlety of craps: winning
bets and losing bets. Unlike Roulette, where a Bin contained winning Outcomes and all other Outcomes
where losers, Craps includes winning Outcomes, losing Outcomes, and unresolved Outcomes. This will lead
to some rework of previously created Craps classes.

We can see three necessary features to the CrapsGame:

• Game State,

• Resolving Bets,

• Moveable Bets when a point is established.

Also, we will discover some additional design features to add to other classes.

30.1 Game State

A CrapsGame object cycles through the various steps of the Craps game; this sequence is shown in Game
State. For statistical sampling purposes, we don’t want to process complete games, since they have an
arbitrary number of dice throws, and each throw offers additional betting opportunities. Because of all the
betting opportunities, we will gather data from each individual throw of the dice. Since the dice are thrown
at a predictable average rate, the length of a session depends on the number of throws and has little to do
with the number of games.

Since we will follow the State design pattern, we have three basic design decisions. First, we have to design
the state class hierarchy to own responsibilities for the unique processing of the individual states. Second, we
have to design an interface for the game state objects to interact with the overall CrapsGame. Additionally,
we will need to keep an object in the CrapsGame which contains the current state. Each throw of the dice
will update the state, and possibly resolve game bets. To restart the game, we can create a fresh object for
the initial point-off state.

The following procedure provides the detailed algorithm for the game of Craps.

A Single Game of Craps

Point Off State. The first throw of the dice is made with no point. This game may be resolved in a single
throw of the dice, no point will be established. If a point is established the game transitions to the Point

173

Building Skills in Object-Oriented Design, Release 2.2.1-Python

On State.

1. Place Bets. The point is off; this is the come out roll. Notify the Player to create Bets. The real
work of placing bets is delegated to the Player class. Only Pass and Don’t Pass bets will be allowed
by the current game state.

2. Odds Bet Off? Optional, for some casinos only. For any odds bets behind a come point, interrogate
the player to see if the bet is on or off.

3. Come-Out Roll. Get the next throw of the Dice, giving the winning Throw, t. The Throw contains
the individual Outcomes that can be resolved on this throw.

4. Resolve Proposition Bets. For each Bet, b, placed on a one-roll proposition:

• Proposition Winner? If Bet b‘s Outcome is in the winning Throw, t, then notify the Player
that Bet b was a winner and update the Player ‘s stake. Note that the odds paid for winning
field bets and horn bets depend on the Throw.

• Proposition Loser? If Bet b‘s Outcome is not in the winning Throw, t, then notify the Player
that Bet b was a loser. This allows the Player to update their betting amount for the next round.

5. Natural? If the throw is a 7 or 11, this game is an immediate winner. The game state must provide
the Pass Line Outcome as a winner.

For each Bet, b :

• Come-Out Roll Natural Winner? If Bet b‘s Outcome is in the winning game state, then
notify the Player that Bet b was a winner and update the Player ‘s stake. A Pass Line bet is a
winner, and a Don’t Pass bet is a loser.

• Come-Out Roll Natural Loser? If Bet b‘s Outcome is not in the winning game state, then
notify the Player that Bet b was a loser. This allows the Player to update the betting amount
for the next round. A Pass Line bet is a loser, and a Don’t Pass bet is a winner.

6. Craps? If the throw is a 2, 3, or 12, this game is an immediate loser. The game state must provide the
Don’t Pass Line Outcome as a winner; note that 12 is a push in this case, requiring special processing
by the Bet or the Outcome: the bet amount is simply returned.

For each Bet, b:

(a) Come-Out Roll Craps Winner? If Bet b ‘s Outcome is in the winning game state and the bet
is working, then notify the Player that Bet b was a winner and update the Player‘s stake. If the
bet is not working, it is ignored.

(b) Come-Out Roll Craps Loser? If Bet b ‘s Outcome is not in the winning game state and the
bet is working, then notify the Player that Bet b was a loser. If the bet is not working, it is
ignored.

7. Point Established. If the throw is a 4, 5, 6, 8, 9 or 10, a point is established. The game state
changes, to reflect the point being on. The Pass Line and Don’t Pass Line bets have a new Outcome
assigned, based on the point.

Point On State. While the game remains unresolved, the following steps are performed. The game is
resolved when the point is made or a natural is thrown.

1. Place Bets. Notify the player to place any additional bets. The game state will allow all bets.

2. Point Roll. Get the next throw of the dice.

3. Resolve Proposition Bets. Resolve any one-roll proposition bets. This is the procedure described
above for iterating through all one-roll propositions. See Resolve Proposition Bets.

4. Natural? If the throw was 7, the game is a loser. Resolve all bets; the game state will show that
all bets are active. The game state will include Don’t Pass and Don’t Come bets as winners, as will

174 Chapter 30. CrapsGame Class

Building Skills in Object-Oriented Design, Release 2.2.1-Python

any of the six point bets created from Don’t Pass and Don’t Come Line bets. All other bets will lose,
including all hardways bets.

This throw resolves the game, changing the game state. The point is off.

5. Point Made? If the throw was the main game point, the game is a winner. Resolve Pass Line and
Don’t Pass Line bets, as well as the point and any odds behind the point.

Come Point and Don’t Come Point bets (and their odds) remain for the next game. A Come Line or
Don’t Come Line bet will be moved to the appropriate Come Point.

This throw ends the game; changing the game state. The point is off; odds placed behind Come Line
bets are not working for the come out roll.

6. Other Point Number? If the throw was any of the come point numbers, come bets on that point
are winners. Resolve the point come bet and any odds behind the point. Also, any buy or lay bets
will be resolved as if they were odds bets behind the point; recall that the buy and lay bets involved
a commission, which was paid when the bet was created.

7. Hardways? For 4, 6, 8 and 10, resolve hardways bets. If the throw was made the hard way (both
dice equal), a hardways bet on the thrown number is a winner. If the throw was made the easy way,
a hardways bet on the thrown number is a loser. If the throw was a 7, all hardways bets are losers.
Otherwise, the hardways bets remain unresolved.

30.2 Game State Class Hierarchy

We have identified some processing that is unique to each game state. Both states will have a unique list of
allowed bets, a unique list of non-working bets, a unique list of throws that cause state change and resolve
game bets, and throws that resolve hardways bets.

In the Craps Table (Craps Table Overview), we allocated some responsibilities to CrapsGame so that a
CrapsTable could validate bets and determine which bets were working.

Our further design details have shown that the work varies by state. Therefore, the methods in CrapsGame
will delegate the real work to each state’s methods. The current stub implementation checks the value of
the point variable to determine the state. We’ll replace this with simply calling an appropriate method of
the current state object.

State Responsibilities. Each CrapsGameState subclass, therefore, will have an isValid() method that
implements the state-specific bet validation rules. In this case, a point-off state object only allows the two
Pass Line bets: Pass Line, Don’t Pass Line. The point-on state allows all bets. Additionally, we’ve assigned
to the CrapsTable has to determine if the total amount of all a player’s bets meets or exceeds the table
limits.

Each subclass of CrapsGameState will override an isWorking() method with one that validates the state-
specific rules for the working bets. In this case, a point-off state object will identify the the six odds bets
placed behind the come point numbers (4, 5, 6, 8, 9 and 10) as non-working bets, and all other bets will be
working bets. A point-on state object will simply identify all bets as working.

The subclasses of CrapsGameState will need methods with which to collaborate with a Throw object to
update the state of the CrapsGame.

Changing Game State. We have identified two game states: point-off (also know as the come out roll)
and point-on. We have also set aside four methods that the various Throw objects will use to change
the game state. The interaction between CrapsGame, the four kinds of Throws and the two subclasses of
CrapsGameStates works as follows:

1. There are 36 instances of Throw, one of which was selected at random to be the current throw of the
dice.

30.2. Game State Class Hierarchy 175

Building Skills in Object-Oriented Design, Release 2.2.1-Python

The Game object calls the Throw object’s updateGame() method. Each of the subclasses of Throw have
different implementations for this method.

2. The Throw object calls one of the Game‘s methods to change the state. There are four methods available:
craps(), natural(), eleven(), and point(). Differen subclasses of Throw will call an appropriate
method for the kind of throw.

3. The Game has a current state, embodied in a CrapsGameState object. The Game will delegate each
of the four state change methods (craps(), natural(), eleven(), and point()) to the current
CrapsGameState object. There are two subclasses, depending on the state of the point: point-on
and point-off.

4. In parallel with Game, each CrapsGameState object has four state change methods (craps(),
natural(), eleven(), and point()). Each state provides different implementations for these meth-
ods. In effect, the two states and four methods create a kind of table that enumerates all possible state
change rules.

Complex? At first glance the indirection and delegation seems like a lot of overhead for a simple state
change. When we consider the kinds of decision-making this embodies, however, we can see that this is an
effective solution.

When one of the 36 available Throws has been chosen, the CrapsGame calls a single method to update the
game state. Because the various subclasses of Throw are polymorphic, they all respond with unique, correct
behavior.

Similarly, each of the subclasses of Throw simply uses one of four methods to update the CrapsGame, without
having to discern the current state of the CrapsGame. We can consider CrapsGame as a kind of façade over
the methods of the polymorphic CrapsGameState. Our objective is to do the decision-making once when
the object is created; this makes all subsequent processing free of complex decision-making (i.e., simple) but
indirect.

What’s important about this design is that there are no if-statements required to make it work. Instead,
objects simply invoke methods.

30.3 Resolving Bets

The CrapsGame class also has the responsibility for matching the Outcomes in the current Throw with the
Outcomes of the Bets on the CrapsTable.

In addition to matching Outcomes in the Throw, we also have to match the Outcomes of the current game
state.

Finally, the CrapsGame class must also resolve hardways bets, which are casually tied to the current game
state. We’ll look at each of these three resolution procedures in some detail before making any final design
decisions.

Resolving Bets on Proposition Outcomes. We’ll need a bet resolution method that handles one-roll
propositions. This is similar to the bet resolution in the Roulette game class. The current Throw contains a
collection of Outcomes which are resolved as winners. All other Outcomes will be losers. While appropriate
for the one-roll propositions, we’ll see that this doesn’t generalize for other kinds of bets.

Resolving Bets on Game Outcomes. The second, and most complex bet resolution method handles
game outcomes. Bets on the game as a whole have three groups of Outcomes: winners, losers and unresolved.

This “unresolved” outcome is fundamentally different from Roulette bet resolution and proposition bet
resolution.

Consider a Pass Line bet: in the point-off state, a roll of 7 or 11 makes this bet a winner, a roll of 2, 3 or
12 makes this bet a loser, all other numbers leave this bet unresolved. After a point is established, this Pass

176 Chapter 30. CrapsGame Class

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Line bet has the following resolutions: a roll of 7 makes this bet a loser, rolling the point makes this bet is
a wiunner, all other numbers leave this bet unresolved.

In addition to this three-way decision, we have the additional subtlety of Don’t Pass Line bets that can lead
to a fourth resolution: a push when the throw is 12 on a come out roll. We don’t want to ignore this detail
because it changes the odds by almost 3%.

Hardways Bets. We have several choices for implementation of this multi-way decision. This is an overview,
we’ll dive into details below.

• We can keep separate collections of winning and losing Outcomes in each Throw. This will obligate the
game to check a set winners and a set of losers for bet resolution.

• We can add a method to the Bet class that will return a code for the effect of a win, lose or wait for
each Outcome. A win would add money to the Player; a lose would subtract money from the Player.
This means that the game will have to decode this win-lose response as part of bet resolution.

• We can make each kind of resolution into a Command class. Each subclass of BetResolution would
peform the “pay a winner”, “collect a loser” or “leave unresolved” procedure based on the Throw or
class:CrapsGameState.

30.4 Moveable Bets

In the casino, the Come (and Don’t Come) Line bets start on the given line. If a come point is established,
the come line bet is moved to a numbered box. When you add behind the line odds bets, you place the chips
directly on the numbered box for the Come Point number.

This procedure is different from the Pass (and Don’t Pass) Line bet. The bet is is placed on the line. If a
point is established, a large white “On” token shows the numbered box where, in effect, the behind the line
odds chips belong.

Note that the net effect of both bets is identical. The pass line and behind-the-line odds bets have a payout
that depends on the “On” token. The come line bets are moved and odds a place in a box on which the
payout depends.

Moving Bets. One of the things the CrapsGame does is change the Outcome of the Come and Don’t Come
Line bets. If a Come or Don’t Come Line bet is placed and the throw is a point number (4, 5, 6, 8, 9, or
10), the bet is not resolved on the first throw; it is moved to one of the six point number Outcomes.

When designing the Bet class, in the Craps Bet Bet Overview, we recognized the need to change the Outcome
from a generic “Pass Line Odds” to a specific point with specific odds of 2:1, 3:2 or 6:5.

We’ll develop a moveToThrow() method that accepts a Bet and the current Throw and move that bet to an
appropriate new Outcome.

In addition to moving bets, we also need to create bets based on the currently established point. We also
need to deactivate bets based on the established point.

As an example, the Pass Line Odds and Don’t Pass Odds are created after the point is established. Since the
point is already known, creating these bets is best done by adding a CrapsGame.pointOutcome() method
that returns an Outcome based on the current point. This allows the CrapsPlayer to get the necessary
Outcome object, create a Bet and give that Bet to the CrapsTable.

30.5 Design Decision – Win, Lose, Wait

Bet resolution in Craps is more complex than simply paying winners and collecting all other bets as losers.
In craps, we have winners, losers and unresolved bets. Further, some bets have a resolution in which only

30.4. Moveable Bets 177

Building Skills in Object-Oriented Design, Release 2.2.1-Python

the original price of the bet is returned. This is a kind of 1:1 odds special case.

This leaves us with a design decision on how best to handle the wide variety of bets that will be on the
CrapsTable.

Problem. What’s the best way to retain a collection of Outcomes that are resolved as a mixture of winning,
losing, unresolved and pushes.

Note that if we elect to introduce a more complex multi-way bet resolution, we have to decide if we should
reimplement the bet resolution in Roulette. Using very different bet resolution algorithms for Craps and
Roulette would increase the cost of maintenance and adaptation. While a uniform approach is beneficial, it
would involve some rework of the Roulette game to make use of a more sophisticated design.

Alternatives We’ll look at three altenative responsibility assignments in some depth.

• Winning and Losing Collections. We could expand the Throw to keep separate collections of
winners and losers. We could expand the CrapsGameState to detail the winning and losing Outcomes
for each state. All other Outcomes would be left unresolved.

This is a minor revision to Dice and Throw to properly create the two groups of Outcomes. Consequently
ThrowBuilder will have to be expanded to identify losing Outcomes in addition to the existing winning
Outcomes.

This will require the CrapsGame to make two passes through the bets. It must match all active Bets on
the CrapsTable against the winning Outcomes in the current CrapsGameState; the matches are paid
a winning amount and removed. It must also match match all active Bets on the CrapsTable against
the losing Outcomes in the current CrapsGameState; these are removed as losers.

• Winning and Losing Codes, Evaluated by CrapsGame. We could enumerate three code values
that represent actions to take: these actions are “win”, “lose”, and “unresolved”. The class Game and
each subclass of GameState would have a resolution method that examines a Bet and returns the
appropriate code value.

This is a minor revision to Dice and Throw to properly associate a special code with each Outcome.
Consequently ThrowBuilder will have to be expanded to identify losing Outcomes in addition to the
existing winning Outcomes.

Each GameState would also need to respond with appropriate codes.

This will require the CrapsGame to make one pass through the Bets, passing each each bet to the
GameState resolution method. Based on the code returned, the CrapsGame would then have an if-
statement to decide to provide bets to the Player.win() or Player.lose() method.

• Wining and Losing Commands. We could define a hierarchy of three subclasses. Each subclass
implements winning, losing or leaving a bet unresolved.

This is a minor revision to Dice and Throw to properly associate a special object with each Outcome. We
would create single objects of each resolution subclass. The ThrowBuilder will have to be expanded
to associate the loser Command or winner command with each Outcome. Further, the unresolved
Command would have to be associated with all Outcomes that are not resolved by the Throw or
GameState.

This will require the CrapsGame to make one pass through the Bets, using the associated resolution
object. The resolution object would then handle winning, losing and leaving the bet unresolved.

Before making a determination, we’ll examine the remaining bet resolution issue to see if a single approach
can cover single-roll, game and hardways outcomes.

Resolving Bets on Hardways Outcomes. In addition to methods to resolve one roll and game bets, we
have to resolve the hardways bets. Hardways bets are similar to game bets. For Throws of 4, 6, 8 or 10 there
will be one of three outcomes:

178 Chapter 30. CrapsGame Class

Building Skills in Object-Oriented Design, Release 2.2.1-Python

• when the number is made the hard way, the matching hardways bet is a winner;

• when the number is made the easy way, the matching hardways bet is a loser; otherwise the hardways
bet is unresolved;

• on a roll of seven, all hardways bets are losers.

Since this parallels the game rules, but applies to a Throw, it leads us to consider the design of Throw to
be parallel to the design of CrapsGame. We can use either a collection of losing Outcomes in addition to
the collection of winning Outcomes, or create a multi-way discrimination method, or have the Throw call
appropriate methods of CrapsTable to resolve the bet.

Solution. A reasonably flexible design for Bet resolution that works for all three kinds of bet resolutions is
to have Throw and CrapsGameState call specific bet resolution methods in CrapsPlayer.

This unifies one-roll, game and hardways bets into a single mechanism. It requires us to provide methods
for win, lose and push in the CrapsPlayer. We can slightly simplify this to treat a push as a kind of win
that returns the bet amount.

Consequences. The CrapsGame will iterate through the the active Bets. Each Bet and the Player will
be provided to the current Throw for resolving one-roll and hardways bets. Each Bet and the Player will
also be provided to the :class:`CrapsGameState to resolve the winning and losing game bets.

We can further simplify this if each Bet carries a reference to the owning Player. In this way, the Bet has
all the information necessary to notify the Player.

In the long run, this reflects the reality of craps table where the table operators assure that each bet has an
owning player.

30.6 Additional Craps Design

We will have to rework our design for Throw to have both a one-roll resolution method and a hardways
resolution method. Each of these methods will accept a single active Bet. Each resolution method could use
a Set of winner Outcomes and a Set of loser Outcomes to attempt to resolve the Bet.

We will also need to rework our design for Dice to correctly set both winners and losers for both one-roll
and harways bets when constructing the 36 individual Throw instances.

We can use the following expanded algorithm for building the Dice. This is a revision to Throw Builder
Overview to include lists of losing bets as well as winning bets.

Building Dice With Winning and Losing Outcomes

For All Faces Of Die 1. For all d1, such that 1 ≤ d1 < 7:

For All Faces Of A Die 2. For d2, such that 1 ≤ d2 < 7:

Sum the Dice. Compute the sum, s← d1 + d2.

Craps? If s is in 2, 3, and 12, we create a CrapsThrow instance. The winning bets
include one of the 2, 3 or 12 number Outcome, plus all craps, horn and field Outcomes.
The losing bets include the other number Outcomes. This throw does not resolve
hardways bets.

Point? For s in 4, 5, 6, 8, 9, and 10 we will create a PointThrow instance.

Hard way? When d1 = d2, this is a hard 4, 6, 8 or 10. The appropriate hard
number Outcome is a winner.

30.6. Additional Craps Design 179

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Easy way? Otherwise, d1 ̸= d2, this is an easy 4, 6, 8 or 10. The appropriate
hard number Outcome is a loser.

Field? For s in 4, 9 and 10 we include the field Outcome as a winner. Otherwise the
field Outcome is a loser. Note that 2, 3, and 12 Field outcomes where handled above
under Craps.

Losing Propositions. Other one-roll Outcomes, including 2, 3, 7, 11, 12, Horn and
Any Craps are all losers for this Throw.

Natural? If s is 7, we create a NaturalThrow instance. This will also include a 7
Outcome as a winner. It will have numbers 2, 3, 11, 12, Horn, Field and Any Craps
Outcomes as losers for this Throw. Also, all four hardways are losers for this throw.

Eleven? If s is 11, we create an ElevenThrow instance. This will include 11, Horn and
Field Outcomes as winners. It will have numbers 2, 3, 7, 12 and Any Craps Outcomes
as losers for this Throw. There is no hardways resolution.

Craps Player Class Hierarchy. We have not designed the actual CrapsPlayer. This is really a complete
tree of classes, each of which provides a different betting strategy. We will defer this design work until later.
For the purposes of making the CrapsGame work, we can develop our unit tests with a kind of stub for
CrapsPlayer which simply places a single Pass Line Bet. In several future exercises, we’ll revisit this design
to make more sophisticated players.

See Some Betting Strategies for a further discussion on an additional player decision offered by some variant
games. Our design can be expanded to cover this. We’ll leave this as an exercise for the more advanced
student. This involves a level of collaboration between CrapsPlayer and CrapsGame that is over the top for
this part. We’ll address this kind of very rich interaction in Blackjack.

30.7 Craps Game Implementation Overview

Changing the Throw to include both winning and losing Outcomes is an important change. Once we have
fixed the Throw class, we can update the ThrowBuilder class to do a correct initialization using both winners
and losers. Note that we have encapsulated this information so that there is no change to Dice.

We will also update Bet to carry a reference to the Player to make it easier to post winning and losing
information directly to the player object.

We will need to create a stub CrapsPlayer for testing purposes.

We will also need to create our CrapsGameState class hierarchy to represent the two states of the game.

Once the preliminary work is complete, we can then transform the CrapsGame we started in CrapsGame
Stub into a final version of CrapsGame. It will collaborate with a CrapsPlayer and maintain a correct
CrapsGameState. It will be able to get a random Throw and resolve Bets.

30.8 Throw Rework

Throw is the superclass for the various throws of the dice. A Throw identifies two sets of Outcomes: immediate
winners and immediate losers. Each subclass is a different grouping of the numbers, based on the state-change
rules for Craps.

180 Chapter 30. CrapsGame Class

Building Skills in Object-Oriented Design, Release 2.2.1-Python

30.8.1 Fields

Throw.win1Roll
A set of of one-roll Outcomes that win with this throw.

Throw.lose1Roll
A set of one-roll Outcomes that lose with this throw.

Throw.winHardway
A set of hardways Outcomes that win with this throw. Not all throws resolve hardways bets, so this
and the loseHardway Set may both be empty.

Throw.loseHardway
A set of hardways Outcomes that lose with this throw. Not all throws resolve hardways bets, so this
and the winHardway Set may both be empty.

Throw.d1
One of the two die values, from 1 to 6.

Throw.d2
The other of the two die values, from 1 to 6.

30.8.2 Constructors

Throw.__init__(d1, d2, winners=None, losers=None)

Parameters

• d1 (int) – One die value.

• d2 (int) – The other die value.

• winners (set of Outcomes) – All the outcomes which will be paid as winners for this
Throw.

• losers – All the outcomes which will be collectsd as winners for this Throw.

Creates this throw, and associates the two given Set s of Outcomes that are winning one-roll
propositions and losing one roll propositions.

30.8.3 Methods

Throw.add1Roll(self, winners, losers)

Parameters

• winners (set of Outcomes) – All the outcomes which will be paid as winners for this
Throw.

• losers – All the outcomes which will be collectsd as winners for this Throw.

Adds outcomes to the one-roll winners and one-roll losers Sets.

Throw.addHardways(self, winners, losers)

Parameters

• winners (set of Outcomes) – All the outcomes which will be paid as winners for this
Throw.

• losers – All the outcomes which will be collectsd as winners for this Throw.

30.8. Throw Rework 181

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Adds outcomes to the hardways winners and hardways losers Sets.

Throw.hard(self) → boolean

Returns true if d1 is equal to d2.

This helps determine if hardways bets have been won or lost.

Throw.updateGame(self, game)

Parameters game (CrapsGame) – CrapsGame instance to be updated with the results of
this throw

Calls one of the Game state change methods: craps(), natural(), eleven(), point(). This
may change the game state and resolve bets.

Throw.resolveOneRoll(self, bet)

Parameters bet – The bet to to be resolved

If this Bet‘s Outcome is in the Set of one-roll winners, pay the Player that created the Bet.
Return true so that this Bet is removed.

If this Bet‘s Outcome is in the Set of one-roll losers, return true so that this Bet is removed.

Otherwise, return false to leave this Bet on the table.

Throw.resolveHardways(self, bet)

Parameters bet – The bet to to be resolved

If this Bet‘s Outcome is in the Set of hardways winners, pay the Player that created the Bet.
Return true so that this Bet is removed.

If this Bet‘s Outcome is in the Set of hardways losers, return true so that this Bet is removed.

Otherwise, return false to leave this Bet on the table.

Throw.__str__(self) → str

This should return a String representation of the dice. A form that looks like 1,2 works nicely.

30.9 ThrowBuilder Rework

ThrowBuilder initializes the 36 Throws, each initialized with the appropriate Outcomes. Subclasses can
override this to reflect different casino-specific rules for odds on Field bets.

30.9.1 Methods

ThrowBuilder.buildThrows(self, dice)

Para dice The Dice to build

Creates the 8 one-roll Outcome instances (2, 3, 7, 11, 12, Field, Horn, Any Craps), as well as the
8 hardways Outcome instances (easy 4, hard 4, easy 6, hard 6, easy 8, hard 8, easy 10, hard 10).

It then creates each of the 36 Throws, each of which has the appropriate combination of Outcomes
for one-roll and hardways. The various Throws are assigned to dice.

182 Chapter 30. CrapsGame Class

Building Skills in Object-Oriented Design, Release 2.2.1-Python

30.10 Bet Rework

Bet associates an amount, an Outcome and a Player. The Game may move a Bet to a different Outcome to
reflect a change in the odds used to resolve the Bet.

30.10.1 Constructors

Bet.__init__(self, amount, outcome, player=None)
This replaces the existing constructor and adds an optional parameter.

Parameters

• amount (int) – The amount being wagered.

• outcome (Outcome) – The specific outcome on which the wager is placed.

• player (CrapsPlayer) – The player who will pay a losing bet or be paid by a winning
bet.

Initialize the instance variables of this bet. This works by saving the additional player informa-
tion, then using the existing Bet.Bet() constructor.

30.11 CrapsPlayer Class Stub

CrapsPlayer constructs a Bet based on the Outcome named "Pass Line". This is a very persistent player.

30.11.1 Fields

CrapsPlayer.passLine
This is the Outcome on which this player focuses their betting. It will be an instance of the "Pass
Line" Outcome, with 1:1 odds.

CrapsPlayer.workingBet
This is the current Pass Line Bet.

Initially this is None. Each time the bet is resolved, this is reset to None.

This assures that only one bet is working at a time.

CrapsPlayer.table
That Table which collects all bets.

30.11.2 Constructors

CrapsPlayer.__init__(self, table)

Parameters table (Table) – The Table.

Constructs the CrapsPlayer with a specific table for placing bets. The player creates a single
"Pass Line" Outcome, which is saved in the passLine variable for use in creating Bets.

30.10. Bet Rework 183

Building Skills in Object-Oriented Design, Release 2.2.1-Python

30.11.3 Methods

If workingBet is null, create a new Pass Line Bet, and use Table placeBet() to place that bet.

If workingBet is not null, the bet is still working. Do not place any more bets.

Notification from the Game that the Bet was a winner. The amount of money won is available
via theBet winAmount().

Notification from the Game that the Bet was a loser.

30.12 CrapsGameState Class

CrapsGameState defines the state-specific behavior of a Craps game. Individual subclasses provide methods
used by CrapsTable to validate bets and determine the active bets. Subclasses provide state-specific methods
used by a Throw to possibly change the state and resolve bets.

30.12.1 Fields

CrapsGameState.game
The overall CrapsGame for which this is a specific state. From this object, the various next state-change
methods can get the CrapsTable and an Iterator over the active Bets.

30.12.2 Constructors

CrapsGameState.__init__(self, game)

Parameters game (Game) – The game to which this state applies

Saves the overall CrapsGame object to which this state applies.

30.12.3 Methods

CrapsGameState.isValid(self, outcome) → boolean

Parameters outcome (Outcome) – The outcome to be tested for validity

Returns true if this is a valid outcome for creating bets in the current game state.

Each subclass provides a unique definition of valid bets for their game state.

CrapsGameState.isWorking(self, outcome) → boolean

Parameters outcome (Outcome) – The outcome to be tested for if it’s working

Returns true if this is a working outcome for existing bets in the current game state.

Each subclass provides a unique definition of active bets for their game state.

CrapsGameState.craps(self, throw) → CrapsGameState

Parameters throw (Throw) – The throw that is associated with craps.

Return an appropriate state when a 2, 3 or 12 is rolled. It then resolves any game bets.

Each subclass provides a unique definition of what new state and what bet resolution happens.

CrapsGameState.natural(self, throw) → CrapsGameState

184 Chapter 30. CrapsGame Class

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Parameters throw (Throw) – The throw that is associated with a natural seven.

Returns an appropriate state when a 7 is rolled. It then resolves any game bets.

Each subclass provides a unique definition of what new state and what bet resolution happens.

CrapsGameState.eleven(self, throw) → CrapsGameState

Parameters throw (Throw) – The throw that is associated an eleven.

Returns an appropriate state when an 11 is rolled. It then resolves any game bets.

Each subclass provides a unique definition of what new state and what bet resolution happens.

CrapsGameState.point(self, throw) → CrapsGameState

Parameters throw (Throw) – The throw that is associated with a point number.

Returns an appropriate state when the given point number is rolled. It then resolves any game
bets.

Each subclass provides a unique definition of what new state and what bet resolution happens.

CrapsGameState.pointOutcome(self) → Outcome

Returns the Outcome based on the current point. This is used to create Pass Line Odds or Don’t
Pass Odds bets. This delegates the real work to the current CrapsGameState object.

CrapsGameState.moveToThrow(self, bet, throw)

Parameters

• bet (Bet) – The Bet to update based on the current Throw

• throw (Throw) – The Throw to which the outcome is changed

Moves a Come Line or Don’t Come Line bet to a new Outcome based on the current throw. If the
value of theThrow is 4, 5, 6, 8, 9 or 10, this delegates the move to the current CrapsGameState
object. For values of 4 and 10, the odds are 2:1. For values of 5 and 9, the odds are 3:2. For
values of 6 and 8, the odds are 6:5. For other values of theThrow, this method does nothing.

CrapsGameState.__str__(self) → str

In the superclass, this doesn’t do anything. Each subclass, however, should display something
useful.

30.13 CrapsGamePointOff Class

CrapsGamePointOff defines the behavior of the Craps game when the point is off. It defines the allowed
bets and the active bets. It provides methods used by a Throw to change the state and resolve bets.

All four of the game update methods (craps, natural, eleven and point) use the same basic algorithm. The
method will get the CrapsTable from theGame. From the CrapsTable, the method gets the Iterator over
the Bets. It can then match each Bet against the various Outcomes which win and lose, and resolve the bets.

30.13.1 Constructors

CrapsGamePointOff.__init__(self, game)

Parameters game (CrapsGame) – The game to which this state applies.

Uses the superclass constructor to save the overall CrapsGame object.

30.13. CrapsGamePointOff Class 185

Building Skills in Object-Oriented Design, Release 2.2.1-Python

30.13.2 Methods

CrapsGamePointOff.isValid(self, outcome) → boolean

Parameters outcome (Outcome) – The outcome to be tested for validity

There are two valid Outcomes: Pass Line, Don’t Pass Line. All other Outcomes are invalid.

CrapsGamePointOff.isWorking(self, outcome) → boolean

Parameters outcome (Outcome) – The outcome to be tested to see if it’s working

There are six non-working Outcomes: “Come Odds 4”, “Come Odds 5”, “Come Odds 6”, “Come
Odds 8”, “Come Odds 9” and “Come Odds 10”. All other Outcomes are working.

CrapsGamePointOff.craps(self, throw)

Parameters throw (Throw) – The throw that is associated with craps.

When the point is off, a roll of 2, 3 or 12 means the game is an immediate loser. The Pass Line
Outcome is a loset. If the Throw value is 12, a Don’t Pass Line Outcome is a push, otherwise the
Don’t Pass Line Outcome is a winner. The next state is the same as this state, and the method
should return this.

CrapsGamePointOff.natural(self, throw)

Parameters throw (Throw) – The throw that is associated with a natural seven.

When the point is off, 7 means the game is an immediate winner. The Pass Line Outcome is a
winner, the Don’t Pass Line Outcome is a loser. The next state is the same as this state, and the
method should return this.

CrapsGamePointOff.eleven(self, throw)

Parameters throw (Throw) – The throw that is associated an eleven.

When the point is off, 11 means the game is an immediate winner. The Pass Line Outcome is a
winner, the Don’t Pass Line Outcome is a loser. The next state is the same as this state, and the
method should return this.

CrapsGamePointOff.point(self, throw)

Parameters throw (Throw) – The throw that is associated with a point number.

When the point is off, a new point is established. This method should return a new instance
of CrapsGamePointOn created with the given Throw‘s value. Note that any Come Point bets or
Don’t Come Point bets that may be on this point are pushed to player: they can’t be legal bets
in the next game state.

CrapsGamePointOff.pointOutcome(self) → Outcome

Returns the Outcome based on the current point. This is used to create Pass Line Odds or Don’t
Pass Odds bets. This delegates the real work to the current CrapsGameState object. Since no
point has been established, this returns null.

CrapsGamePointOff.__str__(self) → str

The point-off state should simply report that the point is off, or that this is the come out roll.

30.14 CrapsGamePointOn Class

CrapsGamePointOn defines the behavior of the Craps game when the point is on. It defines the allowed bets
and the active bets. It provides methods used by a Throw to change the state and resolve bets.

186 Chapter 30. CrapsGame Class

Building Skills in Object-Oriented Design, Release 2.2.1-Python

30.14.1 Fields

CrapsGamePointOn.point
The point value.

30.14.2 Constructors

CrapsGamePointOff.__init__(self, point, game)

Saves the given point value. Uses the superclass constructor to save the overall CrapsGame object.

30.14.3 Methods

CrapsGamePointOff.isValid(self, outcome) → boolean

Parameters outcome (Outcome) – The outcome to be tested for validity

It is invalid to Buy or Lay the Outcomes that match the point. If the point is 6, for example, it
is invalid to buy the “Come Point 6” Outcome. All other Outcomes are valid.

CrapsGamePointOff.isWorking(self, outcome) → boolean

Parameters outcome (Outcome) – The outcome to be tested to see if it’s working

All Outcomes are working.

CrapsGamePointOff.craps(self, throw)

Parameters throw (Throw) – The throw that is associated with craps.

When the point is on, 2, 3 and 12 do not change the game state. The Come Line Outcome is a
loser, the Don’t Come Line Outcome is a winner. The next state is the same as this state, and
the method should return this.

CrapsGamePointOff.natural(self, outcome)

Parameters throw (Throw) – The throw that is associated with a natural seven.

When the point is on, 7 means the game is a loss. Pass Line Outcomes lose, as do the pass-line
odds Outcome s based on the point. Don’t Pass Line Outcomes win, as do all Don’t Pass odds
Outcome based on the point. The Come Line Outcome is a winner, the Don’t Come Line Outcome
is a loser. However, all Come Point number Outcomes and Come Point Number odds Outcome
are all losers. All Don’t Come Point number Outcomes and Don’t Come Point odds Outcomes are
all winners. The next state is a new instance of the CrapsGamePointOff state.

Also note that the Throw of 7 also resolved all hardways bets. A consequence of this is that all
Bets on the CrapsTable are resolved.

CrapsGamePointOff.eleven(self, throw)

Parameters throw (Throw) – The throw that is associated an eleven.

When the point is on, 11 does not change the game state. The Come Line Outcome is a winner,
and the Don’t Come Line Outcome is a loser. The next state is the same as this state, and the
method should return this.

CrapsGamePointOff.point(self, throw)

Parameters throw (Throw) – The throw that is associated with a point number.

30.14. CrapsGamePointOn Class 187

Building Skills in Object-Oriented Design, Release 2.2.1-Python

When the point is on and the value of throw doesn’t match point, then the various Come Line
bets can be resolved. Come Point Outcome s for this number (and their odds) are winners. Don’t
Come Line Outcome s for this number (and their odds) are losers. Other Come Point number and
Don’t Come Point numbers remain, unresolved. Any Come Line bets are moved to the Come
Point number Outcomes. For example, a throw of 6 moves the Outcome of the Come Line Bet
to Come Point 6. Don’t Come Line bets are moved to be Don’t Come number Outcomes. The
method should return this.

When the point is on and the value of throw matches point, the game is a winner. Pass Line
Outcomes are all winners, as are the behind the line odds Outcomes. Don’t Pass line Outcomes
are all losers, as are the Don’t Pass Odds Outcomes. Come Line bets are moved to thee Come
Point number Outcomes. Don’t Come Line bets are moved to be Don’t Come number Outcomes.
The next state is a new instance of the CrapsGamePointOff state.

CrapsGamePointOff.pointOutcome(self) → Outcome

Returns the Outcome based on the current point. This is used to create Pass Line Odds or Don’t
Pass Odds bets. This delegates the real work to the current CrapsGameState object. For points
of 4 and 10, the Outcome odds are 2:1. For points of 5 and 9, the odds are 3:2. For points of 6
and 8, the odds are 6:5.

CrapsGamePointOff.__str__(self) → str

The point-off state should simply report that the point is off, or that this is the come out roll.

30.15 CrapsGame Class

CrapsGame manages the sequence of actions that defines the game of Craps. This includes notifying the
Player to place bets, throwing the Dice and resolving the Bet s actually present on the Table.

Note that a single cycle of play is one throw of the dice, not a complete craps game. The state of the game
may or may not change.

30.15.1 Fields

CrapsGame.dice
Contains the dice that returns a randomly selected Throw with winning and losing Outcomes. This is
an instance of Dice.

CrapsGame.table
The CrapsTable contains the bets placed by the player.

CrapsGame.player
The CrapsPlayer who places bets on the CrapsTable.

30.15.2 Constructors

We based this constructor on an design that allows any of these objects to be replaced. This is the Strategy
design pattern. Each of these objects is a replaceable strategy, and can be changed by the client that uses
this game.

Additionally, we specifically do not include the Player instance in the constructor. The Game exists indepen-
dently of any particular Player, and we defer binding the Player and Game until we are gathering statistical
samples.

CrapsGame.__init__(self, dice, table)

188 Chapter 30. CrapsGame Class

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Parameters

• dice (Dice) – The dice to use

• table – The table to use for collecting bets

• CrapsTable –

Constructs a new CrapsGame, using a given Dice and CrapsTable.

The player is not defined at this time, since we may want to run several simulations with different
players.

30.15.3 Methods

CrapsGame.__init__(self, player)

Parameters player (CrapsPlayer) – The player who will place bets on this game

This will execute a single cycle of play with a given Player.

1. It will call thePlayer placeBets() to get bets. It will validate the bets, both individually,
based on the game state, and collectively to see that the table limits are met.

2. It will call theDice next() to get the next winning Throw.

3. It will use the Throw‘s updateGame() to advance the game state.

4. It will then call theTable bets() to get an Iterator ; stepping through this Iterator
returns the individual Bet objects.

• It will use the Throw‘s resolveOneRoll() method to check one-roll propositions. If the
method returns true, the Bet is resolved and should be deleted.

• It will use the Throw‘s resolveHardways() method to check the hardways bets. If the
method returns true, the Bet is resolved and should be deleted.

CrapsGame.pointOutcome(self) → Outcome

Returns the Outcome based on the current point. This is used to create Pass Line Odds or Don’t
Pass Odds bets. This delegates the real work to the current CrapsGameState object.

CrapsGame.moveToThrow(self, bet, throw)

Parameters

• bet (Bet) – The Bet to move based on the current throw

• throw (Throw) – The Throw to which to move the Bet’s Outcome

Moves a Come Line or Don’t Come Line bet to a new Outcome based on the current throw. This
delegates the move to the current CrapsGameState object.

This method should – just as a precaution – assert that the value of theThrow is 4, 5, 6, 8, 9
or 10. These point values indicate that a Line bet can be moved. For other values of theThrow,
this method should raise an exception, since there’s no reason for attempting to move a line bet
on anything but a point throw.

CrapsGame.reset(self)

This will reset the game by setting the state to a new instance of GamePointOff. It will also tell
the table to clear all bets.

30.15. CrapsGame Class 189

Building Skills in Object-Oriented Design, Release 2.2.1-Python

30.16 Craps Game Deliverables

There are over a dozen deliverables for this exercise. This includes significant rework for Throw and Dice.
It also includes development of a stub CrapsPlayer, the CrapsGameState hierarchy and the first version of
the CrapsGame. We will break the deliverables down into two groups.

Rework. The first group of deliverables includes the rework for Throw and Dice, and all of the associated
unit testing.

• The revised and expanded Throw class. This will ripple through the constructors for all four subclasses,
NaturalThrow, CrapsThrow, ElevenThrow, PointThrow.

• Five updated unit tests for the classes in the Throw class hierarchy. This will confirm the new func-
tionality for holding winning as well as losing Outcomes.

• The revised and expanded ThrowBuilder. This will construct Throws with winning as well as losing
Outcomes.

• A unit test for the Dice class that confirms the new initializer that creates winning as well as losing
Outcomes.

New Development. The second group of deliverables includes development of a stub CrapsPlayer, the
CrapsGameState hierarchy and the first version of the CrapsGame. This also includes significant unit testing.

• The CrapsPlayer class stub. We will rework this design later. This class places a bet on the Pass
Line when there is no Pass Line Bet on the table. One consequence of this is that the player will be
given some opportunities to place bets, but will decline. Since this is simply used to test CrapsGame,
it doesn’t deserve a very sophisticated unit test of its own. It will be replaced in a future exercise.

• A revised Bet, which carries a reference to the Player who created the Bet. This will ripple through
all subclasses of Player, forcing them to all add the this parameter when constructing a new Bet.

• The CrapsGame class.

• A class which performs a demonstration of the CrapsGame class. This demo program creates the Dice,
the stub CrapsPlayer and the CrapsTable. It creates the CrapsGame object and cycles a few times.
Note that we will need to configure the Dice to return non-random results.

We could, with some care, refactor our design to create some common superclasses between Roulette and
Craps to extract features of Throw so they can be shared by Throw and Bin. Similarly, there may be more
common features between RouletteGame and CrapsGame. We’ll leave that as an exercise for more advanced
students.

30.17 Optional Working Bets

Some casinos may give the player an option to declare the odds bet behind a come point as “on” or “off”.
This is should not be particularly complex to implement. There are a number of simple changes required if
we want to add this interaction between CrapsPlayer and CrapsGame.

1. We must add a method to the CrapsPlayer to respond to a query from the CrapsGame that determines
if the player wants their come point odds bet on or off.

2. We need to update Bet to store the Player who created the Bet. Third, the CrapsGame gets the
relevant Bets from the Table, and interrogates the Player for the disposition of the Bet.

190 Chapter 30. CrapsGame Class

CHAPTER

THIRTYONE

CRAPSPLAYER CLASS

The variations on Player, all of which reflect different betting strategies, is the heart of this application. In
Roulette Game Class, we roughed out a stub class for Player, and refined it in Player Class. We will further
refine this definition of Player for use in Craps.

31.1 Craps Player Overview

We have now built enough infrastructure that we can begin to add a variety of players and see how their
betting strategies work. Each player is betting algorithm that we will evaluate by looking at the player’s
stake to see how much they win, and when they stop playing because they’ve run out of time or gone broke.

The Player has the responsibility to create bets and manage the amount of their stake. To create bets, the
player must create legal bets from known Outcome s and stay within table limits. To manage their stake, the
player must deduct the price of a bet when it is created, accept winnings or pushes, report on the current
value of the stake, and leave the table when they are out of money.

We have an interface that was roughed out as part of the design of CrapsGame and CrapsTable. In designing
CrapsGame, we put a placeBets() method in CrapsPlayer to place all bets. We expected the CrapsPlayer
to create Bet s and use the placeBet() method of CrapsTable class to save all of the individual Bets.

In an earlier exercise, we built a stub version of CrapsPlayer in order to test Game. See CrapsPlayer Class
Stub. When we finish creating the final superclass, CrapsPlayer, we will also revise our CrapsPlayerStub
to be more complete, and rerun our unit tests to be sure that our more expanded design still handles the
basic test cases correctly.

Our objective is to have a new abstract class, CrapsPlayer, with a concrete subclass that follows the
Martingale system, using simple Pass Line bets and behind the line odds bets.

We’ll defer some of the design required to collect detailed measurements for statistical analysis. In this first
release, we’ll simply place bets. Most of the Simulator class that we built for Roulette should be applicable
to Craps without significant modification.

Some Basic Features. Our basic CrapsPlayer will place a Pass Line bet and a Pass Line Odds bet. This
requires the player to interact with the CrapsTable or the CrapsGame to place bets legally. On a come out
roll, only the Pass Line will be legal. After that, a single Pass Line Odds bet can be placed. This leads to
three betting rules:

• Come Out Roll. Condition: No Pass Line Bet is currently placed and only the Pass Line bet is legal.
Action: Place a Pass Line bet.

• First Point Roll. Condition: No odds bets is currently placed and odds bets are legal. Action: Place
a Pass Line Odds bet.

• Other Point Roll. Condition: An odds bets is currently placed. Action: Do Nothing.

191

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Beyond simply placing Pass Line and Pass Line Odds bets, we can use a Martingale or a Cancellation
betting system to increase our bet on each loss, and decrease our betting amount on a win. Since we have
two different bets in play – a single bet created on the come out roll, a second odds bet if possible – the
simple Martingale system doesn’t work well. In some casinos, the behind the line odds bet can be double
the pass line bet, or even 10 times the pass line bet, giving us some complex betting strategies. For example,
we could apply the Martingale system only to the odds bet, leaving the pass line bet at the table minimum.
We’ll set this complexity aside for the moment, build a simple player first.

31.2 CrapsPlayer Superclass Design

CrapsPlayer is a subclass of Player and places bets in Craps. This an abstract class, with no actual body
for the Player.placeBets() method. However, this class does implement the basic win() and lose()
methods used by all subclasses.

Since this is a subclass of the basic Roulette player, we inherit several useful features. Most of the features
of Player are repeated here for reference purposes only.

31.2.1 Fields

CrapsPlayer.stake
The player’s current stake. Initialized to the player’s starting budget.

CrapsPlayer.roundsToGo
The number of rounds left to play. Initialized by the overall simulation control to the maximum number
of rounds to play. In Roulette, this is spins. In Craps, this is the number of throws of the dice, which
may be a large number of quick games or a small number of long-running games. In Craps, this is the
number of cards played, which may be large number of hands or small number of multi-card hands.

CrapsPlayer.table
The CrapsTable used to place individual Bets.

31.2.2 Constructors

CrapsPlayer.__init__(self, table)

Parameters table (CrapsTable) – The table

Constructs the Player with a specific CrapsTable for placing Bets.

31.2.3 Methods

CrapsPlayer.playing(self) → boolean

Returns true while the player is still active. A player with a stake of zero will be inactive.
Because of the indefinite duration of a craps game, a player will only become inactive after their
roundsToGo is zero and they have no more active bets. This method, then, must check the
CrapsTable to see when all the bets are fully resolved. Additionally, the player’s betting rules
should stop placing new bets when the roundsToGo is zero.

CrapsPlayer.placeBets(self) → boolean

192 Chapter 31. CrapsPlayer Class

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Updates the CrapsTable with the various Bet s.

When designing the CrapsTable, we decided that we needed to deduct the price of the bet
from the stake when the bet is created. See the Roulette Table Roulette Table Overview for
more information on the timing of this deduction, and the Craps Bet Bet Overview for more
information on the price of a bet.

CrapsPlayer.win(self, bet)

Parameters bet (Bet) – that was a winner

Notification from the CrapsGame that the Bet was a winner. The amount of money won is
available via theBet winAmount().

CrapsPlayer.lose(self, bet)

Parameters bet (Bet) – that was a loser

Notification from the CrapsGame that the Bet was a loser.

31.3 CrapsPlayerPass Subclass

CrapsPlayerPass is a CrapsPlayer who places a Pass Line bet in Craps.

31.3.1 Methods

CrapsPlayer.placeBets(self) → boolean

If no Pass Line bet is present, this will update the Table with a bet on the Pass Line at the base
bet amount.

Otherwise, this method does not place an additional bet.

31.4 Craps Martingale Subclass

CrapsMartingale is a CrapsPlayer who places bets in Craps. This player doubles their Pass Line Odds bet
on every loss and resets their Pass Line Odds bet to a base amount on each win.

31.4.1 Fields

CrapsPlayer.lossCount
The number of losses. This is the number of times to double the pass line odds bet.

CrapsPlayer.betMultiple
The the bet multiplier, based on the number of losses. This starts at 1, and is reset to 1 on each win.
It is doubled in each loss. This is always set so that betMultiple = 2lossCount.

31.4.2 Methods

CrapsPlayer.placeBets(self) → boolean

31.3. CrapsPlayerPass Subclass 193

Building Skills in Object-Oriented Design, Release 2.2.1-Python

If no Pass Line bet is present, this will update the Table with a bet on the Pass Line at the base
bet amount.

If no Pass Line Odds bet is present, this will update the Table with an Pass Line Odds bet. The
amount is the base amount times the betMultiple.

Otherwise, this method does not place an additional bet.

CrapsPlayer.win(self, bet)

Parameters bet (Bet) – that was a winner

Uses the superclass win() method to update the stake with an amount won. This method then
resets lossCount to zero, and resets betMultiple to 1.

CrapsPlayer.lose(self, bet)

Parameters bet (Bet) – that was a loser

Increments lossCount by 1 and doubles betMultiple.

31.5 Craps Player Deliverables

There are six deliverables for this exercise.

• The CrapsPlayer abstract superclass. Since this class doesn’t have a body for the placeBets()
method, it can’t be unit tested directly.

• A CrapsPlayerPass class that is a proper subclass of CrapsPlayer, but simply places bets on Pass
Line until the stake is exhausted.

• A unit test class for CrapsPlayerPass. This test should synthesize a fixed list of Outcomes, Throw s,
and calls a CrapsPlayerPass instance with various sequences of craps, naturals and points to assure
that the pass line bet is made appropriately.

• The CrapsMartingale subclass of CrapsPlayer.

• A unit test class for CrapsMartingale. This test should synthesize a fixed list of Outcomes, Throw s,
and calls a CrapsMartingale instance with various sequences of craps, naturals and points to assure
that the bet doubles appropriately on each loss, and is reset on each win.

• The unit test class for the CrapsGame class should still work with the new CrapsPlayerPass. Using a
non-random generator for Dice, this should be able to confirm correct operation of the CrapsGame for
a number of bets.

194 Chapter 31. CrapsPlayer Class

CHAPTER

THIRTYTWO

DESIGN CLEANUP AND REFACTORING

We have taken an intentionally casual approach to the names chosen for our various classes and the rela-
tionships among those classes. At this point, we have a considerable amount of functionality, but it doesn’t
reflect our overall purpose, instead it reflects the history of its evolution. This chapter will review the design
from Craps and more cleanly separate it from the design for Roulette.

We expect two benefits from the rework in this chapter. First, we expect the design to become “simpler”
in the sense that Craps is separated from Roulette, and this will give us room to insert Blackjack into the
structure with less disruption in the future. Second, and more important, the class names will more precisely
reflect the purpose of the class, making it easier to understand the system, which means it will be easier to
debug, maintain and adapt.

32.1 Design Review

We can now use our application to generate some more usable results. We would like the Simulator class to
be able to use our Craps game, dice, table and players in the same way that we use our Roulette game, wheel,
table and players. The idea would be to give the Simulator‘s constructor Craps-related objects instead of
Roulette-related objects and have everything else work normally. Since we have generally made Craps a
subclass of Roulette, we are reasonably confident that this should work.

Our Simulator‘s constructor requires a Game and a Player. Since CrapsGame is a subclass of Game and
CrapsPlayer is a subclass of Player, we can construct an instance of Simulator.

Looking at this, however, we find a serious problem with the names of our classes and their relationships.
When we designed Roulette, we used generic names like Table, Game and Player unwisely. Further, there’s
no reason for Craps to be dependent on Roulette. We would like them to be siblings, and both children of
some abstract game simulation.

195

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Soapbox On Refactoring

We feel very strongly that our :design by refactoring helps beginning designers produce a more functional
design more quickly than the alternative approach, which is to attempt to define the game abstraction
and player abstraction first and then specialize the various games. When defining an abstract superclass,
some designers will build a quick and dirty design for some of the subclasses, and use this to establish
the features that belong in the superclass. We find that a more successful superclass design comes from
have more than one working subclasses and a clear understanding of the kinds of extensions that are
likely to emerge from the problem domain.
While our approach of refactoring working code seems expensive, the total effort is often smaller.
The largest impediment we’ve seen seems to stem from the project-management mythology that once
something passes unit tests it is done for ever and can be checked off as completed. We feel that it
is very important to recognized that passing a unit test is only one of many milestones. Passing an
integration test, and passing the sanity test are better indicators of done-ness.
The sanity test is the designer’s ability to explain the class structure to someone new to the project.
We feel that class and package names must make obvious sense in the current project context. We find
that any explanation of a class name that involves the words “historically”, or “originally” means that
there are more serious design deficiencies that need to be repaired.

We now know enough to factor out the common features of Game and CrapsGame to create three new classes
from these two. However, to find the common features of these two classes, we’ll see that we have to unify
Dice and Wheel, as well as Table and CrapsTable and Player and CrapsPlayer.

Looking into Dice and Wheel, we see that we’ll have to tackle Bin and Throw first. Unifying Bin and Throw
is covered in Design Heavy. If the necessary design for RandomEvent is already in place, skip to Unifying
Dice and Wheel. After that, we can refactor the other classes.

32.1.1 Unifying Bin and Throw

We need to create a common superclass for Bin and Throw, so that we can then create some commonality
between Dice and Wheel. This unification will make the Vector of results and the next() method identical.

The first step, then, is to identify what are the common features of Bin and Throw. The relatively simple
Bin and the more complex Throw can be unified in one of two ways.

1. Use Throw as the superclass. A Roulette Bin doesn’t need a specific list of losing Outcomes. Indeed,
we don’t even need a subclass, since a Roulette Bin can just ignore features of a Craps Throw.

2. Create a superclass based on Bin, make Bin a subclass and change Throw to add features to the new
superclass.

The first design approach is something we call the Swiss Army Knife design pattern: create a structure
that has every possible feature, and then ignore the features you don’t need. This creates a distasteful
disconnect between the use of Bin and the declaration of Bin: we only use a the Set of winning Outcomes,
but the object has the losing Set that isn’t used by anything else in the Roulette game.

We also note that a key feature of OO languages is inheritance, which adds features to a superclass. The
Swiss Army Knife design approach, however, works by subtracting features. Since the languages we’re
using don’t really support class definition by subtraction, we try to ignore the features, creating a distance
between the OO language and our design intent.

Our first decision, then, is to refactor Throw and Bin to make them instances of a common superclass, which
we’ll call RandomEvent. See the Craps Throw Throw Overview for our initial thoughts on this, echoed in the
Soapbox on Refectoring sidebar.

The responsibilities for RandomEvent are essentially the same as Bin. We can then make Bin a subclass that
doesn’t add any new features, and Throw a subclass that adds a number of features, including the value of

196 Chapter 32. Design Cleanup and Refactoring

Building Skills in Object-Oriented Design, Release 2.2.1-Python

the two dice and the Set of losing Outcome s. Note that we have made Throw and Bin siblings of a common
superclass. See Soapbox on Architecture for more information on our preference for this kind of design.

32.1.2 Unifying Dice and Wheel

When we take a step back from Dice and Wheel, we see that they are nearly identical. They differ in the
construction of the Bins or Throws, but little else. Looking forward, the deck of cards used for Blackjack is
completely different. Dice and a Roulette wheel use :phrase:‘selection with replacement‘ : an event is picked
at random from a pool, and is eligible to be picked again any number of timers. Cards, on the other hand,
are selection without replacement: the cards form a sequence of events of a defined length that is randomized
by a shuffle. If we have a 5-deck shoe, we can only see five kings of spades during the game, and we only
have 260 cards. However, we can roll an indefinite number of 7’s on the dice.

We note that there is a superficial similarity between the rather complex BinBuilder methods and the
simpler method in ThrowBuilder. However, there is no compelling reason for polymorphism between these
two classes. We don’t have to factor these into a common class hierarchy.

Our second design decision, then, is to create a RandomEventFactory out of Dice and Wheel . This refactoring
will make the Vector of results and the next() method part of the superclass. Each subclass provides the
initialization method that constructs the Vector of RandomEvents.

When we move on to tackle cards, we’ll have to create a subclass that uses a different definition of next()
and adds shuffle(). This will allow a deck of cards to do selection without replacement.

32.1.3 Refactoring Table and CrapsTable

We see few differences between Table and CrapsTable. When we designed CrapsTable we had to add a
relationship between CrapsTable and CrapsGame so that a table could ask the game to validate individual
Bets based on the state of the game.

If we elevate the CrapsTable to be the superclass, we eliminate a need to have separate classes for Craps and
Roulette. We are dangerously close to embracing a Swiss Army Knife design. The distinction may appear
to be merely a matter of degree: one or two features can be pushed up to the superclass and then ignored
in a subclass. However, in this case, both Craps and Roulette will use the Game to validate bets: the feature
will not be ignored. It happens that the Roulette Game will permit all bets, but we have made that the
Game’s responsibility, not the Table’s. Indeed, viewed this way, the Roulette version of Table implicitly took
a responsibility away from the Roulette Game because the Table failed to collaborate with the Game for
any game-state specific rules. At the time, we overlooked this nuance because we knew that Roulette was
stateless and we were comfortable making that assumption part of the design.

Our third design decision is to merge Table and CrapsTable into a new Table class and use this for both
games. This will simplify the various Game classes by using a single class of Table for both games.

32.1.4 Refactoring Player and CrapsPlayer

Before we can finally refactor Game, we need to be sure that we have sorted out a proper relationship between
our various players. In this case, we have a large hierarchy, which will we hope to make far larger as we
explore different betting alternatives. Indeed, the central feature of this simulation is to expand the hierarchy
of players as needed to explore betting strategies. Therefore, time spent organizing the Player hierarchy is
time well spent.

We’d like to have the following hierarchy.

• Player.

32.1. Design Review 197

Building Skills in Object-Oriented Design, Release 2.2.1-Python

– RoulettePlayer.

* RouletteMartingale.

* RouletteRandom.

* RouletteSevenReds.

* Roulette1326.

* RouletteCancellation.

* RouletteFibonacci.

– CrapsPlayer.

* CrapsMartingale.

Looking forward to Blackjack, see see that there is much richer player interaction, because there are player
decisions that are not related to betting. This class hierarchy seems to enable that kind of expansion.

We note that there are two “dimensions” to this class hierarchy. One dimension is the game (Craps or
Roulette), the other dimension is a betting system (Matingale, 1326, Cancellation, Fibonacci). For Blackjack,
there is also a playing system in addition to a betting system. Sometimes this multi-dimensionsal aspect
of a class hierarchy indicates that we could be using multiple inheritance. In the case of Python, we have
multiple inheritance in the language, and we can pursue this directly. Java, however, demands the Strategy
design pattern to add a flexible betting strategy object to the basic interface for playing the game.

In Roulette, where we are placing a single bet, there is almost no distinction between game interface and the
betting system. However, in Craps, we made a distinction in our Martingale player by separating their Pass
Line bet (where the payout doesn’t match the actual odds very well) from their Pass Line Odds bet (where
the payout does match the odds). This means that our Martingale Craps player really has two betting
strategies objects: a flat bet strategy for Pass Line and a Martingale Bet strategy for the Pass Line Odds.

If we separate the player and the betting system, we could easily mix and match betting systems, playing
systems and game rules. In the case of Craps, where we can have many working bets (Pass Line, Come
Point Bets, Hardways Bets, plus Propostions), each player would have a mixture of betting strategies used
for their unique mixture of working bets. This leads to an interesting issue in the composition of such a
complex object. For the current exercise, however, we won’t formally separate the player from the various
betting strategies.

Rather than fully separate the player’s game interface and betting system interface, we can simply adjust
the class hierarchy and the class names to those shown above. We need to make the superclass, Player
independent of any game. We can do this by extracting anything Roulette-specific from the original Player
class and renaming our Roulette-focused Passenger57 to be RoulettePlayer, and fix all the Roulette player
subclasses to inherit from RoulettePlayer.

We will encounter one design difficulty when doing this. That is the dependency from the various
Player1326State classes on a field of Player1326. Currently, we will simply be renaming Player1326
to Roulette1326. However, as we go forward, we will see how this small issue will become a larger problem.
In Python, we can easily overlook this, as described in Python and Interface Design.

198 Chapter 32. Design Cleanup and Refactoring

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Python and Interface Design

Because of the run-time binding done in Python, there is no potential problem in having the
Player1326State classes depend on a field of Player1326 . Since Java checks the validity of these refer-
ences at compile time, we are forced to provide proper declarations for the outcome field in Player1326
. In the event of change, this declaration may no longer be valid, alterting us to a dependency. In
Python, however, the attributes of an object are kept in a dictionary, which is created dynamically
during execution, making it difficult to assure that one class properly includes the attributes that will
be required by a collaborating class. We don’t discover problems in Python until the application crashes
at run time because of a missing attribute.
Some Python programmers will bypass the simple access methods and check an object’s internal
__dict__ for the presence of the expected outcome attribute. We don’t condone this: the applica-
tion should crash because of design changes, not work around them.
While the dynamic nature of Python attributes has some beneficial effects, we find it can be easily
abused. We consider references to the __dict__ object to raise serious quality concerns, and discourage
its use by new OO designers.

32.1.5 Refactoring Game and CrapsGame

Once we have a common RandomEventFactory, a common Table, and a common Player, we can separate
Game from RouletteGame and CrapsGame to create three new classes.

• The abstract superclass, Game. This will contain a RandomEventFactory, a Table and have the nec-
essary interface to reset the game and execute one cycle of play. This class is based on the existing
Game, with the Roulette-specific cycle() replaced with an abstract method definition.

• The concrete subclass, RouletteGame. This has the cycle() method appropriate to Roulette that was
extracted from the original Game class.

• The concrete subclass, CrapsGame. This has the cycle() method appropriate to Craps. This is a small
change to the parent of the CrapsGame class.

While this appears to be a tremendous amount of rework, it reflects lessons learned incrementally through
the previous chapters of exercises. This refactoring is based on considerations that would have been chal-
lenging, perhaps impossible, to explain from the outset. Since we have working unit tests for each class, this
refactoring is easily validated by rerunning the existing suite of tests.

32.2 RandomEventFactory Design

RandomEventFactory is a superclass for Dice, Wheel, Cards, and other casino random-event generators.

32.2.1 Fields

RandomEventFactory.rng

The random number generator, a subclass of random.Random.

Generates the next random number, used to select a RandomEvent from the bins collection.

RandomEventFactory.current
The most recently returned RandomEvent.

32.2. RandomEventFactory Design 199

Building Skills in Object-Oriented Design, Release 2.2.1-Python

32.2.2 Constructors

RandomEventFactory.__init__(self, rng)

Saves the given Random Number Generator. Calls the initialize() method to create the
vector of results.

32.2.3 Methods

RandomEventFactory.initialize(self)

Create a collection of RandomEvent objects with the pool of possible results.

Each subclass must provide a unique implementation for this.

RandomEventFactory.next(self) → RandomEvent

Return the next RandomEvent.

Each subclass must provide a unique implementation for this.

32.3 Wheel Class Design

Wheel is a subclass of RandomEventFactory that contains the 38 individual Bins on a Roulette wheel. As a
RandomEventFactory, it contains a random number generator and can select a Bin at random, simulating a
spin of the Roulette wheel.

32.3.1 Constructors

Wheel.__init__(self, rng)

Creates a new wheel. Create a sequence of the Wheel.events with with 38 empty Bins.

Use the superclass to save the given random number generator instance and invoke initialize().

32.3.2 Methods

Wheel.addOutcome(self, bin, outcome)

Adds the given Outcome to the Bin with the given number.

Wheel.initialize(self)

Creates the events vector with the pool of possible events. This will create an instance of
BinBuilder, bb, and delegate the construction to the buildBins() method of the bb object.

32.3.3 Dice Class

Dice is a subclass of RandomEventFactory that contains the 36 individual throws of two dice. As a
RandomEventFactory, it contains a random number generator and can select a Throw at random, simu-
lating a throw of the Craps dice.

200 Chapter 32. Design Cleanup and Refactoring

Building Skills in Object-Oriented Design, Release 2.2.1-Python

32.3.4 Constructors

Dice.__init__(self, rng)

Create an empty set of Dice.events. Use the superclass to save the given random number
generator instance and invoke initialize().

32.3.5 Methods

Wheel.addOutcome(self, faces, outcome)

Adds the given Outcome to the Throw with the given NumberPair. This allows us to create a
collection of several one-roll Outcomes. For example, a throw of 3 includes four one-roll Outcomes:
Field, 3, any Craps, and Horn.

Wheel.initialize(self)

Creates the 8 one-roll Outcome instances (2, 3, 7, 11, 12, Field, Horn, Any Craps). It then creates
the 36 Throw s, each of which has the appropriate combination of Outcomes.

32.4 Table Class

Table contains all the Bets created by the Player. A table has an association with a Game, which is
responsible for validating individual bets. A table also has betting limits, and the sum of all of a player’s
bets must be within this limits.

32.4.1 Fields

Table.minimum
This is the table lower limit. The sum of a Player‘s bets must be greater than or equal to this limit.

Table.maximum
This is the table upper limit. The sum of a Player‘s bets must be less than or equal to this limit.

Table.bets
This is a LinkedList of the Bets currently active. These will result in either wins or losses to the
Player. :noindex:

Table.game
The Game used to determine if a given bet is allowed in a particular game state.

32.4.2 Constructors

Table.__init__(self)

Creates an empty LinkedList of bets.

32.4.3 Methods

Table.setGame(self, game)

Saves the given Game to be used to validate bets.

Table.isValid(self, bet) → boolean

32.4. Table Class 201

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Validates this bet. The first test checks the Game to see if the bet is valid.

Table.allValid(self, bet) → boolean

Validates the sum of all bets within the table limits. Returns false if the minimum is not met or
the maximum is exceeded.

Table.placeBet(self, bet) → boolean

Adds this bet to the list of working bets. If the sum of all bets is greater than the table limit,
then an exception should be thrown (Java) or raised (Python). This is a rare circumstance, and
indicates a bug in the Player more than anything else.

Table.__iter__(self) → iter

Returns an Iterator over the list of bets. This gives us the freedom to change the representation
from LinkedList to any other Collection with no impact to other parts of the application.

In Python, similarly, we can return an iterator over the available list of Bet instances. The more
traditional Python approach is to return the list itself, rather than an iterator over the list. With
the introduction of the generators in Python 2.3, however, it is slightly more flexible to return
an iterator rather than the collection itself. The iterator could be built, for example, using the
yield statement instead of the iter() function.

Table.__str__(self) → str

Reports on all of the currently placed bets.

32.4.4 Player class

Player places bets in a Game. This an abstract class, with no actual body for the placeBets() method.
However, this class does implement the basic win() and lose() methods used by all subclasses.

Roulette Player Hierarchy. The classes in the Roulette Player hierarchy need to have their superclass ad-
justed to conform to the newly-defined superclass. The former Passenger57 is renamed to RoulettePlayer.
All of the various Roulette players become subclasses of RoulettePlayer.

In addition to renaming Player1326 to Roulette1326, we will also have to change the references in the
various classes of the Player1326State class hierarchy. We suggest leaving the class names alone, but
merely changing the references within those five classes from Player1326 to Roulette1326.

Craps Player Hierarchy. The classes in the Craps Player hierarchy need to have their superclass adjusted
to conform to the newly-defined superclass. We can rename CrapsPlayerMartigale to CrapsMartigale,
and make it a subclass of CrapsPlayer. Other than names, there should be no changes to these classes.

32.4.5 Fields

Player.stake
The player’s current stake. Initialized to the player’s starting budget.

Player.roundsToGo
The number of rounds left to play. Initialized by the overall simulation control to the maximum number
of rounds to play. In Roulette, this is spins. In Craps, this is the number of throws of the dice, which
may be a large number of quick games or a small number of long-running games. In Craps, this is the
number of cards played, which may be large number of hands or small number of multi-card hands.

Player.table
The Table used to place individual Bets.

202 Chapter 32. Design Cleanup and Refactoring

Building Skills in Object-Oriented Design, Release 2.2.1-Python

32.4.6 Constructors

Player.__init__(self, table)

Constructs the Player with a specific Table for placing Bets.

32.4.7 Methods

Player.playing(self) → boolean

Returns true while the player is still active. There are two reasons why a player may be active.
Generally, the player has a stake greater than the table minimum and has a roundsToGo greater
than zero. Alternatively, the player has bets on the table; this will happen in craps when the
game continues past the number of rounds budgeted.

Player.placeBets(self)

Updates the Table with the various Bets.

When designing the Table, we decided that we needed to deduct the amount of a bet from the
stake when the bet is created. See the Table Roulette Table Overview for more information.

Player.win(self, bet)

Notification from the Game that the Bet was a winner. The amount of money won is available
via bet.winAmount().

Player.lose(self, bet)

Notification from the Game that the Bet was a loser.

32.5 Game Class

Game manages the sequence of actions that defines casino games, including Roulette, Craps and Blackjack.
Individual subclasses implement the detailed playing cycles of the games. This superclass has methods for
notifying the Player to place bets, getting a RandomEvent and resolving the Bet s actually present on the
Table.

32.5.1 Fields

Game.eventFactory
Contains a Wheel or Dice or other subclass of RandomEventFactory that returns a randomly selected
RandomEvent with specific Outcome s that win or lose.

Game.table
Contains a CrapsTable or RouletteTable which holds all the Bets placed by the Player.

Game.player
Holds the Player who places bets on the Table.

32.5.2 Constructors

We based this constructor on an design that allows any of these objects to be replaced. This is
the Strategy (orDependency Injection) design pattern. Each of these objects is a replaceable
strategy, and can be changed by the client that uses this game.

32.5. Game Class 203

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Additionally, we specifically do not include the Player instance in the constructor. The Game
exists independently of any particular Player, and we defer binding the Player and Game until
we are gathering statistical samples.

Game.__init__(self, eventFactory, table)

Constructs a new Game, using a given RandomEventFactory and Table.

32.5.3 Methods

Game.cycle(self, player)

This will execute a single cycle of play with a given Player. For Roulette is is a single spin of
the wheel. For Craps, it is a single throw of the dice, which is only one part of a complete game.
This method will call player.placeBets() to get bets. It will call eventFactory.next() to
get the next Set of Outcomes. It will then call table.bets() to get an Iterator over the Bets.
Stepping through this Iterator returns the individual Bet objects. The bets are resolved, calling
the thePlayer win(), otherwise call the thePlayer lose().

Game.reset(self)

As a useful default for all games, this will tell the table to clear all bets. A subclass can override
this to reset the game state, also.

32.6 RouletteGame Class

RouletteGame is a subclass of Game that manages the sequence of actions that defines the game of Roulette.

32.6.1 Methods

RouletteGame.cycle(self, player)

This will execute a single cycle of the Roulette with a given Player. It will call
player.placeBets() to get bets. It will call wheel.next() to get the next winning Bin . It
will then call table.bets() to get an Iterator over the Bets. Stepping through this Iterator
returns the individual Bet objects. If the winning Bin contains the Outcome, call the thePlayer
win(), otherwise call the thePlayer lose().

32.7 CrapsGame Class

CrapsGame is a subclass of Game that manages the sequence of actions that defines the game of Craps.

Note that a single cycle of play is one throw of the dice, not a complete craps game. The state of the game
may or may not change.

32.7.1 Methods

RouletteGame.cycle(self, player)

This will execute a single cycle of play with a given Player.

1. It will call player.placeBets() to get bets. It will validate the bets, both individually,
based on the game state, and collectively to see that the table limits are met.

204 Chapter 32. Design Cleanup and Refactoring

Building Skills in Object-Oriented Design, Release 2.2.1-Python

2. It will call dice.next() to get the next winning Throw.

3. It will use the throw.updateGame() to advance the game state.

4. It will then call table.bets() to get an Iterator; stepping through this Iterator returns
the individual Bet objects.

• It will use the Throw‘s resolveOneRoll() method to check one-roll propositions. If the
method returns true, the Bet is resolved and should be deleted.

• It will use the Throw‘s resolveHardways() method to check the hardways bets. If the
method returns true, the Bet is resolved and should be deleted.

CrapsGame.pointOutcome(self) → Outcome

Returns the Outcome based on the current point. This is used to create Pass Line Odds or Don’t
Pass Odds bets. This delegates the real work to the current CrapsGameState object.

CrapsGame.moveToThrow(self, bet, throw)

Moves a Come Line or Don’t Come Line bet to a new Outcome based on the current throw. This
delegates the move to the current CrapsGameState object.

This method should – just as a precaution – assert that the value of theThrow is 4, 5, 6, 8, 9
or 10. These point values indicate that a Line bet can be moved. For other values of theThrow,
this method should raise an exception, since there’s no reason for attempting to move a line bet
on anything but a point throw.

CrapsGame.reset(self)

This will reset the game by setting the state to a new instance of GamePointOff. It will also tell
the table to clear all bets.

32.8 Refactoring Deliverables

There are six deliverables for this exercise.

• If necessary, create RandomEvent, and revisions to Throw and Bin. See Design Heavy .

• Create RandomEventFactory, and associated changes to Wheel and Dice. The existing unit tests will
confirm that this change has no adverse effect.

• Refactor Table and CrapsTable to make a single class of these two. The unit tests for the original
CrapsTable should be merged with the unit tests for the original Table.

• Refactor Player and CrapsPlayer to create a better class hierarchy with CrapsPlayer and
RoulettePlayer both sibling subclasses of Player . The unit tests should confirm that this change
has no adverse effect.

• Refactor Game and CrapsGame to create three classes: Game, RouletteGame and CrapsGame. The unit
tests should confirm that this change has no adverse effect.

• Create a new main program class that uses the existing Simulator with the CrapsGame and
CrapsPlayer classes.

32.8. Refactoring Deliverables 205

Building Skills in Object-Oriented Design, Release 2.2.1-Python

206 Chapter 32. Design Cleanup and Refactoring

CHAPTER

THIRTYTHREE

SIMPLE CRAPS PLAYERS

This chapter defines a variety of player strategies. Most of this is based on strategies already defined
in Roulette, making the explanations considerably simpler. Rather than cover each individual design in
separate chapters, we’ll rely on the experience gained so far, and cover four variant Craps players in this
chapter. We’ll mention a fifth, but leave that as a more advanced exercise.

33.1 Simple Craps Players Overview

When we looked at our Player hierarchy, we noted that we could easily apply a number of strategies to the
Pass Line Odds bet. We use the Martingale strategy for our CrapsMartingale player. We could also use
the 1-3-2-6 system, the Cancellation system, or the Fibonacci system for those odds bets. In each of these
cases, we are applying the betting strategy to one of the two bets the player will use.

An additional design note for this section is the choice of the two basic bets: the Pass Line and the Pass
Line Odds bet. It is interesting to compare the results of these bets with the results of the Don’t Pass Line
and the Don’t Pass Odds Bet. In particular, the Don’t Pass Odds Bets involve betting large sums of money
for small returns; this will be compounded by any of these betting systems which accelerate the amount of
the bet to cover losses. This change should be a simple matter of changing the two base bets used by all
these variant players.

All of these players have a base bet (either Pass Line or Don’t Pass) and an odds bet (either Pass Line
Odds or Don’t Pass Odds). If we create a superclass, called SimpleCraps , we can assure that all these
simple betting variations will work for Pass Line as well as Don’t Pass Line bets. The responsibility of this
superclass is to define a consistent set of fields and constructor for all of the subclasses.

Craps 1-3-2-6. This player uses the 1-3-2-6 system for managing their odds bet. From the Roulette 1-3-2-6
player (see Player 1-3-2-6 Overview) we can see that this player will need to use the Player1326State class
hierarchy. The craps player will use one of these objects track the state changes of their odds. The base bet
will not change.

However, the current definitions of the Player1326State class hierarchy specifically reference Roulette1326.
Presenting us with an interesting design problem. How do we repair our design so that Player1326State
can work with Roulette1326 and Craps1326?

The only dependency is the field outcome, which both Roulette1326 and Craps1326 must provide to
Player1326State objects. We have three choices: extract the field and make it part of an interface, refactor
the field up to the superclass, change the defintion of Player1326State to make it more self-contained.

• Common Interface. The relationship between a subclass of Player and Player1326State can
be formalized through an interface. We could define something like Bet1326_Able, and use this for
Roulette1326 and Craps1326. In this case, this appears to be an example of the Very Large
Hammer design pattern. The problem seems too small for this language feature.

207

Building Skills in Object-Oriented Design, Release 2.2.1-Python

• Common Superclass. Refactoring the single instance variable up to the superclass makes a relatively
minor change. However, it places a feature in the superclass which all but a few subclasses must ignore.
This is another example of Swiss Army Knife design, where we will be subtracting a feature from a
superclass.

• Delegate. If we change the Player1326State class to keep its own copy of the desired Outcome we
cleanly remove any dependence on Player. The Player is still responsible for keeping track of the
Outcome s, and has subcontracted or delegated this responsibility to an instance of Player1326State.
The down side of this is that we must provide this Outcome to each state constructor as the state
changes.

The solution we embrace is changing the definition of Player1326State to include the Outcome. This
delegates responsibility to the state, where it seems to belong. This will change all of the constructors, and
all of the state change methods, but will cleanly separate the Player1326State class hierarchy from the
Player class hierarchy.

Python Duck-Typing

In Python, the relationship between a Player1326State object and the Craps1326 is completely casual.
We don’t have to sweat the details of where – precisely – the Outcome is declared.
In Java, however, we must be very careful to sort out the relationship between Craps1326, and
Roulette1326.
Python’s flexibility is called duck typing: “if it walks like a duck and quacks like a duck, it is a duck.”
In this case, any class with an outcome attribute is a candidate owner for a Player1326State object.

Craps Cancellation. When can examine the Roulette Cancellation Cancellation Player Overview and see
that this player will need to use a List of individual betting amounts. Each win for an odds bet will cancel
from this List, and each loss of an odds bet will append to this List.

As with the Craps Martingale player, we will be managing a base Pass Line bet, as well as an odds bet
that uses the Cancellation strategy. The Cancellation algorithm can be easily transplanted from the original
Roulette version to this new Craps version.

Craps Fibonacci. When can examine the Roulette Fibonacci Fibonacci Player Overview and see that this
player will need to compute new betting amounts based on wins and losses.

33.2 CrapsPlayer Design

We’ll extend CrapsPlayer to create a CrapsSimplePlayer that can place both Pass Line and Pass Line Odds
bets, as well as Don’t Pass Line and Don’t Pass Odds bets. This will allow us to drop the CrapsPlayerPass
class, and revise the existing CrapsMartingale.

We have to rework the original Roulette-focused Player1326State hierarchy, and the Roulette1326 class
to use the new version of the state objects.

Once this rework is complete, we can add our Craps1326 and CrapsCancellation players.

For additional exposure, the more advanced student can rework the Roulette Fibonacci player to create a
CrapsFibonacci player.

33.3 CrapsSimplePlayer superclass

CrapsSimplePlayer is a subclass of CrapsPlayer and places two bets in Craps. The simple player has a
base bet and an odds bet. The base bet is one of the bets available on the come out roll (either Pass Line

208 Chapter 33. Simple Craps Players

Building Skills in Object-Oriented Design, Release 2.2.1-Python

or Don’t Pass Line), the odds bet is the corresponding odds bet (Pass Line Odds or Don’t Pass Odds). This
class implements the basic procedure for placing the line bet and the behind the line odds bet. However, the
exact amount of the behind the line odds bet is left as an abstract method. This allows subclasses to use
any of a variety of betting strategies, including Martingale, 1-3-2-6, Cancellation and Fibonacci.

33.3.1 Fields

CrapsSimplePlayer.lineOutcome
Outcome for either Pass Line or Don’t Pass Line. A right bettor will use a Pass Line bet; a wrong
bettor will use the Don’t Pass Line.

CrapsSimplePlayer.oddsOutcome
Outcome for the matching odds bet. This is either the Pass Line Odds or Don’t Pass Line Odds bet.

A right bettor will use a Pass Line Odds bet; a wrong bettor will use the Don’t Pass Line Odds.

33.3.2 Constructors

CrapsSimplePlayer.__init__(self, table, line, odds)

Parameters

• table (CrapsTable) – The table on which bets are palced

• line (Outcome) – The line bet outcome

• odds (Outcome) – The odds bet outcome

Constructs the CrapsSimplePlayer with a specific Table for placing Bets. Additionally a line
bet (Pass Line or Don’t Pass Line) and odds bet (Pass Line Odds or Don’t Pass Odds) are
provided to this constructor. This allows us to make either Pass Line or Don’t Pass Line players.

33.3.3 Methods

CrapsSimplePlayer.placeBets(self)

Updates the Table with the various Bets. There are two basic betting rules.

1. If there is no line bet, create the line Bet from the line Outcome.

2. If there is no odds bet, create the behind the line odds Bet from the odds Outcome.

Be sure to check the price of the Bet before placing it. Particularly, Don’t Pass Odds bets may
have a price that exceeds the player’s stake. This means that the Bet object must be constructed,
then the price must be tested against the stake to see if the player can even afford it. If the
stake is greater than or equal to the price, subtract the price and place the bet. Otherwise,
simply ignore it.

33.4 Craps Martingale Player

CrapsMartingale is a subclass of CrapsSimplePlayer who places bets in Craps. This player doubles their
Pass Line Odds bet on every loss and resets their Pass Line Odds bet to a base amount on each win.

33.4. Craps Martingale Player 209

Building Skills in Object-Oriented Design, Release 2.2.1-Python

33.4.1 Fields

CrapsMartingale.lossCount
The number of losses. This is the number of times to double the pass line odds bet.

CrapsMartingale.betMultiple
The the bet multiplier, based on the number of losses. This starts at 1, and is reset to 1 on each win.
It is doubled in each loss. This is always betMultiple = 2lossCount.

33.4.2 Methods

CrapsMartingale.placeBets(self)

Extension to the superclass placeBets() method. This version sets the amount based on the
value of CrapsMartingale.betMultiple.

CrapsMartingale.win(self, bet)

Parameters bet (Bet) – The bet that was a winner

Uses the superclass win() method to update the stake with an amount won. This method then
resets lossCount to zero, and resets betMultiple to 1.

CrapsMartingale.lose(self, bet)

Parameters bet (Bet) – The bet that was a loser

Increments lossCount by 1 and doubles betMultiple.

33.5 Player1326 State

Player1326State is the superclass for all of the states in the 1-3-2-6 betting system.

33.5.1 Fields

Player1326State.outcome
The Outcome on which a Player will bet.

33.5.2 Constructors

Player1326State.__init__(self, outcome)

Parameters outcome (Outcome) – The outcome on which to bet

The constructor for this class saves Outcome on which a Player will bet.

33.5.3 Methods

Much of the original design for this state hierarchy should remain in place. See Player 1-3-2-6 Class for
more information on the original design.

Player1326State.nextLost(self) → Player1326State

210 Chapter 33. Simple Craps Players

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Constructs the new Player1326State instance to be used when the bet was a loser. This method
is the same for each subclass: it creates a new instance of Player1326NoWins.

This method is defined in the superclass to assure that it is available for each subclass. This will
use the outcome to be sure the new state has the Outcome on which the owning Player will be
betting.

33.6 Craps1326 Player

Craps1326 is a subclass of CrapsSimplePlayer who places bets in Craps. This player changes their Pass
Line Odds bet on every loss and resets their Pass Line Odds bet to a base amount on each win. The sequence
of bet multipliers is given by the current Player1326State object.

33.6.1 Fields

Player1326State.state
This is the current state of the 1-3-2-6 betting system. It will be an instance of one of the four states:
No Wins, One Win, Two Wins or Three Wins.

33.6.2 Constructors

Player1326.__init__(self, table, line, odds)

Parameters

• table (CrapsTable) – The table on which bets are palced

• line (Outcome) – The line bet outcome

• odds (Outcome) – The odds bet outcome

Uses the superclass to initialize the Craps1326 instance with a specific Table for placing Bets,
and set the line bet (Pass Line or Don’t Pass Line) and odds bet (Pass Line Odds or Don’t Pass
Odds).

Then the initial state of Player1326NoWins is constructed using the odds bet.

33.6.3 Methods

Player1326.placeBets(self)

Updates the Table with a bet created by the current state. This method delegates the bet
creation to state object’s currentBet() method.

Player1326.win(self, bet)

Parameters bet (Bet) – The bet that was a winner

Uses the superclass method to update the stake with an amount won. Uses the current state to
determine what the next state will be by calling state‘s objects nextWon() method and saving
the new state in state

Player1326.lose(self, bet)

Parameters bet (Bet) – The bet that was a loser

33.6. Craps1326 Player 211

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Uses the current state to determine what the next state will be. This method delegates the next
state decision to state object’s nextLost() method, saving the result in state.

33.7 CrapsCancellation Player

CrapsCancellation is a subclass of CrapsSimplePlayer who places bets in Craps. This player changes
their Pass Line Odds bet on every win and loss using a budget to which losses are appended and winings
are cancelled.

33.7.1 Fields

CrapsCancellation.sequence
This List keeps the bet amounts; wins are removed from this list and losses are appended to this list.
THe current bet is the first value plus the last value.

33.7.2 Constructors

CrapsCancellation.__init__(self, table, line odds)

Parameters

• table (CrapsTable) – The table on which bets are palced

• line (Outcome) – The line bet outcome

• odds (Outcome) – The odds bet outcome

Invokes the superclass constructor to initialize this instance of CrapsCancellation. Then calls
resetSequence() to create the betting budget.

33.7.3 Methods

There are few real changes to the original implementation of CancellationPlayer.

See Cancellation Player Class for more information.

CrapsCancellation.placeBets(self)

Creates a bet from the sum of the first and last values of sequence and the preferred outcome.

This uses the essential line bet and odds bet algorithm defined above. If no line bet, this is
created.

If there’s s line bet and no odds bet, then the odds bet is created.

If both bets are created, there is no more betting to do.

33.8 Simple Craps Players Deliverables

There are eight deliverables for this exercise.

• The CrapsSimplePlayer abstract superclass. Since this class doesn’t have a body for the oddsBet()
method, it can’t be unit tested directly.

212 Chapter 33. Simple Craps Players

Building Skills in Object-Oriented Design, Release 2.2.1-Python

• A revised CrapsMartingale class, that is a proper subclass of CrapsSimplePlayer . The existing unit
test for CrapsMartingale should continue to work correctly after these changes.

• A revised Player1326State class hierarchy. Each subclass will use the outcome field instead of getting
this information from a Player1326 instance. The unit tests will have to be revised slightly to reflect
the changed constructors for this class.

• A revised Roulette1326 class, which reflects the changed constructors for this Player1326State. The
unit tests should indicate that this change has no adverse effect.

• The Craps1326 subclass of CrapsSimplePlayer. This will use the revised Player1326State.

• A unit test class for Craps1326. This test should synthesize a fixed list of Outcomes, Throws, and
calls a Craps1326 instance with various sequences of craps, naturals and points to assure that the bet
changes appropriately.

• The CrapsCancellation subclass of CrapsSimplePlayer.

• A unit test class for CrapsCancellation. This test should synthesize a fixed list of Outcomes, Throws,
and calls a CrapsCancellation instance with various sequences of craps, naturals and points to assure
that the bet changes appropriately.

33.8. Simple Craps Players Deliverables 213

Building Skills in Object-Oriented Design, Release 2.2.1-Python

214 Chapter 33. Simple Craps Players

CHAPTER

THIRTYFOUR

ROLL-COUNTING PLAYER CLASS

Craps allows a large number of opportunities to bet. The bets have different resolutions, leading to quite a
complex game.

In Roulette, each bet’s odds are easier to calculate becuase all bets are resolved at once. Placing multiple
bets in Roulette is a simple modification to the payout odds and the probability of a win.

A common Craps strategy is to add bets as a kind of “insurance” against losing the line bet. This means that
we’ll have numerous working bets: the mandatory line bet, the behind the line odds bet, plus an additional
bets. For example, buying the 6 or 8 is a bet that has a payout that matches the actual odds.

We’ll tackle a particularly complex betting strategy. In this case, a player that judges that a game has gone
“too long” without a successful resolution. This is a common fallacy in probability theory. A seven is not
“due”. The odds of throwing a seven are always 1/6.

34.1 Roll-Counting Overview

There is a distinction between one-roll odds and cumulative odds. The one roll odds of rolling a 7 are 1/6.
This means that a Pass Line bet will win one time in six on the come out roll. The cumulative odds of rolling
a 7 on a number of rolls depends on not rolling a seven (a 5/6 chance) for some number of rolls, followed by
rolling a 7. The odds are given in the following table.

Throws Rule Odds of 7
1 1/6 17%
2 5/6× 1/6 31%
3 (5/6)2 × 1/6 42%
4 (5/6)3 × 1/6 52%
5 (5/6)4 × 1/6 60%
6 (5/6)5 × 1/6 67%

This cumulative chance of rolling a 7 means that the odds of the game ending with a loss because of throwing
a 7 grow as the game progresses.

We can compute the following sequence of odds of losing for larger numbers of rolls of the dice after the
point is established: 17%, 28%, 35%, 40%, 43%, 46%, 47%, 48%, 49%.

The idea is that the longer a game runs, the more likely you are to lose your initial Pass Line bet. Con-
sequently, some players count the thows in the game, and effectively cancel their bet by betting against
themselves on the Seven proposition. Note that the Seven proposition is a 1/6 probability that pays “5 for
1”, (effectively 4:1).

While the basic probability analysis of this bet is not encouraging, it does have an interesting design problem:
the player now has multiple states. They have Pass Line bet, they can use a Martingale strategy for their Pass

215

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Line Odds bet, they are counting throws, and they are using a Martingale strategy for a Seven proposition
starting with the seventh throw of the game.

We also note that this analysis doesn’t work for wrong bettors using the Don’t Pass Line bet. Their concern
is the opposite: a short game may cause them to lose their Don’t Pass bet, but a long game makes it more
likely that they would win. One simulation for this is to place Don’t Pass Odds bets after several throws,
where the odds bet appears more likely to win.

Decomposition. This leads us to consider the player as a composite object with a number of states and
strategies. It also leads us to design a class just to handle Martingale betting.

Note that when we were looking at the design for the various players in Design Cleanup and Refactoring,
we glanced at the possibility of separating the individual betting strategies from the players, and opted not
to. However, we did force each strategy to depend on a narrowly-defined interface of oddsBet(), won() and
lost(). We can exploit this narrow interface in teasing apart the various strategies and rebuilding each
variation of Player with a distinct betting strategy object.

The separation of Player from BettingStrategy involves taking the betting-specific information out of each
player class, and replacing the various methods and fields with one or more BettingStrategy objects. In
the case of Roulette players, this is relatively simple. In the case of Craps players, we note that we have two
bets, one with a trivial-case betting strategy where the bet never changes. If we add this NoChange strategy,
we can redefine all Craps player’s bets using BettingStrategy objects.

The responsibilities of a BettingStrategy are to

• maintain a preferred Outcome,

• maintain a bet amount, and change that amount in response to wins and losses.

The existing win() and lose() methods are a significant portion of these reponsibilities. The oddsBet()
method of the various CrapsSimplePlayer embodies other parts of this, however, the name is inappropriate
and it has a poorly thought-out dependency on Player.

The responsibilities of a Player are to

• keep one or more betting strategies, so as to place bets in a Game.

All of the Roulette players will construct a single BettingStrategy object with their preferred Outcome.
The various CrapsSimplePlayer classes will have two BettingStrategys: one for the line bet and one for
the odds bet.

The only difference among the simple strategies is the actual BettingStrategy object, simplifying the
Player class hierarchy to a single Roulette player and two kinds of Craps players: the stub player who
makes only one bet and the other players who make more than one bet and use a betting strategy for their
odds bet.

Implementing SevenCounter. Once we have this design in place, our SevenCounter player can then be
composed of a Pass Line bet, a Pass Line Odds bet, and a Seven proposition bet that will only be used after
seven rolls have passed in a single game. The line bet uses the NoChange strategy. The other two bets can
use any of the strategies we have built: Martingale, 1-3-2-6 or Cancellation.

Currently, there is no notification to the CrapsPlayer of unresolved bets. The player is only told of winners
and losers. The opportunity to place bets indicates that the dice are being rolled. Additionally, the ability
to place a line bet indicates that a game is beginning. We can use these two conditions to count the throws
in during a game, effectively counting unresolved bets.

216 Chapter 34. Roll-Counting Player Class

Building Skills in Object-Oriented Design, Release 2.2.1-Python

34.2 BettingStrategy Design

BettingStrategy is the abstract superclass for all betting strategies. It contains a single Outcome, tracks
wins and losses of Bet s built on this Outcome, and computes a bet amount based on a specific betting
strategy.

34.2.1 Fields

BettingStrategy.outcome
This is the Outcome that will be watched for wins and losses, as well as used to create new Bets.

34.2.2 Constructors

BettingStrategy.__init__(self, outcome)

Parameters outcome (Outcome) – The outcome on which this strategy will create bets

Initializes this betting strategy with the given Outcome.

34.2.3 Methods

BettingStrategy.createBet(self) → Bet

Returns a new Bet using the outcome Outcome and any other internal state of this object.

BettingStrategy.win(self, bet)

Parameters bet (Bet) – The bet which was a winner

Notification from the Player that the Bet was a winner. The Player has responsibility for
handling money, this class has responsibility for tracking bet changes.

BettingStrategy.lose(self, bet)

Parameters bet (Bet) – The bet which was a loser

Notification from the Player that the Bet was a loser.

BettingStrategy.__str__(self) → str

Returns a string with the name of the class and appropriate current state information. For
the superclass, it simply returns the name of the class. Subclasses will override this to provide
subclass-specific information.

34.3 NoChangeBetting Class

NoChangeBetting is a subclass of BettingStrategy that uses a single, fixed amount for the bet. This is
useful for unit testing, for modeling simple-minded players, and for line bets in Craps.

34.3.1 Fields

BettingStrategy.betAmount
This is the amount that will be bet each time. A useful default value is 1.

34.2. BettingStrategy Design 217

Building Skills in Object-Oriented Design, Release 2.2.1-Python

34.3.2 Constructors

NoChangeBetting.__init__(self, outcome)

Parameters outcome (Outcome) – The outcome on which this strategy will create bets

Uses the superclass initializer with the given Outcome.

34.3.3 Methods

NoChangeBetting.createBet(self) → Bet

Returns a new Bet using the outcome Outcome and betAmount.

NoChangeBetting.win(self, bet)

Parameters bet (Bet) – The bet which was a winner

Since the bet doesn’t change, this does nothing.

NoChangeBetting.lose(self, bet)

Parameters bet (Bet) – The bet which was a loser

Since the bet doesn’t change, this does nothing.

NoChangeBetting.__str__(self) → str

Returns a string with the name of the class, outcome and betAmount.

34.4 MartingaleBetting Class

MartingaleBetting is a subclass of BettingStrategy that doubles the bet on each loss, hoping to recover
the entire loss on a single win.

34.4.1 Fields

MartingaleBetting.lossCount
The number of losses. This is the number of times to double the pass line odds bet.

MartingaleBetting.betMultiple
The the bet multiplier, based on the number of losses. This starts at 1, and is reset to 1 on each win.
It is doubled in each loss. This is always betMultiple = 2lossCount.

34.4.2 Constructors

MartingaleBetting.__init__(self, outcome)

Parameters outcome (Outcome) – The outcome on which this strategy will create bets

Uses the superclass initializer with the given Outcome. Sets the initial lossCount and betMulti-
plier.

218 Chapter 34. Roll-Counting Player Class

Building Skills in Object-Oriented Design, Release 2.2.1-Python

34.4.3 Methods

MartingaleBetting.createBet(self) → Bet

Returns a new Bet using the outcome Outcome and the betMultiple.

MartingaleBetting.win(self, bet)

Parameters bet (Bet) – The bet which was a winner

Resets lossCount to zero, and resets betMultiple to 1.

MartingaleBetting.lose(self, bet)

Parameters bet (Bet) – The bet which was a loser

Increments lossCount by 1 and doubles betMultiple.

NoChangeBetting.__str__(self) → str

Returns a string with the name of the class, outcome, the current betAmount and betMultiple.

34.5 Bet1326Betting Class

Bet1326Betting is a subclass of BettingStrategy that advances the bet amount through a sequence of
multipliers on each win, and resets the sequence on each loss. The hope is to magnify the gain on a sequence
of wins.

34.5.1 Fields

Bet1326Betting.state
This is the current state of the 1-3-2-6 betting system. It will be an instance of one of the four subclasses
of Player1326State: No Wins, One Win, Two Wins or Three Wins.

34.5.2 Constructors

Bet1326Betting.__init__(self, outcome)

Parameters outcome (Outcome) – The outcome on which this strategy will create bets

Initializes this betting strategy with the given Outcome. Creates an initial instance of
Player1326NoWins using outcome.

34.5.3 Methods

Bet1326Betting.createBet(self) → Bet

Returns a new Bet using the currentBet() method from the state object.

Bet1326Betting.win(self, bet)

Parameters bet (Bet) – The bet which was a winner

Determines the next state when the bet is a winner. Uses state‘s nextWon() method and saves
the new state in state.

Bet1326Betting.lose(self, bet)

34.5. Bet1326Betting Class 219

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Parameters bet (Bet) – The bet which was a loser

Determines the next state when the bet is a loser. Uses state‘s nextLost(), method saving the
result in myState.

Bet1326Betting.__str__(self) → str

Returns a string with the name of the class, outcome and state.

34.6 CrapsOneBetPlayer class

CrapsOneBetPlayer is a subclass of CrapsPlayer and places one bet in Craps. The single bet is one of the
bets available on the come out roll (either Pass Line or Don’t Pass Line). This class implements the basic
procedure for placing the line bet, using an instance of BettingStrategy to adjust that bet based on wins
and losses.

34.6.1 Fields

CrapsOneBetPlayer.lineStrategy
An instance of BettingStrategy that applies to the line bet.

Generally, this is an instance of NoChangeBetting because we want to make the minimum line bet and
the maximum odds bet behind the line.

34.6.2 Constructors

CrapsOneBetPlayer.__init__(self, table, lineStrategy)
Constructs the CrapsOneBetPlayer with a specific Table for placing Bet s. This will save the given
BettingStrategy in lineStrategy.

Python Creation of A Player

passLine= table.dice.get("Pass Line")
bet= new MartingaleBetting(passLine)
passLineMartin= new CrapsOneBetPlayer(bet);

1. Get the basic Pass Line Outcome from the Dice.

2. Creates a Martingale betting strategy focused on the basic Pass Line outcome.

3. Creates a one-bet player, who will employ the Martingale betting strategy focused on the basic Pass
Line outcome.

34.6.3 Methods

CrapsOneBetPlayer.placeBets(self)

Updates the Table with the various Bet s. There is one basic betting rule.

1. If there is no line bet, create the line Bet from the lineStrategy.

220 Chapter 34. Roll-Counting Player Class

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Be sure to check the price of the Bet before placing it. Particularly, Don’t Pass Odds bets may
have a price that exceeds the player’s stake. This means that the Bet object must be constructed,
then the price must be tested against the stake to see if the player can even afford it. If the
stake is greater than or equal to the price, subtract the price and place the bet. Otherwise,
simply ignore it.

CrapsOneBetPlayer.win(self, bet)

Parameters bet (Bet) – The bet which was a winner

Notification from the Game that the Bet was a winner. The amount of money won is available
via theBet winAmount(). If the bet’s Outcome matches the lineStrategy ‘s Outcome, notify the
strategy, by calling the lineStrategy ‘s win() method.

CrapsOneBetPlayer.lose(self, bet)

Parameters bet (Bet) – The bet which was a loser

Notification from the Game that the Bet was a loser. If the bet’s Outcome matches the
lineStrategy ‘s Outcome, notify the strategy, by calling the lineStrategy ‘s lose() method.

34.7 CrapsTwoBetPlayer class

CrapsTwoBetPlayer is a subclass of CrapsOneBetPlayer and places one or two bets in Craps. The base
bet is one of the bets available on the come out roll (either Pass Line or Don’t Pass Line). In addition to
that, an odds bet (either Pass Line Odds or Don’t Pass Odds) can also be placed. This class implements
the basic procedure for placing the line and odds bets, using two instances of BettingStrategy to adjust
the bets based on wins and losses.

Typically, the line bet uses an instance of NoChangeBetting.

The odds bets, however, are where we want to put more money in play.

34.7.1 Fields

CrapsTwoBetPlayer.oddsStrategy
An instance of BettingStrategy that applies to the line bet.

34.7.2 Constructors

34.7.3 Methods

CrapsTwoBetPlayer.placeBets(self)

Updates the Table with the various Bet s. There are two basic betting rules.

1. If there is no line bet, create the line Bet from the lineStrategy.

2. If there is no odds bet, create the odds Bet from the oddsStrategy.

CrapsTwoBetPlayer.win(self, bet)

Parameters bet (Bet) – The bet which was a winner

Notification from the Game that the Bet was a winner. The superclass handles the money won
and the line bet notification. This subclass adds a comparison between the bet’s Outcome and the

34.7. CrapsTwoBetPlayer class 221

Building Skills in Object-Oriented Design, Release 2.2.1-Python

oddsStrategy‘s Outcome; if they match, it will notify the strategy, by calling the oddsStrategy
‘s win() method.

CrapsTwoBetPlayer.lose(self, bet)

Parameters bet (Bet) – The bet which was a loser

Notification from the Game that the Bet was a loser. The superclass handles the line bet notifica-
tion. If the bet’s Outcome matches the oddsStrategy‘s Outcome, notify the strategy, by calling
the oddsStrategy‘s lose() method.

34.8 CrapsSevenCountPlayer class

CrapsSevenCountPlayer is a subclass of CrapsTwoBetPlayer and places up to three bets in Craps. The
base bet is a Pass Line bet. In addition to that, a Pass Line Odds bet can also be placed. If the game runs
to more than seven throws, then the “7” proposition bet (at 4:1) is placed, using the Martingale strategy.

The Pass Line bet uses an instance of NoChangeBetting. The Pass Line Odds bet uses an instance of
Bet1326Betting.

34.8.1 Fields

CrapsSevenCountPlayer.sevenStrategy
The BettingStrategy for the seven bet. Some argue that this should be a no-change strategy. The
bet is rare, and – if effect – the player bets against themself with this. One could also argue that it
should be a Martingale because each throw after the seventh are less and less likely to win.

CrapsSevenCountPlayer.throwCount
The number of throws in this game. This is set to zero when we place a line bet, and incremented each
time we are allowed to place bets.

34.8.2 Constructors

CrapsSevenCountPlayer.__init__(self, table)

This will create a NoChangeBetting strategy based on the Pass Line Outcome. It will also create
a MartingaleBetting strategy based on the Pass Line Odds Outcome. These will be given to the
superclass constructor to save the game, the line bet and the odds bet. Then this constructor
creates a Bet1326Betting strategy for the Seven Proposition Outcome.

34.8.3 Methods

CrapsSevenCountPlayer.placeBets(self)

Updates the Table with the various Bet s. There are three basic betting rules.

1. If there is no line bet, create the line Bet from the lineStrategy. Set the throwCount to
zero.

2. If there is no odds bet, create the odds Bet from the oddsStrategy.

3. If the game is over seven throws and there is no seven proposition bet, create the proposition
Bet from the sevenStrategy.

Each opportunity to place bets will also increment the throwCount by one.

222 Chapter 34. Roll-Counting Player Class

Building Skills in Object-Oriented Design, Release 2.2.1-Python

CrapsSevenCountPlayer.win(self, bet)

Parameters bet (Bet) – The bet which was a winner

Notification from the Game that the Bet was a winner. The superclass handles the money won
and the line and odds bet notification.

CrapsSevenCountPlayer.lose(self, bet)

Parameters bet (Bet) – The bet which was a loser

Notification from the Game that the Bet was a loser. The superclass handles the line and odds
bet notification.

34.9 Roll-Counting Deliverables

There are two groups of deliverables for this exercise. The first batch of deliverables are the new Betting
Strategy class hierarchy and unit tests. The second batch of deliverables are the two revised Craps Player
classes, the final Roll Counter Player, and the respective unit tests.

Also, note that these new classes make the previous CrapsSimplePlayer, CrapsMartingale, Craps1326 and
CrapsCancellation classes obsolete. There are two choices for how to deal with this change: remove and
reimplement. The old calsses can be removed, and the Simulator reworked to use the new versions. The
alternative is to reimplement the original classes as Facade over the new classes.

Betting Strategy class hierarchy. There are four classes, each with an associated unit test in this group
of deliverables.

• The BettingStrategy superclass. This class is abstract; there is no unit test.

• The NoChangeBetting class.

• A unit test for the NoChangeBetting class. This will simply confirm that the win() and lose()
methods do not change the bet amount.

• The MartingaleBetting class.

• A unit test for the MartingaleBetting class. This will confirm that the win() method resets the bet
amount and lose() method doubles the bet amount.

• The Bet1326Betting class.

• A unit test for the Bet1326Betting class. This will confirm that the win() method steps through the
various states, and the lose() method resets the state.

CrapsPlayer class hierarchy. There are three classes, each with an associated unit test in this group of
deliverables.

• The CrapsOneBetPlayer class.

• A unit test for the CrapsOneBetPlayer class. One test can provide a No Change strategy for a Pass
Line bet to verify that the player correctly places Line bets. Another test can provide a Martingale
strategy for a Pass Line bet to verify that the player correctly changes bets on wins and losses.

• The CrapsTwoBetPlayer class.

• A unit test for the CrapsTwoBetPlayer class. One test can provide a No Change strategy for a Pass
Line bet and a Martingale strategy for a Pass Line Odds bet to verify that the player correctly places
Line bets and correctly changes bets on wins and losses.

• The CrapsSevenCountPlayer class.

34.9. Roll-Counting Deliverables 223

Building Skills in Object-Oriented Design, Release 2.2.1-Python

• A unit test for the CrapsSevenCountPlayer class. This will require a lengthy test procedure to assure
that the player correctly places a Seven proposition bet when the game is over seven throws long.

224 Chapter 34. Roll-Counting Player Class

CHAPTER

THIRTYFIVE

CONCLUSION

The game of Craps has given us an opportunity to extend and modify an application with a considerable
number of classes and objects. It is large, but not overly complex, and produces interesting results. Further,
as a maintenance and enhancement exercise, it gave us an opportunity to work from a base of software,
extending and refining the quality of the design.

We omitted exercises which would integrate this package with the Simulator and collect statistics. This
step, while necessary, doesn’t include many interesting design decisions. The final deliverable should be
a working application that parses command-line parameters, creates the required objects, and creates an
instance of Simulator to collect data.

Refactoring. We note that many design decisions required us to explore and refactor a great deal of the
application’s design. In writing this part, we found it very difficult to stick to our purpose of building up the
design using realistic steps and realistic problem solving. A book with a description of an already-completed
structure does not help new designers learn the process of design, and does not help people to identify design
problems and correct them. Because of that philosophy, the complete refactoring of the design in the Design
Cleanup and Refactoring chapter was an important activity because it is the kind of thing that distinguishes
a good design from a haphazard design.

Our observation is that this kind of design rework happens late in the life of a project, and project managers
are uncomfortable evaluating the cost and benefit of the change. Further, programmers are unable to express
the cost of accumulating technical debt by making a series of less-than-optimal decisions.

Simpler is Better. Perhaps, the most important lesson that we have is the constant search for something we
call The Big Simple. We see the history of science as a search for simpler explanations of natural phenomena.
The canonical example of this is the distinction between the geocentric model and the heliocentric model
of the solar system. Both can be made to work: astronomers carefully built extremely elaborate models
of the geocentric heavens and produced accurate predictions of planetary positions. However, the model of
planetary motion around the sun describes real phenomena more accurately and has the added benefit of
being much simpler than competing models.

To continue this rant, we find that software designers and their managers do not feel the compulsion and
do not budget the time to identify the grand simplification that is possible. In some cases, the result of
simplifying the design on one axis will create more classes. Designers lack a handy metric for “understand-
ability”; managers are able to count individual classes, no matter how transparently simple. Designers often
face difficulties in defending a design with many simple classes; some people feel that a few complex classes
is “simpler” because it has fewer classes.

As our trump card, we reference the metrics for complexity. McCabe’s Cyclomatic Complexity penalizes if-
statements. By reducing the number of if-statements to just those required to create an object of the proper
class, we reduce the complexity. The Halstead metrics penalize programs with lots of internal operators
and operands when compared with the number of operands in the interface. Halstead measures simple,
transparent classes as less complex. Neither measure penalizes overall size in lines of code, but rather they
penalize decision-making and hidden, internal state. A badly designed, complex class has hidden internal
states, often buried in nested if-statements. We emphasize small, simple classes with no hidden features.

225

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Our concrete examples of this simplification process are contained in three large design exercises. In Throw
Builder Class, we showed a kind of rework necessary to both generalize and isolate the special processing
for Craps. In Design Cleanup and Refactoring, we reworked classes to create an easy-to-explain architecture
with layers and partitions of responsibility. Finally, in Roll-Counting Player Class, we uncovered a clean
separation between game rules and betting strategies.

226 Chapter 35. Conclusion

Part IV

Blackjack

227

Building Skills in Object-Oriented Design, Release 2.2.1-Python

This part describes the more complex game of Blackjack. Both the player and the dealer are trying to build
a hand that totals 21 points without going over. The hand closest to 21 wins.

This game has a number of states and a number of complex state-change rules. It has very few different
kinds of bets, but moderately complex rules for game play. However, it does have the most sophisticated
playing strategy, since the player has a number of choices to make.

The chapters of this part presents the details on the game, an overview of the solution, and a series of six
relatively complex exercises to build a complete simulation of the game. In the case of Blackjack, we have
to create a design that allows for considerable variation in the rules of the game as well as variation in the
player’s betting strategies.

229

Building Skills in Object-Oriented Design, Release 2.2.1-Python

230

CHAPTER

THIRTYSIX

BLACKJACK DETAILS

In the first section we will present elements of the game of Blackjack. Blackjack uses cards and has fairly
complex rules for counting the number of points in a hard of cards.

Blackjack offers relatively few bets, most of which are available based on the state of the game. We’ll cover
these bets and the conditions under which they are allowed in the second sectionj.

Finally, we will describe some common betting and playing strategies that we will simulate. In this case,
we have playing strategies that are unique to Blackjack, combined with betting strategies initially defined
in Roulette and reworked in Craps.

36.1 Blackjack Game

Blackjack centers around hands composed of cards drawn from one or more standard 52-card decks. The
standard deck has 13 ranks in 4 suits; the suit information has no bearing on game play. The player and the
house are both dealt hands, starting with two cards. The house has one card exposed (the up card) and
one card concealed (the hole card), leaving the player with incomplete information about the state of the
game. The player’s objective is to make a hand that has more points than the dealer, but less than or equal
to 21 points. The player is responsible for placing bets when they are offered, and taking additional cards
to complete their hand. The dealer will draw additional cards according to a simple rule: when the dealer’s
hand is 16 or less, they will draw cards (or hit), when it is 17 or more, they will not draw additional cards
(or stand pat).

An interesting complication is the point values of the cards. The number cards (2-10) have the expected
point values. The face cards (Jack, Queen and King) all have a value of 10 points. The Ace can count as
one point or eleven points. Because of this, an Ace and a 10 or face card totals 21. This two-card winner is
called “blackjack”. Also, when the points include an ace counting as 11, the total is called soft ; when the
ace counts as 1, the total is called hard. For example, A-5 is called a soft 16 because it could be considered
a hard 6. A-10-5 is a hard 16.

The betting surface is marked with two places for bets: a single bet, placed before any cards are dealt, and
an insurance bet, offered only when the dealer’s up card is an ace. There are a few additional bets, and
a few player choices. We’ll step through some variations on the sequence of play to see the interactions a
player has during a game. Note that a casino table seats a number of players; like Craps and Roulette, the
player opposes the house, and the presence or absence of other players has no bearing on the game.

Note: Rule Variations
There are seemingly endless variations in the exact playing rules used by different casinos. We’ll focus on a
relatively common version of the rules. With this as a basis, a number of variations can be explored.

Typical Scenario. The player places an initial bet. Since the bet is “blind”, it is like an ante in poker.
The player and dealer are each dealt a pair of cards. Both of the player’s are face up, the dealer has one

231

Building Skills in Object-Oriented Design, Release 2.2.1-Python

card up and one card down. If the dealer’s card is an ace, the player is offered insurance. The details will
be described in a separate sceanario, below.

Initially, the player has a number of choices.

• If the two cards are the same rank, the player can elect to split into two hands. This is a separate
scenario, below.

• The player can double their bet and take just one more card. In some casinos this opportunity may
be limited to certain totals on the cards, for instance, only 10 and 11; or it may be limited to a certain
number of cards, for instance, two cards.

• The more typical scenario is for the player to take additional cards (a hit) until either their hand
totals more than 21 (they bust), or their hand totals exactly 21, or they elect to stand.

If the player’s hand is over 21, their bet is resolved immediately as a loss. Resolving these bets early is
an important part of the house’s edge in Blackjack. If the player’s hand is 21 or less, however, it will be
compared to the dealer’s hand for resolution.

The dealer then reveals the hole card and begins taking cards according to their fixed rule. When their
total is 16 or less, they take an additional card; if their total is 17 or more, they stand pat. This rule is
summarized as “hit on 16, stand on 17”. In some casinos a dealer will hit a soft 17 (A-6), which improves
the house’s edge slightly.

If the dealer busts, the player wins. If the dealer did not bust, then the hands are compared: if the player’s
total is more than the dealer, the player wins; if the totals are equal, the bet is a push; otherwise the dealer’s
total is more than the play and the player loses.

If the player’s hand is an ace and a 10-point card (10, Jack, Queen or King), the hand is blackjack and the
the ante is paid off at 3:2. Otherwise, winning hands that are not blackjack are paid off at 1:1.

Dealer Shows An Ace. If the dealer’s up card is an ace, the player is offered an insurance bet. This is an
additional proposition that pays 2:1 if the dealer’s hand is exactly 21 (a 4/13 probability). The amount of
the bet is half the original ante. If this insurance bet wins, it will, in effect, cancel the loss of the ante. After
offering insurance to the player, the dealer will check their hole card and resolve the insurance bets. If the
hole card is 10-point card, the dealer has blackjack, the card is revealed, and insurance bets are paid. If the
hole card is not a 10-point card, the insurance bets are lost, but the card is not revealed.

In the unusual case that the dealer shows an ace and the player shows blackjack (21 in two cards), the player
will be offered “even money” instead of the insurance bet. If the player accepts the even money offer, their
hand is resolved at 1:1 immediately, without examining the dealer’s hole card or playing out the hand. If
the player declines even money, they can still bet or decline insurance. Checking the odds carefully, there is
a 4/13 (30.7%) chance of the dealer having 21, but insurance is paid as if the odds were 1/3 (33.3%). Since
the player knows they have 21, there is a 4/13 probability of a push plus winning the insurance bet (both
player and dealer have 21) and a 9/13 probability of winning at 3:2, but losing the insurance bet (effectively
a push).

Split Hands. When dealt two cards of the same rank, the player can split the cards to create two hands.
This requires an additional bet on the new hand. The dealer will deal an additional card to each new hand,
and the hands are played independently. Generally, the typical scenario described above applies to each of
these hands. The general rule of thumb is to always split aces and eights.

The ideal situation is to split aces, and get dealt a 10-point card on each ace. Both hands pay 3:2. A more
common situation is to have a low card (from 2 to 7) paired up with the ace, leading to soft 13 through soft
18. Depending on the dealer’s up card, these are opportunities to double down, possibly increasing the bet
to 4 times the original amount.

Some casinos restrict doubling down on the split hands. In rare cases, one or more of the new cards will
match the original pair, possibly allowing further splits. Some casinos restrict this, only allowing a single
split. Other casinos prevent resplitting only in the case of aces.

232 Chapter 36. Blackjack Details

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Note that the player’s election to split hands is given after any offer and resolution of insurance bets.

36.2 Available Bets and Choices

Unlike Roulette and Craps, Blackjack has only a few available bets. Generally, the following choices all
involve accepting an offer by creating an additional bet.

• Ante. This bet is mandatory to play. It must be within the table limits.

• Insurance. This bet is offered only when the the dealer shows an ace. The amount must be half the
ante. Note that the even money offer is an option for resolution of the ante instead of an insurance
bet. It is sometimes described as a separate kind of bet, but this doesn’t seem accurate.

• Split. This can be thought of as a bet that is offered only when the the player’s hand has two cards
are of equal rank. Or this can be thought of as a playing option, akin to hitting or standing. The
amount of the bet must match the original ante.

• Double. This can be thought of as a bet that is offered instead of a taking an ordinary hit. Some
casions only offer this when the the player’s hand has two cards. Or this can be thought of as a playing
option, akin to hitting or standing. The amount of the bet must match the original ante.

Blackjack also offers the player some choices that don’t involve creating additional bets. In the casino these
are shown through gestures that can be seen clearly by dealers and other casino staff.

• Even Money. This resolution of insurance is offered only when the the dealer shows an ace and the
player shows 21 in two cards. It is offered instead of an insurance bet. If accepted, the hand is resolved.
If declined, the insurance offer can then be accepted or declined.

• Hit. The player is offered the opporutunity to take another card when their total is less than 21. If
they decline the hit, they are standing pat. In casinos that allow a double down on any number of
cards, the player has three choices: hit, double down or stand.

Play begins with a sequence of offers which can be accepted or declined: insurance, even money resolution
of insurance, and splitting a hand. After these offers, the player must select between the three remaining
choices (hit, double or stand) for each of their hands with a total less than 21.

In Roulette, there are no additional offers for the player to accept or decline. In Craps, we ignored the only
offer made to a player. See Some Betting Strategies for details on this rule. Adding this interaction to Craps
would require defining an additional method for CrapsPlayer to accept or decline an offer. We would also
have the CrapsGame interrogate the Table for the presence of come point odds bets, make the offer to the
player, and then activate or deactivate the bet for the next throw only. This level of interaction was a nuance
we elected to ignore at that time.

36.3 Betting Strategies

Because of the complexity of Blackjack, the strategies for play focus on the cards themselves, not on the
bets. Some players use a single fixed bet amount. Some players will attempt to count cards, in an effort to
determine the approximate distribution of cards in the deck, and vary their play or bets accordingly. The
casinos actively discourage counting in a number of ways. The most common way is to shuffle 5 decks of
cards together, and only deal the first 156 or so of the available 260 cards. Additionally, they will ask people
to leave who are obviously counting.

The player’s responses to the various offers are what defines the playing strategy in Blackjack. The informa-
tion available to the player is their hand (or hands), and the dealer’s up card. Therefore, all of the strategies
for play decompose to a matrix showing the player’s total vs. dealer’s up card and a recommendation for
which offers to accept or decline.

36.2. Available Bets and Choices 233

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Most players will decline the insurance offer, except when they hold a 21. In that rare case the even money
offer should be declined, since the expected value analysis of the result shows a slightly better payout by
competing against the dealer.

The decision matrix has two parts: accepting or rejecting the split offer, and choosing among hit, stand or
double down. You can buy cards in casino gift-shops that summarize a playing strategy in a single, colorful
matrix with a letter code for split, hit, double and stand. Note that each decision to hit results in a new card,
changing the situation used for decision-making. This makes the strategy an interesting, stateful algorithm.

A player could easily add the betting strategies we’ve already defined to their Blackjack play strategies. A
player could, for example, use the Martingale system to double their bets on each hand which is a loss, and
reset their betting total on each hand which is a win. Indeed, our current design permits this, since we
disentangled the betting strategies from the individual games in Roll-Counting Player Class.

234 Chapter 36. Blackjack Details

CHAPTER

THIRTYSEVEN

BLACKJACK SOLUTION OVERVIEW

We will present a survey of the new classes gleaned from the general problem statement in Problem Statement
as well as the problem details in Blackjack Details. This survey is drawn from a quick overview of the key
nouns in these sections. We will not review those nouns already examined for Craps and Roulette.

37.1 Preliminary Survey of Classes

In reading the background information and the problem statement, we noticed a number of nouns that
seemed to be new to the game of Blackjack.

• Card

• Deck

• Point Value

• Hand

• Number Card

• Face Card

• Offer

• Insurance

• Split

• Double

• Hit

• Stand

• Player

• Game

The following table summarizes some of the new classes and responsibilities that we can identify from the
problem statement. This is not the complete list of classes we need to build. As we work through the
exercises, we’ll discover additional classes and rework some of these classes more than once.

We also have a legacy of classes available from the Roulette and Craps solutions. We would like to build on
this infrastructure as much as possible.

235

Building Skills in Object-Oriented Design, Release 2.2.1-Python

37.2 Preliminary Class Structure

Card Responsibilities

Three apparent subclasses: NumberCard, FaceCard and Ace`

A standard playing card with a rank and a suit. Also has a point value from 1 to 11. Aces
have point values that depend on the Hand.

Collaborators

Collected in a Deck; collected into Hands for each Player; collected into a Hand for the
dealer; added to by Game.

Deck Responsibilities

A complete set of 52 standard Cards.

Collaborators

Used by the Game to contain Cards.

Hand Responsibilities

A collection of Cards with one or two point values: a hard value (an ace counts as 1) and a
soft value (an ace counts as 11). The house will reveal one Card to the player.

Collaborators

A Player may have 1 or more Hands; a Hand has 2 or more Cards. The Game adds Cards to
the Hand. The Game checks the number of cards, the point totals and the ranks of the cards
to offer different bets. The Game compares the point totals to resolve bets.

Player Responsibilities

Places the initial ante Bets, updates the stake with amounts won and lost. Accepts or
declines offered additional bets, including insurance, and split. Accepts or declines offered
resolution, including even money. Chooses among hit, double and stand options.

Collaborators

Uses Table, and one or more Hands. Examines the dealer’s Hand. Used by game to respond
to betting offers. Used by Game to record wins and losses.

Game Responsibilities

Runs the game: offers bets to Player, deals the Cards from the Deck to Hands, updates the
state of the game, collects losing bets, pays winning bets. Splits Hands. Responds to player
choices of hit, double and stand. This encapsulates the basic sequence of play into a single
class.

Collaborators

Uses Deck, Table, Outcome, Player.

37.3 A Walkthrough

The unique, new feature of Blackjack is the more sophisticated collaboration between the game and the
player. This interaction involves a number of offers for various bets, and bet resolution. Additionally, it
includes offers to double, hit or stand. We’ll examine parts of a typical sequence of play to assure ourselves
that we have all of the necessary collaborations and responsibilities.

236 Chapter 37. Blackjack Solution Overview

Building Skills in Object-Oriented Design, Release 2.2.1-Python

A good way to structure this task is to do a CRC walkthrough. For more information on this technique see
A Walkthrough of Roulette. We’ll present the overall sequence of play, and leave it to the student to manage
the CRC walkthrough.

Typical Blackjack Game

1. Place Bets. The Game will ask the player to place a bet. If the player doesn’t place a bet, the session
is over.

2. Create Hands. The Game will deal two cards to the Player’s initial Hand.

The Game will create an initial hand of two cards for the dealer. One of the cards is the up card, and
is visible to the player.

3. Insurance? The Game gets the Dealer’s Hand’s up card. If it is an Ace, then insurance processing is
perforemed.

(a) Offer Even Money. The Game examines the Player’s hand for two cards totalling a soft 21,
blackjack. If so, the Game offers the Even Money resolution to the Player. If the player accepts,
the entire game is resolved at this point. The ante is paid at even money; there is no insurance
bet.

(b) Offer Insurance. The Game offers insurance to the Player, who can accept by creating a bet.
For players with blackjack, this is a second offer after even money is declined. If the player
declines, there are no further insurance considerations.

(c) Examine Hole Card. The Game examines the Dealer’s Hand’s hole card. If is is a 10-point
value, the insurance bet is resolved as a winner, the ante is resolved as a loser, and for this player,
the game is over. Otherwise the insurance is resolved as a loser, the hole card is not revealed, and
play will continue. Note that in a casino with multiple players, it is possible for a player declining
insurance to continue to play with the dealer’s hole card revealed. For casinos that offer “early
surrender” this is the time to surrender.

4. Split? The Game examines the Player’s Hand to see if the two cards are of equal rank. If so, it offers
a split. The player accepts by creating an additional Bet. The original hand is removed; The Game
splits the two original Cards then deals two additional Cards to create two new Hands.

Some casinos prevent further splitting, others allow continued splitting of the resulting hands.

5. Play Out Player Hands. The following are done to play out each of the Player’s Hands.

(a) Bust? Double? Hit? Stand? While the given Hand is under 21 points, the Game must extend
three kinds of offers to the Player. If the Player accepts a Hit, the hand gets another card and
this process repeats.

If the Player accepts Double Down, the player must create an additional bet, and the hand gets
one more card and play is done. If the Player Stands Pat, the play is done. If the hand is 21
points or over, play is done.

(b) Resolve Bust. The Game must examine each Hand; if it is over 21, the Hand is resolved as a
loser.

6. Play Out Dealer Hand. The Game then examines the Dealer Hand and deals Cards on a point
value of 16 or less, and stops dealing Cards cards on point value of 17 or more.

(a) Dealer Bust? The Game then examines the Dealer Hand to see if it is over 21. If so, the player’s
bets are resolved as winners. Player Hands with two cards totalling 21 (“blackjack”) are paid
3:2, all other hands are paid 1:1.

37.3. A Walkthrough 237

Building Skills in Object-Oriented Design, Release 2.2.1-Python

7. Compare Hands. For each hand still valid, the Game compares the Player’s Hand point value against
the Dealer’s Hand point value. Higher point value wins. In the case of a tie, it is a push and the bet
is returned.

When the Player wins, a winning hand with two cards totalling 21 (“blackjack”) is paid 3:2, any other
winning hand is paid 1:1.

37.4 Blackjack Solution Questions and Answers

Will we really need both Deck and the multiple deck Shoe? Wouldn’t it be simpler to combine this func-
tionality into a single class?

There are two separate responsibilities here. The deck owns the basic responsibility to build the
52 cards. The shoe, on the other hand, owns the responsibility to deal cards to hands.

We want to be able to simulate games with 1 to 8 decks. A single deck game can simply deal
directly from the deck. In a multi-deck game, all of the decks are shuffled together and loaded
into a shoe for dealing. The difference between one deck and a five-deck shoe is that the shoe can
produce 20 kings in a row. While rare, our simulation does need to cover situations like this.

Also, we may want to build a slightly different shoe that simulates the continuous shuffling
machine that some casinos use. In this case, each hand is reshuffled back into the shoe, preventing
any attempt at card counting. We don’t want to disturb the basic, common deck when introducing
this additional feature.

Won’t all those player interactions break our design?

That’s unlikely. All of that player interaction is in addition to the placeBets() interface. Since
we’ve separated the core features of all players from the game-specific features, we can add a
subclass to player that will be handle the Blackjack interaction. This new player subclass will
have a number of additional methods to handle insurance, even money, split and the regular play
questions of hit, double and stand.

In parallel, we’ve separated the core features of all games from the unique features for a specific
game. We can now add a subclass for Blackjack which adds a number of methods to offer
insurance, even money, split and the regular play questions of hit, double and stand to the
Blackjack player.

I can’t find an Outcome in Blackjack. Is it the Ante? If so, the odds vary based on the player’s Hand, but
that doesn’t seem to be a RandomEvent.

Good point. We’ll examine this in detail in the exercises. Clearly, the bets are placed on the
Ante and Insurance as the two core Outcome s in Blackjack. The Insurance outcome (really a
“dealer has blackjack” outcome) is fixed at 2:1. The ante payoff depends on a complex condition
of the hand: for a soft 21, or blackjack, it pays 3:2; otherwise it pays 1:1. This will lead to a new
subclass of Outcome that collaborates with the hand to determine the payout to use.

The “even money” is offered before ordinary insurance to a player with blackjack. It, however,
pays even money on the ante, and doesn’t create a new bet; in this respect it could be thought
of as a change in the outcome on which the ante bet is created. Accepting the even money offer
is a little bit like moving the ante to a “even money for dealer blackjack” outcome, which has
1:1 odds instead of 3:2 odds. Further, this special outcome is resolved before the dealer peeks
at their hole card. Perhaps this is a special best resolution procedure, not a proper instance of
Outcome.

238 Chapter 37. Blackjack Solution Overview

CHAPTER

THIRTYEIGHT

CARD, DECK AND SHOE CLASSES

This chapter introduces a number of simple classes. When exploring Roulette, we introduced classes very
slowly. In this chapter, we are introducing the class hierarchy for cards, the deck of cards and the shoe, used
by the dealer to create hands. The next chapter will introduce the hand, and the problems of scoring the
value of the hand.

38.1 Card, Deck and Shoe Overview

Card. The standard playing card has two attributes: a rank (Ace, 2 through 10, Jack, Queen, or King)
and a suit (Clubs, Diamonds, Hearts or Spades). The set of all 52 combinations comprises a full deck.
Additionally, in Blackjack, a card has a point value, which is a number from 1 to 11, and is based on the
rank. In the case of an Ace, it is also based on the hand in which the card is evaluated. This collaboration
with a hand complicates the responsibilities for a single card. However, the basic set of responsibilities of
the Card class include keeping the rank, suit and point value of a single standard playing card.

The issue of suit requires some care. In the game of Blackjack, suits don’t matter. Indeed, for the purposes
of simulation, we could simply discard the notion of suit. However, for the purposes of making a reasonably
complete model of real-world objects, it makes sense to implement the suit of a card, even if we do nothing
with it.

We’d like to provide symbolic variable names for the suits. In Java we’ll use static final variables to define
the suits. In Python we’ll use class variables. This will give us four named constants for each of the suits,
something that tends to make the software easier to read. Similarly, we’ll provide named constants for the
three face cards and the ace.

Points. We have three different rules for establishing the point value of a card. This is a big hint that we have
three subclasses. One subclass includes the Aces, which are either 1 or 11 points. Another subclass includes
the number cards from 2 to 10, where the rank is the point value. Finally, the third subclass includes the
face cards, where the point value is fixed at 10. These three subclasses implement slightly different versions
of a method to return the point value of the card. For more discussion on this, see Card-Deck-Shoe Questions
and Answers FAQ for more discussion.

The problem of determining the value of aces is something we will have to defer until after we create the
hand class. First, we’ll implement the basic card, then we’ll develop the hand, and decide how the hand
computes its number of points from the cards. We do note that the terminology used gives us some hint as
to how to structure our design. Players refer to a soft total and a hard total. An A-6 hand is called a soft
17, and a hard 7. A soft hand has some flexibility in how it is played. If you hit a soft 17, and get a face
card (for example, a Jack), you now have an A-J-6, totalling hard 17. Considering this, we can provide two
point-value functions for each rank, a hard value and a soft value. For all but aces, the two values are the
same. For aces, the two values are different. This would allow a hand to compute a hard total and a soft
total for the hand as a whole. While this design does have some potential problems in dealing with multiple
aces in a single hand, we’ll let it stand until we have more design in place.

239

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Deck. A deck of cards has responsibility for shuffling and dealing the various cards. Additionally, it should
constuct the complete set of 52 cards. We note that shuffling uses a random number generator, but a deck
isn’t the same kind of random event factory that a Wheel or pair of Dice is. In the case of Wheel and
Dice, the random events were based on random selection with replacement : an individual event can be
regenerated any number of times. In the case of a deck, however, once a card has been dealt, it will not
show up until the deck is shuffled.

In Roulette and Craps, the odds depended on a RandomEvent: either the Bin or Throw. In Blackjack, the
ante’s win amount depends on the player’s entire hand. This means that being dealt an individual card isn’t
the same kind of thing that a throw of the dice is; rather it suggests that the dealer’s shoe is the random
event factory, and the entire hand is the random event created by dealing cards. Continuing this line of
thought, an Outcome‘s win amount could depend on a RandomEvent, if we consider the entire hand to be the
random event.

Considering an entire hand to be a single random event is skating on pretty thin ice, so we won’t force-fit
a Deck into the random event factory part of our framework. Instead, we will let Deck stand alone. We’ll
design a simple initialization for a deck that constructs the 52 cards. Beyond that, the notions of shuffling
and dealing can be assigned to the shoe.

Since a Deck is a container, we have to examine the available collection classes to determine which con-
crete class we need. Interestingly, we only need two features of Collection: the add() method and the
iterator(). These methods are implemented for all of the variations of Set and List. The only collection
we can disregard is HashSet as that will use more storage than necessary.

Shoe. The dealer’s shoe is where Cards are shuffled and dealt to create individual hands. A shoe will
be built from some number of Decks. More properly, the shoe will contain the Cards from those Decks.
The Deck objects aren’t really used for much more than constructing batches of individual Card objects.
The Shoe responsibilities include proper initialization using a given number of decks, periodic shuffling and
proper dealing.

In a casino, the shuffling involves a ritual of spreading the cards on the table and stirring them around
thouroughly, then stacking them back into the shoe. The top-most card is extracted, shown to the players,
discarded, and a marker card is cut into the shoe at least two decks from the end, leaving about 100 cards
unplayable after the marker. While most of the ritual does not require careful modeling, the presence of
undealt cards at the end of the shoe is important as a way to defeat card-counting strategies.

Since a Shoe is a container, we have to examine the available collection classes to determine which concrete
class we need. Interestingly, we only need two features of Collection: the addAll() method to put another
deck into the shoe and the iterator(). These methods are implemented for all of the variations of List.
We will have to disregard the various Set implementations because they impose their own unique orders on
the elements, different from our shuffled order.

The simplest shuffling algorithm iterates through all of the Cards in the Shoe s collection, and exchanges
that Card with the card in a randomly-selection position. In order to move Card s around freely within the
structure, an ArrayList or Vector could be used. See Card-Deck-Shoe Questions and Answers for more
discussion on shuffling.

38.2 Card-Deck-Shoe Questions and Answers

Why are there three subclasses of Card? Isn’t it simpler to have one class and use an if-statement to sort
out the point values.

Primarily, there are three classes because they have different behaviors. Merging them into a
single class and sorting out the behaviors with an if-statement is often a problem.

First, and most important, if-statements add complexity. The question “wouldn’t it be simpler
to use an if-statement” is a kind of oxymoron.

240 Chapter 38. Card, Deck and Shoe Classes

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Second, and almost as important, if-statements dilute responsibility assignments. Combining
all three subclasses into one puts three slightly different responsibilities into one place, making
it more difficult to debug problems. Further, we could wind up repeating or other reusing the
if-statement in inappropriate ways. If we create separate subclasses, the clear separation of
responsibility becomes a matter of definition, not a matter of following a complex thread of
programming logic.

Third, if-statements limit growth, adaptation and change. If we have a modification to the rules,
for example, making 1-eyed Jacks wild, we would prefer to simply introduce another subclass.
We find that chasing down one or more related if-statements to assure ourselves that we are
correctly handling the new subtlety rapidly gets out of hand.

Is that the best shuffling algorithm Won’t it sometimes move a card twice? Won’t it sometimes put a card
back into the original spot?

Yes, it may move some cards twice and it may leave a card in position. This is part of random
behavior. This algorithm touches every card, swapping it with a randomly selected card. We are
assured that every card was put into a random position. Sometimes a card will have been moved
more than once, but the minimum criteria is that every card has been moved.

While a shuffling algorithm that models the real world is tempting, this adds complexity for no
actual improvement in the randomization. A popular technique in the real world is to cut the
deck in half and then riffle the cards into a single pile. If done with the kind of perfection that
software provides (cutting the deck exactly in half and exactly alternating the cards) this shuffle
leads to a perfectly predictable cycle of orders. What makes this shuffle work in the real world
is the random inaccuracies in cutting and riffling. We don’t see any value in modeling these
physical phenomenon.

A similar analysis holds for the kind of shuffle done in the casino. In essence, they do a shallow
copy if the original List object, and then rebuild the shoe’s List by picking cards at random
from the copy. This produces a result that is statistically indistinguishable from our algorithm,
which uses an element-by-element swap.

One fruitless side-track is using the seemingly-random hash code values of the Card objects. This
only puts the cards into a single fixed, but arbitrary order. An apparently interesting alternative
is to generate a random index for each Card and then sort by this index or assemble a SortedSet.
We note that sorting is O(n logn), where our algorithm is O(n), running much faster than any
sort.

38.3 Card Superclass

class Card

Card defines a basic playing card. It has a rank, a suit, a hard point value and a soft point value. The point
value methods are defined for the number cards from 2 to 10. Two subclasses handle face cards, where the
point values are both 10, and aces, where the soft point value is 1, and the hard point value is 11.

This class also defines symbolic names for the suits (Clubs, Diamonds, Hearts and Spades) and face cards
(Jack, Queen and King).

Here are Unicode characters for the suits.
Unicode Name Symbol
U+02660 BLACK SPADE SUIT �
U+02663 BLACK CLUB SUIT �
U+02665 BLACK HEART SUIT �
U+02666 BLACK DIAMOND SUIT �

38.3. Card Superclass 241

Building Skills in Object-Oriented Design, Release 2.2.1-Python

There’s one tiny problem with the Unicode characters: the suits don’t sort into the order preferred by Bridge
players. Since it’s irrelevant for this class of problems, we’ll ignore this.

For the truly fussy, we would need to assure that the suits have a symbol character and a preferred sort
order.

38.3.1 Fields

In Python, symbolic names are often declared within the class, not within the initialization method function.

class Card(object):
Clubs, Diamonds, Hearts, Spades = u'\u2663', u'\u2666', u'\u2665', u'\u2660'
Jack, Queen, King = 11, 12, 13
...

oneEyedJack= Card(Card.Jack, Card.Hearts)

Card.rank
The rank of the card. This is a number from 1 (Ace) to 13 (King).

Card.suit
The suit of the card. This is a character code for Clubs, Diamonds, Hearts or Spades.

38.3.2 Constructors

Card.__init___(self, rank, suit)

Parameters

• rank (integer) – rank of this card.

• suit (character) – Character code for this card.

Initializes the attributes of this Card.

38.3.3 Methods

Card.getRank(self) → int

Returns the rank of this card.

Card.softValue(self) → int

Returns the soft value of this card. The superclass simply returns the rank. Subclasses can
override this. Face cards will return 10, Aces will return 11.

Card.hardValue(self) → int

Returns the hard value of this card. The superclass simply returns the rank. Subclasses can
override this. Face cards will return 10, Aces will return 1.

Card.__str__(self) → str
Ideally, we’d like this function to return the rank and suit of this card.

However, in Python 2, there’s an issue with the definition of the str() function. In Python 2, this
function must return an ASCII-encoded string.

If we’re using Unicode suit names, this function isn’t helpful, and we have to resort to an explicit
Unicode formatting string.

242 Chapter 38. Card, Deck and Shoe Classes

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Card.unicode(self) → str
This will return a proper unicode string. We have to use print someCard.unicode() instead of print
someCard.

38.4 FaceCard Class

FaceCard is a Card with a point value of 10. This defines jack, queens and kings.

38.4.1 Methods

Card.softValue(self) → int

Returns the soft value of this card, 10.

Card.hardValue(self) → int

Returns the hard value of this card, 10.

Card.__str__(self) → str

Returns a short String displaying the rank and suit of this card. The ranks should be translated
to single letters: 11 to 'J', 12 to 'Q' and 13 to 'K'.

38.5 AceCard Class

AceCard is a Card with a soft point value of 11 and a hard point value of 1. This definces Aces.

38.5.1 Methods

Card.softValue(self) → int

Returns the soft value of this card, 11.

Card.hardValue(self) → int

Returns the hard value of this card, 1.

Card.__str__(self) → str

Returns a short String displaying the rank and suit of this card. The rank is always 'A'.

38.6 Deck class

Deck defines the standard deck of 52 cards. It both constructs the deck and acts as a container for one
instance of a deck.

38.6.1 Fields

cards
The collection of individual cards. The specific type of collection could be any of the Set or List
implementation classes.

38.4. FaceCard Class 243

Building Skills in Object-Oriented Design, Release 2.2.1-Python

38.6.2 Constructors

Deck.__init__(self)

Creates the Collection, cards, and then creates the 52 cards. A simple nest pair of loops to
iterate through the suits and ranks will work nicely for this.

Creating A Full Deck

For all four suits:

Create the AceCard of this suit and a rank of 1; add to the cards

For ranks 2 to 10:

Create a Card of this suit and rank; add to the cards

For ranks 11 to 13:

Create a FaceCard of this suit and rank; add to the cards

38.6.3 Methods

Deck.getCards(self) → collection

Returns the collection of cards in cards.

38.7 Shoe class

Shoe defines the dealer’s shoe, which contains from 1 to 8 decks of cards. For one deck shoes, one card is
reserved as undealable. For multiple deck shoes from 1 to 3 decks can be left undealt. The exact number is
selected at random within 6 cards of the expected number of decks.

38.7.1 Fields

Shoe.deal
An Interator that is used to pick the next card from the shoe.

Shoe.stopDeal
The approximate number of decks to be left undealt in the shoe.

38.7.2 Constructors

Shoe.__init__(self, decks, stopDeal, rng=None)
If rng is None, create a generator from random.Random.

Parameters

• decks (integer) – A number of decks to create

• stopDeal (integer) – An approximate number of decks left undealt in the shoe

• rng (random.Random) – A random number generator to use.

244 Chapter 38. Card, Deck and Shoe Classes

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Initializes the Shoe by creating the required number of decks and building the cards List. This
saves the stopDeal value, which is the number of decks left in the shoe. Typically, this is two,
and approximately 104 cards are left in the shoe.

This also saves the random number generator used to shuffle.

To facilitate testing, this initializes the dealing iterator to the unshuffled List of cards. This will
produce cards in a fixed order.

38.7.3 Methods

Shoe.shuffle(self)

Shuffles the shoe by swapping every element in the Shoe.cards List with a random element.

Creates an Iterator, Shoe.deal that can be used to deal cards.

If the stopDeal is non-zero, do the following to exclude several decks from the deal.

1. Create a random number, v, such that −6 ≤ v6.

2. Step through the deal iterator stop ∗ 52 + v times, removing approximately stop cards from
being dealt as part of ordinary play.

Shoe.__iter__(self) → iter

Return the Shoe.deal iterator so that the game can get cards from the Shoe.

38.8 Card-Deck-Shoe Deliverables

There are ten deliverables for this exercise.

• The three classes of the Card class hierarchy, including FaceCard and AceCard.

• A class which performs a unit tests of the Card class hierarchy. The unit test should create several
instances of Card, FaceCard and AceCard.

• The Deck class.

• A class which performs a unit test of the Deck class. This simply creates a Deck object and confirms
the total number of cards. A thorough test would also check some individual Card objects in the cards
collection.

• The Shoe class.

• A class which performs a unit test of the Shoe class. This simply creates a Shoe object and confirms
that it deals cards. In order to test the shuffle() method, you will need to construct the Shoe with
a random number generator that has a fixed seed and produces cards in a known sequence.

38.8. Card-Deck-Shoe Deliverables 245

Building Skills in Object-Oriented Design, Release 2.2.1-Python

246 Chapter 38. Card, Deck and Shoe Classes

CHAPTER

THIRTYNINE

HAND AND OUTCOME CLASSES

This chapter introduces the hand, and the problems of scoring the value of the hand. It also introduces a
subclass of Outcome that can handle the more complex evaluation rules for Blackjack.

39.1 Hand Overview

The hand of cards is both a container for cards, but is also one dimension of the current state of the player’s
playing strategy. A player may have multiple hands, and the hands are resolved independently.

For each hand, the responsibilities include collecting the cards, producing a hard and soft point total and
determining the appropriate payout odds.

Collecting cards is trivial. Each hand is a simple bag or multiset of cards. A hand can’t be any kind of Set
because there can easily be duplicate cards in a multiple deck game. In an 8-deck game, there are 8 separate
instances of A �.

Determining the payout odds for a Hand is somewhat more complex.

39.1.1 Payout Odds

To be compatible with other games, we’ll be creating Bet objects which are associated with Outcomes. In
Roulette, there were a profusion of Outcomes, each relatively simple with fixed odds. In Craps, there were
fewer Outcomes, some of which had odds that depended on a throw of the dice.

The player’s Hand must be associated with an Outcome so that we can match the Outcome of a Bet and the
Outcome of a Hand to determine the payout.

In the case of Roulette, each Bin was simply a set of winning Outcomes. In the case of Craps, both the dice
and the game had a mixtures of winning, losing and unresolved Outcomes. The Bets were simply associated
with Outcomes and the Wheel, Dice or Game gave us sets of winning (and losing) Outcomes.

In Blackjack, there are relatively few outcomes. And it’s not clear how each Outcome associates with a Hand.

Survey of Outcomes. To figure out how to associate Hand and Outcome, we’ll start by enumerating all
the individual Outcomes.

1. “Insurance” at 2:1. This is a winner when the dealer’s hand is blackjack; and the “Ante” bet will be
a loser. It is only offered when the up card is an Ace. This is a loser when the dealer’s hand is not
blackjack, and the Ante bet is unresolved.

2. “Even Money” at 1:1. This is offered in the rare case of the player’s hand is blackjack and the dealer’s
up card being an Ace. If accepted, it can be looked at as a switch of the Ante bet to an “Even Money”
outcome, which is then resolved as a winner.

247

Building Skills in Object-Oriented Design, Release 2.2.1-Python

3. “Ante” paying 1:1. This payout occurs when the player’s hand is less than or equal to 21 and the
dealer’s hand goes over 21. This payout also occurs when the player’s hand is less than or equal to 21
and greater than the dealer’s hand.

This outcome is a loser as soon as the player’s hand goes over 21. It is also a loser when the player’s
hand is less than or equal to 21 and less than the dealer’s hand.

4. “Ante” paying 3:2. This payout occurs when the player’s hand is blackjack. The odds depend on the
player’s hand.

5. “Ante” as a push, paying 0:1. This payout occurs when the player’s hand is less than or equal to 21
and equal to the dealer’s hand. The odds depend on both player and dealer’s hand.

In Craps, we identified the Field and Horn Outcomes which had winning amounts that depended on the
specific Throw. See Throw Builder Overview, for more information. Additionally, we compared Bets against
the Outcomes as part of the transition from one GameState to another. See Resolving Bets, for more
information. In order for this to work correctly, some bets were changed frm a generic Outcome (a “Line
Bet”) to an Outcome with different odds.

What Class is Hand? It appears that the hand, as a whole, is not simply associated with an Outcome. It
appears that a Hand must produce an Outcome based on it’s content, the dealer’s content, and possibly the
state of the game.

This is a small change from the way Dice and Bin work. Those classes were associated with an Outcome. A
Blackjack Hand, however, must do a bit of processing to determine which Outcome it represents.

• A two-card hand totalling soft 21 produces a blackjack Outcome that pays 3:2.

• All other hands produce an Outcome that pays 1:1 and could be resolved as a win, a loss or are a push.

Also, changes to the state of the game depend on the values of both hands, as well as the visible up card in
the dealer’s hand. This makes the state of the hand part of the evolving state of the game, unlike the simple
RandomEvents we saw in Roulette and Craps.

Choices. We have a few ways we can deal with Hand.

• We can make Hand a subclass of RandomEvent, even though it’s clearly more complex than other events.

• We can make Hand a unique kind of class, unrelated to other games.

Hand is an “Event”? While a Hand appears to be a subclass of RandomEvent, it jars our sensibilities. A
Hand is built up from a number of Cards.

One could rationalize calling a Hand an “event” by claiming that the Shoe is the random event factor. The
act of shuffling is when the event is created. The complex event is then revealed one card at a time.

It seems that we need to define a Hand class that shares a common interface with a RandomEvent, but extends
the basic concept because a hand has an evolving state.

Hand is different. While we can object to calling a Hand a single “event”, it’s difficult to locate a compelling
reason for making a Hand into something radically different from the other subclasses of RandomEvent: Bin
and Dice.

Hand Features. Our first design decision, then is to define Hand as a kind of RandomEvent. We’ll need to
create several Outcomes: Insurance, Even Money, Ante and Blackjack.

The Hand will produce an appropriate Outcome based on the hand’s structure, the game state, and the
dealer’s hand. Generally, each Hand will produce a simple Ante outcome as a winner or loser. Sometimes a
Hand will produce a Blackjack outcome.

Sometimes the Player and Blackjack Game will collaborate to add an Insurance or Even Money outcome to
the Hand.

248 Chapter 39. Hand and Outcome Classes

Building Skills in Object-Oriented Design, Release 2.2.1-Python

39.1.2 Hard and Soft Totals

Our second design problem is to calculate the point value of the hand. Because of aces, hands can have two
different point totals. If there are no aces, the total is hard. When there is an Ace, there are two totals. The
hard total uses Aces as 1. The soft total uses Aces as 11.

We note that only one ace will participate in this hard total vs. soft total decision-making. If two aces
contribute soft values, the hand is at least 22 points. Therefore, we need to note the presence of at least one
ace to use the soft value of 11, all other cards will contribute their hard values to the hand’s total value.

A Hand has a two states.

• Hard. When the hand has no aces, there is one total.

Also, when a hand has one or more aces, but the soft total is over 21, then the hand only has a hard
total.

• Soft. When a hand has at least one Ace and the soft total is 21 or less, there is a hard and a soft total.

A hand with no cards could be said to be in the hard total state. As each card is added, the state may
change. It may change to soft when an Ace is added and the soft total will be 21 or less. It may changes to
hard when the soft total is over 21.

State Change Rules. We can see that our Hand state change is split among the various subclass of Card.

The Card (which will be inhereted by FaceCard) we need to check the Hand hard total. If the hard total is
over 21, the state change method needs to switch the Hand to the hard total state. Otherwise, it leaves the
state alone.

The AceCard, however, must use a slightly different algorithm. If the hard total is over 21, the state change
method needs to switch the Hand to the hard total state. Otherwise, the hard total is 21 or under, and the
state needs to switch the Hand to the soft total state.

Since there are only two distinct total algorithms, we can actually put both of them right into each Hand
object and use simple assignment statements to choose which algorithm is in force at any given state of the
Hand.

39.1.3 Blackjack Outcomes

As a final design decision, we need to consider creating any subclass esof Outcome to handle the variable
odds for the “Ante” bet. We don’t need a subclass for the “Insurance” or “Even Money”, because the base
Outcome does everything we need.

The notable complication here is that there are three different odds. If the player’s hand beats the dealer’s
hand and is blackjack, the odds are 3:2. If the player’s hand beats the dealer’s hand, but is not blackjack,
the odds are 1:1. If the player’s hand equals the dealer’s hand, the result is a push, effectively 0:1 odds.

It doesn’t seem like a new class of Outcomes are necessary. We simply have some alternative outcomes that
can be produced by a Hand.

The player can only place one of four basic bets.

• The “Ante” bet that starts play. This is assmed to be 1:1 unless game conditions change this to 3:2 or
a push. This is the essential Outcome for the player’s primary Bet.

• The “Insurance” and “Event Money” bets. One of these may be active after the first cards are dealt.

For the insurance Outcome to be active, the dealer must be showing an Ace and the player’s hand is
not 21.

For even money Outcome to be active, the dealer must be showing an Ace and the player’s hand is 21.

39.1. Hand Overview 249

Building Skills in Object-Oriented Design, Release 2.2.1-Python

These are resolved immediately – if the dealer does not have 21, these bets are lost. If the dealer has
21, these bets win, but the Ante is a loss.

• The “Double Down” bet. This is generally offered at any time. It can be looked at as an an additional
amount added to the “ante” bet and a modification to game play.

Objects. It seems simplest to create a few Outcome instances: Ante, Insurance, Even Money and Double
Down.

The Table will have to merge the double-down bet amount into the Ante bet amount.

39.2 Hand Total Class Design

HandTotal computes a total of the cards in a hand. There are distinct subclasses for the two algorithms.

39.2.1 Constructor

HandTotal.__init__(self, hand)

Parameters hand (Hand) – The hand for which to compute a total

Creates a new HandTotal object associated with a given hand.

39.2.2 Methods

HandTotal.total(self, card=None) → int
Computes a total of all the cards in the associated hand. If card is not None, omit the the indicated
card from the total.

This method is abstract, it should return NotImplemented. Each subclass will provide an implemen-
tation.

Parameters card (Card) – A card to exclude from the total

39.3 Hand Hard Total Class Design

class HandHardTotal
Computes a hard total of the cards in a hand.

HandHardTotal.total(self, card=None) → int
Computes the hard total of all the cards in the associated hand. If card is not None, omit the the
indicated card from the total.

Parameters card (Card) – A card to exclude from the total

39.4 Hand Soft Total Class Design

class HandSoftTotal
Computes a soft total of the cards in a hand.

250 Chapter 39. Hand and Outcome Classes

Building Skills in Object-Oriented Design, Release 2.2.1-Python

HandSoftTotal.total(self, card=None) → int
Computes the soft total of all the cards in the associated hand. If card is not None, omit the the
indicated card from the total.

Parameters card (Card) – A card to exclude from the total

39.5 Card Class Updates

Each subclass of Card needs to provide a method that sets the hand’s total algorithm.

Card.setAltTotal(hand)

Parameters hand (Hand) – The hand for which to set a total algorithm

There are two different implementations for this method in Card, and AceCard.

Note that each implementation differs only in what is done with the soft total is 21 or less. With
a little care, this single difference can be factored out into the AceCard subclass.

39.5.1 Card Class

To determine what alternative total object is appropriate for this hand, do the following.

1. Get the soft total of all cards except this one.

2. Add the soft points of this card. This happens to be the same as the hard points, but a good program
doesn’t repeat this piece of information; it uses the Card.softValue() method.

3. If this is over 21, then set the Hand.altTotal to to Hand.hard.

If the soft total is 21 or less, then the Hand.altTotal is left untouched.

39.5.2 AceCard Class

To determine what alternative total object is appropriate for this hand, do the following.

1. Get the soft total of all cards except this one.

2. Add the soft points of this card. This happens to be 11 for an Ace, but a good program doesn’t repeat
this piece of information; it uses the Card.softValue() method.

3. If this is over 21, then set the Hand.altTotal to to Hand.hard.

Otherwise, the soft total is 21 or less, then set the Hand.altTotal to Hand.soft.

39.6 Hand Class Design

class Hand

Hand contains a collection of individual Cards, and determines an appropriate total point value for the hand.

39.5. Card Class Updates 251

Building Skills in Object-Oriented Design, Release 2.2.1-Python

39.6.1 Fields

Hand.cards
Holds the collection of individiual Cards of this hand.

Hand.hard
A instance of HandHardTotal. This means that hand.hard.total() will produce the hard total of the
cards in this hand.

This method is used as one of the point totals for the hand.

Hand.soft
A instance of HandSoftTotal. This means that hand.soft.total() will produce the soft total of the
cards in this hand.

Hand.altTotal
This is a reference to either Hand.hardTotal or Hand.softTotal. This will produce a soft total when
one is a appropriate; when a soft total isn’t appropriate, it will produce a hard total.

This is set by each Card.

This method is used as one of the point totals for the hand.

39.6.2 Constructors

Hand.__init__(self, card=None)

Parameters card (Card) – A card to add

Creates an empty hand. The Hard.cards variable is initialized to an empty sequene.

The Hand.hard and Hand.soft objects are initialized to HandHardTotal and HandSoftTotal
objects.

Also, Hand.altTotal is set to Hand.hard.

If card is provided, then use the add() method to add this card to the hand..

39.6.3 Methods

Hand.add(self, card)

Parameters card (Card) – A card to hadd

Add this card to the Hand.cards list.

Evaluate Card.setAltTotal() to update the hard vs. soft total calculation for this hand.

Hand.value(self) → int

Computes the alternate total of this hand using the Hand.altTotal object.

If there are any aces, and the soft total is 21 or less, this will be the soft total. If there are no
aces, or the soft total is over 21, this will be the hard total.

Hand.size(self) → int

Returns the number of cards in the hand, the size of the List.

Hand.blackjack(self) → bool

Returns true if this hand has a size of two and a value of 21.

252 Chapter 39. Hand and Outcome Classes

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Hand.busted(self) → bool

Returns true if this hand a value over 21.

Hand.__iter__(self) → iter

Returns an iterator over the cards of the List.

Hand.__str__(self) → str

Displays the content of the hand as a String with all of the card names.

39.7 Hand Deliverables

There are six deliverables for this exercise.

• The HandTotal class hierarchy: HandTotal, HandHardTotal, HandSoftTotal.

• A unit test for each of these classes.

• The Hand class.

• A class which performs a unit tests of the Hand class. The unit test should create several instances of
Card, FaceCard and AceCard, and add these to instances of Hand, to create various point totals.

• The Card and AceCard modifications required to set the appropriate values in a Hand

• A set of unit tests for assembling a hand and changing the total object in use to correctly compute
hard or soft totals for the hand.

39.7. Hand Deliverables 253

Building Skills in Object-Oriented Design, Release 2.2.1-Python

254 Chapter 39. Hand and Outcome Classes

CHAPTER

FORTY

BLACKJACK TABLE CLASS

The bets in Blackjack are associated with a hand. This will lead us to create a subclass of table to handle
this complexity. In order to manage the relationships between hand and bet, we’ll rework hand, also.

40.1 Blackjack Table Overview

When we look at the game of Blackjack, we note that a player’s Hand can be split. In some casinos, resplits
are allowed, leading to the possibility of 3 or more Hands. Each individual Hand has a separate ante Bet and
seperate resolution. This is different from the way bets are currently managed for Roulette and Craps.

We have several alternatives.

• Assign responsibility to the Table to keep track of bets by Player tied to the various Hands.

This would make the Hand a potential key into a Map that associated a Hand with a Bet. However,
Hands change state, making them poor choices for keys to a Map.

• We could put a reference to a Hand into the Bet. In this way, as each Bet is resolved, the relevant Hand
can be evaluated.

• We could put a reference to the Ante Bet in the Hand. In this way, as each Hand is resolved, the
relevant Bet can be paid or lost.

We’ll design Hand to contain the associated ante Bet. This is least disruptive to the Bet which is a simple
thing used widely in other games.

Additional Bets. While most Bets are associated with a specific Hand, the insurance Bet is always resolved
before an additional hand can be created. There doesn’t seem to be an essential association between the
initial Hand and the insurance Bet. We can treat insurance as a Bet that follows the model established for
Craps and Roulette.

Currently, Bets are placed on the Table. If we create a subclass named BlackjackTable that uses a Hand
when creating a Bet, we can have this method do both tasks: it can attach the Bet to the Hand, and it can
save the Bet on the Table.

40.2 BlackjackTable Class

class BlackjackTable

BlackjackTable is a Table that handles the additional association between Bets and specific Hands in
Blackjack.

255

Building Skills in Object-Oriented Design, Release 2.2.1-Python

40.2.1 Constructors

BlackjackTable.__init__(self)

Uses the superclass constructor to create an empty Table.

40.2.2 Methods

BlackjackTable.placeBet(self, bet, hand)

Parameters

• bet (Bet) – A bet for this hand; an ante bet is required. An insurance bet, even
money bet or double down bet is optional.

• hand (Hand) – A hand on which the player is creating a Bet.

Updates the given hand to reference the given bet. Then uses the superclass placeBet() to add
this bet to the list of working bets.

BlackjackTable.__str__(self) → str

40.3 Hand Rework

Hand contains a collection of individual Cards, and determines an appropriate total point value for the hand.

We need to add a field and some appropriate methods for associating a Bet with a Hand.

40.3.1 Fields

Hand.ante
Holds a reference to the ante Bet for this hand. When this hand is resolved, the associated bet is paid
and removed from the table.

40.3.2 Methods

setBet(self, ante)

Parameters ante (Bet) – The initial bet required to play

Sets the ante Bet that will be resolved when this hand is finished.

getBet(self) → Bet

Returns the ante Bet for this hand.

40.4 Blackjack Table Deliverables

There are four deliverables for this exercise.

• The revised Hand class.

• A class which performs a unit tests of the Hand class. The unit test should create several instances
of Card, FaceCard and AceCard, and add these to instances of Hand, to create various point totals.
Additionally, the unit test should create a Bet and associate it with the Hand.

256 Chapter 40. Blackjack Table Class

Building Skills in Object-Oriented Design, Release 2.2.1-Python

• The BlackjackTable class.

• A class which performs a unit tests of the BlackjackTable class. The unit test should create several
instances of Hand and Bet to create multiple Hands, each with unique Bets.

40.4. Blackjack Table Deliverables 257

Building Skills in Object-Oriented Design, Release 2.2.1-Python

258 Chapter 40. Blackjack Table Class

CHAPTER

FORTYONE

BLACKJACK GAME CLASS

After reviewing the procedure provided in A Walkthrough, we’ll define the basic game class for Blackjack.
This will require a stub class for a Blackjack Player. We’ll also revisit the fundamental relationship between
Game, Hand and Player. We’ll invert our viewpoint from the Player containing a number of Hands to the
Hands sharing a common Player.

41.1 Blackjack Game Overview

The sequence of operations in the game of Blackjack is quite complex. We can describe the game in either
of two modes: as a sequential procedure or as a series of state changes.

• A sequential description means that the state is identified by the step that is next in the sequence.

• The state change description is what we used for Craps, see Craps Game. Each state definition included
a set of methods that represented conditions that could change state; and each Throw object invoked
one of those methods, in effect, announcing a condition that caused a state change.

Additionally, we need to look at the various collaborations of the Game. We also need to address the question
of handling the dealer’s rules.

Maintaining State. The sequential description of state, where the current state is defined by the step that
is next, is the default description of state in most programming languages. While it seems obvious beyond
repeating, it is important to note that each statement in a method changes the state of the application;
either by changing state of the object that contains the method, or invoking methods of other, collaborating
objects. In the case of an active class, this description of state as next statement is adequate. In the case of a
passive class, this description of state doesn’t work out well because passive classes have their state changed
by collaborating objects. For passive objects, instance variables and state objects are a useful way to track
state changes.

In the case of Roulette, the cycle of betting and the game procedure were a simple sequence of actions. In
the case of Craps, however, the game was only loosely tied to each the cycle of betting and throwing the
dice, making the game state a passive part of the cycle of play. In the case of Blackjack, the cycle of betting
and game procedure are more like Roulette.

Most of a game of Blackjack is simply sequential in nature: the initial offers of even money, insurance and
splitting the hands are optional steps that happen in a defined order. When filling the player’s Hands, there
are some minor sub-states and state changes. Finally, when all of the player’s Hands are bust or standing
pat, the dealer fills their hand. Finally, the hands are resolved with no more player intervention.

Most of the game appears to be a sequence of offers from the Game to the BlackjackPlayer; these are offers
to place bets, or accept cards, or a combination of the two, for each of the player’s Hands.

259

Building Skills in Object-Oriented Design, Release 2.2.1-Python

41.2 Blackjack Collaboration

In Craps and Roulette, the Player was the primary collaborator with the Game. In Blackjack, however,
focus shifts from the Player to the Hand. This changes the responsibilities of a BlackjackPlayer: the Hand
can delegate certain offers to the BlackjackPlayer for a response. The BlackjackPlayer can become a
plug-in strategy to the Hand, providing responses to offers of insurance, even money, splitting, doubling-down,
hitting and standing pat. The BlackjackPlayer‘s response will change the state of the Hand. Some state
changes involve getting a card, and others involve placing a bet, and some involve a combination of the two.

We’ll use the procedure definition in A Walkthrough. Following this procedure, we see the following methods
that a Hand and a BlackjackPlayer will need to respond to the various offers from the BlackjackGame.
The first portion of the game involves the BlackjackPlayer, the second portion invovles one or more Hand
s. The collaboration is so intensive, we have created a kind of swimlane table, showing the operations each
object must perform. This will allow us to expand Hand and BlackjackTable as well as define the interface
for BlackjackPlayer.

Table 41.1: Blackjack Overall Collaboration
BlackjackGame Hand BlackjackPlayer BlackjackTable
calls player’s placeBet creates empty Hand,

creates initial Ante Bet
accepts the
ante bet,
associate with
the hand

gets the initial hand; deal 2 cards to
hand

add cards returns the initial hand

deal 2 cards to dealer’s hand add cards
gets up card from dealer’s hand; if this
card requires insurance, do the insurance
procedure

return up card

iterate through all hands; is the given
hand splittable?

return true if
two cards of the
same rank

returns a list iterator

if the hand is splittable, offer a split bet get the player’s
response;
return it to the
game

to split: create a split
bet, and an empty
hand; return the new
hand

accept the split
bet for the new
hand

if splitting, move card and deal cards;
loop back, looking for split offers

take a card out;
add a card

iterate through all hands; if the hand is
less than 21, do the fill-hand procedure

returns a list iterator

while the dealer’s point value is 16 or
less, deal another card

return point
value of the
hand; add a
card

if the dealer busts, iterate through all
hands resolving the ante as a winner

return point
value of the
hand

returns a list iterator resolve bet as
winner and
remove

if the dealer does not bust, iterate
through all hands comparing against the
dealer’s points, determining win, loss or
push

return point
value of the
hand

returns a list iterator resolve bet and
remove

There are a few common variation in this procedure for play. We’ll set them aside for now, but will visit
them in Variant Game Rules.

260 Chapter 41. Blackjack Game Class

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Insurance. The insurance procedure involves additional interaction between Game and the the Player‘s
initial Hand. The following is done only if the dealer is showing an ace.

Table 41.2: Blackjack Insurance Collaboration
BlackjackGame Hand BlackjackPlayer BlackjackTable
if player’s hand is blackjack: offer even money return true

if 2 cards,
soft 21

to accept,
return true

if player accepted even money offer: change bet,
resolve; end of game

update bet;
resolve and
remove bet

offer insurance to accept,
create new bet;
return true

accept
insurance bet

if player accepted insurance offer: check dealer’s
hand; if blackjack, insurance wins, ante loses, game
over; otherwise insurance loses

return
point value

resolve and
remove bet

Filling the Hands. The procedure for filling each Hand involves additional interaction between Game and
the the Player‘s initial Hand. An Iterator used for perform the following procedure for each individual
player Hand.

Table 41.3: Blackjack Fill-Hand Collaboration
BlackjackGame Hand BlackjackPlayer Blackjack-

Table
if player’s hand is blackjack: resolve
ante bet

return true if 2
cards, soft 21

resolve
and
remove
bet

while points less than 21, offer play
options of double or hit; rejecting
both offers is a stand.

return point
value; pass
offers to player

to double, increase the bet for
this hand and return true; to
hit, return true

update
bet

if over 21, the hand is a bust return point
value

resolve
the ante
as a loss

There is some variation in this procedure for filling Hands. The most common variation only allows a
double-down when the Hand has two cards.

Hand-specific Decisions. Some of the offers are directly to the BlackjackPlayer, while others require
informing the BlackjackPlayer which of the player’s Hands is being referenced.

How do we identify a specific hand?

• One choice is to have the BlackjackGame make the offer to the Hand. The Hand can pass the offer to
the BlackjackPlayer; the Hand includes a reference to itself.

• An alternative is to have the BlackjackGamemake the offer directly to the BlackjackPlayer, including
a reference to the relevant Hand.

While the difference is minor, it seems slightly more sensible for the BlackjackGame to make offers directly
to the BlackjackPlayer, including a reference to the relevant Hand.

41.2. Blackjack Collaboration 261

Building Skills in Object-Oriented Design, Release 2.2.1-Python

41.3 Dealer Rules

In a sense, the dealer is a special player. They have a fixed set of rules for hitting and standing. They are
not actually offered an insurance bet, nor can they split or double down.

However, the dealer does participate in the hand-filling phase of the game, deciding to hit or stand pat.

The dealer’s rules are quite simple. Should the Dealer be a special subclass of BlackjackPlayer; one that
implements only the dealer’s rules?

Or should the Dealer be a feature of the Game. In this case, the Game would maintain the dealer’s Hand
and execute the card-filling algorithm.

Using an subclass of BlackjackPlayer is an example of Very Large Hammer design pattern. We only
want a few features of the BlackjackPlayer class.

Refactoring. To avoid over-engineering these, we could refactor player into two components. An object
that handles hand-filling, and an object that handles betting strategies.

The dealer would only use the hand-filling component of a player.

Mutability. To avoid over-engineering this, we can look at features that are likely to change. The dealer
hand-filling rules seem well-established throughout the industry.

Further, a change to the hand-filling rules of the dealer would change the nature of the game enough that
we would be hard-pressed to call in Blackjack. A different hand-filling rule would constitute a new kind of
game.

We’re confident, then, that the dealer’s hand can be a feature of the BlackjackGame class.

41.4 BlackjackPlayer Class

class BlackjackPlayer

BlackjackPlayer is a subclass of Player that responds to the various queries and interactions with the
game of Blackjack.

41.4.1 Fields

BlackjackPlayer.hand
Some kind of List which contains the initial Hand and any split hands that may be created.

41.4.2 Constructors

BlackjackPlayer.__init__(self, table)

Parameters table (BlackjackTable) – The table on which bets are placed

Uses the superclass to construct a basic Player. Uses the newGame() to create an empty List fot
the hands.

41.4.3 Methods

BlackjackPlayer.newGame(self)

262 Chapter 41. Blackjack Game Class

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Creates a new, empty list in which to keep Hands.

BlackjackPlayer.placeBets(self)

Creates an empty Hand and adds it to the List of Hands.

Creates a new ante Bet. Updates the Table with this Bet on the initial Hand.

BlackjackPlayer.getFirstHand(self)

Returns the initial Hand. This is used by the pre-split parts of the Blackjack game, where the
player only has a single Hand.

BlackjackPlayer.__iter__(self) → iter

Returns an iterator over the List of Hands this player is currently holding.

BlackjackPlayer.evenMoney(self, hand) → bool

Parameters hand (Hand) – the hand which is offered even money

Returns true if this Player accepts the even money offer. The superclass always rejects this offer.

BlackjackPlayer.insurance(self, hand) → bool

Parameters hand (Hand) – the hand which is offered insurance

Returns true if this Player accepts the insurance offer. In addition to returning true, the Player
must also create the Insurance Bet and place it on the BlackjackTable. The superclass always
rejects this offer.

BlackjackPlayer.split(self, hand) → Hand

Parameters hand (Hand) – the hand which is offered an opportunity to split

If the hand has two cards of the same rank, it can be split. Different players will have different
rules for determine if the hand should be split ot not.

If the player’s rules determine that it wil accepting the split offer for the given Hand, hand, then
the player will

1. Create a new Ante bet for this hand.

2. Create a new one-card Hand from the given hand and return that new hand.

If the player’s rules determine that it will not accept the split offer, then None or null is returned.

If the hand is split, adding cards to each of the resulting hands is the responsibility of the Game.
Each hand will be played out independently.

BlackjackPlayer.doubleDown(self, hand) → boolean

Parameters hand (Hand) – the hand which is offered an opportunity to double down

Returns true if this Player accepts the double offer for this Hand. The Player must also update
the Bet associated with this Hand. This superclass always rejects this offer.

BlackjackPlayer.hit(self, hand) → boolean

Parameters hand (Hand) – the hand which is offered an opportunity to hit

Returns true if this Player accepts the hit offer for this Hand. The superclass accepts this offer if
the hand is 16 or less, and rejects this offer if the hand is 17 more more. This mimics the dealer’s
rules.

Failing to hit and failing to double down means the player is standing pat.

BlackjackPlayer.__str__(self) → str

41.4. BlackjackPlayer Class 263

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Displays the current state of the player, and the various hands.

41.5 Card Rework

Card must provide the Game some information required to offer insurance bets.

We’ll need to add an offerInsurance() method on the class Card. The Card superclass must respond with
False. This means that the FaceCard subclass will also respond with False.

The AceCard subclass, however, must respond with True to this method.

41.6 Hand Rework

Hand should retain some additional hand-specific information. Since some game allow resplitting of split
hands, it’s helpful to record whether or not a player has declined or accepted the offer of a split.

41.6.1 Fields

Hand.player
Holds a reference to the Player who owns this hand. Each of the various offers from the Game are
delegated to the Player.

Hand.splitDeclined
Set to true if split was declined for a splittable hand. Also set to true if the hand is not splittable.
The split procedure will be done when all hands return true for split declined.

41.6.2 Methods

Hand.splittable(self) → bool

Returns true if this hand has a size of two and both Cards have the same rank. Also sets
Hand.splitDeclined to true if the hand is not splittable.

Hand.getUpCard(self) → Card

Returns the first Card from the list of cards, the up card.

41.7 BlackjackGame Class

class BlackjackGame

BlackjackGame is a subclass of Game that manages the sequence of actions that define the game of Blackjack.

Note that a single cycle of play is one complete Blackjack game from the initial ante to the final resolution
of all bets. Shuffling is implied before the first game and performed as needed.

264 Chapter 41. Blackjack Game Class

Building Skills in Object-Oriented Design, Release 2.2.1-Python

41.7.1 Fields

BlackjackGame.shoe
This is the dealer’s Shoe with the available pool of cards.

BlackjackGame.dealer
This is the dealer’s Hand.

41.7.2 Constructors

BlackjackGame.__init__(self, shoe, table)

Parameters

• shoe (Shoe) – The dealer’s shoe, populated with the proper number of decks

• table (BlackjackTable) – The table on which bets are placed

Constructs a new BlackjackGame, using a given Shoe for dealing Cards and a BlackjackTable
for recording Bets that are associated with specific Hands.

41.7.3 Methods

BlackjackGame.cycle(self)

A single game of Blackjack. This steps through the following sequence of operations.

1. Call BlackjackPlayer.newGame() to reset the player. Call
BlackjackPlayer.getFirstHand() to get the initial, empty Hand. Call Hand.add()
to deal two cards into the player’s initial hand.

2. Reset the dealer’s hand and deal two cards.

3. Call BlackjackGame.hand.getUpCard() to get the dealer’s up card. If this card returns
true for the Card.offerInsurance(), then use the insurance() method.

Only an instance fo the subclass AceCard will return true for offerInstance(). All other
Card classes will return false.

4. Iterate through all Hands, assuring that no hand it splittable, or split has been declined for
all hands. If a hand is splittable and split has not previously been declined, call the Hand‘s
split() method.

If the split() method returns a new hand, deal an additional Card to the original hand
and the new split hand.

5. Iterate through all Hands calling the fillHand() method to check for blackjack, deal cards
and check for a bust. This loop will finish with the hand either busted or standing pat.

6. While the dealer’s hand value is 16 or less, deal another card. This loop will finish with the
dealer either busted or standing pat.

7. If the dealer’s hand value is bust, resolve all ante bets as winners. The OutcomeAnte should
be able to do this evaluation for a given Hand compared against the dealer’s bust.

8. Iterate through all hands with unresolved bets, and compare the hand total against the
dealer’s total. The OutcomeAnte should be able to handle comparing the player’s hand and
dealer’s total to determine the correct odds.

BlackjackGame.insurance(self)

41.7. BlackjackGame Class 265

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Offers even money or insurance for a single game of blackjack. This steps through the following
sequence of operations.

1. Get the player’s BlackjackPlayer.getFirstHand(). Is it blackjack?

If the player holds blackjack, then call BlackjackPlayer.evenMoney().

If the even money offer is accepted, then move the ante bet to even money at 1:1. Resolve
the bet as a winner. The bet will be removed, and the game will be over.

2. Call BlackjackPlayer.insurance(). If insurance declined, this method is done.

3. If insurance was accepted by the player, then check the dealer’s hand. Is it blackjack?

If the dealer hold blackjack, the insurance bet is resolved as a winner, and the ante is a
loser; the bets are removed and the game will be over.

If the dealer does not have blackjack, the insurance bet is resolved as a loser, and the ante
remains.

If insurance was declined by the player, nothing is done.

BlackjackGame.fillHand(self, hand)

Parameters hand (Hand) – the hand which is being filled

Fills one of the player’s hands in a single game of Blackjack. This steps through the following
sequence of operations.

1. While points are less than 21, call BlackjackPlayer.doubleDown() to offer doubling down.
If accepted, deal one card, filling is done.

If double down is declined, call BlackjackPlayer.hit() to offer a hit. If accepted, deal one
card. If both double down and hit are declined, filling is done, the player is standing pat.

2. If the points are over 21, the hand is bust, and is immediately resolved as a loser. The game
is over.

BlackjackGame.__str__(self) → str

Displays the current state of the game, including the player, and the various hands.

41.8 Blackjack Game Deliverables

There are eight deliverables for this exercise.

• The stub BlackjackPlayer class.

• A class which performs a unit test of the BlackjackPlayer class. Since this player will mimic the
dealer, hitting a 16 and standing on a 17, the unit test can provide a variety of Hand s and confirm
which offers are accepted and rejected.

• The revised Hand class.

• A class which performs a unit tests of the Hand class. The unit test should create several instances of
Card, FaceCard and AceCard, and add these to instances of Hand, to create various point totals. Since
this version of Hand interacts with a BlackjackPlayer, additional offers of split, double, and hit can
be made to the Hand.

• The revised Card class.

• Revised unit tests to exercise the Card.offerInsurance() method.

• The revised BlackjackGame class.

266 Chapter 41. Blackjack Game Class

Building Skills in Object-Oriented Design, Release 2.2.1-Python

• A class which performs a unit tests of the BlackjackGame class. The unit test will have to create a
Shoe that produces cards in a known sequence, as well as BlackjackPlayer. The cycle() method,
as described in the design, is too complex for unit testing, and needs to be decomposed into a number
of simpler procedures.

41.8. Blackjack Game Deliverables 267

Building Skills in Object-Oriented Design, Release 2.2.1-Python

268 Chapter 41. Blackjack Game Class

CHAPTER

FORTYTWO

SIMPLE BLACKJACK PLAYER CLASS

Our objective is to provide variant player strategies. This chapter will upgrade our stub player class to
give it a complete, working strategy. This simple player can serve as the superclass for more sophisticated
strategies.

42.1 Blackjack Player Overview

In addition to the player’s own hand, the player also has the dealer’s up card available for determining their
response to the various offers. The player has two slightly different goals: not bust and have a point total
larger than the dealer’s. While there is some overlap between these goals, these lead to two strategies based
on the dealer’s up card. When the dealer has a relatively low card (2 through 6), the dealer has an increased
probability of going bust, so the player’s strategy is to avoid going bust. When the dealer has a relatively
high card (7 through 10), the dealer will probably have a good hand, and the player has to risk going bust
when looking for a hand better than the dealer’s.

A Simple Strategy. We’ll provide a few rules for a simple player strategy. This strategy is not particularly
good. Any book on Blackjack, and a number of web sites, will have a superior strategy. A better strategy
will also be considerably more complex. We’ll implement this one first, and leave it to the student to research
more sophisticated strategies.

1. Reject insurance and even money offers.

2. Accept split for aces and eights. Reject split on other pairs.

3. Hit any hand with 9 or less. The remaining rules are presented in the following table.

Table 42.1: Blackjack Player Strategy
Player Shows 2-6 7-10, Ace
10 or 11 hit double down
hard 12 to 16 stand hit
soft 12 to 16 hit hit
17 to 21 stand stand

These rules will boil down to short sequences of if-statements in the split(), hit() and doubleDown()
methods.

In some contexts, complex if-statements are deplorable. Specifically, complex if-statements are often a stand-
in for proper allocation of responsibility. In this class, however, the complex if-statements implement a kind
of index or lookup scheme. We have, for this exercise, 8 alternatives which depend on a two-dimensional
index. One dimension contains four conditions that describe the player’s hand. The other dimension involves
two conditions that describe the dealer’s hand. When we look at the various collections, we see that we can
index by primitive types or object instances. In this case, we are indexing by conditions; we would have to
map each condition to either a numeric code or a distinct object in order to eliminate the if-statements.

269

Building Skills in Object-Oriented Design, Release 2.2.1-Python

When we look at the conditions that describe the player’s hand, these are clearly state-like objects. Each
card can be examined and a state transition can be made based on the the current state and the card. After
accepting a card, we would check the total and locate the appropriate state object. We can then use this
state object to index into a collection.

When we look at the conditions that describe the dealer’s hand, there are only two state-like objects. The
dealer’s op card can be examined, and we can locate the appropriate state object. We can use this state
object to index into a collection.

The final strategy could be modeled as a collection with a two-part index. This can be nested collection
objects, or a Map that uses a 2-valued tuple as an index.

42.2 SimpleBlackjackPlayer Design

class SimpleBlackjackPlayer

SimpleBlackjackPlayer is a subclass of BlackjackPlayer that responds to the various queries and inteac-
tions with the game of Blackjack.

This player implements a very simple strategy, shown above in the Blackjack Player Strategy table.

42.2.1 Methods

SimpleBlackjackPlayer.evenMoney(self, hand) → boolean

Parameters hand (Hand) – the hand which is being offered even money

Returns true if this Player accepts the even money offer. This player always rejects this offer.

SimpleBlackjackPlayer.insurance(self, hand) → boolean

Parameters hand (Hand) – the hand which is being offered insurance

Returns true if this Player accepts the insurance offer. This player always rejects this offer.

SimpleBlackjackPlayer.split(self, hand) → Hand

Parameters hand (Hand) – the hand which is being offered the opportunity to split

Returns a new, empty Hand if this Player accepts the split offer for this Hand. The Player must
create a new Hand, create an Ante Bet and place the on the new Hand on the BlackjackTable.

If the offer is declined, both set Hand.splitDeclined to true and return null.

This player splits when the hand’s card’s ranks are aces or eights, and declines the split for all
other ranks.

SimpleBlackjackPlayer.doubleDown(self, hand) → boolean

Parameters hand (Hand) – the hand which is being offered the opportunity to double
down

Returns true if this Player accepts the double offer for this Hand. The Player must also update
the Bet associated with this Hand.

This player tries to accept the offer when the hand points are 10 or 11, and the dealer’s up card
is 7 to 10 or ace. Otherwise the offer is rejected.

Note that some games will restrict the conditions for a double down offer. For example, some
games only allow double down on the first two cards. Other games may not allow double down
on hands that are the result of a split.

270 Chapter 42. Simple Blackjack Player Class

Building Skills in Object-Oriented Design, Release 2.2.1-Python

SimpleBlackjackPlayer.hit(self, hand) → boolean

Parameters hand (Hand) – the hand which is being offered the opportunity to hit

Returns true if this Player accepts the hit offer for this Hand.

If the dealer up card is from 2 to 6, there are four choices for the player. When the hand is 11 or
less, hit. When the hand is a hard 12 to 16, stand. When the hand is a soft 12 to soft 16 (hard
2 to hard 6), hit. When the hand is 17 or more, stand.

If the dealer up card is from 7 to 10 or an ace, there are four choices for the player. When the
hand is 11 or less, double down. When the hand is a hard 12 to 16, hit. When the hand is a soft
12 to soft 16 (hard 2 to hard 6), hit. When the hand is 17 or more, stand.

Otherwise, if the point total is 9 or less, accept the hit offer.

42.3 Blackjack Player Deliverables

There are two deliverables for this exercise.

• The SimpleBlackjackPlayer class.

• A class which performs a unit test of the SimpleBlackjackPlayer class. The unit test can provide a
variety of Hands and confirm which offers are accepted and rejected.

42.3. Blackjack Player Deliverables 271

Building Skills in Object-Oriented Design, Release 2.2.1-Python

272 Chapter 42. Simple Blackjack Player Class

CHAPTER

FORTYTHREE

VARIANT GAME RULES

There are a number of variations in the sequence of game play offered by different casinos. In addition to
having variations on the player’s strategy, we also need to have variations on the casino rules.

43.1 Variant Game Overview

There are wide variations in the ways people conduct Blackjack games. We’ll list a few of the variations we
have heard of.

• Additional Win Rule: Charlie. Informal games may allow a “five-card Charlie” or “six-card
Charlie” win. If the player’s hand stretches to five (or six) cards, they are paid at 1:1.

• Additional Offer: Surrender. This variation allows the player to lose only half their bet. The offer
is made after insurance and before splitting. Surrender against ace and 10 is a good strategy, if this
offer is part of the game.

• No Resplit. This variation limits the player to a single split. In the rare event of another matching
card, resplitting is not allowed.

• No Double After Split. This variation prevents the player from a double-down after a split. Ordi-
narily, splitting Aces is followed by double-downs because 4/13 cards will lead to blackjack.

• Dealer Hits Soft 17. This variation forces the dealer to hit soft 17 instead of standing. This tends
in increase the house edge slightly.

• Blackjack Pays 6:5. This variation is often used in single-deck games. It limits the value of card-
counting, since the house edge is stacked more heavily against the player.

The restrictions on splitting and doubling down are small changes to the offers made by a variation on
BlackjackGame. This would require creating a subclass of BlackjackGame to implement the alternative
rules.

The variations in the dealer’s rules (hitting a soft 17) is also a small change best implemented by creating a
subclass of BlackjackGame.

Reducing the number of decks is an easy change to our application. Since our main application constructs
the Shoe before constructing the Game, it can construct a single-deck Shoe.

Payout Odds. Handling the variations in the payout odds is a bit more complex.

1. The Player creates each Hand, associated with a Bet. The Bet is associated with the simple Ante
outcome.

2. At the end of the Game, the Hand does a comparison between itself and the Dealer’s Hand to determine
the odds for the Ante outcome.

It’s a 1:1 Outcome if the player does not have blackjack.

273

Building Skills in Object-Oriented Design, Release 2.2.1-Python

It’s a 3:2 bet if the player does have blackjack.

Allocating this responsiblity to the Hand was a bad design decision.

We should have allocated responsibility to the Game. We will need to add a method to the Game which
compares a player’s Hand with the dealer’s Hand, sets the Outcome correctly, and resolves the bet.

43.2 BlackjackGame Rework

BlackjackGame is a subclass of Game that manages the sequence of actions that define the game of Blackjack.

Note that a single cycle of play is one complete Blackjack game from the initial ante to the final resolution
of all bets. Shuffling is implied before the first game and performed as needed.

43.2.1 Methods

BlackJackGame.adjustOdds(self, hand)

Parameters hand (Hand) – The hand which has the ante bet odd’s corrected

This method is used at the end of the game to resolve the player’s Ante bet.

If the player went bust, their hand was already resolved.

If the dealer went bust, all remaining bets are resolved as winners.

The remaining situation (both player and dealer have non-bust hands) requires this
BlackjackGame.adjustOdds() method. This method will set the hand’s outcome’s odds to
3:2 if the player holds Blackjack.

43.3 OneDeckGame Class

OneDeckGame is a subclass of BlackjackGame that manages the sequence of actions for a one-deck game of
Blackjack with a 6:5 blackjack OutcomeAnteLowOdds.

Typically, this is built with a one-deck instance of Shoe.

The OneDeckGame.adjustOdds() method overrides the superclass. This method will set the hand’s out-
come’s odds to 6:5 if the player holds Blackjack.

43.4 Variant Game Deliverables

There are three deliverables for this exercise.

• The revised BlackjackGame class. All of the original unit tests should apply to the refactored function
that sets the outcome odds.

• The OneDeckGame class.

• A class to perform a unit test of the OneDeckGame class.

274 Chapter 43. Variant Game Rules

CHAPTER

FORTYFOUR

CONCLUSION

The game of Blackjack has given us an opportunity to further extend and modify an application with a
considerable number of classes and objects. These exercises gave us an opportunity to work from a base of
software, extending and refining our design.

We omitted concluding exercises which would integrate this package with the Simulator and collect statistics.
This step, while necessary, doesn’t include many interesting design decisions. The final deliverable should
be a working application that parses command-line parameters, creates the required objects, and creates an
instance of Simulator to collect data.

We have specifically omitted delving into the glorious details of specific player strategies. We avoided these
details for two reasons.

• Intellectual Property. We didn’t create any strategies. Rather than get permission to quote existing
blackjack strategies, we leave it to the interested student to either buy any of the available books on
Blackjack or download a strategy description from the Internet.

• Irrelevant Complexity. We find that all of the detailed programming required to implement a
particular strategy doesn’t have too much to do with object-oriented design. Rather, it is an exercise
in construction of detailed if-statements. It appears to be the wrong focus for learning OO design.

Next Steps. There are a number of logical next steps for the programmers looking to build skills in
object-oriented design. We’ll split these along several broad fronts.

• Additional Technology. There are several technology directions that can be pursued for further
design experience.

This application is a command-line application, which makes it easy to build and test.

Another area for building skills in design is the implementation of programs that make extensive use
of a database.

A graphical user interface (GUI) application will add the technology for graphical display, and re-
sponding to user input events.

A web application will add the technology for HTTP web transactions, HTML, CSS, and – potentially
– a database.

• Application Areas. We selected simulation because it’s part of the historical foundation for object-
oriented programming. We selected casino games because they have a reasonable level of complexity.

Clearly, numerous other application areas can be selected as the basis for problems. The number and
variety of human endevors that can be automated is quite large.

Moving beyond simulation or doing simulation on something more complex than a casino table game
is a good next step.

• Additional Depth in Design Patterns. It’s possible to use additional and different design patterns
to extend and refine the application that you have built.

275

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Any book or web site on OO design patterns will provide numerous examples of patterns. These can
be used for add flexibility to these casino game simulators.

276 Chapter 44. Conclusion

Part V

Fit and Finish

277

Building Skills in Object-Oriented Design, Release 2.2.1-Python

A finished application includes more than just a working program. There are two additional questions.

• How do you know it works? That is, do you have any tests that demonstrate that it works correctly?

We address this by creating unit tests.

• How is it designed?

We address this by creating documentation within the program’s source files. This documentation can
be extracted to create a tidy, complete reference for all the classes and functions within our application.

279

Building Skills in Object-Oriented Design, Release 2.2.1-Python

280

CHAPTER

FORTYFIVE

PYTHON UNITTEST TESTING

Python unittest encourages us to build a test module separate from the application class we’re testing. The
test module will have one more more TestCase classes, each of which has one or more test methods.

Workflow. One approach to unit testing is to build the tests first, then write a class which at least doesn’t
crash, but may not pass all the tests. Once we have this in place, we can now debug the tests until everything
looks right. This is called test-driven development.

We’d start with unittest files in the test directory of our project. In this case, we’d have testCard.py and
testDeck.py. We also need skeleton files in our src directory: cards.py and deck.py.

Generally, the process for creating a class with the unit tests has the following outline.

1. Write a skeleton for the target class. One that doesn’t really do anything, but at least compiles and
has the right method names.

2. Write the test class. This will create instances of the target class, exercise those instances, and make
assertions about the state of those instances.

3. Run the test, knowing that will fail. Sometimes our target class is so simple that we get it right the
first time. Other times, the target class is more complex and there are parts we didn’t finish when we
wrote the skeleton version.

4. While tests are still failing.

(a) Refactor. We finish our target class. Sometimes we simply fill in the missing parts. Other times,
we have more serious design work to do.

(b) Run the test suite.

5. At this point, the target class passes the suite of tests. However, it may still fail to meet other quality
criteria. For example, it may have a convoluted structure, or it may be inefficient, or it may lack
appropriate documentation. In any case, we’re not really done with development.

While our target class fails to meet our quality standards.

(a) Refactor. We correct the quality problems in our target class.

(b) Run the test suite. If we have refactored properly, the tests still pass. If we have introduced a
problem, tests will fail.

Using unittest. A test runner will locate all the TestCase instances, execute them and summarize the
pass/fail status of each individual test method.

Generally, we’ll organize our project directory to have a test directory and a src directory.

Here is an example of running a test from the command line.

281

Building Skills in Object-Oriented Design, Release 2.2.1-Python

python test/testDeck.py
..
--
Ran 2 tests in 0.001s

OK

45.1 Dependencies

Let’s assume we’ve built two classes in some chapter; pretend that we’re building Card and Deck . One class
defines a standard playing card and the other class deals individual card instances. We need unit tests for
each class.

Generally, unit tests are taken to mean that a class is tested in isolation. In our case, a unit test for Card is
completely isolated because it has no dependencies.

However, our Deck class depends on Card, leading us to make a choice. Either we have to create a Mock
Card that can be used to test Deck in complete isolation, or our Deck test will depend on both Deck and
Card. The choice depends on the relative complexity of Card, and whether or not Deck and Card will evolve
independently.

Some folks demand that all testing be done in “complete” isolation with a lot of mock classes. Other folks
are less strict on this, recognizing that Deck and Card are very tightly coupled and Card is very simple. The
Mock Card is almost as complex as Card.

45.2 Example

testCard.py

import unittest
import card
class TestCard(unittest.TestCase):

def setUp(self):
self.aceClubs= card.Card(1,card.Clubs)
self.twoClubs= card.Card(2,card.Clubs)
self.tenClubs= card.Card(10,card.Clubs)
self.kingClubs= card.Card(13,card.Clubs)
self.aceDiamonds= card.Card(1,card.Diamonds)

def testString(self):
self.assertEquals(" AC", str(self.aceClubs))
self.assertEquals(" 2C", str(self.twoClubs))
self.assertEquals("10C", str(self.tenClubs))

def testOrder(self):
self.assertTrue(self.tenClubs < self.kingClubs)
self.assertFalse(self.tenClubs >= self.kingClubs)
self.assertTrue(self.kingClubs < self.aceClubs)
self.assertTrue(self.aceClubs == self.aceDiamonds)

if __name__ == "__main__":
unittest.main()

1. Generally, we create a number of object instances in the setup method. In this case, we created five
distinct Card instances. These object constructors imply several things in our card module.

282 Chapter 45. Python unittest Testing

Building Skills in Object-Oriented Design, Release 2.2.1-Python

(a) There will be a set of manifest constants for the suits: Clubs, Diamonds, Hearts and Spades.

(b) The constructor (Card.__init__()) will accept a rank and a suit constant.

Note that we didn’t write tests to create all suits or all ranks. We can add these later. In some cases,
where we are working in large teams, we may need to produce tests which exhaustively enumerate all
possibe alternatives. For the purposes of learning OO design, we only need to sketch out our class by
defining the tests it must pass.

2. In testString(), we exercise the __str__() method of the Card class to be sure that it formats cards
correctly. These tests tell us what the formatting algorithm will look like.

3. In testOrder(), we exercise the __cmp__() method of the Card class to be sure that it compares card
ranks correctly. Note that we have explicitly claimed that the equality test only checks the rank and
ignores the suit; this is typical for Blackjack, but won’t work well for Bridge or Solitaire.

Note that we didn’t exhaustively test all possible comparisons among the four cards we defined. We
only need to execute the various paths within the __cmp__() method. When we initially create the
test class, we may not have written the Card class yet. What we have to do is develop enough tests to
get started, and add tests as we start writing our Card class.

4. This is the standard main program for unittest modules.

Our initial Card class needs to have just enough of an API to allow the tests to run. Here’s our skeleton
Card class.

card.py

Diamonds= "D"
Clubs= "C"
Spades= "S"
Hearts= "H"
class Card(object):

def __init__(self, rank, suit):
pass

def __str__(self):
return ""

def __cmp__(self):
return 0

This class will – minimally – participate in the testing. It won’t pass many tests, but it serves as a basis for
developing the class implementation.

45.2. Example 283

Building Skills in Object-Oriented Design, Release 2.2.1-Python

284 Chapter 45. Python unittest Testing

CHAPTER

FORTYSIX

PYTHON DOCTEST TESTING

Python doctest module requires us to put our test cases and expected results into the docstring comments
on a class, method or function. The test case information becomes a formal part of the API documentation.
When a docstring includes doctest comments, the string serves dual duty as formal test and a working
example.

Workflow. To use doctest is to build the class, exercise it in the Python interpreter, then put snippets of
the interactive log into our docstrings.

Generally, we follow this outline.

1. Write and debug the class, including docstring comments.

2. Exercise the class in an interactive Python interpreter. You can use IDLE or any other command line.

3. Copy the snippets out of the interactive log. Paste them into the docstring comments.

4. Run doctest to be sure that you’ve copied and pasted correctly.

Using Doctest. There are two ways to use doctest.

Start with Python 2.6, you can run doctest from the command line like this.

python -m doctest -v roulette.py

You can also add a test function to a module which runs doctest on the module. This test function should
have a name which begins with _ to make it a name that’s private to the module and not part fo the module’s
interface.

def _test():
import doctest
doctest.testmod()

if __name__ == "__main__":
_test()

This _test() function is the main function of the module, so that when you run the module, it performs
it’s internal doctests.

python roulette.py

Test-Driven Development. Note that the strict test-driven development (TDD) approach to unit testing
is to build the tests first, then write a class which at least doesn’t crash, but may not pass all the tests. Once
we have this in place, we can now debug the tests until everything looks right. This is called test-driven
development, because the test cases come first, driving the rest of the work.

The test-driven approach doesn’t fit well with doctest. It’s very difficult to develop the test output without
having the class available to exercise interactively. Also, we don’t want to put comprehensive test scripts
into our class docsting; they can easily get too long to be useful.

285

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Also, it’s difficult to “fake” the interactive log when designing the class. It’s usually simpler to have a working
class and then add test cases.

Finally, we need to pick essential features for demonstration in the doctest comments. We can’t easily write
comprehensive tests that cover all features or all line of code in doctest comments.

Limitations. Because of a few small gaps in Python 2’s support for Unicode, it’s difficult to use doctest for
testing the Card class.

Specifically, Python 2 source is assumed to be ASCII. The Unicode results of formatting a card can’t easily
be put into the Python source. Even if the explicit source encoding comment is used, the doctest module
can’t cope well with tests that involve Unicode.

It can be challenging to do stand-alone unit tests with Mock classes to replace real classes. This can make
for a rather long doctest string.

46.1 Example

Let’s assume we’ve built two classes in some chapter; pretend that we’re building Card and Deck. One
class defines a standard playing card and the other class deals individual card instances. We’ll define some
minimal doctests.

The first step is to develop our baseline class. Here’s a module that seems like it works.

This version uses ASCII suit names instead of Unicode suit names.

card.py - Initial

Clubs="C"
Diamonds="D"
Hearts="H"
Spades="S"

class Card(object):
"""The card superclass, appropriate for number cards.

.. todo:: Doctest goes here
"""
def __init__(self, rank, suit):

self.rank= rank
self.suit= suit
self.points= rank

def hardValue(self):
return self.points

def softValue(self):
return self.points

def __eq__(self, other):
return self.rank == other.rank

def __lt__(self, other):
return self.rank < other.rank

def __le__(self, other):

286 Chapter 46. Python doctest Testing

Building Skills in Object-Oriented Design, Release 2.2.1-Python

return self.rank <= other.rank

def __gt__(self, other):
return self.rank > other.rank

def __ge__(self, other):
return self.rank >= other.rank

def __str__(self):
return self.unicode()

def unicode (self):
return u"%d%s" % (self.rank, self.suit)

class AceCard(Card):
"""The Ace class.

.. todo:: Doctest goes here
"""
def __init__(self, suit):

self.rank= 14
self.suit= suit

def hardValue(self):
return 1

def softValue(self):
return 11

def unicode (self):
return u"A%s" % (self.suit,)

Exercise the Class. Once we have the class, we need to exercise it using interactive Python. Here’s what
we saw.

MacBook-5:python slott$ python
Python 2.6.3 (r263:75184, Oct 2 2009, 07:56:03)
[GCC 4.0.1 (Apple Inc. build 5493)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> from card import *
>>> c2d = Card(2, Diamonds)
>>> str(c2d)
'2D'
>>> cas = AceCard(Spades)
>>> str(cas)
'AS'
>>> cas.softValue()
11

During our session, small parts of the script show the preferred use cases for our class. We copy these from
the interactive session and paste them into our class docstrings.

Update the Docstrings. After we have some output that shows correct behavior of our class, we can put
that output into the class docstrings. Here’s our updated card.py module with doctest comments.

46.1. Example 287

Building Skills in Object-Oriented Design, Release 2.2.1-Python

card.py - Revised

Clubs="C"
Diamonds="D"
Hearts="H"
Spades="S"
class Card(object):

"""Create a new Ordinary (non-Ace, non-Face) Card.

>>> c2d = Card(2, Diamonds)
>>> str(c2d)
'2D'
"""
etc.

class AceCard(Card):
"""The Ace class.

>>> cas = AceCard(Spades)
>>> str(cas)
'AS'
>>> cas.softValue()
11
"""

46.2 Add the Test Framework

There are two doctest frameworks. Doctest can be used for “stand-alone” testing. It can also be incorpo-
rated into unittest testing.

The general approach to stand-alone testing is to add the following to a module. When you run the module,
it executes all doctest strings found throughout the module. Tests will pass silently. Any output is a failure
of some kind.

def _test():
import doctest
doctest.testmod()

if __name__ == "__main__":
_test()

46.3 Mixed unittest and doctest

A more complete approach is to use unittest for most testing and doctest to emphasize specific use cases
in the docstrings. When doing this, you’ll have a test module that looks something like the following.

testCard.py

import unittest
import doctest
import cards

suite = unittest.TestSuite()

288 Chapter 46. Python doctest Testing

Building Skills in Object-Oriented Design, Release 2.2.1-Python

suite.addTest(doctest.DocTestSuite(cards))
runner = unittest.TextTestRunner()
runner.run(suite)

46.3. Mixed unittest and doctest 289

Building Skills in Object-Oriented Design, Release 2.2.1-Python

290 Chapter 46. Python doctest Testing

CHAPTER

FORTYSEVEN

PYTHON DOCUMENTATION

Application Program Interface (API) documentation is absolutely essential. The easiest and most reliable
way to produce this documentation is by using a tool that examines the source itself and develops the
document directly from the programs. By using cleverly formatted Python docstrings, we can augment that
analysis with easy-to-understand descriptions.

In the case of Python, there are several tools for extracting documentation from the source. Two populare
ones are

• Epydoc http://epydoc.sourceforge.net/.

• Sphinx http://sphinx.pocoo.org/.

Workflow. Generally, the workflow has the following outline.

1. Develop the skeleton class.

2. Develop unit tests for most features.

3. Rework the class until it passes the unit tests. This may involve adding or modifying tests as we
understand the class better. This also involves writing docstrings for modules, classes and methods.

4. Revisit the modules, classes and methods, finishing each description using the ReStructured Text
(RST) markup language. We won’t cover all of this language, just enough to provide a sense of how
the tool is used to make clean, professional API documentation.

5. Run the documentation tool (epydoc or sphinx) to create the documentation. Fix any errors in your
docstring markup. Also, rework the documentation as necessary to be sure that you’ve capture im-
portant information about the class, the methods, the design decisions.

Using the Epydoc. When you install Epydoc, it creates a script that you can use. To run Epydoc, you’ll
use a command similar to the following.
epydoc -v --docformat restructuredtext --output apidoc card.py

The -v option provides detailed debugging information for incorrectly formatted docstrings. The
--docformat option specifies that the various docstrings use RST markup. The --output option defines the
directory to which the documentation is written. The arguments (in this case, card.py) is a list of package
directories or module files to be documented.

Note that RST is not the default markup language for Epydoc. You must either specify this on the command
line or in the module source. To identify the formatting in each module you must provide the format as the
value of a __docformat__ module global variable.

#!/usr/bin/env python
"""
Some docstring for a module.
"""
__docformat__ = "restructuredtext en"

291

http://epydoc.sourceforge.net/
http://sphinx.pocoo.org/

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Using Sphinx. When you install Sphinx, it creates a script that you can use.

Generally, you’ll run the $ sphinx-quickstart script to create an empty documentation directory.

$ sphinx-quickstart

This interactive script will ask a number of questions, allowing you to pick sensible directories and file names.

You’ll need to include two extensions to enable Sphinx to create your API documentation.

• autodoc will create module documents based on the RST markup in the docstrings.

• autosummary will create summaries of packages and modules.

You’ll then add content to your index.rst file. This file is the root for the documentation. It can be very
simple, or or it can do include other files to break a large document into manageable pieces.

The most important commands are the following.

To run Sphinx, you’ll use a command similar to the following.

$ sphinx-build -b html sourcedir builddir

ReStructured Text. Basic RST rules allow you to have a nice-looking document, with numbered and
bulleted lists. You can include code examples and doctest results, also. With the “inline” markup, you can
specify italic, bold or code samples.

Additionally, RST offers “field” markup to tie your documentation to specific pieces of Python syntax. This
includes method parameters, return values, class instance variables, module variables, etc.

47.1 Basic RST Markup

We write our module, class and method docstrings using the RST markup language. RST is one of many
structured text markup languages, where simple indentation and formatting rules are used to interpret your
documetation. These formatting rules help the tools deduces the structure of your document (sections, list,
etc.) and the presentation (bold, italic, or font changes.) These rules are – generally – pretty simple rules
that plain text documents have been using since documents were first stored on computers.

Fundamentally, the RST formatting rules are implemented by a module named docutils. For additional
documentation on RST, see the Sphinx web site (http://sphinx.pocoo.org) and the Docutils web site
(http://docutils.sourceforge.net/).

In addition to document structure, deduced from the layout, RST also uses explicit directives and interpreted
text (or “inline”) markup.

Document Structure. Generally, you must write in paragraphs. A blank line is the end of one paragraph
and the beginning of another. Also, different indentation will signal paragaph changes. The indent rule is
handy for making bullet lists or numbered lists.

A line that is indented and begins with - is a bulleted list.

A line that starts with digits and periods is a numbered list. Lists can nest within each other.

If you need to have sections and subsections (you’ll almost always do this in the docstring for a module or
package), you “underline” the title with lines of ===, --- or ~~~.

To include code code samples and doctest, you’ll use either the simple :: marker. Or the explicit ..
code-block:: directive.

Generally, the first paragraph must be a pithy summary of the material to follow. This paragraph will often
be used in overviews and index pages.

292 Chapter 47. Python Documentation

http://sphinx.pocoo.org
http://docutils.sourceforge.net/

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Example testCard Module. For example, our module document might look like this.

#!/usr/bin/env python
"""The testCard module includes a number of unit tests for the Card
and Deck classes in the card module.

Overview
========

This module tests the following classes:
- Card
- Deck

Card Tests

.. autoclass:: TestCards

Deck Tests

.. autoclass:: TestDeck

Usage
=====

This module uses the standard text runner, so it can be executed
from the command line as follows::

python testcard.py
"""

1. We started with an overview paragraph. It summarizes the module in a single sentence.

2. We have an underlined section heading. In this document, the highest level of the outline is underlined
with =‘s. The second level is underlined with -.

RST is very flexible with the underlining rules.

3. We have a bullet list. Simply indent, and begin the paragraph with -. Lists can be nested, the RST
processor will work this out based on the indentation of the various sublists.

4. We used the .. autoclass:: directive to gather docstring documentation from the class docstring
and include it in the overall module docstring.

5. We included a literal block of code after a paragraph which ends with ::. The following material is
indented to show what should be formatted specially.

Interpreted Text, or Inline Markup. In addition to basic document structure rules, RST includes a way
to show that a span of characters should be interpreted specially. This is sometimes called Inline Markup
because it is within the structural markup.

• *words* will render the words in italic. This can also be done with :emphasis:`words`.

• **words** will render the words in bold. This can also be done with :strong:`words`.

• ``words`` will render the words in a fixed font to indicate that it is a code sample. Literal program-
ming text can also use :literal:`words`.

Code samples can also be done with :samp:`word {replaceable}`. In this case, the material enclosed
in {} is displayed in italics: word replaceable.

47.1. Basic RST Markup 293

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Additionally, there are several cross-reference inline markup formats available for code elements.

Here’s an example of a paragraph using some inline markup to make some characters italic, other bold, and
still others a fixed-width find that makes them looke like code.

This method computes the square root of a number, *n*.
It returns a value, *r*, such that :samp:`r**2 == n`.

Note. Square root of a negative number will raise a ``TypeError`` exception.

47.2 RST Field Markup

RST Field markup is primarily used to tie your documentation directly to Python language structures. Field
markup is a separate paragraph of the form :tag arg: body. We won’t cover all of the tags, just enough
to produce basic documentation.

Field markup also provides several standard kinds of standard “formal paragraphs” within your document.
We’ll look at these separately.

Functions and Method Functions. The following tags are used to define detailed features of a method function.

• :param p: description A description of the parameter, p, for a function or method.

• :return: description A description of the return value from the function or method.

• :keyword k: description A description of the keyword parameter, k, for a function or method.

Here’s an example of a method function docstring that uses @param tags.

def __init__(self, rank, suit):
"""Build a card with a given rank and suit.

:param rank: numeric rank, ace is 1, 2-13 for 2 though King.
:param suit: String suit, use one of the module constants.
"""
self.rank= 14 if rank == 1 else rank
self.suit= suit

Classes and Modules. The following tags are used to define specific variables in a module or class.

• :ivar v: description A description of the an instance variable of a class. Generally, this will be in
the class level docstring, and will refer to one of the class’s self. variables.

• :var v: description A global variable of a module. Generally, this will be in the module docstring,
and will refer to one of the global variables created by the module.

Here’s an example of a class definition docstring that uses :ivar: tags.

class Card(object):
"""A single playing card, suitable for Blackjack or
Poker. While a suit is retained, it doesn't figure into
the ordering of cards, as it would in Bridge.

Reminder. The internal rank of an Ace is 14. The constructor,
however, expects a value of 1.

:ivar rank: the numeric rank of the card. 2-13, with ace as 14.
:ivar suit: the string suit of the card.
"""

294 Chapter 47. Python Documentation

Building Skills in Object-Oriented Design, Release 2.2.1-Python

Directives. RST has a number of useful directives available for structuring the documentation. Sphinx
uses all of the basic RST directives and adds a large number of additional directives.

A directive is an RST markup command starts with a special .. line, and may include a number of lines
indented within the directive. One of the common ones is the .. code-block:: directive. The :: is an
essential part of the directive syntax.

It looks like this.

Example.

.. code-block:: python

def fact(n):
if n == 0: return 1
return n*fact(n-1)

More Text.

The directive starts with the .. line and continues through the indented section. The directive content ends
with the end of the indentation.

Epydoc uses the :tag: syntax; it doesn’t define new RST directives. Because of this, there are two styles
for some of the more advanced markup: an Epydoc tag style and a Sphinx directive style.

Standard Paragraphs. There are several kinds of standard paragraphs that are part of any well-written
document set. These include things like

• Related Topics.

Epydoc usess the :seealso: tag to generate a “Related Topics” paragaph with references to other
documents.

Sphinx uses the .. seealso:: directive line to generate additional references.

• Admonitions (Notes, Warnings, etc).

Epydoc uses tags like :note:, :attention:, :bug:, and :warning: tags to generate standard types
of admonition paragraphs.

Sphinx uses directives like .. note::, .. attention::, and .. warning:: directives to generate
standard types of admonition paragraphs. Other adminitions include “caution”, “danger”, “error”,
“hint”, “important”, “tip”.

• Status. You can track the development and deployment status of your programs. Tags like :version:,
:todo:, :deprecated:, :since:, :status:, and change: are used by both Epydoc and Sphinx.

• Bibliographic Information. You can provide standard publication information. Tags like :author:,
:organization:, :copyright:, :license: and :contact: can be used.

47.3 Class Example

Here’s an example of a module with detailed class documentation.

#!/usr/bin/env python
"""The cards module defines the Card class and constants
for the four suits.

:author: S. Lott
:license: http://creativecommons.org/licenses/by-nc-nd/3.0/us/

47.3. Class Example 295

Building Skills in Object-Oriented Design, Release 2.2.1-Python

.. data:: Clubs
Use this to build Cards in the clubs suit

.. data:: Diamonds
Use this to build Cards in the diamonds suit

.. data:: Hearts
Use this to build Cards in the hearts suit

:.. data:: Spades:
Use this to build Cards in the spades suit

"""
Clubs="C"
Diamonds="D"
Hearts="H"
Spades="S"

class Card(object):
"""A single playing card, suitable for Blackjack or
Poker. While a suit is retained, it doesn't figure into
the ordering of cards, as it would in Bridge.

.. note:: Aces and Facecards.
Ace and Facecards are separate subclasses.

.. attribute:: rank
The numeric rank of the card. 2-13, ace has an effective
rank of 14 when used in Poker.

.. attribute:: suit
The string suit of the card. This should be from the
named constants (Clubs, Diamonds, Hearts, Spades).

"""
def __init__(self, rank, suit):

"""Build a card with a given rank and suit.

:param rank: numeric rank, 2-10. Aces and FaceCards are separate.
:type rank: integer in the range 2 to 10 inclusive.

:param suit: String suit, use one of the module constants.
"""
self.rank= rank
self.suit= suit
self.points= rank

def hardValue(self):
"""For blackjack, the hard value of this card.
:returns: int
"""
return self.points

def softValue(self):
"""For blackjack, the soft value of this card.
:returns: int
"""
return self.points

def __eq__(self, other):

296 Chapter 47. Python Documentation

Building Skills in Object-Oriented Design, Release 2.2.1-Python

"""Compare cards, ignoring suit.

>>> Card(2, Diamonds) == Card(2, Spades)
True
>>> Card(2, Diamonds) == Card(10, Spades)
False
"""
return self.rank == other.rank

def __lt__(self, other):
"""Compare cards, ignoring suit.

>>> Card(2, Diamonds) < Card(3, Spades)
True
>>> Card(10, Diamonds) < Card(10, Spades)
False
"""
return self.rank < other.rank

def __le__(self, other):
return self.rank <= other.rank

def __gt__(self, other):
return self.rank > other.rank

def __ge__(self, other):
return self.rank >= other.rank

def __str__(self):
return "%d%s" % (self.rank, self.suit)

47.3. Class Example 297

Building Skills in Object-Oriented Design, Release 2.2.1-Python

298 Chapter 47. Python Documentation

Part VI

Back Matter

299

CHAPTER

FORTYEIGHT

BIBLIOGRAPHY

48.1 Use Cases

48.2 Computer Science

48.3 Design Patterns

48.4 Statistics

48.5 Python

48.6 Java

48.7 Casino Games

301

Building Skills in Object-Oriented Design, Release 2.2.1-Python

302 Chapter 48. Bibliography

CHAPTER

FORTYNINE

TOOLSET

The following toolset was used for production of this book.

• Python 2.6.3.

• Sphinx 0.63.

• Docutils 0.5.

• Komodo Edit 5.2.2.

• pyPDF 1.12.

• MacTeX-2008.

303

Building Skills in Object-Oriented Design, Release 2.2.1-Python

304 Chapter 49. Toolset

CHAPTER

FIFTY

INDICES AND TABLES

• genindex

• search

305

Building Skills in Object-Oriented Design, Release 2.2.1-Python

306 Chapter 50. Indices and tables

BIBLIOGRAPHY

[Jacobson92] Ivar Jacobson, Magnus Christerson, Patrik Jonsson, Gunnar Övergaard. Object-Oriented Soft-
ware Engineering. A Use Case Driven Approach. 1992. Addison-Wesley. 0201544350.

[Jacobson95] Ivar Jacobson, Maria Ericsson, Agenta Jacobson. The Object Advantage. Business Process
Reengineering with Object Technology. 1995. Addison-Wesley. 0201422891.

[Parnas72] Parnas D. On the Criteria to Be Used in Decomposing Systems into Modules. 1053-1058. 1972.
Communications of the ACM.

[Gamma95] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns. Elements of
Object-Oriented Software. 1995. Addison-Wesley Professional. 0201633612.

[Larman98] Craig Larman. Applying UML and Patterns. An Introduction to Object-Oriented Analysis and
Design. 1998. Prentice-Hall. 0137488807.

[Neter73] John Neter, William Wasserman, G. A. Whitmore. Fundamental Statistics for Business and Eco-
nomics. 4. 1973. Allyn and Bacon, Inc.. 020503853.

[vanRossum04] Guido van Rossum, Fred L. Drake. Python Documentation. 2004. Python Labs.

[Silberstang05] Edwin Silberstang. The Winner’s Guide to Casino Gambling. 4th. 2005. Owl Books.
0805077650.

[Skiena01] Steven Skiena. Calculated Bets. Computers, Gambling, and Mathematical Modeling to Win. 2001.
Cambridge University Press. 0521009626.

[Shackleford04] Michael Shackleford. The Wizard Of Odds. 2004.

307

	I Front Matter
	Preface
	Why Read This Book?
	Audience
	Organization of This Book
	Why This Subject?
	Programming Style
	Conventions Used in This Book
	Acknowledgements

	Foundations
	Problem Statement
	Our Simulation Application
	Soapbox on Use Cases
	Solution Approach
	Methodology, Technique and Process
	Deliverables

	II Roulette
	Roulette Details
	Roulette Game
	Available Bets in Roulette
	Some Betting Strategies

	Roulette Solution Overview
	Preliminary Survey of Classes
	Preliminary Roulette Class Structure
	A Walkthrough of Roulette
	Roulette Solution Questions and Answers

	Outcome Class
	Outcome Overview
	Design Decision – Object Identity
	Outcome Design
	Outcome Deliverables
	Message Formatting

	Bin Class
	Bin Overview
	Design Decision – Choosing A Collection
	Bin Questions and Answers
	Bin Design
	Bin Deliverables

	Wheel Class
	Wheel Overview
	Wheel Design
	Non-Random Design
	Wheel Deliverables

	Bin Builder Class
	Bin Builder Overview
	Bin Builder Algorithms
	BinBuilder Design
	Bin Builder Deliverables
	Internationalization and Localization

	Roulette Bet Class
	Roulette Bet Overview
	Design Decision – Create or Locate an Outcome
	Design Decision – Where to Keep the Outcome Map
	Roulette Bet Questions and Answers
	Roulette Bet Design
	Roulette Bet Deliverables

	Roulette Table Class
	Roulette Table Overview
	InvalidBet Exception Design
	Roulette Table Design
	Roulette Table Deliverables

	Roulette Game Class
	Roulette Game Overview
	Passenger57 Design
	Roulette Game Design
	Roulette Game Questions and Answers
	Roulette Game Deliverables
	Additional Roulette Design Considerations

	Review of Testability
	Testability Overview
	Test-Driven Design
	Capturing Pseudo-Radom Data
	Testability Questions and Answers
	Testable Random Events Design
	Testability Deliverables

	Player Class
	Roulette Player Overview
	Player Design
	Martingale Player Design
	Player Deliverables

	Overall Simulation Control
	Simulation Control Overview
	Simulation Terms
	Simulator Design
	Player Rework
	Simulation Control Deliverables

	SevenReds Player Class
	SevenReds Player Overview
	SevenReds Design
	Player Rework
	Game Rework
	SevenReds Player Deliverables

	Statistical Measures
	Statistics Overview
	Some Foundations
	Statistical Algorithms
	IntegerStatistics Design
	Statistics Deliverables

	Random Player Class
	Random Player Overview
	Random Player Design
	Random Player Deliverables

	Player 1-3-2-6 Class
	Player 1-3-2-6 Overview
	On Polymorphism
	Player 1-3-2-6 Questions and Answers
	Player1326 State Design
	Player1326 No Wins Design
	Player1326 One Win Design
	Player1326 Two Wins Design
	Player1326 Three Wins
	Player1326 Design
	Player 1-3-2-6 Deliverables
	Advanced Exercise – Refactoring
	Advanced Exercise – Less Object Creation

	Cancellation Player Class
	Cancellation Player Overview
	PlayerCancellation Design
	Cancellation Player Deliverables

	Fibonacci Player Class
	Fibonacci Player Overview
	PlayerFibonacci Design
	Fibonacci Player Deliverables

	Conclusion

	III Craps
	Craps Details
	Craps Game
	Creating A Dice Frequency Distribution
	Available Bets
	Some Betting Strategies
	Wrong Betting

	Craps Solution Overview
	Preliminary Survey of Classes
	Preliminary Class Structure
	A Walkthrough of Craps
	Craps Solution Questions and Answers

	Outcome Class
	Outcome Overview
	Overloaded Methods
	Outcome Rework
	Outcome Deliverables
	Advanced Exercise

	Throw Class
	Throw Overview
	Throw Design
	Natural Throw Design
	Craps Throw Design
	Eleven Throw Design
	Point Throw Design
	Craps Game Design
	Throw Deliverables

	Dice Class
	Dice Overview
	Throw Rework
	NumberPair Design
	Dice Design
	Dice Deliverables
	Dice Optimization

	Throw Builder Class
	Throw Builder Overview
	Outcomes with Variable Odds
	Refactoring The Outcome Hierarchy
	Soapbox on Subclasses
	Soapbox on Architecture
	Throw Builder Questions and Answers
	Soapbox on Justification
	Design Light
	Design Heavy
	Common Design
	Throw-Builder Deliverables

	Bet Class
	Bet Overview
	Bet Rework
	CommissionBet Design
	Bet Deliverables

	Craps Table Class
	Craps Table Overview
	Design Decision – Table vs. Game Responsibility
	Design Decision – Allowable Outcomes
	CrapsGame Stub
	CrapsTable Design
	Craps Table Deliverables

	CrapsGame Class
	Game State
	Game State Class Hierarchy
	Resolving Bets
	Moveable Bets
	Design Decision – Win, Lose, Wait
	Additional Craps Design
	Craps Game Implementation Overview
	Throw Rework
	ThrowBuilder Rework
	Bet Rework
	CrapsPlayer Class Stub
	CrapsGameState Class
	CrapsGamePointOff Class
	CrapsGamePointOn Class
	CrapsGame Class
	Craps Game Deliverables
	Optional Working Bets

	CrapsPlayer Class
	Craps Player Overview
	CrapsPlayer Superclass Design
	CrapsPlayerPass Subclass
	Craps Martingale Subclass
	Craps Player Deliverables

	Design Cleanup and Refactoring
	Design Review
	RandomEventFactory Design
	Wheel Class Design
	Table Class
	Game Class
	RouletteGame Class
	CrapsGame Class
	Refactoring Deliverables

	Simple Craps Players
	Simple Craps Players Overview
	CrapsPlayer Design
	CrapsSimplePlayer superclass
	Craps Martingale Player
	Player1326 State
	Craps1326 Player
	CrapsCancellation Player
	Simple Craps Players Deliverables

	Roll-Counting Player Class
	Roll-Counting Overview
	BettingStrategy Design
	NoChangeBetting Class
	MartingaleBetting Class
	Bet1326Betting Class
	CrapsOneBetPlayer class
	CrapsTwoBetPlayer class
	CrapsSevenCountPlayer class
	Roll-Counting Deliverables

	Conclusion

	IV Blackjack
	Blackjack Details
	Blackjack Game
	Available Bets and Choices
	Betting Strategies

	Blackjack Solution Overview
	Preliminary Survey of Classes
	Preliminary Class Structure
	A Walkthrough
	Blackjack Solution Questions and Answers

	Card, Deck and Shoe Classes
	Card, Deck and Shoe Overview
	Card-Deck-Shoe Questions and Answers
	Card Superclass
	FaceCard Class
	AceCard Class
	Deck class
	Shoe class
	Card-Deck-Shoe Deliverables

	Hand and Outcome Classes
	Hand Overview
	Hand Total Class Design
	Hand Hard Total Class Design
	Hand Soft Total Class Design
	Card Class Updates
	Hand Class Design
	Hand Deliverables

	Blackjack Table Class
	Blackjack Table Overview
	BlackjackTable Class
	Hand Rework
	Blackjack Table Deliverables

	Blackjack Game Class
	Blackjack Game Overview
	Blackjack Collaboration
	Dealer Rules
	BlackjackPlayer Class
	Card Rework
	Hand Rework
	BlackjackGame Class
	Blackjack Game Deliverables

	Simple Blackjack Player Class
	Blackjack Player Overview
	SimpleBlackjackPlayer Design
	Blackjack Player Deliverables

	Variant Game Rules
	Variant Game Overview
	BlackjackGame Rework
	OneDeckGame Class
	Variant Game Deliverables

	Conclusion

	V Fit and Finish
	Python unittest Testing
	Dependencies
	Example

	Python doctest Testing
	Example
	Add the Test Framework
	Mixed unittest and doctest

	Python Documentation
	Basic RST Markup
	RST Field Markup
	Class Example

	VI Back Matter
	Bibliography
	Use Cases
	Computer Science
	Design Patterns
	Statistics
	Python
	Java
	Casino Games

	Toolset
	Indices and tables
	Bibliography

