

TURING MACHINES-SYNOPSIS

e The most general model of computation
e Computations of a TM are described by a sequence of
configurations. (Accepting Configuration, Rejecting
Configuration)
e Turing-recognizable languages
e TM halts in an accepting configuration if w is in the
language.
e TM may halt in a rejecting configuration or go on indefinitely
if w is not in the language.
e Turing-decidable languages
e TM halts in an accepting configuration if w is in the
language.
e TM halts in a rejecting configuration if w is not in the
language.
e Nondeterministic TMs are equivalent to Deterministic TMs.

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 2/34

DESCRIBING TURING MACHINES AND THEIR
INPUTS

e For the rest of the course we will have a rather standard
way of describing TMs and their inputs.

e The inputs to TMs have to be strings.

e Every object O that enters a computation will be
represented with a string (O), encoding the object.

e For example if G is a 4 node undirected graph with 4 edges
(G) = (1,2,3,4) ((1,2),(2,3),(3,1), (1,4))
e Then we can define problems over graphs,e.g., as:

A ={(G) | Gis a connected undirected graph}

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 3/34

DECIDABILITY

e We investigate the power of algorithms to solve problems.

e We discuss certain problems that can be solved
algorithmically and others that can not be.

e Why discuss unsolvability?

e Knowing a problem is unsolvable is useful because

e you realize it must be simplified or altered before you find an
algorithmic solution.

e you gain a better perspective on computation and its
limitations.

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 4/34

e Decidable Languages

e Diagonalization

e Halting Problem as a undecidable problem
e Turing-unrecognizable languages.

e (B) represents the encoding of the description of an
automaton (DFA/NFA).

e We need to encode Q,%,d and F.

ENCODING FINITE AUTOMATA AS STRINGS

Here is one possible encoding scheme:
Encode Q using unary encoding:
e For Q={q0,91,---qn_1}, encode g, using i + 1 0’s, i.e.,
using the string 0'*1.
o We assume that qp is always the start state.
Encode ¥ using unary encoding:
o Forr = {ay,a,...am}, encode a; using i 0’s, i.e., using the
string 0'.
With these conventions, all we need to encode is § and F!
Each entry of 9, e.g., 6(q;, @) = g« is encoded as

0/+1 1 Oj 1 0k+1
~ M~ =
qi a; Ak

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 7134

ENCODING FINITE AUTOMATA AS STRINGS

e The whole ¢ can now be encoded as

00100001000 1 000001001000000 - - - 1 000000100000010

transition, transition, transition;

e F can be encoded just as a list of the encodings of all the
final states. For example, if states 2 and 4 are the final
states, F could be encoded as

000 1 00000
~N S
Q2 94

e The whole DFA would be encoded by
1100100010000100000 - - - 0 11 0000000010000000 11

encoding of the transitions encoding of the final states

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 8/34

ENCODING FINITE AUTOMATA AS STRINGS
e (B) representing the encoding of the description of an
automaton (DFA/NFA) would be something like
(B) =1100100010000100000---0110000000010000000 11

encoding of the transitions encoding of the final states

e In fact, the description of all DFAs could be described by a
regular expression like

11(0710710%1)*1(0*1)*"1

e Similarly strings over ¥ can be encoded with (the same
convention)

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 91/34

ENCODING FINITE AUTOMATA AS STRINGS

e (B, w) represents the encoding of a machine followed by an
input string, in the manner above (with a suitable separator
between (B) and (w).

e Now we can describe our problems over languages and
automata as problems over strings (representing automata
and languages).

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 10/ 34

e Does B accept w?
e Is L(B) empty?
e Is L(A) = L(B)?

THE ACCEPTANCE PROBLEM FOR DFAS

THEOREM 4.1
Apma = {(B, w) | Bis a DFA that accepts input string w} is a
decidable language.

PROOF
e Simulate with a two-tape TM.

e One tape has (B, w)
e The other tape is a work tape that keeps track of which state
of B the simulation is in.
e M ="Oninput (B, w)
@ Simulate B on input w
@ If the simulation ends in an accept state of B, accept; if it
ends in a nonaccepting state, reject”

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 12734

THE ACCEPTANCE PROBLEM FOR NFAS

THEOREM 4.2
Anea = {(B, w) | Bis a NFA that accepts input string w} is a
decidable language.

PROOF
e Convert NFA to DFA and use Theorem 4.1
e N ="“Oninput (B, w) where B is an NFA
@ Convert NFA B to an equivalent DFA C, using the
determinization procedure.
© Run TM M in Thm 4.1 on input (C, w)
© If M accepts accept; otherwise reject”

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 13734

THE GENERATION PROBLEM FOR REGULAR
EXPRESSIONS

THEOREM 4.3

Agex = {(R, w) | R is a regular exp. that generates string w} is
a decidable language.

PROOF
e Note R is already a string!!
e Convert R to an NFA and use Theorem 4.2
e P ="Oninput (R, w) where R is a regular expression
© Convert R to an equivalent NFA A, using the Regular
Expression-to-NFA procedure

©@ Run TM N in Thm 4.2 on input (A, w)
@ If N accepts accept; otherwise reject”

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 14734

THE EMPTINESS PROBLEM FOR DFAS

THEOREM 4.4

Epra = {(A) | Ais a DFA and L(A) = ¢} is a decidable
language.

PROOF
e Use the DFS algorithm to mark the states of DFA
e T ="“Oninput (A) where Ais a DFA.

Q@ Mark the start state of A
© Repeat until no new states get marked.

e Mark any state that has a transition coming into it from any
state already marked.

© If no final state is marked, accept; otherwise reject”

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 15734

THE EQUIVALENCE PROBLEM FOR DFAS

THEOREM 4.5

EQpra = {(A,B) | Aand B are DFAs and L(A) = L(B)} is a
decidable language.

PROOF
e Construct the machine for

L(C) = (L(A) N L(B)) U (L(A) N L(B)) and check if L(C) =

e T ="“Oninput (A, B) where A and B are DFAs.

@ Construct the DFA for L(C) as described above.
© Run TM T of Theorem 4.4 on input (C).
© If T accepts, accept; otherwise reject”

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011

o.

16 /34

e Does grammar G generate w?
e Is L(G) empty?

THE GENERATION PROBLEM FOR CFGS

THEOREM 4.7
Acre = {(G, w) | Gis a CFG that generates string w} is a
decidable language.

PROOF
e Convert G to Chomsky Normal Form and use the CYK
algorithm.
e C="Oninput (G,w) where Gis a CFG
© Convert G to an equivalent grammar in CNF

© Run CYK algorithm on w of length n
@ If S €V, , accept, otherwise reject.”

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011

18734

THE GENERATION PROBLEM FOR CFGS

ALTERNATIVE PROOF

e Convert G to Chomsky Normal Form and check all
derivations up to a certain length (Why!)
e S="Oninput (G, w) where Gis a CFG
@ Convert G to an equivalent grammar in CNF
© List all derivations with 2n — 1 steps where n is the length of
w. If n = 0 list all derivations of length 1.

© If any of these strings generated is equal to w, accept;
otherwise reject”

@ This works because every derivation using a CFG in CNF either
increase the length of the sentential form by 1 (using a rule like
A — BC or leaves it the same (using a rule like A — a)

@ Obviously this is not very efficient as there may be exponentially
many strings of length up to 2n — 1.

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 19734

THE EMPTINESS PROBLEM FOR CFGS

THEOREM 4.8

Ecre = {(G) | Gisa CFG and L(G) = ¢} is a decidable
language.

PROOF
e Mark variables of G systematically if they can generate
terminal strings, and check if S is unmarked.
e R ="Oninput (G) where Gis a CFG.

© Mark all terminal symbols G
© Repeat until no new variable get marked.

e Mark any variable A such that Ghasarule A— Uy Us - -- Uy
and Uy, Us, ... Uy are already marked.

© If start symbol is NOT marked, accept; otherwise reject.”

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 20/ 34

THE EQUIVALENCE PROBLEM FOR CFGS

EQcrc = {(G,H) | Gand H are CFGs and L(G) = L(H)} |

e It turns out that EQpga is not a decidable language.

e The construction for DFAs does not work because CFLs are
NQOT closed under intersection and complementation.

@ Proof comes later.

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 21/34

DECIDABILITY OF CFLS

THEOREM 4.9
Every context free language is decidable.

PROOF
e Design a TM Mg that has G built into it and use the result of
Acra-
@ Mg = “On input w
©@ Run TM S (from Theorem 4.7) on input (G, w)
@ If S accepts, accept, otherwise reject.

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 22/34

ACCEPTANCE PROBLEM FOR TMS

THEOREM 4.11
Am = {(M,w) | MisaTM and M accepts w} is undecidable.

e Note that Ay is Turing-recognizable. Thus this theorem
when proved, shows that recognizers are more powerful
than deciders.

e We can encode TMs with strings just like we did for DFA’s
(How?)

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 23/34

ACCEPTANCE PROBLEM FOR TMS

e The TM U recognizes Ay
e U="Oninput (M, w) where M isa TM and w is a string:

Q@ Simulate M on w
© If M ever enters its accepts state, accept; if M ever enters its
reject state, reject.

Note that if M loops on w, then U loops on (M, w), which is
why it is NOT a decider!

e U can not detect that M halts on w.
e Ay is also known as the Halting Problem

e U is known as the Universal Turing Machine because it can
simulate every TM (including itself!)

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 24 /34

THE DIAGONALIZATION METHOD

SOME BASIC DEFINITIONS

e Let A and B be any two sets (not necessarily finite) and f be
a function from A to B.

e fis one-to-one if f(a) # f(b) whenever a # b.

e fis onto if for every b € B there is an a € A such that
f(a) = b.

e We say A and B are the same size if there is a one-to-one
and onto function f: A— B.

e Such a function is called a correspondence for pairing A
and B.

e Every element of A maps to a unique element of B
e Each element of B has a unique element of A mapping to it.

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 25/34

THE DIAGONALIZATION METHOD

e Let \V be the set of natural numbers {1,2,...} and let £ be
the set of even numbers {2,4,...}.

e f(n) =2nis a correspondence between N and £.
e Hence, N and £ have the same size (though & C N).

@ A set Ais countable if it is either finite or has the same size
as \N.

e Q={"|mne N}is countable!
e Z the set of integers is countable:

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 26/ 34

THE DIAGONALIZATION METHOD

THEOREM
‘R is uncountable

PROOF.
@ Assume f exists and every number in R is n f(n)
listed. 1 3.14159. ..
@ Assume x € R is a real number such that g 58:;;;; .
x differs from the j% number in the j A 0'50000' "
decimal digit. . e
o If x is listed at some position k, then it x:: 4527 :
. . th P . . . DR
differs from itself at k™ position; otherwise Al e

the premise does not hold
such, can not

e f does not exist be on this list.

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 27134

DIAGONALIZATION OVER LANGUAGES

COROLLARY
Some languages are not Turing-recognizable.

PROOF

e For any alphabet ¥, ¥* is countable. Order strings in ©* by length
and then alphanumerically, so ©* = {s¢, $p,...,Sj,...}

@ The set of all TMs is a countable language.

e Each TM M corresponds to a string (M).
e Generate a list of strings and remove any strings that do not
represent a TM to get a list of TMs.

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 28/34

DIAGONALIZATION OVER LANGUAGES

PROOF (CONTINUED)

@ The set of infinite binary sequences, B, is uncountable. (Exactly
the same proof we gave for uncountability of R)

o Let £ be the set of all languages over %.

@ For each language A € L there is unique infinite binary sequence
XA

o The i bitin X, is 1if s; € A, 0 otherwise.
>*={ ¢ O, 1, 00, 01, 10, 11, 000, 001,

A={ 0, 00, 01, 000, 001,
Xap={ 0 1 0 1 1 0 0 1 1

e

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 29/34

@ The function f: £L — B is a correspondence. Thus L is
uncountable.

@ So, there are languages that can not be recognized by some TM.
There are not enough TMs to go around.

THE HALTING PROBLEM IS UNDECIDABLE

THEOREM
Am = {(M,w) | M isa TM and M accepts w}, is undecidable.

PROOF
e We assume A7y is decidable and obtain a contradiction.
e Suppose H decides A7y

| accept it M accepts w
H(M, w)) = { reject it M does not accept w

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 31/34

THE HALTING PROBLEM IS UNDECIDABLE

PROOF (CONTINUED)

e We now construct a new TM D
D = “On input (M), where M is a TM

@ Run Hon input (M, (M)).

© |If H accepts, reject, if H rejects, accept’
e So .

D((M)) = accept if M does not accept (M)
| reject if M accepts (M)

e When D runs on itself we get

D((D)) = accept if D does not accept (D)
| reject if D accepts (D)

@ Neither D nor H can exist.

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011

32/34

WHAT HAPPENED TO DIAGONALIZATION?

Consider the behaviour of all possible deciders:

(D)
(M) (M) — (Ms) (M) - (M)
M, | accept reject accept reject --- accept
M, | accept accept accept accept --- accept
Ms | reject reject reject reject --- reject
M, | accept accept reject reject --- accept
D= M; | reject reject accept accept --- ?

e D computes the opposite of the diagonal entries!

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 33/34

A TURING UNRECOGNIZABLE LANGUAGE

e A language is co-Turing-recognizable if it is the complement
of a Turing-recognizable language.

e A language is decidable if it is Turing-recognizable and
co-Turing-recognizable.

e Ay is not Turing recognizable.

e We know A7y is Turing-recognizable.

e If A7)y were also Turing-recognizable, Aty would have to be
decidable.

e We know Ary is not decidable.

e A7y must not be Turing-recognizable.

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 34/34

