
FORMAL LANGUAGES, AUTOMATA AND

COMPUTATION

DECIDABILITY

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 1 / 34

TURING MACHINES-SYNOPSIS

The most general model of computation
Computations of a TM are described by a sequence of
configurations. (Accepting Configuration, Rejecting
Configuration)
Turing-recognizable languages

TM halts in an accepting configuration if w is in the
language.
TM may halt in a rejecting configuration or go on indefinitely
if w is not in the language.

Turing-decidable languages
TM halts in an accepting configuration if w is in the
language.
TM halts in a rejecting configuration if w is not in the
language.

Nondeterministic TMs are equivalent to Deterministic TMs.
(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 2 / 34

DESCRIBING TURING MACHINES AND THEIR

INPUTS

For the rest of the course we will have a rather standard
way of describing TMs and their inputs.
The inputs to TMs have to be strings.
Every object O that enters a computation will be
represented with a string 〈O〉, encoding the object.
For example if G is a 4 node undirected graph with 4 edges
〈G〉 = (1,2,3,4)((1,2),(2,3),(3,1),(1,4))

Then we can define problems over graphs,e.g., as:

A = {〈G〉 | G is a connected undirected graph}

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 3 / 34

DECIDABILITY

We investigate the power of algorithms to solve problems.
We discuss certain problems that can be solved
algorithmically and others that can not be.
Why discuss unsolvability?
Knowing a problem is unsolvable is useful because

you realize it must be simplified or altered before you find an
algorithmic solution.
you gain a better perspective on computation and its
limitations.

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 4 / 34

OVERVIEW

Decidable Languages
Diagonalization
Halting Problem as a undecidable problem
Turing-unrecognizable languages.

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 5 / 34

DECIDABLE LANGUAGES
SOME NOTATIONAL DETAILS

〈B〉 represents the encoding of the description of an
automaton (DFA/NFA).
We need to encode Q,Σ, δ and F .

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 6 / 34

ENCODING FINITE AUTOMATA AS STRINGS

Here is one possible encoding scheme:
Encode Q using unary encoding:

For Q = {q0,q1, . . .qn−1}, encode qi using i + 1 0’s, i.e.,
using the string 0i+1.
We assume that q0 is always the start state.

Encode Σ using unary encoding:
For Σ = {a1,a2, . . .am}, encode ai using i 0’s, i.e., using the
string 0i .

With these conventions, all we need to encode is δ and F !
Each entry of δ, e.g., δ(qi ,aj) = qk is encoded as

0i+1︸︷︷︸
qi

1 0j︸︷︷︸
aj

1 0k+1︸︷︷︸
qk

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 7 / 34

ENCODING FINITE AUTOMATA AS STRINGS

The whole δ can now be encoded as

00100001000︸ ︷︷ ︸
transition1

1 000001001000000︸ ︷︷ ︸
transition2

· · · 1 000000100000010︸ ︷︷ ︸
transitiont

F can be encoded just as a list of the encodings of all the
final states. For example, if states 2 and 4 are the final
states, F could be encoded as

000︸︷︷︸
q2

1 00000︸ ︷︷ ︸
q4

The whole DFA would be encoded by

11 00100010000100000 · · · 0︸ ︷︷ ︸
encoding of the transitions

11 0000000010000000︸ ︷︷ ︸
encoding of the final states

11

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 8 / 34

ENCODING FINITE AUTOMATA AS STRINGS

〈B〉 representing the encoding of the description of an
automaton (DFA/NFA) would be something like

〈B〉 = 11 00100010000100000 · · · 0︸ ︷︷ ︸
encoding of the transitions

11 0000000010000000︸ ︷︷ ︸
encoding of the final states

11

In fact, the description of all DFAs could be described by a
regular expression like

11(0+10+10+1)∗1(0+1)+1

Similarly strings over Σ can be encoded with (the same
convention)

〈w〉 = 0000︸ ︷︷ ︸
a4

1 000000︸ ︷︷ ︸
a6

1 · · · 0︸︷︷︸
a1

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 9 / 34

ENCODING FINITE AUTOMATA AS STRINGS

〈B,w〉 represents the encoding of a machine followed by an
input string, in the manner above (with a suitable separator
between 〈B〉 and 〈w〉.
Now we can describe our problems over languages and
automata as problems over strings (representing automata
and languages).

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 10 / 34

DECIDABLE PROBLEMS
REGULAR LANGUAGES

Does B accept w?
Is L(B) empty?
Is L(A) = L(B)?

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 11 / 34

THE ACCEPTANCE PROBLEM FOR DFAS

THEOREM 4.1
ADFA = {〈B,w〉 | B is a DFA that accepts input string w} is a
decidable language.

PROOF
Simulate with a two-tape TM.

One tape has 〈B,w〉
The other tape is a work tape that keeps track of which state
of B the simulation is in.

M = “On input 〈B,w〉
1 Simulate B on input w
2 If the simulation ends in an accept state of B, accept; if it

ends in a nonaccepting state, reject.”

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 12 / 34

THE ACCEPTANCE PROBLEM FOR NFAS

THEOREM 4.2
ANFA = {〈B,w〉 | B is a NFA that accepts input string w} is a
decidable language.

PROOF
Convert NFA to DFA and use Theorem 4.1
N = “On input 〈B,w〉 where B is an NFA

1 Convert NFA B to an equivalent DFA C, using the
determinization procedure.

2 Run TM M in Thm 4.1 on input 〈C,w〉
3 If M accepts accept; otherwise reject.”

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 13 / 34

THE GENERATION PROBLEM FOR REGULAR

EXPRESSIONS

THEOREM 4.3
AREX = {〈R,w〉 | R is a regular exp. that generates string w} is
a decidable language.

PROOF
Note R is already a string!!
Convert R to an NFA and use Theorem 4.2
P = “On input 〈R,w〉 where R is a regular expression

1 Convert R to an equivalent NFA A, using the Regular
Expression-to-NFA procedure

2 Run TM N in Thm 4.2 on input 〈A,w〉
3 If N accepts accept; otherwise reject.”

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 14 / 34

THE EMPTINESS PROBLEM FOR DFAS

THEOREM 4.4
EDFA = {〈A〉 | A is a DFA and L(A) = Φ} is a decidable
language.

PROOF
Use the DFS algorithm to mark the states of DFA
T = “On input 〈A〉 where A is a DFA.

1 Mark the start state of A
2 Repeat until no new states get marked.

Mark any state that has a transition coming into it from any
state already marked.

3 If no final state is marked, accept; otherwise reject.”

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 15 / 34

THE EQUIVALENCE PROBLEM FOR DFAS

THEOREM 4.5
EQDFA = {〈A,B〉 | A and B are DFAs and L(A) = L(B)} is a
decidable language.

PROOF
Construct the machine for
L(C) = (L(A) ∩ L(B)) ∪ (L(A) ∩ L(B)) and check if L(C) = Φ.
T = “On input 〈A,B〉 where A and B are DFAs.

1 Construct the DFA for L(C) as described above.
2 Run TM T of Theorem 4.4 on input 〈C〉.
3 If T accepts, accept; otherwise reject.”

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 16 / 34

DECIDABLE PROBLEMS
CONTEXT-FREE LANGUAGES

Does grammar G generate w?
Is L(G) empty?

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 17 / 34

THE GENERATION PROBLEM FOR CFGS

THEOREM 4.7
ACFG = {〈G,w〉 | G is a CFG that generates string w} is a
decidable language.

PROOF
Convert G to Chomsky Normal Form and use the CYK
algorithm.
C = “On input 〈G,w〉 where G is a CFG

1 Convert G to an equivalent grammar in CNF
2 Run CYK algorithm on w of length n
3 If S ∈ Vi,n accept; otherwise reject.”

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 18 / 34

THE GENERATION PROBLEM FOR CFGS

ALTERNATIVE PROOF
Convert G to Chomsky Normal Form and check all
derivations up to a certain length (Why!)
S = “On input 〈G,w〉 where G is a CFG

1 Convert G to an equivalent grammar in CNF
2 List all derivations with 2n − 1 steps where n is the length of

w . If n = 0 list all derivations of length 1.
3 If any of these strings generated is equal to w , accept;

otherwise reject.”

This works because every derivation using a CFG in CNF either
increase the length of the sentential form by 1 (using a rule like
A→ BC or leaves it the same (using a rule like A→ a)

Obviously this is not very efficient as there may be exponentially
many strings of length up to 2n − 1.

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 19 / 34

THE EMPTINESS PROBLEM FOR CFGS

THEOREM 4.8
ECFG = {〈G〉 | G is a CFG and L(G) = Φ} is a decidable
language.

PROOF
Mark variables of G systematically if they can generate
terminal strings, and check if S is unmarked.
R = “On input 〈G〉 where G is a CFG.

1 Mark all terminal symbols G
2 Repeat until no new variable get marked.

Mark any variable A such that G has a rule A→ U1U2 · · ·Uk
and U1,U2, . . .Uk are already marked.

3 If start symbol is NOT marked, accept; otherwise reject.”

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 20 / 34

THE EQUIVALENCE PROBLEM FOR CFGS

EQCFG = {〈G,H〉 | G and H are CFGs and L(G) = L(H)}

It turns out that EQDFA is not a decidable language.
The construction for DFAs does not work because CFLs are
NOT closed under intersection and complementation.
Proof comes later.

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 21 / 34

DECIDABILITY OF CFLS

THEOREM 4.9
Every context free language is decidable.

PROOF
Design a TM MG that has G built into it and use the result of
ACFG.
MG = “On input w

1 Run TM S (from Theorem 4.7) on input 〈G,w〉
2 If S accepts, accept, otherwise reject.

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 22 / 34

ACCEPTANCE PROBLEM FOR TMS

THEOREM 4.11
ATM = {〈M,w〉 | M is a TM and M accepts w} is undecidable.

Note that ATM is Turing-recognizable. Thus this theorem
when proved, shows that recognizers are more powerful
than deciders.
We can encode TMs with strings just like we did for DFA’s
(How?)

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 23 / 34

ACCEPTANCE PROBLEM FOR TMS

The TM U recognizes ATM

U = “On input 〈M,w〉 where M is a TM and w is a string:
1 Simulate M on w
2 If M ever enters its accepts state, accept; if M ever enters its

reject state, reject.

Note that if M loops on w , then U loops on 〈M,w〉, which is
why it is NOT a decider!
U can not detect that M halts on w .
ATM is also known as the Halting Problem
U is known as the Universal Turing Machine because it can
simulate every TM (including itself!)

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 24 / 34

THE DIAGONALIZATION METHOD
SOME BASIC DEFINITIONS

Let A and B be any two sets (not necessarily finite) and f be
a function from A to B.
f is one-to-one if f (a) 6= f (b) whenever a 6= b.
f is onto if for every b ∈ B there is an a ∈ A such that
f (a) = b.
We say A and B are the same size if there is a one-to-one
and onto function f : A −→ B.
Such a function is called a correspondence for pairing A
and B.

Every element of A maps to a unique element of B
Each element of B has a unique element of A mapping to it.

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 25 / 34

THE DIAGONALIZATION METHOD

Let N be the set of natural numbers {1,2, . . .} and let E be
the set of even numbers {2,4, . . .}.
f (n) = 2n is a correspondence between N and E .
Hence, N and E have the same size (though E ⊂ N).
A set A is countable if it is either finite or has the same size
as N .
Q = {m

n | m,n ∈ N} is countable!
Z the set of integers is countable:

f (n) =


n
2 n even

−n+1
2 n odd

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 26 / 34

THE DIAGONALIZATION METHOD

THEOREM
R is uncountable

PROOF.
Assume f exists and every number in R is
listed.

Assume x ∈ R is a real number such that
x differs from the j th number in the j th

decimal digit.

If x is listed at some position k , then it
differs from itself at k th position; otherwise
the premise does not hold

f does not exist

n f (n)
1 3.14159. . .
2 55.77777. . .
3 0.12345. . .
4 0.50000. . .
...

...
x = .4527 . . .
defined as
such, can not
be on this list.

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 27 / 34

DIAGONALIZATION OVER LANGUAGES

COROLLARY
Some languages are not Turing-recognizable.

PROOF

For any alphabet Σ, Σ∗ is countable. Order strings in Σ∗ by length
and then alphanumerically, so Σ∗ = {s1, s2, . . . , si , . . .}

The set of all TMs is a countable language.

Each TM M corresponds to a string 〈M〉.
Generate a list of strings and remove any strings that do not
represent a TM to get a list of TMs.

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 28 / 34

DIAGONALIZATION OVER LANGUAGES

PROOF (CONTINUED)
The set of infinite binary sequences, B, is uncountable. (Exactly
the same proof we gave for uncountability of R)

Let L be the set of all languages over Σ.

For each language A ∈ L there is unique infinite binary sequence
XA

The i th bit in XA is 1 if si ∈ A, 0 otherwise.

Σ∗= { ε, 0, 1, 00, 01, 10, 11, 000, 001, · · · }
A={ 0, 00, 01, 000, 001, · · · }
XA={ 0 1 0 1 1 0 0 1 1 · · · }

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 29 / 34

DIAGONALIZATION OVER LANGUAGES

PROOF (CONTINUED)
The function f : L −→ B is a correspondence. Thus L is
uncountable.

So, there are languages that can not be recognized by some TM.
There are not enough TMs to go around.

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 30 / 34

THE HALTING PROBLEM IS UNDECIDABLE

THEOREM
ATM = {〈M,w〉 | M is a TM and M accepts w}, is undecidable.

PROOF
We assume ATM is decidable and obtain a contradiction.
Suppose H decides ATM

H(〈M,w〉) =

{
accept if M accepts w
reject if M does not accept w

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 31 / 34

THE HALTING PROBLEM IS UNDECIDABLE

PROOF (CONTINUED)
We now construct a new TM D
D = “On input 〈M〉, where M is a TM

1 Run H on input 〈M, 〈M〉〉.
2 If H accepts, reject, if H rejects, accept”

So
D(〈M〉) =

{
accept if M does not accept 〈M〉
reject if M accepts 〈M〉

When D runs on itself we get

D(〈D〉) =

{
accept if D does not accept 〈D〉
reject if D accepts 〈D〉

Neither D nor H can exist.
(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 32 / 34

WHAT HAPPENED TO DIAGONALIZATION?

Consider the behaviour of all possible deciders:
〈D〉

〈M1〉 〈M2〉 〈M3〉 〈M4〉 · · · 〈Mj〉 · · ·
M1 accept reject accept reject · · · accept · · ·
M2 accept accept accept accept · · · accept · · ·
M3 reject reject reject reject · · · reject · · ·
M4 accept accept reject reject · · · accept · · ·

...
... . . .

D = Mj reject reject accept accept · · · ? · · ·
...

... . . .

D computes the opposite of the diagonal entries!

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 33 / 34

A TURING UNRECOGNIZABLE LANGUAGE

A language is co-Turing-recognizable if it is the complement
of a Turing-recognizable language.
A language is decidable if it is Turing-recognizable and
co-Turing-recognizable.
ATM is not Turing recognizable.

We know ATM is Turing-recognizable.
If ATM were also Turing-recognizable, ATM would have to be
decidable.
We know ATM is not decidable.
ATM must not be Turing-recognizable.

(LECTURE 15) SLIDES FOR 15-453 SPRING 2011 34 / 34

