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TURING MACHINES-SYNOPSIS

The most general model of computation
Computations of a TM are described by a sequence of
configurations. (Accepting Configuration, Rejecting
Configuration)
Turing-recognizable languages

TM halts in an accepting configuration if w is in the
language.
TM may halt in a rejecting configuration or go on indefinitely
if w is not in the language.

Turing-decidable languages
TM halts in an accepting configuration if w is in the
language.
TM halts in a rejecting configuration if w is not in the
language.

Nondeterministic TMs are equivalent to Deterministic TMs.
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DESCRIBING TURING MACHINES AND THEIR

INPUTS

For the rest of the course we will have a rather standard
way of describing TMs and their inputs.
The inputs to TMs have to be strings.
Every object O that enters a computation will be
represented with a string 〈O〉, encoding the object.
For example if G is a 4 node undirected graph with 4 edges
〈G〉 = (1,2,3,4)((1,2),(2,3),(3,1),(1,4))

Then we can define problems over graphs,e.g., as:

A = {〈G〉 | G is a connected undirected graph}
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DECIDABILITY

We investigate the power of algorithms to solve problems.
We discuss certain problems that can be solved
algorithmically and others that can not be.
Why discuss unsolvability?
Knowing a problem is unsolvable is useful because

you realize it must be simplified or altered before you find an
algorithmic solution.
you gain a better perspective on computation and its
limitations.
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OVERVIEW

Decidable Languages
Diagonalization
Halting Problem as a undecidable problem
Turing-unrecognizable languages.

( LECTURE 15) SLIDES FOR 15-453 SPRING 2011 5 / 34



DECIDABLE LANGUAGES
SOME NOTATIONAL DETAILS

〈B〉 represents the encoding of the description of an
automaton (DFA/NFA).
We need to encode Q,Σ, δ and F .
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ENCODING FINITE AUTOMATA AS STRINGS

Here is one possible encoding scheme:
Encode Q using unary encoding:

For Q = {q0,q1, . . .qn−1}, encode qi using i + 1 0’s, i.e.,
using the string 0i+1.
We assume that q0 is always the start state.

Encode Σ using unary encoding:
For Σ = {a1,a2, . . .am}, encode ai using i 0’s, i.e., using the
string 0i .

With these conventions, all we need to encode is δ and F !
Each entry of δ, e.g., δ(qi ,aj) = qk is encoded as

0i+1︸︷︷︸
qi

1 0j︸︷︷︸
aj

1 0k+1︸︷︷︸
qk
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ENCODING FINITE AUTOMATA AS STRINGS

The whole δ can now be encoded as

00100001000︸ ︷︷ ︸
transition1

1 000001001000000︸ ︷︷ ︸
transition2

· · · 1 000000100000010︸ ︷︷ ︸
transitiont

F can be encoded just as a list of the encodings of all the
final states. For example, if states 2 and 4 are the final
states, F could be encoded as

000︸︷︷︸
q2

1 00000︸ ︷︷ ︸
q4

The whole DFA would be encoded by

11 00100010000100000 · · · 0︸ ︷︷ ︸
encoding of the transitions

11 0000000010000000︸ ︷︷ ︸
encoding of the final states

11
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ENCODING FINITE AUTOMATA AS STRINGS

〈B〉 representing the encoding of the description of an
automaton (DFA/NFA) would be something like

〈B〉 = 11 00100010000100000 · · · 0︸ ︷︷ ︸
encoding of the transitions

11 0000000010000000︸ ︷︷ ︸
encoding of the final states

11

In fact, the description of all DFAs could be described by a
regular expression like

11(0+10+10+1)∗1(0+1)+1

Similarly strings over Σ can be encoded with (the same
convention)

〈w〉 = 0000︸ ︷︷ ︸
a4

1 000000︸ ︷︷ ︸
a6

1 · · · 0︸︷︷︸
a1
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ENCODING FINITE AUTOMATA AS STRINGS

〈B,w〉 represents the encoding of a machine followed by an
input string, in the manner above (with a suitable separator
between 〈B〉 and 〈w〉.
Now we can describe our problems over languages and
automata as problems over strings (representing automata
and languages).
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DECIDABLE PROBLEMS
REGULAR LANGUAGES

Does B accept w?
Is L(B) empty?
Is L(A) = L(B)?
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THE ACCEPTANCE PROBLEM FOR DFAS

THEOREM 4.1
ADFA = {〈B,w〉 | B is a DFA that accepts input string w} is a
decidable language.

PROOF
Simulate with a two-tape TM.

One tape has 〈B,w〉
The other tape is a work tape that keeps track of which state
of B the simulation is in.

M = “On input 〈B,w〉
1 Simulate B on input w
2 If the simulation ends in an accept state of B, accept; if it

ends in a nonaccepting state, reject.”
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THE ACCEPTANCE PROBLEM FOR NFAS

THEOREM 4.2
ANFA = {〈B,w〉 | B is a NFA that accepts input string w} is a
decidable language.

PROOF
Convert NFA to DFA and use Theorem 4.1
N = “On input 〈B,w〉 where B is an NFA

1 Convert NFA B to an equivalent DFA C, using the
determinization procedure.

2 Run TM M in Thm 4.1 on input 〈C,w〉
3 If M accepts accept; otherwise reject.”
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THE GENERATION PROBLEM FOR REGULAR

EXPRESSIONS

THEOREM 4.3
AREX = {〈R,w〉 | R is a regular exp. that generates string w} is
a decidable language.

PROOF
Note R is already a string!!
Convert R to an NFA and use Theorem 4.2
P = “On input 〈R,w〉 where R is a regular expression

1 Convert R to an equivalent NFA A, using the Regular
Expression-to-NFA procedure

2 Run TM N in Thm 4.2 on input 〈A,w〉
3 If N accepts accept; otherwise reject.”
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THE EMPTINESS PROBLEM FOR DFAS

THEOREM 4.4
EDFA = {〈A〉 | A is a DFA and L(A) = Φ} is a decidable
language.

PROOF
Use the DFS algorithm to mark the states of DFA
T = “On input 〈A〉 where A is a DFA.

1 Mark the start state of A
2 Repeat until no new states get marked.

Mark any state that has a transition coming into it from any
state already marked.

3 If no final state is marked, accept; otherwise reject.”
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THE EQUIVALENCE PROBLEM FOR DFAS

THEOREM 4.5
EQDFA = {〈A,B〉 | A and B are DFAs and L(A) = L(B)} is a
decidable language.

PROOF
Construct the machine for
L(C) = (L(A) ∩ L(B)) ∪ (L(A) ∩ L(B)) and check if L(C) = Φ.
T = “On input 〈A,B〉 where A and B are DFAs.

1 Construct the DFA for L(C) as described above.
2 Run TM T of Theorem 4.4 on input 〈C〉.
3 If T accepts, accept; otherwise reject.”
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DECIDABLE PROBLEMS
CONTEXT-FREE LANGUAGES

Does grammar G generate w?
Is L(G) empty?
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THE GENERATION PROBLEM FOR CFGS

THEOREM 4.7
ACFG = {〈G,w〉 | G is a CFG that generates string w} is a
decidable language.

PROOF
Convert G to Chomsky Normal Form and use the CYK
algorithm.
C = “On input 〈G,w〉 where G is a CFG

1 Convert G to an equivalent grammar in CNF
2 Run CYK algorithm on w of length n
3 If S ∈ Vi,n accept; otherwise reject.”
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THE GENERATION PROBLEM FOR CFGS

ALTERNATIVE PROOF
Convert G to Chomsky Normal Form and check all
derivations up to a certain length (Why!)
S = “On input 〈G,w〉 where G is a CFG

1 Convert G to an equivalent grammar in CNF
2 List all derivations with 2n − 1 steps where n is the length of

w . If n = 0 list all derivations of length 1.
3 If any of these strings generated is equal to w , accept;

otherwise reject.”

This works because every derivation using a CFG in CNF either
increase the length of the sentential form by 1 (using a rule like
A→ BC or leaves it the same (using a rule like A→ a)

Obviously this is not very efficient as there may be exponentially
many strings of length up to 2n − 1.
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THE EMPTINESS PROBLEM FOR CFGS

THEOREM 4.8
ECFG = {〈G〉 | G is a CFG and L(G) = Φ} is a decidable
language.

PROOF
Mark variables of G systematically if they can generate
terminal strings, and check if S is unmarked.
R = “On input 〈G〉 where G is a CFG.

1 Mark all terminal symbols G
2 Repeat until no new variable get marked.

Mark any variable A such that G has a rule A→ U1U2 · · ·Uk
and U1,U2, . . .Uk are already marked.

3 If start symbol is NOT marked, accept; otherwise reject.”
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THE EQUIVALENCE PROBLEM FOR CFGS

EQCFG = {〈G,H〉 | G and H are CFGs and L(G) = L(H)}

It turns out that EQDFA is not a decidable language.
The construction for DFAs does not work because CFLs are
NOT closed under intersection and complementation.
Proof comes later.
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DECIDABILITY OF CFLS

THEOREM 4.9
Every context free language is decidable.

PROOF
Design a TM MG that has G built into it and use the result of
ACFG.
MG = “On input w

1 Run TM S (from Theorem 4.7) on input 〈G,w〉
2 If S accepts, accept, otherwise reject.
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ACCEPTANCE PROBLEM FOR TMS

THEOREM 4.11
ATM = {〈M,w〉 | M is a TM and M accepts w} is undecidable.

Note that ATM is Turing-recognizable. Thus this theorem
when proved, shows that recognizers are more powerful
than deciders.
We can encode TMs with strings just like we did for DFA’s
(How?)
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ACCEPTANCE PROBLEM FOR TMS

The TM U recognizes ATM

U = “On input 〈M,w〉 where M is a TM and w is a string:
1 Simulate M on w
2 If M ever enters its accepts state, accept; if M ever enters its

reject state, reject.

Note that if M loops on w , then U loops on 〈M,w〉, which is
why it is NOT a decider!
U can not detect that M halts on w .
ATM is also known as the Halting Problem
U is known as the Universal Turing Machine because it can
simulate every TM (including itself!)
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THE DIAGONALIZATION METHOD
SOME BASIC DEFINITIONS

Let A and B be any two sets (not necessarily finite) and f be
a function from A to B.
f is one-to-one if f (a) 6= f (b) whenever a 6= b.
f is onto if for every b ∈ B there is an a ∈ A such that
f (a) = b.
We say A and B are the same size if there is a one-to-one
and onto function f : A −→ B.
Such a function is called a correspondence for pairing A
and B.

Every element of A maps to a unique element of B
Each element of B has a unique element of A mapping to it.
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THE DIAGONALIZATION METHOD

Let N be the set of natural numbers {1,2, . . .} and let E be
the set of even numbers {2,4, . . .}.
f (n) = 2n is a correspondence between N and E .
Hence, N and E have the same size (though E ⊂ N ).
A set A is countable if it is either finite or has the same size
as N .
Q = {m

n | m,n ∈ N} is countable!
Z the set of integers is countable:

f (n) =


n
2 n even

−n+1
2 n odd
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THE DIAGONALIZATION METHOD

THEOREM
R is uncountable

PROOF.
Assume f exists and every number in R is
listed.

Assume x ∈ R is a real number such that
x differs from the j th number in the j th

decimal digit.

If x is listed at some position k , then it
differs from itself at k th position; otherwise
the premise does not hold

f does not exist

n f (n)
1 3.14159. . .
2 55.77777. . .
3 0.12345. . .
4 0.50000. . .
...

...
x = .4527 . . .
defined as
such, can not
be on this list.
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DIAGONALIZATION OVER LANGUAGES

COROLLARY
Some languages are not Turing-recognizable.

PROOF

For any alphabet Σ, Σ∗ is countable. Order strings in Σ∗ by length
and then alphanumerically, so Σ∗ = {s1, s2, . . . , si , . . .}

The set of all TMs is a countable language.

Each TM M corresponds to a string 〈M〉.
Generate a list of strings and remove any strings that do not
represent a TM to get a list of TMs.
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DIAGONALIZATION OVER LANGUAGES

PROOF (CONTINUED)
The set of infinite binary sequences, B, is uncountable. (Exactly
the same proof we gave for uncountability of R)

Let L be the set of all languages over Σ.

For each language A ∈ L there is unique infinite binary sequence
XA

The i th bit in XA is 1 if si ∈ A, 0 otherwise.

Σ∗= { ε, 0, 1, 00, 01, 10, 11, 000, 001, · · · }
A={ 0, 00, 01, 000, 001, · · · }
XA={ 0 1 0 1 1 0 0 1 1 · · · }
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DIAGONALIZATION OVER LANGUAGES

PROOF (CONTINUED)
The function f : L −→ B is a correspondence. Thus L is
uncountable.

So, there are languages that can not be recognized by some TM.
There are not enough TMs to go around.

( LECTURE 15) SLIDES FOR 15-453 SPRING 2011 30 / 34



THE HALTING PROBLEM IS UNDECIDABLE

THEOREM
ATM = {〈M,w〉 | M is a TM and M accepts w}, is undecidable.

PROOF
We assume ATM is decidable and obtain a contradiction.
Suppose H decides ATM

H(〈M,w〉) =

{
accept if M accepts w
reject if M does not accept w
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THE HALTING PROBLEM IS UNDECIDABLE

PROOF (CONTINUED)
We now construct a new TM D
D = “On input 〈M〉, where M is a TM

1 Run H on input 〈M, 〈M〉〉.
2 If H accepts, reject, if H rejects, accept”

So
D(〈M〉) =

{
accept if M does not accept 〈M〉
reject if M accepts 〈M〉

When D runs on itself we get

D(〈D〉) =

{
accept if D does not accept 〈D〉
reject if D accepts 〈D〉

Neither D nor H can exist.
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WHAT HAPPENED TO DIAGONALIZATION?

Consider the behaviour of all possible deciders:
〈D〉

〈M1〉 〈M2〉 〈M3〉 〈M4〉 · · · 〈Mj〉 · · ·
M1 accept reject accept reject · · · accept · · ·
M2 accept accept accept accept · · · accept · · ·
M3 reject reject reject reject · · · reject · · ·
M4 accept accept reject reject · · · accept · · ·

...
... . . .

D = Mj reject reject accept accept · · · ? · · ·
...

... . . .

D computes the opposite of the diagonal entries!
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A TURING UNRECOGNIZABLE LANGUAGE

A language is co-Turing-recognizable if it is the complement
of a Turing-recognizable language.
A language is decidable if it is Turing-recognizable and
co-Turing-recognizable.
ATM is not Turing recognizable.

We know ATM is Turing-recognizable.
If ATM were also Turing-recognizable, ATM would have to be
decidable.
We know ATM is not decidable.
ATM must not be Turing-recognizable.
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