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1. Convex sets22

Let A be a subset of Rn.23

• Interior: int(A)24

• Closure: cl(A)25

• Relative interior: ri(A). Interior of A relative to the smallest subspace containing26

A (defined technically as the interior relative to the affine hull of A). (Fig. 1) (VT, §4.8)
(R, §6)

27

◦ int(A) is the interior of A relative to Rn.28

◦ ri(A) ⊆ A ⊆ cl(A). (R, §6)29

◦ For A ⊆ Rn, ri(A) = int(A) if dim(A) = n.30
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Figure 1: (a) int(A) = ri(A). (b) int(A) = ∅ but ri(A) 6= ∅.
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Figure 2: (a)-(b) Nonconvex sets. (c) Convex set. (d) Convex hull.

◦ ri = int in 1D.31

• Convex set: A is convex if ax+ (1− a)y ∈ A for all x, y ∈ A, a ∈ [0, 1]. (Fig. 2) (B, §2)32

◦ Operations that preserve convexity: intersection, dilatation, addition, closure,33

linear transformations.34

◦ Convex sets are connected.35

◦ Convex sets have non-empty relative interiors.36

• Convex hull: co(A). Smallest convex set containing A.37

2. Convex functions38

Consider a function f : X → R, with X ⊆ Rn.39

• Extended reals: R = R ∪ {+∞}40

• Extension of f : (VT, §1.22)41

f̃(x) =
{
f(x) x ∈ X
∞ x 6∈ X. (1)

◦ f̃ is a function of Rn to R.42

◦ One can always extend a function, so from now we consider only functions of43

Rn to R.44

• Effective domain: dom(f) = {x ∈ Rn : f(x) <∞}. (VT, §5.11)45
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Figure 3: (a) Lower semi-continuous function. (A). (b) Upper semi-continuous function.
(c) Lower semi-continuous, extended function.

• Lower semi-continuity: f : X → R is lower semi-continuous at x0 ∈ X if for46

each k ∈ R, k < f(x0) there exists a neighborhood U of x0 such that f(U) > k. (VT, §5.2)47

◦ Interpretation: function values near x0 are either close to f(x0) or are greater48

than f(x0).49

◦ Graphical interpretation: if f(x) is discontinuous at x0, then f(x0) is on the50

lowest branch. (Fig. 3)51

◦ Equivalent definition: (VT, §5.7)52

lim inf
x→x0

f(x) ≥ f(x0). (2)

◦ (Closed level sets) If f is lower semi-continuous, then {x ∈ X : f(x) ≤ a} is53

closed for all a ∈ R. (Essential property for LDT.) (VT, §5.3)54

◦ If f is lower semi-continuous, then {x ∈ X : f(x) > a} is open for all a ∈ R. (VT, §5.3)55

◦ f(x) = supλ fλ(x) is lower semi-continuous if the fλ’s are all lower semi-56

continuous. (VT, §5.4)57

◦ If f is lower semi-continuous on a compact space, then f assumes a minimum58

value (which may be +∞). (Essential for LDT.) (VT, §5.4)59

◦ If f and g are lower semi-continuous, then so is λf , λ > 0, and f + g. (VT, §5.4)60

◦ A function is continuous if and only if it is both lower and upper semi-61

continuous.62

• Epigraph: epi(f) = {(x, a) : f(x) ≤ a, a ∈ R} (Fig. 4) (VT, §5.1)63

◦ epi(f) is closed ⇔ f is lower semi-continuous. (VT, §5.3)64

◦ From the greek “epi” meaning “upon” or “over”.65

• Lower semi-continuous hull: function f such that (Fig. 4) (VT, §5.5)66

epi(f) = epi(f). (3)

◦ f is the largest lower semi-continuous minorant of f , i.e., the largest lower67

semi-continuous function g(x) such that g(x) ≤ f(x) for all x ∈ Rn. (VT, §5.6)68

◦ If f is lower semi-continuous, then f = f . (VT, §5.8)69
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Figure 4: (a) epi(f). (b) Lower semi-continuous hull of f .

• Subgradient: α ∈ Rn is said to be a subgradient of f at x0 if (VT, §5.30)70

f(x) ≥ f(x0) + α · (x− x0) (4)

for all x ∈ Rn. (Fig. 5)71

◦ When the inequality is satisfied we also say that f has a supporting hyperplane72

at x0 with gradient α.73

◦ A supporting hyperplane is said to be strictly supporting if the inequality is74

strict for all x 6= x0.75

◦ If f is differentiable at x0 ∈ dom(f), then ∇f(x0) is the unique subgradient76

of f at x0.77

◦ In R, we say that f has a supporting line with slope α.78

• Subdifferential: Set of all subgradients of f at x0: (VT, §5.30)79

∂f(x0) = {α ∈ Rn : f(x) ≥ f(x0) + α · (x− x0),∀x}. (5)

◦ ∂f(x0) is a convex subset of Rn.80

◦ ∂f(x) = {∇f(x)} if f is differentiable at x.81

◦ If f : R→ R is differentiable at x, then ∂f(x) = {f ′(x)}.82

◦ dom(∂f) = {x ∈ Rn : ∂f(x) 6= ∅}.83

• Convex function: f is convex if (VT, §5.9)84

f(ax+ (1− a)y) ≤ af(x) + (1− a)f(y). (6)

for all x, y ∈ Rn and a ∈ [0, 1].85

◦ f is strictly convex if the inequality is strict for all a ∈ (0, 1).86

◦ Proper convex function: f 6= +∞. (VT, §5.11)87

◦ Improper convex function: f(x) = −∞ for all x ∈ ri(dom(f)). If f is lower88

semi-continuous, then dom(f) is closed, so that f(x) = −∞ on dom(f) in89

this case. (VT, §5.12)90

• Properties of convex functions: Let f be a proper convex function. Then,91

◦ epi(f) is convex. (VT, §5.10)92
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Figure 5: (a) (i) Point admitting a strict supporting line; (ii) point admitting no
supporting line; (iii) non-strict supporting line. (b) ∂f(x) = [f ′−, f

′
+]. (c) Supporting

lines for boundary points: the left boundary point has no supporting lines, while the
right boundary point has an infinite number of supporting lines with slope in [f ′−,∞).

◦ Convex level sets: f has convex level sets, i.e., {x : f(x) ≤ a} is a convex set93

for all a ∈ R.94

◦ dom(f) is convex. (VT, §5.11)95

◦ f has no isolated (−∞) singularities in its domain. (Fig. 6)96

◦ ri(dom(f)) ⊆ dom(∂f) ⊆ dom(f). (R, §227)97

∗ This shows that ∂f(x) is defined for all x ∈ domf except possibly at98

relative boundary points.99

∗ A proper convex function has supporting lines everywhere except possibly100

relative boundary points.101

∗ Example of convex function that is not subdifferentiable (in fact differen-102

tiable) everywhere: (R, §215)103

f(x) =
{
−
√

1− |x|2 |x| ≤ 1
+∞ otherwise.

(7)

Then dom∂f = (−1, 1) but domf = [−1, 1].104

◦ Continuity: f is continuous on int(dom(f)). (VT, §5.20)105

◦ Relative continuity: The restriction of f to ri(dom(f)) is continuous. (VT, §5.23)106

◦ Semi-continuity: f is lower semi-continuous at each point in ri(dom(f)).107

◦ Subdifferential: f is everywhere subdifferentiable in its relative interior, i.e.,108

∂f(x) 6= ∅ for all x ∈ ri(dom(f)). (VT, §5.35)109

◦ In R, f has left- and right-derivatives everywhere in int(dom(f)).110

◦ In R, ∂f(x) = [f ′+(x), f ′−(x)] for all x ∈ int(dom(f)).111

◦ If f : R→ R is convex, differentiable, then f ′(x) is monotonically increasing.112

◦ af(x) + b, a > 0, is convex.113

◦ Affinisation: f(ax+ b) is convex.114

◦ Minimizers: f has no local minimum which is not a global minimum.115

◦ Minimizers set: The set of minimizers of f is a convex set.116
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• Other useful properties:117

◦ Jensen’s inequality: f(E[X]) ≤ E[f(X)], where E[·] denotes the expected118

value. (VT, §5.14)119

◦ Hessian: If f is twice continuously differentiable, then f is convex if and only120

if its Hessian is semi-definite (non-negative determinant). (VT, §5.29)121

◦ If f : R → R is twice differentiable and f ′′(x) > 0, then f is convex. The122

converse does not hold (counterexample: f(x) = x4). (VT, §1.11)123

◦ Convex superposition: g(x) =
∑

i fi(x) is convex if the fi(x)’s are convex. (VT, §5.14)124

◦ Convex maximization: g(x) = supλ fλ(x) is convex if fλ(x) is convex for all λ.125

Equivalently, g(x) = supy f(x, y) is convex if f(x, y) is convex in x for all y.126

◦ Convex minimization: g(x) = infy f(x, y) is convex if f(x, y) is jointly convex,127

i.e., convex as a “surface”.128

◦ Pointwise limit: f(x) = limn fn(x) is convex if fn is convex for all n.129

• Convex hull: (VT, §5.16)130

co(f)(x) = inf{a : (x, a) ∈ co(epi(f))}. (8)

◦ co(f) is the largest convex minorant of f .131

◦ co(f) is the largest lower semi-continuous, convex minorant of f .132

3. Duality133

• Conjugate or dual function: (VT, §6.1)134

f∗(k) = sup
x∈Rn
{k · x− f(x)}. (9)

• Bipolar or double dual:135

f∗∗(x) = sup
k∈Rn
{k · x− f∗(k)} = (f∗)∗(x). (10)

• Properties:136

◦ If f ≤ g, then f∗ ≥ g∗. (VT, §6.3)137

◦ (+∞)∗ = −∞.138

◦ If there is a point where f has the value −∞, then f∗ = +∞. In this case,139

f∗∗ = −∞, and so f∗∗ may not necessarily be equal to f .140

◦ f∗∗ ≤ f .141

◦ (infλ fλ)∗ = supλ f∗λ .142

◦ (supλ fλ)∗ ≤ infλ f∗λ .143

◦ (λf)∗(k) = λf∗(k/λ), λ > 0.144

◦ (f + λ)∗ = f∗ + λ.145

◦ [f(x− y)]∗(k) = f∗(k) + k · y.146

◦ inf f(x) = −f∗(0).147
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◦ f∗ is convex, lower semi-continuous. (VT, §6.8)148

◦ f∗∗ is convex, lower semi-continuous. (VT, §6.11)149

◦ f∗∗∗ = f∗.150

◦ Fenchel’s inequality: f(x) + f∗(k) ≥ k · x. (VT, §6.9)151

• Closure of f : cl(f) = f̄ if f has nowhere the value −∞; otherwise cl(f) = −∞. (VT, §6.13)152

◦ f is said to be closed when cl(f) = f .153

• Duality: (Fig. 6) See also (HT) for figures. (R, §23, 25)154

◦ k ∈ ∂f(x)⇔ f∗(k) = k · x− f(x). (VT, §6.10)155

◦ k ∈ ∂f∗∗(x)⇔ x ∈ ∂f∗(k).156

◦ k ∈ ∂f(x) ⇔ f(x) = f∗∗(x) except possibly at relative boundary points.157

(See Rockafellar’s example).158

◦ ∂f(x) 6= ∅ f(x) = f∗∗(x) except possibly at relative boundary points.159

(See Rockafellar’s example).160

◦ f∗∗ = cl(co(f)) in general; f∗∗ = co(f) if f is nowhere equal to −∞. (VT, §6.15)161

◦ f∗∗ = f if f is proper convex. (VT, §6.16)162

◦ f∗∗ = f if f is convex, lower semi-continuous or else f = ±∞. (VT, §6.18)163

◦ domf ⊆ domf∗∗.164

∗ Examples: f is not lower semi-continuous or f has a middle +∞ (non-165

convex) part, i.e., domf is not convex.166

∗ Corollary: If f(x) <∞, then f∗∗(x) <∞.167

◦ The map f → f∗ is bijective for convex, lower semi-continuous functions. (VT, §6.19)168

◦ f > f∗∗ if f 6= f∗∗.169

◦ If f is nonconcave or affine somewhere, then f∗ is non-differentiable some-170

where.171

◦ If f is non-differentiable somewhere, then f∗ has an affine region.172

◦ The dual is the same as the Legendre transform for strictly convex, differen-173

tiable functions.174

• Concave points vs supporting lines:175

◦ Convex hull points: Γ(f) = {x : f(x) = f∗∗(x)}.176

◦ Concave points: Γ(f) ∩ domf .177

The intersection with domf comes from not wanting +∞ points as concave.178

◦ Supporting line points: C(f) = {x : ∂f(x) 6= ∅} = dom∂f .179

◦ C(f) = Γ(f) ∩ dom∂f∗∗ = Γ(f) ∩ dom∂f .180

◦ Γ(f) ∩ ri(domf) ⊆ C(f) ⊆ Γ(f) ∩ domf .181

∗ Proof : Take Γ(f)∩ of Rockafellar’s inclusion result.182

∗ This shows that concave points are supporting line points except possibly183

at relative boundary points.184
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Figure 6: (a)-(b) f and its convex, lower semi-continuous hull. (c) f has the value −∞
somewhere. Then f∗ = +∞, so that f∗∗ = −∞.

4. Optimization185

• Fenchel’s duality Theorem: Let f be a proper convex function and g be a186

proper concave function such that ri(dom(f)) ∩ ri(dom(g)) 6= ∅. Then, (VT, §7.15)187

inf
x∈Rn
{f(x)− g(x)} = max

k∈Rn
{g∗(k)− f∗(k)}.

g∗ is the dual defined for concave functions.188

• Constrained minimization: Let C be a convex, non-empty subset of Rn. Then, (VT, §7.16)189

inf
x∈C

f(x) = inf
x∈Rn
{f(x)− g(x)} = max

k∈Rn
{g∗(k)− f∗(k)},

where g(x) = −δC(x) (indicator function). Note that (VT, §5.15)
(VT, §6.5)

190

δ∗C(k) = sup
x∈Rn
{k · x− δC(x)} = sup

x∈C
k · x.
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