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Abstract-Bayesian model-based inversion has been applied 

to many applications, sueh as tomographic reconstructions. 
However, one limitation of these methods is that prior models 

are quite simple; so they are not capable of being trained to 
statistically represent subtle detail in images. 

In this paper, we demonstrate how novel prior modeling 

methods based on implicit Gibbs distributions can be used 

in MAP tomographic reconstruction to improve reconstructed 
image quality. The concept of the implicit Gibbs distribution is 

to model the image using the conditional distribution of each 
pixel given its neighbors and to construct a local approximation 

of the true Gibbs energy from the conditional distribution. 
Since the conditional distribution can be trained on a specific 

dataset, it is possible to obtain more precise and expressive 

models of images which capture unique structures. In practice, 

this results in a spatially adaptive MRF model, but it also 
provides a framework that assures convergence. We present 

results comparing the proposed method with both state-of-the­
art MRF prior models and K-SVD dictionary-based methods for 

tomographic reconstruction of images. Simulation results indicate 
that the proposed method can achieve higher resolution recovery. 

I. INTRODUCTION 

Recently, model-based iterative reconstruction (MBIR) has 

been shown to be effective in the reconstruction of X-ray 

CT data [1]-[3]. These algorithms have the advantage that 

they can incorporate more accurate models of both forward 

acquisition processes and the objects being reconstructed. 

More specifically, they fall into the general framework of 

Bayesian model-based inversion, and the reconstruction is 

computed as the maximum a posterior (MAP) estimate of the 

unknown image x from the indirect measurement y given by 

X = argmax{logp(Ylx) +logp(x)} (1) 
x�O 

where p(y lx) is the likelihood function corresponding to the 

forward projection model and p( x) is the prior distribution of 

image x used for regularization. 

For imaging problems, the most commonly-used prior is the 

Markov random field (MRF) with the following explicit form 

p(x)= �exp {- L bs,rp(Xs-xr) } (2) 
{s,r}EC 
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where P is the non-negative, symmetric and absolutely non­

decreasing potential function, C is the set of all pairwise 

cliques in the neighborhood system and bs,r are the weights 

for neighboring pixel pairs. While this simple model has 

been widely used [4], the limitation of this model is that 

the distribution is not very expressive and thus it is not well 

adapted to local image structures because of the pre-designed 

and fixed potential functions. 

It is also worth noticing that recent research in image 

denoising indicates that dictionary-based regularization tech­

niques have the potential to substantially improve results as 

compared to classical MAP image restoration methods [5]. 

Some research has been extended to inverse problems such 

as MRI [6] and image compression [7]. Nevertheless, these 

methods are generally difficult to be adapted to the classical 

Bayesian inverse framework that is widely used in problems 

such as tomographic reconstructions. 

In this paper, we demonstrate how novel prior modeling 

methods based on implicit Gibbs distributions [8] can be 

applied to MAP tomographic reconstruction. The concept of 

the implicit Gibbs distribution is to model the image using 

the conditional distribution of each pixel given its neighbors. 

It is then possible to compute a local approximation of the 

true Gibbs distribution from the conditional distribution. Since 

the conditional distribution of the MRF can be learned from 

specific training data, it is possible to obtain more precise and 

expressive models of images which capture unique characteris­

tics. In practice, this results in spatially adaptive MRF models, 

but it also provides a framework that assures convergence. 

We present simulation results comparing our new method 

with both state-of-art MRF prior models and K-SVD 

dictionary-based methods for tomographic reconstruction of 

images. Results indicate that the proposed method has the 

potential to produce reconstructions with higher resolution and 

finer detail. 

II. STATISTICAL MODEL FOR TOMO GR APHIC 

RECONSTRUCTION 

Let x E ]RM be the image vector and y E ]RN be 

the tomographic projection measurement. In the Bayesian 

statistical framework, both x and yare considered as random, 

and the reconstruction is computed as the maximum a posterior 
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(MAP) estimate given by [9] 

x = argmin { �(y - Ax)TD(y - Ax) -logp(x)} (3) 
x2:0 2 

where A represents the forward projection matrix and D is 

a diagonal weighting matrix whose elements are inversely 

proportional to the variance of the corresponding projection 

measurements. p(x) is the prior distribution of the image x, 
which is used to regularize the reconstructed image. The log 

prior term of commonly-used prior models in the form of (2) 
corresponds to the weighted sum of potential functions over 

all pairwise cliques. 

III. I MPLICIT GIBBS PRIOR DISTRIBUTION 

A. MAP Estimation with Implicit Gibbs Prior 

To develop our new prior model, we consider a general 

Gibbs distribution given by 

1 p(x) = -exp{-J.i(x)} 
z 

(4) 

where J.i( x) is the Gibbs energy function, and z is the partition 

function. By Hammersley-Clifford theorem [10], x will satisfy 

the Markov property given by 

B. Design of Surrogate Energy Function 
We formulate the surrogate energy function to be a quadratic 

function expanded at x' as follows 

1 u(x; x') = 2(x - X')T B(x - x') + dT (x - x') + c (8) 

where B is a symmetric matrix, d is a vector and c is a scalar 

independent of x. Notice that we could set c = 0 without 

changing the solution of the optimization. 
As shown in our previous paper [8], given the conditional 

distribution Ps(XsIX8s), the parameters Band d can be calcu­

lated as follows 

8 
(9) ds -alogps(xslx8s)lx=xl Xs 

B H + adiag{H} (10) 

H H +HT 
2 

(11) 

82 
logps(xs IX8s) IX=XI (12) Hs,r 8xs8xr 

The main idea behind these equations is that the gradient of 

the surrogate energy and the true energy are matched at x', 
and the second derivative matrix B is chosen to make the 

surrogate energy upper bound the true energy at x'. Notice 

that d and H are the gradient and Hessian of the true energy 

function J.i(x) at x'. 

(5) c. Conditional Distribution Model 

where Xs is an element of x and X8s are the neighbors of Xs. 
Our approach is to first model the local conditional dis­

tribution p(XsIX8s), and then to derive an approximation of 

the Gibbs distribution. To be more specific, given a local 

conditional distribution model p(XsIX8s), we will construct 

a surrogate energy function u(x; x') using p(xs IX8s) such 

that the surrogate energy function u(x; x') will satisfy the 

following two conditions. 

U(X'; x') 
< u(x; x') 

(6) 

(7) 

Therefore, u( x; x') is an upper bound of J.i( x) and they have 

the same values at x'. Then iterative minimization of the 

surrogate cost will also generate a decreasing sequence of the 

original MAP cost, which insures convergence. The overall 

algorithm is summarized in Figure 1 where the weighting 

factor A is inserted to control the regularization. 

Estimate the model parameters of p(XsIX8s) 
Initialize x' 
repeat 

Update surrogate energy function u(x; x') 
x' +-- argminx2:og(y-Ax)TD(y-Ax)+;&u(x;x')} 

until x' has converged 

Fig. I. MAP estimation with implicit Gibbs prior 

We model the homogeneous conditional distribution, 

p(XsIX8s), using a Gaussian mixture similar to [11]. Math­

ematically, the conditional distribution p(XsIX8s) will be a 

weighted sum of Gaussian distributions as follows 

p(XsIX8s) = 2::P(xsIX8s, k)p(klx8s) = 2:: I'kN(xslJ.ik, aD, 
k k 

(13) 

where J.ik and o� are the conditional means and variances of 

each Gaussian component, and l'k are the mixing weights. 

Moreover, each conditional mean is a weighted sum of its 

neighboring pixels given by 

J.ik = AkX8s + 13k . (14) 

Following the assumptions in [11], we further assume that 

(15) 

where ¢ is a feature vector extracted from the local neighbor­

hood. The distribution of the feature vector, ¢, is also assumed 

to be conditionally Gaussian given the class k, so that 

(16) 

For model simplicity, we constrain the mixture components to 

share the same diagonal covariance matrix. 
To summarize the overall conditional distribution model, we 

have two sets of parameters, one is ({ 1Tk, 4id k, o� ) for the 

feature vector ¢, and the other is (bk,Ak,f3k,O�h) for the 

conditional distribution of the pixel. The standard Expectation­

Maximization (EM) algorithm can be used to train the model 

parameters. 
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Fig. 2. Simulated phantom with artifacts and noise moderately removed, 
uniform flat region created, and high resolution targets inserted. The white 
box in the image indicates the region where the noise standard deviation is 
evaluated. Display window is [0 1600] HU. 

IV. EXPERIMENTAL RESULTS 

In this section, the reconstruction performance of different 

algorithms is presented. The simulated phantom, shown in 

Figure 2, is chosen from one slice of the 3D MBIR recon­

struction of a CT scan of a bag [3]. The field of view is 

512 mm x512 mm. Reconstruction artifacts are moderately 

cleaned up. Moreover, we made one region of the simulated 

phantom uniformly flat with a density of 1000 HU and also 

inserted high resolution target with a density of 2000 HU 

in order to quantitatively measure the noise and resolution 

performance. The simulated scanner has a 2D parallel-beam 

projection geometry with 363 detectors of width 2 mm. We 

generated the sinogram using 90 equal-angle views over 180 

degree. The photon count in air calibration is Ao = 500. So 

each projection measurement Yi is approximately a Gaussian 

with variance lA' x where Ai * is the i-th row of the 
Aoe I,* , 

matrix A. 

For the implicit Gibbs prior, the conditional distribution is 

trained on a number of 5 x 5 patches and the number of mixture 

components are 32. For the K-SVD prior, the size of the patch 

is n = 7 x 7, the size of the over-complete dictionary is 

K = 256, and the sparsity is L = 3 (see [5]). The parameters 

of both implicit Gibbs prior and K-SVD are trained offline 

on a training image dataset that does not include the testing 

phantom. For the q-GGMRF prior, we use p = 2, q = l.2 and 

c = 10 HU (see [1]). 
Figure 3 shows the RMSE in target high resolution region 

versus the noise standard deviation in the uniform flat region. 

Different points on the curve correspond to different amounts 

of regularization and the curve characterizes the bias-variance 

trade-off of each method. As shown in the figure, given a 

fixed noise variance, the implicit Gibbs prior gives the best 

resolution recovery in high resolution target region. 

In Figure 5, we show the reconstructed images with different 

methods at the comparable noise level. It can be seen that 
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Fig. 3. Bias-variance trade-off curve. Horizontal axis is the noise standard 
deviation evaluated over the window indicated in Figure 2. Vertical axis is 
the RMSE in the right target high resolution region in Figure 2. 
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Fig. 4. CT values of pixels along a line through the target bars. 

the fine details in the high resolution target region are best 

recovered in the reconstruction using the implicit Gibbs prior. 

Figure 4 shows the pixel profile along a line through the target 

bars. This plot indicates that the implicit Gibbs prior produces 

shaper edges. These results illustrate some potential benefits 

of the proposed method. 

V. CONCLUSIONS 

In this paper, we have introduced a novel prior model for 

Bayesian tomographic reconstruction. Instead of designing a 

particular potential functional for regularization, we approach 

the MAP estimation problem by constructing an upper bound 

of the Gibbs energy function from the local conditional 

distribution and iteratively solving the optimization, which 

also ensures convergence. We model the local conditional 

distribution using Gaussian mixture and train the parameters 

using EM algorithm. Simulations indicate that the proposed 

method has the potential to recover higher resolution details 



(a) (b) 

(c) (d) 

(e) (f) (g) 

Fig. 5. Comparison of q-GGMRF, K-SVD and implicit Gibbs prior performance on the simulated phantom with comparable noise level. (a) phantom, (b) 
q-GGMRF, (c) K-SVD, (d) implicit Gibbs prior. (e) q-GGMRF zoomed-in, (f) K-SVD zoomed-in, (g) implicit Gibbs prior zoomed-in. Display window is [0 
1600] HU. 

at a particular noise level as compare to several other methods. 
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