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The Advanced Television Systems Committee, Inc., is an international, non-profit organization 
developing voluntary standards for digital television. The ATSC member organizations represent 
the broadcast, broadcast equipment, motion picture, consumer electronics, computer, cable, 
satellite, and semiconductor industries. 

Specifically, ATSC is working to coordinate television standards among different 
communications media focusing on digital television, interactive systems, and broadband 
multimedia communications. ATSC is also developing digital television implementation 
strategies and presenting educational seminars on the ATSC standards. 

ATSC was formed in 1982 by the member organizations of the Joint Committee on 
InterSociety Coordination (JCIC): the Electronic Industries Association (EIA), the Institute of 
Electrical and Electronic Engineers (IEEE), the National Association of Broadcasters (NAB), the 
National Cable & Telecommunications Association (NCTA), and the Society of Motion Picture 
and Television Engineers (SMPTE). Currently, there are approximately 140 members 
representing the broadcast, broadcast equipment, motion picture, consumer electronics, 
computer, cable, satellite, and semiconductor industries. 

ATSC Digital TV Standards include digital high definition television (HDTV), standard 
definition television (SDTV), data broadcasting, multichannel surround-sound audio, and 
satellite direct-to-home broadcasting. 

NOTE: The user's attention is called to the possibility that compliance with this standard may 
require use of an invention covered by patent rights. By publication of this standard, no position 
is taken with respect to the validity of this claim or of any patent rights in connection therewith. 
One or more patent holders have, however, filed a statement regarding the terms on which such 
patent holder(s) may be willing to grant a license under these rights to individuals or entities 
desiring to obtain such a license. Details may be obtained from the ATSC Secretary and the 
patent holder. 
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A/52 Revision History 

Version Approval Date 

A/52 10 November 1994 

 Annex A, “AC-3 Elementary Streams in an MPEG-2 Multiplex” 12 April 1995 

 Annex B, “AC-3 Data Stream in IEC958 Interface” 20 December 1995 

 Annex C, “AC-3 Karaoke Mode” 20 December 1995 

A/52A 20 August 2001 

Revision A corrected some errata in the detailed specifications, revised Annex A to include additional information 
about the DVB standard, removed Annex B that described an interface specification, and added a new annex, 
“Alternate Bit Stream Syntax,” which contributes (in a compatible fashion) some new features to the AC-3 bit stream.

A/52B 14 June 2005 

Revision B corrected some errata in the detailed specifications, and added a new annex, then titled “Enhanced AC-3 
Bit Stream Syntax” which specified a non-backwards compatible syntax that offers additional coding tools and 
features. Informative references were removed from the body of the document and placed in a new Annex B. This 
version added new definitions for terms such as “frame” and “synchronization frame” that extended their original 
meanings without clearly noting the extensions. 

A/52:2010 22 November 2010 

The 2010 revision of this standard restored the document structure to place the Scope as Section 1, restored 
Informative References, and made significant adjustments to Annex A in response to a request from CEA to clarify 
the semantics for AC-3 Elementary Streams in the MPEG-2 TS. Minor textual adjustments were made in as well.. 

A/52:2012 23 March 2012 

The 2012 revision of this standard changed the title of Annex E from “Enhanced AC-3 (E-AC-3) Bit Stream Syntax” 
to “Enhanced AC-3.” In addition, it added two new Annexes, Annex F titled “AC-3 and Enhanced AC-3 bit streams in 
the ISO Base Media File Format” and Annex G titled “Enhanced AC-3 Elementary Streams in the MPEG-2 Multiplex 
“ (intended to match Annex A in structure and scope). It also clarified the “overloaded” terms added in Revision B; 
e.g., older versions of this standard used the terms “frame,” “synchronization frame” and “syncframe” 
interchangeably and had the same meaning. Subsequently the term “audio frame” was added and has a different 
meaning thus addressing some issues left by Revision B. 
Note: An updated version of this document was published on 17 May 2012 that corrected prefix letters in the table of 
contents. 

Corrigendum No. 1 17 December 2012 

This corrigendum addresses service_type term overload by renaming the field in A/52 Annex G to 
audio_service_type. 
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E2.3.1.50 spchdat2 – Additional Speech Enhancement Processing Data – 5 Bits 169 
E2.3.1.51 spchan2att – Speech Enhancement Processing Attenuation Data – 3 Bits 169 
E2.3.1.52 mixdatafill – Mixdata Field Fill Bits – 0 to 7 Bits 169 
E2.3.1.53 paninfoe – Pan Information Exists – 1 Bit 169 
E2.3.1.54 panmean – Pan Mean Direction Index – 8 Bits 169 
E2.3.1.55 paninfo – Reserved – 6 Bits 170 
E2.3.1.56 paninfo2e – Pan Information Exists – 1 Bit 170 
E2.3.1.57 panmean2 – Pan Mean Direction Index – 8 Bits 170 
E2.3.1.58 paninfo2 – reserved – 6 bits 170 
E2.3.1.59 frmmixcnfginfoe – Frame Mixing Configuration Information Exists – 1 Bit 170 
E2.3.1.60 blkmixcfginfoe – Block Mixing Configuration Information Exists – 1 Bit 170 
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E2.3.1.61 blkmixcfginfo[blk] – block mixing configuration information – 5 Bits 170 
E2.3.1.62 infomdate – Informational Metadata Exists – 1 Bit 170 
E2.3.1.63 sourcefscod – Source Sample Rate Code – 1 Bit 170 
E2.3.1.64 convsync – Converter Synchronization Flag – 1 Bit 170 
E2.3.1.65 blkid – Block Identification – 1 Bit 171 

E2.3.2 audfrm – Audio Frame 171 
E2.3.2.1 expstre – Exponent Strategy Enabled – 1 Bit 171 
E2.3.2.2 ahte – Adaptive Hybrid Transform Enabled – 1 Bit 171 
E2.3.2.3 snroffststr – SNR Offset Strategy – 2 Bits 171 
E2.3.2.4 transproce – Transient Pre-Noise Processing Enabled – 1 Bit 172 
E2.3.2.5 blkswe – Block Switch Syntax Enabled – 1 Bit 172 
E2.3.2.6 dithflage – Dither Flag Syntax Enabled – 1 Bit 172 
E2.3.2.7 bamode – Bit Allocation Model Syntax Enabled – 1 Bit 172 
E2.3.2.8 frmfgaincode – Fast Gain Codes Exist – 1 Bit 172 
E2.3.2.9 dbaflde – Delta Bit Allocation Syntax Enabled – 1 Bit 172 
E2.3.2.10 skipflde – Skip Field Syntax Enabled – 1 Bit 172 
E2.3.2.11 spxattene – Spectral Extension Attenuation Enabled – 1 Bit 172 
E2.3.2.12 frmcplexpstr – Frame Based Coupling Exponent Strategy – 5 Bits 172 
E2.3.2.13 frmchexpstr[ch] – Frame Based Channel Exponent Strategy – 5 Bits 172 
E2.3.2.14 convexpstre – Converter Exponent Strategy Exists – 1 Bit 173 
E2.3.2.15 convexpstr[ch] – Converter Channel Exponent Strategy – 5 Bits 173 
E2.3.2.16 cplahtinu – Coupling Channel AHT in Use – 1 Bit 174 
E2.3.2.17 chahtinu[ch] – Channel AHT in Use – 1 Bit 174 
E2.3.2.18 lfeahtinu – LFE Channel AHT in Use – 1 Bit 175 
E2.3.2.19 frmcsnroffst – Frame Coarse SNR Offset – 6 Bits 175 
E2.3.2.20 frmfsnroffst – Frame Fine SNR Offset – 4 Bits 175 
E2.3.2.21 chintransproc[ch] – Channel in Transient Pre-Noise Processing – 1 Bit 175 
E2.3.2.22 transprocloc[ch] – Transient Location Relative to Start of Frame – 10 Bits 175 
E2.3.2.23 transproclen[ch] – Transient Processing Length – 8 Bits 175 
E2.3.2.24 chinspxatten[ch] – Channel in Spectral Extension Attenuation Processing –  

1 Bit 175 
E2.3.2.25 spxattencod[ch] – Spectral Extension Attenuation Code – 5 Bits 175 
E2.3.2.26 blkstrtinfoe – Block Start Information Exists – 1 Bit 175 
E2.3.2.27 blkstrtinfo – Block Start Information – nblkstrtbits 175 
E2.3.2.28 firstspxcos[ch] – First Spectral Extension Coordinates States – 1 Bit 176 
E2.3.2.29 firstcplcos[ch] – First Coupling Coordinates States – 1 Bit 176 
E2.3.2.30 firstcplleak – First Coupling Leak State – 1 Bit 176 

E2.3.3 audblk – Audio Block 176 
E2.3.3.1 spxstre – Spectral Extension Strategy Exists – 1 Bit 176 
E2.3.3.2 spxinu – Spectral Extension in Use – 1 Bit 176 
E2.3.3.3 chinspx[ch] – Channel Using Spectral Extension – 1 Bit 176 
E2.3.3.4 spxstrtf – Spectral Extension Start Copy Frequency Code – 2 Bits 176 
E2.3.3.5 spxbegf – Spectral Extension Begin Frequency Code – 3 Bits 177 
E2.3.3.6 spxendf – Spectral Extension End Frequency Code – 3 Bits 177 
E2.3.3.7 spxbndstrce – Spectral Extension Band Structure Exist – 1 Bit 177 
E2.3.3.8 spxbndstrc[bnd] – Spectral Extension Band Structure – 1 to 14 Bits 178 
E2.3.3.9 spxcoe[ch] – Spectral Extension Coordinates Exist – 1 Bit 178 
E2.3.3.10 spxblnd[ch] – Spectral Extension Blend – 5 Bits 178 
E2.3.3.11 mstrspxco[ch] – Master Spectral Extension Coordinate – 2 Bits 178 
E2.3.3.12 spxcoexp[ch][bnd] – Spectral Extension Coordinate Exponent – 4 Bits 179 
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E2.3.3.13 spxcomant[ch][bnd] – Spectral Extension Coordinate Mantissa – 2 Bits 179 
E2.3.3.14 ecplinu – Enhanced Coupling in Use – 1 Bit 179 
E2.3.3.15 cplbndstrce – Coupling Banding Structure Exist – 1 Bit 179 
E2.3.3.16 ecplbegf – Enhanced Coupling Begin Frequency Code – 4 Bits 180 
E2.3.3.17 ecplendf – Enhanced Coupling End Frequency Code – 4 Bits 180 
E2.3.3.18 ecplbndstrce – Enhanced Coupling Banding Structure Exists – 1 Bit 180 
E2.3.3.19 ecplbndstrc[sbnd] – Enhanced Coupling Band (and sub-band) Structure – 1 Bit 181 
E2.3.3.20 ecplangleintrp – Enhanced Coupling Angle Interpolation Flag – 1 Bit 182 
E2.3.3.21 ecplparam1e[ch] – Enhanced Coupling Parameters 1 Exist – 1 Bit 182 
E2.3.3.22 ecplparam2e[ch] – Enhanced Coupling Parameters 2 Exist – 1 Bit 182 
E2.3.3.23 ecplamp[ch][bnd] – Enhanced Coupling Amplitude Scaling – 5 Bits 182 
E2.3.3.24 ecplangle[ch][bnd] – Enhanced Coupling Angle – 6 Bits 182 
E2.3.3.25 ecplchaos[ch][bnd] – Enhanced Coupling Chaos – 3 Bits 182 
E2.3.3.26 ecpltrans[ch] – Enhanced Coupling Transient Present – 1 Bit 182 
E2.3.3.27 blkfsnroffst – Block Fine SNR Offset – 4 Bits 183 
E2.3.3.28 fgaincode – Fast Gain Codes Exist – 1 Bit 183 
E2.3.3.29 convsnroffste – Converter SNR Offset Exists – 1 Bit 183 
E2.3.3.30 convsnroffst – Converter SNR Offset – 10 Bits 183 
E2.3.3.31 chgaqmod[ch] – Channel Gain Adaptive Quantization Mode – 2 Bits 183 
E2.3.3.32 chgaqgain[ch][n] – Channel Gain Adaptive Quantization Gain – 1 or 5 Bits 183 
E2.3.3.33 pre_chmant[n][ch][bin] – Pre Channel Mantissas – 0 to 16 Bits 183 
E2.3.3.34 cplgaqmod – Coupling Channel Gain Adaptive Quantization Mode – 2 Bits 183 
E2.3.3.35 cplgaqgain[n] – Coupling Gain Adaptive Quantization Gain – 1 or 5 Bits 183 
E2.3.3.36 pre_cplmant[n][bin] – Pre Coupling Channel Mantissas – 0 to 16 Bits 184 
E2.3.3.37 lfegaqmod – LFE Channel Gain Adaptive Quantization Mode – 2 Bits 184 
E2.3.3.38 lfegaqgain[n] – LFE Gain Adaptive Quantization Gain – 1 or 5 Bits 184 
E2.3.3.39 pre_lfemant[n][bin] – Pre LFE Channel Mantissas – 0 to 16 Bits 184 
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Digital Audio Compression Standard, A/52:2012 

1. SCOPE 

This standard defines two ways to create coded representations of audio information, how to 
describe these representations, how to arrange these coded representations for storage or 
transmission and how to decode the data to create audio. The coded representations defined 
herein are intended for use in digital audio transmission and storage applications.  

The audio coding algorithm denoted as “AC-3” is specified in the body of this Standard. The 
audio coding algorithm denoted as Enhanced AC-3 (“E-AC-3”) is specified in Annex E. 

2. INTRODUCTION 

The United States Advanced Television Systems Committee (ATSC) was formed by the member 
organizations of the Joint Committee on InterSociety Coordination (JCIC), recognizing that the 
prompt, efficient and effective development of a coordinated set of national standards is essential 
to the future development of domestic television services. One of the activities of the ATSC is 
exploring the need for and, where appropriate, coordinating the development of voluntary 
national technical standards for Advanced Television Systems. The revision history of this 
standard is given on page 2 of the document. 

ATSC Standard A/53, “Digital Television Standard”, references this document and describes 
how the audio coding algorithm described herein is applied in the ATSC DTV standard. The 
DVB/ETSI TS 101 154 document describes how AC-3 and E-AC-3 are applied in the DVB DTV 
standard. 

2.1 Motivation 

In order to more efficiently broadcast or record audio signals, the amount of information required 
to represent the audio signals may be reduced. In the case of digital audio signals, the amount of 
digital information needed to accurately reproduce the original pulse code modulation (PCM) 
samples may be reduced by applying a digital compression algorithm, resulting in a digitally 
compressed representation of the original signal. (The term compression used in this context 
means the compression of the amount of digital information which must be stored or recorded, 
and not the compression of dynamic range of the audio signal.) The goal of the digital 
compression algorithm is to produce a digital representation of an audio signal which, when 
decoded and reproduced, sounds the same as the original signal, while using a minimum of 
digital information (bit-rate) for the compressed (or encoded) representation. The AC-3 digital 
compression algorithm specified in this document can encode from one to five full bandwidth 
audio channels, along with a low frequency enhancement channel. The six channels of source 
audio can be encoded from a PCM representation into a serial bit stream at data rates ranging 
from 32 kbps to 640 kbps. When all six channels are present this is referred to as 5.1 channels. 
The 0.1 channel refers to a fractional bandwidth channel intended to convey only low frequency 
(subwoofer) signals. 

While a wide range of encoded bit-rates is supported by this standard, a typical application of 
the algorithm is shown in Figure 1.1. In this example, a 5.1 channel audio program is converted 
from a PCM representation requiring more than 5 Mbps (6 channels × 48 kHz × 18 bits = 5.184 
Mbps) into a 384 kbps serial bit stream by the AC-3 encoder. Satellite transmission equipment 
converts this bit stream to an RF transmission which is directed to a satellite transponder. The 
amount of bandwidth and power required by the transmission has been reduced by more than a 
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factor of 13 by the AC-3 digital compression. The signal received from the satellite is 
demodulated back into the 384 kbps serial bit stream, and decoded by the AC-3 decoder. The 
result is the original 5.1 channel audio program. 
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Figure 2.1 Example application of AC-3 to satellite audio transmission. 

Digital compression of audio is useful wherever there is an economic benefit to be obtained 
by reducing the amount of digital information required to represent the audio. Typical 
applications are in satellite or terrestrial audio broadcasting, delivery of audio over metallic or 
optical cables, or storage of audio on magnetic, optical, semiconductor, or other storage media. 

2.2 Encoding 

The AC-3 encoder accepts PCM audio and produces an encoded bit stream consistent with this 
standard. The specifics of the audio encoding process are not normative requirements of this 
standard. Nevertheless, the encoder must produce a bit stream matching the syntax described in 
Section 5, which, when decoded according to Sections 6 and 7, produces audio of sufficient 
quality for the intended application. Section 8 contains informative information on the encoding 
process. The encoding process is briefly described below. 

The AC-3 algorithm achieves high coding gain (the ratio of the input bit-rate to the output 
bit-rate) by coarsely quantizing a frequency domain representation of the audio signal. A block 
diagram of this process is shown in Figure 1.2. The first step in the encoding process is to 
transform the representation of audio from a sequence of PCM time samples into a sequence of 
blocks of frequency coefficients. This is done in the analysis filter bank. Overlapping blocks of 
512 time samples are multiplied by a time window and transformed into the frequency domain. 



ATSC A/52:2012 Digital Audio Compression Standard 17 December 2012 

 21

Due to the overlapping blocks, each PCM input sample is represented in two sequential 
transformed blocks. The frequency domain representation may then be decimated by a factor of 
two so that each block contains 256 frequency coefficients. The individual frequency coefficients 
are represented in binary exponential notation as a binary exponent and a mantissa. The set of 
exponents is encoded into a coarse representation of the signal spectrum which is referred to as 
the spectral envelope. This spectral envelope is used by the core bit allocation routine which 
determines how many bits to use to encode each individual mantissa. The spectral envelope and 
the coarsely quantized mantissas for 6 audio blocks (1536 audio samples per channel) are 
formatted into an AC-3 syncframe. The AC-3 bit stream is a sequence of AC-3 syncframes. 

 

Figure 2.2 The AC-3 encoder. 

The actual AC-3 encoder is more complex than indicated in Figure 1.2. The following 
functions not shown above are also included: 
1. A frame header is attached which contains information (bit-rate, sample rate, number of 

encoded channels, etc.) required to synchronize to and decode the encoded bit stream. 
2. Error detection codes are inserted in order to allow the decoder to verify that a received 

syncframe of data is error free. 
3. The analysis filterbank spectral resolution may be dynamically altered so as to better match 

the time/frequency characteristic of each audio block. 
4. The spectral envelope may be encoded with variable time/frequency resolution. 
5. A more complex bit allocation may be performed, and parameters of the core bit allocation 

routine modified so as to produce a more optimum bit allocation. 
6. The channels may be coupled together at high frequencies in order to achieve higher coding 

gain for operation at lower bit-rates. 
7. In the two-channel mode, a rematrixing process may be selectively performed in order to 

provide additional coding gain, and to allow improved results to be obtained in the event that 
the two-channel signal is decoded with a matrix surround decoder. 
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2.3 Decoding 

The decoding process is basically the inverse of the encoding process. The decoder, shown in 
Figure 1.3, must synchronize to the encoded bit stream, check for errors, and de-format the 
various types of data such as the encoded spectral envelope and the quantized mantissas. The bit 
allocation routine is run and the results used to unpack and de-quantize the mantissas. The 
spectral envelope is decoded to produce the exponents. The exponents and mantissas are 
transformed back into the time domain to produce the decoded PCM time samples. 

 

Figure 2.3 The AC-3 decoder. 

The actual AC-3 decoder is more complex than indicated in Figure 1.3. The following 
functions not shown above are included: 
1. Error concealment or muting may be applied in case a data error is detected. 
2. Channels which have had their high-frequency content coupled together must be de-coupled. 
3. Dematrixing must be applied (in the 2-channel mode) whenever the channels have been 

rematrixed. 
4. The synthesis filterbank resolution must be dynamically altered in the same manner as the 

encoder analysis filter bank had been during the encoding process. 
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editions might or might not be compatible. 

3.1 Normative References 

The following documents, in whole or in part, as referenced in this document, contain specific 
provisions that are to be followed strictly in order to implement a provision of this Standard. 
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information: Systems”, Doc. ISO/IEC IS 13818-1, International Organization for 
Standardization, Geneva, 2007.  

PCM Time
Samples

AC-3 Frame Syncronization, Error Detection,
and  Frame De-formatting

Encoded AC-3
Bit-Stream

Spectral
Envelope
Decoding

Bit
Allocation

Synthesis
Filter Bank

Exponents

Mantissa
De-quantization

Encoded
Spectral
Envelope

Quantized
Mantissas

Mantissas

Bit Allocation
Information



ATSC A/52:2012 Digital Audio Compression Standard 17 December 2012 

 23

[2] ISO: “Code for the representation of Names of Languages – Part 2: Alpha-3 code,” Doc. 
ISO 639-2, as maintained by the ISO 639/Joint Advisory Committee (ISO 639/JAC), 
http://www.loc.gov/standards/iso639-2/iso639jac.html; ISO 639-2 standard online: 
http://www.loc.gov/standards/iso639-2/langhome.html; International Organization for 
Standardization, Geneva. 

[3] ISO: “Information technology -- 8-bit single-byte coded graphic character sets -- Part 1: 
Latin alphabet No. 1,” ISO/IEC 8859-1:1998, International Organization for 
Standardization, Geneva, 1998. 

[4] IEEE/ASTM: “Use of the International Systems of Units (SI): The Modern Metric System,” 
Doc. SI 10-2002, Institute of Electrical and Electronics Engineers, New York, N.Y., 2002. 

3.2 Informative References 

The following documents contain information that may be helpful in applying this Standard. 

[5] ATSC: “Digital Television Standard: Part 1 – Digital Television System,” Doc. A/53 Part 
1:2009, Advanced Television Systems Committee, Washington, D.C., 7 August 2009. 

[6] ATSC: “Digital Television Standard: Part 3 – Service Multiplex and Transport Subsystem 
Characteristics,” Doc. A/53 Part 3:2009, Advanced Television Systems Committee, 
Washington, D.C., 7 August 2009. 

[7] ATSC: “Digital Television Standard: Part 5 – AC-3 Audio System Characteristics,” Doc. 
A/53 Part 5:2010, Advanced Television Systems Committee, Washington, D.C., 6 July 
2010. 

[8] ATSC: “Digital Television Standard: Part 6 – Enhanced AC-3 Audio System 
Characteristics,” Doc. A/53 Part 6:2010, Advanced Television Systems Committee, 
Washington, D.C., 6 July 2010. 

[9] ETSI:, “Specification for the use of Video and Audio Coding in Broadcasting Applications 
based on the MPEG-2 Transport Stream,” Doc. TS 101 154 V1.9.1, European 
Telecommunications Standards Institute, Sophia-Antipolis Cedex, France, 2009-09. 

[10] ETSI: “Digital Audio Compression (AC-3, Enhanced AC-3) Standard,” Doc. TS 102 366 
V1.2.1, European Telecommunications Standards Institute, Sophia-Antipolis Cedex, 
France, 2008-08. 

[11] ITU: “Service multiplex, transport, and identification methods for digital terrestrial 
television broadcasting,” Doc. ITU-R BT.1300-3, International Telecommunications Union, 
Geneva, 2005. 
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[14] SMPTE: “D-Cinema Distribution Master Audio Channel Mapping and Channel Labeling,” 
Doc. SMPTE 428-3, Society of Motion Picture and Television Engineers, White Plains, 
N.Y., September 2006. 

4. DEFINITION OF TERMS 

With respect to definition of terms, abbreviations, and units, the practice of the Institute of 
Electrical and Electronics Engineers (IEEE) as outlined in the Institute’s published standards [4] 
shall be used. Where an abbreviation is not covered by IEEE practice or industry practice differs 
from IEEE practice, the abbreviation in question will be described in Section 4.3 of this 
document. 

4.1 Compliance Notation 

This section defines compliance terms for use by this document:  
shall – This word indicates specific provisions that are to be followed strictly (no deviation is 

permitted). 
shall not – This phrase indicates specific provisions that are absolutely prohibited. 
should – This word indicates that a certain course of action is preferred but not necessarily 

required. 
should not – This phrase means a certain possibility or course of action is undesirable but not 

prohibited. 

4.2 Treatment of Syntactic Elements 

This document contains symbolic references to syntactic elements used in the audio, video, and 
transport coding subsystems. These references are typographically distinguished by the use of a 
different font (e.g., restricted), may contain the underscore character (e.g., sequence_end_code) and 
may consist of character strings that are not English words (e.g., dynrng). 

4.2.1 Reserved Elements 

One or more reserved bits, symbols, fields, or ranges of values (elements) may be present in this 
document. These are primarily used to enable adding new values to a syntactical structure 
without altering the syntax or causing a backwards compatibility issue, but also are used for 
other reasons.  

The ATSC default value for reserved bits is ‘1.’ There is no default value for other reserved 
elements. Use of reserved elements except as defined in ATSC Standards or by an industry 
standards setting body is not permitted. See individual element semantics for mandatory settings 
and any additional use constraints. As currently-reserved elements may be assigned values and 
meanings in future versions of this Standard, receiving devices built to this version are expected 
to ignore all values appearing in currently-reserved elements to avoid possible future failure to 
function as intended. 

4.3 Acronyms, Abbreviations, and Terms 

This section is organized into two subsections: one for terms, one for syntactical abbreviations. 
Acronyms are established at first use of each. 

4.3.1 Terms 

The following terms are used within this document. 



ATSC A/52:2012 Digital Audio Compression Standard 17 December 2012 

 25

audio block – A set of 512 audio samples consisting of 256 samples of the preceding audio 
block, and 256 new time samples. A new audio block occurs every 256 audio samples. Each 
audio sample is represented in two audio blocks. 

audio frame – A portion of an E-AC-3 synchronization frame. See syntax for audfrm() in Section 
E2.2.3 for the precise definition. 

bin – The number of the frequency coefficient, as in frequency bin number n. The 512 point 
TDAC transform produces 256 frequency coefficients or frequency bins. 

coefficient – The time domain samples are converted into frequency domain coefficients by the 
transform. 

coupled channel – A full bandwidth channel whose high frequency information is combined 
into the coupling channel. 

coupling band – A band of coupling channel transform coefficients covering one or more 
coupling channel sub-bands. 

coupling channel – The channel formed by combining the high frequency information from the 
coupled channels. 

coupling sub-band – A sub-band consisting of a group of 12 coupling channel transform 
coefficients. 

downmixing – Combining (or mixing down) the content of n original channels to produce m 
channels, where m<n. 

exponent set – The set of exponents for an independent channel, for the coupling channel, or for 
the low frequency portion of a coupled channel. 

full bandwidth (fbw) channel – An audio channel capable of full audio bandwidth. All channels 
(left, center, right, left surround, right surround) except the lfe channel are fbw channels. 

frame – A generic term used for a portion of an elementary stream read in context. See 
syntactical definitions for audio frame and synchronization frame. 

independent channel – A channel whose high frequency information is not combined into the 
coupling channel. (The lfe channel is always independent.) 

low frequency effects (lfe) channel – An optional single channel of limited (<120 Hz) 
bandwidth, which is intended to be reproduced at a level +10 dB with respect to the fbw 
channels. The optional lfe channel allows high sound pressure levels to be provided for low 
frequency sounds. 

reserved – An element that is set aside for use by a future Standard. 
spectral envelope – A spectral estimate consisting of the set of exponents obtained by decoding 

the encoded exponents. Similar (but not identical) to the original set of exponents. 
substream – A subcomponent of the overall bit stream, specific to E-AC-3, which may be either 

“dependent” or “independent” as specified by the associated semantics. 
synchronization frame –The minimum portion of the audio serial bit stream capable of being 

fully decoded, sometimes abbreviated “syncframe.” See the syntax for syncframe() (AC-3 
synchronization frame) in Section 5.3 and the syntax for syncframe() (E-AC-3 synchronization 
frame) in Section E2.2 for the precise definitions. 

window – A time vector which is multiplied by an audio block to provide a windowed audio 
block. The window shape establishes the frequency selectivity of the filterbank, and provides 
for the proper overlap/add characteristic to avoid blocking artifacts. 



ATSC A/52:2012 Digital Audio Compression Standard 17 December 2012 

 26

4.3.2 Syntactical Abbreviations 

A number of abbreviations are used to refer to elements employed in the AC-3 format. The 
following list is a cross reference from each abbreviation to the terminology which it represents. 
For most items, a reference to further information is provided. This document makes extensive 
use of these abbreviations. The abbreviations are lower case with a maximum length of 12 
characters, and are suitable for use in either high level or assembly language computer software 
coding. Those who implement this standard are encouraged to use these same abbreviations in 
any computer source code, or other hardware or software implementation documentation. Table 
4.1 lists the abbreviations used in this document, their terminology and Section reference. 

Table 4.1 ATSC Digital Audio Compression Standard Terms 

Abbreviation Terminology Reference 

acmod audio coding mode Section 5.4.2.3 

addbsi additional bit stream information Section 5.4.2.31 

addbsie additional bit stream information exists Section 5.4.2.29 

addbsil additional bit stream information length Section 5.4.2.30 

audblk audio block Section 5.4.3 

audprodie audio production information exists Section 5.4.2.13 

audprodi2e audio production information exists, ch2 Section 5.4.2.21 

auxbits auxiliary data bits Section 5.4.4.1 

auxdata auxiliary data field Section 5.4.4.1 

auxdatae auxiliary data exists Section 5.4.4.3 

auxdatal auxiliary data length Section 5.4.4.2 

baie bit allocation information exists Section 5.4.3.30 

bap bit allocation pointer  

bin frequency coefficient bin in index [bin] Section 5.4.3.13 

blk block in array index [blk]  

blksw block switch flag Section 5.4.3.1 

bnd band in array index [bnd]  

bsi bit stream information Section 5.4.2 

bsid bit stream identification Section 5.4.2.1 

bsmod bit stream mode Section 5.4.2.2 

ch channel in array index [ch]  

chbwcod channel bandwidth code Section 5.4.3.24 

chexpstr channel exponent strategy Section 5.4.3.22 

chincpl channel in coupling Section 5.4.3.9  

chmant channel mantissas Section 5.4.3.61 

clev center mixing level coefficient Section 5.4.2.4 

cmixlev center mix level Section 5.4.2.4 

compr compression gain word Section 5.4.2.10 

compr2 compression gain word, ch2 Section 5.4.2.18 

compre compression gain word exists Section 5.4.2.9 

compr2e compression gain word exists, ch2 Section 5.4.2.17 

copyrightb copyright bit Section 5.4.2.24 

cplabsexp coupling absolute exponent Section 5.4.3.25 

cplbegf coupling begin frequency code Section 5.4.3.1 

cplbndstrc coupling band structure Section 5.4.3.13 
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Abbreviation Terminology Reference 

cplco coupling coordinate Section 7.4.3 

cplcoe coupling coordinates exist Section 5.4.3.14 

cplcoexp coupling coordinate exponent Section 5.4.3.16 

cplcomant coupling coordinate mantissa Section 5.4.3.17 

cpldeltba coupling dba Section 5.4.3.53 

cpldeltbae coupling dba exists Section 5.4.3.48 

cpldeltlen coupling dba length Section 5.4.3.52 

cpldeltnseg coupling dba number of segments Section 5.4.3.50 

cpldeltoffst coupling dba offset Section 5.4.3.51 

cplendf coupling end frequency code Section 5.4.3.12 

cplexps coupling exponents Section 5.4.3.26 

cplexpstr coupling exponent strategy Section 5.4.3.21 

cplfgaincod coupling fast gain code Section 5.4.3.39 

cplfleak coupling fast leak initialization Section 5.4.3.45 

cplfsnroffst coupling fine SNR offset Section 5.4.3.38 

cplinu coupling in use Section 5.4.3.8 

cplleake coupling leak initialization exists Section 5.4.3.44 

cplmant coupling mantissas Section 5.4.3.61 

cplsleak coupling slow leak initialization Section 5.4.3.46 

cplstre coupling strategy exists Section 5.4.3.7 

crc1 crc - cyclic redundancy check word 1 Section 5.4.1.2 

crc2 crc - cyclic redundancy check word 2 Section 5.4.5.2 

crcrsv crc reserved bit Section 5.4.5.1 

csnroffst coarse SNR offset Section 5.4.3.37 

d15 d15 exponent coding mode Section 5.4.3.21 

d25 d25 exponent coding mode Section 5.4.3.21 

d45 d45 exponent coding mode Section 5.4.3.21 

dba delta bit allocation Section 5.4.3.47 

dbpbcod dB per bit code Section 5.4.3.34 

deltba channel dba Section 5.4.3.57 

deltbae channel dba exists Section 5.4.3.49 

deltbaie dba information exists Section 5.4.3.47 

deltlen channel dba length Section 5.4.3.56 

deltnseg channel dba number of segments Section 5.4.3.54 

deltoffst channel dba offset Section 5.4.3.55 

dialnorm dialogue normalization word Section 5.4.2.8  

dialnorm2 dialogue normalization word, ch2 Section 5.4.2.16 

dithflag dither flag Section 5.4.3.2 

dsurmod Dolby surround mode Section 5.4.2.6 

dynrng dynamic range gain word Section 5.4.3.4 

dynrng2 dynamic range gain word, ch2 Section 5.4.3.6 

dynrnge dynamic range gain word exists Section 5.4.3.3 

dynrng2e dynamic range gain word exists, ch2 Section 5.4.3.5 

exps channel exponents Section 5.4.3.27 

fbw full bandwidth  

fdcycod fast decay code Section 5.4.3.32 
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Abbreviation Terminology Reference 

fgaincod channel fast gain code Section 5.4.3.41 

floorcod masking floor code Section 5.4.3.35 

floortab masking floor table Section 7.2.2.7 

frmsizecod frame size code Section 5.4.1.4 

fscod sampling frequency code Section 5.4.1.3 

fsnroffst channel fine SNR offset Section 5.4.3.40 

gainrng channel gain range code Section 5.4.3.28 

grp group in index [grp]  

langcod language code Section 5.4.2.12 

langcod2 language code, ch2 Section 5.4.2.20 

langcode language code exists Section 5.4.2.11 

langcod2e language code exists, ch2 Section 5.4.2.19 

lfe low frequency effects  

lfeexps lfe exponents Section 5.4.3.29 

lfeexpstr lfe exponent strategy Section 5.4.3.23 

lfefgaincod lfe fast gain code Section 5.4.3.43 

lfefsnroffst lfe fine SNR offset Section 5.4.3.42 

lfemant lfe mantissas Section 5.4.3.63 

lfeon lfe on Section 5.4.2.7 

mixlevel mixing level Section 5.4.2.14 

mixlevel2 mixing level, ch2 Section 5.4.2.22 

mstrcplco master coupling coordinate Section 5.4.3.15 

nauxbits number of auxiliary bits Section 5.4.4.1 

nchans number of channels Section 5.4.2.3 

nchgrps number of fbw channel exponent groups Section 5.4.3.27 

nchmant number of fbw channel mantissas Section 5.4.3.61 

ncplbnd number of structured coupled bands Section 5.4.3.13 

ncplgrps number of coupled exponent groups Section 5.4.3.26 

ncplmant number of coupled mantissas Section 5.4.3.62 

ncplsubnd number of coupling sub-bands Section 5.4.3.12 

nfchans number of fbw channels Section 5.4.2.3 

nlfegrps number of lfe channel exponent groups Section 5.4.3.29 

nlfemant number of lfe channel mantissas Section 5.4.3.63 

origbs original bit stream Section 5.4.2.25 

phsflg phase flag Section 5.4.3.18 

phsflginu phase flags in use Section 5.4.3.10 

rbnd rematrix band in index [rbnd]  

rematflg rematrix flag Section 5.4.3.20 

rematstr rematrixing strategy Section 5.4.3.19 

roomtyp room type Section 5.4.2.15 

roomtyp2 room type, ch2 Section 5.4.2.23 

sbnd sub-band in index [sbnd]  

sdcycod slow decay code Section 5.4.3.31 

seg segment in index [seg]  

sgaincod slow gain code Section 5.4.3.33 

skipfld skip field Section 5.4.3.60 
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Abbreviation Terminology Reference 

skipl skip length Section 5.4.3.59 

skiple skip length exists Section 5.4.3.58 

slev surround mixing level coefficient Section 5.4.2.5 

snroffste SNR offset exists Section 5.4.3.36 

surmixlev surround mix level Section 5.4.2.5 

syncframe synchronization frame Section 5.1 

syncinfo synchronization information Section 5.3.1 

syncword synchronization word Section 5.4.1.1 

tdac time division aliasing cancellation  

timecod1 time code first half Section 5.4.2.27 

timecod2 time code second half Section 5.4.2.28 

timecod1e time code first half exists Section 5.4.2.26 

timecod2e time code second half exists Section 5.4.2.26 

5. BIT STREAM SYNTAX 

5.1 Synchronization Frame 

An AC-3 serial coded audio bit stream is made up of a sequence of synchronization frames (see 
Figure 5.1). Each synchronization frame contains 6 coded audio blocks (AB), each of which 
represent 256 new audio samples per channel. A synchronization information (SI) header at the 
beginning of each syncframe contains information needed to acquire and maintain 
synchronization. A bit stream information (BSI) header follows SI, and contains parameters 
describing the coded audio service. The coded audio blocks may be followed by an auxiliary data 
(Aux) field. At the end of each syncframe is an error check field that includes a CRC word for 
error detection. An additional CRC word is located in the SI header, the use of which, by a 
decoder, is optional. 

SI

Sync Frame

BSI SI BSI

AB 0 AB 1 AB 2 AB 3 AB 4 AB 5 Aux
C
R
C

 

Figure 5.1 AC-3 synchronization frame. 

5.2 Semantics of Syntax Specification 

The following tables describe the order of arrival of information within the bit stream. The 
information contained in the tables is roughly based on C language syntax, but simplified for 
ease of reading. For bit stream elements which are larger than 1-bit, the order of the bits in the 
serial bit stream is either most-significant-bit-first (for numerical values), or left-bit-first (for bit-
field values). Fields or elements contained in the bit stream are indicated with bold type. 
Syntactic elements are typographically distinguished by the use of a different font (e.g., dynrng). 

Some AC-3 bit stream elements naturally form arrays. This syntax specification treats all bit 
stream elements individually, whether or not they would naturally be included in arrays. Arrays 
are thus described as multiple elements (as in blksw[ch] as opposed to simply blksw or blksw[]), and 
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control structures such as for loops are employed to increment the index ([ch] for channel in this 
example). 

5.3 Syntax Specification 

A continuous audio bit stream would consist of a sequence of synchronization frames: 

Syntax 
AC-3_bitstream() 
{ 
 while(true) 
 { 
  syncframe() ; 
 } 
} /* end of AC-3 bit stream */ 

The syncframe consists of the syncinfo and bsi fields, the 6 coded audblk fields, the auxdata field, 
and the errorcheck field. 

Syntax 
syncframe() 
{ 
 syncinfo() ; 
 bsi() ; 
 for (blk = 0; blk < 6; blk++) 
 { 
  audblk() ; 
 } 
 auxdata() ; 
 errorcheck() ; 
} /* end of syncframe */ 

Each of the bit stream elements, and their length, are itemized in the following tables. Note 
that all bit stream elements arrive most significant bit first, or left bit first, in time. 

5.3.1 syncinfo: Synchronization Information 

Table 5.1 syncinfo Syntax and Word Size 

Syntax Word Size

syncinfo()  

{  

 syncword 16 

 crc1 16 

 fscod 2 

 frmsizecod 6 

} /* end of syncinfo */  
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5.3.2 bsi: Bit Stream Information 

Table 5.2 bsi Syntax and Word Size 

Syntax Word Size

bsi()  

{  

 bsid 5 

 bsmod 3 

 acmod 3 

 if ((acmod & 0x1) && (acmod != 0x1)) /* if 3 front channels */ {cmixlev} 2 

 if (acmod & 0x4) /* if a surround channel exists */ {surmixlev} 2 

 if (acmod == 0x2) /* if in 2/0 mode */ {dsurmod} 2 

 lfeon 1 

 dialnorm 5 

 compre 1 

 if (compre) {compr} 8 

 langcode 1 

 if (langcode) {langcod} 8 

 audprodie 1 

 if (audprodie)  

 {  

  mixlevel  5 

  roomtyp 2 

 }  

 if (acmod == 0) /* if 1+1 mode (dual mono, so some items need a second value) */  

 {  

  dialnorm2 5 

  compr2e 1 

  if (compr2e) {compr2} 8 

  langcod2e 1 

  if (langcod2e) {langcod2} 8 

  audprodi2e 1 

  if (audprodi2e)  

  {  

   mixlevel2 5 

   roomtyp2 2 

  }  

 }  

 copyrightb 1 

 origbs 1 

 timecod1e 1 

 if (timecod1e) {timecod1} 14 

 timecod2e 1 

 if (timecod2e) {timecod2} 14 

 addbsie 1 

 if (addbsie)  

 {  
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Syntax Word Size

  addbsil 6 

  addbsi (addbsil+1)×8 

 }  

} /* end of bsi */  

5.3.3 audioblk: Audio Block 

Table 5.3 audioblk Syntax and Word Size 

Syntax Word Size 

audblk()  

{  

/* These fields for block switch and dither flags */  

 for (ch = 0; ch < nfchans; ch++) {blksw[ch]} 1 

 for (ch = 0; ch < nfchans; ch++) {dithflag[ch]} 1 

/* These fields for dynamic range control */  

 dynrnge 1 

 if (dynrnge) {dynrng} 8 

 if (acmod == 0) /* if 1+1 mode */  

 {  

  dynrng2e 1 

  if (dynrng2e) {dynrng2} 8 

 }  

/* These fields for coupling strategy information */  

 cplstre 1 

 if (cplstre)  

 {  

  cplinu 1 

  if (cplinu)  

  {  

   for (ch = 0; ch < nfchans; ch++) {chincpl[ch]} 1 

   if (acmod == 0x2) {phsflginu} /* if in 2/0 mode */ 1 

   cplbegf 4 

   cplendf 4 

   /* ncplsubnd = 3 + cplendf - cplbegf */  

   for (bnd = 1; bnd < ncplsubnd; bnd++) {cplbndstrc[bnd]} 1 

  }  

 }  

/* These fields for coupling coordinates, phase flags */  

 if (cplinu)  

 {  

  for (ch = 0; ch < nfchans; ch++)  

  {  

   if (chincpl[ch])  

   {  

    cplcoe[ch] 1 

    if (cplcoe[ch])  

    {  
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Syntax Word Size 

     mstrcplco[ch] 2 

     /* ncplbnd derived from ncplsubnd, and cplbndstrc */  

     for (bnd = 0; bnd < ncplbnd; bnd++)  

     {  

      cplcoexp[ch][bnd] 4 

      cplcomant[ch][bnd] 4 

     }  

    }  

   }  

  }  

  if ((acmod == 0x2) && phsflginu && (cplcoe[0] || cplcoe[1]))  

  {  

   for (bnd = 0; bnd < ncplbnd; bnd++) {phsflg[bnd]} 1 

  }  

 }  

/* These fields for rematrixing operation in the 2/0 mode */  

 if (acmod == 0x2) /* if in 2/0 mode */  

 {  

  rematstr 1 

  if (rematstr)  

  {  

   if ((cplbegf > 2) || (cplinu == 0))  

   {  

    for (rbnd = 0; rbnd < 4; rbnd++) {rematflg[rbnd]} 1 

   }  

   if ((2 >= cplbegf > 0) && cplinu)  

   {  

    for (rbnd = 0; rbnd < 3; rbnd++) {rematflg[rbnd]} 1 

   }  

   if ((cplbegf == 0) && cplinu)  

   {  

    for (rbnd = 0; rbnd < 2; rbnd++) {rematflg[rbnd]} 1 

   }  

  }  

 }  

/* These fields for exponent strategy */  

 if (cplinu) {cplexpstr} 2 

 for (ch = 0; ch < nfchans; ch++) {chexpstr[ch]} 2 

 if (lfeon) {lfeexpstr} 1 

 for (ch = 0; ch < nfchans; ch++)  

 {  

  if (chexpstr[ch] != reuse)  

  {  

   if (!chincpl[ch]) {chbwcod[ch]} 6 

  }  

 }  
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Syntax Word Size 

/* These fields for exponents */  

 if (cplinu) /* exponents for the coupling channel */  

 {  

  if (cplexpstr != reuse)  

  {  

   cplabsexp 4 

   /* ncplgrps derived from ncplsubnd, cplexpstr */  

   for (grp = 0; grp< ncplgrps; grp++) {cplexps[grp]} 7 

  }  

 }  

 for (ch = 0; ch < nfchans; ch++) /* exponents for full bandwidth channels */  

 {  

  if (chexpstr[ch] != reuse)  

  {  

   exps[ch][0] 4 

   /* nchgrps derived from chexpstr[ch], and cplbegf or chbwcod[ch] */  

   for (grp = 1; grp <= nchgrps[ch]; grp++) {exps[ch][grp]} 7 

   gainrng[ch] 2 

  }  

 }  

 if (lfeon) /* exponents for the low frequency effects channel */  

 {  

  if (lfeexpstr != reuse)  

  {  

   lfeexps[0] 4 

   /* nlfegrps = 2 */  

   for (grp = 1; grp <= nlfegrps; grp++) {lfeexps[grp]} 7 

  }  

 }  

/* These fields for bit-allocation parametric information */  

 baie 1 

 if (baie)  

 {  

  sdcycod 2 

  fdcycod 2 

  sgaincod 2 

  dbpbcod 2 

  floorcod 3 

 }  

 snroffste 1 

 if (snroffste)  

 {  

  csnroffst 6 

  if (cplinu)  

  {  

   cplfsnroffst 4 
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   cplfgaincod 3 

  }  

  for (ch = 0; ch < nfchans; ch++)  

  {  

   fsnroffst[ch] 4 

   fgaincod[ch] 3 

  }  

  if (lfeon)  

  {  

   lfefsnroffst 4 

   lfefgaincod 3 

  }  

 }  

 if (cplinu)  

 {  

  cplleake 1 

  if (cplleake)  

  {  

   cplfleak 3 

   cplsleak 3 

  }  

 }  

/* These fields for delta bit allocation information */  

 deltbaie 1 

 if (deltbaie)  

 {  

  if (cplinu) {cpldeltbae} 2 

  for (ch = 0; ch < nfchans; ch++) {deltbae[ch]} 2 

  if (cplinu)  

  {  

   if (cpldeltbae==new info follows)  

   {  

    cpldeltnseg 3 

    for (seg = 0; seg <= cpldeltnseg; seg++)  

    {  

     cpldeltoffst[seg] 5 

     cpldeltlen[seg] 4 

     cpldeltba[seg] 3 

    }  

   }  

  }  

  for (ch = 0; ch < nfchans; ch++)  

  {  

   if (deltbae[ch]==new info follows)  

   {  

    deltnseg[ch] 3 
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    for (seg = 0; seg <= deltnseg[ch]; seg++)  

    {  

     deltoffst[ch][seg] 5 

     deltlen[ch][seg] 4 

     deltba[ch][seg] 3 

    }  

   }  

  }  

 }  

/* These fields for inclusion of unused dummy data */  

 skiple 1 

 if (skiple)  

 {  

  skipl 9 

  skipfld skipl × 8 

 }  

/* These fields for quantized mantissa values */  

 got_cplchan = 0  

 for (ch = 0; ch < nfchans; ch++)  

 {  

  for (bin = 0; bin < nchmant[ch]; bin++) {chmant[ch][bin]} (0–16) 

  if (cplinu && chincpl[ch] && !got_cplchan)  

  {  

   for (bin = 0; bin < ncplmant; bin++) {cplmant[bin]} (0–16) 

   got_cplchan = 1  

  }  

 }  

 if (lfeon) /* mantissas of low frequency effects channel */  

 {  

  for (bin = 0; bin < nlfemant; bin++) {lfemant[bin]} (0-16) 

 }  

} /* end of audblk */  

5.3.4 auxdata: Auxiliary Data 

Table 5.4 auxdata Syntax and Word Size 

Syntax Word Size

auxdata()  

{  

 auxbits nauxbits 

 if (auxdatae)  

 {  

  Auxdatal 14 

 }  

 auxdatae 1 

} /* end of auxdata */  
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5.3.5 errorcheck: Error Detection Code 

Table 5.5 errorcheck Syntax and Word Size 

Syntax Word Size

errorcheck()  

{  

 crcrsv 1 

 crc2 16 

} /* end of errorcheck */  

5.4 Description of Bit Stream Elements 

A number of bit stream elements have values which may be transmitted, but whose meaning has 
been reserved. If a decoder receives a bit stream which contains reserved values, the decoder 
may or may not be able to decode and produce audio. In the description of bit stream elements 
which have reserved codes, there is an indication of what the decoder can do if the reserved code 
is received. In some cases, the decoder can not decode audio. In other cases, the decoder can still 
decode audio by using a default value for a parameter which was indicated by a reserved code. 

5.4.1 syncinfo: Synchronization Information 

5.4.1.1 syncword: Synchronization Word, 16 Bits 

The syncword is always 0x0B77, or ‘0000 1011 0111 0111’. Transmission of the syncword, like 
other bit field elements, is left bit first. 

5.4.1.2 crc1: Cyclic Redundancy Check 1, 16 Bits 

This 16 bit-CRC applies to the first 5/8 of the syncframe. Transmission of the CRC, like other 
numerical values, is most significant bit first. 

5.4.1.3 fscod: Sample Rate Code, 2 Bits 

This is a 2-bit code indicating sample rate according to Table 5.6. If the reserved code is 
indicated, the decoder should not attempt to decode audio and should mute. 

Table 5.6 Sample Rate Codes 

fscod Sampling Rate, kHz

‘00’ 48  

‘01’ 44.1 

‘10’ 32  

‘11’ reserved 

5.4.1.4 frmsizecod: Frame Size Code, 6 Bits 

The frame size code is used along with the sample rate code to determine the number of (2-byte) 
words before the next syncword. See Table 5.18. 



ATSC A/52:2012 Digital Audio Compression Standard 17 December 2012 

 38

5.4.2 bsi: Bit Stream Information 

5.4.2.1 bsid: Bit Stream Identification, 5 Bits 

This bit field shall have a value of ‘01000’ (= 8) when the stream_type is 0x81 unless the stream is 
constructed per one of the Annexs to this Standard. The annexes to this standard define what 
other values signify and the degree of compatibility with decoders built to decode streams with 
bsid=8. Thus, decoders built to this standard shall mute if the value of bsid is greater than 8 
(unless the decoder is built in conformance with the optional provisions of Annex E), and should 
decode and reproduce audio if the value of bsid is less than or equal to 8. 

5.4.2.2 bsmod: Bit Stream Mode, 3 Bits 

This 3-bit code indicates the type of service that the bit stream conveys as defined in Table 5.7. 

Table 5.7 Bit Stream Mode 

bsmod acmod Type of Service

‘000’ any main audio service: complete main (CM) 

‘001’ any main audio service: music and effects (ME) 

‘010’ any associated service: visually impaired (VI) 

‘011’ any associated service: hearing impaired (HI) 

‘100’ any associated service: dialogue (D)  

‘101’ any associated service: commentary (C) 

‘110’ any associated service: emergency (E) 

‘111’ ‘001’ associated service: voice over (VO) 

‘111’ ‘010’ - ‘111’ main audio service: karaoke 

5.4.2.3 acmod: Audio Coding Mode, 3 Bits 

This 3-bit code, shown in Table 5.8, indicates which of the main service channels are in use, 
ranging from 3/2 to 1/0. If the msb of acmod is a 1, surround channels are in use and surmixlev 
follows in the bit stream. If the msb of acmod is a ‘0’, the surround channels are not in use and 
surmixlev does not follow in the bit stream. If the lsb of acmod is a ‘0’, the center channel is not in 
use. If the lsb of acmod is a ‘1’, the center channel is in use. Note: The state of acmod sets the 
number of full-bandwidth channels parameter, nfchans, (e.g., for 3/2 mode, nfchans = 5; for 2/1 
mode, nfchans = 3; etc.). The total number of channels, nchans, is equal to nfchans if the lfe channel 
is off, and is equal to 1 + nfchans if the lfe channel is on. If acmod is 0, then two completely 
independent program channels (dual mono) are encoded into the bit stream, and are referenced as 
Ch1, Ch2. In this case, a number of additional items are present in BSI or audblk to fully describe 
Ch2. Table 5.8 also indicates the channel ordering (the order in which the channels are 
processed) for each of the modes. 
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Table 5.8 Audio Coding Mode 

acmod Audio Coding Mode nfchans Channel Array Ordering 

‘000’ 1+1 2 Ch1, Ch2 

‘001’ 1/0 1 C 

‘010’ 2/0 2 L, R 

‘011’ 3/0 3 L, C, R 

‘100’ 2/1 3 L, R, S 

‘101’ 3/1 4 L, C, R, S 

‘110’ 2/2 4 L, R, SL, SR 

‘111’ 3/2 5 L, C, R, SL, SR 

5.4.2.4 cmixlev: Center Mix Level, 2 Bits 

When three front channels are in use, this 2-bit code, shown in Table 5.9, indicates the nominal 
down mix level of the center channel with respect to the left and right channels. If cmixlev is set to 
the reserved code, decoders should still reproduce audio. The intermediate value of cmixlev (-4.5 
dB) may be used in this case. 

Table 5.9 Center Mix Level 

cmixlev clev

‘00’ 0.707 (–3.0 dB) 

‘01’ 0.595 (–4.5 dB) 

‘10’ 0.500 (–6.0 dB) 

‘11’ reserved 

5.4.2.5 surmixlev: Surround Mix Level, 2 Bits 

If surround channels are in use, this 2-bit code, shown in Table 5.10, indicates the nominal down 
mix level of the surround channels. If surmixlev is set to the reserved code, the decoder should still 
reproduce audio. The intermediate value of surmixlev (–6 dB) may be used in this case. 

Table 5.10 Surround Mix Level 

surmixlev slev

‘00’ 0.707 (–3 dB) 

‘01’ 0.500 (–6 dB) 

‘10’ 0 

‘11’ reserved 

5.4.2.6 dsurmod: Dolby Surround Mode, 2 Bits 

When operating in the two channel mode, this 2-bit code, as shown in Table 5.11, indicates 
whether or not the program has been encoded in Dolby Surround. This information is not used 
by the AC-3 decoder, but may be used by other portions of the audio reproduction equipment. If 
dsurmod is set to the reserved code, the decoder should still reproduce audio. The reserved code 
may be interpreted as “not indicated”. 
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Table 5.11 Dolby Surround Mode 

dsurmod Indication

‘00’ not indicated 

‘01’ Not Dolby Surround encoded 

‘10’ Dolby Surround encoded 

‘11’ reserved 

5.4.2.7 lfeon: Low Frequency Effects Channel on, 1 Bit 

This bit has a value of ‘1’ if the lfe (sub woofer) channel is on, and a value of ‘0’ if the lfe 
channel is off. 

5.4.2.8 dialnorm: Dialogue Normalization, 5 Bits 

This 5-bit code indicates how far the average dialogue level is below digital 100 percent. Valid 
values are 1–31. The value of 0 is reserved. The values of 1 to 31 are interpreted as -1 dB to -31 
dB with respect to digital 100 percent. If the reserved value of 0 is received, the decoder shall use 
–31 dB. The value of dialnorm shall affect the sound reproduction level. If the value is not used by 
the AC-3 decoder itself, the value shall be used by other parts of the audio reproduction 
equipment. Dialogue normalization is further explained in Section 7.6. 

5.4.2.9 compre: Compression Gain Word Exists, 1 Bit 

If this bit is a ‘1’, the following 8 bits represent a compression control word. 

5.4.2.10 compr: Compression Gain Word, 8 Bits 

This encoder-generated gain word may be present in the bit stream. If so, it may used to scale the 
reproduced audio level in order to reproduce a very narrow dynamic range, with an assured 
upper limit of instantaneous peak reproduced signal level in the monophonic downmix. The 
meaning and use of compr is described further in Section 7.7.2. 

5.4.2.11 langcode: Language Code Exists, 1 Bit 

If this bit is a ‘1’, the following 8 bits (i.e. the element langcod) shall be present in the bit stream. 
If this bit is a ‘0’, the element langcod does not exist in the bit stream. 

5.4.2.12 langcod: Language Code, 8 Bits 

This is an 8 bit reserved value that shall be set to 0xFF if present. (This element was originally 
intended to carry an 8-bit value that would, via a table lookup, indicate the language of the audio 
program. Because modern delivery systems provide the ISO 639-2 language code in the 
signaling layer, indication of language within the AC-3 elementary stream was unnecessary, and 
so was removed from the AC-3 syntax to avoid confusion.) 

5.4.2.13 audprodie: Audio Production Information Exists, 1 Bit 

If this bit is a ‘1’, the mixlevel and roomtyp fields exist, indicating information about the audio 
production environment (mixing room). 

5.4.2.14 mixlevel: Mixing Level, 5 Bits 

This 5-bit code indicates the absolute acoustic sound pressure level of an individual channel 
during the final audio mixing session. The 5-bit code represents a value in the range 0 to 31. The 
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peak mixing level is 80 plus the value of mixlevel dB SPL, or 80 to 111 dB SPL. The peak mixing 
level is the acoustic level of a sine wave in a single channel whose peaks reach 100 percent in the 
PCM representation. The absolute SPL value is typically measured by means of pink noise with 
an RMS value of -20 or -30 dB with respect to the peak RMS sine wave level. The value of 
mixlevel is not typically used within the AC-3 decoder, but may be used by other parts of the audio 
reproduction equipment. 

5.4.2.15 roomtyp: Room Type, 2 Bits 

This 2-bit code, shown in Table 5.12, indicates the type and calibration of the mixing room used 
for the final audio mixing session. The value of roomtyp is not typically used by the AC-3 
decoder, but may be used by other parts of the audio reproduction equipment. If roomtyp is set to 
the reserved code, the decoder should still reproduce audio. The reserved code may be 
interpreted as “not indicated”. 

Table 5.12 Room Type 

roomtyp Type of Mixing Room

‘00’ not indicated 

‘01’ large room, X curve monitor 

‘10’ small room, flat monitor 

‘11’ reserved 

5.4.2.16 dialnorm2: Dialogue Normalization, ch2, 5 Bits 

This 5-bit code has the same meaning as dialnorm, except that it applies to the second audio 
channel when acmod indicates two independent channels (dual mono 1+1 mode). 

5.4.2.17 compr2e: Compression Gain Word Exists, ch2, 1 Bit 

If this bit is a ‘1’, the following 8 bits represent a compression gain word for Ch2. 

5.4.2.18 compr2: Compression Gain Word, ch2, 8 Bits 

This 8-bit word has the same meaning as compr, except that it applies to the second audio channel 
when acmod indicates two independent channels (dual mono 1+1 mode). 

5.4.2.19 langcod2e: Language Code Exists, ch2, 1 Bit 

If this bit is a ‘1’, the following 8 bits (i.e. the element langcod2) shall be present in the bit stream. 
If this bit is a ‘0’, the element langcod2 does not exist in the bit stream. 

5.4.2.20 langcod2: Language Code, ch2, 8 Bits 

This is an 8 bit reserved value that shall be set to 0xFF if present. See lancod, Section 5.4.2.12 
above. 

5.4.2.21 audprodi2e: Audio Production Information Exists, ch2, 1 Bit 

If this bit is a ‘1’, the following two data fields exist indicating information about the audio 
production for Ch2. 

5.4.2.22 mixlevel2: Mixing Level, ch2, 5 Bits 

This 5-bit code has the same meaning as mixlevel, except that it applies to the second audio 
channel when acmod indicates two independent channels (dual mono 1+1 mode). 
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5.4.2.23 roomtyp2: Room Type, ch2, 2 Bits 

This 2-bit code has the same meaning as roomtyp, except that it applies to the second audio 
channel when acmod indicates two independent channels (dual mono 1+1 mode). 

5.4.2.24 copyrightb: Copyright Bit, 1 Bit 

If this bit has a value of ‘1’, the information in the bit stream is indicated as protected by 
copyright. It has a value of ‘0’ if the information is not indicated as protected. 

5.4.2.25 origbs: Original Bit Stream, 1 Bit 

This bit has a value of ‘1’ if this is an original bit stream. This bit has a value of ‘0’ if this is a 
copy of another bit stream. 

5.4.2.26 timecod1e, timcode2e: Time Code (first and second) Halves Exist, 2 Bits 

These values indicate, as shown in Table 5.13, whether time codes follow in the bit stream. The 
time code can have a resolution of 1/64th of a frame (one frame = 1/30th of a second). Since only 
the high resolution portion of the time code is needed for fine synchronization, the 28 bit time 
code is broken into two 14 bit halves. The low resolution first half represents the code in 8 
second increments up to 24 hours. The high resolution second half represents the code in 1/64th 
frame increments up to 8 seconds. 

Table 5.13 Time Code Exists 

timecod2e,timecod1e Time Code Present

‘0’,’0’ not present 

‘0’,’1’ first half (14 bits) present 

‘1’,’0’ second half (14 bits) present 

‘1’,’1’ both halves (28 bits) present 

5.4.2.27 timecod1: Time Code First Half, 14 Bits 

The first 5 bits of this 14-bit field represent the time in hours, with valid values of 0–23. The next 
6 bits represent the time in minutes, with valid values of 0–59. The final 3 bits represents the 
time in 8 second increments, with valid values of 0–7 (representing 0, 8, 16, ... 56 seconds). 

5.4.2.28 timecod2: Time Code Second Half, 14 Bits 

The first 3 bits of this 14-bit field represent the time in seconds, with valid values from 0–7 
(representing 0-7 seconds). The next 5 bits represents the time in frames, with valid values from 
0–29. The final 6 bits represents fractions of 1/64 of a frame, with valid values from 0–63. 

5.4.2.29 addbsie: Additional Bit Stream Information Exists, 1 Bit 

If this bit has a value of ‘1’ there is additional bit stream information, the length of which is 
indicated by the next field. If this bit has a value of ‘0’, there is no additional bit stream 
information. 

5.4.2.30 addbsil: Additional Bit Stream Information Length, 6 Bits 

This 6-bit code, which exists only if addbsie is a ‘1’, indicates the length in bytes of additional bit 
stream information. The valid range of addbsil is 0–63, indicating 1–64 additional bytes, 
respectively. The decoder is not required to interpret this information, and thus shall skip over 
this number of bytes following in the data stream. 
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5.4.2.31 addbsi: Additional Bit Stream Information, [(addbsil+1) × 8] Bits 

This field contains 1 to 64 bytes of any additional information included with the bit stream 
information structure. 

5.4.3 audblk: Audio Block 

5.4.3.1 blksw[ch]: Block Switch Flag, 1 Bit 

This flag, for channel [ch], indicates whether the current audio block was split into 2 sub-blocks 
during the transformation from the time domain into the frequency domain. A value of ‘0’ 
indicates that the block was not split, and that a single 512 point TDAC transform was 
performed. A value of ‘1’ indicates that the block was split into 2 sub-blocks of length 256, that 
the TDAC transform length was switched from a length of 512 points to a length of 256 points, 
and that 2 transforms were performed on the audio block (one on each sub-block). Transform 
length switching is described in more detail in Section 7.9. 

5.4.3.2 dithflag[ch]: Dither Flag, 1 Bit 

This flag, for channel [ch], indicates that the decoder should activate dither during the current 
block. Dither is described in detail in Section 7.3.4. 

5.4.3.3 dynrnge:-Dynamic Range Gain Word Exists, 1 Bit 

If this bit is a ‘1’, the dynamic range gain word follows in the bit stream. If it is ‘0’, the gain 
word is not present, and the previous value is reused, except for block 0 of a syncframe where if 
the control word is not present the current value of dynrng is set to 0. 

5.4.3.4 dynrng: Dynamic Range Gain Word, 8 Bits 

This encoder-generated gain word is applied to scale the reproduced audio as described in 
Section 7.7.1. 

5.4.3.5 dynrng2e: Dynamic Range Gain Word Exists, ch2, 1 Bit 

If this bit is a ‘1’, the dynamic range gain word for channel 2 follows in the bit stream. If it is ‘0’, 
the gain word is not present, and the previous value is reused, except for block 0 of a syncframe 
where if the control word is not present the current value of dynrng2 is set to 0. 

5.4.3.6 dynrng2: Dynamic Range Gain Word ch2, 8 Bits 

This encoder-generated gain word is applied to scale the reproduced audio of Ch2, in the same 
manner as dynrng is applied to Ch1, as described in Section 7.7.1. 

5.4.3.7 cplstre: Coupling Strategy Exists, 1 Bit 

If this bit is a ‘1’, coupling information follows in the bit stream. If it is ‘0’, new coupling 
information is not present, and coupling parameters previously sent are reused. This parameter 
shall not be set to ‘0’ in block 0.  

5.4.3.8 cplinu: Coupling in Use, 1 Bit 

If this bit is a ‘1’, coupling is currently being utilized, and coupling parameters follow. If it is ‘0’, 
coupling is not being utilized (all channels are independent) and no coupling parameters follow 
in the bit stream. 
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5.4.3.9 chincpl[ch]: Channel in Coupling, 1 Bit 

If this bit is a ‘1’, then the channel indicated by the index [ch] is a coupled channel. If the bit is a 
‘0’, then this channel is not coupled. Since coupling is not used in the 1/0 mode, if any chincpl[] 
values exist there will be 2 to 5 values. Of the values present, at least two values will be 1, since 
coupling requires more than one coupled channel to be coupled. 

5.4.3.10 phsflginu: Phase Flags in Use, 1 Bit 

If this bit (defined for 2/0 mode only) is a ‘1’, phase flags are included with coupling coordinate 
information. Phase flags are described in Section 7.4. 

5.4.3.11 cplbegf: Coupling Begin Frequency Code, 4 Bits 

This 4-bit code is interpreted as the sub-band number (0 to 15) which indicates the lower 
frequency band edge of the coupling channel (or the first active sub-band) as shown in Table 
7.24. 

5.4.3.12 cplendf: Coupling end Frequency Code, 4 Bits 

This 4-bit code indicates the upper band edge of the coupling channel. The upper band edge (or 
last active sub-band) is cplendf+2, or a value between 2 and 17. See Table 7.24. The number of 
active coupling sub-bands is equal to ncplsubnd, which is calculated as 

ncplsubnd = 3 + cplendf – cplbegf  

5.4.3.13 cplbndstrc[sbnd]: Coupling Band Structure, 1 Bit 

There are 18 coupling sub-bands defined in Table 7.24, each containing 12 frequency 
coefficients. The fixed 12-bin wide coupling sub-bands are converted into coupling bands, each 
of which may be wider than (a multiple of) 12 frequency bins. Each coupling band may contain 
one or more coupling sub-bands. Coupling coordinates are transmitted for each coupling band. 
Each band’s coupling coordinate must be applied to all the coefficients in the coupling band. 

The coupling band structure indicates which coupling sub-bands are combined into wider 
coupling bands. When cplbndstrc[sbnd] is a ‘0’, the sub-band number [sbnd] is not combined into the 
previous band to form a wider band, but starts a new 12 wide coupling band. When 
cplbndstrc[sbnd] is a ‘1’, then the sub-band [sbnd] is combined with the previous band, making the 
previous band 12 bins wider. Each successive value of cplbndstrc which is a 1 will continue to 
combine sub-bands into the current band. When another cplbndstrc value of 0 is received, then a 
new band will be formed, beginning with the 12 bins of the current sub-band. The set of 
cplbndstrc[sbnd] values is typically considered an array. 

Each bit in the array corresponds to a specific coupling sub-band in ascending frequency 
order. The first element of the array corresponds to the sub-band cplbegf, is always 0, and is not 
transmitted. (There is no reason to send a cplbndstrc bit for the first sub-band at cplbegf, since this 
bit would always be ‘0’.) Thus, there are ncplsubnd-1 values of cplbndstrc transmitted. If there is 
only one coupling sub-band, then no cplbndstrc bits are sent. 

The number of coupling bands, ncplbnd, may be computed from ncplsubnd and cplbndstrc 

ncplbnd = (ncplsubnd – (cplbndstrc[1] + ... + cplbndstrc[ncplsubnd – 1])) 

5.4.3.14 cplcoe[ch]: Coupling Coordinates Exist, 1 Bit 

Coupling coordinates indicate, for a given channel and within a given coupling band, the fraction 
of the coupling channel frequency coefficients to use to re-create the individual channel 
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frequency coefficients. Coupling coordinates are conditionally transmitted in the bit stream. If 
new values are not delivered, the previously sent values remain in effect. See Section 7.4 for 
further information on coupling. 

If cplcoe[ch] is ‘1’, the coupling coordinates for the corresponding channel [ch] exist and follow 
in the bit stream. If the bit is ‘0’, the previously transmitted coupling coordinates for this channel 
are reused. This parameter shall not be set to 0 in block 0, or in any block for which the 
corresponding channel is participating in coupling but was not participating in coupling in the 
previous block. 

5.4.3.15 mstrcplco[ch]: Master Coupling Coordinate, 2 Bits 

This per channel parameter establishes a per channel gain factor (increasing the dynamic range) 
for the coupling coordinates as shown in Table 5.14. 

Table 5.14 Master Coupling Coordinate 

mstrcplco[ch] cplco[ch][bnd] gain multiplier

‘00’ 1 

‘01’ 2-3 

‘10’ 2-6 

‘11’ 2-9 

5.4.3.16 cplcoexp[ch][bnd]: Coupling Coordinate Exponent, 4 Bits 

Each coupling coordinate is composed of a 4-bit exponent and a 4-bit mantissa. This element is 
the value of the coupling coordinate exponent for channel [ch] and band [bnd]. The index [ch] only 
will exist for those channels which are coupled. The index [bnd] will range from 0 to ncplbnds. See 
Section 7.4.3 for further information on how to interpret coupling coordinates. 

5.4.3.17 cplcomant[ch][bnd]: Coupling Coordinate Mantissa, 4 Bits 

This element is the 4-bit coupling coordinate mantissa for channel [ch] and band [bnd]. 

5.4.3.18 phsflg[bnd]: Phase Flag, 1 Bit 

This element (only used in the 2/0 mode) indicates whether the decoder should phase invert the 
coupling channel mantissas when reconstructing the right output channel. The index [bnd] can 
range from 0 to ncplbnd. Phase flags are described in Section 7.4. 

5.4.3.19 rematstr: Rematrixing Strategy, 1 Bit 

If this bit is a ‘1’, then new rematrix flags are present in the bit stream. If it is ‘0’, rematrix flags 
are not present, and the previous values should be reused. The rematstr parameter is present only 
in the 2/0 audio coding mode. This parameter shall not be set to ‘0’ in block 0. 

5.4.3.20 rematflg[rbnd]: Rematrix Flag, 1 Bit 

This bit indicates whether the transform coefficients in rematrixing band [rbnd] have been 
rematrixed. If this bit is a ‘1’, then the transform coefficients in [rbnd] were rematrixed into sum 
and difference channels. If this bit is a ‘0’, then rematrixing has not been performed in band 
[rbnd]. The number of rematrixing bands (and the number of values of [rbnd]) depend on coupling 
parameters as shown in Table 5.15. Rematrixing is described in Section 7.5. 
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Table 5.15 Number of Rematrixing Bands 

Condition No. of Rematrixing Bands 

cplinu == 0 4 

(cplinu == 1) && (cplbegf > 2) 4 

(cplinu == 1) && (2 ≥ cplbegf > 0) 3 

(cplinu == 1) && (cplbegf == 0) 2 

5.4.3.21 cplexpstr: Coupling Exponent Strategy, 2 Bits 

This element indicates the method of exponent coding that is used for the coupling channel as 
shown in Table 7.4. See Section 7.1 for explanation of each exponent strategy. This parameter 
shall not be set to 0 in block 0, or in any block for which coupling is enabled but was disabled in 
the previous block. 

5.4.3.22 chexpstr[ch]: Channel Exponent Strategy, 2 Bits 

This element indicates the method of exponent coding that is used for channel [ch], as shown in 
Table 7.4. This element exists for each full bandwidth channel. This parameter shall not be set to 
0 in block 0. 

5.4.3.23 lfeexpstr: Low Frequency Effects CHannel Exponent Strategy, 1 bit 

This element indicates the method of exponent coding that is used for the lfe channel, as shown 
in Table 7.5. This parameter shall not be set to ‘0’ in block 0. 

5.4.3.24 chbwcod[ch]: Channel Bandwidth Code, 6 Bits 

The chbwcod[ch] element is an unsigned integer which defines the upper band edge for full-
bandwidth channel [ch]. This parameter is only included for fbw channels which are not coupled. 
(See Section 7.1.3 on exponents for the definition of this parameter.) Valid values are in the 
range of 0–60. If a value greater than 60 is received, the bit stream is invalid and the decoder 
shall cease decoding audio and mute. 

5.4.3.25 cplabsexp: Coupling Absolute Exponent, 4 Bits 

This is an absolute exponent, which is used as a reference when decoding the differential 
exponents for the coupling channel. 

5.4.3.26 cplexps[grp]: Coupling Exponents, 7 Bits 

Each value of cplexps indicates the value of 3, 6, or 12 differentially-coded coupling channel 
exponents for the coupling exponent group [grp] for the case of D15, D25, or D45 coding, 
respectively. The number of cplexps values transmitted equals ncplgrps, which may be determined 
from cplbegf, cplendf, and cplexpstr. Refer to Section 7.1.3 for further information. 

5.4.3.27 exps[ch][grp]: Channel Exponents, 4 or 7 Bits 

These elements represent the encoded exponents for channel [ch]. The first element ([grp]=0) is a 
4-bit absolute exponent for the first (DC term) transform coefficient. The subsequent elements 
([grp]>0) are 7-bit representations of a group of 3, 6, or 12 differentially coded exponents 
(corresponding to D15, D25, D45 exponent strategies respectively). The number of groups for 
each channel, nchgrps[ch], is determined from cplbegf if the channel is coupled, or chbwcod[ch] of the 
channel is not coupled. Refer to Section 7.1.3 for further information. 
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5.4.3.28 gainrng[ch]: Channel Gain Range Code, 2 Bits 

This per channel 2-bit element may be used to determine a block floating-point shift value for the 
inverse TDAC transform filterbank. Use of this code allows increased dynamic range to be 
obtained from a limited word length transform computation. For further information see Section 
7.9.5. 

5.4.3.29 lfeexps[grp]: Low Frequency Effects Channel Exponents, 4 or 7 Bits 

These elements represent the encoded exponents for the LFE channel. The first element ([grp]=0) 
is a 4-bit absolute exponent for the first (dc term) transform coefficient. There are two additional 
elements (nlfegrps=2) which are 7-bit representations of a group of 3 differentially coded 
exponents. The total number of lfe channel exponents (nlfemant) is 7. 

5.4.3.30 baie: Bit Allocation Information Exists, 1 Bit 

If this bit is a ‘1’, then five separate fields (totaling 11 bits) follow in the bit stream. Each field 
indicates parameter values for the bit allocation process. If this bit is a ‘0’, these fields do not 
exist. Further details on these fields may be found in Section 7.2. This parameter shall not be set 
to ‘0’ in block 0. 

5.4.3.31 sdcycod: Slow Decay Code, 2 Bits 

This 2-bit code specifies the slow decay parameter in the bit allocation process. 

5.4.3.32 fdcycod: Fast Decay Code, 2 Bits 

This 2-bit code specifies the fast decay parameter in the decode bit allocation process. 

5.4.3.33 sgaincod: Slow Gain Code, 2 Bits 

This 2-bit code specifies the slow gain parameter in the decode bit allocation process. 

5.4.3.34 dbpbcod: dB Per Bit Code, 2 Bits 

This 2-bit code specifies the dB per bit parameter in the bit allocation process. 

5.4.3.35 floorcod: Masking Floor Code, 3 Bits 

This 3-bit code specifies the floor code parameter in the bit allocation process. 

5.4.3.36 snroffste: SNR Offset Exists, 1 Bit 

If this bit has a value of 1, a number of bit allocation parameters follow in the bit stream. If this 
bit has a value of 0, SNR offset information does not follow, and the previously transmitted 
values should be used for this block. The bit allocation process and these parameters are 
described in Section 7.2.2. This parameter shall not be set to 0 in block 0. 

5.4.3.37 csnroffst: Coarse SNR Offset, 6 Bits 

This 6-bit code specifies the coarse SNR offset parameter in the bit allocation process. 

5.4.3.38 cplfsnroffst: Coupling Fine SNR Offset, 4 Bits 

This 4-bit code specifies the coupling channel fine SNR offset in the bit allocation process. 

5.4.3.39 cplfgaincod: Coupling Fast Gain Code, 3 Bits 

This 3-bit code specifies the coupling channel fast gain code used in the bit allocation process. 
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5.4.3.40 fsnroffst[ch]: Channel Fine SNR Offset, 4 Bits 

This 4-bit code specifies the fine SNR offset used in the bit allocation process for channel [ch]. 

5.4.3.41 fgaincod[ch]: Channel Fast Gain Code, 3 Bits 

This 3-bit code specifies the fast gain parameter used in the bit allocation process for channel 
[ch]. 

5.4.3.42 lfefsnroffst: Low Frequency Effects Channel Fine SNR Offset, 4 Bits 

This 4-bit code specifies the fine SNR offset parameter used in the bit allocation process for the 
lfe channel. 

5.4.3.43 lfefgaincod: Low Frequency Effects Channel Fast Gain Code, 3 Bits 

This 3-bit code specifies the fast gain parameter used in the bit allocation process for the lfe 
channel. 

5.4.3.44 cplleake: Coupling Leak Initialization Exists, 1 Bit 

If this bit is a ‘1’, leak initialization parameters follow in the bit stream. If this bit is a ‘0’, the 
previously transmitted values still apply. This parameter shall not be set to ‘0’ in block 0, or in 
any block for which coupling is enabled but was disabled in the previous block. 

5.4.3.45 cplfleak: Coupling Fast Leak Initialization, 3 Bits 

This 3-bit code specifies the fast leak initialization value for the coupling channel's excitation 
function calculation in the bit allocation process. 

5.4.3.46 cplsleak: Coupling Slow Leak Initialization, 3 Bits 

This 3-bit code specifies the slow leak initialization value for the coupling channel's excitation 
function calculation in the bit allocation process. 

5.4.3.47 deltbaie: Delta Bit Allocation Information Exists, 1 Bit 

If this bit is a ‘1’, some delta bit allocation information follows in the bit stream. If this bit is a 
‘0’, the previously transmitted delta bit allocation information still applies, except for block 0. If 
deltbaie is ‘0’ in block 0, then cpldeltbae and deltbae[ch] are set to the binary value ‘10’, and no delta 
bit allocation is applied. Delta bit allocation is described in Section 7.2.2.6. 

5.4.3.48 cpldeltbae: Coupling Delta Bit Allocation Exists, 2 Bits 

This 2-bit code indicates the delta bit allocation strategy for the coupling channel, as shown in 
Table 5.16. If the reserved state is received, the decoder should not decode audio, and should 
mute. This parameter shall not be set to ‘00’ in block 0, or in any block for which coupling is 
enabled but was disabled in the previous block. 

Table 5.16 Delta Bit Allocation Exists States 

cpldeltbae, deltbae Code

‘00’ reuse previous state 

‘01’ new info follows 

‘10’ perform no delta alloc 

‘11’ reserved 
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5.4.3.49 deltbae[ch]: Delta Bit Allocation Exists, 2 Bits 

This per full bandwidth channel 2-bit code indicates the delta bit allocation strategy for the 
corresponding channel, as shown in Table 5.16. This parameter shall not be set to ‘00’ in block 
0. 

5.4.3.50 cpldeltnseg: Coupling Delta Bit Allocation Number of Segments, 3 Bits 

This 3-bit code indicates the number of delta bit allocation segments that exist for the coupling 
channel. The value of this parameter ranges from 1 to 8, and is calculated by adding 1 to the 3-bit 
binary number represented by the code. 

5.4.3.51 cpldeltoffst[seg]: Coupling Delta Bit Allocation Offset, 5 Bits 

The first 5-bit code ([seg]=0) indicates the number of the first bit allocation band (as specified in 
7.4.2) of the coupling channel for which delta bit allocation values are provided. Subsequent 
codes indicate the offset from the previous delta segment end point to the next bit allocation band 
for which delta bit allocation values are provided. 

5.4.3.52 cpldeltlen[seg]: Coupling Delta Bit Allocation Length, 4 Bits 

Each 4-bit code indicates the number of bit allocation bands that the corresponding segment 
spans. 

5.4.3.53 cpldeltba[seg]: Coupling Delta Bit Allocation, 3 Bits 

This 3-bit value is used in the bit allocation process for the coupling channel. Each 3-bit code 
indicates an adjustment to the default masking curve computed in the decoder. The deltas are 
coded as shown in Table 5.17. 

Table 5.17 Bit Allocation Deltas 

cpldeltba, deltba Adjustment

‘000’ –24 dB 

‘001’ –18 dB 

‘010’ –12 dB 

‘011’ –6 dB 

‘100’ +6 dB 

‘101’ +12 dB 

‘110’ +18 dB 

‘111’ +24 dB 

5.4.3.54 deltnseg[ch]: Channel Delta BitAallocation Number of Segments, 3 Bits 

These per full bandwidth channel elements are 3-bit codes indicating the number of delta bit 
allocation segments that exist for the corresponding channel. The value of this parameter ranges 
from 1 to 8, and is calculated by adding 1 to the 3-bit binary code. 

5.4.3.55 deltoffst[ch][seg]: Channel Delta Bit Allocation Offset, 5 Bits 

The first 5-bit code ([seg]=0) indicates the number of the first bit allocation band (see Section 
7.2.2.6) of the corresponding channel for which delta bit allocation values are provided. 
Subsequent codes indicate the offset from the previous delta segment end point to the next bit 
allocation band for which delta bit allocation values are provided. 
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5.4.3.56 deltlen[ch][seg]: Channel Delta Bit Allocation Length, 4 Bits 

Each 4-bit code indicates the number of bit allocation bands that the corresponding segment 
spans. 

5.4.3.57 deltba[ch][seg]: Channel Celta Bit Allocation, 3 Bits 

This 3-bit value is used in the bit allocation process for the indicated channel. Each 3-bit code 
indicates an adjustment to the default masking curve computed in the decoder. The deltas are 
coded as shown in Table 5.17. 

5.4.3.58 skiple: Skip Length Exists, 1 Bit 

If this bit is a ‘1’, then the skipl parameter follows in the bit stream. If this bit is a ‘0’, skipl does 
not exist. 

5.4.3.59 skipl: Skip Length, 9 Bits 

This 9-bit code indicates the number of dummy bytes to skip (ignore) before unpacking the 
mantissas of the current audio block. 

5.4.3.60 skipfld: Skip Field, (skipl * 8) Bits 

This field contains the null bytes of data to be skipped, as indicated by the skipl parameter. 

5.4.3.61 chmant[ch][bin]: Channel Mantissas, 0 to 16 Bits 

The actual quantized mantissa values for the indicated channel. Each value may contain from 0 
to as many as 16 bits. The number of mantissas for the indicated channel is equal to nchmant[ch], 
which may be determined from chbwcod[ch] (see Section 7.1.3) if the channel is not coupled, or 
from cplbegf (see Section 7.4.2) if the channel is coupled. Detailed information on packed 
mantissa data is in Section 7.3. 

5.4.3.62 cplmant[bin]: Coupling Mantissas, 0 to 16 Bits 

The actual quantized mantissa values for the coupling channel. Each value may contain from 0 to 
as many as 16 bits. The number of mantissas for the coupling channel is equal to ncplmant, which 
may be determined from 

ncplmant = 12 * ncplsubnd 

5.4.3.63 lfemant[bin]: Low Frequency Effects Channel Mantissas, 0 to 16 Bits 

The actual quantized mantissa values for the lfe channel. Each value may contain from 0 to as 
many as 16 bits. The value of nlfemant is 7, so there are 7 mantissa values for the lfe channel. 

5.4.4 auxdata: Auxiliary Data Field 

Unused data at the end of a syncframe will exist whenever the encoder does not utilize all 
available data for encoding the audio signal. This may occur if the final bit allocation falls short 
of using all available bits, or if the input audio signal simply does not require all available bits to 
be coded transparently. Or, the encoder may be instructed to intentionally leave some bits unused 
by audio so that they are available for use by auxiliary data. Since the number of bits required for 
auxiliary data may be smaller than the number of bits available (which will be time varying) in 
any particular syncframe, a method is provided to signal the number of actual auxiliary data bits 
in each syncframe. 
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5.4.4.1 auxbits: Auxiliary Data B its, nauxbits bits 

This field contains auxiliary data. The total number of bits in this field is 

nauxbits = (bits in syncframe) – (bits used by all bit stream elements except for 
auxbits) 

The number of bits in the syncframe can be determined from the frame size code (frmsizcod) 
and Table 5.18. The number of bits used includes all bits used by bit stream elements with the 
exception of auxbits. Any dummy data which has been included with skip fields (skipfld) is 
included in the used bit count. The length of the auxbits field is adjusted by the encoder such that 
the crc2 element falls on the last 16-bit word of the syncframe. 

If the number of user bits indicated by auxdatal is smaller than the number of available aux 
bits nauxbits, the user data is located at the end of the auxbits field. This allows a decoder to find 
and unpack the auxdatal user bits without knowing the value of nauxbits (which can only be 
determined by decoding the audio in the entire syncframe). The order of the user data in the 
auxbits field is forward. Thus the aux data decoder (which may not decode any audio) may simply 
look to the end of the AC-3 syncframe to find auxdatal, backup auxdatal bits (from the beginning of 
auxdatal) in the data stream, and then unpack auxdatal bits moving forward in the data stream. 

Table 5.18 Frame Size Code Table (1 word = 16 bits) 

frmsizecod Nominal Bit Rate fs = 32 kHz
words/syncframe 

fs = 44.1 kHz
words/syncframe 

fs = 48 kHz 
words/syncframe 

‘000000’ (0) 32 kbps 96 69 64 

‘000001’ (0) 32 kbps 96 70 64 

‘000010’ (1) 40 kbps 120 87 80 

‘000011’ (1) 40 kbps 120 88 80 

‘000100’ (2) 48 kbps 144 104 96 

‘000101’ (2) 48 kbps 144 105 96 

‘000110’ (3) 56 kbps 168 121 112 

‘000111’ (3) 56 kbps 168 122 112 

‘001000’ (4) 64 kbps 192 139 128 

‘001001’ (4) 64 kbps 192 140 128 

‘001010’ (5) 80 kbps 240 174 160 

‘001011’ (5) 80 kbps 240 175 160 

‘001100’ (6) 96 kbps 288 208 192 

‘001101’ (6) 96 kbps 288 209 192 

‘001110’ (7) 112 kbps 336 243 224 

‘001111’ (7) 112 kbps 336 244 224 

‘010000’ (8) 128 kbps 384 278 256 

‘010001’ (8) 128 kbps 384 279 256 

‘010010’ (9) 160 kbps 480 348 320 

‘010011’ (9) 160 kbps 480 349 320 

‘010100’ (10) 192 kbps 576 417 384 

‘010101’ (10) 192 kbps 576 418 384 

‘010110’ (11) 224 kbps 672 487 448 

‘010111’ (11) 224 kbps 672 488 448 

‘011000’ (12) 256 kbps 768 557 512 

‘011001’ (12) 256 kbps 768 558 512 
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frmsizecod Nominal Bit Rate fs = 32 kHz
words/syncframe 

fs = 44.1 kHz
words/syncframe 

fs = 48 kHz 
words/syncframe 

‘011010’ (13) 320 kbps 960 696 640 

‘011011’ (13) 320 kbps 960 697 640 

‘011100’ (14) 384 kbps 1152 835 768 

‘011101’ (14) 384 kbps 1152 836 768 

‘011110’ (15) 448 kbps 1344 975 896 

‘011111’ (15) 448 kbps 1344 976 896 

‘100000’ (16) 512 kbps 1536 1114 1024 

‘100001’ (16) 512 kbps 1536 1115 1024 

‘100010’ (17) 576 kbps 1728 1253 1152 

‘100011’ (17) 576 kbps 1728 1254 1152 

‘100100’ (18) 640 kbps 1920 1393 1280 

‘100101’ (18) 640 kbps 1920 1394 1280 

5.4.4.2 auxdatal: Auxiliary Data Length, 14 Bits 

This 14-bit integer value indicates the length, in bits, of the user data in the auxbits auxiliary field. 

5.4.4.3 auxdatae: Auxiliary Data Exists, 1 Bit 

If this bit is a ‘1’, then the auxdatal parameter precedes in the bit stream. If this bit is a ‘0’, auxdatal 
does not exist, and there is no user data. 

5.4.5 errorcheck: Frame Error Detection Field 

5.4.5.1 crcrsv: CRC Reserved Bit, 1 Bit 

Reserved for use in specific applications to ensure crc2 will not be equal to the sync word. Use of 
this bit is optional by encoders. If the crc2 calculation results in a value equal to the syncword, the 
crcrsv bit may be inverted. This will result in a crc2 value which is not equal to the syncword. 

5.4.5.2 crc2: Cyclic Redundancy Check 2, 16 Bits 

The 16 bit CRC applies to the entire syncframe. The details of the CRC checking are described 
in Section 7.10.1. 

5.5 Bit Stream Constraints 

The following constraints shall be imposed upon the encoded bit stream by the AC-3 encoder. 
These constraints allow AC-3 decoders to be manufactured with smaller input memory buffers. 

• The combined size of the syncinfo fields, the bsi fields, block 0 and block 1 combined, 
shall not exceed 5/8 of the syncframe. 

• The combined size of the block 5 mantissa data, the auxiliary data fields, and the 
errorcheck fields shall not exceed the final 3/8 of the syncframe. 

• Block 0 shall contain all necessary information to begin correctly decoding the bit stream. 
• Whenever the state of cplinu changes from off to on, all coupling information shall be 

included in the block in which coupling is turned on. No coupling related information 
shall be reused from any previous blocks where coupling may have been on. 

• Coupling shall not be used in dual mono (1+1) or mono (1/0) modes. For blocks in which 
coupling is used, there shall be at least two channels in coupling. 
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• Bit stream elements shall not be reused from a previous block if other bit stream 
parameters change the dimensions of the elements to be reused. For example, exponents 
shall not be reused if the start or end mantissa bin changes from the previous block. 

6. DECODING THE AC-3 BIT STREAM 

Section 5 of this standard specifies the details of the AC-3 bit stream syntax. This section gives 
an overview of the AC-3 decoding process as diagrammed in Figure 6.1, where the decoding 
process flow is shown as a sequence of blocks down the center of the page, and some of the 
information flow is indicated by arrowed lines at the sides of the page. More detailed information 
on some of the processing blocks will be found in Section 7. The decoder described in this 
section should be considered one example of a decoder. Other methods may exist to implement 
decoders, and these other methods may have advantages in certain areas (such as instruction 
count, memory requirement, number of transforms required, etc.). 

6.1 Summary of the Decoding Process 

6.1.1 Input Bit Stream 

The input bit stream will typically come from a transmission or storage system. The interface 
between the source of AC-3 data and the AC-3 decoder is not specified in this standard. The 
details of the interface effect a number of decoder implementation details. 

6.1.1.1 Continuous or Burst Input 

The encoded AC-3 data may be input to the decoder as a continuous data stream at the nominal 
bit-rate, or chunks of data may be burst into the decoder at a high rate with a low duty cycle. For 
burst mode operation, either the data source or the decoder may be the master controlling the 
burst timing. The AC-3 decoder input buffer may be smaller in size if the decoder can request 
bursts of data on an as-needed basis. However, the external buffer memory may be larger in this 
case. 

6.1.1.2 Byte or Word Alignment 

Most applications of this standard will convey the elementary AC-3 bit stream with byte or (16-
bit) word alignment. The syncframe is always an integral number of words in length. The 
decoder may receive data as a continuous serial stream of bits without any alignment. Or, the 
data may be input to the decoder with either byte or word (16-bit) alignment. Byte or word 
alignment of the input data may allow some simplification of the decoder. Alignment does 
reduce the probability of false detection of the sync word. 
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Figure 6.1 Flow diagram of the decoding process. 

6.1.2 Synchronization and Error Detection 

The AC-3 bit-steam format allows rapid synchronization. The 16-bit sync word has a low 
probability of false detection. With no input stream alignment the probability of false detection 
of the sync word is 0.0015 percent per input stream bit position. For a bit-rate of 384 kbps, the 
probability of false sync word detection is 19 percent per syncframe. Byte-alignment of the input 
stream drops this probability to 2.5 percent, and word alignment drops it to 1.2 percent. 
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When a sync pattern is detected the decoder may be estimated to be in sync and one of the 
CRC words (crc1 or crc2) may be checked. Since crc1 comes first and covers the first 5/8 of the 
syncframe, the result of a crc1 check may be available after only 5/8 of the syncframe has been 
received. Or, the entire syncframe size can be received and crc2 checked. If either CRC checks, 
the decoder may safely be presumed to be in sync and decoding and reproduction of audio may 
proceed. The chance of false sync in this case would be the concatenation of the probabilities of 
a false sync word detection and a CRC misdetection of error. The CRC check is reliable to 
0.0015 percent. This probability, concatenated with the probability of a false sync detection in a 
byte-aligned input bit stream, yield a probability of false synchronization of 0.000035 percent (or 
about once in 3 million synchronization attempts). 

If this small probability of false sync is too large for an application, there are several methods 
which may reduce it. The decoder may only presume correct sync in the case that both CRC 
words check properly. The decoder may require multiple sync words to be received with the 
proper alignment. If the data transmission or storage system is aware that data is in error, this 
information may be made known to the decoder. 

Additional details on methods of bit stream synchronization are not provided in this standard. 
Details on the CRC calculation are provided in Section 7.10. 

6.1.3 Unpack BSI, Side Information 

Inherent to the decoding process is the unpacking (de-multiplexing) of the various types of 
information included in the bit stream. Some of these items may be copied from the input buffer 
to dedicated registers, some may be copied to specific working memory location, and some of 
the items may simply be located in the input buffer with pointers to them saved to another 
location for use when the information is required. The information which must be unpacked is 
specified in detail in Section 5.3. Further details on the unpacking of BSI and side information 
are not provided in this Standard. 

6.1.4 Decode Exponents 

The exponents are delivered in the bit stream in an encoded form. In order to unpack and decode 
the exponents two types of side information are required. First, the number of exponents must be 
known. For fbw channels this may be determined from either chbwcod[ch] (for uncoupled 
channels) or from cplbegf (for coupled channels). For the coupling channel, the number of 
exponents may be determined from cplbegf and cplendf. For the lfe channel (when on), there are 
always 7 exponents. Second, the exponent strategy in use (D15, etc.) by each channel must be 
known. The details on how to unpack and decode exponents are provided in Section 7.1. 

6.1.5 Bit Allocation 

The bit allocation computation reveals how many bits are used for each mantissa. The inputs to 
the bit allocation computation are the decoded exponents, and the bit allocation side information. 
The outputs of the bit allocation computation are a set of bit allocation pointers (baps), one bap 
for each coded mantissa. The bap indicates the quantizer used for the mantissa, and how many 
bits in the bit stream were used for each mantissa. The bit allocation computation is described in 
detail in Section 7.2. 

6.1.6 Process Mantissas 

The coarsely quantized mantissas make up the bulk of the AC-3 data stream. Each mantissa is 
quantized to a level of precision indicated by the corresponding bap. In order to pack the mantissa 
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data more efficiently, some mantissas are grouped together into a single transmitted value. For 
instance, two 11-level quantized values are conveyed in a single 7-bit code (3.5 bits/value) in the 
bit stream. 

The mantissa data is unpacked by peeling off groups of bits as indicated by the baps. Grouped 
mantissas must be ungrouped. The individual coded mantissa values are converted into a de-
quantized value. Mantissas which are indicated as having zero bits may be reproduced as either 
zero, or by a random dither value (under control of the dither flag). The mantissa processing is 
described in full detail in Section 7.3. 

6.1.7 Decoupling 

When coupling is in use, the channels which are coupled must be decoupled. Decoupling 
involves reconstructing the high frequency section (exponents and mantissas) of each coupled 
channel, from the common coupling channel and the coupling coordinates for the individual 
channel. Within each coupling band, the coupling channel coefficients (exponent and mantissa) 
are multiplied by the individual channel coupling coordinates. The coupling process is described 
in detail in Section 7.4. 

6.1.8 Rematrixing 

In the 2/0 audio coding mode rematrixing may be employed, as indicated by the rematrix flags 
(rematflg[rbnd]). Where the flag indicates a band is rematrixed, the coefficients encoded in the bit 
stream are sum and difference values instead of left and right values. Rematrixing is described in 
detail in Section 7.5. 

6.1.9 Dynamic Range Compression 

For each block of audio a dynamic range control value (dynrng) may be included in the bit stream. 
The decoder, by default, shall use this value to alter the magnitude of the coefficient (exponent 
and mantissa) as specified in Section 7.7.1. 

6.1.10 Inverse Transform 

The decoding steps described above will result in a set of frequency coefficients for each 
encoded channel. The inverse transform converts the blocks of frequency coefficients into blocks 
of time samples. The inverse transform is detailed in Section 7.9. 

6.1.11 Window, Overlap/Add 

The individual blocks of time samples must be windowed, and adjacent blocks must be 
overlapped and added together in order to reconstruct the final continuous time output PCM 
audio signal. The window and overlap/add steps are described along with the inverse transform 
in Section 7.9. 

6.1.12 Downmixing 

If the number of channels required at the decoder output is smaller than the number of channels 
which are encoded in the bit stream, then downmixing is required. Downmixing in the time 
domain is shown in this example decoder. Since the inverse transform is a linear operation, it is 
also possible to downmix in the frequency domain prior to transformation. Section 7.8 describes 
downmixing and specifies the downmix coefficients which decoders shall employ. 
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6.1.13 PCM Output Buffer 

Typical decoders will provide PCM output samples at the PCM sampling rate. Since blocks of 
samples result from the decoding process, an output buffer is typically required. This Standard 
does not specify or describe output buffering in any further detail. 

6.1.14 Output PCM 

The output PCM samples may be delivered in form suitable for interconnection to a digital to 
analog converter (DAC), or in any other form. This Standard does not specify the output PCM 
format. 

7. ALGORITHMIC DETAILS 

The following sections describe various aspects of AC-3 coding in detail. 

7.1 Exponent coding 

7.1.1 Overview 

The actual audio information conveyed by the AC-3 bit stream consists of the quantized 
frequency coefficients. The coefficients are delivered in floating point form, with each 
coefficient consisting of an exponent and a mantissa. This section describes how the exponents 
are encoded and packed into the bit stream. 

Exponents are 5-bit values which indicate the number of leading zeros in the binary 
representation of a frequency coefficient. The exponent acts as a scale factor for each mantissa, 
equal to 2-exp. Exponent values are allowed to range from 0 (for the largest value coefficients 
with no leading zeroes) to 24. Exponents for coefficients which have more than 24 leading 
zeroes are fixed at 24, and the corresponding mantissas are allowed to have leading zeros. 
Exponents require 5 bits in order to represent all allowed values. 

AC-3 bit streams contain coded exponents for all independent channels, all coupled channels, 
and for the coupling and low frequency effects channels (when they are enabled). Since audio 
information is not shared across syncframes, block 0 of every syncframe will include new 
exponents for every channel. Exponent information may be shared across blocks within a 
syncframe, so blocks 1 through 5 may reuse exponents from previous blocks. 

AC-3 exponent transmission employs differential coding, in which the exponents for a 
channel are differentially coded across frequency. The first exponent of a fbw or lfe channel is 
always sent as a 4-bit absolute value, ranging from 0–15. The value indicates the number of 
leading zeros of the first (dc term) transform coefficient. Successive (going higher in frequency) 
exponents are sent as differential values which must be added to the prior exponent value in 
order to form the next absolute value. 

The differential exponents are combined into groups in the audio block. The grouping is done 
by one of three methods, D15, D25, or D45, which are referred to as exponent strategies. The 
number of grouped differential exponents placed in the audio block for a particular channel 
depends on the exponent strategy and on the frequency bandwidth information for that channel. 
The number of exponents in each group depends only on the exponent strategy. 

An AC-3 audio block contains two types of fields with exponent information. The first type 
defines the exponent coding strategy for each channel, and the second type contains the actual 
coded exponents for channels requiring new exponents. For independent channels, frequency 
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bandwidth information is included along with the exponent strategy fields. For coupled channels, 
and the coupling channel, the frequency information is found in the coupling strategy fields. 

7.1.2 Exponent Strategy 

Exponent strategy information for every channel is included in every AC-3 audio block. 
Information is never shared across syncframes, so block 0 will always contain a strategy 
indication (D15, D25, or D45) for each channel. Blocks 1 through 5 may indicate reuse of the 
prior (within the same syncframe) exponents. The three exponent coding strategies provide a 
tradeoff between data rate required for exponents, and their frequency resolution. The D15 mode 
provides the finest frequency resolution, and the D45 mode requires the least amount of data. In 
all three modes, a number differential exponents are combined into 7-bit words when coded into 
an audio block. The main difference between the modes is how many differential exponents are 
combined together. 

The absolute exponents found in the bit stream at the beginning of the differentially coded 
exponent sets are sent as 4-bit values which have been limited in either range or resolution in 
order to save one bit. For fbw and lfe channels, the initial 4-bit absolute exponent represents a 
value from 0 to 15. Exponent values larger than 15 are limited to a value of 15. For the coupled 
channel, the 5-bit absolute exponent is limited to even values, and the lsb is not transmitted. The 
resolution has been limited to valid values of 0,2,4...24. Each differential exponent can take on 
one of five values: –2, –1, 0, +1, +2. This allows deltas of up to ±2 (±12 dB) between exponents. 
These five values are mapped into the values 0, 1, 2, 3, 4 before being grouped, as shown in 
Table 7.1. 

Table 7.1 Mapping of Differential Exponent Values, D15 Mode 

diff exp Mapped Value

+2 4 

+1 3 

0 2 

–1 1 

–2 0 

mapped value = diff exp + 2 ; 
diff exp = mapped value – 2 ; 

In the D15 mode, the above mapping is applied to each individual differential exponent for 
coding into the bit stream. In the D25 mode, each pair of differential exponents is represented by 
a single mapped value in the bit stream. In this mode the second differential exponent of each 
pair is implied as a delta of 0 from the first element of the pair as indicated in Table 7.2. 
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Table 7.2 Mapping of Differential Exponent Values, D25 Mode 

diff exp n diff exp n+1 Mapped Value

+2 0 4 

+1 0 3 

0 0 2 

–1 0 1 

–2 0 0 

The D45 mode is similar to the D25 mode except that quads of differential exponents are 
represented by a single mapped value, as indicated by Table 7.3. 

Table 7.3 Mapping of Differential Exponent Values, D45 Mode 

diff exp n diff exp n+1 diff exp n+2 diff exp n+3 Mapped Value 

+2 0 0 0 4 

+1 0 0 0 3 

0 0 0 0 2 

–1 0 0 0 1 

–2 0 0 0 0 

Since a single exponent is effectively shared by 2 or 4 different mantissas, encoders must 
ensure that the exponent chosen for the pair or quad is the minimum absolute value 
(corresponding to the largest exponent) needed to represent all the mantissas. 

For all modes, sets of three adjacent (in frequency) mapped values (M1, M2, and M3) are 
grouped together and coded as a 7 bit value according to the following formula 

coded 7 bit grouped value = (25 * M1) + (5 * M2) + M3 

The exponent field for a given channel in an AC-3 audio block consists of a single absolute 
exponent followed by a number of these grouped values. 

7.1.3 Exponent Decoding 

The exponent strategy for each coupled and independent channel is included in a set of 2-bit 
fields designated chexpstr[ch]. When the coupling channel is present, a cplexpstr strategy code is 
also included. Table 7.4 shows the mapping from exponent strategy code into exponent strategy. 

Table 7.4 Exponent Strategy Coding 

chexpstr[ch], cplexpstr Exponent Strategy Exponents per Group 

‘00’ reuse prior exponents 0 

‘01’ D15 3 

‘10’ D25 6 

‘11’ D45 12 

When the low frequency effects channel is enabled the lfeexpstr field is present. It is decoded 
as shown in Table 7.5. 



ATSC A/52:2012 Digital Audio Compression Standard 17 December 2012 

 60

Table 7.5 LFE Channel Exponent Strategy Coding 

lfeexpstr Exponent Strategy Exponents per Group 

‘0’ reuse prior exponents 0 

‘1’ D15 3 

Following the exponent strategy fields in the bit stream is a set of channel bandwidth codes, 
chbwcod[ch]. These are only present for independent channels (channels not in coupling) that have 
new exponents in the current block. The channel bandwidth code defines the end mantissa bin 
number for that channel according to the following 

endmant[ch] = ((chbwcod[ch] + 12) * 3) + 37; /* (ch is not coupled) */ 

For coupled channels the end mantissa bin number is defined by the starting bin number of 
the coupling channel 

endmant[ch] = cplstrtmant; /* (ch is coupled) */ 

where cplstrtmant is as derived below. By definition the starting mantissa bin number for 
independent and coupled channels is 0 

strtmant[ch] = 0 

For the coupling channel, the frequency bandwidth information is derived from the fields 
cplbegf and cplendf found in the coupling strategy information. The coupling channel starting and 
ending mantissa bins are defined as 

cplstrtmant = (cplbegf * 12) + 37 

cplendmant = ((cplendf + 3) * 12) + 37 

The low frequency effects channel, when present, always starts in bin 0 and always has the 
same number of mantissas 

lfestrtmant = 0 

lfeendmant = 7 

The second set of fields contains coded exponents for all channels indicated to have new 
exponents in the current block. These fields are designated as exps[ch][grp] for independent and 
coupled channels, cplexps[grp] for the coupling channel, and lfeexps[grp] for the low frequency 
effects channel. The first element of the exps fields (exps[ch][0]) and the lfeexps field (lfeexps[0]) is 
always a 4-bit absolute number. For these channels the absolute exponent always contains the 
exponent value of the first transform coefficient (bin #0). These 4 bit values correspond to a 5-bit 
exponent which has been limited in range (0 to 15, instead of 0 to 24), i.e., the most significant 
bit is zero. The absolute exponent for the coupled channel, cplabsexp, is only used as a reference 
to begin decoding the differential exponents for the coupling channel (i.e. it does not represent an 
actual exponent). The cplabsexp is contained in the audio block as a 4-bit value, however it 
corresponds to a 5-bit value. The LSB of the coupled channel initial exponent is always 0, so the 
decoder must take the 4-bit value which was sent, and double it (left shift by 1) in order to obtain 
the 5-bit starting value. 

For each coded exponent set the number of grouped exponents (not including the first 
absolute exponent) to decode from the bit stream is derived as follows: 

For independent and coupled channels: 
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nchgrps[ch] = truncate {(endmant[ch] – 1) / 3} ; /* for D15 mode */ 
  = truncate {(endmant[ch] – 1 + 3) / 6} ;  /* for D25 mode */ 
  = truncate {(endmant[ch] - 1 + 9) / 12} ;  /* for D45 mode */ 

For the coupling channel: 

ncplgrps = (cplendmant – cplstrtmant) / 3 ; /* for D15 mode */ 
 = (cplendmant – cplstrtmant) / 6 ;  /* for D25 mode */ 
 = (cplendmant – cplstrtmant) / 12 ;  /* for D45 mode */ 

For the low frequency effects channel: 

nlfegrps = 2 

Decoding a set of coded grouped exponents will create a set of 5-bit absolute exponents. The 
exponents are decoded as follows: 

1) Each 7 bit grouping of mapped values (gexp) is decoded using the inverse of the encoding 
procedure: 

M1 = truncate (gexp / 25) 
M2 = truncate {(gexp % 25} / 5) 
M3 = (gexp % 25) % 5 

2) Each mapped value is converted to a differential exponent (dexp) by subtracting the 
mapping offset: 

dexp = M 2 

3) The set of differential exponents if converted to absolute exponents by adding each 
differential exponent to the absolute exponent of the previous frequency bin: 

exp[n] = exp[n-1] + dexp[n] 

4) For the D25 and D45 modes, each absolute exponent is copied to the remaining members 
of the pair or quad. 

The above procedure can be summarized as follows: 

Pseudo Code 
/* unpack the mapped values */ 
for (grp = 0; grp < ngrps; grp++) 
{ 
 expacc = gexp[grp] ; 
 dexp[grp * 3] = truncate (expacc / 25) ; 
 expacc = expacc - ( 25 * dexp[grp * 3]) ; 
 dexp[(grp * 3) + 1] = truncate ( expacc / 5) ; 
 expacc = expacc - (5 * dexp[(grp * 3) + 1]) ; 
 dexp[(grp * 3) + 2] = expacc ; 
} 
/* unbiased mapped values */ 
for (grp = 0; grp < (ngrps * 3); grp++) 
{ 
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Pseudo Code 
 dexp[grp] = dexp[grp] - 2 ; 
} 
/* convert from differentials to absolutes */ 
prevexp = absexp ; 
for (i = 0; i < (ngrps * 3); i++) 
{ 
 aexp[i] = prevexp + dexp[i] ; 
 prevexp = aexp[i] ; 
} 
/* expand to full absolute exponent array, using grpsize */ 
exp[0] = absexp  ;  
for (i = 0; i < (ngrps * 3); i++) 
{ 
 for (j = 0; j < grpsize; j++) 
 { 
  exp[(i * grpsize) + j +1] = aexp[i] ; 
 } 
} 

Where: 
 ngrps  = number of grouped exponents (nchgrps[ch], ncplgrps, or nlfegrps) 
 grpsize  = 1 for D15 
   = 2 for D25 
   = 4 for D45 
 absexp = absolute exponent (exps[ch][0], (cplabsexp<<1), or lfeexps[0]) 

For the coupling channel the above output array, exp[n], should be offset to correspond to the 
coupling start mantissa bin: 

cplexp[n + cplstrtmant] = exp[n + 1] ; 

For the remaining channels exp[n] will correspond directly to the absolute exponent array for 
that channel. 

7.2 Bit Allocation 

7.2.1 Overview 

The bit allocation routine analyzes the spectral envelope of the audio signal being coded with 
respect to masking effects to determine the number of bits to assign to each transform coefficient 
mantissa. In the encoder, the bit allocation is performed globally on the ensemble of channels as 
an entity, from a common bit pool. There are no preassigned exponent or mantissa bits, allowing 
the routine to flexibly allocate bits across channels, frequencies, and audio blocks in accordance 
with signal demand. 

The bit allocation contains a parametric model of human hearing for estimating a noise level 
threshold, expressed as a function of frequency, which separates audible from inaudible spectral 
components. Various parameters of the hearing model can be adjusted by the encoder depending 
upon signal characteristics. For example, a prototype masking curve is defined in terms of two 
piecewise continuous line segments, each with its own slope and y-axis intercept. One of several 
possible slopes and intercepts is selected by the encoder for each line segment. The encoder may 
iterate on one or more such parameters until an optimal result is obtained. When all parameters 
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used to estimate the noise level threshold have been selected by the encoder, the final bit 
allocation is computed. The model parameters are conveyed to the decoder with other side 
information. The decoder executes the routine in a single pass. 

The estimated noise level threshold is computed over 50 bands of nonuniform bandwidth (an 
approximate 1/6 octave scale). The banding structure, defined by tables in the next section, is 
independent of sampling frequency. The required bit allocation for each mantissa is established 
by performing a table lookup based upon the difference between the input signal power spectral 
density (PSD) evaluated on a fine-grain uniform frequency scale, and the estimated noise level 
threshold evaluated on the coarse-grain (banded) frequency scale. Therefore, the bit allocation 
result for a particular channel has spectral granularity corresponding to the exponent strategy 
employed. More specifically, a separate bit allocation will be computed for each mantissa within 
a D15 exponent set, each pair of mantissas within a D25 exponent set, and each quadruple of 
mantissas within a D45 exponent set. 

The bit allocation must be computed in the decoder whenever the exponent strategy (chexpstr, 
cplexpstr, lfeexpstr) for one or more channels does not indicate reuse, or whenever baie, snroffste, or 
deltbaie = 1. Accordingly, the bit allocation can be updated at a rate ranging from once per audio 
block to once per 6 audio blocks, including the integral steps in between. A complete set of new 
bit allocation information is always transmitted in audio block 0. 

Since the parametric bit allocation routine must generate identical results in all encoder and 
decoder implementations, each step is defined exactly in terms of fixed-point integer operations 
and table lookups. Throughout the discussion below, signed two's complement arithmetic is 
employed. All additions are performed with an accumulator of 14 or more bits. All intermediate 
results and stored values are 8-bit values. 

7.2.2 Parametric Bit Allocation 

This section describes the seven-step procedure for computing the output of the parametric bit 
allocation routine in the decoder. The approach outlined here starts with a single uncoupled or 
coupled exponent set and processes all the input data for each step prior to continuing to the next 
one. This technique, called vertical execution, is conceptually straightforward to describe and 
implement. Alternatively, the seven steps can be executed horizontally, in which case multiple 
passes through all seven steps are made for separate subsets of the input exponent set. 

The choice of vertical vs. horizontal execution depends upon the relative importance of 
execution time vs. memory usage in the final implementation. Vertical execution of the 
algorithm is usually faster due to reduced looping and context save overhead. However, 
horizontal execution requires less RAM to store the temporary arrays generated in each step. 
Hybrid horizontal/vertical implementation approaches are also possible which combine the 
benefits of both techniques. 
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7.2.2.1 Initialization 

Compute start/end frequencies for the channel being decoded. These are computed from 
parameters in the bit stream as follows: 

Pseudo Code 
/* for fbw channels */ 
for (ch=0; ch<nfchans; ch++) 
{ 
 strtmant[ch] = 0; 
 if (chincpl[ch]) endmant[ch] = 37 + (12 × cplbegf) ; /* channel is coupled */ 
 else endmant[ch] = 37 + (3 × (chbwcod + 12)) ; /* channel is not coupled */ 
} 
/* for coupling channel */ 

cplstrtmant = 37 + (12 × cplbegf) ; 
cplendmant = 37 + [12 × (cplendf + 3)] ; 
/* for lfe channel */ 
lfestartmant = 0 ; 
lfeendmant = 7 ; 

7.2.2.1.1 Special Case Processing Step 

Before continuing with the initialization procedure, all SNR offset parameters from the bit 
stream should be evaluated. These include csnroffst, fsnroffst[ch], cplfsnroffst, and lfefsnroffst. If they are 
all found to be equal to zero, then all elements of the bit allocation pointer array bap[] should be 
set to zero, and no other bit allocation processing is required for the current audio block. 

Perform table lookups to determine the values of sdecay, fdecay, sgain, dbknee, and floor from 
parameters in the bit stream as follows: 

Pseudo Code  
sdecay = slowdec[sdcycod] ; /* Table 7.6 */ 
fdecay = fastdec[fdcycod]  /* Table 7.7 */ 
sgain = slowgain[sgaincod] /* Table 7.8 */ 
dbknee = dbpbtab[dbpbcod]  /* Table 7.9 */ 
floor = floortab[floorcod]  /* Table 7.10 */ 

Initialize as follows for uncoupled portion of fbw channel: 

Pseudo Code  
start = strtmant[ch] ;  
end = endmant[ch] ;  
lowcomp = 0 ;  
fgain = fastgain[fgaincod[ch]]; /* Table 7.11 */ 

snroffset[ch] = (((csnroffst − 15) << 4) + fsnroffst[ch]) << 2 ;  
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Initialize as follows for coupling channel: 

Pseudo Code  
start = cplstrtmant ;  
end = cplendmant ;  
fgain = fastgain[cplfgaincod] ; /* Table 7.11 */ 

snroffset = (((csnroffst − 15) << 4) + cplfsnroffst) << 2 ;  
fastleak = (cplfleak << 8) + 768 ;  
slowleak = (cplsleak << 8) + 768 ;  

Initialize as follows for lfe channel: 

Pseudo Code 
start = lfestrtmant ; 
end = lfeendmant ; 
lowcomp = 0 ; 
fgain = fastgain[lfefgaincod] ; 
snroffset = (((csnroffst - 15) << 4) + lfefsnroffst) << 2 ; 

7.2.2.2 Exponent Mapping Into PSD 

This step maps decoded exponents into a 13-bit signed log power-spectral density function. 

Pseudo Code 
for (bin=start; bin<end; bin++) 
{ 
 psd[bin] = (3072 - (exp[bin] << 7)) ; 
} 

Since exp[k] assumes integral values ranging from 0 to 24, the dynamic range of the psd[] 
values is from 0 (for the lowest-level signal) to 3072 for the highest-level signal. The resulting 
function is represented on a fine-grain, linear frequency scale. 

7.2.2.3 PSD Integration 

This step of the algorithm integrates fine-grain PSD values within each of a multiplicity of 1/6th 
octave bands. Table 7.12 contains the 50 array values for bndtab[] and bndsz. The bndtab[] array 
gives the first mantissa number in each band. The bndsz[] array provides the width of each band in 
number of included mantissas. Table 7.13 contains the 256 array values for masktab[], showing the 
mapping from mantissa number into the associated 1/6 octave band number. These two tables 
contain duplicate information, all of which need not be available in an actual implementation. 
They are shown here for simplicity of presentation only. 

The integration of PSD values in each band is performed with log-addition. The log-addition 
is implemented by computing the difference between the two operands and using the absolute 
difference divided by 2 as an address into a length 256 lookup table, latab[], shown in Table 7.14. 

Pseudo Code 
j = start ; 
k = masktab[start] ; 
do 
{ 
 lastbin = min(bndtab[k] + bndsz[k], end); 
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Pseudo Code 
 bndpsd[k] = psd[j] ; 
 j++ ; 
 for (i = j; i < lastbin; i++) 
 { 
  bndpsd[k] = logadd(bndpsd[k], psd[j]) ; 
  j++ ; 
 } 
 k++ ; 
} 
while (end > lastbin) ; 
logadd(a, b) 
{ 
 c = a − b ; 
 address = min((abs(c) >> 1), 255) ; 
 if (c >= 0) 
 { 
  return(a + latab(address)) ; 
 } 
 else 
 { 
  return(b + latab(address)) ; 
 } 
} 

7.2.2.4 Compute Excitation Function 

The excitation function is computed by applying the prototype masking curve selected by the 
encoder (and transmitted to the decoder) to the integrated PSD spectrum (bndpsd[]). The result of 
this computation is then offset downward in amplitude by the fgain and sgain parameters, which 
are also obtained from the bit stream. 

Pseudo Code 
bndstrt = masktab[start] ; 
bndend = masktab[end - 1] + 1 ; 
if (bndstrt == 0) /* For fbw and lfe channels */ 
{ /* Note: Do not call calc_lowcomp() for the last band of the lfe channel, (bin = 6) */ 
 lowcomp = calc_lowcomp(lowcomp, bndpsd[0], bndpsd[1], 0) ; 
 excite[0] = bndpsd[0] - fgain – lowcomp ; 
 lowcomp = calc_lowcomp(lowcomp, bndpsd[1], bndpsd[2], 1) ; 
 excite[1] = bndpsd[1] - fgain – lowcomp ; 
 begin = 7 ; 
 for (bin = 2; bin < 7; bin++) 
 { 
  if ((bndend != 7) || (bin != 6)) /* skip for last bin of lfe channels */ 
  { 
   lowcomp = calc_lowcomp(lowcomp, bndpsd[bin], bndpsd[bin+1], bin) ; 
  } 
  fastleak = bndpsd[bin] – fgain ; 
  slowleak = bndpsd[bin] – sgain ; 
  excite[bin] = fastleak – lowcomp ; 
  if ((bndend != 7) || (bin != 6)) /* skip for last bin of lfe channel */ 
  { 
   if (bndpsd[bin] <= bndpsd[bin+1]) 
   { 
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Pseudo Code 
    begin = bin + 1 ; 
    break ; 
   } 
  } 
 } 
 for (bin = begin; bin < min(bndend, 22); bin++) 
 { 
  if ((bndend != 7) || (bin != 6)) /* skip for last bin of lfe channel */ 
  { 
   lowcomp = calc_lowcomp(lowcomp, bndpsd[bin], bndpsd[bin+1], bin) ; 
  } 
  fastleak -= fdecay ; 
  fastleak = max(fastleak, bndpsd[bin] - fgain) ; 
  slowleak -= sdecay ; 
  slowleak = max(slowleak, bndpsd[bin] - sgain) ; 
  excite[bin] = max(fastleak – lowcomp, slowleak) ; 
 } 
 begin = 22 ; 
} 
else /* For coupling channel */ 
{ 
 begin = bndstrt ; 
} 
for (bin = begin; bin < bndend; bin++) 
{ 
 fastleak -= fdecay ; 
 fastleak = max(fastleak, bndpsd[bin] - fgain) ; 
 slowleak -= sdecay ; 
 slowleak = max(slowleak, bndpsd[bin] - sgain) ; 
 excite[bin] = max(fastleak, slowleak) ; 
} 
calc_lowcomp(a, b0, b1, bin) 
{ 
 if (bin < 7) 
 { 
  if ((b0 + 256) == b1) ; 
  { 
   a = 384 ; 
  } 
  else if (b0 > b1) 
  { 
   a = max(0, a - 64) ; 
  } 
 } 
 else if (bin < 20) 
 { 
  if ((b0 + 256) == b1) 
  { 
   a = 320 ; 
  } 
  else if (b0 > b1) 
  { 
   a = max(0, a - 64) ; 
  } 
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Pseudo Code 
 } 
 else 
 { 
  a = max(0, a - 128) ; 
 } 
 return(a) ; 
} 

7.2.2.5 Compute Masking Curve 

This step computes the masking (noise level threshold) curve from the excitation function, as 
shown below. The hearing threshold hth[][] is shown in Table 7.15. The fscod and dbpbcod variables 
are received by the decoder in the bit stream. 

Pseudo Code 
for (bin = bndstrt; bin < bndend; bin++) 
{ 
 if (bndpsd[bin] < dbknee) 
 { 
  excite[bin] += ((dbknee - bndpsd[bin]) >> 2) ; 
 } 
 mask[bin] = max(excite[bin], hth[fscod][bin]) ; 
} 

7.2.2.6 Apply Delta Bit Allocation 

The optional delta bit allocation information in the bit stream provides a means for the encoder to 
transmit side information to the decoder which directly increases or decreases the masking curve 
obtained by the parametric routine. Delta bit allocation can be enabled by the encoder for audio 
blocks which derive an improvement in audio quality when the default bit allocation is 
appropriately modified. The delta bit allocation option is available for each fbw channel and the 
coupling channel. 

In the event that delta bit allocation is not being used, and no dba information is included in 
the bit stream, the decoder must not modify the default allocation. One way to insure this is to 
initialize the cpldeltnseg and deltnseg[ch] delta bit allocation variables to 0 at the beginning of each 
syncframe. This makes the dba processing (shown below) to immediately terminate, unless dba 
information (including cpldeltnseg and deltnseg[ch]) is included in the bit stream. 

The dba information which modifies the decoder bit allocation are transmitted as side 
information. The allocation modifications occur in the form of adjustments to the default 
masking curve computed in the decoder. Adjustments can be made in multiples of ±6 dB. On the 
average, a masking curve adjustment of –6 dB corresponds to an increase of 1 bit of resolution 
for all the mantissas in the affected 1/6th octave band. The following code indicates, for a single 
channel, how the modification is performed. The modification calculation is performed on the 
coupling channel (where deltnseg below equals cpldeltnseg) and on each fbw channel (where 
deltnseg equals deltnseg[ch]). 

Pseudo Code 
if ((deltbae == 0) || (deltbae == 1)) 
{ 
 band = 0 ; 
 for (seg = 0; seg < deltnseg+1; seg++) 
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Pseudo Code 
 { 
  band += deltoffst[seg] ; 
  if (deltba[seg] >= 4) 
  { 
   delta = (deltba[seg] - 3) << 7 ; 
  } 
  else 
  { 
   delta = (deltba[seg] - 4) << 7 ; 
  } 
  for (k = 0; k < deltlen[seg]; k++) 
  { 
   mask[band] += delta ; 
   band++ ; 
  } 
 } 
} 

7.2.2.7 Compute Bit Allocation 

The bit allocation pointer array (bap[]) is computed in this step. The masking curve, adjusted by 
snroffset in an earlier step and then truncated, is subtracted from the fine-grain psd[] array. The 
difference is right-shifted by 5 bits, thresholded, and then used as an address into baptab[] to 
obtain the final allocation. The baptab[] array is shown in Table 7.16. 

The sum of all channel mantissa allocations in one syncframe is constrained by the encoder 
to be less than or equal to the total number of mantissa bits available for that syncframe. The 
encoder accomplishes this by iterating on the values of csnroffst and fsnroffst (or cplfsnroffst or 
lfefsnroffst for the coupling and low frequency effects channels) to obtain an appropriate result. 
The decoder is guaranteed to receive a mantissa allocation which meets the constraints of a fixed 
transmission bit-rate. 

At the end of this step, the bap[] array contains a series of 4-bit pointers. The pointers indicate 
how many bits are assigned to each mantissa. The correspondence between bap pointer value and 
quantization accuracy is shown in Table 7.17. 

Pseudo Code 
i = start ; 
j = masktab[start] ; 
do 
{ 
 lastbin = min(bndtab[j] + bndsz[j], end) ; 
 mask[j] -= snroffset ; 
 mask[j] -= floor ; 
 if (mask[j] < 0) 
 { 
  mask[j] = 0 ; 
 } 
 mask[j] &= 0x1fe0 ; 
 mask[j] += floor ; 
 for (k = i; k < lastbin; k++) 
 { 
  address = (psd[i] - mask[j]) >> 5 ; 
  address = min(63, max(0, address)) ; 
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Pseudo Code 
  bap[i] = baptab[address] ; 
  i++ ; 
 } 
 j++; 
} 
while (end > lastbin) ; 

7.2.3 Bit Allocation Tables 

Table 7.6 Slow Decay Table, slowdec[] 

Address slowdec[address]

0 0x0f 

1 0x11 

2 0x13 

3 0x15 

Table 7.7 Fast Decay Table, fastdec[] 

Address fastdec[address]

0 0x3f 

1 0x53 

2 0x67 

3 0x7b 

Table 7.8 Slow Gain Table, slowgain[] 

Address slowgain[address]

0 0x540 

1 0x4d8 

2 0x478 

3 0x410 

Table 7.9 dB/Bit Table, dbpbtab[] 

Address dbpbtab[address]

0 0x000 

1 0x700 

2 0x900 

3 0xb00 

Table 7.10 Floor Table, floortab[] 

Address floortab[address]

0 0x2f0 

1 0x2b0 

2 0x270 

3 0x230 

4 0x1f0 

5 0x170 

6 0x0f0 
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Address floortab[address]

7 0xf800 

Table 7.11 Fast Gain Table, fastgain[] 

Address fastgain[address]

0 0x080 

1 0x100 

2 0x180 

3 0x200 

4 0x280 

5 0x300 

6 0x380 

7 0x400 

Table 7.12 Banding Structure Tables, bndtab[], bndsz[] 

Band # bndtab[band] bndsz[band] Band # bndtab[band] bndsz[band]

0 0 1 25 25 1 

1 1 1 26 26 1 

2 2 1 27 27 1 

3 3 1 28 28 3 

4 4 1 29 31 3 

5 5 1 30 34 3 

6 6 1 31 37 3 

7 7 1 32 40 3 

8 8 1 33 43 3 

9 9 1 34 46 3 

10 10 1 35 49 6 

11 11 1 36 55 6 

12 12 1 37 61 6 

13 13 1 38 67 6 

14 14 1 39 73 6 

15 15 1 40 79 6 

16 16 1 41 85 12 

17 17 1 42 97 12 

18 18 1 43 109 12 

19 19 1 44 121 12 

20 20 1 45 133 24 

21 21 1 46 157 24 

22 22 1 47 181 24 

23 23 1 48 205 24 

24 24 1 49 229 24 
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Table 7.13 Bin Number to Band Number Table, masktab[bin],  
bin = (10 * A) + B 

 B=0 B=1 B=2 B=3 B=4 B=5 B=6 B=7 B=8 B=9

A=0 0 1 2 3 4 5 6 7 8 9 

A=1 10 11 12 13 14 15 16 17 18 19 

A=2 20 21 22 23 24 25 26 27 28 28 

A=3 28 29 29 29 30 30 30 31 31 31 

A=4 32 32 32 33 33 33 34 34 34 35 

A=5 35 35 35 35 35 36 36 36 36 36 

A=6 36 37 37 37 37 37 37 38 38 38 

A=7 38 38 38 39 39 39 39 39 39 40 

A=8 40 40 40 40 40 41 41 41 41 41 

A=9 41 41 41 41 41 41 41 42 42 42 

A=10 42 42 42 42 42 42 42 42 42 43 

A=11 43 43 43 43 43 43 43 43 43 43 

A=12 43 44 44 44 44 44 44 44 44 44 

A=13 44 44 44 45 45 45 45 45 45 45 

A=14 45 45 45 45 45 45 45 45 45 45 

A=15 45 45 45 45 45 45 45 46 46 46 

A=16 46 46 46 46 46 46 46 46 46 46 

A=17 46 46 46 46 46 46 46 46 46 46 

A=18 46 47 47 47 47 47 47 47 47 47 

A=19 47 47 47 47 47 47 47 47 47 47 

A=20 47 47 47 47 47 48 48 48 48 48 

A=21 48 48 48 48 48 48 48 48 48 48 

A=22 48 48 48 48 48 48 48 48 48 49 

A=23 49 49 49 49 49 49 49 49 49 49 

A=24 49 49 49 49 49 49 49 49 49 49 

A=25 49 49 49 0 0 0     
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Table 7.14 Log-Addition Table, latab[val], val = (10 * A) + B 

 B=0 B=1 B=2 B=3 B=4 B=5 B=6 B=7 B=8 B=9

A=0 0x0040 0x003f 0x003e 0x003d 0x003c 0x003b 0x003a 0x0039 0x0038 0x0037 

A=1 0x0036 0x0035 0x0034 0x0034 0x0033 0x0032 0x0031 0x0030 0x002f 0x002f 

A=2 0x002e 0x002d 0x002c 0x002c 0x002b 0x002a 0x0029 0x0029 0x0028 0x0027 

A=3 0x0026 0x0026 0x0025  0x0024 0x0024 0x0023 0x0023 0x0022 0x0021 0x0021 

A=4 0x0020 0x0020 0x001f 0x001e 0x001e 0x001d 0x001d 0x001c 0x001c 0x001b 

A=5 0x001b 0x001a 0x001a 0x0019 0x0019 0x0018 0x0018 0x0017 0x0017 0x0016 

A=6 0x0016 0x0015 0x0015 0x0015 0x0014  0x0014 0x0013 0x0013 0x0013 0x0012 

A=7 0x0012 0x0012 0x0011 0x0011 0x0011 0x0010 0x0010 0x0010 0x000f 0x000f 

A=8 0x000f 0x000e 0x000e 0x000e 0x000d 0x000d 0x000d 0x000d 0x000c 0x000c 

A=9 0x000c 0x000c 0x000b 0x000b 0x000b 0x000b 0x000a 0x000a 0x000a 0x000a 

A=10 0x000a 0x0009 0x0009 0x0009 0x0009 0x0009 0x0008 0x0008 0x0008 0x0008 

A=11 0x0008 0x0008 0x0007 0x0007 0x0007 0x0007 0x0007 0x0007 0x0006 0x0006 

A=12 0x0006 0x0006 0x0006 0x0006 0x0006 0x0006 0x0005 0x0005 0x0005 0x0005 

A=13 0x0005 0x0005 0x0005 0x0005 0x0004 0x0004 0x0004 0x0004 0x0004 0x0004 

A=14 0x0004 0x0004 0x0004 0x0004 0x0004 0x0003 0x0003 0x0003 0x0003 0x0003 

A=15 0x0003 0x0003 0x0003 0x0003 0x0003 0x0003 0x0003 0x0003 0x0003 0x0002 

A=16 0x0002 0x0002 0x0002 0x0002 0x0002 0x0002 0x0002 0x0002 0x0002 0x0002 

A=17 0x0002 0x0002 0x0002 0x0002 0x0002 0x0002 0x0002 0x0002 0x0001 0x0001 

A=18 0x0001 0x0001 0x0001 0x0001 0x0001 0x0001 0x0001 0x0001 0x0001 0x0001 

A=19 0x0001 0x0001 0x0001 0x0001 0x0001 0x0001 0x0001 0x0001 0x0001 0x0001 

A=20 0x0001 0x0001 0x0001 0x0001 0x0001 0x0001 0x0001 0x0001 0x0001 0x0001 

A=21 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 

A=22 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 

A=23 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 

A=24 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 

A=25 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000     
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Table 7.15 Hearing Threshold Table, hth[fscod][band] 

Band No. hth[0][band] 
(fs=48 kHz) 

hth[1][band] 
(fs=44.1 kHz) 

hth[2][band]
(fs=32 kHz) 

Band No. hth[0][band]
(fs=48 kHz) 

hth[1][band] 
(fs=44.1 kHz) 

hth[2][band]
(fs=32 kHz) 

0 0x04d0 0x04f0 0x0580 25 0x0340 0x0350 0x0380 

1 0x04d0 0x04f0 0x0580 26 0x0330 0x0340 0x0380 

2 0x0440 0x0460 0x04b0 27 0x0320 0x0340 0x0370 

3 0x0400 0x0410 0x0450 28 0x0310 0x0320 0x0360 

4 0x03e0 0x03e0 0x0420 29 0x0300 0x0310 0x0350 

5 0x03c0 0x03d0 0x03f0 30 0x02f0 0x0300 0x0340 

6 0x03b0 0x03c0 0x03e0 31 0x02f0 0x02f0 0x0330 

7 0x03b0 0x03b0 0x03d0 32 0x02f0 0x02f0 0x0320 

8 0x03a0 0x03b0 0x03c0 33 0x02f0 0x02f0 0x0310 

9 0x03a0 0x03a0 0x03b0 34 0x0300 0x02f0 0x0300 

10 0x03a0 0x03a0 0x03b0 35 0x0310 0x0300 0x02f0 

11 0x03a0 0x03a0 0x03b0 36 0x0340 0x0320 0x02f0 

12 0x03a0 0x03a0 0x03a0 37 0x0390 0x0350 0x02f0 

13 0x0390 0x03a0 0x03a0 38 0x03e0 0x0390 0x0300 

14 0x0390 0x0390 0x03a0 39 0x0420 0x03e0 0x0310 

15 0x0390 0x0390 0x03a0 40 0x0460 0x0420 0x0330 

16 0x0380 0x0390 0x03a0 41 0x0490 0x0450 0x0350 

17 0x0380 0x0380 0x03a0 42 0x04a0 0x04a0 0x03c0 

18 0x0370 0x0380 0x03a0 43 0x0460 0x0490 0x0410 

19 0x0370 0x0380 0x03a0 44 0x0440 0x0460 0x0470 

20 0x0360 0x0370 0x0390 45 0x0440 0x0440 0x04a0 

21 0x0360 0x0370 0x0390 46 0x0520 0x0480 0x0460 

22 0x0350 0x0360 0x0390 47 0x0800 0x0630 0x0440 

23 0x0350 0x0360 0x0390 48 0x0840 0x0840 0x0450 

24 0x0340 0x0350 0x0380 49 0x0840 0x0840 0x04e0 
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Table 7.16 Bit Allocation Pointer Table, baptab[] 

Address baptab[address] Address baptab[address] 

0 0 32 10 

1 1 33 10 

2 1 34 10 

3 1 35 11 

4 1 36 11 

5 1 37 11 

6 2 38 11 

7 2 39 12 

8 3 40 12 

9 3 41 12 

10 3 42 12 

11 4 43 13 

12 4 44 13 

13 5 45 13 

14 5 46 13 

15 6 47 14 

16 6 48 14 

17 6 49 14 

18 6 50 14 

19 7 51 14 

20 7 52 14 

21 7 53 14 

22 7 54 14 

23 8 55 15 

24 8 56 15 

25 8 57 15 

26 8 58 15 

27 9 59 15 

28 9 60 15 

29 9 61 15 

30 9 62 15 

31 10 63 15 
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Table 7.17 Quantizer Levels and Mantissa Bits vs. bap 

bap Quantizer Levels Mantissa Bits 
(group bits / num in group) 

0 0 0 

1 3 1.67 (5/3) 

2 5 2.33 (7/3) 

3 7 3 

4 11 3.5 (7/2) 

5 15 4 

6 32 5 

7 64 6 

8 128 7 

9 256 8 

10 512 9 

11 1024 10 

12 2048 11 

13 4096 12 

14 16,384 14 

15 65,536 16 

7.3 Quantization and Decoding of Mantissas 

7.3.1 Overview 

All mantissas are quantized to a fixed level of precision indicated by the corresponding bap. 
Mantissas quantized to 15 or fewer levels use symmetric quantization. Mantissas quantized to 
more than 15 levels use asymmetric quantization which is a conventional two’s complement 
representation. 

Some quantized mantissa values are grouped together and encoded into a common codeword. 
In the case of the 3-level quantizer, 3 quantized values are grouped together and represented by a 
5-bit codeword in the data stream. In the case of the 5-level quantizer, 3 quantized values are 
grouped and represented by a 7-bit codeword. For the 11-level quantizer, 2 quantized values are 
grouped and represented by a 7-bit codeword. 

In the encoder, each transform coefficient (which is always < 1.0) is left-justified by shifting 
its binary representation left the number of times indicated by its exponent (0 to 24 left shifts). 
The amplified coefficient is then quantized to a number of levels indicated by the corresponding 
bap. 

The following table indicates which quantizer to use for each bap. If a bap equals 0, no bits 
are sent for the mantissa. Grouping is used for baps of 1, 2, and 4 (3, 5, and 11 level quantizers.) 
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Table 7.18 Mapping of bap to Quantizer 

bap Quantizer Levels Quantization Type Mantissa Bits (qntztab[bap]) 
(group bits / num in group) 

0 0 none 0 

1 3 symmetric 1.67 (5/3) 

2 5 symmetric 2.33 (7/3) 

3 7 symmetric 3 

4 11 symmetric 3.5 (7/2) 

5 15 symmetric 4 

6 32 asymmetric 5 

7 64 asymmetric 6 

8 128 asymmetric 7 

9 256 asymmetric 8 

10 512 asymmetric 9 

11 1024 asymmetric 10 

12 2048 asymmetric 11 

13 4096 asymmetric 12 

14 16,384 asymmetric 14 

15 65,536 asymmetric 16 

During the decode process, the mantissa data stream is parsed up into single mantissas of 
varying length, interspersed with groups representing combined coding of either triplets or pairs 
of mantissas. In the bit stream, the mantissas in each exponent set are arranged in frequency 
ascending order. However, groups occur at the position of the first mantissa contained in the 
group. Nothing is unpacked from the bit stream for the subsequent mantissas in the group. 

7.3.2 Expansion of Mantissas for Asymmetric Quantization (6 ≤ bap ≤ 15) 

For bit allocation pointer array values, 6 ≤ bap ≤ 15, asymmetric fractional two’s complement 
quantization is used. Each mantissa, along with its exponent, are the floating point representation 
of a transform coefficient. The decimal point is considered to be to the left of the MSB; therefore 
the mantissa word represents the range of 

(1.0 – 2–(qntztab[bap] – 1)) to –1.0 

The mantissa number k, of length qntztab[bap[k]], is extracted from the bit stream. Conversion 
back to a fixed point representation is achieved by right shifting the mantissa by its exponent. 
This process is represented by the following formula: 

transform_coefficient[k] = mantissa[k] >> exponent[k] ; 

No grouping is done for asymmetrically quantized mantissas. 

7.3.3 Expansion of Mantissas for Symmetrical Quantization (1 ≤ bap ≤ 5) 

For bap values of 1 through 5 (1 ≤ bap ≤ 5), the mantissas are represented by coded values. The 
coded values are converted to standard 2’s complement fractional binary words by a table 
lookup. The number of bits indicated by a mantissa’s bap are extracted from the bit stream and 
right justified. This coded value is treated as a table index and is used to look up the mantissa 
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value. The resulting mantissa value is right shifted by the corresponding exponent to generate the 
transform coefficient value 

transform_coefficient[k] = quantization_table[mantissa_code[k]] >> exponent[k] ; 

The mapping of coded mantissa value into the actual mantissa value is shown in tables Table 
7.19 through Table 7.23. 

7.3.4 Dither for Zero Bit Mantissas (bap=0) 

The AC-3 decoder uses random noise (dither) values instead of quantized values when the 
number of bits allocated to a mantissa is zero (bap = 0). The use of the random value is 
conditional on the value of dithflag. When the value of dithflag is 1, the random noise value is used. 
When the value of dithflag is 0, a true zero value is used. There is a dithflag variable for each 
channel. Dither is applied after the individual channels are extracted from the coupling channel. 
In this way, the dither applied to each channel's upper frequencies is uncorrelated. 

Any reasonably random sequence may be used to generate the dither values. The word length 
of the dither values is not critical. Eight bits is sufficient. The optimum scaling for the dither 
words is to take a uniform distribution of values between –1 and +1, and scale this by 0.707, 
resulting in a uniform distribution between +0.707 and –0.707. A scalar of 0.75 is close enough 
to also be considered optimum. A scalar of 0.5 (uniform distribution between +0.5 and –0.5) is 
also acceptable. 

Once a dither value is assigned to a mantissa, the mantissa is right shifted according to its 
exponent to generate the corresponding transform coefficient 

transform_coefficient[k] = scaled_dither_value >> exponent[k] ; 

Table 7.19 bap=1 (3-Level) Quantization 

Mantissa Code Mantissa Value

0 –2./3 

1 0 

2 2./3 

Table 7.20 bap=2 (5-Level) Quantization 

Mantissa Code Mantissa Value

0 –4./5 

1 –2./5 

2 0 

3 2./5 

4 4./5 
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Table 7.21 bap=3 (7-Level) Quantization 

Mantissa Code Mantissa Value

0 –6./7 

1 –4./7 

2 –2./7 

3 0 

4 2./7 

5 4./7 

6 6./7 

Table 7.22 bap=4 (11-Level) Quantization 

Mantissa Code Mantissa Value

0 –10./11 

1 –8./11 

2 –6./11 

3 –4./11 

4 –2./11 

5 0 

6 2./11 

7 4./11 

8 6./11 

9 8./11 

10 10./11 

Table 7.23 bap=5 (15-Level) Quantization 

Mantissa Code Mantissa Value

0 –14./15 

1 –12./15 

2 –10./15 

3 –8./15 

4 –6./15 

5 –4./15 

6 –2./15 

7 0 

8 2./15 

9 4./15 

10 6./15 

11 8./15 

12 10./15 

13 12./15 

14 14./15 

7.3.5 Ungrouping of Mantissas 

In the case when bap = 1, 2, or 4, the coded mantissa values are compressed further by combining 
3 level words and 5 level words into separate groups representing triplets of mantissas, and 11 
level words into groups representing pairs of mantissas. Groups are filled in the order that the 
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mantissas are processed. If the number of mantissas in an exponent set does not fill an integral 
number of groups, the groups are shared across exponent sets. The next exponent set in the block 
continues filling the partial groups. If the total number of 3 or 5 level quantized transform 
coefficient derived words are not each divisible by 3, or if the 11 level words are not divisible by 
2, the final groups of a block are padded with dummy mantissas to complete the composite 
group. Dummies are ignored by the decoder. Groups are extracted from the bit stream using the 
length derived from bap. Three level quantized mantissas (bap = 1) are grouped into triples each 
of 5 bits. Five level quantized mantissas (bap = 2) are grouped into triples each of 7 bits. Eleven 
level quantized mantissas (bap = 4) are grouped into pairs each of 7 bits. 

Encoder equations 

bap = 1:  
 group_code = 9 * mantissa_code[a] + 3 * mantissa_code[b] + mantissa_code[c] ; 
bap = 2:  
 group_code = 25 * mantissa_code[a] + 5 * mantissa_code[b] + mantissa_code[c] ; 
bap = 4:  
 group_code = 11 * mantissa_code[a] + mantissa_code[b] ; 

Decoder equations 

bap = 1:  
 mantissa_code[a] = truncate (group_code / 9) ; 
 mantissa_code[b] = truncate ((group_code % 9) / 3 ) ; 
 mantissa_code[c] = (group_code % 9) % 3 ; 
bap = 2:  
 mantissa_code[a] = truncate (group_code / 25) ; 
 mantissa_code[b] = truncate ((group_code % 25) / 5 ) ; 
 mantissa_code[c] = (group_code % 25) % 5 ; 
bap = 4:  
 mantissa_code[a] = truncate (group_code / 11) ; 
 mantissa_code[b] = group_code % 11 ; 
 where mantissa a comes before mantissa b, which comes before mantissa c 

7.4 Channel Coupling 

7.4.1 Overview 

If enabled, channel coupling is performed on encode by averaging the transform coefficients 
across channels that are included in the coupling channel. Each coupled channel has a unique set 
of coupling coordinates which are used to preserve the high frequency envelopes of the original 
channels. The coupling process is performed above a coupling frequency that is defined by the 
cplbegf value. 

The decoder converts the coupling channel back into individual channels by multiplying the 
coupled channel transform coefficient values by the coupling coordinate for that channel and 
frequency sub-band. An additional processing step occurs for the 2/0 mode. If the phsflginu bit = 1 
or the equivalent state is continued from a previous block, then phase restoration bits are sent in 
the bit stream via phase flag bits. The phase flag bits represent the coupling sub-bands in a 
frequency ascending order. If a phase flag bit = 1 for a particular sub-band, all the right channel 
transform coefficients within that coupled sub-band are negated after modification by the 
coupling coordinate, but before inverse transformation. 



ATSC A/52:2012 Digital Audio Compression Standard 17 December 2012 

 81

7.4.2 Sub-Band Structure for Coupling 

Transform coefficients # 37 through # 252 are grouped into 18 sub-bands of 12 coefficients each, 
as shown in Table 7.24. The parameter cplbegf indicates the number of the coupling sub-band 
which is the first to be included in the coupling process. Below the frequency (or transform 
coefficient number) indicated by cplbegf, all channels are independently coded. Above the 
frequency indicated by cplbegf, channels included in the coupling process (chincpl[ch] = 1) share the 
common coupling channel up to the frequency (or tc #) indicated by cplendf. The coupling 
channel is coded up to the frequency (or tc #) indicated by cplendf, which indicates the last 
coupling sub-band which is coded. The parameter cplendf is interpreted by adding 2 to its value, 
so the last coupling sub-band which is coded can range from 2-17. 

Table 7.24 Coupling Sub-Bands 

Coupling  
Subband # 

Low tc # High tc # lf Cutoff (kHz)
@ fs=48 kHz 

hf Cutoff (kHz)
@ fs=48 kHz 

lf Cutoff (kHz) 
@ fs=44.1 kHz 

hf Cutoff (kHz)
@ fs=44.1 kHz 

0 37 48 3.42 4.55 3.14 4.18 

1 49 60 4.55 5.67 4.18 5.21 

2 61 72 5.67 6.80 5.21 6.24 

3 73 84 6.80 7.92 6.24 7.28 

4 85 96 7.92 9.05 7.28 8.31 

5 97 108 9.05 10.17 8.31 9.35 

6 109 120 10.17 11.30 9.35 10.38 

7 121 132 11.30 12.42 10.38 11.41 

8 133 144 12.42 13.55 11.41 12.45 

9 145 156 13.55 14.67 12.45 13.48 

10 157 168 14.67 15.80 13.48 14.51 

11 169 180 15.80 16.92 14.51 15.55 

12 181 192 16.92 18.05 15.55 16.58 

13 193 204 18.05 19.17 16.58 17.61 

14 205 216 19.17 20.30 17.61 18.65 

15 217 228 20.30 21.42 18.65 19.68 

16 229 240 21.42 22.55 19.68 20.71 

17 241 252 22.55 23.67 20.71 21.75 

Note: At 32 kHz sampling rate the sub-band frequency ranges are 2/3 the values of those for 48 kHz. 

The coupling sub-bands are combined into coupling bands for which coupling coordinates 
are generated (and included in the bit stream). The coupling band structure is indicated by 
cplbndstrc[sbnd]. Each bit of the cplbndstrc[] array indicates whether the sub-band indicated by the 
index is combined into the previous (lower in frequency) coupling band. Coupling bands are thus 
made from integral numbers of coupling sub-bands. (See Section 5.4.3.13.) 

7.4.3 Coupling Coordinate Format 

Coupling coordinates exist for each coupling band [bnd] in each channel [ch] which is coupled 
(chincp[ch]==1). Coupling coordinates are sent in a floating point format. The exponent is sent as a 
4-bit value (cplcoexp[ch][bnd]) indicating the number of right shifts which should be applied to the 
fractional mantissa value. The mantissas are transmitted as 4-bit values (cplcomant[ch][bnd]) which 
must be properly scaled before use. Mantissas are unsigned values so a sign bit is not used. 
Except for the limiting case where the exponent value = 15, the mantissa value is known to be 
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between 0.5 and 1.0. Therefore, when the exponent value < 15, the msb of the mantissa is always 
equal to ‘1’ and is not transmitted; the next 4 bits of the mantissa are transmitted. This provides 
one additional bit of resolution. When the exponent value = 15 the mantissa value is generated 
by dividing the 4-bit value of cplcomant by 16. When the exponent value is < 15 the mantissa 
value is generated by adding 16 to the 4-bit value of cplcomant and then dividing the sum by 32. 

Coupling coordinate dynamic range is increased beyond what the 4-bit exponent can provide 
by the use of a per channel 2-bit master coupling coordinate (mstrcplco[ch]) which is used to range 
all of the coupling coordinates within that channel. The exponent values for each channel are 
increased by 3 times the value of mstrcplco which applies to that channel. This increases the 
dynamic range of the coupling coordinates by an additional 54 dB. 

The following pseudo code indicates how to generate the coupling coordinate (cplco) for each 
coupling band [bnd] in each channel [ch]. 

Pseudo Code 
if (cplcoexp[ch, bnd] == 15) 
{ 
 cplco_temp[ch,bnd] = cplcomant[ch,bnd] / 16 ; 
} 
else 
{ 
 cplco_temp[ch,bnd] = (cplcomant[ch,bnd] + 16) / 32 ; 
} 
cplco[ch,bnd] = cplco_temp[ch,bnd] >> (cplcoexp[ch,bnd] + 3 * mstrcplco[ch]) ; 

Using the cplbndstrc[] array, the values of coupling coordinates which apply to coupling bands 
are converted (by duplicating values as indicated by values of ‘1’ in cplbandstrc[]) to values which 
apply to coupling sub-bands. 

Individual channel mantissas are then reconstructed from the coupled channel as follows: 

Pseudo code 
for (sbnd = cplbegf; sbnd < 3 + cplendf; sbnd++) 
{ 
 for (bin = 0; bin < 12; bin++) 
 { 
  chmant[ch, sbnd*12+bin+37] = cplmant[sbnd*12+bin+37] * cplco[ch, sbnd] * 8 ; 
 } 
} 

7.5 Rematrixing 

7.5.1 Overview 

Rematrixing in AC-3 is a channel combining technique in which sums and differences of highly 
correlated channels are coded rather than the original channels themselves. That is, rather than 
code and pack left and right in a two channel coder, we construct 

left' = 0.5 * (left + right) ; 

right' = 0.5 * (left – right) ; 

The usual quantization and data packing operations are then performed on left' and right'. 
Clearly, if the original stereo signal were identical in both channels (i.e., two-channel mono), this 
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technique will result in a left' signal that is identical to the original left and right channels, and a 
right' signal that is identically zero. As a result, we can code the right' channel with very few bits, 
and increase accuracy in the more important left' channel. 

This technique is especially important for preserving Dolby Surround compatibility. To see 
this, consider a two channel mono source signal such as that described above. A Dolby Pro Logic 
decoder will try to steer all in-phase information to the center channel, and all out-of-phase 
information to the surround channel. If rematrixing is not active, the Pro Logic decoder will 
receive the following signals 

received left = left + QN1 ; 

received right = right + QN2 ; 

where QN1 and QN2 are independent (i.e., uncorrelated) quantization noise sequences, which 
correspond to the AC-3 coding algorithm quantization, and are program-dependent. The Pro 
Logic decoder will then construct center and surround channels as 

center = 0.5 * (left + QN1) + 0.5 * (right + QN2) ; 

surround = 0.5 * (left + QN1) – 0.5 * (right + QN2) ; 
/* ignoring the 90 degree phase shift */ 

In the case of the center channel, QN1 and QN2 add, but remain masked by the dominant 
signal left + right. In the surround channel, however, left – right cancels to zero, and the surround 
speakers are left to reproduce the difference in the quantization noise sequences (QN1 – QN2). 

If channel rematrixing is active, the center and surround channels will be more easily 
reproduced as 

center = left' + QN1 ; 

surround = right' + QN2 ; 

In this case, the quantization noise in the surround channel QN2 is much lower in level, and it is 
masked by the difference signal, right'. 

7.5.2 Frequency Band Definitions 

In AC-3, rematrixing is performed independently in separate frequency bands. There are four 
bands with boundary locations dependent on coupling information. The boundary locations are 
by coefficient bin number, and the corresponding rematrixing band frequency boundaries change 
with sampling frequency. The following tables indicate the rematrixing band frequencies for 
sampling rates of 48 kHz and 44.1 kHz. At 32 kHz sampling rate the rematrixing band 
frequencies are 2/3 the values of those shown for 48 kHz. 

7.5.2.1 Coupling Not in Use 

If coupling is not in use (cplinu = 0), then there are 4 rematrixing bands, (nrematbd = 4). 
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Table 7.25 Rematrix Banding Table A 

Band # Low Coeff # High Coeff # Low Freq (kHz)
fs = 48 kHz 

High Freq (kHz)
fs = 48 kHz 

Low Freq (kHz) 
fs = 44.1 kHz 

High Freq (kHz)
fs = 44.1 kHz 

0 13 24 1.17 2.30 1.08 2.11 

1 25 36 2.30 3.42 2.11 3.14 

2 37 60 3.42 5.67 3.14 5.21 

3 61 252 5.67 23.67 5.21 21.75 

7.5.2.2 Coupling in Use, cplbegf > 2 

If coupling is in use (cplinu = 1), and cplbegf > 2, there are 4 rematrixing bands (nrematbd = 4). The 
last (fourth) rematrixing band ends at the point where coupling begins. 

Table 7.26 Rematrixing Banding Table B 

Band # Low Coeff # High Coeff # Low Freq (kHz)
fs = 48 kHz 

High Freq (kHz)
fs = 48 kHz 

Low Freq (kHz) 
fs = 44.1 kHz 

High Freq (kHz)
fs = 44.1 kHz 

0 13 24 1.17 2.30 1.08 2.11 

1 25 36 2.30 3.42 2.11 3.14 

2 37 60 3.42 5.67 3.14 5.21 

3 61 A 5.67 B 5.21 C 

A = 36 + cplbegf * 12 
B = (A+1/2) * 0.09375 kHz 
C = (A+1/2) * 0.08613 kHz 

7.5.2.3 Coupling in Use, 2 ≥ cplbegf > 0 

If coupling is in use (cplinu = 1), and 2 ≥ cplbegf > 0, there are 3 rematrixing bands (nrematbd = 3). 
The last (third) rematrixing band ends at the point where coupling begins. 

Table 7.27 Rematrixing Banding Table C 

Band # Low Coeff # High Coeff # Low Freq (kHz)
fs = 48 kHz 

High Freq (kHz)
fs = 48 kHz 

Low Freq (kHz) 
fs = 44.1 kHz 

High Freq (kHz)
fs = 44.1 kHz 

0 13 24 1.17 2.30 1.08 2.11 

1 25 36 2.30 3.42 2.11 3.14 

2 37 A 3.42 B 3.14 C 

A = 36 + cplbegf * 12 
B = (A+1/2) * 0.09375 kHz 
C = (A+1/2) * 0.08613 kHz 

7.5.2.4 Coupling in Use, cplbegf=0 

If coupling is in use (cplinu = 1), and cplbegf = 0, there are 2 rematrixing bands (nrematbd = 2). 

Table 7.28 Rematrixing Banding Table D 

Band # Low Coeff # High Coeff # Low Freq (kHz)
fs = 48 kHz 

High Freq (kHz)
fs = 48 kHz 

Low Freq (kHz) 
fs = 44.1 kHz 

High Freq (kHz)
fs = 44.1 kHz 

0 13 24 1.17 2.30 1.08 2.11 

1 25 36 2.30 3.42 2.11 3.14 
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7.5.3 Encoding Technique 

If the 2/0 mode is selected, then rematrixing is employed by the encoder. The squares of the 
transform coefficients are summed up over the previously defined rematrixing frequency bands 
for the following combinations: L, R, L+R, L–R. 

Pseudo code 
if (minimum sum for a rematrixing sub-band n is L or R) 
{ 
 the variable rematflg[n] = 0 ; 
 transmitted left = input L ; 
 transmitted right = input R ; 
} 
if (minimum sum for a rematrixing sub-band n is L+R or L-R) 
{ 
 the variable rematflg[n] = 1 ; 
 transmitted left = 0.5 * input (L+R) ; 
 transmitted right = 0.5 * input (L-R) ; 
} 

This selection of matrix combination is done on a block by block basis. The remaining 
encoder processing of the transmitted left and right channels is identical whether or not the 
rematrixing flags are 0 or 1. 

7.5.4 Decoding Technique 

For each rematrixing band, a single bit (the rematrix flag) is sent in the data stream, indicating 
whether or not the two channels have been rematrixed for that band. If the bit is clear, no further 
operation is required. If the bit is set, the AC-3 decoder performs the following operation to 
restore the individual channels: 

left(band n) = received left(band n) + received right(band n) ; 

right(band n) = received left(band n) – received right(band n) ; 

Note that if coupling is not in use, the two channels may have different bandwidths. As such, 
rematrixing is only applied up to the lower bandwidth of the two channels. Regardless of the 
actual bandwidth, all four rematrixing flags are sent in the data stream (assuming the rematrixing 
strategy bit is set). 

7.6 Dialogue Normalization 

The AC-3 syntax provides elements which allow the encoded bit stream to satisfy listeners in 
many different situations. The dialnorm element allows for uniform reproduction of spoken 
dialogue when decoding any AC-3 bit stream. 

7.6.1 Overview 

When audio from different sources is reproduced, the apparent loudness often varies from source 
to source. The different sources of audio might be different program segments during a broadcast 
(i.e., the movie vs. a commercial message); different broadcast channels; or different media (disc 
vs. tape). The AC-3 coding technology solves this problem by explicitly coding an indication of 
loudness into the AC-3 bit stream. 
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The subjective level of normal spoken dialogue is used as a reference. The 5-bit dialogue 
normalization word which is contained in BSI, dialnorm, is an indication of the subjective 
loudness of normal spoken dialogue compared to digital 100 percent. The 5-bit value is 
interpreted as an unsigned integer (most significant bit transmitted first) with a range of possible 
values from 1 to 31. The unsigned integer indicates the headroom in dB above the subjective 
dialogue level. This value can also be interpreted as an indication of how many dB the subjective 
dialogue level is below digital 100 percent. 

The dialnorm value is not directly used by the AC-3 decoder. Rather, the value is used by the 
section of the sound reproduction system responsible for setting the reproduction volume, e.g. 
the system volume control. The system volume control is generally set based on listener input as 
to the desired loudness, or sound pressure level (SPL). The listener adjusts a volume control 
which generally directly adjusts the reproduction system gain. With AC-3 and the dialnorm value, 
the reproduction system gain becomes a function of both the listeners desired reproduction sound 
pressure level for dialogue, and the dialnorm value which indicates the level of dialogue in the 
audio signal. The listener is thus able to reliably set the volume level of dialogue, and the 
subjective level of dialogue will remain uniform no matter which AC-3 program is decoded. 

Example 

The listener adjusts the volume control to 67 dB. (With AC-3 dialogue 
normalization, it is possible to calibrate a system volume control directly in sound 
pressure level, and the indication will be accurate for any AC-3 encoded audio 
source). A high quality entertainment program is being received, and the AC-3 bit 
stream indicates that dialogue level is 25 dB below 100 percent digital level. The 
reproduction system automatically sets the reproduction system gain so that full 
scale digital signals reproduce at a sound pressure level of 92 dB. The spoken 
dialogue (down 25 dB) will thus reproduce at 67 dB SPL. 

The broadcast program cuts to a commercial message, which has dialogue level at 
–15 dB with respect to 100 percent digital level. The system level gain 
automatically drops, so that digital 100 percent is now reproduced at 82 dB SPL. 
The dialogue of the commercial (down 15 dB) reproduces at a 67 dB SPL, as 
desired. 

In order for the dialogue normalization system to work, the dialnorm value must be 
communicated from the AC-3 decoder to the system gain controller so that dialnorm can interact 
with the listener adjusted volume control. If the volume control function for a system is 
performed as a digital multiply inside the AC-3 decoder, then the listener selected volume setting 
must be communicated into the AC-3 decoder. The listener selected volume setting and the 
dialnorm value must be brought together and combined in order to adjust the final reproduction 
system gain. 

Adjustment of the system volume control is not an AC-3 function. The AC-3 bit stream 
simply conveys useful information which allows the system volume control to be implemented 
in a way which automatically removes undesirable level variations between program sources. It 
is mandatory that the dialnorm value and the user selected volume setting both be used to set the 
reproduction system gain. 
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7.7 Dynamic Range Compression 

7.7.1 Dynamic Range Control; dynrng, dynrng2 

The dynrng element allows the program provider to implement subjectively pleasing dynamic 
range reduction for most of the intended audience, while allowing individual members of the 
audience the option to experience more (or all) of the original dynamic range. 

7.7.1.1 Overview 

A consistent problem in the delivery of audio programming is that different members of the 
audience wish to enjoy different amounts of dynamic range. Original high quality programming 
(such as feature films) are typically mixed with quite a wide dynamic range. Using dialogue as a 
reference, loud sounds like explosions are often 20 dB or more louder, and faint sounds like 
leaves rustling may be 50 dB quieter. In many listening situations it is objectionable to allow the 
sound to become very loud, and thus the loudest sounds must be compressed downwards in 
level. Similarly, in many listening situations the very quiet sounds would be inaudible, and must 
be brought upwards in level to be heard. Since most of the audience will benefit from a limited 
program dynamic range, soundtracks which have been mixed with a wide dynamic range are 
generally compressed: the dynamic range is reduced by bringing down the level of the loud 
sounds and bringing up the level of the quiet sounds. While this satisfies the needs of much of 
the audience, it removes the ability of some in the audience to experience the original sound 
program in its intended form. The AC-3 audio coding technology solves this conflict by allowing 
dynamic range control values to be placed into the AC-3 bit stream. 

The dynamic range control values, dynrng, indicate a gain change to be applied in the decoder 
in order to implement dynamic range compression. Each dynrng value can indicate a gain change 
of ±24 dB. The sequence of dynrng values are a compression control signal. An AC-3 encoder (or 
a bit stream processor) will generate the sequence of dynrng values. Each value is used by the AC-
3 decoder to alter the gain of one or more audio blocks. The dynrng values typically indicate gain 
reduction during the loudest signal passages, and gain increases during the quiet passages. For 
the listener, it is desirable to bring the loudest sounds down in level towards dialogue level, and 
the quiet sounds up in level, again towards dialogue level. Sounds which are at the same 
loudness as the normal spoken dialogue will typically not have their gain changed. 

The compression is actually applied to the audio in the AC-3 decoder. The encoded audio has 
full dynamic range. It is permissible for the AC-3 decoder to (optionally, under listener control) 
ignore the dynrng values in the bit stream. This will result in the full dynamic range of the audio 
being reproduced. It is also permissible (again under listener control) for the decoder to use some 
fraction of the dynrng control value, and to use a different fraction of positive or negative values. 
The AC-3 decoder can thus reproduce either fully compressed audio (as intended by the 
compression control circuit in the AC-3 encoder); full dynamic range audio; or audio with 
partially compressed dynamic range, with different amounts of compression for high level 
signals and low level signals. 

Example 

A feature film soundtrack is encoded into AC-3. The original program mix has 
dialogue level at –25 dB. Explosions reach full scale peak level of 0 dB. Some 
quiet sounds which are intended to be heard by all listeners are 50 dB below 
dialogue level (or –75 dB). A compression control signal (sequence of dynrng 
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values) is generated by the AC-3 encoder. During those portions of the audio 
program where the audio level is higher than dialogue level the dynrng values 
indicate negative gain, or gain reduction. For full scale 0 dB signals (the loudest 
explosions), gain reduction of –15 dB is encoded into dynrng. For very quiet 
signals, a gain increase of 20 dB is encoded into dynrng. 

A listener wishes to reproduce this soundtrack quietly so as not to disturb anyone, 
but wishes to hear all of the intended program content. The AC-3 decoder is 
allowed to reproduce the default, which is full compression. The listener adjusts 
dialogue level to 60 dB SPL. The explosions will only go as loud as 70 dB (they 
are 25 dB louder than dialogue but get –15 dB of gain applied), and the quiet 
sounds will reproduce at 30 dB SPL (20 dB of gain is applied to their original 
level of 50 dB below dialogue level). The reproduced dynamic range will be 70 
dB – 30 dB = 40 dB. 

The listening situation changes, and the listener now wishes to raise the 
reproduction level of dialogue to 70 dB SPL, but still wishes to limit how loud the 
program plays. Quiet sounds may be allowed to play as quietly as before. The 
listener instructs the AC-3 decoder to continue using the dynrng values which 
indicate gain reduction, but to attenuate the values which indicate gain increases 
by a factor of 1/2. The explosions will still reproduce 10 dB above dialogue level, 
which is now 80 dB SPL. The quiet sounds are now increased in level by 20 dB / 
2 = 10 dB. They will now be reproduced 40 dB below dialogue level, at 30 dB 
SPL. The reproduced dynamic range is now 80 dB – 30 dB = 50 dB. 

Another listener wishes the full original dynamic range of the audio. This listener adjusts the 
reproduced dialogue level to 75 dB SPL, and instructs the AC-3 decoder to ignore the dynamic 
range control signal. For this listener the quiet sounds reproduce at 25 dB SPL, and the 
explosions hit 100 dB SPL. The reproduced dynamic range is 100 dB – 25 dB = 75 dB. This 
reproduction is exactly as intended by the original program producer. 

In order for this dynamic range control method to be effective, it should be used by all 
program providers. Since all broadcasters wish to supply programming in the form that is most 
usable by their audience, nearly all broadcasters will apply dynamic range compression to any 
audio program which has a wide dynamic range. This compression is not reversible unless it is 
implemented by the technique embedded in AC-3. If broadcasters make use of the embedded 
AC-3 dynamic range control system, then listeners can have some control over their reproduced 
dynamic range. Broadcasters must be confident that the compression characteristic that they 
introduce into AC-3 will, by default, be heard by the listeners. Therefore, the AC-3 decoder 
shall, by default, implement the compression characteristic indicated by the dynrng values in the 
data stream. AC-3 decoders may optionally allow listener control over the use of the dynrng 
values, so that the listener may select full or partial dynamic range reproduction. 

7.7.1.2 Detailed Implementation 

The dynrng field in the AC-3 data stream is 8-bits in length. In the case that acmod = 0 (1+1 
mode, or 2 completely independent channels) dynrng applies to the first channel (Ch1), and 
dynrng2 applies to the second channel (Ch2). While dynrng is described below, dynrng2 is handled 
identically. The dynrng value may be present in any audio block. When the value is not present, 
the value from the previous block is used, except for block 0. In the case of block 0, if a new 
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value of dynrng is not present, then a value of ‘0000 0000’ should be used. The most significant 
bit of dynrng (and of dynrng2) is transmitted first. The first three bits indicate gain changes in 6.02 
dB increments which can be implemented with an arithmetic shift operation. The following five 
bits indicate linear gain changes, and require a 6-bit multiply. We will represent the 3 and 5 bit 
fields of dynrng as following: 

X0 X1 X2 . Y3 Y4 Y5 Y6 Y7 

The meaning of the X values is most simply described by considering X to represent a 3-bit 
signed integer with values from –4 to 3. The gain indicated by X is then (X + 1) * 6.02 dB. The 
following table shows this in detail. 

Table 7.29 Meaning of 3 msb of dynrng 

X0 X1 X2 Integer Value Gain Indicated Arithmetic Shifts 

0 1 1 3 +24.08 dB 4 left 

0 1 0 2 +18.06 dB 3 left 

0 0 1 1 +12.04 dB 2 left 

0 0 0 0 +6.02 dB 1 left 

1 1 1 –1 0 dB None 

1 1 0 –2 –6.02 dB 1 right 

1 0 1 –3 –12.04 dB 2 right 

1 0 0 –4 –18.06 dB 3 right 

The value of Y is a linear representation of a gain change of up to 6 dB. Y is considered to be 
an unsigned fractional integer, with a leading value of 1, or: 0.1Y3 Y4 Y5 Y6 Y7 (base 2). Y can 
represent values between 0.1111112 (or 63/64) and 0.1000002 (or 1/2). Thus, Y can represent 
gain changes from –0.14 dB to –6.02 dB. 

The combination of X and Y values allows dynrng to indicate gain changes from 24.08 – 0.14 
= +23.95 dB, to –18.06 – 6.02 = –24.08 dB. The bit code of ‘0000 0000’ indicates 0 dB (unity) 
gain. 

Partial Compression 

The dynrng value may be operated on in order to make it represent a gain change 
which is a fraction of the original value. In order to alter the amount of 
compression which will be applied, consider the dynrng to represent a signed 
fractional number, or 

X0 . X1 X2 Y3 Y4 Y5 Y6 Y7 

where X0 is the sign bit and X1 X2 Y3 Y4 Y5 Y6 Y7 are a 7-bit fraction. This 8 bit 
signed fractional number may be multiplied by a fraction indicating the fraction of 
the original compression to apply. If this value is multiplied by 1/2, then the 
compression range of ±24 dB will be reduced to ±12 dB. After the multiplicative 
scaling, the 8-bit result is once again considered to be of the original form X0 X1 
X2 . Y3 Y4 Y5 Y6 Y7 and used normally. 
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7.7.2 Heavy Compression; compr, compr2 

The compr element allows the program provider (or broadcaster) to implement a large dynamic 
range reduction (heavy compression) in a way which assures that a monophonic downmix will 
not exceed a certain peak level. The heavily compressed audio program may be desirable for 
certain listening situations such as movie delivery to a hotel room, or to an airline seat. The peak 
level limitation is useful when, for instance, a monophonic downmix will feed an RF modulator 
and overmodulation must be avoided. 

7.7.2.1 Overview 

Some products which decode the AC-3 bit stream will need to deliver the resulting audio via a 
link with very restricted dynamic range. One example is the case of a television signal decoder 
which must modulate the received picture and sound onto an RF channel in order to deliver a 
signal usable by a low cost television receiver. In this situation, it is necessary to restrict the 
maximum peak output level to a known value with respect to dialogue level, in order to prevent 
overmodulation. Most of the time, the dynamic range control signal, dynrng, will produce 
adequate gain reduction so that the absolute peak level will be constrained. However, since the 
dynamic range control system is intended to implement a subjectively pleasing reduction in the 
range of perceived loudness, there is no assurance that it will control instantaneous signal peaks 
adequately to prevent overmodulation. 

In order to allow the decoded AC-3 signal to be constrained in peak level, a second control 
signal, compr, (compr2 for Ch2 in 1+1 mode) may be present in the AC-3 data stream. This control 
signal should be present in all bit streams which are intended to be receivable by, for instance, a 
television set top decoder. The compr control signal is similar to the dynrng control signal in that it 
is used by the decoder to alter the reproduced audio level. The compr control signal has twice the 
control range as dynrng (±48 dB compared to ±24 dB) with 1/2 the resolution (0.5 dB vs. 0.25 
dB). Also, since the compr control signal lives in BSI, it only has a time resolution of an AC-3 
syncframe (32 ms) instead of a block (5.3 ms). 

Products which require peak audio level to be constrained should use compr instead of dynrng 
when compr is present in BSI. Since most of the time the use of dynrng will prevent large peak 
levels, the AC-3 encoder may only need to insert compr occasionally, i.e., during those instants 
when the use of dynrng would lead to excessive peak level. If the decoder has been instructed to 
use compr, and compr is not present for a particular syncframe, then the dynrng control signal shall 
be used for that syncframe. 

In some applications of AC-3, some receivers may wish to reproduce a very restricted 
dynamic range. In this case, the compr control signal may be present at all times. Then, the use of 
compr instead of dynrng will allow the reproduction of audio with very limited dynamic range. 
This might be useful, for instance, in the case of audio delivery to a hotel room or an airplane 
seat. 

7.7.2.2 Detailed Implementation 

The compr field in the AC-3 data stream is 8-bits in length. In the case that acmod = 0 (1+1 mode, 
or 2 completely independent channels) compr applies to the first channel (Ch1), and compr2 applies 
to the second channel (Ch2). While compr is described below (for Ch1), compr2 is handled 
identically (but for Ch2). 

The most significant bit is transmitted first. The first four bits indicate gain changes in 6.02 
dB increments which can be implemented with an arithmetic shift operation. The following four 
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bits indicate linear gain changes, and require a 5-bit multiply. We will represent the two 4-bit 
fields of compr as follows: 

X0 X1 X2 X3 . Y4 Y5 Y6 Y7 

The meaning of the X values is most simply described by considering X to represent a 4-bit 
signed integer with values from –8 to +7. The gain indicated by X is then (X + 1) * 6.02 dB. The 
following table shows this in detail. 

Table 7.30 Meaning of 4 msb of compr 

X0 X1 X2 X3 Integer Value Gain Indicated Arithmetic Shifts 

0 1 1 1 7 +48.16 dB 8 left 

0 1 1 0 6 +42.14 dB 7 left 

0 1 0 1 5 +36.12 dB 6 left 

0 1 0 0 4 +30.10 dB 5 left 

0 0 1 1 3 +24.08 dB 4 left 

0 0 1 0 2 +18.06 dB 3 left 

0 0 0 1 1 +12.04 dB 2 left 

0 0 0 0 0 +6.02 dB 1 left 

1 1 1 1 -1 0 dB None 

1 1 1 0 -2 –6.02 dB 1 right 

1 1 0 1 -3 –12.04 dB 2 right 

1 1 0 0 -4 –18.06 dB 3 right 

1 0 1 1 -5 –24.08 dB 4 right 

1 0 1 0 -6 –30.10 dB 5 right 

1 0 0 1 -7 –36.12 dB 6 right 

1 0 0 0 -8 –42.14 dB 7 right 

The value of Y is a linear representation of a gain change of up to –6 dB. Y is considered to 
be an unsigned fractional integer, with a leading value of 1, or: 0.1 Y4 Y5 Y6 Y7 (base 2). Y can 
represent values between 0.111112 (or 31/32) and 0.100002 (or 1/2). Thus, Y can represent gain 
changes from –0.28 dB to –6.02 dB. 

The combination of X and Y values allows compr to indicate gain changes from 48.16 – 0.28 
= +47.89 dB, to –42.14 – 6.02 = –48.16 dB. 

7.8 Downmixing 

In many reproduction systems, the number of loudspeakers will not match the number of 
encoded audio channels. In order to reproduce the complete audio program, downmixing is 
required. It is important that downmixing be standardized so that program providers can be 
confident of how their program will be reproduced over systems with various numbers of 
loudspeakers. With standardized downmixing equations, program producers can monitor how the 
downmixed version will sound and make any alterations necessary so that acceptable results are 
achieved for all listeners. The program provider can make use of the cmixlev and smixlev 
syntactical elements in order to affect the relative balance of center and surround channels with 
respect to the left and right channels. 

Downmixing of the lfe channel is optional. An ideal downmix would have the lfe channel 
reproduce at an acoustic level of +10 dB with respect to the left and right channels. Since the 
inclusion of this channel is optional, any downmix coefficient may be used in practice. Care 
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should be taken to assure that loudspeakers are not overdriven by the full scale low frequency 
content of the lfe channel. 

7.8.1 General Downmix Procedure 

The following pseudo code describes how to arrive at un-normalized downmix coefficients. In a 
practical implementation it may be necessary to then normalize the downmix coefficients in 
order to prevent any possibility of overload. Normalization is achieved by attenuating all 
downmix coefficients equally, such that the sum of coefficients used to create any single output 
channel never exceeds 1. 

Pseudo code 
downmix() 
{ 
 if (acmod == 0) /* 1+1 mode, dual independent mono channels present */ 
 { 
  if (output_nfront == 1) /* 1 front loudspeaker (center) */ 
  { 
   if (dualmode == Chan 1) /* Ch1 output requested */ 
   { 
    route left into center ; 
   } 
   else if (dualmode == Chan 2) /* Ch2 output requested */ 
   { 
    route right into center ; 
   } 
   Else 
   { 
    mix left into center with –6 dB gain ; 
    mix right into center with –6 dB gain ; 
   } 
  } 
  else if (output_nfront == 2) /* 2 front loudspeakers (left, right) */ 
  { 
   if (dualmode == Stereo) /* output of both mono channels requested */ 
   { 
    route left into left ; 
    route right into right ; 
   } 
   else if (dualmode == Chan 1) 
   { 
    mix left into left with –3 dB gain ; 
    mix left into right with –3 dB gain ; 
   } 
   else if (dualmode == Chan 2) 
   { 
    mix right into left with –3 dB gain ; 
    mix right into right with –3 dB gain ; 
   } 
   else /* mono sum of both mono channels requested */ 
   { 
    mix left into left with –6 dB gain ; 
    mix right into left with –6 dB gain ; 
    mix left into right with –6 dB gain ; 
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Pseudo code 
    mix right into right with –6 dB gain ; 
   } 
  } 
  else /* output_nfront == 3 */ 
  { 
   if (dualmode == Stereo) 
   { 
    route left into left ; 
    route right into right ; 
   } 
   else if (dualmode == Chan 1) 
   { 
    route left into center ; 
   } 
   else if (dualmode == Chan 2) 
   { 
    route right into center ; 
   } 
   else 
   { 
    mix left into center with –6 dB gain ; 
    mix right into center with –6 dB gain ; 
   } 
  } 
 } 
 else /* acmod > 0 */ 
 { 
  for i = { left, center, right, leftsur/monosur, rightsur } 
  { 
   if (exists(input_chan[i])) and (exists(output_chan[i])) 
   { 
    route input_chan[i] into output_chan[i] ; 
   } 
  } 
  if (output_mode == 2/0 Dolby Surround compatible)  
  /* 2 ch matrix encoded output requested */ 
  { 
   if (input_nfront != 2) 
   { 
    mix center into left with –3 dB gain ; 
    mix center into right with –3 dB gain ; 
   } 
   if (input_nrear == 1) 
   { 
    mix -mono surround into left with –3 dB gain ; 
    mix mono surround into right with –3 dB gain ; 
   } 
   else if (input_nrear == 2) 
   { 
    mix -left surround into left with –3 dB gain ; 
    mix -right surround into left with –3 dB gain ; 
    mix left surround into right with –3 dB gain ; 
    mix right surround into right with –3 dB gain ; 
   } 
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Pseudo code 
  } 
  else if (output_mode == 1/0) /* center only */ 
  { 
   if (input_nfront != 1) 
   { 
    mix left into center with –3 dB gain ; 
    mix right into center with –3 dB gain ; 
   } 
   if (input_nfront == 3) 
   { 
    mix center into center using clev and +3 dB gain ; 
   } 
   if (input_nrear == 1) 
   { 
    mix mono surround into center using slev and –3 dB gain ; 
   } 
   else if (input_nrear == 2) 
   { 
    mix left surround into center using slev and –3 dB gain ; 
    mix right surround into center using slev and –3 dB gain ; 
   } 
  } 
  else /* more than center output requested */ 
  { 
   if (output_nfront == 2) 
   { 
    if (input_nfront == 1) 
    { 
     mix center into left with –3 dB gain ; 
     mix center into right with –3 dB gain ; 
    } 
    else if (input_nfront == 3) 
    { 
     mix center into left using clev ; 
     mix center into right using clev ; 
    } 
   } 
   if (input_nrear == 1) /* single surround channel coded */ 
   { 
    if (output_nrear == 0) /* no surround loudspeakers */ 
    { 
     mix mono surround into left with slev and –3 dB gain ; 
     mix mono surround into right with slev and –3 dB gain ; 
    } 
    else if (output_nrear == 2) /* two surround loudspeaker channels */ 
    { 
     mix mono srnd into left surround with –3 dB gain ; 
     mix mono srnd into right surround with –3 dB gain ; 
    } 
   } 
   else if (input_nrear == 2) /* two surround channels encoded */ 
   { 
    if (output_nrear == 0) 
    { 
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Pseudo code 
     mix left surround into left using slev ; 
     mix right surround into right using slev ; 
    } 
    else if (output_nrear == 1) . 
    { 
     mix left srnd into mono surround with –3 dB gain ; 
     mix right srnd into mono surround with –3 dB gain ; 
    } 
   } 
  } 
 } 
} 

The actual coefficients used for downmixing will affect the absolute level of the center 
channel. If dialogue level is to be established with absolute SPL calibration, this should be taken 
into account. 

7.8.2 Downmixing into Two Channels 

Let L, C, R, Ls, Rs refer to the 5 discrete channels which are to be mixed down to 2 channels. In 
the case of a single surround channel (n/1 modes), S refers to the single surround channel. Two 
types of downmix should be provided: downmix to an LtRt matrix surround encoded stereo pair; 
and downmix to a conventional stereo signal, LoRo. The downmixed stereo signal (LoRo, or 
LtRt) may be further mixed to mono, M, by a simple summation of the 2 channels. If the LtRt 
downmix is combined to mono, the surround information will be lost. The LoRo downmix is 
preferred when a mono signal is desired. Downmix coefficients shall have relative accuracy of at 
least ±0.25 dB. 

Prior to the scaling needed to prevent overflow, the general 3/2 downmix equations for an 
LoRo stereo signal are 

Lo = 1.0 * L + clev * C + slev * Ls ; 

Ro = 1.0 * R + clev * C + slev * Rs ; 

If LoRo are subsequently combined for monophonic reproduction, the effective mono 
downmix equation becomes 

M = 1.0 * L + 2.0 * clev * C + 1.0 * R + slev * Ls + slev * Rs ; 

If only a single surround channel, S, is present (3/1 mode) the downmix equations are 

Lo = 1.0 * L + clev * C + 0.7 * slev * S ; 

Ro = 1.0 * R + clev * C + 0.7 * slev * S ; 

M = 1.0 * L + 2.0 * clev * C + 1.0 * R + 1.4 * slev * S ; 

The values of clev and slev are indicated by the cmixlev and surmixlev bit fields in the BSI data, 
as shown in Table 5.9 and Table 5.10, respectively. 

If the cmixlev or surmixlev bit fields indicate the reserved state (value of ‘11’), the decoder 
should use the intermediate coefficient values indicated by the bit field value of 0 1. If the Center 
channel is missing (2/1 or 2/2 mode), the same equations may be used without the C term. If the 
surround channels are missing, the same equations may be used without the Ls, Rs, or S terms. 
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Prior to the scaling needed to prevent overflow, the 3/2 downmix equations for an LtRt stereo 
signal are 

Lt = 1.0 * L + 0.707 * C – 0.707 * Ls – 0.707 * Rs ; 

Rt = 1.0 * R + 0.707 * C + 0.707 * Ls + 0.707 * Rs ; 

If only a single surround channel, S, is present (3/1 mode) these equations become: 

Lt = 1.0 L + 0.707 C – 0.707 S ; 

Rt = 1.0 R + 0.707 C + 0.707 S ; 

If the center channel is missing (2/2 or 2/1 mode) the C term is dropped. 
The actual coefficients used must be scaled downwards so that arithmetic overflow does not 

occur if all channels contributing to a downmix signal happen to be at full scale. For each audio 
coding mode, a different number of channels contribute to the downmix, and a different scaling 
could be used to prevent overflow. For simplicity, the scaling for the worst case may be used in 
all cases. This minimizes the number of coefficients required. The worst case scaling occurs 
when clev and slev are both 0.707. In the case of the LoRo downmix, the sum of the unscaled 
coefficients is 1 + 0.707 + 0.707 = 2.414, so all coefficients must be multiplied by 1/2.414 = 
0.4143 (downwards scaling by 7.65 dB). In the case of the LtRt downmix, the sum of the 
unscaled coefficients is 1 + 0.707 + 0.707 + 0.707 = 3.121, so all coefficients must be multiplied 
by 1/3.121, or 0.3204 (downwards scaling by 9.89 dB). The scaled coefficients will typically be 
converted to binary values with limited wordlength. The 6-bit coefficients shown below have 
sufficient accuracy. 

In order to implement the LoRo 2-channel downmix, scaled (by 0.453) coefficient values are 
needed which correspond to the values of 1.0, 0.707, 0.596, 0.500, 0.354. 

Table 7.31 LoRo Scaled Downmix Coefficients 

Unscaled 
Coefficient 

Scaled 
Coefficient 

6-bit Quantized
Coefficient 

Gain Relative 
Gain 

Coefficient
Error 

1.0 0.414 26/64 –7.8 dB 0.0 dB --- 

0.707 0.293 18/64 –11.0 dB –3.2 dB -0.2 dB 

0.596 0.247 15/64 –12.6 dB –4.8 dB +0.3 dB 

0.500 0.207 13/64 –13.8 dB –6.0 dB 0.0 dB 

0.354 0.147 9/64 –17.0 dB –9.2 dB –0.2 dB 

In order to implement the LtRt 2-ch downmix, scaled (by 0.3204) coefficient values are 
needed which correspond to the values of 1.0 and 0.707. 

Table 7.32 LtRt Scaled Downmix Coefficients 

Unscaled 
Coefficient 

Scaled 
Coefficient 

6-bit Quantized
Coefficient 

Gain Relative 
Gain 

Coefficient
Error 

1.0 0.3204 20/64 –10.1 dB 0.0 dB --- 

0.707 0.2265 14/64 –13.20 dB –3.1 dB –0.10 dB 

If it is necessary to implement a mixdown to mono, a further scaling of 1/2 will have to be 
applied to the LoRo downmix coefficients to prevent overload of the mono sum of Lo+Ro. 
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7.9 Transform Equations and Block Switching 

7.9.1 Overview 

The choice of analysis block length is fundamental to any transform-based audio coding system. 
A long transform length is most suitable for input signals whose spectrum remains stationary, or 
varies only slowly, with time. A long transform length provides greater frequency resolution, and 
hence improved coding performance for such signals. On the other hand, a shorter transform 
length, possessing greater time resolution, is more desirable for signals which change rapidly in 
time. Therefore, the time vs. frequency resolution tradeoff should be considered when selecting a 
transform block length. 

The traditional approach to solving this dilemma is to select a single transform length which 
provides the best tradeoff of coding quality for both stationary and dynamic signals. AC-3 
employs a more optimal approach, which is to adapt the frequency/time resolution of the 
transform depending upon spectral and temporal characteristics of the signal being processed. 
This approach is very similar to behavior known to occur in human hearing. In transform coding, 
the adaptation occurs by switching the block length in a signal dependent manner. 

7.9.2 Technique 

In the AC-3 transform block switching procedure, a block length of either 512 or 256 samples 
(time resolution of 10.7 or 5.3 ms for sampling frequency of 48 kHz) can be employed. Normal 
blocks are of length 512 samples. When a normal windowed block is transformed, the result is 
256 unique frequency domain transform coefficients. Shorter blocks are constructed by taking 
the usual 512 sample windowed audio segment and splitting it into two segments containing 256 
samples each. The first half of an MDCT block is transformed separately but identically to the 
second half of that block. Each half of the block produces 128 unique non-zero transform 
coefficients representing frequencies from 0 to fs/2, for a total of 256. This is identical to the 
number of coefficients produced by a single 512 sample block, but with two times improved 
temporal resolution. Transform coefficients from the two half-blocks are interleaved together on 
a coefficient-by-coefficient basis to form a single block of 256 values. This block is quantized 
and transmitted identically to a single long block. A similar, mirror image procedure is applied in 
the decoder during signal reconstruction. 

Transform coefficients for the two 256 length transforms arrive in the decoder interleaved 
together bin-by-bin. This interleaved sequence contains the same number of transform 
coefficients as generated by a single 512-sample transform. The decoder processes interleaved 
sequences identically to noninterleaved sequences, except during the inverse transformation 
described below. 

Prior to transforming the audio signal from time to frequency domain, the encoder performs 
an analysis of the spectral and/or temporal nature of the input signal and selects the appropriate 
block length. This analysis occurs in the encoder only, and therefore can be upgraded and 
improved without altering the existing base of decoders. A one bit code per channel per 
transform block (blksw[ch]) is embedded in the bit stream which conveys length information: 
(blksw[ch] = 0 or 1 for 512 or 256 samples, respectively). The decoder uses this information to 
deformat the bit stream, reconstruct the mantissa data, and apply the appropriate inverse 
transform equations. 
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7.9.3 Decoder Implementation 

TDAC transform block switching is accomplished in AC-3 by making an adjustment to the 
conventional forward and inverse transformation equations for the 256 length transform. The 
same window and FFT sine/cosine tables used for 512 sample blocks can be reused for inverse 
transforming the 256 sample blocks; however, the pre- and post-FFT complex multiplication 
twiddle requires an additional 128 table values for the block-switched transform. 

Since the input and output arrays for blksw[ch] = 1 are exactly one half of the length of those 
for blksw = 0, the size of the inverse transform RAM and associated buffers is the same with 
block switching as without. 

The adjustments required for inverse transforming the 256 sample blocks are: 
• The input array contains 128 instead of 256 coefficients. 
• The IFFT pre and post-twiddle use a different cosine table, requiring an additional 128 

table values (64 cosine, 64 sine). 
• The complex IFFT employs 64 points instead of 128. The same FFT cosine table can be 

used with sub-sampling to retrieve only the even numbered entries. 
• The input pointers to the IFFT post-windowing operation are initialized to different start 

addresses, and operate modulo 128 instead of modulo 256. 

7.9.4 Transformation Equations 

7.9.4.1 512-Sample IMDCT Transform 

The following procedure describes the technique used for computing the IMDCT for a single 
N=512 length real data block using a single N/4 point complex IFFT with simple pre- and post-
twiddle operations. These are the inverse transform equations used when the blksw flag is set to 
zero (indicating absence of a transient, and 512 sample transforms). 
1) Define the MDCT transform coefficients = X[k], k=0,1,...N/2-1. 
2) Pre-IFFT complex multiply step. 

Compute N/4-point complex multiplication product Z[k], k=0,1,...N/4–1: 

Pseudo Code 
for (k=0; k<N/4; k++) 
{ 
 /* Z[k] = (X[N/2-2*k-1] + j * X[2*k]) * (xcos1[k] + j * xsin1[k]) ; */ 
 Z[k]=(X[N/2-2*k-1]*xcos1[k]-X[2*k]*xsin1[k])+j*(X[2*k]*xcos1[k]+X[N/2-2*k-1]*xsin1[k]); 
} 

where 
xcos1[k] = –cos (2 π * (8 * k + 1)/(8 * N)) ; 
xsin1[k] = –sin (2 π * (8 * k + 1)/(8 * N)) ; 

3) Complex IFFT step. 
Compute N/4-point complex IFFT of Z(k) to generate complex-valued sequence z(n). 

Pseudo Code 
for (n=0; n<N/4; n++) 
{ 
 z[n] = 0 ; 
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Pseudo Code 
 for (k=0; k<N/4; k++) 
 { 
  z[n] + = Z[k] * (cos(8*π*k*n/N) + j * sin(8*π*k*n/N)) ; 
 } 
} 

4) Post-IFFT complex multiply step. 
Compute N/4-point complex multiplication product y(n), n=0,1,...N/4–1 as: 

Pseudo Code 
for (n=0; n<N/4; n++) 
{ 
 /* y[n] = z[n] * (xcos1[n] + j * xsin1[n]) ; */ 
 y[n] = (zr[n] * xcos1[n] - zi[n] * xsin1[n]) + j * (zi[n] * xcos1[n] + zr[n] * xsin1[n]) ; 
} 

where 
zr[n] = real(z[n]) ; 
zi[n] = imag(z[n]) ; 
and xcos1[n] and xsin1[n] are as defined in step 2 above. 

5) Windowing and de-interleaving step. 
Compute windowed time-domain samples x[n]: 

Pseudo Code 
for (n=0; n<N/8; n++) 
{ 
 x[2*n] = -yi[N/8+n] * w[2*n] ; 
 x[2*n+1] = yr[N/8-n-1] * w[2*n+1] ; 
 x[N/4+2*n] = -yr[n] * w[N/4+2*n] ; 
 x[N/4+2*n+1] = yi[N/4-n-1] * w[N/4+2*n+1] ; 
 x[N/2+2*n] = -yr[N/8+n] * w[N/2-2*n-1] ; 
 x[N/2+2*n+1] = yi[N/8-n-1] * w[N/2-2*n-2] ; 
 x[3*N/4+2*n] = yi[n] * w[N/4-2*n-1] ; 
 x[3*N/4+2*n+1] = -yr[N/4-n-1] * w[N/4-2*n-2] ; 
} 

where 
yr[n] = real(y[n]); 
yi[n] = imag(y[n]) ; 
w[n] is the transform window sequence (see Table 7.33). 

6) Overlap and add step. 
The first half of the windowed block is overlapped with the second half of the previous block 
to produce PCM samples (the factor of 2 scaling undoes headroom scaling performed in the 
encoder):  
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Pseudo Code 
for (n=0; n<N/2; n++) 
{ 
 pcm[n] = 2 * (x[n] + delay[n]) ; 
 delay[n] = x[N/2+n) ; 
} 

Note that the arithmetic processing in the overlap/add processing must use saturation 
arithmetic to prevent overflow (wraparound). Since the output signal consists of the original 
signal plus coding error, it is possible for the output signal to exceed 100 percent level even 
though the original input signal was less than or equal to 100 percent level. 

7.9.4.2 256-sample IMDCT transforms 

The following equations should be used for computing the inverse transforms in the case of blksw 
= 1, indicating the presence of a transient and two 256 sample transforms (N below still equals 
512). 
1) Define the MDCT transform coefficients = X[k], k=0,1,...N/2. 

Pseudo Code 
 for (k=0; k<N/4; k++) 
 { 
  X1[k] = X[2*k] ; 
  X2[k] = X[2*k+1] ; 
 } 

2) Pre-IFFT complex multiply step. 
Compute N/8-point complex multiplication products Z1(k) and Z2(k), k=0,1,...N/8-1. 

Pseudo Code 
for (k=0; k<N/8; k++) 
{ 
 /* Z1[k] = (X1[N/4-2*k-1] + j * X1[2*k]) * (xcos2[k] + j * xsin2[k]); */ 
 Z1[k]=(X1[N/4-2*k-1]*xcos2[k]-X1[2k]*xsin2[k])+j*(X1[2*k]*xcos2[k]+X1[N/4-2*k-1]*xsin2[k]) ; 
 /* Z2[k] = (X2[N/4-2*k-1] + j * X2[2*k]) * (xcos2[k] + j * xsin2[k]) ; */ 
 Z2[k]=(X2[N/4-2*k-1]*xcos2[k]-X2[2*k]*xsin2[k])+j*(X2[2*k]*xcos2[k]+X2[N/4-2*k-1]*xsin2[k]) ; 
} 

where 
xcos2[k] = -cos(2π*(8*k+1)/(4*N)), xsin2(k) = -sin(2π*(8*k+1)/(4*N)) 

3) Complex IFFT step. 
Compute N/8-point complex IFFTs of Z1[k] and Z2[k] to generate complex-valued 
sequences z1[n] and z2[n]. 

Pseudo Code 
for (n=0; n<N/8; n++) 
{ 
 z1[n] = 0. ; 
 z2[n] = 0. ; 
 for (k=0; k<N/8; k++) 
 { 
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Pseudo Code 
  z1[n] + = Z1[k] * (cos(16*π*k*n/N) + j * sin(16*π*k*n/N)) ; 
  z2[n] + = Z2[k] * (cos(16*π*k*n/N) + j * sin(16*π*k*n/N)) ; 
 } 
} 

4) Post-IFFT complex multiply step: 
Compute N/8-point complex multiplication products y1[n] and y2[n], n=0,1,...N/8-1. 

Pseudo Code 
for (n=0; n<N/8; n++) 
{ 
 /* y1[n] = z1[n] * (xcos2[n] + j * xsin2[n]) ; */ 
 y1[n] = (zr1[n] * xcos2[n] - zi1[n] * xsin2[n]) + j * (zi1[n] * xcos2[n] + zr1[n] * xsin2[n]) ; 
 /* y2[n] = z2[n] * (xcos2[n] + j * xsin2[n]) ; */ 
 y2[n] = (zr2[n] * xcos2[n] - zi2[n] * xsin2[n]) + j * (zi2[n] * xcos2[n] + zr2[n] * xsin2[n]) ; 
} 

where 
zr1[n] = real(z1[n]) ; 
zi1[n] = imag(z1[n]) ; 
zr2[n] = real(z2[n]) ; 
zi2[n] = imag(z2[n]) ; 
and xcos2[n] and xsin2[n] are as defined in step 2 above. 

5) Windowing and de-interleaving step. 
Compute windowed time-domain samples x[n]. 

Pseudo Code 
for (n=0; n<N/8; n++) 
{ 
 x[2*n] = -yi1[n] * w[2*n] ; 
 x[2*n+1] = yr1[N/8-n-1] * w[2*n+1] ; 
 x[N/4+2*n] = -yr1[n] * w[N/4+2*n] ; 
 x[N/4+2*n+1] = yi1[N/8-n-1] * w[N/4+2*n+1] ; 
 x[N/2+2*n] = -yr2[n] * w[N/2-2*n-1] ; 
 x[N/2+2*n+1] = yi2[N/8-n-1] * w[N/2-2*n-2] ; 
 x[3N/4+2*n] = yi2[n] * w[N/4-2*n-1] ; 
 x[3N/4+2*n+1] = -yr2[N/8-n-1] * w[N/4-2*n-2] ; 
} 

where 
yr1[n] = real(y1[n]) ; 
yi1[n] = imag(y1[n]) ; 
yr2[n] = real(y2[n]) ; 
yi2[n] = imag(y2[n]) ; 
and w[n] is the transform window sequence (see Table 7.33). 
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Table 7.33 Transform Window Sequence (w[addr]),  
Where addr = (10 * A) + B 

 B=0 B=1 B=2 B=3 B=4 B=5 B=6 B=7 B=8 B=9

A=0 0.00014 0.00024 0.00037 0.00051 0.00067 0.00086 0.00107 0.00130 0.00157 0.00187 

A=1 0.00220 0.00256 0.00297 0.00341 0.00390 0.00443 0.00501 0.00564 0.00632 0.00706 

A=2 0.00785 0.00871 0.00962 0.01061 0.01166 0.01279 0.01399 0.01526 0.01662 0.01806 

A=3 0.01959 0.02121 0.02292 0.02472 0.02662 0.02863 0.03073 0.03294 0.03527 0.03770 

A=4 0.04025 0.04292 0.04571 0.04862 0.05165 0.05481 0.05810 0.06153 0.06508 0.06878 

A=5 0.07261 0.07658 0.08069 0.08495 0.08935 0.09389 0.09859 0.10343 0.10842 0.11356 

A=6 0.11885 0.12429 0.12988 0.13563 0.14152 0.14757 0.15376 0.16011 0.16661 0.17325 

A=7 0.18005 0.18699 0.19407 0.20130 0.20867 0.21618 0.22382 0.23161 0.23952 0.24757 

A=8 0.25574 0.26404 0.27246 0.28100 0.28965 0.29841 0.30729 0.31626 0.32533 0.33450 

A=9 0.34376 0.35311 0.36253 0.37204 0.38161 0.39126 0.40096 0.41072 0.42054 0.43040 

A=10 0.44030 0.45023 0.46020 0.47019 0.48020 0.49022 0.50025 0.51028 0.52031 0.53033 

A=11 0.54033 0.55031 0.56026 0.57019 0.58007 0.58991 0.59970 0.60944 0.61912 0.62873 

A=12 0.63827 0.64774 0.65713 0.66643 0.67564 0.68476 0.69377 0.70269 0.71150 0.72019 

A=13 0.72877 0.73723 0.74557 0.75378 0.76186 0.76981 0.77762 0.78530 0.79283 0.80022 

A=14 0.80747 0.81457 0.82151 0.82831 0.83496 0.84145 0.84779 0.85398 0.86001 0.86588 

A=15 0.87160 0.87716 0.88257 0.88782 0.89291 0.89785 0.90264 0.90728 0.91176 0.91610 

A=16 0.92028 0.92432 0.92822 0.93197 0.93558 0.93906 0.94240 0.94560 0.94867 0.95162 

A=17 0.95444 0.95713 0.95971 0.96217 0.96451 0.96674 0.96887 0.97089 0.97281 0.97463 

A=18 0.97635 0.97799 0.97953 0.98099 0.98236 0.98366 0.98488 0.98602 0.98710 0.98811 

A=19 0.98905 0.98994 0.99076 0.99153 0.99225 0.99291 0.99353 0.99411 0.99464 0.99513 

A=20 0.99558 0.99600 0.99639 0.99674 0.99706 0.99736 0.99763 0.99788 0.99811 0.99831 

A=21 0.99850 0.99867 0.99882 0.99895 0.99908 0.99919 0.99929 0.99938 0.99946 0.99953 

A=22 0.99959 0.99965 0.99969 0.99974 0.99978 0.99981 0.99984 0.99986 0.99988 0.99990 

A=23 0.99992 0.99993 0.99994 0.99995 0.99996 0.99997 0.99998 0.99998 0.99998 0.99999 

A=24 0.99999 0.99999 0.99999 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

A=25 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000     

6) Overlap and add step. 
The first half of the windowed block is overlapped with the second half of the previous block 
to produce PCM samples (the factor of 2 scaling undoes headroom scaling performed in the 
encoder): 

Pseudo Code 
for (n=0; n<N/2; n++)  
{ 
 pcm[n] = 2 * (x[n] + delay[n]) ; 
 delay[n] = x[N/2+n] ; 
} 

Note that the arithmetic processing in the overlap/add processing must use saturation 
arithmetic to prevent overflow (wrap around). Since the output signal consists of the original 
signal plus coding error, it is possible for the output signal to exceed 100 percent level even 
though the original input signal was less than or equal to 100 percent level. 
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7.9.5 Channel Gain Range Code 

When the signal level is low, the dynamic range of the decoded audio is typically limited by the 
wordlength used in the transform computation. The use of longer wordlength improves dynamic 
range but increases cost, as the wordlength of both the arithmetic units and the working RAM 
must be increased. In order to allow the wordlength of the transform computation to be reduced, 
the AC-3 bit stream includes a syntactic element gainrng[ch]. This 2-bit element exists for each 
encoded block for each channel. 

The gainrng element is a value in the range of 0–3. The value is an indication of the maximum 
sample level within the coded block. Each block represents 256 new audio samples and 256 
previous audio samples. Prior to the application of the 512 point window, the maximum absolute 
value of the 512 PCM values is determined. Based on the maximum value within the block, the 
value of gainrng is set as indicated below: 

Maximum Absolute Value (max) gainrng
max ≥ 0.5 0 

0.5 > max ≥ 0.25 1 

0.25 > max ≥ 0.125 2 
0.125 > max 3 

If the encoder does not perform the step of finding the maximum absolute value within each 
block then the value of gainrng should be set to 0. 

The decoder may use the value of gainrng to pre-scale the transform coefficients prior to the 
transform and to post-scale the values after the transform. With careful design, the post-scaling 
process can be performed right at the PCM output stage allowing a 16-bit output buffer RAM to 
provide 18-bit dynamic range audio. 

7.10 Error Detection 

There are several ways in which the AC-3 data may determine that errors are contained within a 
frame of data. The decoder may be informed of that fact by the transport system which has 
delivered the data. The data integrity may be checked using the embedded CRCs. Also, some 
simple consistency checks on the received data can indicate that errors are present. The decoder 
strategy when errors are detected is user definable. Possible responses include muting, block 
repeats, or frame repeats. The amount of error checking performed, and the behavior in the 
presence of errors are not specified in this standard, but are left to the application and 
implementation. 

7.10.1 CRC Checking 

Each AC-3 syncframe contains two 16-bit CRC words. crc1 is the second 16-bit word of the 
syncframe, immediately following the sync word. crc2 is the last 16-bit word of the syncframe, 
immediately preceding the sync word of the following syncframe. crc1 applies to the first 5/8 of 
the syncframe, not including the sync word. crc2 provides coverage for the last 3/8 of the 
syncframe as well as for the entire syncframe (not including the sync word). Decoding of CRC 
word(s) allows errors to be detected. 

The following generator polynomial is used to generate each of the 16-bit CRC words 

x16 + x15 + x2 + 1 

The 5/8 of a syncframe is defined in Table 7.34, and may be calculated by: 
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5/8_framesize = truncate(framesize ÷ 2) + truncate(framesize ÷ 8) ; 

or 

5/8_framesize = (int) (framesize>>1) + (int) (framesize>>3) ; 

where framesize is in units of 16-bit words. Table 7.34 shows the value of 5/8 of the syncframe 
size as a function of AC-3 bit-rate and audio sample rate. 

The CRC calculation may be implemented by one of several standard techniques. A 
convenient hardware implementation is a linear feedback shift register (LFSR). An example of 
an LFSR circuit for the above generator polynomial is the following: 

 

Checking for valid CRC with the above circuit consists of resetting all registers to zero, and 
then shifting the AC-3 data bits serially into the circuit in the order in which they appear in the 
data stream. The sync word is not covered by either CRC (but is included in the indicated 
5/8_framesize) so it should not be included in the CRC calculation. crc1 is considered valid if the 
above register contains all zeros after the first 5/8 of the syncframe has been shifted in. If the 
calculation is continued until all data in the syncframe has been shifted through, and the value is 
again equal to zero, then crc2 is considered valid. Some decoders may choose to only check crc2, 
and not check for a valid crc1 at the 5/8 point in the syncframe. If crc1 is invalid, it is possible to 
reset the registers to zero and then check crc2. If crc2 then checks, then the last 3/8 of the 
syncframe is probably error free. This is of little utility however, since if errors are present in the 
initial 5/8 of a syncframe it is not possible to decode any audio from the syncframe even if the 
final 3/8 is error free. 

Note that crc1 is generated by encoders such that the CRC calculation will produce zero at the 
5/8 point in the syncframe. It is not the value generated by calculating the CRC of the first 5/8 of 
the syncframe using the above generator polynomial. Therefore, decoders should not attempt to 
save crc1, calculate the CRC for the first 5/8 of the syncframe, and then compare the two. 
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Table 7.34 5/8_frame Size Table; Number of Words in the First 5/8 of the 
Syncframe 

frmsizecod Nominal Bit-Rate fs = 32 kHz
5/8_framesize 

fs = 44.1 kHz
5/8_framesize 

fs = 48 kHz
5/8_framesize 

‘000000’ (0) 32 kbps 60 42 40 

‘000001’ (0) 32 kbps 60 43 40 

‘000010’ (1) 40 kbps 75 53 50 

‘000011’ (1) 40 kbps 75 55 50 

‘000100’ (2) 48 kbps 90 65 60 

‘000101’ (2) 48 kbps 90 65 60 

‘000110’ (3) 56 kbps 105 75 70 

‘000111’ (3) 56 kbps 105 76 70 

‘001000’ (4) 64 kbps 120 86 80 

‘001001’ (4) 64 kbps 120 87 80 

‘001010’ (5) 80 kbps 150 108 100 

‘001011’ (5) 80 kbps 150 108 100 

‘001100’ (6) 96 kbps 180 130 120 

‘001101’ (6) 96 kbps 180 130 120 

‘001110’ (7) 112 kbps 210 151 140 

‘001111’ (7) 112 kbps 210 152 140 

‘010000’ (8) 128 kbps 240 173 160 

‘010001’ (8) 128 kbps 240 173 160 

‘010010’ (9) 160 kbps 300 217 200 

‘010011’ (9) 160 kbps 300 217 200 

‘010100’ (10) 192 kbps 360 260 240 

‘010101’ (10) 192 kbps 360 261 240 

‘010110’ (11) 224 kbps 420 303 280 

‘010111’ (11) 224 kbps 420 305 280 

‘011000’ (12) 256 kbps 480 347 320 

‘011001’ (12) 256 kbps 480 348 320 

‘011010’ (13) 320 kbps 600 435 400 

‘011011’ (13) 320 kbps 600 435 400 

‘011100’ (14) 384 kbps 720 521 480 

‘011101’ (14) 384 kbps 720 522 480 

‘011110’ (15) 448 kbps 840 608 560 

‘011111’ (15) 448 kbps 840 610 560 

‘100000’ (16) 512 kbps 960 696 640 

‘100001’ (16) 512 kbps 960 696 640 

‘100010’ (17) 576 kbps 1080 782 720 

‘100011’ (17) 576 kbps 1080 783 720 

‘100100’ (18) 640 kbps 1200 870 800 

‘100101’ (18) 640 kbps 1200 871 800 

Syntactical block size restrictions within each syncframe (enforced by encoders), guarantee 
that blocks 0 and 1 are completely covered by crc1. Therefore, decoders may immediately begin 
processing block 0 when the 5/8 point in the data frame is reached. This may allow smaller input 
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buffers in some applications. Decoders that are able to store an entire syncframe may choose to 
process only crc2. These decoders would not begin processing block 0 of a syncframe until the 
entire syncframe is received. 

7.10.2 Checking Bit Stream Consistency 

It is always possible that an AC-3 syncframe could have valid sync information and valid CRCs, 
but otherwise be undecodable. This condition may arise if a syncframe is corrupted such that the 
CRC word is nonetheless valid, or in the case of an encoder error (bug). One safeguard against 
this is to perform some error checking tests within the AC-3 decoder and bit stream parser. 
Despite its coding efficiency, there are some redundancies inherent in the AC-3 bit stream. If the 
AC-3 bit stream contains errors, a number of illegal syntactical constructions are likely to arise. 
Performing checks for these illegal constructs will detect a great many significant error 
conditions. 

The following is a list of known bit stream error conditions. In some implementations it may 
be important that the decoder be able to benignly deal with these errors. Specifically, decoders 
may wish to ensure that these errors do not cause reserved memory to be overwritten with invalid 
data, and do not cause processing delays by looping with illegal loop counts. Invalid audio 
reproduction may be allowable, so long as system stability is preserved. 

1) (blknum == 0) && 
(cplstre == 0) ; 

2) (cplinu == 1) && 
(fewer than two channels in coupling) ; 

3) (cplinu == 1) && 
(cplbegf > (cplendf+2)) ; 

4) (cplinu == 1) && 
((blknum == 0) || (previous cplinu == 0)) && 
(chincpl[n] == 1) && 
(cplcoe[n] == 0) ; 

5) (blknum == 0) && 
(acmod == 2) && 
(rematstr == 0) ; 

6) (cplinu == 1) && 
((blknum == 0) || (previous cplinu == 0)) && 
(cplexpstr == 0) ; 

7) (cplinu == 1) && 
((cplbegf != previous cplbegf) || (cplendf != previous cplendf)) && 
(cplexpstr == 0) ; 

8) (blknum == 0) && 
(chexpstr[n] == 0) ; 

9) (nchmant[n] != previous nchmant[n]) && 
(chexpstr[n] == 0) ; 

10) (blknum == 0) && 
(lfeon == 1) && 
(lfeexpstr == 0) ; 

11) (chincpl[n] == 0) && 
(chbwcod[n] > 60) ; 

12) (blknum == 0) && 
(baie == 0) ; 

13) (blknum == 0) && 
(snroffste == 0) ; 
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14) (blknum == 0) && 
(cplinu == 1) && 
(cplleake == 0) ; 

15) (cplinu == 1) && 
(expanded length of cpl delta bit allocation > 50) ; 

16) expanded length of delta bit allocation[n] > 50 ; 
17) compositely coded 5-level exponent value > 124 ; 
18) compositely coded 3-level mantissa value > 26 ; 
19) compositely coded 5-level mantissa value > 124 ; 
20) compositely coded 11-level mantissa value > 120 ; 
21) bit stream unpacking continues past the end of the syncframe ; 
22) (cplinu == 1) && 

(acmod < 2) ; 
23) (cplinu == 1) && 

((cplbegf != previous cplbegf) || (cplendf != previous cplendf)) && 
(cplcoe[n] == 0) ; 

24) (cplinu == 1) && 
(cplbndstrc != previous cplbndstrc) && 
(cplcoe[n] == 0) ; 

25) (acmod == 2) && 
(number of rematrixing bands != previous number of rematrixing bands) && 
(rematstr == 0) ; 

26) (cplinu == 1) && 
(previous cplinu == 0) && 
((deltbaie == 0) || (cpldeltbae == 0)) ; 

27) (cplinu == 1) && 
((cplbegf != previous cplbegf) || (cplendf != previous cplendf)) && 
(previous cpl delta bit allocation active) && 
((deltbaie == 0) || (cpldeltbae ==0)) ; 

28) (nchmant[n] != previous nchmant[n]) && 
(previous delta bit allocation for channel n active) && 
((deltbaie == 0) || (deltbae[n] == 0)) ; 

Note that some of these conditions (such as #17 through #20) can only be tested for at low-
levels within the decoder software, resulting in a potentially significant MIPS impact. So long as 
these conditions do not affect system stability, they do not need to be specifically prevented. 

8. ENCODING THE AC-3 BIT STREAM 

8.1 Introduction 

This section provides some guidance on AC-3 encoding. Since AC-3 is specified by the syntax 
and decoder processing, the encoder is not precisely specified. The only normative requirement 
on the encoder is that the output elementary bit stream follow AC-3 syntax. Encoders of varying 
levels of sophistication may be produced. More sophisticated encoders may offer superior audio 
performance, and may make operation at lower bit-rates acceptable. Encoders are expected to 
improve over time. All decoders will benefit from encoder improvements. The encoder described 
in this section, while basic in operation, provides good performance. The description which 
follows indicates several avenues of potential improvement. A flow diagram of the encoding 
process is shown in Figure 8.1. 
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Figure 8.1. Flow diagram of the encoding process. 

8.2 Summary of the Encoding Process 

8.2.1 Input PCM 

8.2.1.1 Input Word Length 

The AC-3 encoder accepts audio in the form of PCM words. The internal dynamic range of AC-
3 allows input wordlengths of up to 24 bits to be useful. 
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8.2.1.2 Input Sample Rate 

The input sample rate must be locked to the output bit rate so that each AC-3 syncframe contains 
1536 samples of audio per channel. If the input audio is available in a PCM format at a different 
sample rate than that required, sample rate conversion must be performed to conform the sample 
rate. 

8.2.1.3 Input Filtering 

Individual input channels may be high-pass filtered. Removal of DC components of signals can 
allow more efficient coding since data rate is not used up encoding DC. However, there is the 
risk that signals which do not reach 100% PCM level before high-pass filtering will exceed 
100% level after filtering, and thus be clipped. A typical encoder would high-pass filter the input 
signals with a single pole filter at 3 Hz. 

The lfe channel should be low-pass filtered at 120 Hz. A typical encoder would filter the lfe 
channel with an 8th order elliptic filter with a cutoff frequency of 120 Hz. 

8.2.2 Transient Detection 

Transients are detected in the full-bandwidth channels in order to decide when to switch to short 
length audio blocks to improve pre-echo performance. High-pass filtered versions of the signals 
are examined for an increase in energy from one sub-block time-segment to the next. Sub-blocks 
are examined at different time scales. If a transient is detected in the second half of an audio 
block in a channel, that channel switches to a short block. A channel that is block-switched uses 
the D45 exponent strategy. 

The transient detector is used to determine when to switch from a long transform block 
(length 512), to the short block (length 256). It operates on 512 samples for every audio block. 
This is done in two passes, with each pass processing 256 samples. Transient detection is broken 
down into four steps: 1) high-pass filtering, 2) segmentation of the block into submultiples, 3) 
peak amplitude detection within each sub-block segment, and 4) threshold comparison. The 
transient detector outputs a flag blksw[n] for each full-bandwidth channel, which when set to "one" 
indicates the presence of a transient in the second half of the 512 length input block for the 
corresponding channel. 
1) High-pass filtering: The high-pass filter is implemented as a cascaded biquad direct form I 

IIR filter with a cutoff of 8 kHz. 
2) Block Segmentation: The block of 256 high-pass filtered samples are segmented into a 

hierarchical tree of levels in which level 1 represents the 256 length block, level 2 is two 
segments of length 128, and level 3 is four segments of length 64. 

3) Peak Detection: The sample with the largest magnitude is identified for each segment on 
every level of the hierarchical tree. The peaks for a single level are found as follows: 

P[j][k] = max(x(n)) 

for n = (512 × (k-1) / 2^j), (512 × (k-1) / 2^j) + 1, ...(512 × k / 2^j) - 1 

and k = 1, ..., 2^(j-1) ; 

where: 
x(n) = the nth sample in the 256 length block 
j = 1, 2, 3 is the hierarchical level number 
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k = the segment number within level j 

Note that P[j][0], (i.e., k=0) is defined to be the peak of the last segment on level j of the tree 
calculated immediately prior to the current tree. For example, P[3][4] in the preceding tree is P[3][0] 
in the current tree. 
4) Threshold Comparison: The first stage of the threshold comparator checks to see if there is 

significant signal level in the current block. This is done by comparing the overall peak value 
P[1][1] of the current block to a “silence threshold”. If P[1][1] is below this threshold then a long 
block is forced. The silence threshold value is 100/32768. The next stage of the comparator 
checks the relative peak levels of adjacent segments on each level of the hierarchical tree. If 
the peak ratio of any two adjacent segments on a particular level exceeds a pre-defined 
threshold for that level, then a flag is set to indicate the presence of a transient in the current 
256 length block. The ratios are compared as follows: 

mag(P[j][k]) × T[j] > mag(P[j][(k-1)]) 

where: 
T[j] is the pre-defined threshold for level j, defined as: 
T[1] = .1 
T[2] = .075 
T[3] = .05 

If this inequality is true for any two segment peaks on any level, then a transient is indicated 
for the first half of the 512 length input block. The second pass through this process determines 
the presence of transients in the second half of the 512 length input block. 

8.2.3 Forward Transform 

8.2.3.1 Windowing 

The audio block is multiplied by a window function to reduce transform boundary effects and to 
improve frequency selectivity in the filter bank. The values of the window function are included 
in Table 7.33. Note that the 256 coefficients given are used back-to-back to form a 512-point 
symmetrical window. 

8.2.3.2 Time to Frequency Transformation 

Based on the block switch flags, each audio block is transformed into the frequency domain by 
performing one long N=512 point transform, or two short N=256 point transforms. Let x[n] 
represent the windowed input time sequence. The output frequency sequence, XD[k] is defined 
by 
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where α = 
–1 for the first short transform 
0 for the long transform 
+1 for the second short transform 
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8.2.4 Coupling Strategy 

8.2.4.1 Basic Encoder 

For a basic encoder, a static coupling strategy may be employed. Suitable coupling parameters 
are: 

cplbegf = 6 ; /* coupling starts at 10.2 kHz */ 
cplendf = 12 ; /* coupling channel ends at 20.3 kHz */ 
cplbndstrc = 0, 0, 1, 1, 0, 1, 1, 1; 
cplinu = 1; /* coupling always on */ 
/* all non-block switched channels are coupled */ 
for (ch=0; ch<nfchans; ch++) if (blksw[ch]) chincpl[ch] = 0; else chincpl[ch] = 1 

Coupling coordinates for all channels may be transmitted for every other block; i.e. blocks 0, 
2, and 4. During blocks 1, 3, and 5, coupling coordinates are reused. 

8.2.4.2 Advanced Encoder 

More advanced encoders may make use of dynamically variable coupling parameters. The 
coupling frequencies may be made variable based on bit demand and on a psychoacoustic model 
which compares the audibility of artifacts caused by bit starvation vs. those caused by the 
coupling process. Channels with a rapidly time varying power level may be removed from 
coupling. Channels with slowly varying power levels may have their coupling coordinates sent 
less often. The coupling band structure may be made dynamic. 

8.2.5 Form Coupling Channel 

8.2.5.1 Coupling Channel 

The most basic encoder can form the coupling channel by simply adding all of the individual 
channel coefficients together, and dividing by 8. The division by 8 prevents the coupling channel 
from exceeding a value of 1. Slightly more sophisticated encoders can alter the sign of individual 
channels before adding them into the sum so as to avoid phase cancellations. 

8.2.5.2 Coupling Coordinates 

Coupling coordinates are formed by taking magnitude ratios within of each coupling band. The 
power in the original channel within a coupling band is divided by the power in the coupling 
channel within the coupling band, and the square root of this result is then computed. This 
magnitude ratio becomes the coupling coordinate. The coupling coordinates are converted to 
floating point format and quantized. The exponents for each channel are examined to see if they 
can be further scaled by 3, 6, or 9. This generates the 2-bit master coupling coordinate for that 
channel. (The master coupling coordinates allow the dynamic range represented by the coupling 
coordinate to be increased.) 

8.2.6 Rematrixing 

Rematrixing is active only in the 2/0 mode. Within each rematrixing band, power measurements 
are made on the L, R, L+R, and L–R signals. If the maximum power is found in the L or R 
channels, the rematrix flag is not set for that band. If the maximum power is found in the L+R or 
L–R signal, then the rematrix flag is set. When the rematrix flag for a band is set, the encoder 
codes L+R and L–R instead of L and R. Rematrixing is described in Section 7.5. 
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8.2.7 Extract exponents 

The binary representation of each frequency coefficient is examined to determine the number of 
leading zeros. The number of leading zeroes (up to a maximum of 24) becomes the initial 
exponent value. These exponents are extracted and the exponent sets (one for each block for each 
channel, including the coupling channel) are used to determine the appropriate exponent 
strategies. 

8.2.8 Exponent Strategy 

For each channel, the variation in exponents over frequency and time is examined. There is a 
tradeoff between fine frequency resolution, fine time resolution, and the number of bits required 
to send exponents. In general, when operating at very low bit rates, it is necessary to trade off 
time vs. frequency resolution. 

In a basic encoder a simple algorithm may be employed. First, look at the variation of 
exponents over time. When the variation exceeds a threshold new exponents will be sent. The 
exponent strategy used is made dependent on how many blocks the new exponent set is used for. 
If the exponents will be used for only a single block, then use strategy D45. If the new exponents 
will be used for 2 or 3 blocks, then use strategy D25. If the new exponents will be used for 4,5, 
or 6 blocks, use strategy D15. 

8.2.9 Dither strategy 

The encoder controls, on a per channel basis, whether coefficients which will be quantized to 
zero bits will be reproduced with dither. The intent is to maintain approximately the same energy 
in the reproduced spectrum even if no bits are allocated to portions of the spectrum. Depending 
on the exponent strategy, and the accuracy of the encoded exponents, it may be beneficial to 
defeat dither for some blocks. 

A basic encoder can implement a simple dither strategy on a per channel basis. When 
blksw[ch] is 1, defeat dither for that block and for the following block. 

8.2.10 Encode Exponents 

Based on the selected exponent strategy, the exponents of each exponent set are preprocessed. 
D25 and D45 exponent strategies require that a single exponent be shared over more than one 
mantissa. The exponents will be differentially encoded for transmission in the bit stream. The 
difference between successive raw exponents does not necessarily produce legal differential 
codes (maximum value of ±2) if the slew rate of the raw exponents is greater than that allowed 
by the exponent strategy. Preprocessing adjusts exponents so that transform coefficients that 
share an exponent have the same exponent and so that differentials are legal values. The result of 
this processing is that some exponents will have their values decreased, and the corresponding 
mantissas will have some leading zeroes. 

The exponents are differentially encoded to generate the encoded spectral envelope. As part 
of the encoder processing, a set of exponents is generated which is equal to the set of exponents 
which the decoder will have when it decodes the encoded spectral envelope. 

8.2.11 Normalize Mantissas 

Each channel's transform coefficients are normalized by left shifting each coefficient the number 
of times given by its corresponding exponent to create normalized mantissas. The original binary 
frequency coefficients are left shifted according to the exponents which the decoder will use. 
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Some of the normalized mantissas will have leading zeroes. The normalized mantissas are what 
are quantized. 

8.2.12 Core Bit Allocation 

A basic encoder may use the core bit allocation routine with all parameters fixed at nominal 
default values. 

sdcycod = 2; 
fdcycod = 1; 
sgaincod = 1; 
dbpbcod = 2; 
floorcod = 4; 
cplfgaincod = 4; 
fgaincod[ch] = 4; 
lfegaincod = 4; 
cplsnroffst = fsnroffst[ch] = lfesnroffst = fineoffset; 

Since the bit allocation parameters are static, they are only sent during block 0. Delta bit 
allocation is not used, so deltbaie = 0. The core bit allocation routine (described in Section 7.2) is 
run, and the coarse and fine SNR offsets are adjusted until all available bits in the syncframe are 
used up. The coarse SNR offset adjusts in 3 dB increments, and the fine offset adjusts in 3/16 dB 
increments. Bits are allocated globally from a common bit pool to all channels. The combination 
of csnroffst and fineoffset which uses the largest number of bits without exceeding the frame size is 
chosen. This involves an iterative process. When, for a given iteration, the number of bits 
exceeds the pool, the SNR offset is decreased for the next iteration. On the other hand, if the 
allocation is less than the pool, the SNR offset is increased for the next iteration. When the SNR 
offset is at its maximum without causing the allocation to exceed the pool, the iterating is 
complete. The results of the bit allocation routine are the final values of csnroffst and fineoffset, and 
the set of bit allocation pointers (baps). The SNR offset values are included in the bit stream so 
that the decoder does not need to iterate. 

8.2.13 Quantize Mantissas 

The baps are used by the mantissa quantization block. There is a bap for each individual 
transform coefficient. Each normalized mantissas is quantized by the quantizer indicated by the 
corresponding bap. Asymmetrically quantized mantissas are quantized by rounding to the 
number of bits indicated by the corresponding bap. Symmetrically quantized mantissas are 
quantized through the use of a table lookup. Mantissas with baps of 1, 2, and 4 are grouped into 
triples or duples. 

8.2.14 Pack AC-3 Syncframe 

All of the data is packed into the encoded AC-3 syncframe. Some of the quantized mantissas are 
grouped together and coded by a single codeword. The output format is dependent on the 
application. The syncframe may be output in a burst, or delivered as a serial data stream at a 
constant rate. 
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Annex A:  
AC-3 Elementary Streams in the MPEG-2 Multiplex (Normative) 

1. SCOPE 

This Annex contains certain syntax and semantics needed to enable the transport of one or more 
AC-3 elementary streams in an MPEG-2 Transport Stream per ISO/IEC 13818-1 [1]1.  

2. INTRODUCTION 

When an AC-3 elementary bit stream is included in an MPEG-2 Transport Stream, the AC-3 bit 
stream is packetized into PES packets. MPEG-2 Transport Streams containing AC-3 elementary 
streams can be constrained by the STD model in System A or System B. Signaling is required in 
order to indicate unambiguously that an AC-3 stream is, in fact, an AC-3 stream and to which 
System (A/B) the stream conforms. Since the MPEG-2 Systems standard does not explicitly 
define codes to be used to indicate an AC-3 stream, stream_type values are necessary to be 
defined. It is important to note that the stream_type values assigned for AC-3 streams can be 
different for different systems, two of which are covered below. Also, the MPEG-2 standard 
does not have an audio descriptor adequate to describe the contents of the AC-3 bit stream in the 
PSI tables. This Annex defines syntax and semantics to address these issues. 

The AC-3 audio access unit (AU) or presentation unit (PU) is an AC-3 syncframe. The AC-3 
syncframe contains 1536 audio samples. The duration of an AC-3 access (or presentation) unit is 
32 ms for audio sampled at 48 kHz, approximately 34.83 ms for audio sampled at 44.1 kHz, and 
48 ms for audio sampled at 32 kHz. 

The items which need to be specified in order to include AC-3 within the MPEG-2 Transport 
Stream are: stream_type, stream_id, AC-3 audio descriptor, and the MPEG-2 registration descriptor. 
Some constraints are placed on the PES layer for the case of multiple audio streams intended to 
be reproduced in exact sample synchronism. In System A, the AC-3 audio descriptor is titled 
“AC-3_audio_stream_descriptor” while in System B the AC-3 audio descriptor is titled “AC-

3_descriptor”. It should be noted that the syntax of these descriptors differs significantly between 
the two systems. 

This annex does not place any constraint on the values in any of the fields defined herein or 
on placement of any of the data structures defined herein. It does establish values for fields 
defined by other standards, in particular ISO/IEC 13818-1 [1]. Standards developing 
organizations referencing this Standard may place their own usage and placement constraints. 
ATSC has done so to complete the standardization process for System A. 

3. GENERIC IDENTIFICATION OF AN AC-3 STREAM 

The selection of the method to uniquely identify an AC-3 stream in the multiplex is the 
responsibility of those defining how to construct the multiplex. This section provides a standard 
way to use the MPEG-2 [1] Registration Descriptor for this purpose. 

If the MPEG-2 Registration Descriptor is used to provide the unique identification, the 
format_identifier shall be 0x41432D33 (“AC-3”), as shown in Table A3.1; which contains the entire 
descriptor structure for context and convenience of the reader. 

                                                 
1  For example, as required by either “System A” or “System B,” which are defined in Recommendation ITU-R 

BT.1300-3 [11]. 
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Note that System A (ATSC) chose to use the assigned value for stream_type (see section A4 
below) to uniquely identify the AC-3 stream, and System B (DVB) choose to use the assigned 
descriptor tag (see section A5 below) to uniquely identify the AC-3 stream. 

Table A3.1 AC-3 Registration Descriptor 

Syntax No. of bits Mnemonic Value 

registration_descriptor() {    

 descriptor_tag 8 uimsbf 0x05 

 descriptor_length 8 uimsbf 0x04 

 format_identifier 32 uimsbf 0x41432D33 

}    

4. DETAILED SPECIFICATION FOR SYSTEM A 

4.1 Stream Type 

The value of stream_type for AC-3 shall be 0x81. 

4.2 Stream ID 

The value of stream_id in the PES header shall be 0xBD (indicating private_stream_1). Multiple AC-
3 streams may share the same value of stream_id since each stream is carried within TS packets 
identified by a unique PID value within that TS. The association of the PID value for each stream, 
with its stream_type, is found in the transport stream program map table (PMT). 

4.3 AC-3 Audio Descriptor 

The AC-3_audio_stream_descriptor shall be constructed per Table A4.1 with field meanings as 
defined below. This descriptor allows information about individual AC-3 elementary streams to 
be included in the program specific information (PSI) tables. This information is useful to enable 
decision making as to the appropriate AC-3 stream(s) that are present in a current broadcast to be 
directed to the audio decoder, and also to enable the announcement of characteristics of audio 
streams that will be included in future broadcasts. Note that horizontal lines in the table indicate 
allowable termination points for the descriptor subject to constraints of other standards which use 
this descriptor. Standards using this descriptor specify which fields are to be used. 
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Table A4.1 AC-3 Audio Descriptor Syntax 

Syntax No. of Bits Mnemonic 

AC-3_audio_stream_descriptor() {   

 descriptor_tag 8 uimsbf 

 descriptor_length 8 uimsbf 

 sample_rate_code 3 bslbf 

 bsid 5 bslbf 

 bit_rate_code 6 bslbf 

 surround_mode 2 bslbf 

 bsmod 3 bslbf 

 num_channels 4 bslbf 

 full_svc 1 bslbf 

 langcod 8 bslbf 

 if (num_channels==0) /*� 1+1 mode */   

  langcod2 8 bslbf 

 if (bsmod<2) {   

  mainid 3 uimsbf 

  priority 2 bslbf 

  reserved 3 ‘111’ 

 }   

 else asvcflags 8 bslbf 

 textlen 7 uimsbf 

 text_code 1 bslbf 

 for (i=0; i<M; i++) {   

  text[i] 8 bslbf 

 }   

 language_flag 1 bslbf 

 language_flag_2 1 bslbf 

 reserved 6 ‘111111’ 

 if (language_flag==1) {   

  language 3*8 uimsbf 

 }   

 if (language_flag_2==1) {   

  language_2 3*8 uimsbf 

 }   

 for (i=0; i<N; i++) {   

  additional_info[i] N×8 bslbf 

 }   

}   

descriptor_tag – The value for the AC-3 descriptor tag is 0x81. 
descriptor_length – This is an 8-bit field specifying the number of bytes of the descriptor 

immediately following descriptor_length field. 
sample_rate_code – This is a 3-bit field that indicates the sample rate of the encoded audio. The 

indication may be of one specific sample rate, or may be of a set of values which include the 
sample rate of the encoded audio (see Table A4.2). 
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Table A4.2 Sample Rate Code Table 

sample_rate_code Sample Rate (kHz)

‘000’ 48 

‘001’ 44.1 

‘010’ 32 

‘011’ Reserved 

‘100’ 48 or 44.1 

‘101’ 48 or 32 

‘110’ 44.1 or 32 

‘111’ 48 or 44.1 or 32 

bsid – This is a 5-bit field that is set to the same value as the bsid field in the AC-3 elementary 
stream. 

bit_rate_code – This is a 6-bit field. The lower 5 bits indicate a nominal bit rate. The MSB 
indicates whether the indicated bit rate is exact (MSB = 0) or an upper limit (MSB = 1) (see 
Table A4.3). 

Table A4.3 Bit Rate Code Table 

bit_rate_code Exact Bit Rate (kbit/s) bit_rate_code Bit Rate Upper Limit (kbit/s)

‘000000’ (0.) 32 ‘100000’ (32.) 32 

‘000001’ (1.) 40 ‘100001’ (33.) 40 

‘000010’ (2.) 48 ‘100010’ (34.) 48 

‘000011’ (3.) 56 ‘100011’ (35.) 56 

‘000100’ (4.) 64 ‘100100’ (36.) 64 

‘000101’ (5.) 80 ‘100101’ (37.) 80 

‘000110’ (6.) 96 ‘100110’ (38.) 96 

‘000111’ (7.) 112 ‘100111’ (39.) 112 

‘001000’ (8.) 128 ‘101000’ (40.) 128 

‘001001’ (9.) 160 ‘101001’ (41.) 160 

‘001010’ (10.) 192 ‘101010’ (42.) 192 

‘001011’ (11.) 224 ‘101011’ (43.) 224 

‘001100’ (12.) 256 ‘101100’ (44.) 256 

‘001101’ (13.) 320 ‘101101’ (45.) 320 

‘001110’ (14.) 384 ‘101110’ (46.) 384 

‘001111’ (15.) 448 ‘101111’ (47.) 448 

‘010000’ (16.) 512 ‘110000’ (48.) 512 

‘010001’ (17.) 576 ‘110001’ (49.) 576 

‘010010’ (18.) 640 ‘110010’ (50.) 640 

surround_mode – This is a 2-bit field that may be set to the same value as the dsurmod field in the 
AC-3 elementary stream, or which may be set to ‘00’ (not indicated) (see Table A4.4). 
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Table A4.4 surround_mode Table 

surround_mode Meaning

‘00’ Not indicated 

‘01’ NOT Dolby surround encoded 

‘10’ Dolby surround encoded 

‘11’ Reserved 

bsmod – This is a 3-bit field that is set to the same value as the bsmod field in the AC-3 
elementary stream. 

num_channels – This is a 4-bit field that indicates the number of channels in the AC-3 elementary 
stream. When the MSB is 0, the lower 3 bits are set to the same value as the acmod field in the 
AC-3 elementary stream. When the MSB field is 1, the lower 3 bits indicate the maximum 
number of encoded audio channels (counting the lfe channel as 1). 

Table A4.5 num_channels Table 

num_channels Audio coding mode (acmod) num_channels Number of encoded channels

‘0000’ 1 + 12 ‘1000’ 1 

‘0001’ 1/0 ‘1001’ ≤ 2 

‘0010’ 2/0 ‘1010’ ≤ 3 

‘0011’ 3/0 ‘1011’ ≤ 4 

‘0100’ 2/1 ‘1100’ ≤ 5 

‘0101’ 3/1 ‘1101’ ≤ 6 

‘0110’ 2/2 ‘1110’ Reserved 

‘0111’ 3/2 ‘1111’ Reserved 

full_svc – This is a 1-bit field that indicates whether or not this audio service is a full service 
suitable for presentation, or whether this audio service is only a partial service which should 
be combined with another audio service before presentation. This bit should be set to a ‘1’ if 
this audio service is sufficiently complete to be presented to the listener without being 
combined with another audio service (for example, a visually impaired service which 
contains all elements of the program; music, effects, dialogue, and the visual content 
descriptive narrative). This bit should be set to a ‘0’ if the service is not sufficiently complete 
to be presented without being combined with another audio service (e.g., a visually impaired 
service which only contains a narrative description of the visual program content and which 
needs to be combined with another audio service which contains music, effects, and 
dialogue). 

langcod – This field is deprecated. If the langcod field is present in the descriptor then it shall be 
set to 0xFF. (This field is immediately after the first allowed termination point in the 
descriptor.) 

Note: This field is retained with the prescribed length at the prescribed location 
for backwards compatibility with deployed receiving systems. In the AC-3 bit 
stream, langcod is3 an optional field that may be present in the elementary stream. 

                                                 
2 Note that this mode is prohibited by some Standards (such as A/53). 
3 The semantics of the langcod field in the elementary stream were changed in 2001. 
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It was initially specified to indicate language. The field language replaces this 
field’s function in this descriptor. 

langcod2 – This field is deprecated. If the langcod2 field is present in the descriptor then it shall be 
set to 0xFF. 

Note: This field is retained with the prescribed length at the prescribed location 
for backwards compatibility with deployed receiving systems. The field language_2 
replaces this field’s function in this descriptor. 

mainid – This is a 3-bit field that contains a number in the range 0–7 which identifies a main 
audio service. Each main service should be tagged with a unique number. This value is used 
as an identifier to link associated services with particular main services. 

priority – This is a 2-bit field that indicates the priority of the audio service. This field allows a 
Main audio service (bsmod equal to 0 or 1) to be marked as the primary audio service. Other 
audio services may be explicitly marked or not specified. Table A4.6 below shows how this 
field shall be encoded when present. 

Table A4.6 Priority Field Coding 

Bit Field Meaning

00 reserved 

01 Primary Audio 

10 Other Audio 

11 Not specified 

asvcflags – This is an 8-bit field. Each bit (0–7) indicates with which main service(s) this 
associated service is associated. The left most bit, bit 7, indicates whether this associated 
service may be reproduced along with main service number 7. If the bit has a value of ‘1’, the 
service is associated with main service number 7. If the bit has a value of ‘0’, the service is 
not associated with main service number 7. 

textlen – This is an unsigned integer which indicates the length, in bytes, of a descriptive text 
field that follows. 

text_code – This is a 1-bit field that indicates how the following text field is encoded. If this bit is 
a ‘1’, the text is encoded as 1-byte characters using the ISO Latin-1 alphabet (ISO 8859-1). If 
this bit is a ‘0’, the text is encoded with 2-byte unicode characters. 

text[i] – The text field may contain a brief textual description of the audio service. 
language_flag – This is a 1-bit flag that indicates whether or not the 3-byte language field is present 

in the descriptor. If this bit is set to ‘1’, then the 3-byte language field is present. If this bit is 
set to ‘0’, then the language field is not present. 

language_flag_2 – This is a 1-bit flag that indicates whether or not the 3-byte language_2 field is 
present in the descriptor. If this bit is set to ‘1’, then the 3-byte language_2 field is present. If 
this bit is set to ‘0’, then the language_2 field is not present. This bit shall always be set to ‘0’, 
unless the num_channels field is set to ‘0000’ indicating the audio coding mode is 1+1 (dual 
mono). If the num_channels field is set to ‘0000’ then this bit may be set to ‘1’ and and the 
language_2 field may be included in this descriptor. 

language – This field is a 3-byte language code defining the language of this audio service which 
shall correspond to a registered language code contained in the ISO 639-2 Code column of 
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the ISO 639-2 registry [1], and shall be the code marked ‘(B)’ in that registry if two codes are 
present. If the AC-3 stream audio coding mode is 1+1 (dual mono), this field indicates the 
language of the first channel (channel 1, or “left” channel). Each character is coded into 8 
bits according to ISO 8859-1 [3] (ISO Latin-1) and inserted in order into the 24-bit field. The 
coding is identical to that used in the MPEG-2 ISO_639_language_code value in the 
ISO_639_language_descriptor specified in ISO/IEC 13818-1 [1]. 

language_2 – This field is only present if the AC-3 stream audio coding mode is 1+1 (dual mono). 
This field is a 3-byte language code defining the language of the second channel (channel 2, 
or “right” channel) in the AC-3 bit stream which shall correspond to a registered language 
value code contained in the ISO 639-2 registry [1], and shall be the code marked ‘(B)’ in that 
registry if two codes are present. Each character is coded into 8 bits according to ISO 8859-1 
[3] (ISO Latin-1) and inserted in order into the 24-bit field. The coding is identical to that 
used in the MPEG-2 ISO_639_language_code value in the ISO_639_language_descriptor specified 
in ISO/IEC 13818-1 [1]. 

additional_info[j] – This is a set of additional bytes filling out the remainder of the descriptor. The 
purpose of these bytes is not currently defined. This field is provided to allow the ATSC to 
extend this descriptor. No other use is permitted. 

4.4 STD Audio Buffer Size 

For an MPEG-2 transport stream, the T-STD model defines the main audio buffer size BSn as: 

BSn = BSmux + BSdec + BSoh 

where: 
BSmux = 736 bytes 
BSoh = PES header overhead 
BSdec = access unit buffer. 

ISO/IEC 13818-1 [1] specifies a fixed value for BSn (3584 bytes) and indicates that any 
excess buffer may be used for additional multiplexing. 

When an AC-3 elementary stream is carried by an MPEG-2 transport stream, the transport 
stream shall be compliant with a main audio buffer size of 

BSn = BSmux + BSpad + BSdec 

where: 
BSmux = 736 bytes 
BSpad = 64 bytes 

The value of BSdec employed shall be that of the highest bit rate supported by the system 
(i.e., the buffer size is not decreased when the audio bit rate is less than the maximum value 
allowed by a specific system). The 64 bytes in BSpad are available for BSoh and additional 
multiplexing. This constraint makes it possible to implement decoders with the minimum 
possible memory buffer. 



ATSC A/52:2012 A/52 Annex A 17 December 2012 

 121

5. DETAILED SPECIFICATION FOR SYSTEM B 

5.1 Stream Type 

The value of stream_type for an AC-3 elementary stream shall be 0x06 (indicating PES packets 
containing private data). 

5.2 Stream ID 

The value of stream_id in the PES header shall be 0xBD (indicating private_stream_1). Multiple AC-
3 streams may share the same value of stream_id since each stream is carried with a unique PID 

value. The mapping of values of PID to stream_type can be indicated in the transport stream 
program map table (PMT). 

5.3 Service Information 

5.3.1 AC-3 Descriptor 

The AC-3_descriptor identifies an AC-3 audio elementary stream that has been coded in accordance 
with this section. The intended purpose is to provide configuration information for the decoder. 
The descriptor typically is located in the PSI PMT, and used once in a program map section 
following the relevant ES_info_length field for any stream containing AC-3. (Standards using these 
provisions establish what placement is mandatory under what circumstances.) 

The descriptor tag provides a unique identification of the presence of the AC-3 elementary 
stream. Other optional fields in the descriptor may be used to provide identification of the 
component type mode of the AC-3 audio coded in the stream (AC-3_type field) and indicate if the 
stream is a main AC-3 audio service (mainid field) or an associated AC-3 service (asvc field). 

The descriptor has a minimum length of one byte, but may be longer depending upon the 
state of the flags and the additional info loop. The horizontal lines in the table indicate allowable 
termination points for the descriptor subject to constraints of other standards that use this 
descriptor. 

5.3.2 AC-3 Descriptor Syntax  

The AC-3 descriptor (constructed per Table A5.1) shall be used to identify streams that carry 
AC-3 audio signaled per System B. The descriptor typically is located once in a program map 
section following the relevant ES_info_length field. (Standards using these provisions establish 
what placement is mandatory under what circumstances.) 
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Table A5.1 AC-3 Descriptor Syntax 

Syntax No. of Bits Identifier 

AC-3_descriptor() {   

 descriptor_tag 8 uimsbf 

 descriptor_length 8 uimsbf 

 AC-3_type_flag 1 bslbf 

 bsid_flag 1 bslbf 

 mainid_flag 1 bslbf 

 asvc_flag 1 bslbf 

 reserved 1 bslbf 

 reserved 1 bslbf 

 reserved 1 bslbf 

 reserved 1 bslbf 

 if (AC-3_type_flag)==1{   

  AC-3_type 8 uimsbf 

 }   

 if (bsid_flag)==1{   

  bsid 8 uimsbf 

 {   

 if (mainid_flag)==1{   

  mainid 8 uimsbf 

 }   

 if (asvc_flag)==1{   

  asvc 8 bslbf 

 }   

 for (i=0;i<N;i++){   

  additional_info[i] N x 8 uimsbf 

 }   

}   

descriptor_tag − The descriptor tag is an 8-bit field that identifies each descriptor. The AC-3 
descriptor_tag shall have a value of 0x6A. 

descriptor_length − This 8-bit field specifies the total number of bytes of the data portion of the 
descriptor following the byte defining the value of this field. The AC-3 descriptor has a 
minimum length of one byte but may be longer depending on the use of the optional flags 
and the additional_info loop. 

AC-3_type_flag − This 1-bit field is mandatory. It should be set to ‘1’ to include the optional AC-

3_type field in the descriptor. 
bsid_flag − This 1-bit field is mandatory. It should be set to ‘1’ to include the optional bsid field in 

the descriptor. 
mainid_flag − This 1-bit field is mandatory. It should be set to ‘1’ to include the optional mainid 

field in the descriptor. 
asvc_flag − This 1-bit field is mandatory. It should be set to ‘1’ to include the optional asvc field 

in the descriptor. 
reserved flags − These 1-bit fields are reserved for future use. They should always be set to ‘0’. 
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AC-3_type − This optional 8-bit field indicates the type of audio carried in the AC-3 elementary 
stream. It is set to the same value as the component type field of the component descriptor 
(refer to Table A7). 

bsid − This optional 8-bit field indicates the AC-3 coding version. The three MSBs should 
always be set to ‘0’. The five LSBs are set to the same value as the bsid field in the AC-3 
elementary stream, ‘01000’ (=8) in the current version of AC-3.  

mainid − This optional 8-bit field identifies a main audio service and contains a number in the 
range 0–7 which identifies a main audio service. Each main service should be tagged with a 
unique number. This value is used as an identifier to link associated services with particular 
main services. 

asvc − This 8-bit field is optional. Each bit (0–7) identifies with which main service(s) this 
associated service is associated. The left most bit, bit 7, indicates whether this associated 
service may be reproduced along with main service number 7. If the bit has a value of 1, the 
service is associated with main service number 7. If the bit has a value of 0, the service is not 
associated with main service number 7. 

additional_info − These optional bytes are reserved for future use. 

5.3.3 AC-3 Component Types 

Table A5.2 shows the assignment of component_type values in the component_descriptor in the case 
that the stream_content value is set to 0x04, indicating the reference to an AC-3 stream. 

Note: Entries in Table A5.2 marked as “X” indicate values not allowed. 



ATSC A/52:2012 A/52 Annex A 17 December 2012 

 124

Table A5.2 AC-3 component_type Byte Value Assignments 

component_type Byte Values (permitted settings) Description

Reserved 
Status Flag 

Full 
Service 
Flag 

Service 
Type Flags 

Number of 
Channels Flags

b7 b6 b5 b4 b3 b2 b1 b0  

1 X X X X X X X Reserved 

0 

X X X X X X X Interpret b0-b6 as indicated below 

1 

X X X X X X 

Decoded audio stream is a full service (suitable for 
decoding and presentation to the listener) 

0 
Decoded audio stream is intended to be combined 
with another decoded audio stream before 
presentation to the listener 

X X X X 

0 0 0 Mono 

0 0 1 1+1 mode 

0 1 0 2 Channel (stereo) 

0 1 1 2 Channel Dolby surround encoded (stereo) 

1 0 0 Multichannel audio (>2 channels) 

1 0 1 Reserved 

1 1 0 Reserved 

1 1 1 Reserved 

1 0 0 0 

X X X 

Complete Main (CM) 

0 0 0 1 Music and Effects (ME) 

X 0 1 0 Visually Impaired (VI) 

X 0 1 1 Hearing Impaired (HI) 

0 1 0 0 Dialogue (D) 

X 1 0 1 

0 0 0 

Commentary (C) 

1 1 1 0 Emergency (E) 

0 1 1 1 Voiceover (VO)  

1 1 1 1 X X X Karaoke (mono and '1+1’ prohibited) 

5.4 STD Audio Buffer Size 

The main audio buffer size (BSn ) shall have a fixed value of 5696 bytes. Refer to ISO/IEC 
13818-1 [1] for the derivation of (BSn ) for audio elementary streams. 

6. PES CONSTRAINTS 

This section shall apply to both System A and System B. 

6.1 Encoding 

In some applications, the audio decoder may be capable of simultaneously decoding two 
elementary streams containing different program elements, and then combining the program 
elements into a complete program. 

Most of the program elements are found in the main audio service. Another program element 
(such as a narration of the picture content intended for the visually impaired listener) may be 
found in the associated audio service. 

In order to have the audio from the two elementary streams reproduced in exact sample 
synchronism, it is necessary for the original audio elementary stream encoders to have encoded 



ATSC A/52:2012 A/52 Annex A 17 December 2012 

 125

the two audio program elements frame synchronously; i.e., if audio stream 1 has sample 0 of 
frame n taken at time t0, then audio stream 2 should also have frame n beginning with its sample 
0 taken the identical time t0. If the encoding of multiple audio services is done frame and sample 
synchronous, and decoding is intended to be frame and sample synchronous, then the PES 
packets of these audio services shall contain identical values of PTS which refer to the audio 
access units intended for synchronous decoding. 

Audio services intended to be combined together for reproduction shall be encoded at an 
identical sample rate. 

6.2 Decoding 

If audio access units from two audio services which are to be simultaneously decoded have 
identical values of PTS indicated in their corresponding PES headers, then the corresponding 
audio access units shall be presented to the audio decoder for simultaneous synchronous 
decoding. Synchronous decoding means that for corresponding audio frames (access units), 
corresponding audio samples are presented at the identical time. 

If the PTS values do not match (indicating that the audio encoding was not frame 
synchronous) then the audio frames (access units) of the main audio service may be presented to 
the audio decoder for decoding and presentation at the time indicated by the PTS. An associated 
service which is being simultaneously decoded may have its audio frames (access units), which 
are in closest time alignment (as indicated by the PTS) to those of the main service being 
decoded, presented to the audio decoder for simultaneous decoding. In this case the associated 
service may be reproduced out of sync by as much as 1/2 of a frame time. (This is typically 
satisfactory; a visually impaired narration does not require highly precise timing.) 

6.3 Byte-Alignment 

This section applies to both System A and System B. The AC-3 elementary stream shall be byte-
aligned within the MPEG-2 data stream. This means that the initial 8 bits of an AC-3 syncframe 
shall reside in a single byte which is carried by the MPEG-2 data stream. 
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Annex C:  
AC-3 Karaoke Mode (Informative) 

1. SCOPE 

This Annex contains specifications for how karaoke aware and karaoke capable AC-3 decoders 
should reproduce karaoke AC-3 bit streams. A minimum level of functionality is defined which 
allows a karaoke aware decoder to produce an appropriate 2/0 or 3/0 default output when 
presented with a karaoke mode AC-3 bit stream. An additional level of functionality is defined 
for the karaoke capable decoder so that the listener may optionally control the reproduction of 
the karaoke bit stream. 

2. INTRODUCTION 

The AC-3 karaoke mode has been defined in order to allow the multi-channel AC-3 bit stream to 
convey audio channels designated as L, R (e.g., 2-channel stereo music), M (e.g., guide melody), 
and V1, V2 (e.g., one or two vocal tracks). This Annex does not specify the contents of L, R, M, 
V1, and V2, but does specify the behavior of AC-3 decoding equipment when receiving a 
karaoke bit stream containing these channels. An AC-3 decoder which is karaoke capable will 
allow the listener to optionally reproduce the V1 and V2 channels, and may allow the listener to 
adjust the relative levels (mixing balance) of the M, V1, and V2 channels. An AC-3 decoder 
which is karaoke aware will reproduce the L, R, and M channels, and will reproduce the V1 and 
V2 channels at a level indicated by the encoded bit stream.  

The 2-channel karaoke aware decoder will decode the karaoke bit stream using the Lo, Ro 
downmix. The L and R channels will be reproduced out of the left and right outputs, and the M 
channel will appear as a phantom center. The precise level of the M channel is determined by 
cmixlev which is under control of the program provider. The level of the V1 and V2 channels 
which will appear in the downmix is determined by surmixlev, which is under control of the 
program provider. A single V channel (V1 only) will appear as a phantom center. A pair of V 
channels (V1 and V2) will be reproduced with V1 in left output and V2 in right output. 

The 5-channel karaoke aware decoder will reproduce the L, R channels out of the left and 
right outputs, and the M channel out of the center output. A single V channel (V1 only) will be 
reproduced in the center channel output. A pair of V channels (V1 and V2) will be reproduced 
with V1 in left output and V2 in right output. The level of the V1 and V2 channels which will 
appear in the output is determined by surmixlev. 

The karaoke capable decoder gives some control of the reproduction to the listener. The V1, 
V2 channels may be selected for reproduction independent of the value of surmixlev in the bit 
stream. The decoder may optionally allow the reproduction level and location of the M, V1, and 
V2 channels to be adjusted by the listener. The detailed implementation of the flexible karaoke 
capable decoder is not specified; it is left up to the implementation as to the degree of 
adjustability to be offered to the listener. 

3. DETAILED SPECIFICATION 

3.1 Karaoke Mode Indication 

AC-3 bit streams are indicated as karaoke type when bsmod = ‘111’ and acmod >= 0x2.  
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3.2 Karaoke Mode Channel Assignment 

The channel assignments for both the normal mode and the karaoke mode are shown in Table 
C3.1. 

Table C3.1 Channel Array Ordering 

acmod Audio Coding Mode Normal Channel Assignment 
(bsmod != ‘111’) 

Karaoke Channel Assignment (bsmod=‘111’)

‘010’  2/0  L,R L,R 

‘011’  3/0 L,C,R L,M,R 

‘100’  2/1 L,R,S L,R,V1 

‘101’ 3/1 L,C,R,S L,M,R,V1 

‘110’ 2/2 L,R,Ls,Rs L,R,V1,V2 

‘111’ 3/2 L,C,R,Ls,Rs L,M,R,V1,V2 

3.3 Reproduction of Karaoke Mode Bit Streams 

This section contains the specifications which shall be met by decoders which are designated as 
karaoke aware or karaoke capable. The following general equations indicate how the AC-3 
decoder’s output channels, Lk, Ck, Rk, are formed from the encoded channels L, M, R, V1, V2. 
Typically, the surround loudspeakers are not used when reproducing karaoke bit streams. 

Lk = L + a * V1 + b * V2 + c * M 

Ck = d * V1 + e * V2 + f * M 

Rk = R + g * V1 + h * V2 + i * M 

3.3.1 Karaoke Aware Decoders 

The values of the coefficients a–i, which are used by karaoke aware decoders, are given in Table 
C3.2. Values are shown for both 2-channel (2/0) and multi-channel (3/0) reproduction. For each 
of these situations, a coefficient set is shown for the case of a single encoded V channel (V1 
only) or two encoded V channels (V1, V2). The actual coefficients used must be scaled 
downwards so that arithmetic overflow does not occur if all channels contributing to an output 
channel happen to be at full scale. Monophonic reproduction would be obtained by summing the 
left and right output channels of the 2/0 reproduction. Any AC-3 decoder will produce the 
appropriate output if it is set to perform an Lo, Ro 2-channel downmix. 
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Table C3.2 Coefficient Values for Karaoke Aware Decoders 

Coefficient 2/0 Reproduction 3/0 Reproduction 

1 Vocal 2 Vocals 1 Vocal 2 Vocals 

a 0.7 * slev slev 0.0 slev 

b --- 0.0 --- 0.0 

c clev clev 0.0 0.0 

d --- --- slev 0.0 

e --- --- --- 0.0 

f --- --- 1.0 1.0 

g 0.7 * slev 0.0 0.0 0.0 

h --- slev --- slev 

i clev clev 0.0 0.0 

3.3.2 Karaoke Capable Decoders 

Karaoke capable decoders allow the user to choose to have the decoder reproduce none, one, or 
both of the V channels. The default coefficient values for the karaoke capable decoder are given 
in Table C3.2. When the listener selects to have none, one, or both of the V channels reproduced, 
the default coefficients are given in Table C3.3. Values are shown for both 2-channel (2/0) and 
multi-channel (3/0) reproduction, and for the cases of user selected reproduction of no V channel 
(None), one V channel (either V1 or V2), or both V channels (V1+V2). The M channel and a 
single V channel are reproduced out of the center output (phantom center in 2/0 reproduction), 
and a pair of V channels are reproduced out of the left (V1) and right (V2) outputs. The actual 
coefficients used must be scaled downwards so that arithmetic overflow does not occur if all 
channels contributing to an output happen to be at full scale. 

Table C3.3 Default Coefficient Values for Karaoke Capable Decoders 

Coefficient 2/0 Reproduction 3/0 Reproduction 

None V1 V2 V1+V2 None V1 V2 V1+V2

a 0.0 0.7 0.0 1.0 0.0 0.0 0.0 1.0 

b 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 

c clev clev clev clev 0.0 0.0 0.0 0.0 

d --- --- --- --- 0.0 1.0 0.0 0.0 

e --- --- --- --- 0.0 0.0 1.0 0.0 

f --- --- --- --- 1.0 1.0 1.0 1.0 

g 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 

h 0.0 0.0 0.7 1.0 0.0 0.0 0.0 1.0 

i clev clev clev clev 0.0 0.0 0.0 0.0 

Additional flexibility may be offered optionally to the user of the karaoke decoder. For 
instance, the coefficients a, d, and g might be adjusted to allow the V1 channel to be reproduced 
in a different location and with a different level. Similarly the level and location of the V2 and M 
channels could be adjusted. The details of these additional optional user controls are not 
specified and are left up to the implementation. Also left up to the implementation is what use 
might be made of the Ls, Rs outputs of the 5-channel decoder, which would naturally reproduce 
the V1, V2 channels. 
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Annex D:  
Alternate Bit Stream Syntax (Normative) 

1. SCOPE 

This Annex contains specifications for an alternate bit stream syntax that may be implemented 
by some AC-3 encoders and interpreted by some AC-3 decoders. The new syntax redefines 
certain bit stream information (bsi) fields to carry new meanings. It is not necessary for decoders 
to be aware of this alternate syntax in order to properly reconstruct an audio soundfield; however 
those decoders that are aware of this syntax will be able to take advantage of the new system 
features described in this Annex. This alternate bit stream syntax is identified by setting the bsid 
to a value of 6. This Annex is Normative to the extent that when bsid is set to the value of 6, the 
alternate syntax elements shall have the meaning described in this Annex. Thus this Annex may 
be considered Normative on encoders that set bsid to 6. This Annex is Informative for decoders. 
Interpretation and use of the new syntactical elements is optional for decoders. The new 
syntactical elements defined in this Annex are placed in the two 14-bit fields that are defined as 
timecod1 and timecod2 in the body of this document (these fields have never been applied for their 
originally anticipated purpose).  

2. SPECIFICATION 

2.1 Indication of Alternate Bit Stream Syntax 

An AC-3 bit stream shall have the alternate bit stream syntax described in this annex when the 
bit stream identification (bsid) field is set to 6. 

2.2 Alternate Bit Stream Syntax Specification 

Table D2.1 shows the alternate bit stream syntax specification. 

Table D2.1 Bit Stream Information (Alternate Bit Stream Syntax) 

Syntax Word Size

bsi()  

{  

 bsid 5 

 bsmod 3 

 acmod 3 

 if ((acmod & 0x1) && (acmod != 0x1)) /* if 3 front channels */ {cmixlev} 2 

 if (acmod & 0x4) /* if a surround channel exists */ {surmixlev} 2 

 if (acmod == 0x2) /* if in 2/0 mode */ {dsurmod} 2 

 lfeon 1 

 dialnorm 5 

 compre 1 

 if (compre) {compr} 8 

 langcode 1 

 if (langcode) {langcod} 8 

 audprodie 1 

 if (audprodie)  

 {  
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Syntax Word Size

  mixlevel 5 

  roomtyp 2 

 }  

 if (acmod == 0) /* if 1+1 mode (dual mono, so some items need a second value) */  

 {  

  dialnorm2 5 

  compr2e 1 

  if (compr2e) {compr2} 8 

  langcod2e 1 

  if (langcod2e) {langcod2} 8 

  audprodi2e 1 

  if (audprodi2e)  

  {  

   mixlevel2 5 

   roomtyp2 2 

  }  

 }  

 copyrightb 1 

 origbs 1 

 xbsi1e 1 

 if (xbsi1e)  

 {  

  dmixmod 2 

  ltrtcmixlev 3 

  ltrtsurmixlev 3 

  lorocmixlev 3 

  lorosurmixlev 3 

 }  

 xbsi2e 1 

 if (xbsi2e)  

 {  

  dsurexmod 2 

  dheadphonmod 2 

  adconvtyp 1 

  xbsi2 8 

  encinfo 1 

 }  

 addbsie 1 

 if (addbsie)  

 {  

  addbsil 6 

  addbsi (addbsil+1)×8  

 }  

} /* end of bsi */  
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2.3 Description of Alternate Syntax Bit Stream Elements 

The following sections describe the meaning of the alternate syntax bit stream elements. 
Elements not specifically described retain the same meaning as specified in Section 5 of this 
document, except as noted in the alternate bit stream constraints section above. 

2.3.1.1 xbsi1e: Extra Bit Stream Information #1 Exists, 1 Bit 

If this bit is a ‘1’, the following 14 bits contain extra bit stream information. 

2.3.1.2 dmixmod: Preferred Stereo Downmix Mode, 2 Bits 

This 2-bit code, as shown in Table D2.2, indicates the type of stereo downmix preferred by the 
mastering engineer. This information may be used by the AC-3 decoder to automatically 
configure the type of stereo downmix, but may also be overridden or ignored. If dmixmod is set to 
the reserved code, the decoder should still reproduce audio. The reserved code may be 
interpreted as “not indicated”. 

Table D2.2 Preferred Stereo Downmix Mode 

dmixmod Indication

‘00’ Not indicated 

‘01’ Lt/Rt downmix preferred 

‘10’ Lo/Ro downmix preferred 

‘11’ Reserved 

Note: The meaning of this field is only defined as described if the audio coding 
mode is 3/0, 2/1, 3/1, 2/2 or 3/2. If the audio coding mode is 1+1, 1/0 or 2/0 then 
the meaning of this field is reserved. 

2.3.1.3 ltrtcmixlev: Lt/Rt Center Mix Level, 3 its 

This 3-bit code, shown in Table D2.3, indicates the nominal down mix level of the center 
channel with respect to the left and right channels in an Lt/Rt downmix. 

Table D2.3 Lt/Rt Center Mix Level 

ltrtcmixlev clev

‘000’ 1.414 (+3.0 dB) 

‘001’ 1.189 (+1.5 dB) 

‘010’ 1.000 (0.0 dB) 

‘011’ 0.841 (–1.5 dB) 

‘100’ 0.707 (–3.0 dB) 

‘101’ 0.595 (–4.5 dB) 

‘110’ 0.500 (–6.0 dB) 

‘111’ 0.000 (–inf dB) 

Note: The meaning of this field is only defined as described if the audio coding 
mode is 3/0, 3/1 or 3/2. If the audio coding mode is 1+1, 1/0, 2/0, 2/1 or 2/2 then 
the meaning of this field is reserved. 
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2.3.1.4 ltrtsurmixlev: Lt/Rt Surround Mix Level, 3 Bits 

This 3-bit code, shown in Table D2.4, indicates the nominal down mix level of the surround 
channels with respect to the left and right channels in an Lt/Rt downmix. If one of the reserved 
values is received, the decoder should us a value of 0.841 for clev. 

Table D2.4 Lt/Rt Surround Mix Level 

ltrtsurmixlev slev

‘000’ reserved 

‘001’ reserved 

‘010’ reserved 

‘011’ 0.841 (–1.5 dB) 

‘100’ 0.707 (–3.0 dB) 

‘101’ 0.595 (–4.5 dB) 

‘110’ 0.500 (–6.0 dB) 

‘111’ 0.000 (–inf dB) 

Note: The meaning of this field is only defined as described if the audio coding 
mode is 2/1, 3/1, 2/2 or 3/2. If the audio coding mode is 1+1, 1/0, 2/0 or 3/0 then 
the meaning of this field is reserved. 

2.3.1.5 lorocmixlev: Lo/Ro Center Mix Level, 3 Bits 

This 3-bit code, shown in Table D2.5, indicates the nominal down mix level of the center 
channel with respect to the left and right channels in an Lo/Ro downmix. 

Table D2.5 Lo/Ro Center Mix Level 

lorocmixlev clev

‘000’ 1.414 (+3.0 dB) 

‘001’ 1.189 (+1.5 dB) 

‘010’ 1.000 (0.0 dB) 

‘011’ 0.841 (–1.5 dB) 

‘100’ 0.707 (–3.0 dB) 

‘101’ 0.595 (–4.5 dB) 

‘110’ 0.500 (–6.0 dB) 

‘111’ 0.000 (–inf dB) 

Note: The meaning of this field is only defined as described if the audio coding 
mode is 3/0, 3/1 or 3/2. If the audio coding mode is 1+1, 1/0, 2/0, 2/1 or 2/2 then 
the meaning of this field is reserved. 

2.3.1.6 lorosurmixlev: Lo/Ro Surround Mix Level, 3 Eits 

This 3-bit code, shown in Table D2.6, indicates the nominal down mix level of the surround 
channels with respect to the left and right channels in an Lo/Ro downmix. If one of the reserved 
values is received, the decoder should use a value of 0.841 for slev. 
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Table D2.6 Lo/Ro Surround Mix Level 

lorosurmixlev slev

‘000’ reserved 

‘001’ reserved 

‘010’ reserved 

‘011’ 0.841 (–1.5 dB) 

‘100’ 0.707 (–3.0 dB) 

‘101’ 0.595 (–4.5 dB) 

‘110’ 0.500 (–6.0 dB) 

‘111’ 0.000 (–inf dB) 

Note: The meaning of this field is only defined as described if the audio coding 
mode is 2/1, 3/1, 2/2 or 3/2. If the audio coding mode is 1+1, 1/0, 2/0 or 3/0 then 
the meaning of this field is reserved.  

2.3.1.7 xbsi2e: Extra Bit Stream Information #2 Exists, 1 Bit 

If this bit is a ‘1’, the following 14 bits contain extra bit stream information. 

2.3.1.8 dsurexmod: Dolby Surround EX Mode, 2 Bits 

This 2-bit code, as shown in Table D2.7, indicates whether or not the program has been encoded 
in Dolby Surround EX, Dolby Pro Logic IIx or Dolby Pro Logic IIz. This information is not used 
by the AC-3 decoder, but may be used by other portions of the audio reproduction equipment.  

Table D2.7 Dolby Surround EX Mode 

dsurexmod Indication 

‘00’ Not indicated 

‘01’ Not Dolby Surround EX, Dolby Pro Logic IIx or Dolby Pro Logic IIz-encoded 

‘10’ Dolby Surround EX or Dolby Pro Logic IIx-encoded 

‘11’ Dolby Pro Logic IIz-encoded 

Note: The meaning of this field is only defined as described if the audio coding 
mode is 2/2 or 3/2. If the audio coding mode is 1+1, 1/0, 2/0, 3/0, 2/1 or 3/1 then 
the meaning of this field is reserved. 

2.3.1.9 dheadphonmod: Dolby Headphone Mode, 2 Bits 

This 2-bit code, as shown in Table D2.8, indicates whether or not the program has been Dolby 
Headphone-encoded. This information is not used by the AC-3 decoder, but may be used by 
other portions of the audio reproduction equipment. If dheadphonmod is set to the reserved code, 
the decoder should still reproduce audio. The reserved code may be interpreted as “not 
indicated”. 
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Table D2.8 Dolby Headphone Mode 

dheadphonmod Indication

‘00’ Not indicated 

‘01’ Not Dolby Headphone encoded 

‘10’ Dolby Headphone encoded 

‘11’ Reserved 

Note: The meaning of this field is only defined as described if the audio coding 
mode is 2/0. If the audio coding mode is 1+1, 1/0, 3/0, 2/1, 3/1, 2/2 or 3/2 then the 
meaning of this field is reserved. 

2.3.1.10 adconvtyp: A/D Converter Type, 1 Bit 

This 1-bit code, as shown in Table D2.9, indicates the type of A/D converter technology used to 
capture the PCM audio. This information is not used by the AC-3 decoder, but may be used by 
other portions of the audio reproduction equipment. If the type of A/D converter used is not 
known, the "Standard" setting should be chosen. 

Table D2.9 A/D Converter Type 

Adconvtyp Indication

‘0’ Standard 

‘1’ HDCD 

2.3.1.11 xbsi2: Extra Bit Stream Information, 8 Bits 

This field is reserved for future assignment. Encoders shall set these bits to all 0’s. 

2.3.1.12 encinfo: Encoder Information, 1 Bit 

This field is reserved for use by the encoder, and is not used by the decoder. 

3. DECODER PROCESSING 

There are two types of decoders: those that recognize the alternate syntax (compliant decoders), 
and those that do not (legacy decoders). This section specifies how each type of decoder will 
process bit streams that use the alternate bit stream syntax. Implementation of compliant 
decoding is optional. 

3.1 Compliant Decoder Processing 

3.1.1 Two-Channel Downmix Selection 

In the case of a two-channel downmix, compliant decoders should allow the end user to specify 
which two-channel downmix is chosen. Three separate options should be allowed: Lt/Rt 
downmix, Lo/Ro downmix, or automatic selection of either Lt/Rt or Lo/Ro based on the 
preferred downmix mode parameter dmixmod. 

3.1.2 Two-Channel Downmix Processing 

Once a particular two-channel downmix has been selected, compliant decoders should use the 
new center mix level and surround mix level parameters associated with the selected downmix 
type (assuming they are included in the bit stream). If Lt/Rt downmix is selected, compliant 
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decoders should use the ltrtcmixlev and ltrtsurmixlev parameters (if included). If Lo/Ro downmix is 
selected, compliant decoders should use the lorocmixlev and lorosurmixlev parameters (if included). If 
these parameters are not included in the bit stream, then downmixing should be performed as 
defined in the original specification. 

3.1.3 Informational Parameter Processing 

Compliant decoders should provide a means for informational parameters (e.g., dsurexmod, 
dheadphonmod, etc.) to be accessed by external system components. Note that these parameters do 
not otherwise affect decoder processing. 

3.2 Legacy Decoder Processing 

Legacy decoders do not recognize the alternate bit stream syntax, but rather interpret these bit 
fields according to their original definitions in the initial version of this document. The extra bit 
stream information words (xbsi1e, xbsi2e, dmixmod, etc.) are interpreted as time code words 
(timecod1e, timecod1, timecod2e, and timecod2). 

As described in the initial version of this document, the time code words do not affect the 
decoding process in legacy decoders. As a result, the alternate bit stream syntax can be safely 
decoded without causing incorrect decoder processing. However, legacy decoders will not be 
able to take advantage of new functionality provided by the alternate syntax. 

4. ENCODER PROCESSING 

This section describes processing steps and requirements associated with encoders that create 
bits streams according to the alternate bit stream syntax. 

4.1 Encoder Processing Steps 

4.1.1 Dynamic Range Overload Protection Processing 

If the alternate bit stream syntax is used, the dynamic range overload protection function within 
the encoder must account for potential overload in either legacy or compliant decoders, using 
any downmix mode. No assumption should be made that compliant decoders will necessarily use 
the preferred downmix mode. 

4.2 Encoder Requirements 

4.2.1 Legacy Decoder Support 

In order to support legacy decoder operations, it is necessary to continue to specify valid values 
for bit stream information parameters that are made obsolete by the alternate bit stream syntax. 
For example, the new ltrtcmixlev, ltrtsurmixlev, lorocmixlev, and lorosurmixlev fields (if included in the 
alternate bit stream) override the functionality of the previously defined cmixlev and surmixlev 
fields. Nonetheless, alternate bit stream syntax encoders must continue to specify valid values for 
the cmixlev and surmixlev fields. 

4.2.2 Original Bit Stream Syntax Support 

Encoding equipment that is capable of creating bit streams according to the alternate bit stream 
syntax must also provide an option that allows for creation of bit streams according to this 
document not including this Annex or Annex E. 
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Annex E:  
Enhanced AC-3 (Normative) 

1. SCOPE 

This Annex defines the audio coding algorithm denoted as Enhanced AC-3 (“E-AC-3”) and the 
alterations to the AC-3 bit stream necessary to convey E-AC-3 data along with a reference 
decoding process.  

1.1 Introduction 

E-AC-3 bit streams are similar in nature to standard AC-3 bit streams but are not backwardly 
compatible (i.e., they are not decodable by standard AC-3 decoders). This Annex specifies either 
directly or by reference the bit stream syntax of E-AC-34. When an AC-3 bit stream carries E-
AC-3 bit stream syntax, it is referred herein to as an E-AC-3 bit stream. 

2. BIT STREAM SYNTAX AND SEMANTICS SPECIFICATION 

2.1 Indication of Enhanced AC-3 Bit Stream Syntax 

An AC-3 bit stream is indicated as using the E-AC-3 bit stream syntax when the bit stream 
identification (bsid) field is set to 16. To enable differentiation between an AC-3 bit stream and 
an E-AC-3 bit stream, the bsid field is placed the same number of bytes from the beginning of the 
syncframe as defined in the syntax below. 

2.2 Syntax Specification 

Unless otherwise specified, all bit stream elements shall have the same meaning and purpose as 
described in the body and Annex D of this document. Single bit boolean values shall be treated 
as ‘1’ equals TRUE. A continuous audio bit stream consists of a sequence of synchronization 
frames: 

Syntax 
bit stream() 
{ 
 while(true) 
 { 
  syncframe() ; 
 } 
} /* end of bit stream */ 

The syncframe consists of the syncinfo, bsi and audfrm fields, up to 6 coded audblk fields, the 
auxdata field, and the errorcheck field. 

Syntax 
syncframe() 
{ 
 syncinfo() ; 
 bsi() ; 
 audfrm() ; 
 for (blk = 0; blk < number_of_blocks_per_syncframe; blk++) 

                                                 
4 For historical reasons, the specification of AC-3 is organized differently. 



ATSC A/52:2012 A/52 Annex E 17 December 2012 

 139

 { 
  audblk() ; 
 } 
 auxdata() ; 
 errorcheck() ; 
} /* end of syncframe */ 

Each of the bit stream elements, and their length, are itemized in the following tables. Note 
that all bit stream elements arrive most significant bit first, or left bit first, in time. 

2.2.1 syncinfo – Synchronization Information 

The bit stream syntax for the syncinfo() shall be as shown in Table E1.1. 

Table E1.1 syncinfo Syntax and Word Size 

Syntax Word Size

syncinfo()  

{  

 syncword 16 

} /* end of syncinfo */  

2.2.2 bsi – Bit Stream Information 

The bit stream syntax for the bsi() shall be as shown in Table E1.2. 

Table E1.2 bsi Syntax and Word Size 

Syntax Word Size 

bsi()  

{  

 strmtyp 2 

 substreamid 3 

 frmsiz 11 

 fscod 2 

 if (fscod == 0x3)  

 {  

  fscod2 2 

  numblkscod = 0x3 /* six blocks per syncframe */  

 }  

 else  

 {  

  numblkscod 2 

 }  

 acmod 3 

 lfeon 1 

 bsid 5 

 dialnorm 5 

 compre 1 

 if (compre) {compr} 8 

 if (acmod == 0x0) /* if 1+1 mode (dual mono, so some items need a second value) */  
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Syntax Word Size 

 {  

  dialnorm2 5 

  compr2e 1 

  if (compr2e) {compr2} 8 

 }  

 if (strmtyp == 0x1) /* if dependent stream */  

 {  

  chanmape 1 

  if (chanmape) {chanmap} 16 

 }  

 mixmdate 1 

 if (mixmdate) /* Mixing metadata */  

 {  

  if (acmod > 0x2) /* if more than 2 channels */ {dmixmod} 2 

  if ((acmod & 0x1) && (acmod > 0x2)) /* if three front channels exist */  

  {  

   ltrtcmixlev 3 

   lorocmixlev 3 

  }  

  if (acmod & 0x4) /* if a surround channel exists */  

  {  

   ltrtsurmixlev 3 

   lorosurmixlev 3 

  }  

  if (lfeon) /* if the LFE channel exists */  

  {  

   lfemixlevcode 1 

   if (lfemixlevcode) {lfemixlevcod} 5 

  }  

  if (strmtyp == 0x0) /* if independent stream */  

  {  

   pgmscle 1 

   if (pgmscle) {pgmscl} 6 

   if (acmod == 0x0) /* if 1+1 mode (dual mono, so some items need a second 
value) */ 

 

   {  

    pgmscl2e 1 

    if (pgmscl2e) {pgmscl2} 6 

   }  

   extpgmscle 1 

   if (extpgmscle) {extpgmscl} 6 

   mixdef 2 

   if (mixdef == 0x1) /* mixing option 2 */   

   {  

    premixcmpsel 1 

    drcsrc 1 
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Syntax Word Size 

    premixcmpscl 3 

   }  

   else if (mixdef == 0x2) /* mixing option 3 */ {mixdata} 12 

   else if (mixdef == 0x3) /* mixing option 4 */  

   {  

    mixdeflen 5 

    mixdata2e 1 

    if (mixdata2e)  

    {  

     premixcmpsel 1 

     drcsrc 1 

     premixcmpscl 3 

     extpgmlscle 1 

     if (extpgmlscle) extpgmlscl 4 

     extpgmcscle 1 

     if (extpgmcscle) extpgmcscl 4 

     extpgmrscle  1 

     if (extpgmrscle) extpgmrscl 4 

     extpgmlsscle 1 

     if (extpgmlsscle) extpgmlscl 4 

     extpgmrsscle 1 

     if (extpgmrsscle) extpgmrsscl 4 

     extpgmlfescle 1 

     if (extpgmlfescle) extpgmlfescl  4 

     dmixscle 1 

     if (dmixscle) dmixscl 4 

     addche 1 

     if (addche)  

     {  

      extpgmaux1scle 1 

      if (extpgmaux1scle) extpgmaux1scl 4 

      extpgmaux2scle 1 

      if (extpgmaux2scle) extpgmaux2scl 4 

     }  

    }  

    mixdata3e 1 

    if (mixdata3e)  

    {  

     spchdat 5 

     addspchdate 1 

     if (addspchdate)  

     {  

      spchdat1 5 

      spchan1att 2 

      addspchdat1e 1 

      if (addspdat1e)  
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      {  

       spchdat2 5 

       spchan2att 3 

      }  

     }  

    }  

    mixdata (8*(mixdeflen+2)) - no. mixdata 
bits 

    mixdatafill 0 - 7 

   }  

   if (acmod < 0x2) /* if mono or dual mono source */  

   {  

    paninfoe 1 

    if (paninfoe)  

    {  

     panmean 8 

     paninfoe 6 

    }  

    if (acmod == 0x0) /* if 1+1 mode (dual mono, so some items need a 
second value) */ 

 

    {  

     paninfo2e 1 

     if (paninfo2e)  

     {  

      panmean2 8 

      paninfo2 6 

     }  

    }  

   }  

   frmmixcfginfoe 1 

   if (frmmixcfginfoe) /* mixing configuration information */  

   {  

    if (numblkscod == 0x0) {blkmixcfginfo[0]} 5 

    else  

    {  

     for (blk = 0; blk < number_of_blocks_per_syncframe; blk++)  

     {  

      blkmixcfginfoe 1 

      if (blkmixcfginfoe){blkmixcfginfo[blk]} 5 

     }  

    }  

   }  

  }  

 }  

 infomdate 1 

 if (infomdate) /* Informational metadata */  
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 {  

  bsmod 3 

  copyrightb 1 

  origbs 1 

  if (acmod == 0x2) /* if in 2/0 mode */  

  {  

   dsurmod 2 

   dheadphonmod 2 

  }  

  if (acmod >= 0x6) /* if both surround channels exist */ {dsurexmod} 2 

  audprodie 1 

  if (audprodie)  

  {  

   mixlevel 5 

   roomtyp 2 

   adconvtyp 1 

  }  

  if (acmod == 0x0) /* if 1+1 mode (dual mono, so some items need a second 
value) */ 

 

  {  

   audprodi2e 1 

   if (audprodi2e)  

   {  

    mixlevel2 5 

    roomtyp2 2 

    adconvtyp2 1 

   }  

  }  

  if (fscod < 0x3) /* if not half sample rate */ {sourcefscod} 1 

 }  

 if ( (strmtyp == 0x0) && (numblkscod != 0x3) ) {convsync} 1 

 if (strmtyp == 0x2) /* if bit stream converted from AC-3 */  

 {  

  if (numblkscod == 0x3) /* 6 blocks per syncframe */ {blkid = 1}  

  else {blkid} 1 

  if (blkid) {frmsizecod} 6 

 }  

 addbsie 1 

 if (addbsie)  

 {  

  addbsil 6 

  addbsi  (addbsil+1)×8 

 }  

} /* end of bsi */  
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The bit stream syntax for the audfrm() shall be as shown in Table E1.3. 

Table E1.3 audfrm Syntax and Word Size 

Syntax Word Size

audfrm()  

{  

/* These fields for audio frame exist flags and strategy data */  

   

 if (numblkscod == 0x3) /* six blocks per frame */  

 {  

  expstre 1 

  ahte 1 

 }  

 else  

 {  

  expstre = 1  

  ahte = 0  

 }  

 snroffststr 2 

 transproce 1 

 blkswe 1 

 dithflage 1 

 bamode 1 

 frmfgaincode 1 

 dbaflde 1 

 skipflde 1 

 spxattene 1 

  

/* These fields for coupling data */  

 if (acmod > 0x1)  

 {  

  cplstre[0] = 1  

  cplinu[0] 1 

  for (blk = 1; blk < number_of_blocks_per_sync_frame; blk++)  

  {  

   cplstre[blk] 1 

   if (cplstre[blk] == 1) {cplinu[blk]} 1 

   else {cplinu[blk] = cplinu[blk-1]}  

  }  

 }  

 else  

 {  

  for (blk = 0; blk < number_of_blocks_per_sync_frame; blk++) {cplinu[blk] = 0}  

 }  
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/* These fields for exponent strategy data */  

 if (expstre)  

 {  

  for (blk = 0; blk < number_of_blocks_per_sync_frame; blk++)  

  {  

   if (cplinu[blk] == 1) {cplexpstr[blk]} 2 

   for (ch = 0; ch < nfchans; ch++) {chexpstr[blk][ch]} 2 

  }  

 }  

 else  

 {  

  ncplblks = 0  

  for (blk = 0; blk < number_of_blocks_per_sync_frame; blk++) {ncplblks += cplinu[blk]}  

  if ( (acmod > 0x1) && (ncplblks > 0) ) {frmcplexpstr} 5 

  for (ch = 0; ch < nfchans; ch++) {frmchexpstr[ch]} 5 

  /* cplexpstr[blk] and chexpstr[blk][ch] derived from table lookups – see Table E2.10 */  

 }  

 if (lfeon)  

 {  

  for (blk = 0; blk < number_of_blocks_per_sync_frame; blk++) {lfeexpstr[blk]} 1 

 }  

  

/* These fields for converter exponent strategy data */  

 if (strmtyp == 0x0)  

 {  

  if (numblkscod != 0x3) {convexpstre} 1 

  else {convexpstre = 1}  

  if (convexpstre == 1)  

  {  

   for (ch = 0; ch < nfchans; ch++) {convexpstr[ch]} 5 

  }  

 }  

  

/* These fields for AHT data */  

 if (ahte)  

 {  

 /* coupling can use AHT only when coupling in use for all blocks */  

  /* ncplregs derived from cplstre and cplexpstr – see section 3.4.2 */  

  if ( (ncplblks == 6) && (ncplregs ==1) ) {cplahtinu} 1 

  else {cplahtinu = 0}  

  for (ch = 0; ch < nfchans; ch++)  

  {  

   /* nchregs derived from chexpstr – see section 3.4.2 */  

   if (nchregs[ch] == 1) {chahtinu[ch]} 1 

   else {chahtinu[ch] = 0}  

  }  
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  if (lfeon)  

  {  

   /* nlferegs derived from lfeexpstr – see section 3.4.2 */  

   if (nlferegs == 1) {lfeahtinu} 1 

   else {lfeahtinu = 0}  

  }  

 }  

  

/* These fields for audio frame SNR offset data */  

 if (snroffststr == 0x0)  

 {  

  frmcsnroffst 6 

  frmfsnroffst 4 

 }  

  

/* These fields for audio frame transient pre-noise processing data */  

 if (transproce)  

 {  

  for (ch = 0; ch < nfchans; ch++)  

  {  

   chintransproc[ch] 1 

   if (chintransproc[ch])  

   {  

    transprocloc[ch] 10 

    transproclen[ch] 8 

   }  

  }  

 }  

  

/* These fields for spectral extension attenuation data */  

 if (spxattene)  

 {  

  for (ch = 0; ch < nfchans; ch++)  

  {  

   chinspxatten[ch] 1 

   if (chinspxatten[ch])  

   {  

    spxattencod[ch] 5 

   }  

  }  

 }  

  

/* These fields for block start information */  

 if (numblkscod != 0x0) {blkstrtinfoe} 1 

 else {blkstrtinfoe = 0}  

 if (blkstrtinfoe)  
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 {  

  /* nblkstrtbits determined from frmsiz (see Section 2.3.2.27) */  

  blkstrtinfo nblkstrtbits 

 }  

  

/* These fields for syntax state initialization */  

 for (ch = 0; ch < nfchans; ch++)  

 {  

  firstspxcos[ch] = 1  

  firstcplcos[ch] = 1  

 }  

 firstcplleak = 1  

} /* end of audfrm */  

2.2.4 audblk – Audio Block 

The bit stream syntax for the audblk() shall be as shown in Table E1.4. 

Table E1.4 audblk Syntax and Word Size 

Syntax  Word 
Size 

audblk()  

{  

/* these fields for block switch and dither flags */  

 if(blkswe)  

 {  

  for(ch = 0; ch < nfchans; ch++) {blksw[ch]} 1 

 }  

 else  

 {  

  for(ch = 0; ch < nfchans; ch++) {blksw[ch] = 0}  

 }  

 if(dithflage)  

 {  

  for(ch = 0; ch < nfchans; ch++) {dithflag[ch]} 1 

 }  

 else  

 {  

  for(ch = 0; ch < nfchans; ch++) {dithflag[ch] = 1} /* dither on */  

 }  

/* these fields for dynamic range control */  

 dynrnge 1 

 if(dynrnge) {dynrng} 8 

 if(acmod == 0x0) /* if 1+1 mode */  

 {  

  dynrng2e 1 

  if(dynrng2e) {dynrng2} 8 
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 }  

/* these fields for spectral extension strategy information */  

 if(blk == 0) {spxstre = 1}  

 else {spxstre} 1 

 if(spxstre)  

 {  

  spxinu 1 

  if(spxinu)  

  {  

   if(acmod == 0x1)  

   {  

    chinspx[0] = 1  

   }  

   else  

   {  

    for(ch = 0; ch < nfchans; ch++) {chinspx[ch]} 1 

   }  

   spxstrtf 2 

   spxbegf 3 

   spxend 3 

   if(spxbegf < 6) {spx_begin_subbnd = spxbegf + 2}  

   else {spx_begin_subbnd = spxbegf * 2 – 3}  

   if(spxendf < 3) {spx_end_subbnd = spxendf + 5}  

   else {spx_end_subbnd = spxendf * 2 + 3}  

   spxbndstrce 1 

   if(spxbndstrce)  

   {  

    for(bnd = spx_begin_subbnd+1; bnd < spx_end_subbnd ; bnd++) {spxbndstrc[bnd]} 1 

   }  

  }  

  else /* !spxinu */  

  {  

   for(ch = 0; ch < nfchans; ch++)  

   {  

    chinspx[ch] = 0  

    firstspxcos[ch] = 1  

   }  

  }  

 }  

/* these fields for spectral extension coordinates */  

 if(spxinu)  

 {  

  for(ch = 0; ch < nfchans; ch++)  

  {  

   if(chinspx[ch])  
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   {  

    if(firstspxcos[ch])  

    {  

     spxcoe[ch] = 1  

     firstspxcos[ch] = 0  

    }  

    else /* !firstspxcos[ch] */ {spxcoe[ch]} 1 

    if(spxcoe[ch])  

    {  

     spxblnd[ch] 5 

     mstrspxco[ch] 2 

     /* nspxbnds determined from spx_begin_subbnd, spx_end_subbnd, and spxbndstrc[ ] */  

     for(bnd = 0; bnd < nspxbnds; bnd++)  

     {  

      spxcoexp[ch][bnd] 4 

      spxcomant[ch][bnd] 2 

     }  

    }  

   }  

   else /* !chinspx[ch] */  

   {  

    firstspxcos[ch] = 1  

   }  

  }  

 }  

/* These fields for coupling strategy and enhanced coupling strategy information */  

 if(cplstre[blk])   

 {  

  if (cplinu[blk])  

  {  

   ecplinu 1 

   if (acmod == 0x2)  

   {  

    chincpl[0] = 1  

    chincpl[1] = 1  

   }  

   else  

   {  

    for(ch = 0; ch < nfchans; ch++) {chincpl[ch]} 1 

   }  

   if (ecplinu == 0) /* standard coupling in use */  

   {  

    if(acmod == 0x2) {phsflginu} /* if in 2/0 mode */ 1 

    cplbegf 4 

    if (spxinu == 0) /* if SPX not in use */  
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    {  

     cplendf 4 

    }  

    else /* SPX in use */  

    {  

     if (spxbegf < 6)  

     {  

      /* note that in this case the value of cplendf may be negative */  

      cplendf = spxbegf - 2  

     }  

     else  

     {  

      cplendf = (spxbegf * 2) - 7  

     }  

  

    }  

    /* ncplsubnd = 3 + cplendf – cplbegf */  

    cplbndstrce 1 

    if(cplbndstrce)  

    {  

     for(bnd = 1; bnd < ncplsubnd; bnd++) {cplbndstrc[bnd]} 1 

    }  

   }  

   else /* enhanced coupling in use */  

   {  

    ecplbegf 4 

    if(ecplbegf < 3) {ecpl_begin_subbnd = ecplbegf * 2}  

    else if(ecplbegf < 13) {ecpl_begin_subbnd = ecplbegf + 2}  

    else {ecpl_begin_subbnd = ecplbegf * 2 - 10}  

    if (spxinu == 0) /* if SPX not in use */  

    {  

     ecplendf 4 

     ecpl_end_subbnd = ecplendf + 7  

    }  

    else /* SPX in use */  

    {  

     if (spxbegf < 6)  

     {  

      ecpl_end_subbnd = spxbegf + 5  

     }  

     else  

     {  

      ecpl_end_subbnd = spxbegf * 2  

     }  

    }  
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    ecplbndstrce 1 

    if (ecplbndstrce)  

    {  

     for(sbnd = max(9, ecpl_begin_subbnd+1); sbnd < ecpl_end_subbnd; sbnd++)  

     {  

      ecplbndstrc[sbnd] 1 

     }  

    }  

   } /* ecplinu[blk] */  

  }  

  else /* !cplinu[blk] */  

  {  

   for(ch = 0; ch < nfchans; ch++)  

   {  

    chincpl[ch] = 0  

    firstcplcos[ch] = 1  

   }  

   firstcplleak = 1  

   phsflginu = 0  

   ecplinu = 0;  

  }  

 } /* cplstre[blk] */  

  

/* These fields for coupling coordinates */  

 if(cplinu[blk])  

 {  

  if(ecplinu == 0) /* standard coupling in use */   

  {  

   for(ch = 0; ch < nfchans; ch++)  

   {  

    if(chincpl[ch])  

    {  

     if (firstcplcos[ch])  

     {  

      cplcoe[ch] = 1  

      firstcplcos[ch] = 0  

     }  

     else /* !firstcplcos[ch] */ {cplcoe[ch]} 1 

     if(cplcoe[ch])  

     {  

      mstrcplco[ch] 2 

      /* ncplbnd derived from ncplsubnd and cplbndstrc */  

      for(bnd = 0; bnd < ncplbnd; bnd++)  

      {  

       cplcoexp[ch][bnd] 4 
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       cplcomant[ch][bnd] 4 

      }  

     } /* cplcoe[ch] */  

    }  

    else /* !chincpl[ch] */  

    {  

     firstcplcos[ch] = 1;  

    }  

   } /* ch */  

   if((acmod == 0x2) && phsflginu && (cplcoe[0] || cplcoe[1]))  

   {  

    for(bnd = 0; bnd < ncplbnd; bnd++) {phsflg[bnd]} 1 

   }  

  }  

  else /* enhanced coupling in use */  

  {  

   firstchincpl = -1  

   ecplangleintrp 1 

   for(ch = 0; ch < nfchans; ch++)  

   {  

    if(chincpl[ch])  

    {  

     if(firstchincpl == -1) {firstchincpl = ch}  

     if(firstcplcos[ch])  

     {  

      ecplparam1e[ch] = 1  

      if (ch > firstchincpl) {ecplparam2e[ch] = 1}  

      else {ecplparam2e[ch] = 0}  

      firstcplcos[ch] = 0  

     }  

     else /* !firstcplcos[ch] */  

     {  

      ecplparam1e[ch] 1 

      if(ch > firstchincpl) {ecplparam2e[ch]} 1 

      else {ecplparam2e[ch] = 0}  

     }  

     if(ecplparam1e[ch])  

     {  

      /* necplbnd derived from ecpl_begin_subbnd, ecpl_end_subbnd, and ecplbndstrc */  

      for(bnd = 0; bnd < necplbnd; bnd++) {ecplamp[ch][bnd]} 5 

     }  

     if(ecplparam2e[ch])  

     {  

      /* necplbnd derived from ecpl_begin_subbnd, ecpl_end_subbnd, and ecplbndstrc */  

      for(bnd = 0; bnd < necplbnd; bnd++)  



ATSC A/52:2012 A/52 Annex E 17 December 2012 

 153

Syntax  Word 
Size 

      {  

       ecplangle[ch][bnd] 6 

       ecplchaos[ch][bnd] 3 

      }  

     }  

     if(ch > firstchincpl) {ecpltrans[ch]} 1 

    }  

    else /* !chincpl[ch] */  

    {  

     firstcplcos[ch] = 1  

    }  

   } /* ch */  

  } /* ecplinu[blk] */  

 } /* cplinu[blk] */  

  

/* these fields for rematrixing operation in the 2/0 mode */  

 if(acmod == 0x2) /* if in 2/0 mode */  

 {  

  if (blk == 0) {rematstr = 1}  

  else {rematstr} 1 

  if(rematstr)  

  {  

   /* nrematbd determined from cplinu, ecplinu, spxinu, cplbegf, ecplbegf and spxbegf */  

   for(bnd = 0; bnd < nrematbd; bnd++) {rematflg[bnd]} 1 

  }  

 }  

/* this field for channel bandwidth code */  

 for(ch = 0; ch < nfchans; ch++)  

 {  

  if(chexpstr[blk][ch] != reuse)  

  {  

   if((!chincpl[ch]) && (!chinspx[ch])) {chbwcod[ch]} 6 

  }  

 }  

/* these fields for exponents */  

 if(cplinu[blk]) /* exponents for the coupling channel */  

 {  

  if(cplexpstr[blk] != reuse)  

  {  

   cplabsexp 4 

   /* ncplgrps derived from cplexpstr, cplbegf, cplendf, ecplinu, ecpl_begin_subbnd, and 
ecpl_end_subbnd */ 

 

   for(grp = 0; grp< ncplgrps; grp++) {cplexps[grp]} 7 

  }  

 }  
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 for(ch = 0; ch < nfchans; ch++) /* exponents for full bandwidth channels */  

 {  

  if(chexpstr[blk][ch] != reuse)  

  {  

   exps[ch][0] 4 

   /* nchgrps derived from chexpstr[ch], and endmant[ch] */  

   for(grp = 1; grp <= nchgrps[ch]; grp++) {exps[ch][grp]} 7 

   gainrng[ch] 2 

  }  

 }  

 if(lfeon) /* exponents for the low frequency effects channel */  

 {  

  if(lfeexpstr[blk] != reuse)  

  {  

   lfeexps[0] 4 

   nlfegrps = 2  

   for(grp = 1; grp <= nlfegrps; grp++) {lfeexps[grp]} 7 

  }  

 }  

/* these fields for bit-allocation parametric information */  

 if(bamode)  

 {  

  baie 1 

  if(baie)  

  {  

   sdcycod 2 

   fdcycod 2 

   sgaincod 2 

   dbpbcod 2 

   floorcod 3 

  }  

 }  

 else  

 {  

  sdcycod = 0x2  

  fdcycod = 0x1  

  sgaincod = 0x1  

  dbpbcod = 0x2  

  floorcod = 0x7  

 }  

 if(snroffststr == 0x0)  

 {   

  if(cplinu[blk]) {cplfsnroffst = frmfsnroffst}  

  for(ch = 0; ch < nfchans; ch++) {fsnroffst[ch] = frmfsnroffst}  

  if(lfeon) {lfefsnroffst = frmfsnroffst}  
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 }   

 else  

 {   

  if(blk == 0) {snroffste = 1}  

  else {snroffste} 1 

  if(snroffste)  

  {   

   csnroffst 6 

   if(snroffststr == 0x1)  

   {   

    blkfsnroffst 4 

    cplfsnroffst = blkfsnroffst  

    for(ch = 0; ch < nfchans; ch++) {fsnroffst[ch] = blkfsnroffst}  

    lfefsnroffst = blkfsnroffst  

   }   

   else if(snroffststr == 0x2)  

   {   

    if(cplinu[blk]) cplfsnroffst 4 

    for(ch = 0; ch < nfchans; ch++) {fsnroffst[ch]} 4 

    if(lfeon) lfefsnroffst 4 

   }   

  }   

 }    

 if(frmfgaincode) {fgaincode} 1 

 else {fgaincode = 0}  

 if(fgaincode)  

 {  

  if(cplinu[blk]) {cplfgaincod} 3 

  for(ch = 0; ch < nfchans; ch++) {fgaincod[ch]} 3 

  if(lfeon) {lfefgaincod} 3 

 }  

 else  

 {  

  if(cplinu[blk]) {cplfgaincod = 0x4}  

  for(ch= 0; ch < nfchans; ch++) {fgaincod[ch] = 0x4}  

  if(lfeon) {lfefgaincod = 0x4}  

 }  

 if(strmtyp == 0x0)  

 {  

  convsnroffste 1 

  if(convsnroffste) {convsnroffst} 10 

 }  

 if(cplinu[blk])  

 {  

  if (firstcplleak)  



ATSC A/52:2012 A/52 Annex E 17 December 2012 

 156

Syntax  Word 
Size 

  {  

   cplleake = 1  

   firstcplleak = 0  

  }  

  else /* !firstcplleak */  

  {  

   cplleake 1 

  }  

  if(cplleake)  

  {  

   cplfleak 3 

   cplsleak 3 

  }  

 }  

/* these fields for delta bit allocation information */  

 if(dbaflde)  

 {  

  deltbaie 1 

  if(deltbaie)  

  {  

   if(cplinu[blk]) {cpldeltbae} 2 

   for(ch = 0; ch < nfchans; ch++) {deltbae[ch]} 2 

   if(cplinu[blk])  

   {  

    if(cpldeltbae==new info follows)  

    {  

     cpldeltnseg 3 

     for(seg = 0; seg <= cpldeltnseg; seg++)  

     {  

      cpldeltoffst[seg] 5 

      cpldeltlen[seg] 4 

      cpldeltba[seg] 3 

     }  

    }  

   }  

   for(ch = 0; ch < nfchans; ch++)  

   {  

    if(deltbae[ch]==new info follows)  

    {  

     deltnseg[ch] 3 

     for(seg = 0; seg <= deltnseg[ch]; seg++)  

     {  

      deltoffst[ch][seg] 5 

      deltlen[ch][seg] 4 

      deltba[ch][seg] 3 
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     }  

    }  

   }  

  } /* if(deltbaie) */  

 }/* if(dbaflde) */  

/* these fields for inclusion of unused dummy data */  

 if(skipflde)  

 {  

  skiple 1 

  if(skiple)  

  {  

   skipl 9 

   skipfld skipl * 8 

  }  

 }   

/* these fields for quantized mantissa values */  

 got_cplchan = 0  

 for(ch = 0; ch < nfchans; ch++)  

 {  

  if(chahtinu[ch] == 0)  

  {  

   for(bin = 0; bin < nchmant[ch]; bin++) {chmant[ch][bin]} (0–16) 

  }  

  else if(chahtinu[ch] == 1)  

  {  

   chgaqmod[ch] 2 

   if( (chgaqmod[ch] > 0x0) && (chgaqmod[ch] < 0x3) )  

   {  

    for(n = 0; n < chgaqsections[ch]; n++) {chgaqgain[ch][n]} 1 

   }  

   else if(chgaqmod[ch] == 0x3)  

   {  

    for(n = 0; n < chgaqsections[ch]; n++) {chgaqgain[ch][n]} 5 

   }  

   for(bin = 0; bin < nchmant[ch]; bin++)  

   {  

    if(chgaqbin[ch][bin])  

    {  

     for(n = 0; n < 6; n++) {pre_chmant[n][ch][bin]} (0–16) 

    }  

    else {pre_chmant[0][ch][bin]} (0–9) 

   }  

   chahtinu[ch] = -1 /* AHT info for this frame has been read – do not read again */  

  }  

  if(cplinu[blk] && chincpl[ch] && !got_cplchan)  
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  {  

   if(cplahtinu == 0)  

   {  

    for(bin = 0; bin < ncplmant; bin++) {cplmant[bin]} (0–16) 

    got_cplchan = 1  

   }  

   else if(cplahtinu == 1)  

   {  

    cplgaqmod 2 

    if( (cplgaqmod > 0x0) && (cplgaqmod < 0x3) )  

    {  

     for(n = 0; n < cplgaqsections; n++) {cplgaqgain[n]} 1 

    }  

    else if(cplgaqmod == 0x3)  

    {  

     for(n = 0; n < cplgaqsections; n++) {cplgaqgain[n]} 5 

    }  

    for(bin = 0; bin < ncplmant; bin++)  

    {  

     if(cplgaqbin[bin])  

     {  

      for(n = 0; n < 6; n++) {pre_cplmant[n][bin]} (0–16) 

     }  

     else {pre_cplmant[0][bin]} (0–9) 

    }  

    got_cplchan = 1  

    cplahtinu = -1 /* AHT info for this frame has been read – do not read again */  

   }  

   else {got_cplchan = 1}  

  }  

 }  

 if(lfeon) /* mantissas of low frequency effects channel */  

 {  

  if(lfeahtinu == 0)  

  {  

   for(bin = 0; bin < nlfemant; bin++) {lfemant[bin]} (0–16) 

  }  

  else if(lfeahtinu == 1)  

  {  

   lfegaqmod 2 

   if( (lfegaqmod > 0x0) && (lfegaqmod < 0x3) )  

   {  

    for(n = 0; n < lfegaqsections; n++) {lfegaqgain[n]} 1 

   }  

   else if(lfegaqmod == 0x3)  
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Syntax  Word 
Size 

   {  

    for(n = 0; n < lfegaqsections; n++) {lfegaqgain[n]} 5 

   }  

   for(bin = 0; bin < nlfemant; bin++)  

   {  

    if(lfegaqbin[bin])  

    {  

     for(n = 0; n < 6; n++) {pre_lfemant[n][bin]} (0–16) 

    }  

    else {pre_lfemant[0][bin]} (0–9) 

   }  

   lfeahtinu = -1 /* AHT info for this frame has been read – do not read again */  

  }  

 }  

} /* end of audblk */  

2.2.5 auxdata – Auxiliary Data 

The bit stream syntax for the auxdata() shall be as shown in Table E1.5. 

Table E1.5 auxdata Syntax and Word Size 

Syntax Word Size

auxdata()  

{  

 auxbits nauxbits 

 if (auxdatae)  

 {  

  auxdatal 14 

 }  

 auxdatae 1 

} /* end of auxdata */  

2.2.6 errorcheck – Error Detection Code 

The bit stream syntax for the errorcheck() shall be as shown in Table E1.6. 

Table E1.6 errorcheck Syntax and Word Size 

Syntax Word Size

errorcheck()  

{  

 encinfo 1 

 crc2 16 

} /* end of errorcheck */  
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2.3 Description of E-AC-3 Bit Stream Elements 

In the definition of some semantic elements relationships with other elements are described for 
clarity. 

2.3.1 bsi – Bit Stream Information 

2.3.1.1 strmtyp – Stream Type – 2 bits 

The strmtyp 2-bit code, as shown in Table E2.1, indicates the stream type. 

Table E2.1 Stream Type 

strmtyp Indication

‘00’ Type 0 

‘01’ Type 1 

‘10’ Type 2 

‘11’ Type 3 

The stream types are defined as follows: 
Type 0: These syncframes comprise an independent stream or substream. The program may be 

decoded independently of any other substreams that might exist in the bit stream. 
Type 1: These syncframes comprise a dependent substream. The program must be decoded in 

conjunction with the independent substream with which it is associated. 
Type 2: These syncframes comprise an independent stream or substream that was previously 

coded in AC-3. Type 2 streams must be independently decodable, and may not have any 
dependent streams associated with them. 

Type 3: Reserved. 

2.3.1.2 substreamid – Substream Identification – 3 Bits 

The substreamid field indicates the substream identification parameter. The substream 
identification parameter can be used, in conjunction with additional bit stream metadata, to 
enable carriage of a single program of more than 5.1 channels, multiple programs of up to 5.1 
channels, or a mixture of programs with up to 5.1 channels and programs with greater than 5.1 
channels. 

All E-AC-3 bit streams shall contain an independent substream assigned substream ID 0. The 
independent substream assigned substream ID 0 shall be the first substream present in the bit 
stream. If an AC-3 bit stream is present in the E-AC-3 bit stream, then the AC-3 bit stream shall 
be processed as an independent substream assigned substream ID 0. 

E-AC-3 bit streams also may contain up to 7 additional independent substreams assigned 
substream ID’s 1 – 7. Independent substream ID’s shall be assigned sequentially in the order the 
independent substreams are present in the bit stream. Independent substreams 1 – 7 shall contain 
the same number of blocks per syncframe and shall be encoded at the same sample rate as 
independent substream 0. 

Each independent substream may have up to 8 dependent substreams associated with it. 
Dependent substreams shall immediately follow the independent substream with which they are 
associated. Dependent substreams are assigned substream ID’s 0 – 7, which shall be assigned 
sequentially according to the order the dependent substreams are present in the bit stream. 
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Dependent substreams 0 – 7 must contain the same number of blocks per syncframe and shall be 
encoded at the same sample rate as the independent substream with which they are associated. 

For more information about usage of the substreamid parameter, please refer to Sections E3.8 
and E3.10. 

2.3.1.3 frmsiz – Frame Size – 11Bbits 

The frmsiz field shall contain a value one less than the overall size of the coded syncframe in 16-
bit words. That is, this field may assume a value ranging from 0 to 2047, and these values 
correspond to syncframe sizes ranging from 1 to 2048. Note that some values at the lower end of 
this range do not occur as they do not represent enough words to convey a complete syncframe. 

2.3.1.4 fscod – Sample Rate Code – 2 Bits 

The fscod field contains a 2-bit code indicating sample rate according to Table E2.2. If thefscod 
field contains ‘11’ the syntax requires the 2-bits following fscodto be fscod2. 

Table E2.2 Sample Rate Codes 

fscod Sampling Rate, kHz

‘00’ 48 

‘01’ 44.1 

‘10’ 32 

‘11’ fscod2 

2.3.1.5 fscod2 / numblkscod – Sample Rate Code 2 / Number of Audio Blocks – 2 Bits 

fscod2 – If the fscod field contains ‘11’ then the 2-bit fscod2 code shall indicate the reduced sample 
rate as shown in Table E2.3, and the number of blocks per syncframe shall be 6. 

Table E2.3 Reduced Sampling Rates 

fscod2 Sampling Rate, kHz

‘00’ 24 

‘01’ 22.05 

‘10’ 16 

‘11’ reserved 

numblkscod – The 2-bit numblkscod code, as shown in Table E2.4, indicates the number of audio 
blocks per syncframe if fscod indicates 32, 44.1, or 48 kHz sampling rate: 

Table E2.4 Number of Audio Blocks Per Syncframe 

numblkscod Indication

‘00’ 1 block per syncframe 

‘01’ 2 blocks per syncframe 

‘10’ 3 blocks per syncframe 

‘11’ 6 blocks per syncframe 
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2.3.1.6 bsid – Bit Stream Identification – 5 Bits 

The bsid field has a value of ‘10000’ (=16) for bitstreams compliant with this Annex. Values of 
bsid smaller than 16 and greater than 10 are used for versions of E-AC-3 which are backwards 
compatible with version 16 decoders. Decoders which can decode version 16 will thus be able to 
decode version numbers less than 16 and greater than 10. Additionally, E-AC-3 decoders shall 
also be able to decode AC-3 bitstreams with bsid values 0 through 8. Decoders compliant with 
this Annex are not able to decode bit streams with bsid=9 or 10. Thus, decoders compliant with 
this Annex shall mute if the value of bsid is 9, 10, or greater than 16, and shall decode and 
reproduce audio if the value of bsid is 0 – 8, or 11 – 16. 

2.3.1.7 chanmape – Custom Channel Map Exists – 1 Bit 

If the chanmape bit is a ‘0’, the channel map for a dependent substream shall be defined by the 
audio coding mode (acmod) and LFE on (lfeon) parameters. If this bit is a ‘1’, the following 16 bits 
define the custom channel map for this dependent substream. 

Only dependent substreams can have a custom channel map. 

2.3.1.8 chanmap – Custom Channel Map – 16 Bits 

The chanmap 16-bit field shall specify the custom channel map for a dependent substream. The 
channel locations supported by the custom channel map are as defined in Table E2.5. Shaded 
entries in Table E2.5 represent channel locations present in the independent substream with 
which the dependent substream is associated. Non-shaded entries in Table E2.5 represent 
channel locations not present in the independent substream with which the dependent substream 
is associated. These channel locations are defined in SMPTE 428-3 [13]". 

Table E2.5 Custom Channel Map Locations 

Bit Location

0 Left 

1 Center 

2 Right 

3 Left Surround 

4 Right Surround 

5 Lc/Rc pair 

6 Lrs/Rrs pair 

7 Cs 

8 Ts 

9 Lsd/Rsd pair 

10 Lw/Rw pair 

11 Vhl/Vhr pair 

12 Vhc 

13 Lts/Rts pair 

14 LFE2 

15 LFE 

The custom channel map indicates which coded channels are present in the dependent 
substream and the order of the coded channels in the dependent substream. Bit 0, which indicates 
the presence of the left channel, is stored in the most significant bit of the chanmap field. For 
each channel present in the dependent substream, the corresponding location bit in the chanmap is 
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set to ‘1’. The order of the coded channels in the dependent substream is the same as the order of 
the enabled location bits in the chanmap. For example, if bits 0, 3, and 4 of the chanmap field are 
set to ‘1’, and the dependent stream is coded with acmod = 3 and lfeon = 0, the first coded channel 
in the dependent stream is the Left channel, the second coded channel is the Left Surround 
channel, and the third coded channel is the Right Surround channel. When the enabled location 
bit in the chanmap field refers to a pair of channels, this defines the channel location of two 
adjacent channels in the dependent substream. For example, if bits 3, 4 and 6 of the chanmap field 
are set to ‘1’, and the dependent stream is coded with acmod = 6 and lfeon = ‘0’, the first coded 
channel in the dependent stream is the Left Surround channel, the second coded channel is the 
Right Surround channel, and the third and fourth channels are the Left Rear Surround and Right 
Rear Surround channels. Note that the number of channel locations indicated by the chanmap field 
must equal the total number of coded channels present in the dependent substream, as indicated 
by the acmod and lfeon bit stream parameters. 

For more information about usage of the chanmap parameter, please refer to Section E3.8. 

2.3.1.9 mixmdate – Mixing Meta-Data Exists – 1 Bit 

If the mixmdate bit is set to ‘1’, mixing and mapping information follows in the bit stream. 

2.3.1.10 lfemixlevcode - LFE mix level code exists - 1 Bit 

If the lfemixlevcode bit is set to ‘1’, the LFE mix level code follows in the bit stream. If lfemixlevcode 
is set to‘0’, since the LFE mix level code is not present in the bit stream, LFE mixing shall be 
disabled. 

2.3.1.11 lfemixlevcod - LFE mix level code - 5 Bits 

The lfemixlevcod 5 bit code specifies the level at which the LFE data is mixed into the Left and 
Right channels during downmixing. The LFE mix level (in dB) shall be derived from the LFE 
mix level code according to the following formula: 
 LFE mix level (dB) = 10 - LFE mix level code 
As the valid values for the LFE mix level code are 0 to 31, the valid values for the LFE mix level 
are therefore +10 to -21 dB. For more information on LFE mixing, please refer to Section E3.9. 

2.3.1.12 pgmscle – Program Scale Factor Exists – 1 Bit 

If the pgmscle bit is set to ‘1’, the program scale factor word shall follow in the bit stream. If 
pgmscle is set to ‘0’, the program scale factor shall be 0 dB (no scaling). 

2.3.1.13 pgmscl – Program Scale Factor – 6 Bits 

The pgmscl field specifies a scale factor that shall be applied to the program during decoding. 
Valid values are 0-63. The value 0 shall be interpreted as mute, and the values 1–63 shall be 
interpreted as a scale factor of –50 dB to +12 dB in 1 dB steps. 

2.3.1.14 pgmscl2e – Program Scale Factor #2 Exists – 1 Bit 

If the pgmscl2e bit is set to ‘1’, the program scale factor #2 word shall follow in the bit stream. If 
it is set to ‘0’, the program scale factor #2 shall be 0 dB (no scaling). 

2.3.1.15 pgmscl2 – Program Scale Factor #2 – 6 Bits 

The pgmscl2 field shall have the same meaning as pgmscl, except that it shall apply to the second 
audio channel when acmod indicates two independent channels (dual mono 1+1 mode). 
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2.3.1.16 extpgmscle – External Program Scale Factor Exists – 1 Bit 

If the extpgmscle bit is set to ‘1’, the external program scale factor word shall follow in the bit 
stream. If extpgmscle is set to ‘0’, the external program scale factor shall be 0 dB (no scaling). 

2.3.1.17 extpgmscl – External Program Scale Factor – 6 Bits 

In some applications, two bit streams or independent substreams may be decoded and mixed 
together. The extpgmscl field specifies a scale factor that shall be applied to an external program 
during decoding of the external program. An external program is defined as a program that is 
carried in a separate bit stream or independent substream from the bit stream or independent 
substream carrying this instance of extpgmscl. This field shall use the same scale as pgmscl. 

2.3.1.18 mixdef – Mix Control Field Length – 2 Bits 

The mixdef 2-bit code, as shown in Table E2.6, shall indicate the mode and parameter field 
lengths for additional mixing control data carried in each frame (also see Table E2.1). 

Table E2.6 Mix Control Field Length 

mixdef Indication

‘00’ mixing option 1, no additional bits 

‘01’ mixing option 2, 5 bits reserved 

‘10’ mixing option 3, 12 bits reserved  

‘11’  mixing option 4, 16-264 bits reserved by mixdeflen 

2.3.1.19 premixcmpsel – Premix Compression Word Select – 1 Bit 

If premixcmpsel is set to ‘0’, dynrng shall be used in the premix compression process, otherwise 
compr fields shall be used in the premix compression process. 

2.3.1.20 drcsrc – Dynamic Range Control Word Source for the Mixed Output – 1 Bit 

If drcsrc is set to ‘0’, the dynrng and compr fields of the external program (i.e., a program that is 
carried in a separate bitstream or independent substream) shall be used to control the mixing of 
the two streams, otherwise the dynrng and compr fields from the current substream shall be used. 
This field is recommended to be set to ‘0’. 

2.3.1.21 premixcmpscl – Premix Compression Word Scale Factor – 3 Bits 

The premixcmpscl field indicates the amount of scaling, as shown in Table E2.7, to be applied to 
the premix compression process before application to the main audio service and before mixing 
of the two streams. This field is recommended to be set to ‘000’. 

The drcsrc, premixcmpsel and premixcmpscl fields shall be present in the bitstream. However they 
should be set to the recommended values, as decoders are not required to use them.5 

                                                 
5 Note: premixcmpsel, drcsrc and premixcmpscl were originally defined to support a mixing model that was capable 

of using DRC as well as gain adjustment to control the mixing process. 
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 Table E2.7 Premix compression word scale factor 

premixcmpscl Scale Factor

‘000’ 0% (no compression) 

‘001’ 16.7% 

‘010’ 33.3% 

‘011’ 50% 

‘100’ 66.7% 

‘101’ 83.3% 

‘111’ 100% (maximum compression) 

Note: The above table shows compression gain reduction ratios. See Section 7.7 
for more details. 

2.3.1.22 mixdeflen – Length of Mixing Parameter Data Field – 5 Bits 

The mixdeflen field defines the mixdata field length for the most flexible mode. mixdeflen = {0,1,2,3, 
… 31} corresponds to mixdata lengths = {2,3,4,5, … 33} bytes. 

2.3.1.23 mixdata – Mixing Parameter Data – (5-264) Bits 

The mixdata field contains control parameters for mixing program streams with external program 
streams. 

2.3.1.24 mixdata2e – Mixing Parameters for Individual Channel Scaling Exist – 1 Bit  

If the mixdata2e field is set to ‘1’, mixing parameters to scale individual channels in an external 
program containing up to 7.1 audio channels shall follow in the bitstream. 

2.3.1.25 extpgmlscle – External Program Left Channel Scale Factor Exists – 1 Bit 

If the extpgmlscle bit is set to ‘1’, the external program left channel scale factor word shall follow 
in the stream. If the external program does not contain a left channel, this field shall be set to ‘0’. 

2.3.1.26 extpgmlscl – External Program Left Channel Scale Factor – 4 Bits  

The extpgmlscl field specifies a scale factor that shall be applied to the left channel of the external 
program during mixing. If the extpgmscl field is present in the bitstream, the total gain applied to 
the left channel of the external program shall be equal to the sum of the gain values indicated by 
the extpgmscl and extpgmlscl fields. The extpgmlscl field shall be interpreted as shown in Table E2.8. 



ATSC A/52:2012 A/52 Annex E 17 December 2012 

 166

Table E2.8 External Program Left Channel Scale Factor6 

extpgmlscl Left channel scale factor(dB)

0 –1 

1 –2 

2 –3 

3 –4 

4 –5 

5 –6 

6 –8 

7 –10 

8 –12 

9 –14 

10 –16 

11 –19 

12 –22 

13 –25 

14 –28 

15 –infinity (mute) 

2.3.1.27 extpgmcscle – External Program Center Channel Scale Factor Exists – 1 Bit 

If the extpgmcscle bit is set to ‘1’, the external program center channel scale factor word shall 
follow in the bit stream. If the external program does not contain a center channel, this bit shall 
be set to ‘0’. 

2.3.1.28 extpgmcscl – External Program Center Channel Scale Factor – 4 Bits 

The extpgmcscl field specifies a scale factor that shall be applied to the center channel of the 
external program during mixing. If the extpgmscl field is present in the bitstream, the total gain 
applied to the center channel of the external program shall be equal to the sum of the gain values 
indicated by the extpgmscl and extpgmcscl fields. This field shall be coded as shown in Table E2.8. 

2.3.1.29 extpgmrscle – External Program Right Channel Scale Factor Exists – 1 Bit 

If the extpgmrscle bit is set to ‘1’, the external program right channel scale factor word shall follow 
in the stream. If the external program does not contain a right channel, this bit shall be set to ‘0’. 

2.3.1.30 extpgmrscl – External Program Right Channel Scale Factor – 4 Bits 

The extpgmrscl field specifies a scale factor that shall be applied to the right channel of the 
external program during mixing. If the extpgmscl field is present in the bitstream, the total gain 
applied to the right channel of the external program shall be equal to the sum of the gain values 
indicated by the extpgmscl and extpgmrscl fields. This field shall be coded in the same way as 
extpgmlscl (per Table E2.8). 

2.3.1.31 extpgmlsscle – External Program Left Surround Channel Scale Factor Exists – 1 Bit 

If the extpgmlsscle bit is set to ‘1’, the external program left surround channel scale factor word 
shall follow in the stream. If the external program does not contain a left surround or mono 
surround channel, this bit shall be set to ‘0’. 

                                                 
6 See text for re-use of this table for other channels. 
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2.3.1.32 extpgmlsscl – External Program Left Surround Channel Scale Factor – 4 Bits 

The extpgmlsscl field specifies a scale factor that is applied to the left surround channel of the 
external program during mixing. If the extpgmscl field is present in the bitstream, the total gain 
applied to the left surround channel of the external program shall be equal to the sum of the gain 
values indicated by the extpgmscl and extpgmlsscl fields. This field shall be coded in the same way 
as extpgmlscl (per Table E2.8). 

2.3.1.33 extpgmrsscle – External Program Right Surround Channel Scale Factor Exists – 1 Bit 

If the extpgmrsscle bit is set to ‘1’, the external program right surround channel scale factor word 
shall follow in the stream. If the external program does not contain a right surround channel, this 
bit shall be set to ‘0’. 

2.3.1.34 extpgmrsscl – External Program Right Surround Channel Scale Factor – 4 Bits 

The extpgmrsscl field specifies a scale factor that shall be applied to the right surround channel of 
the external program during mixing. If the extpgmscl field is present in the bitstream, the total gain 
applied to the right surround channel of the external program shall be equal to the sum of the 
gain values indicated by the extpgmscl and extpgmrsscl fields. This field shall be coded in the same 
way as extpgmlscl (per Table E2.8). 

2.3.1.35 extpgmlfescle – External Program LFE Channel Scale Factor Exists – 1 Bit 

If the extpgmlfescle bit is set to ‘1’, the external program LFE channel scale factor word shall 
follow in the stream. If the external program does not contain a LFE channel, this bit shall be set 
to ‘0’. 

2.3.1.36 extpgmlfescl – External Program LFE Channel Scale Factor – 4 Bits 

The extpgmlfescl field specifies a scale factor that shall be applied to the LFE channel of the 
external program during mixing. If the extpgmscl field is present in the bitstream, the total gain 
applied to the LFE channel of the external program shall be equal to the sum of the gain values 
indicated by the extpgmscl and extpgmlfescl fields. This field shall be coded in the same way as 
extpgmlscl (per Table E2.8). 

2.3.1.37 dmixscle – External Program Downmix Scale Factor Exists – 1 Bit 

If the dmixscle bit is set to ‘1’, the external program downmix scale factor word shall follow in the 
stream.  

2.3.1.38 dmixscl – External Program Downmix Scale Factor – 4 Bits 

The dmixscl field specifies a scale factor that can be applied to a multichannel external program 
that has been downmixed to two channels before individual channel scale factors could be 
applied. If the extpgmscl field is present in the bitstream, the total gain that shall be applied to the 
downmixed external program shall be the sum of the gain values indicated by the extpgmscl and 
dmixscl fields. This scale factor shall only be applied when the external program has been 
downmixed before individual channel scale factors could be applied. This field shall be coded in 
the same way as extpgmlscl (per Table E2.8). 

Note: The dmixscl parameter is useful in the case where the main audio has been 
downmixed to 2-channels inside the AC-3/E-AC-3 decoder, and only two 
channels are being delivered to the audio mixer. In this situation, individual 
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channel scaling factors that are carried in the E-AC-3 stream for the purpose of 
scaling the decoded multichannel main audio can no longer be applied to their 
corresponding channels in the audio mixer, as these channels have already been 
downmixed. The dmixscl parameter allows for additional attenuation to be applied 
to the downmixed main audio when necessary. 

2.3.1.39 addche – Scale Factors for Additional External Program Channels Exist – 1 Bit 

When the addche bit is set to ‘1’, additional scale factors may follow in the stream. If the external 
program does not contain more than 5.1 channels of audio, this bit shall be set to ‘0’.  

2.3.1.40 extpgmaux1scle – External Program First Auxiliary Channel Scale Factor Exists – 1 Bit  

If the addche bit is set to ‘1’, the extpgmaux1scle bit shall follow in the stream. If the extpgmaux1scle 
bit is set to ‘1’, the external program first auxiliary channel scale factor word shall follow in the 
stream. 

Note: “auxiliary” channel refers in this case to a channel with a channel location 
that can only be indicated using the chanmap parameter (Section E2.3.1.8) and 
cannot be indicated using the acmod parameter, (e.g. the Vhc channel). For 
example, in a 6.1-channel program, a single auxiliary channel will be present, and 
in a 7.1 channel program, two auxiliary channels will be present. The use of 
“auxiliary”, rather than assigning fixed channel location labels, is because E-AC-3 
can assign a number of different channel locations to these coded channels 
through use of the chanmap parameter.  

2.3.1.41 extpgmaux1scl – External Program First Auxiliary Channel Scale Factor – 4 Bits 

The extpgmaux1scl field specifies a scale factor that shall be applied to the first auxiliary channel 
of the external program during mixing. If the extpgmscl field is present in the bitstream, the total 
gain applied to the first auxiliary channel of the external program shall be the sum of the gain 
values indicated by the extpgmscl and extpgmaux1scl fields. This field shall be coded in the same 
way as extpgmlscl (per Table E2.8). 

2.3.1.42 extpgmaux2scle – External Program Second Auxiliary Channel Scale Factor Exists – 1 Bit  

If the addche bit is set to ‘1’, the extpgmaux2scle bit shall follow in the stream. If the extpgmaux2scle 
bit is set to ‘1’, the external program second auxiliary channel scale factor word shall follow in 
the stream. If the external program contains only a single auxiliary channel, this bit shall be set to 
‘0’ when present in the stream. 

2.3.1.43 extpgmaux2scl – External Program Second Auxiliary Channel Scale Factor – 4 Bits 

The extpgmaux2scl field specifies a scale factor that shall be applied to the second auxiliary 
channel of the primary audio during mixing. If the extpgmscl field is present in the bitstream, the 
total gain applied to the second auxiliary channel of the external program shall be the sum of the 
gain values indicated by the extpgmscl and extpgmaux2scl fields. This field shall be coded in the 
same way as extpgmlscl (per Table E2.8).  

2.3.1.44 mixdata3e – Mixing Parameters for Speech Processing Exist – 1 Bit 

When mixdata3e is set to ‘1’, information for controlling speech enhancement processing shall 
follow in the bitstream. 



ATSC A/52:2012 A/52 Annex E 17 December 2012 

 169

2.3.1.45 spchdat – Speech Enhancement Processing Data – 5 Bits 

The spchdat field contains speech enhancement processing parameters. The values of these 
parameters are determined by the degree to which a first channel or pair of channels of the 
program are dominated by speech. 

Note: These fields are placeholders for as yet undefined data to enhance speech 
intelligibility. 

2.3.1.46 addspchdate – Additional Speech Enhancement Processing Data Exists – 1 Bit 

If the addspchdate bit is set to ‘1’, additional information for controlling speech enhancement 
processing shall follow in the bitstream. 

2.3.1.47 spchdat1 – Additional Speech Enhancement Processing Data – 5 Bits 

The spchdat1 field contains speech enhancement processing parameters. The values of these 
parameters shall be determined by the degree to which a second channel or pair of channels of 
the program are dominated by speech. 

2.3.1.48 spchan1att – Speech Enhancement Processing Attenuation Data – 2 Bits 

The spchan1att field shall define which channels in the program are designated as containing 
speech information and whether channels not containing speech information may be attenuated.  

2.3.1.49 addspchdat1e – Additional Speech Enhancement Processing Data Exists – 1 Bit 

If the addspchdat1e bit is set to ‘1’, additional information for controlling speech enhancement 
processing shall follow in the bitstream. 

2.3.1.50 spchdat2 – Additional Speech Enhancement Processing Data – 5 Bits 

The spchdat2 field contains speech enhancement processing parameters. The values of these 
parameters are determined by the degree to which a third channel or pair of channels of the 
program are dominated by speech. 

2.3.1.51 spchan2att – Speech Enhancement Processing Attenuation Data – 3 Bits 

The spchan2att field shall define which additional channels in the program are designated as 
containing speech information and whether channels not containing speech information may be 
attenuated.  

2.3.1.52 mixdatafill – Mixdata Field Fill Bits – 0 to 7 Bits 

The mixdatafill field is of variable length, and shall be used to round up the size of the mixdata 
field to the nearest byte. All bits within mixdatafill shall be set to 0. 

2.3.1.53 paninfoe – Pan Information Exists – 1 Bit 

If the paninfoe bit is a ‘1’, panning information shall follow in the bit stream. If it is ‘0’, the pan 
position word is defaulted to “center”. 

2.3.1.54 panmean – Pan Mean Direction Index – 8 Bits 

The panmean 8-bit field shall define the mean angle of rotation index relative to the center 
position for a panned source in a two dimensional sound field. A value of 0 indicates the panned 
virtual source points toward the center speaker location (defined as 0 degrees). The index 
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indicates 1.5 degree increments in a clockwise rotation. Values 0 to 239 represent 0 to 358.5 
degrees, while values 240 to 255 are reserved. 

2.3.1.55 paninfo – Reserved – 6 Bits 

The paninfo field is reserved for future mixing applications. 

2.3.1.56 paninfo2e – Pan Information Exists – 1 Bit 

If the paninfo2e bit is a ‘1’, panning information #2 shall follow in the bit stream. If it is ‘0’, the 
pan position word shall be defaulted to “center”. 

2.3.1.57 panmean2 – Pan Mean Direction Index – 8 Bits 

The panmean2 field shall have the same meaning as panmean, except that it applies to the second 
audio channel when acmod indicates two independent channels (dual mono 1+1 mode). 

2.3.1.58 paninfo2 – reserved – 6 bits 

The paninfo2 data field is reserved for future mixing applications. 

2.3.1.59 frmmixcnfginfoe – Frame Mixing Configuration Information Exists – 1 Bit  

The frmmixcnfginfoe bit indicates whether mixing configuration information that applies to the 
entire syncframe follows in the bit stream. If that bit is set to ‘0’, no frame mixing configuration 
information shall follow in the bit stream. If that bit is set to ‘1’, frame mixing configuration 
information shall follow in the bit stream. 

2.3.1.60 blkmixcfginfoe – Block Mixing Configuration Information Exists – 1 Bit 

The blkmixcfginfoe bit indicates whether block mixing configuration information follows in the bit 
stream. If that bit is set to ‘0’, no block mixing configuration information shall follow in the bit 
stream. If that bit is set to ‘1’, block mixing configuration information shall follow in the bit 
stream. In the case where the number of blocks per syncframe is 1, this bit shall be inferred as ‘1’ 
and the bit shall not be present in the bit stream. 

2.3.1.61 blkmixcfginfo[blk] – block mixing configuration information – 5 Bits 

The blkmixcfginfo[blk] field shall contain block mixing configuration information for the designated 
audio block. 

2.3.1.62 infomdate – Informational Metadata Exists – 1 Bit 

If the infomdate bit is set to ‘1’, informational metadata shall follow in the bit stream. The 
semantics for bsmod, copyrightb, origbs, dsurexmod, audprodie, mixlevel, roomtyp, adconvtyp, audprodi2e, 

roomtyp2, and adconvtyp2 fields are given in Section 5.4.2 above and the semantics for sourcefscod 
are below. 

2.3.1.63 sourcefscod – Source Sample Rate Code – 1 Bit 

A sourcefscod bit value of ‘1’ shall indicate the source material was sampled at twice the rate 
indicated by fscod. 

2.3.1.64 convsync – Converter Synchronization Flag – 1 Bit 

The convsync bit shall be used for synchronization by a device that converts an E-AC-3 bit stream 
to an AC-3 bit stream. 
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2.3.1.65 blkid – Block Identification – 1 Bit 

If strmtyp indicates a Type 2 bit stream, the blkid bit shall be set to ‘1’ to indicate that the first 
block in this E-AC-3 syncframe was the first block in the original AC-3 syncframe. 

2.3.2 audfrm – Audio Frame 

2.3.2.1 expstre – Exponent Strategy Enabled – 1 Bit 

If the expstre bit is a ‘1’, the fields for the full exponent strategy shall be present in each audio 
block. If this bit is a ‘0’, then the fields for the frame-based exponent strategy shall be as 
specified by Sections 2.3.2.12 and 2.3.2.13. 

2.3.2.2 ahte – Adaptive Hybrid Transform Enabled – 1 Bit 

If an Adaptive Hybrid Transform (AHT) is used to code at least one of the independent channels, 
the coupling channel, or the LFE channel in the current frame, the ahte bit shall be set to ‘1’,. If 
the entire frame is coded using the bit allocation and quantization model described in Sections 
7.2 and 7.3 in the main body of this document, this bit shall be a ‘0’. 

2.3.2.3 snroffststr – SNR Offset Strategy – 2 Bits 

The snroffststr field shall indicate the SNR offset strategy using one of the values defined in Table 
E2.9. 

Table E2.9 SNR Offset Strategy 

snroffststr Indication

‘00’ SNR offset strategy 1 

‘01’ SNR offset strategy 2 

‘10’ SNR offset strategy 3 

‘11’ Reserved 

SNR Offset Strategy 1: When SNR Offset Strategy 1 is indicated, one coarse SNR offset value 
(frmcsnroffst) and one fine SNR offset value (frmfsnroffst) is required to be transmitted in the bit 
stream once per frame. These SNR offset values shall apply to every channel of every block 
in the frame, including the coupling and LFE channels. 

SNR Offset Strategy 2: When SNR Offset Strategy 2 is indicated, one coarse SNR offset value 
(csnroffst) and one fine SNR offset value (blkfsnroffst) is required to be transmitted in the bit 
stream as often as once per block. When the fine SNR offset value is transmitted in a block, it 
shall apply to every channel in the block, including the coupling and LFE channels. When 
coarse and fine SNR offset values are not transmitted in a block, the decoder shall reuse the 
coarse and fine SNR offset values from the previous block. One coarse and one fine SNR 
offset value is required to be transmitted in block 0. The coarse and fine SNR offset values 
transmitted in block 0 shall apply to every channel in block 0, including the coupling and 
LFE channels. 

SNR Offset Strategy 3: When SNR Offset Strategy 3 is indicated, coarse and fine SNR offset 
values is required to be transmitted in the bit stream as often as once per block. Separate fine 
SNR offset values is required to be transmitted for each independent channel (fsnroffst), the 
coupling channel (cplfsnroffst) and the LFE channel (lfefsnroffst). For blocks in which coarse or 
fine SNR offset values are not transmitted in the bit stream, the decoder shall reuse the coarse 
and fine SNR offset values from the previous block. Coarse and fine SNR offset values is 
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required to be transmitted in block 0. The coarse and fine SNR offset values transmitted in 
block 0 shall apply to every channel in block 0, including the coupling and LFE channels. 

2.3.2.4 transproce – Transient Pre-Noise Processing Enabled – 1 Bit 

If at least one channel in the current frame contains transient pre-noise processing data the 
transproce bit shall be a ‘1’. If transient pre-noise processing is not utilized in this frame, it shall 
be ‘0’. 

2.3.2.5 blkswe – Block Switch Syntax Enabled – 1 Bit 

If the blkswe bit is a ‘1’, full block switch syntax shall be present in each audio block. 

2.3.2.6 dithflage – Dither Flag Syntax Enabled – 1 Bit 

If the dithflage bit is a ‘1’, full dither flag syntax shall be present in each audio block. 

2.3.2.7 bamode – Bit Allocation Model Syntax Enabled – 1 Bit 

If the bamode bit is a ‘1’, full bit allocation syntax shall be present in each audio block. 

2.3.2.8 frmfgaincode – Fast Gain Codes Exist – 1 Bit 

If fast gain codes (per Section 5.4.3.39, 41, 43) are transmitted in the bit stream, frmfgaincode shall 
be a ‘1’. If no fast gain codes are transmitted in the bit stream, this bit shall be a ‘0’, and default 
fast gain code values (see Section 8.2.12) shall be used for every channel of every block in the 
frame. 

2.3.2.9 dbaflde – Delta Bit Allocation Syntax Enabled – 1 Bit 

If the dbaflde bit is ‘1’, full delta bit allocation syntax shall be present in each audio block. 

2.3.2.10 skipflde – Skip Field Syntax Enabled – 1 Bit 

If the skipflde bit is ‘1’, full skip field syntax shall be present in each audio block. 

2.3.2.11 spxattene – Spectral Extension Attenuation Enabled – 1 Bit 

If the spxattene bit is ‘1’, at least one channel in the current frame shall contain spectral extension 
attenuation data. If it is ‘0’, spectral extension attenuation processing shall not be utilized in the 
frame. 

2.3.2.12 frmcplexpstr – Frame Based Coupling Exponent Strategy – 5 Bits 

The frmcplexpstr field shall specify the coupling channel exponent strategy for all audio blocks, as 
defined in Table E2.10. Note that exponent strategies D15, D25, and D45 are defined in Section 
7.1 in the main body of this document, while ‘R’ indicates that exponents from the previous 
block shall be reused. 

2.3.2.13 frmchexpstr[ch] – Frame Based Channel Exponent Strategy – 5 Bits 

The frmchexpstr[ch] field shall specify the channel exponent strategy for all audio blocks, as 
defined in Table E2.10. Note that exponent strategies D15, D25, and D45 are defined in Section 
7.1 in the main body of this document, while ‘R’ indicates that exponents from the previous 
block shall be reused. 
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2.3.2.14 convexpstre – Converter Exponent Strategy Exists – 1 Bit 

If the convexpstre bit is ‘1’, exponent strategy data used by the E-AC-3 to AC-3 converter follows 
in the bit stream. Exponent strategy data is required to be provided once every 6 blocks. 

2.3.2.15 convexpstr[ch] – Converter Channel Exponent Strategy – 5 Bits 

This convexpstr[ch] field shall specify the exponent strategy, as defined in Table E2.10, for each 
block of an AC-3 syncframe converted from a set of one or more E-AC-3 syncframes. Note: this 
applies to each full bandwidth channel in the block. 
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Table E2.10 Frame Exponent Strategy Combinations 

frmcplexpstr Audio Block Number

0 1 2 3 4 5 

0 D15 R R R R R 

1 D15 R R R R D45 

2 D15 R R R D25 R 

3 D15 R R R D45 D45 

4 D25 R R D25 R R 

5 D25 R R D25 R D45 

6 D25 R R D45 D25 R 

7 D25 R R D45 D45 D45 

8 D25 R D15 R R R 

9 D25 R D25 R R D45 

10 D25 R D25 R D25 R 

11 D25 R D25 R D45 D45 

12 D25 R D45 D25 R R 

13 D25 R D45 D25 R D45 

14 D25 R D45 D45 D25 R 

15 D25 R D45 D45 D45 D45 

16 D45 D15 R R R R 

17 D45 D15 R R R D45 

18 D45 D25 R R D25 R 

19 D45 D25 R R D45 D45 

20 D45 D25 R D25 R R 

21 D45 D25 R D25 R D45 

22 D45 D25 R D45 D25 R 

23 D45 D25 R D45 D45 D45 

24 D45 D45 D15 R R R 

25 D45 D45 D25 R R D45 

26 D45 D45 D25 R D25 R 

27 D45 D45 D25 R D45 D45 

28 D45 D45 D45 D25 R R 

29 D45 D45 D45 D25 R D45 

30 D45 D45 D45 D45 D25 R 

31 D45 D45 D45 D45 D45 D45 

2.3.2.16 cplahtinu – Coupling Channel AHT in Use – 1 Bit 

If the cplahtinu bit is ‘1’, the coupling channel shall be coded using an Adaptive Hybrid 
Transform. If this bit is ‘0’, conventional coupling channel coding shall be used. 

2.3.2.17 chahtinu[ch] – Channel AHT in Use – 1 Bit 

If the chahtinu[ch] bit is ‘1’, channel ch shall be coded using an Adaptive Hybrid Transform. If this 
bit is ‘0’, conventional channel coding shall be used. 
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2.3.2.18 lfeahtinu – LFE Channel AHT in Use – 1 Bit 

If the lfeahtinu bit is ‘1’, the LFE channel shall be coded using an Adaptive Hybrid Transform. If 
this bit is ‘0’, conventional LFE channel coding shall be used. 

2.3.2.19 frmcsnroffst – Frame Coarse SNR Offset – 6 Bits 

The frmcsnroffst field shall contain the frame coarse SNR offset value. Valid values are 0-63, 
which shall be interpreted as an offset value of –45 dB to 144 dB in 3 dB steps. This coarse SNR 
offset value shall be used for every channel of every block in the frame, including the coupling 
and LFE channels. 

2.3.2.20 frmfsnroffst – Frame Fine SNR Offset – 4 Bits 

The frmfsnroffst field shall contain the frame fine SNR offset value. Valid values are 0-15, which 
shall be interpreted as an offset value of 0 dB to 2.8125 dB in 0.1875 dB steps. This fine SNR 
offset value shall be used for every channel of every block in the frame, including the coupling 
and LFE channels. 

2.3.2.21 chintransproc[ch] – Channel in Transient Pre-Noise Processing – 1 Bit 

If the chintransproc[ch] bit is‘1’, then the corresponding full bandwidth audio channel is required to 
have associated transient pre-noise processing data. 

2.3.2.22 transprocloc[ch] – Transient Location Relative to Start of Frame – 10 Bits 

The transprocloc[ch] field shall provide the location of the transient relative to the start of the 
current frame. The transient location (in samples) shall be calculated by multiplying this value by 
4. It is possible for the transient to be located in a later audio frame and therefore this number can 
exceed the number of PCM samples contained within the current frame. 

2.3.2.23 transproclen[ch] – Transient Processing Length – 8 Bits 

The transproclen[ch] field shall provide the transient pre-noise processing length in samples, 
relative to the location of the transient provided by the value of transprocloc[ch]. 

2.3.2.24 chinspxatten[ch] – Channel in Spectral Extension Attenuation Processing – 1 Bit 

If the chinspxatten[ch] bit is ‘1’, the channel indicated by the index ch shall be coded using spectral 
extension attenuation processing. If it is ‘0’, the channel indicated by the index ch shall not be 
coded using spectral extension attenuation processing. 

2.3.2.25 spxattencod[ch] – Spectral Extension Attenuation Code – 5 Bits 

The spxattencod[ch] field shall specify the index into Table E3.14 from which spectral extension 
attenuation values for the channel indicated by the index ch are to be derived. 

2.3.2.26 blkstrtinfoe – Block Start Information Exists – 1 Bit 

If the blkstrtinfoe bit is ‘1’, block start information is required to follow in the bit stream. If this bit 
is ‘0’, block start information does not follow in the bit stream. 

2.3.2.27 blkstrtinfo – Block Start Information – nblkstrtbits 

The blkstrtinfo field shall contain the block start information. The number of bits of block start 
information shall be given by the formula: 

nblkstrtbits = (numblks – 1) * (4 + ceiling (log2 (words_per_frame))) 
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where: 
numblks is equal to the number of blocks in the frame as indicated by the value of numblkscod per 
Table E2.4  
ceiling(n) is a function that rounds the fractional number n up to the next higher integer. 

For example, 

ceiling(2.1) = 3 

log2(n) is the base 2 logarithm of n 

words_per_frame = frmsiz + 1 

2.3.2.28 firstspxcos[ch] – First Spectral Extension Coordinates States – 1 Bit 

The firstspxcos[ch] field determines the state of when new spectral extension coordinates shall be 
present in the bit stream. If firstspxcos[ch] is set to ‘1’, the spxcoe[ch] bit is assumed to be ‘1’ for the 
current block and is not transmitted in the bit stream. 

2.3.2.29 firstcplcos[ch] – First Coupling Coordinates States – 1 Bit 

The firstcplcos[ch] field determines the state of when new coupling coordinates shall be in the bit 
stream. If firstcplcos[ch] is set to ‘1’, the cplcoe[ch] bit is assumed to be ‘1’ for the current block and 
is not transmitted in the bit stream. 

2.3.2.30 firstcplleak – First Coupling Leak State – 1 Bit 

The firstcplleak field determines the state of when new coupling leak values shall be present in the 
bit stream. If firstcplleak is set to ‘1’, the cplleake bit is assumed to be ‘1’ for the current block and is 
not transmitted in the bit stream. 

2.3.3 audblk – Audio Block 

2.3.3.1 spxstre – Spectral Extension Strategy Exists – 1 Bit 

If the spxstre bit is ‘1’, spectral extension information shall follow in the bit stream. If it is ‘0’, 
new spectral extension information shall not be present, and spectral extension parameters 
previously sent are reused. 

2.3.3.2 spxinu – Spectral Extension in Use – 1 Bit 

If the spxinu bit is ‘1’, then the spectral extension technique shall be used in this block. If this bit 
is ‘0’, then the spectral extension technique shall not be used in this block. 

2.3.3.3 chinspx[ch] – Channel Using Spectral Extension – 1 Bit 

If the chinspx[ch] bit is ‘1’, then the channel indicated by the index [ch] shall utilize spectral 
extension. If the bit is ‘0’, then this channel shall not utilize spectral extension. 

2.3.3.4 spxstrtf – Spectral Extension Start Copy Frequency Code – 2 Bits 

The spxstrtf field shall be used to derive the number of the lowest frequency sub-band of the 
spectral extension copy region. See Table E3.13 for the definition of the spectral extension sub-
bands. 
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2.3.3.5 spxbegf – Spectral Extension Begin Frequency Code – 3 Bits 

The spxbegf field shall be used to derive the number of the lowest frequency sub-band of the 
spectral extension region. The index of the first active spectral extension sub-band shall be equal 
to spx_begin_subbnd and shall be calculated as shown in the following pseudo-code: 

 if (spxbegf < 6) {spx_begin_subbnd = spxbegf + 2} 
 else {spx_begin_subbnd = spxbegf * 2 – 3} 

2.3.3.6 spxendf – Spectral Extension End Frequency Code – 3 Bits 

The spxendf field shall be used to derive a number one greater than the highest frequency sub-
band of the spectral extension region. The index of one greater than the highest active spectral 
extension sub-band shall be equal to spx_end_subbnd and shall be calculated as shown in the 
following pseudo-code: 

 if (spxendf < 3) {spx_end_subbnd = spxendf + 5} 
 else {spx_end_subbnd = spxendf * 2 + 3} 

2.3.3.7 spxbndstrce – Spectral Extension Band Structure Exist – 1 Bit 

If the spxbndstrce bit is ’1’, the spectral extension band structure shall follow. If it is ‘0’ in the first 
block using spectral extension, a default spectral extension band structure shall be used. If it is 
‘0’ in any other block, the band structure from the previous block shall be reused. The default 
banding structure defspxbndstrc[] is shown in Table E2.11. 
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Table E2.11 Default Spectral Extension Banding Structure 

spx sub-band # defspxbndstrc[]

0 0 

1 0 

2 0 

3 0 

4 0 

5 0 

6 0 

7 0 

8 1 

9 0 

10 1 

11 0 

12 1 

13 0 

14 1 

15 0 

16 1 

2.3.3.8 spxbndstrc[bnd] – Spectral Extension Band Structure – 1 to 14 Bits 

The spxbndstrc[bnd] data structure shall determine the grouping of subbands in spectral extension, 
and operates in the same fashion as the coupling band structure. For each subband:  

• A ‘0’ represents the beginning of a new band 
• A ‘1’ indicates that the subband should be combined into the previous band. 

Note that it is assumed that the first band begins at the first subband. Therefore, the first band is 
assumed to be ‘0’ and not sent. The first band in the structure corresponds to the second subband. 

2.3.3.9 spxcoe[ch] – Spectral Extension Coordinates Exist – 1 Bit 

If the spxcoe[ch] bit is ‘1’, spectral extension coordinate information shall follow. If it is ‘0’, the 
spectral extension coordinates from the previous block shall be used. 

2.3.3.10 spxblnd[ch] – Spectral Extension Blend – 5 Bits 

The spxblnd[ch] per channel field shall determine the per channel noise blending factor (translated 
signal mixed with random noise) for the spectral extension process. 

2.3.3.11 mstrspxco[ch] – Master Spectral Extension Coordinate – 2 Bits 

The mstrspxco[ch] per channel field shall establish a per channel gain factor (increasing the 
dynamic range) for the spectral extension coordinates as shown in Table E2.12. 
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Table E2.12 Master Spectral Extension Coordinate 

mstrspxco[ch] spxco[ch][bnd] gain multiplier

‘00’ 1 

‘01’ 2-3 

‘10’ 2-6 

‘11’ 2-9 

2.3.3.12 spxcoexp[ch][bnd] – Spectral Extension Coordinate Exponent – 4 Bits 

Each spectral extension coordinate is composed of a 4-bit exponent and a 2-bit mantissa. The 
spxcoexp[ch][bnd] field shall be the value of the spectral extension coordinate exponent for channel 
[ch] and band [bnd]. The index [ch] shall be present only for those channels that are using spectral 
extension. The index [bnd] will range from zero to nspxbnds. 

2.3.3.13 spxcomant[ch][bnd] – Spectral Extension Coordinate Mantissa – 2 Bits 

The spxcomant[ch][bnd] field shall be the 2-bit spectral extension coordinate mantissa for the 
channel [ch] and band [bnd]. The index [ch] shall be present only for those channels that are using 
spectral extension. The index [bnd] will range from zero to nspxbnds. 

2.3.3.14 ecplinu – Enhanced Coupling in Use – 1 Bit 

If the ecplinu bit is ‘1’, enhanced coupling shall be used for the current block. If this bit is ‘0’, 
standard coupling shall be used for the current block. 

2.3.3.15 cplbndstrce – Coupling Banding Structure Exist – 1 Bit 

If the cplbndstrce bit is ‘1’, the coupling banding structure shall follow. If it is ‘0’ in the first block 
of a frame that uses coupling, the default coupling banding structure shall be used. If it is ‘0’ in 
any other block in the same frame, the banding structure from the previous block shall be reused. 
The default coupling banding structure defcplbndstrc[] shall be as shown in Table E2.12. 
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Table E2.12 Default Coupling Banding Structure 

couple sub-band # defcplbndstrc[]

0  

1 0 

2 0 

3 0 

4 0 

5 0 

6 0 

7 0 

8 1 

9 0 

10 1 

11 1 

12 0 

13 1 

14 1 

15 1 

16 1 

17 1 

2.3.3.16 ecplbegf – Enhanced Coupling Begin Frequency Code – 4 Bits 

The ecplbegf 4-bit field shall be used to derive the index of the first (lowest frequency) active 
enhanced coupling sub-band as shown in Table E3.8. The index of the first active enhanced 
coupling sub-band is equal to ecpl_begin_subbnd and shall be calculated as shown in the following 
pseudo-code: 

 if (ecplbegf < 3) {ecpl_begin_subbnd = ecplbegf * 2} 
 else if (ecplbegf < 13) {ecpl_begin_subbnd = ecplbegf + 2} 
 else {ecpl_begin_subbnd = ecplbegf * 2 - 10} 

2.3.3.17 ecplendf – Enhanced Coupling End Frequency Code – 4 Bits 

The ecplendf 4-bit field shall be used to derive a number one greater than the highest frequency 
sub-band of the enhanced coupling region. See Table E3.8. The index of one greater than the 
highest active enhanced coupling sub-band is equal to ecpl_end_subbnd and shall be calculated as 
shown in the following pseudo-code: 

 if (spxinu == 0) {ecpl_end_subbnd = ecplendf + 7} 
 else if (spxbegf < 6) {ecpl_end_subbnd = spxbegf + 5} 
 else {ecpl_end_subbnd = spxbegf * 2} 

2.3.3.18 ecplbndstrce – Enhanced Coupling Banding Structure Exists – 1 Bit 

If the ecplbndstrce parameter is ‘1’, the enhanced coupling banding structure shall follow. If it is 
‘0’ in the first block of the frame that uses enhanced coupling, the default enhanced coupling 
banding structure shall be used. If it is ‘0’ in any other block in the frame, the banding structure 
from the previous block shall be reused. The default enhanced coupling banding structure 
defecplbndstrc[] shall be as shown in Table E2.13. 
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Table E2.13 Default Enhanced Coupling Banding Structure 

Enhanced Coupling
Sub-Band # 

defecplbndstrc[]
 

0 to 8 0 

9 1 

10 0 

11 1 

12 0 

13 1 

14 0 

15 1 

16 1 

17 1 

18 0 

19 1 

20 1 

21 1 

2.3.3.19 ecplbndstrc[sbnd] – Enhanced Coupling Band (and sub-band) Structure – 1 Bit 

There are 22 enhanced coupling sub-bands defined in Table E3.7, each containing either 6 or 12 
frequency coefficients. The fixed 12-bin wide enhanced coupling sub-bands 8 and above are 
converted into enhanced coupling bands, each of which may be wider than (a multiple of) 12 
frequency bins. Sub-bands 0 through 7 are never grouped together to form larger enhanced 
coupling bands, and are thus each considered enhanced coupling bands. Each enhanced coupling 
band may contain one or more enhanced coupling sub-bands. Enhanced coupling coordinates are 
transmitted for each enhanced coupling band. Each band’s enhanced coupling coordinate must 
be applied to all the coefficients in the enhanced coupling band. 

The enhanced coupling band structure indicates which enhanced coupling sub-bands are 
combined into wider enhanced coupling bands. When ecplbndstrc[sbnd] is a ‘0’, the sub-band 
number [sbnd] is not combined into the previous band to form a wider band, but starts a new 12-
bin wide enhanced coupling band. When ecplbndstrc[sbnd] is a ‘1’, then the sub-band [sbnd] shall be 
combined with the previous band, making the previous band 12 bins wider. Each successive 
value of ecplbndstrc which is a ‘1’ shall continue to combine sub-bands into the current band. 
When another ecplbndstrc value of ‘0’ is received, then a new band shall be formed, beginning 
with the 12 bins of the current sub-band. 

The set of ecplbndstrc[sbnd] values can be considered as an array. Each bit in the array 
corresponds to a specific enhanced coupling sub-band in ascending frequency order. The 
elements of the array corresponding to the sub-bands up to and including ecpl_begin_subbnd or 8 
(whichever is greater), are always zero, and as the ecplbndstrc bits for these sub-bands are known 
to be zero, they are not transmitted. Furthermore, if there is only one enhanced coupling sub-
band above sub-band 7, then no ecplbndstrc bits are sent. 

The total number of enhanced coupling bands, necplbnd, may be computed as shown in the 
following pseudo-code: 

 necplbnd = ecpl_end_subbnd - ecpl_begin_subbnd; 
 necplbnd -= ecplbndstrc[ecpl_begin_subbnd] + … + ecplbndstrc[ecpl_end_subbnd -1] 
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2.3.3.20 ecplangleintrp – Enhanced Coupling Angle Interpolation Flag – 1 Bit 

If the ecplangleintrp bit is set to ‘1’, then interpolation shall be used to derive enhanced coupling 
bin angle values between band angle values according to the pseudo-code specified in Section 
E.3.5.5.3. If this element is set to ‘0’, then interpolation shall not be used and the enhanced 
coupling band value shall be applied to all the bin angle values within the band. 

2.3.3.21 ecplparam1e[ch] – Enhanced Coupling Parameters 1 Exist – 1 Bit 

Enhanced coupling parameters are used to derive the enhanced coupling coordinates which 
indicate, for a given channel and within a given enhanced coupling band, the fraction of the 
enhanced coupling channel frequency coefficients to use to re-create the individual channel 
frequency coefficients. Enhanced coupling parameters are conditionally transmitted in the bit 
stream. If new values are not delivered, the previously sent values remain in effect. See Section 
E.3.5 for further information on enhanced coupling. 

Each enhanced coupling coordinate is derived from a 5-bit amplitude, a 6-bit angle, a 3-bit 
chaos measure and a 1-bit transient present flag. With the exception of the transient present flag, 
enhanced coupling parameters are signaled by two exist bits. 

If ecplparam1e[ch] is ‘1’, the amplitudes for the corresponding channel [ch] exist and shall 
follow in the bit stream. If the bit is ‘0’, the previously transmitted amplitudes for this channel 
shall be reused. All amplitudes shall always be transmitted in the first block in which enhanced 
coupling is enabled. 

2.3.3.22 ecplparam2e[ch] – Enhanced Coupling Parameters 2 Exist – 1 Bit 

If ecplparam2e[ch] is ‘1’, the angle and chaos values for the corresponding channel [ch] shall be 
present and shall follow in the bit stream. If the bit is ‘0’, the previously transmitted angle and 
chaos values for this channel shall be reused. The angle and chaos parameters shall always be 
transmitted in the first block in which enhanced coupling is enabled. 

2.3.3.23 ecplamp[ch][bnd] – Enhanced Coupling Amplitude Scaling – 5 Bits 

The ecplamp[ch][bnd] field shall contain the value of the enhanced coupling amplitude for channel 
[ch] and band [bnd]. The index [ch] shall only exist for those channels in enhanced coupling. The 
index [bnd] shall range from 0 to necplbnds-1. See Section E.3.5.5 for more information on how to 
interpret enhanced coupling parameters. 

2.3.3.24 ecplangle[ch][bnd] – Enhanced Coupling Angle – 6 Bits 

The ecplangle[ch][bnd] field shall indicate the enhanced coupling angle for channel [ch] and band 
[bnd]. The enhanced coupling angle shall be be 0 for the first channel [ch] in enhanced coupling, 
and shalls not be transmitted in the bit stream. 

2.3.3.25 ecplchaos[ch][bnd] – Enhanced Coupling Chaos – 3 Bits 

The ecplchaos[ch][bnd] field shall contain the value of the enhanced coupling chaos for channel [ch] 
and band [bnd]. The enhanced coupling chaos shall be 0 for the first channel [ch] in enhanced 
coupling, and shall not be transmitted in the bit stream. 

2.3.3.26 ecpltrans[ch] – Enhanced Coupling Transient Present – 1 Bit 

The ecpltrans[ch] bit shall indicatethe enhanced coupling transient present indication for channel 
[ch]. The enhanced coupling transient present bit shall not be transmitted in the bit stream for the 
first channel [ch] in enhanced coupling. 
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2.3.3.27 blkfsnroffst – Block Fine SNR Offset – 4 Bits 

The blkfsnroffst field shall specify the fine SNR offset value used by all channels, including the 
coupling and LFE channels in the block. 

2.3.3.28 fgaincode – Fast Gain Codes Exist – 1 Bit 

If the fgaincode bit is set to ‘1’, fast gain codes for each channel shall be transmitted in the bit 
stream. If this parameter is set to ‘0’ in block 0, fast gain codes shall not be transmitted in the bit 
stream, and default fast gain codes (see Section 8.2.12) shall be used for all blocks in the frame.  

2.3.3.29 convsnroffste – Converter SNR Offset Exists – 1 Bit 

If the convsnroffste bit is ‘1’, a SNR offset for the converter shall follow. 

2.3.3.30 convsnroffst – Converter SNR Offset – 10 Bits 

The convsnroffst field shall specify the SNR offset required to convert the current E-AC-3 
syncframe to a compliant AC-3 syncframe. 

2.3.3.31 chgaqmod[ch] – Channel Gain Adaptive Quantization Mode – 2 Bits 

The chgaqmod[ch] field shall specify which one of four possible quantization modes is used for 
mantissas in the given channel. If chgaqmod[ch] is 0, conventional scalar quantization shall be used 
for channel ch. Otherwise, gain adaptive quantization shall be used and chgaqgain[ch][n] words shall 
follow in the bit stream. 

2.3.3.32 chgaqgain[ch][n] – Channel Gain Adaptive Quantization Gain – 1 or 5 Bits 

The chgaqgain[ch][n] field shall signal the adaptive quantizer gain value or values associated with 
one or more exponents. If chgaqmod[ch] is either 1 or 2, chgaqgain[ch][n] shall be 1 bit in length, 
signaling two possible gain states. If chgaqmod[ch] is 3, chgaqgain[ch][n] shall be 5 bits in length, 
representing a triplet of gains coded compositely. In this case, each gain shall signal three 
possible gain states. 

2.3.3.33 pre_chmant[n][ch][bin] – Pre Channel Mantissas – 0 to 16 Bits 

The pre_chmant[n][ch][bin] field values shall represent the channel mantissas coded either with 
scalar, vector or gain adaptive quantization. 

2.3.3.34 cplgaqmod – Coupling Channel Gain Adaptive Quantization Mode – 2 Bits 

The cplgaqmod field shall specify which one of four possible quantization modes is used for 
mantissas in the coupling channel. If cplgaqmod is 0, conventional scalar quantization shall be 
used. Otherwise, gain adaptive quantization shall be used and cplgaqgain[n] words shall follow in 
the bit stream. 

2.3.3.35 cplgaqgain[n] – Coupling Gain Adaptive Quantization Gain – 1 or 5 Bits 

The cplgaqgain[n] field shall indicate the adaptive quantizer gain value or values associated with 
one or more exponents. If cplgaqmod is either 1 or 2, cplgaqgain[n] shall be 1 bit in length, signaling 
two possible gain states. If cplgaqmod is 3, cplgaqgain[n] shall be 5 bits in length, representing a 
triplet of gains coded compositely. In this case, each gain shall signal three possible gain states. 
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2.3.3.36 pre_cplmant[n][bin] – Pre Coupling Channel Mantissas – 0 to 16 Bits 

The pre_cplmant[n][bin] field values shall represent the coupling channel mantissas coded either 
with scalar, vector or gain adaptive quantization. 

2.3.3.37 lfegaqmod – LFE Channel Gain Adaptive Quantization Mode – 2 Bits 

The lfegaqmod field shall specify which one of four possible quantization modes is used for 
mantissas in the LFE channel. If lfegaqmod is 0, conventional scalar quantization shall be used. 
Otherwise, gain adaptive quantization shall be used and lfegaqgain[n] words shall follow in the bit 
stream. 

2.3.3.38 lfegaqgain[n] – LFE Gain Adaptive Quantization Gain – 1 or 5 Bits 

The lfegaqgain[n] field shall signal the adaptive quantizer gain value or values associated with one 
or more exponents. If lfegaqmod is either 1 or 2, lfegaqgain[n] shall be 1 bit in length, signaling two 
possible gain states. If lfegaqmod is 3, lfegaqgain[n] shall be 5 bits in length, representing a triplet of 
gains coded compositely. In this case, each gain shall signal three possible gain states. 

2.3.3.39 pre_lfemant[n][bin] – Pre LFE Channel Mantissas – 0 to 16 Bits 

The pre_lfemant[n][bin] field values shall represent the LFE channel mantissas coded either with 
scalar, vector or gain adaptive quantization. 

3. ALGORITHMIC DETAILS 

This section specifies how the reference E-AC-3 decoder shall process bit streams that use the E-
AC-3 bit stream syntax. Some of the decoding process is shown in the form of pseudo code; all 
pseudo code is normative. 

3.1 Glitch-Free Switching Between Different Stream Types 

E-AC-3 decoders should be designed to switch between all supported bit stream types without 
introducing audible clicks or pops. 

3.2 Error Detection and Concealment 

E-AC-3 decoders are required to implement error detection based on the bit stream CRC word. 
E-AC-3 bit streams contain only one CRC word, which covers the entire syncframe. When 
decoding bit streams that use the E-AC-3 bit stream syntax, E-AC-3 decoders must verify the 
CRC word prior to decoding any of the blocks in the syncframe. 

If the CRC word for an E-AC-3 bit stream is found to be invalid, all blocks in the syncframe 
must be substituted with an appropriate error concealment signal. For most applications, this can 
be easily accomplished by simply repeating the last known-good block (before the overlap-add 
window process). 

3.3 Modifications to Previously Defined Parameters 

A number of previously defined parameters are utilised differently in this annex than as 
previously specified. The following modifications apply to devices decoding bit streams 
adhering to the syntax specified in this annex. 

3.3.1 cplendf – Coupling End Frequency Code 

When spectral extension processing is used (spxinu == ‘1'), the determination of the coupling end 
frequency code is changed, as shown in section E2.2.4, and the coupling end frequency code 
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parameter (cplendf) is not transmitted in the bit stream. Instead, cplendf is derived from the spectral 
extension begin frequency code parameter (spxbegf). It should be noted that when spectral 
extension processing is used, the range of values of cplendf changes from 0 to 15 to -2 to 7. All 
other operations utilizing cplendf are unchanged. 

3.3.2 nrematbd – Number of Rematrixing Bands 

When spectral extension processing and enhanced channel coupling are used, the determination 
of the number of rematrixing bands is changed. The following pseudo code demonstrates how to 
determine the value of nrematbd. 

Pseudo Code 
if (cplinu) 
{ 
 if (ecplinu) 
 { 
  if (ecplbegf == 0) {nrematbd = 0} 
  else if (ecplbegf == 1) {nrematbd = 1} 
  else if (ecplbegf == 2) {nrematbd = 2} 
  else if (ecplbegf < 5) {nrematbd = 3} 
  else {nrematbd = 4} 
 } 
 else /* standard coupling */ 
 { 
  if (cplbegf == 0) {nrematbd = 2} 
  else if (cplbegf < 3) {nrematbd = 3} 
  else {nrematbd = 4} 
 } 
} 
else if (spxinu) 
{ 
 if (spxbegf < 2) {nrematbd = 3} 
 else {nrematbd = 4} 
} 
else 
{ 
 nrematbd = 4 
} 

3.3.3 endmant – End Mantissa 

When spectral extension processing and enhanced channel coupling are used, the determination 
of the end mantissa bin number is changed. The following pseudocode demonstrates how to 
determine the value of endmant[ch]. 

Pseudo Code 
if (ecplinu) {endmant[ch] = ecplsubbndtab[ecpl_begin_subbnd]} 
else if ((spxinu) && (cplinu == 0)) {endmant[ch] = spxbandtable[spx_begin_subbnd]} 
else {/* see clause 6.1.3 */} 

3.3.4 nchmant – Number of fbw Channel Mantissas 

Although not previously stated in any previous version of the present document, the parameter 
nchmant[ch] is equivalent to the parameter endmant[ch]. 
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3.3.5 ncplgrps – Number of Coupled Exponent Groups 

When enhanced channel couplingis used, the determination of the number of coupled exponent 
groups is changed. The following pseudocode demonstrates how to determine the value of 
ncplgrps. 

Pseudo Code 
if (ecplinu) 
{ 
 ecplstartmant = ecplsubbndtab[ecpl_begin_subbnd]; 
 ecplendmant = ecplsubbndtab[ecpl_end_subbnd]; 
 if (cplexpstr == D15) {ncplgrps = (ecplendmant – ecplstartmant) / 3} 
 else if (cplexpstr == D25) {ncplgrps = (ecplendmant – ecplstartmant) / 6} 
 else if (cplexpstr == D45) {ncplgrps = (ecplendmant – ecplstartmant) / 12} 
} 
else /* standard coupling */ 
{ 
 /* see clause 6.1.3 */ 
} 

3.4 Adaptive Hybrid Transform Processing 

3.4.1 Overview 

The Adaptive Hybrid Transform (AHT) is composed of two linear transforms connected in 
cascade. The first transform is identical to that employed in AC-3 – a windowed Modified 
Discrete Cosine Transform (MDCT) of length 128 or 256 frequency samples. This feature 
provides compatibility with legacy AC-3 decoders without the need to return to the time domain 
in the decoder. For frames containing audio signals which are not time-varying in nature 
(stationary), a second transform can optionally be applied by the encoder, and inverted by the 
decoder. The second transform is composed of a non-windowed, non-overlapped Discrete 
Cosine Transform (DCT Type II). When this DCT is employed, the effective audio transform 
length increases from 256 to 1536 audio samples. This results in significantly improved coding 
gain and perceptual coding performance for stationary signals. 

The AHT transform is enabled by setting the ahte bit stream parameter to ‘1’. If ahte is ‘1’, at 
least one of the independent channels, the coupling channel, or the LFE channel has been coded 
with AHT. The chahtinu[ch], cplahtinu, and lfeahtinu bit stream parameters are used to indicate which 
channels are channels coded with AHT. 

In order to realize gains made available by the AHT, the AC-3 scalar quantizers have been 
augmented with two new coding tools. When AHT is in use, both 6-dimensional vector 
quantization (VQ) and gain-adaptive quantization (GAQ) are employed. VQ is employed for the 
largest step sizes (coarsest quantization), and GAQ is employed for the smallest stepsizes (finest 
quantization). The selection of quantizer step size is performed using the same parametric bit 
allocation method as AC-3, except the conventional bit allocation pointer (bap) table is replaced 
with a high-efficiency bap table (hebap[]). The hebap[] table employs finer-granularity than the 
conventional bap table, enabling more efficient allocation of bits. 

3.4.2 Bit Stream Helper Variables 

Several helper variables must be computed during the decode process in order to decode a frame 
containing at least one channel using AHT (ahte = 1). These variables are not transmitted in the 
bit stream itself, but are computed from other bit stream parameters. The first helper variables of 
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this type are denoted in the bit stream syntax as ncplregs, nchregs[ch], and nlferegs. The method for 
computing these variables is presented in the following three sections of pseudo code. Generally 
speaking, the nregs variables are set equal to the number of times exponents are transmitted in the 
frame. 

Pseudo Code 
/* Only compute ncplregs if coupling in use for all 6 blocks */ 
ncplregs = 0; 
/* AHT is only available in 6 block mode (numblkscod ==0x3) */ 
for (blk = 0; blk < 6; blk++) 
{ 
 if ( (cplstre[blk] == 1) || (cplexpstr[blk] != reuse) ) 
 { 
  ncplregs++; 
 } 
} 

 

Pseudo Code 
for (ch = 0; ch < nfchans; ch++) 
{   
 nchregs[ch] = 0; 
 /* AHT is only available in 6 block mode (numblkscod ==0x3) */ 
 for (blk = 0; blk < 6; blk++) 
 {  
  if (chexpstr[blk][ch] != reuse) 
  { 
   nchregs[ch]++; 
  } 
 } 
} 

 

Pseudo Code 
nlferegs = 0; 
/* AHT is only available in 6 block mode (numblkscod ==0x3) */ 
for (blk = 0; blk < 6; blk++) 
{ 
 if ( lfeexpstr[blk] != reuse) 
 { 
  nlferegs++; 
 } 
} 

A second set of helper variables are required for identifying which and how many mantissas 
employ GAQ. The arrays identifying which bins are GAQ coded are called chgaqbin[ch][bin], 
cplgaqbin[bin], and lfegaqbin[bin]. Since the number and position of GAQ-coded mantissas varies 
from frame to frame, these variables need to be computed after the corresponding hebap[] array is 
available, but prior to mantissa unpacking. This procedure is shown in pseudo-code below 

.  
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Pseudo Code 
if (cplahtinu == 0) 
{ 
 for (bin = cplstrtmant; bin < cplendmant; bin++) 
 { 
  cplgaqbin[bin] = 0; 
 } 
} 
else 
{ 
 if (cplgaqmod < 2) 
 { 
  endbap = 12; 
 } 
 else 
 { 
  endbap = 17; 
 } 
 cplactivegaqbins = 0; 
 for (bin = cplstrtmant; bin < cplendmant; bin++) 
 { 
  if (cplhebap[bin] > 7 && cplhebap[bin] < endbap) 
  { 
   cplgaqbin[bin] = 1;  /* Gain word is present */ 
   cplactivegaqbins++; 
  } 
  else if (cplhebap[bin] >= endbap) 
  { 
   cplgaqbin[bin] = -1;  /* Gain word is not present */ 
  } 
  else 
  { 
   cplgaqbin[bin] = 0; 
  } 
 } 
} 
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Pseudo Code 
for (ch = 0; ch < nfchans; ch++) 
{ 
 if (chahtinu[ch] == 0) 
 { 
  for (bin = 0; bin < endmant[ch]; bin++) 
  { 
   chgaqbin[ch][bin] = 0; 
  } 
 } 
 else 
 { 
  if (chgaqmod < 2) 
  { 
   endbap = 12; 
  } 
  else 
  { 
   endbap = 17; 
  } 
  chactivegaqbins[ch] = 0; 
  for (bin = 0; bin < endmant[ch]; bin++) 
  { 
   if (chhebap[ch][bin] > 7 && chhebap[ch][bin] < endbap) 
   { 
    chgaqbin[ch][bin] = 1;  /* Gain word is present */ 
    chactivegaqbins[ch]++; 
   } 
   else if (chhebap[ch][bin] >= endbap) 
   { 
    chgaqbin[ch][bin] = -1; /* Gain word not present */ 
   } 
   else 
   { 
    chgaqbin[ch][bin] = 0; 
   } 
  } 
 } 
} 
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Pseudo Code 
if (lfeahtinu == 0) 
{ 
 for (bin = 0; bin < lfeendmant; bin++) 
 { 
  lfegaqbin[bin] = 0; 
 } 
} 
else 
{ 
 if (lfegaqmod < 2) 
 { 
  endbap = 12; 
 } 
 else 
 { 
  endbap = 17; 
 } 
 lfeactivegaqbins = 0; 
 for (bin = 0; bin < lfeendmant; bin++) 
 { 
  if (lfehebap[bin] > 7 && lfehebap[bin] < endbap) 
  { 
   lfegaqbin[bin] = 1;  /* Gain word is present */ 
   lfeactivegaqbins++; 
  } 
  else if (lfehebap[bin] >= endbap) 
  { 
   lfegaqbin[bin] = -1;  /* Gain word is not present */ 
  } 
  else 
  { 
   lfegaqbin[bin] = 0; 
  } 
 } 
} 

In a final set of helper variables, the number of gain words to be read from the bitstream is 
computed. These variables are called chgaqsections[ch], cplgaqsections, and lfegaqsections for the 
independent channels, coupling channel, and LFE channel, respectively. They denote the number 
of GAQ gain words transmitted in the bit stream, and are computed as shown in the following 
pseudo code. 
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Pseudo Code 
if (cplahtinu == 0) 
{ 
 cplgaqsections = 0; 
} 
else 
{ 
switch(cplgaqmod) 
 { 
  case 0: /* No GAQ gains present */ 
  { 
   cplgaqsections = 0; 
   break; 
  } 
  case 1: /* GAQ gains 1 and 2 */ 
  case 2: /* GAQ gains 1 and 4 */ 
  { 
   cplgaqsections = cplactivegaqbins; /* cplactivegaqbins was computed earlier */ 
   break; 
  } 
  case 3: /* GAQ gains 1, 2, and 4 */ 
  { 
   cplgaqsections = cplactivegaqbins / 3; 
if (cplactivegaqbins % 3) cplgaqsections++; 
   break; 
  } 
 } 
} 
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Pseudo Code 
for (ch = 0; ch <nfchans; ch ++) 
{ 
 if (chahtinu[ch] == 0) 
 { 
  chgaqsections[ch] = 0; 
 } 
 else 
 { 
  switch (chgaqmod[ch]) 
  { 
   case 0: /* No GAQ gains present */ 
   { 
    chgaqsections[ch] = 0; 
    break; 
   } 
   case 1: /* GAQ gains 1 and 2 */ 
   case 2: /* GAQ gains 1 and 4 */ 
   { 
  chgaqsections[ch] = chactivegaqbins[ch]; /* chactivegaqbins[ch] was computed earlier */ 
    break; 
   } 
   case 3: /* GAQ gains 1, 2, and 4 */ 
{ 
  chgaqsections[ch] = chactivegaqbins[ch] / 3; 
  if (chactivegaqbins[ch] % 3) chgaqsections[ch]++; 
  break; 
} 
  } 
 } 
} 
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Pseudo Code 
if (lfeahtinu == 0) 
{ 
 lfegaqsections = 0; 
} 
else 
{ 
 sumgaqbins = 0; 
 for (bin = 0; bin < lfeendmant; bin++) 
 { 
  sumgaqbins += lfegaqbin[bin]; 
 } 
 switch (lfegaqmod) 
 { 
  case 0: /* No GAQ gains present */ 
  { 
   lfegaqsections = 0; 
   break; 
  } 
  case 1: /* GAQ gains 1 and 2 */ 
  case 2: /* GAQ gains 1 and 4 */ 
  { 
   lfegaqsections = lfeactivegaqbins; /* lfeactivegaqbins was computed earlier */ 
   break; 
  } 
  case 3: /* GAQ gains 1, 2, and 4 */ 
  { 
   lfegaqsections = lfeactivegaqbins / 3; 
   if (lfeactivegaqbins % 3) lfegaqsections++; 
   break; 
  } 
 } 
} 

If the gaqmod bit stream parameter bits are set to 0, conventional scalar quantization is used in 
place of GAQ coding. If the gaqmod bits are set to 1 or 2, a 1-bit gain is present for each mantissa 
coded with GAQ. If the gaqmod bits are set to 3, the GAQ gains for three individual mantissas are 
compositely coded as a 5-bit word. 

3.4.3 Bit Allocation 

When AHT is in use for any independent channel, the coupling channel, or the LFE channel, 
higher coding efficiency is achieved by allowing quantization noise to be allocated with higher 
precision. The higher precision allocation is achieved using a combination of a new bit allocation 
pointer look up table and vector quantization. The following section describes the changes to the 
bit allocation routines defined in the main body of this document in order to achieve higher 
precision allocation. 

3.4.3.1 Parametric Bit Allocation 

If the ahtinu flag is set for any independent channel, the coupling channel, or the LFE channel 
then the bit allocation routine for that channel is modified to incorporate the new high efficiency 
bit allocation pointers. When AHT is in use, the exponents are first decoded and the PSD, 
excitation function, and masking curve are calculated. The delta bit allocation, if present in the 
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bit stream, is then applied. The final computation of the bit allocation, however, is modified as 
follows: 

The high efficiency bit allocation array (hebap[]) is now computed. The masking curve, 
adjusted by the snroffset and then truncated, is subtracted from the fine-grain psd[] array. The 
difference is right shifted by 5 bits, limited, and then used as an address into the hebaptab[] to find 
the final bit allocation and quantizer type applied to the mantissas. The hebaptab[] array is shown 
in Table E3.1. 

At the end of the bit allocation procedure, shown in the following pseudo-code, the hebap[] 
array contains a series of 5-bit pointers. The pointers indicate how many bits have been allocated 
to each mantissa and the type of quantizer applied to the mantissas. The correspondence between 
the hebap pointer and quantizer type and quantizer levels is shown in Table E3.2. 

Note that if AHT is not in use for a given independent channel, the coupling channel, or the 
LFE channel, then the bit allocation procedure and resulting bap[] arrays for that channel are the 
same as described in the main body of this document. 
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Pseudo Code 
if (ahtinu == 1) /* cplAHTinu, chAHTinu[ch], or lfeAHTinu */ 
{ 
 i = start ; 
 j = masktab[start] ; 
 do  
 { 
  lastbin = min(bndtab[j] + bndsz[j]), end); 
  mask[j] -= snroffset ; 
  mask[j] -= floor ; 
  if (mask[j] < 0) 
  { 
   mask[j] = 0 ; 
  } 
  mask[j] &= 0x1fe0 ; 
  mask[j] += floor ; 
  for (k = i; k < lastbin; k++) 
  { 
   address = (psd[i] - mask[j]) >> 5 ; 
   address = min(63, max(0, address)) ; 
   hebap[i] = hebaptab[address] ; 
   i++ ; 
  } 
  j++; 
 } 
 while (end > lastbin) ; 
} 
else 
{ 
 i = start ; 
 j = masktab[start] ; 
 do  
 { 
  lastbin = min(bndtab[j] + bndsz[j], end); 
  mask[j] -= snroffset ; 
  mask[j] -= floor ; 
  if (mask[j] < 0) 
  { 
   mask[j] = 0 ; 
  } 
  mask[j] &= 0x1fe0 ; 
  mask[j] += floor ; 
  for (k = i; k < lastbin; k++) 
  { 
   address = (psd[i] - mask[j]) >> 5 ; 
   address = min(63, max(0, address)) ; 
   bap[i] = baptab[address] ; 
   i++ ; 
  } 
  j++; 
 } 
 while (end > lastbin) ; 

} 
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3.4.3.2 Bit Allocation Tables 

Table E3.1 High Efficiency Bit Allocation Pointers, hebaptab[] 

Address hebaptab[address] Address hebaptab[address] 

0 0 32 14 

1 1 33 14 

2 2 34 14 

3 3 35 15 

4 4 36 15 

5 5 37 15 

6 6 38 15 

7 7 39 16 

8 8 40 16 

9 8 41 16 

10 8 42 16 

11 8 43 17 

12 9 44 17 

13 9 45 17 

14 9 46 17 

15 10 47 18 

16 10 48 18 

17 10 49 18 

18 10 50 18 

19 11 51 18 

20 11 52 18 

21 11 53 18 

22 11 54 18 

23 12 55 19 

24 12 56 19 

25 12 57 19 

26 12 58 19 

27 13 59 19 

28 13 60 19 

29 13 61 19 

30 13 62 19 

31 14 63 19 
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Table E3.2 Quantizer Type, Quantizer Level, and Mantissa Bits vs. hebap 

hebap Quantizer Type Levels Mantissa Bits 

0 NA NA 0 

1 VQ NA (2/6) 

2 VQ NA (3/6) 

3 VQ NA (4/6) 

4 VQ NA (5/6) 

5 VQ NA (7/6) 

6 VQ NA (8/6) 

7 VQ NA (9/6) 

8 symmetric + GAQ 7 3 

9 symmetric + GAQ 15 4 

10 symmetric + GAQ 31 5 

11 symmetric + GAQ 63 6 

12 symmetric + GAQ 127 7 

13 symmetric + GAQ 255 8 

14 symmetric + GAQ 511 9 

15 symmetric + GAQ 1023 10 

16 symmetric + GAQ 2047 11 

17 symmetric + GAQ 4095 12 

18 symmetric + GAQ 16,383 14 

19 symmetric + GAQ 65,535 16 

3.4.4 Quantization 

Depending on the bit allocation pointer (hebap) calculated in Section3.4.3.1, the mantissa values 
are either coded using vector quantization or gain adaptive quantization. The following section 
describes both of these coding techniques. 

3.4.4.1 Vector Quantization 

Vector quantization is a quantization technique that takes advantage of similarities and patterns 
in an ordered series of values, or vector, to reduce redundancy and hence improve coding 
efficiency. For AHT processing, 6 mantissa values across blocks within a single spectral bin are 
grouped together to create a 6-dimensional Euclidean space.  

If AHT is in use and the bit allocation pointer is between 1 and 7 inclusive, then vector 
quantization (VQ) is used to encode the mantissas. The range of hebap values that use VQ are 
shown in Table E3.2. If VQ is applied to a set of 6 mantissa values then the data in the bit stream 
represents an N bit index into a 6-dimensional look up table, where N is dependent on the hebap 
value as defined in Table E3.2. The vector tables are shown in Section 3.10; the values in the 
vector tables are represented as 16-bit, signed (two's complement) values. 

If a hebap value is within the VQ range, the encoder selects the best vector to transmit to the 
decoder by locating the vector which minimizes the Euclidean distance between the actual 
mantissa vector and the table vector. The index of the closest matching vector is then transmitted 
to the decoder. 

In the decoder, the index is read from the bit stream and the mant values are replaced with 
the values from the appropriate vector table. 
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3.4.4.2 Gain Adaptive Quantization 

Gain-adaptive quantization (GAQ) is a method for quantizing mantissas using variable-length 
codewords. In the encoder, the technique is based upon conditionally amplifying one or more of 
the smaller and typically more frequently occurring transform coefficient mantissas in one DCT 
block, and representing these with a shorter length code. Larger transform coefficients are not 
gain amplified, but are transmitted using longer codes since these occur relatively infrequently 
for typical audio signals. The gain words selected by the encoder, one per GAQ-coded DCT 
block of length six, are packed together with the mantissa codewords and transmitted as side 
information. With this system, the encoder can adapt to changing local signal statistics from 
frame to frame, and/or from channel to channel. Since a coding mode using constant-length 
output symbols is included as a subset, gain-adaptive quantization cannot cause a noticeable 
coding loss compared to the fixed-length codes used in AC-3. 

In the decoder, the individual gain words are unpacked first, followed by a bit stream parsing 
operation (using the gains) to reconstruct the individual transform coefficient mantissas. To 
compensate for amplification applied in the encoder, the decoder applies an attenuation factor to 
the small mantissas. The level of large mantissas is unaffected by these gain factors in both the 
encoder and decoder. 

The decoder structure for gain-adaptive quantization is presented in Figure E3.1. Decoder 
processing consists of a bit stream deformatter connected in cascade with the switched gain 
attenuation element, labeled as 1/Gk in the figure. The three inputs to the deformatter are the 
packed mantissa bit stream, the hebap[] output from the parametric bit allocation, and the gaqgain[] 
array received from the encoder. The hebap[] array is used by the deformatter to determine if the 
current (kth) DCT block of six mantissas to be unpacked is coded with GAQ, and if so, what the 
small and large mantissa bit lengths are. The gaqgain[] array is processed by the deformatter to 
produce the gain attenuation element corresponding to each DCT mantissa block identified in the 
bit stream. The switch position is also derived by the deformatter for each GAQ-coded mantissa. 
The switch position is determined from the presence or absence of a unique bit stream tag, as 
discussed in the next paragraph. When the deformatting operation is complete, the dequantized 
and level-adjusted mantissas are available for the next stage of processing. 
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Figure E3.1 Flow diagram for GAQ mantissa dequantization. 

As a means for signaling the two mantissa lengths to the decoder, quantizer output symbols 
for large mantissas are flagged in the bit stream using a unique identifier tag. In E-AC-3, the 
identifier tag is the quantizer symbol representing a full-scale negative output (e.g., the ‘100’ 
symbol for a 3-bit two's complement quantizer). In a conventional mid-tread quantizer, this 
symbol is often deliberately unused since it results in an asymmetric quantizer characteristic. In 
gain-adaptive quantization, this symbol is employed to indicate the presence of a large mantissa. 
The tag length is equal to the length of the small mantissa codeword (computed from hebap[] and 
gaqgain[]), allowing unique bit stream decoding. If an identifier tag is found, additional bits 
immediately following the tag (also of known length) convey the quantizer output level for the 
corresponding large mantissas. 

Four different gain transmission modes are available for use in the encoder. The different 
modes employ switched 0, 1 or 1.67-bit gains. For each independent, coupling, and LFE channel 
in which AHT is in use, a 2-bit parameter called gaqmod is transmitted once per frame to the 
decoder. The bitstream parameters, values, and active hebap range are shown for each mode in 
Table E3.3. If gaqmod = 0x0, GAQ is not in use and no gains are present in the bitstream. If 
gaqmod = 0x1, a 1-bit gain value is present for each block of DCT coefficients having an hebap 
value between 8 and 11, inclusive. Coefficients with hebap higher than 11 are decoded using the 
same quantizer as gaqmod 0x0. If gaqmod = 0x2 or 0x3, gain values are present for each block of 
DCT coefficients having an hebap value between 8 and 16, inclusive. Coefficients with hebap 
higher than 16 are decoded using the same quantizer as gaqmod 0x0. The difference between the 
two last modes lies in the gain word length, as shown in the table. 
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Table E3.3 Gain Adaptive Quantization Modes 

chgaqmod[ch], cplgaqmod, and 
lfegaqmod 

GAQ Mode for Frame Active hebap Range (for which gains are 
transmitted) 

0x0 GAQ not in use None 

0x1 1-bit gains (Gk = 1 or 2) 8 ≤ hebap ≤ 11 

0x2 1-bit gains (Gk = 1 or 4) 8 ≤ hebap ≤ 16 

0x3 1.67 bit gains (Gk = 1, 2, 
or 4) 

8 ≤ hebap ≤ 16 

For the case of gaqmod = 0x1 and 0x2, the gains are coded using binary 0 to signal Gk = 1, 
and binary 1 to signal Gk = 2 or 4. For the case of gaqmod = 0x3, the gains are composite-coded in 
triplets (three 3-state gains packed into 5-bit words). The gains are unpacked in a manner similar 
to exponent unpacking as described in the main body of this document. For example, for a 5-bit 
composite gain triplet grpgain: 

M1 = truncate (grpgain / 9) 
M2 = truncate ((grpgain % 9) / 3) 
M3 = (grpgain % 9) % 3 

In this example, M1, M2, and M3 correspond to mapped values derived from consecutive 
gains in three ascending frequency blocks, respectively, each ranging in value from 0 to 2 
inclusive as shown in Table E3.4. 

Table E3.4 Mapping of Gain Elements, gaqmod = 0x3 

Gain, Gk Mapped Value

1 0 

2 1 

4 2 

Details of the GAQ quantizer characteristics are shown in Table E3.5. If the received gain is 
1, or no gain was received at all, a single quantizer with no tag is used. If the received gain is 
either 2 or 4, both the small and large mantissas (and associated tags) must be decoded using the 
quantizer characteristics shown. Both small and large mantissas are decoded by interpreting them 
as signed two’s complement fractional values. The variable m in the table represents the number 
of mantissa bits associated with a given hebap value as shown in Table E3.2. 
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Table E3.5 Gain Adaptive Quantizer Characteristics 

 Gk = 1 Gk = 2 Gk = 4 

Quantizer Small 
Quantizer 

Large 
Quantizer 

Small 
Quantizer 

Large 
Quantizer 

Length of quantizer codeword m m–1 m–1 m–2 m 

Number of reconstruction (output) 
points 

2m – 1 2m–1 – 1 2m–1 2m–2 – 1 2m 

Step size 2/(2m – 1) 1/(2m–1) 1/(2m–1 – 1) 1/(2m–1) 3/(2m+1 – 2) 

Since the large mantissas are coded using a dead-zone quantizer, a post-processing step is 
required to transform (remap) large mantissa codewords received by the decoder into a 
reconstructed mantissa. This remapping is applied when Gk = 2 or 4. An identical post-
processing step is required to implement a symmetric quantizer characteristic when Gk = 1, and 
for all gaqmod = 0x0 quantizers. The post-process is a computation of the form y = x + ax + b. In 
this equation, x represents a mantissa codeword (interpreted as a signed two’s complement 
fractional value), and the constants a and b are provided in Table E3.6. The constants are also 
interpreted as 16-bit signed two’s complement fractional values. The expression for y was 
arranged for implementation convenience so that all constants will have magnitude less than one. 
For decoders where this is not a concern, the remapping can be implemented as y = a’x + b, 
where the new coefficient a’ = 1 + a. The sign of x must be tested prior to retrieving b from the 
table. Remapping is not applicable to the table entries marked N/A. 
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Table E3.6 Large Mantissa Inverse Quantization (Remapping) Constants 

hebap  Gk = 1 Gk = 2 Gk = 4 

a b a b a b 

8 x ≥ 0 0x1249 0x0000 0xd555 0x4000 0xedb7 0x2000 

x < 0 0x1249 0x0000 0xd555 0xeaab 0xedb7 0xfb6e 

9 x ≥ 0 0x0889 0x0000 0xc925 0x4000 0xe666 0x2000 

x < 0 0x0889 0x0000 0xc925 0xd249 0xe666 0xeccd 

10 x ≥ 0 0x0421 0x0000 0xc444 0x4000 0xe319 0x2000 

x < 0 0x0421 0x0000 0xc444 0xc889 0xe319 0xe632 

11 x ≥ 0 0x0208 0x0000 0xc211 0x4000 0xe186 0x2000 

x < 0 0x0208 0x0000 0xc211 0xc421 0xe186 0xe30c 

12 x ≥ 0 0x0102 0x0000 0xc104 0x4000 0xe0c2 0x2000 

x < 0 0x0102 0x0000 0xc104 0xc208 0xe0c2 0xe183 

13 x ≥ 0 0x0081 0x0000 0xc081 0x4000 0xe060 0x2000 

x < 0 0x0081 0x0000 0xc081 0xc102 0xe060 0xe0c1 

14 x ≥ 0 0x0040 0x0000 0xc040 0x4000 0xe030 0x2000 

x < 0 0x0040 0x0000 0xc040 0xc081 0xe030 0xe060 

15 x ≥ 0 0x0020 0x0000 0xc020 0x4000 0xe018 0x2000 

x < 0 0x0020 0x0000 0xc020 0xc040 0xe018 0xe030 

16 x ≥ 0 0x0010 0x0000 0xc010 0x4000 0xe00c 0x2000 

x < 0 0x0010 0x0000 0xc010 0xc020 0xe00c 0xe018 

17 x ≥ 0 0x0008 0x0000 N/A N/A N/A N/A 

x < 0 0x0008 0x0000 N/A N/A N/A N/A 

18 x ≥ 0 0x0002 0x0000 N/A N/A N/A N/A 

x < 0 0x0002 0x0000 N/A N/A N/A N/A 

19 x ≥ 0 0x0000 0x0000 N/A N/A N/A N/A 

x < 0 0x0000 0x0000 N/A N/A N/A N/A 

3.4.5 Transform Equations 

The AHT processing uses a DCT to achieve higher coding efficiency. Hence, if AHT is in use, 
the DCT must be inverted prior to applying the exponents. The inverse DCT (IDCT) for AHT is 
given in the following equation. Any fast technique may be used to invert the DCT in E-AC-3 
decoders. In the following equation, C(k,m) is the MDCT spectrum for the kth bin and mth block, 
and X(k,j) is the AHT spectrum for the kth bin and jth block. 
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and k is the bin index, m is the block index, and j is the AHT transform index. 
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3.5 Enhanced Channel Coupling 

3.5.1 Overview 

Enhanced channel coupling is a spatial coding technique that elaborates on conventional channel 
coupling, principally by adding phase compensation, a de-correlation mechanism, variable time 
constants, and more compact amplitude representation. The intent is to reduce coupling 
cancellation artifacts in the encode process by adjusting inter-channel phase before downmixing, 
and to improve dimensionality of the reproduced signal by restoring the phase angles and 
degrees of correlation in the decoder. This also allows the process to be used at lower 
frequencies than conventional channel coupling. 

The decoder converts the enhanced coupling channel back into individual channels 
principally by applying an amplitude scaling and phase adjustment for each channel and 
frequency sub-band. Additional processing occurs when transients are indicated in one or more 
channels. 

3.5.2 Sub-Band Structure for Enhanced Coupling 

Enhanced coupling transform coefficients are transmitted in exactly the same manner as 
conventional coupling. That is, coefficients are reconstructed from exponents and quantized 
mantissas. Transform coefficients # 13 through # 252 are grouped into 22 sub-bands of either 6 
or 12 coefficients each, as shown in Table E3.7. The parameter ecplbegf is used to derive the value 
ecpl_begin_subbnd which indicates the number of the enhanced coupling sub-band which is the first 
to be included in the enhanced coupling process. Below the frequency (or transform coefficient 
number) indicated by ecplbegf, all channels are independently coded. Above the frequency 
indicated by ecplbegf, channels included in the enhanced coupling process (chincpl[ch] = 1) share 
the common enhanced coupling channel up to the frequency (or tc #) indicated by ecplendf. The 
enhanced coupling channel is coded up to the frequency (or tc #) indicated by ecplendf, which is 
used to derive ecpl_end_subbnd. The value ecpl_end_subbnd is one greater than the last coupling sub-
band which is coded. 
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Table E3.7 Enhanced Coupling Sub-bands 

enhanced coupling 
sub-band # 

low tc # high tc # lf cutoff (kHz)
@ fs=48 kHz 

hf cutoff (kHz)
@ fs=48 kHz 

lf cutoff (kHz) 
@ fs=44.1 kHz 

hf cutoff (kHz)
@ fs=44.1 kHz 

0 13 18 1.17 1.73 1.08 1.59 

1 19 24 1.73 2.30 1.59 2.11 

2 25 30 2.30 2.86 2.11 2.63 

3 31 36 2.86 3.42 2.63 3.14 

4 37 48 3.42 4.55 3.14 4.18 

5 49 60 4.55 5.67 4.18 5.21 

6 61 72 5.67 6.80 5.21 6.24 

7 73 84 6.80 7.92 6.24 7.28 

8 85 96 7.92 9.05 7.28 8.31 

9 97 108 9.05 10.17 8.31 9.35 

10 109 120 10.17 11.30 9.35 10.38 

11 121 132 11.30 12.42 10.38 11.41 

12 133 144 12.42 13.55 11.41 12.45 

13 145 156 13.55 14.67 12.45 13.48 

14 157 168 14.67 15.80 13.48 14.51 

15 169 180 15.80 16.92 14.51 15.55 

16 181 192 16.92 18.05 15.55 16.58 

17 193 204 18.05 19.17 16.58 17.61 

18 205 216 19.17 20.30 17.61 18.65 

19 217 228 20.30 21.42 18.65 19.68 

20 229 240 21.42 22.55 19.68 20.71 

21 241 252 22.55 23.67 20.71 21.75 

Note: At 32 kHz sampling rate the sub-band frequency ranges are 2/3 the values 
of those for 48 kHz. 
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Table E3.8 Enhanced Coupling Start and End Indexes 

ecpl 
sub-band # 

low tc # high tc # ecplbegf ecplendf 

0 13 18 0  

1 19 24   

2 25 30 1  

3 31 36   

4 37 48 2  

5 49 60 3  

6 61 72 4  

7 73 84 5 0 

8 85 96 6 1 

9 97 108 7 2 

10 109 120 8 3 

11 121 132 9 4 

12 133 144 10 5 

13 145 156 11 6 

14 157 168 12 7 

15 169 180  8 

16 181 192 13 9 

17 193 204  10 

18 205 216 14 11 

19 217 228  12 

20 229 240 15 13 

21 241 252  14 

22 253   15 

The enhanced coupling sub-bands are combined into enhanced coupling bands for which 
coupling coordinates are generated (and included in the bit stream). The coupling band structure 
is indicated by ecplbndstrc[sbnd]. Each bit of the ecplbndstrc[] array indicates whether the sub-band 
indicated by the index is combined into the previous (lower in frequency) enhanced coupling 
band. Enhanced coupling bands are thus made from integral numbers of enhanced coupling sub-
bands. (See Section 2.3.3.19.) 

3.5.3 Enhanced Coupling Tables 

The following tables are used to lookup various parameter values used by the enhanced coupling 
process. 
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Table E3.9 Sub-band Transform Start Coefficients: ecplsubbndtab[] 

sbnd ecplsubbndtab[sbnd]

0 13 

1 19 

2 25 

3 31 

4 37 

5 49 

6 61 

7 73 

8 85 

9 97 

10 109 

11 121 

12 133 

13 145 

14 157 

15 169 

16 181 

17 193 

18 205 

19 217 

20 229 

21 241 

22 253 
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Table E3.10 Amplitudes: ecplampexptab[], ecplampmanttab[] 

ecplamp ecplampexptab[ecplamp] ecplampmanttab[ecplamp] 

0 0 0x20 

1 0 0x1b 

2 0 0x17 

3 0 0x13 

4 0 0x10 

5 1 0x1b 

6 1 0x17 

7 1 0x13 

8 1 0x10 

9 2 0x1b 

10 2 0x17 

11 2 0x13 

12 2 0x10 

13 3 0x1b 

14 3 0x17 

15 3 0x13 

16 3 0x10 

17 4 0x1b 

18 4 0x17 

19 4 0x13 

20 4 0x10 

21 5 0x1b 

22 5 0x17 

23 5 0x13 

24 5 0x10 

25 6 0x1b 

26 6 0x17 

27 6 0x13 

28 6 0x10 

29 7 0x1b 

30 7 0x17 

31 - 0x00 
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Table E3.11 Angles: ecplangletab[] 

ecplangle ecplangletab[ecplangle] ecplangle ecplangletab[ecplangle] 

0 0.00000 32 -1.00000 

1 0.03125 33 -0.96875 

2 0.06250 34 -0.93750 

3 0.09375 35 -0.90625 

4 0.12500 36 -0.87500 

5 0.15625 37 -0.84375 

6 0.18750 38 -0.81250 

7 0.21875 39 -0.78125 

8 0.25000 40 -0.75000 

9 0.28125 41 -0.71875 

10 0.31250 42 -0.68750 

11 0.34375 43 -0.65625 

12 0.37500 44 -0.62500 

13 0.40625 45 -0.59375 

14 0.43750 46 -0.56250 

15 0.46875 47 -0.53125 

16 0.50000 48 -0.50000 

17 0.53125 49 -0.46875 

18 0.56250 50 -0.43750 

19 0.59375 51 -0.40625 

20 0.62500 52 -0.37500 

21 0.65625 53 -0.34375 

22 0.68750 54 -0.31250 

23 0.71875 55 -0.28125 

24 0.75000 56 -0.25000 

25 0.78125 57 -0.21875 

26 0.81250 58 -0.18750 

27 0.84375 59 -0.15625 

28 0.87500 60 -0.12500 

29 0.90625 61 -0.09375 

30 0.93750 62 -0.06250 

31 0.96875 63 -0.03125 
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Table E3.12 Chaos Scaling: ecplchaostab[] 

ecplchaos ecplchaostab[ecplchaos]

0 0.000000 

1 -0.142857 

2 -0.285714 

3 -0.428571 

4 -0.571429 

5 -0.714286 

6 -0.857143 

7 -1.000000 

3.5.4 Enhanced Coupling Coordinate Format 

Enhanced coupling coordinates exist for each enhanced coupling band [bnd] in each channel [ch] 
which is coupled (chincp[ch]==1). Enhanced coupling coordinates are derived from three 
parameters; a 5-bit amplitude scaling value (ecplamp[ch][bnd]), a 6-bit phase angle value 
(ecplangle[ch][bnd]) and a 3-bit chaos measure (ecplchaos[ch][bnd]). These values will always be 
transmitted in the first block containing a coupled channel and are optionally transmitted in 
subsequent blocks, as indicated by the enhanced coupling parameter exists flags (ecplparam1e[ch] 
and ecplparam2e[ch]). If ecplparam1e[ch] or ecplparam2e[ch] are set to 0, corresponding coordinate 
values from the previous block are reused. 

The ecplamp values 0 to 30 represent gains between 0 dB and –45.01 dB quantized to 
increments of approximately 1.5 dB, and the value 31 represents minus infinity dB. The ecplangle 
values represent angles between 0 and 2pi radians, quantized to increments of 2pi/64 radians. 
The ecplchaos values each represent a scaling value between 0.0 and –1.0. 

3.5.5 Enhanced Coupling Processing 

This section describes the processing steps required to recover transform coefficients for each 
coupled channel from the enhanced coupling data. 

The following steps are performed for each block. 
• Process the enhanced coupling channel 
• Prepare amplitudes for each channel and band 
• Prepare angles for each channel and band 
• Generate transform coefficients for each channel from the processed enhanced coupling 

channel, amplitudes and angles 

3.5.5.1 Enhanced Coupling Channel Processing 

This section assumes that the enhanced coupling channel mantissas and exponents have been 
extracted from the bitstream and have been denormalized into fixed point transform coefficients. 

Angle adjustment of the enhanced coupling channel requires that time domain aliasing not be 
present. Therefore the non-aliased enhanced coupling channel must be reconstructed using the 
enhanced coupling transform coefficients from the previous, current and next blocks. If enhanced 
coupling is not in use in the previous block, enhanced coupling transform coefficients for the 
previous block shall be set to zero. Likewise if enhanced coupling is not in use in the next block, 
enhanced coupling transform coefficients for the next block shall be set to zero. 
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The following procedure describes how the non-aliased coupling channel is obtained. 

1)  The MDCT transform coefficient buffers are defined for the previous, current and next 
blocks (of length k=0,1,…,N/2-1 where N=512) as: 

 XPREV[k] = ecplmantPREV[k] where k = ecplstartmantPREV to ecplendmantPREV - 1 
  = 0 elsewhere 
 
 XCURR[k] = ecplmantCURR[k] where k = ecplstartmantCURR to ecplendmantCURR - 1 
  = 0 elsewhere 
 
 XNEXT[k] = ecplmantNEXT[k] where k = ecplstartmantNEXT to ecplendmantNEXT - 1 
  = 0 elsewhere 
 
  where ecplstartmant = ecplsubbndtab[ecpl_begin_subbndf] 
   ecplendmant = ecplsubbndtab[ecpl_end_subbnd] 

2) The windowed time domain samples xPREV[n], xCURR[n] and xNEXT[n] are computed using the 
512-sample IMDCT (as described in steps 1 to 5 of Section 7.9.4.1 in the main body of this 
document). 

3) The second half of the previous sample block and the first half of the next sample block are 
overlapped and added with the current sample block as follows: 

Pseudo Code 
for (n=0; n<N/2; n++) 
{ 
 pcm[n] = xPREV[n+N/2] + xCURR[n]; 
 pcm[n+N/2] = xCURR[n+N/2] + xNEXT [n]; 
} 

4) The enhanced coupling channel samples are adjusted such that the following DFT (FFT) 
output is an oddly stacked filterbank (as per the MDCT). The window w[n] is defined in 
Table 7.33 in the main body of this document. 

Pseudo Code 
for (n=0; n<N/2; n++) 
{ 
 pcm_real[n] = pcm[n] * w[n] * xcos3[n]; 
 pcm_real[n+N/2] = pcm[n+N/2] * w[N/2-n-1] * xcos3[n+N/2]; 
 pcm_imag[n] = pcm[n] * w[n] * xsin3[n]; 
 pcm_imag[n+N/2] = pcm[n+N/2] * w[N/2-n-1] * xsin3[n+N/2]; 
} 

Where 
 xcos3[n] = cos(pi * n / N) ; 
 xsin3[n] = -sin(pi * n / N) ; 

5) A Discrete Fourier Transform (as an FFT) is performed on the complex samples to create the 
complex frequency coefficients Z[k], k=0,1,…,N-1 
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3.5.5.2 Amplitude Parameter Processing 

Amplitude values for each enhanced coupling band [bnd] in each channel [ch] are obtained from 
the ecplamp parameters as: 

Pseudo Code 
if (ecplamp[ch][bnd] == 31) 
{ 
 ampbnd[ch][bnd] = 0; 
} 
else 
{ 
 ampbnd[ch][bnd] = ( ecplampmanttab[ecplamp[ch][bnd]] / 32 ) >> ecplampexptab[ecplamp[ch][bnd]]; 
} 

Modifications are made to the amplitude values using the transmitted chaos measure and 
transient parameter. Firstly, chaos values for each enhanced coupling band [bnd] in each channel 
[ch] are obtained from the ecplchaos parameters as follows. 

Pseudo Code 
if (ch == firstchincpl) 
{ 
 chaos[ch][bnd] = 0; 
} 
else 
{ 
 chaos[ch][bnd] = ecplchaostab[ecplchaos[ch][bnd]]; 
} 

The chaos modification is then performed as: 

Pseudo Code 
if ( (ecpltrans[ch] == 0) && (ch != firstchincpl) ) 
{ 
 ampbnd[ch][bnd] *= 1 + 0.38 * chaos[ch][bnd]; 
} 
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Using the ecplbndstrc[] array, an array indicating the number of bins in each enhanced coupling 
band is populated. Additionally, the amplitude values ampbnd[ch][bnd] which apply to enhanced 
coupling bands are converted to values which apply to enhanced coupling sub-bands 
ampbnd[ch][sbnd] by duplicating values as indicated by values of ‘1’ in ecplbndstrc[]. Amplitude 
values for individual enhanced coupling transform coefficients ampbin[ch][bin] are then 
reconstructed as follows. 

Pseudo Code 
necplbnds = -1; 
for (sbnd=ecpl_begin_subbnd; sbnd<ecpl_end_subbnd; sbnd++) 
{ 
 if (ecplbndstrc[sbnd] == 0) 
 { 
  necplbnds++; 
  nbins_per_bnd_array[necplbnds] = 0;  
 } 
 for (bin=ecplsubbndtab[sbnd]; bin<ecplsubbndtab[sbnd+1]; bin++) 
 { 
  ampbin[ch][bin] = ampbnd[ch][necplbnds]; 
  nbins_per_bnd_array[necplbnds]++; 
 } 
} 

3.5.5.3 Angle Parameter Processing 

Angle values for each enhanced coupling band [bnd] in each channel [ch] are obtained from the 
ecplangle parameters as follows. Each angle has a value in the range –1.0 to 1.0 (representing –pi 
to pi). Arithmetic operations performed on these angles “wrap around” such that the results are 
within the range –1.0 to 1.0. The following pseudo code derives the band angle value associated 
with a given channel and enhanced coupling angle, ecplangle[ch][bnd]. 

Pseudo Code 
if (ch == firstchincpl) 
{ 
 angle[ch][bnd] = 0; 
} 
else 
{ 
 angle[ch][bnd] = ecplangletab[ecplangle[ch][bnd]]; 
} 

The above band angle values are used to derive bin angle values associated with individual 
transform coefficients in one of two ways depending on the ecplangleintrp flag. 

If ecplangleintrp is set to 0, then no interpolation is used and the band angle values are applied 
to bin angle values according to the ecplbndstrc[] array. 

If ecplangleintrp is set to 1, then the band angle values are converted to bin angle values using 
linear interpolation between the centers of each band. The following pseudo code interpolates the 
band angles (angle[ch][bnd]) into bin angles (angle[ch][bin]) for channel [ch].  
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Pseudo Code 
if (ecpangleintrp == 1) 
{ 
 bin = ecplsubbndtab[ecpl_begin_subbnd]; 
 for (bnd = 1; bnd < nbands; bnd++)  
 { 
  nbins_prev = nbins_per_bnd_array[bnd-1]; /* array of length nbands containing band sizes */ 
  nbins_curr = nbins_per_bnd_array[bnd]; 
  angle_prev = angle[ch][bnd-1]; 
  angle_curr = angle[ch][bnd]; 
  while ((angle_curr – angle_prev) > 1.0) angle_curr -= 2.0; 
  while ((angle_prev – angle_curr) > 1.0) angle_curr += 2.0; 
  slope = (angle_curr – angle_prev)/((nbins_curr + nbins_prev)/2.0); /* floating point calculation*/ 
 
  / * do lower half of first band */ 
  if ((bnd == 1) && (nbins_prev > 1))  
  { 
   if (iseven(nbins_prev)) /* iseven() returns 1 if value is even, 0 if value is odd */ 
   { 
    y = angle_prev - slope/2; 
    bin = nbins_prev/2 - 1; 
   } 
   else 
   { 
    y = angle_prev - slope; 
    bin = (nbins_prev - 3)/2; 
   } 
   count = bin + 1; 
   for (j = 0; j < count; j++)  
   { 
    ytmp = y; 
    while (y > 1.0) y -= 2.0; 
    while (y < (-1.0)) y += 2.0; 
    angle[ch][bin--] = y; 
    y = ytmp; 
    y -= slope; 
   } 
   bin = count; 
  } 
  if (iseven(nbins_prev))  
  { 
   y = angle_prev + slope/2; 
   count = nbins_curr/2 + nbins_prev/2; /* integer calculation */ 
  } 
  else { 
   y = angle_prev; 
   count = nbins_curr/2 + (nbins_prev + 1)/2; /* integer calculation */ 
  } 
  for (j = 0; j < count; j++) { 
   ytmp = y; 
   while (y > 1.0) y -= 2.0; 
   while (y < (-1.0)) y += 2.0; 
   angle[ch][bin++] = y; 
   y = ytmp; 
   y += slope; 
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  } 
 }  
 
 /* Finish last band */ 
 if (iseven(nbins_curr)) 
  count = nbins_curr/2; /* integer calculation */ 
 else 
  count = nbins_curr/2 + 1; /* integer calculation */ 
 for (j = 0; j < count; j++)  
 { 
  ytmp = y; 
  while (y > 1.0) y -= 2.0; 
  while (y < (-1.0)) y += 2.0; 
  angle[ch][bin++] = y; 
  y = ytmp; 
  y += slope; 
 } 
} 

To assist in de-correlating complex continuous signals, a scaled array of random values is 
added to each bin angle. The random values depend on whether or not a transient is present in 
the channel being processed as indicated by ecpltrans[ch]. 

For channels without a transient, the random values rand_notrans[ch][bin] have the following 
properties: 

• They are uniformly distributed between -1.0 and 1.0. 
• They must be unique for each bin [bin] and channel [ch]. 
• They must only be generated once (for example during decoder initialization) and must 

stay the same for every block of every frame. 
For channels with a transient, the random values rand_trans[ch][bnd] have the following 

properties: 
• They are uniformly distributed between –1.0 and 1.0. 
• They must be unique for each band [bnd] and channel [ch]. 
• New values must be generated for each block. 
Using the ecplbndstrc[] array, the banded values for chaos[ch][bnd] and for rand_trans[ch][bnd] are 

converted to individual bin values by duplicating the band values across each subband and then 
across each bin within a subband. The chaos and random values are then used to modify each 
angle value as follows.  
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Pseudo Code 
if (ecpltrans[ch] == 0) 
{ 
 rand[ch][bin] = rand_notrans[ch][bin] 
} 
else   
{ 
 rand[ch][bin] = rand_trans[ch][bin] 
} 
 
angle[ch][bin] += chaos[ch][bin] * rand[ch][bin]; 
if (angle[ch][bin] < -1.0) 
{ 
 angle[ch][bin] += 2.0; 
} 
else if (angle[ch][bin] >= 1.0) 
{ 
 angle[ch][bin] -= 2.0; 
} 

3.5.5.4 Channel Transform Coefficient Generation 

Individual channel transform coefficients are then reconstructed from the coupling channel by 
computing the following complex products. 

Pseudo Code 
Zr[ch][bin] = Zr[bin] * ampbin[ch][bin] * cos(pi * angle[ch][bin]) - Zi[bin] * ampbin[ch][bin] * sin(pi * angle[ch][bin]); 
Zi[ch][bin] = Zi[bin] * ampbin[ch][bin] * cos(pi * angle[ch][bin]) + Zr[bin] * ampbin[ch][bin] * sin(pi * angle[ch][bin]); 
 
chmant[ch][bin] = -2 * ( y[bin] * Zr[ch][bin] + y[n/2-1-bin] * Zi[ch][bin] ); 

Where: 
 Zr[bin] = real(Z[k]); 
 Zi[bin] = imag(Z[k]); 
 and y[bin] = cos(2pi * (N/4 + 0.5) / N * (k + 0.5)); 
 
 for bin=k=0,1,…,N/2-1 

3.6 Spectral Extension Processing 

E-AC-3 supports a coding technique, based on high frequency regeneration, called spectral 
extension. This section contains a detailed description of the spectral extension process that the 
reference decoder shall implement. 

3.6.1 Overview 

When spectral extension is in use, high frequency transform coefficients of the channels that are 
participating in spectral extension are synthesized. Transform coefficient synthesis involves 
copying low frequency transform coefficients, inserting them as high frequency transform 
coefficients, blending the inserted transform coefficients with pseudo-random noise, and scaling 
the blended transform coefficients to match the coarse (banded) spectral envelope of the original 
signal. To enable the decoder to scale the blended transform coefficients to match the spectral 
envelope of the original signal, scale factors are computed by the encoder and transmitted to the 
decoder on a banded basis for all channels participating in the spectral extension process. For a 
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given channel and spectral extension band, the blended transform coefficients for that channel 
and band are multiplied by the scale factor associated with that channel and band. 

The spectral extension process is performed beginning at the spectral extension begin 
frequency, and ending at the spectral extension end frequency. The spectral extension begin 
frequency is derived from the spxbegf bit stream parameter. The spectral extension end frequency 
is derived from the spxendf bit stream parameter. 

In some cases, it may be desirable to use channel coupling for a mid-range portion of the 
frequency spectrum and spectral extension for the higher-range portion of the frequency 
spectrum. In this configuration, the highest coupled transform coefficient number must be 1 less 
than the lowest transform coefficient number generated by spectral extension. 

3.6.2 Sub-Band Structure for Spectral Extension 

Transform coefficients #25 through #228 are grouped into 17 sub-bands of 12 coefficients each, 
as shown in Table E3.13. The final table entry does not represent an actual sub-band, but is 
included for the case when the spxendf parameter is 17. The spectral extension sub-bands 
containing transform coefficients #37 through #228 coincide with coupling sub-bands. The 
parameter spx_begin_subbnd, derived from the spxbegf bit stream parameter, indicates the number of 
the first spectral extension sub-band. The parameter spx_end_subbnd, derived from the spxendf bit 
stream parameter of the same name, indicates a number one greater than the last spectral 
extension sub-band. From the sub-band indicated by spx_begin_subbnd to the sub-band indicated 
by spx_end_subbnd, transform coefficients are synthesized for all channels participating in the 
spectral extension process (chinspx[ch] == 1). Below the sub-band indicated by spx_begin_subbnd, 
channels may be independently coded. Alternatively, channels may be coded independently 
below the coupling begin frequency, and coupled from the coupling begin frequency to the 
spectral extension begin frequency. 

Spectral extension sub-bands are combined into spectral extension bands for which spectral 
extension coordinates are generated (and included in the bit stream). Like channel coupling, each 
spectral extension band is made up of one or more consecutive spectral extension sub-bands. The 
number of spectral extension bands and the size of each band are determined from the spectral 
extension band structure array (spxbndstrc[]). Upon frame initialization, the default spectral 
extension banding structure is copied into the spxbndstrc[] array. If (spxbndstrce == 1), the 
spxbndstrc[sbnd] bit stream parameters are present in the bit stream and are used to fill the 
spxbndstrc[] array. If (spxbndstrce == 0), the existing values in the spxbndstrc[] array are used to 
compute the number of spectral extension bands and the size of each band. 
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The following pseudo code indicates how to determine the number of spectral extension 
bands and the size of each band. 

Pseudo Code 
nspxbnds = 1; 
spxbndsztab[0] = 12; 
 
for (bnd = spx_begin_subbnd+1; bnd < spx_end_subbnd; bnd ++) 
{ 
 if (spxbndstrc[bnd] == 0) 
 { 
  spxbndsztab[nspxbnds] = 12; 
  nspxbnds++; 
 } 
 else 
 { 
  spxbndsztab[nspxbnds – 1] += 12; 
 } 
} 

Table E3.13 Spectral Extension Band Table 

spx 
sub-band # 

low tc # high tc # spxbegf spxendf 

0 25 36   

1 37 48   

2 49 60 0  

3 61 72 1  

4 73 84 2  

5 85 96 3 0 

6 97 108 4 1 

7 109 120 5 2 

8 121 132   

9 133 144 6 3 

10 145 156   

11 157 168 7 4 

12 169 180   

13 181 192  5 

14 193 204   

15 205 216  6 

16 217 228   

17 229   7 

3.6.3 Spectral Extension Coordinate Format 

Spectral extension coordinates exist for each spectral extension band [bnd] of each channel [ch] 
that is using spectral extension (chinspx[ch] ==1). Spectral extension coordinates must be sent at 
least once per frame, and may be sent as often as once per block. The spxcoe[ch] bit stream 
parameter informs the decoder when spectral extension coordinates are present in the bit stream. 
If (spxcoe[ch] == 0), no spectral extension coordinates for channel [ch] are present in the bit stream, 
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and the previous spectral extension coordinates should be reused. If (spxcoe[ch] == 1), spectral 
extension coordinates are present in the bit stream for channel [ch]. 

When present in the bit stream, spectral extension coordinates are transmitted in a floating 
point format. The exponent is sent as a 4-bit value (spxcoexp[ch][bnd]) indicating the number of 
right shifts which should be applied to the fractional mantissa value. The mantissas are sent as 2-
bit values (spxcomant[ch][bnd]) which must be properly scaled before use. Mantissas are unsigned 
values so a sign bit is not used. Except for the limiting case where the exponent value = 15, the 
mantissa value is known to be between 0.5 and 1.0. Therefore, when the exponent value < 15, the 
msb of the mantissa is always equal to ‘1’ and is not transmitted; the next 2 bits of the mantissa 
are transmitted. This provides one additional bit of resolution. When the exponent value = 15 the 
mantissa value is generated by dividing the 2-bit value of spxcomant by 4. When the exponent 
value is < 15 the mantissa value is generated by adding 4 to the 2-bit value of spxcomant and 
then dividing the sum by 8. 

Spectral extension coordinate dynamic range is increased beyond what the 4-bit exponent can 
provide by the use of a per channel 2-bit master spectral extension coordinate (mstrspxco[ch]) 
which is used to scale all of the spectral extension coordinates within that channel. The exponent 
values for each channel are increased by 3 times the value of mstrspxco which applies to that 
channel. This increases the dynamic range of the spectral extension coordinates by an additional 
54 dB. 

The following pseudo code indicates how to generate the spectral extension coordinate 
(spxco) for each spectral extension band [bnd] in each channel [ch]. 

Pseudo Code 
if (spxcoexp[ch][bnd] == 15) 
{ 
 spxco_temp[ch][bnd] = spxcomant[ch][bnd] / 4; 
} 
else 
{ 
 spxco_temp[ch][bnd] = (spxcomant[ch][bnd] + 4) / 8; 
} 
spxco[ch][bnd] = spxco_temp[ch][bnd] >> (spxcoexp[ch][bnd] + 3*mstrspxco[ch]); 

3.6.4 High Frequency Transform Coefficient Synthesis 

This process synthesizes transform coefficients above the spectral extension begin frequency. 
The synthesis process consists of a number of different steps, described in the following sections. 

3.6.4.1 Transform Coefficient Translation 

The first step of the high frequency transform coefficient synthesis process is transform 
coefficient translation. Transform coefficient translation consists of making copies of a channel’s 
low frequency transform coefficients and inserting them as the channel’s high frequency 
transform coefficients. The parameter spxstrtf, derived from the bit stream parameter of the same 
name, is used as the index into a table to determine the first transform coefficient to be copied. 
The parameter,spx_begin_subbnd derived from the spxbegf bit stream parameter, is used as the index 
into a table to determine the first transform coefficient to be inserted. The parameter, 
spx_end_subbnd derived from the spxendf bit stream parameter, is used as the index into a table to 
determine the last transform coefficient to be inserted. 
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Transform coefficient translation is performed on a banded basis. For each spectral extension 
band, coefficients are copied sequentially starting with the transform coefficient at copyindex 
and ending with the transform coefficient at (copyindex + bandsize – 1). Transform coefficients are 
inserted sequentially starting with the transform coefficient at insertindex and ending with the 
transform coefficient at (insertindex + bandsize – 1). 

Prior to beginning the translation process for each band, the value of (copyindex + bandsize – 1) 
is compared to the copyendmant parameter. If (copyindex + bandsize – 1) is greater than or equal to 
the copyendmant parameter, the copyindex parameter is reset to the copystartmant parameter and 
wrapflag[bnd] is set to 1. Otherwise, wrapflag[bnd] is set to 0. 

The following pseudo code indicates how the spectral component translation process is 
carried out for channel [ch]. 

Pseudo Code 
copystartmant = spxbandtable[spxstrtf]; 
copyendmant = spxbandtable[spx_begin_subbnd]; 
 
copyindex = copystartmant; 
insertindex = copyendmant; 
 
for (bnd = 0; bnd < nspxbnds; band++) 
{ 
 bandsize = spxbndsztab[bnd]; 
 if ((copyindex + bandsize) > copyendmant) 
 { 
  copyindex = copystartmant; 
  wrapflag[bnd] = 1; 
 } 
 else 
 { 
  wrapflag[bnd] = 0; 
 } 
 
 for (bin = 0; bin < bandsize; bin++) 
 { 
  if (copyindex == copyendmant) 
  { 
   copyindex = copystartmant; 
  } 
  tc[ch][insertindex] = tc[ch][copyindex]; 
  insertindex++; 
  copyindex++; 
 } 
} 

3.6.4.2 Transform Coefficient Noise Blending 

The next step of the high frequency transform coefficient synthesis process is transform 
coefficient noise blending. In this step, the translated transform coefficients are blended with 
pseudo-random noise in order to create a more natural sounding signal. 



ATSC A/52:2012 A/52 Annex E 17 December 2012 

 220

3.6.4.2.1 Blending Factor Calculation 

The first step of the transform coefficient noise blending process is to determine blending factors 
for the pseudo-random noise and the translated transform coefficients. The blending factor 
calculation for each band is based on both the spxblend bit stream parameter and the frequency 
mid-point of the band. This enables unique blending factors to be computed for each band from a 
single bit stream parameter. Because the spxblnd parameter exists in the bit stream only when new 
spectral extension coordinates exist in the bit stream, the blending factors can be reused for all 
blocks in which spectral extension coordinates are reused. 

The following pseudo code indicates how the blending factors for a channel [ch] are 
determined. 

Psuedo Code 
noffset[ch] = spxblend[ch] / 32.0; 
spxmant = spxbandtable[spx_begin_subbnd]; 
 
if (spxcoe[ch]) 
{ 
 for (bnd = 0; bnd < nspxbnds; bnd++) 
 { 
  bandsize = spxbndsztab[bnd]; 
  nratio = ((spxmant + 0.5*bandsize) / spxbandtable[spx_end_subbnd]) – noffset[ch]; 
 
  if (nratio < 0.0) 
  { 
   nratio = 0.0; 
  } 
  else if (nratio > 1.0) 
  { 
   nratio = 1.0; 
  } 
  nblendfact[ch][bnd] = squareroot(nratio); 
  sblendfact[ch][bnd] = squareroot(1 – nratio); 
  spxmant += bandsize; 
 } 
} 

3.6.4.2.2 Banded RMS Energy Calculation 

The next step is to compute the banded RMS energy of the translated transform coefficients. The 
banded RMS energy measures are needed to properly scale the pseudo-random noise samples 
prior to blending. 

The following pseudo code indicates how to compute the banded RMS energy of the 
translated transform coefficients for channel [ch]. 

Pseudo Code 
spxmant = spxbandtab[spx_begin_subbnd]; 
 
for (bnd = 0; bnd < nspxbnds; bnd++) 
{ 
 bandsize = spxbndsztab[bnd]; 
 accum = 0; 
 for (bin = 0; bin < bandsize; bin++) 
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 { 
  accum = accum + (tc[ch][spxmant] * tc[ch][spxmant]); 
  spxmant++; 
 } 
 rmsenergy[ch][band] = squareroot(accum / bandsize); 
} 

3.6.4.2.3 Transform Coefficient Band Border Filtering 

When spectral extension attenuation is enabled for channel [ch], a notch filter is applied to the 
transform coefficients surrounding the border between the baseband and extension region. The 
filter is symmetric about the first bin of the extension region, and covers a total of 5 bins. The 
first 3 attenuation values of the filter are determined by lookup into Table E3.14 with index 
spxattencod[ch]. The last two attenuation values of the filter are determined by symmetry and are 
not explicitly stored in the table. The filter is also applied to the transform coefficients 
surrounding each border between bands where wrapping occurs during the transform coefficient 
translation operation, as indicated by wrapflag[bnd]. It is important that filtering occurs after the 
transform coefficient translation and banded RMS energy calculation but prior to the noise 
scaling and transform coefficient blending calculation. The following pseudo code demonstrates 
the application of the notch filter at the border between the baseband and extension region and all 
wrap points for each channel [ch].  
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Pseudo Code 
if (chinspxatten[ch]) 
{ 
 /* apply notch filter at baseband / extension region border */ 
 filtbin = spxbandtable[spx_begin_subbnd] - 2; 
 
 for (bin = 0; bin < 3; bin++) 
 { 
  tc[ch][filtbin] *= spxattentab[spxattencod[ch]][binindex]; 
  filtbin++; 
 } 
 
 for (bin = 1; bin >= 0; bin--) 
 { 
  tc[ch][filtbin] *= spxattentab[spxattencod[ch]][binindex]; 
  filtbin++; 
 } 
 filtbin += spxbndsztab[0]; 
 /* apply notch at all other wrap points */ 
 
 for (bnd = 1; bnd < nspxbnds; bnd++) 
 { 
  if (wrapflag[bnd])  /* wrapflag[bnd] set during transform coefficient translation */ 
  { 
   filtbin = filtbin – 5; 
   for (binindex = 0; binindex < 3; bin++) 
   { 
    tc[ch][filtbin] *= spxattentab[spxattencod[ch]][binindex]; 
    filtbin++; 
   } 
 
   for (bin = 1; bin >= 0; bin--) 
   { 
    tc[ch][filtbin] *= spxattentab[spxattencod[ch]][binindex]; 
    filtbin++; 
   } 
  } 
 
  filtbin += spxbndsztab[bnd]; 
 } 
} 
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Table E3.14 Spectral Extension Attenuation Table: spxattentab[][] 

spxattencod binindex

0 1 2

0 0.954841604 0.911722489 0.870550563 

1 0.911722489 0.831237896 0.757858283 

2 0.870550563 0.757858283 0.659753955 

3 0.831237896 0.690956440 0.574349177 

4 0.793700526 0.629960525 0.500000000 

5 0.757858283 0.574349177 0.435275282 

6 0.723634619 0.523647061 0.378929142 

7 0.690956440 0.477420802 0.329876978 

8 0.659753955 0.435275282 0.287174589 

9 0.629960525 0.396850263 0.250000000 

10 0.601512518 0.361817309 0.217637641 

11 0.574349177 0.329876978 0.189464571 

12 0.548412490 0.300756259 0.164938489 

13 0.523647061 0.274206245 0.143587294 

14 0.500000000 0.250000000 0.125000000 

15 0.477420802 0.227930622 0.108818820 

16 0.455861244 0.207809474 0.094732285 

17 0.435275282 0.189464571 0.082469244 

18 0.415618948 0.172739110 0.071793647 

19 0.396850263 0.157490131 0.062500000 

20 0.378929142 0.143587294 0.054409410 

21 0.361817309 0.130911765 0.047366143 

22 0.345478220 0.119355200 0.041234622 

23 0.329876978 0.108818820 0.035896824 

24 0.314980262 0.099212566 0.031250000 

25 0.300756259 0.090454327 0.027204705 

26 0.287174589 0.082469244 0.023683071 

27 0.274206245 0.075189065 0.020617311 

28 0.261823531 0.068551561 0.017948412 

29 0.250000000 0.062500000 0.015625000 

30 0.238710401 0.056982656 0.013602353 

31 0.227930622 0.051952369 0.011841536 

3.6.4.2.4 Noise Scaling and Transform Coefficient Blending Calculation 

In order to properly blend the translated transform coefficients with pseudo-random noise, the 
noise components for each band must be scaled to match the energy of the translated transform 
coefficients in the band. The energy matching can be achieved by scaling all the noise 
components in a given band by the RMS energy of the translated transform coefficients in that 
band, provided the noise components are generated by a zero-mean, unity-variance noise 
generator. Once the zero-mean, unity-variance noise components for each band have been scaled 
by the RMS energy for that band, the scaled noise components can be blended with the translated 
transform coefficients. 
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The following pseudo code indicates how the translated transform coefficients and pseudo-
random noise for a channel [ch] are blended. The function noise() returns a pseudo-random number 
generated from a zero-mean, unity-variance noise generator. 

Pseudo Code 
spxmant = spxbandtable[spx_begin_subbnd]; 
 
for (bnd = 0; bnd < nspxbnds; bnd++) 
{ 
 bandsize = spxbndsztab[bnd]; 
 nscale = rmsenergy[ch][bnd] * nblendfact[ch][bnd]; 
 sscale = sblendfact[ch][bnd]; 
 for (bin = 0; bin < bandsize; bin++) 
 { 
  tctemp = tc[ch][spxmant]; 
  ntemp = noise(); 
  tc[ch][spxmant] = tctemp * sscale + ntemp * nscale; 
  spxmant++; 
 } 
} 

3.6.4.3 Blended Transform Coefficient Scaling 

The final step of the high frequency transform coefficient synthesis process is blended transform 
coefficient scaling. In this step, blended transform coefficients are scaled by the spectral 
extension coordinates to form the final synthesized high frequency transform coefficients. After 
this step, the banded energy of the synthesized high frequency transform coefficients should 
match the banded energy of the high frequency transform coefficients of the original signal. 

The blended transform coefficient scaling process for channel [ch] is shown in the following 
pseudo code. 

Pseudo Code 
spxmant = spxbandtable[spx_begin_subbnd]; 
 
for (bnd = 0; bnd < nspxbnds; bnd++) 
{ 
 bandsize = spxbndsztab[bnd]; 
 spxcotemp = spxco[ch][bnd]; 
 for (bin = 0; bin < bandsize; bin++) 
 { 
  tctemp = tc[ch][spxmant]; 
  tc[ch][spxmant] = tctemp * spxcotemp * 32; 
  spxmant++; 
 } 

3.7 Transient Pre-Noise Processing 

Transient pre-noise processing is a new audio coding improvement technique, which reduces the 
duration of pre-noise introduced by low-bit rate audio coding of transient material. This section 
contains a detailed description of transient pre-noise processing that the reference decoder shall 
implement. 
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3.7.1 Overview 

When transient pre-noise processing is used, decoded PCM audio located prior to transient 
material is used to overwrite the transient pre-noise, thereby improving the perceived quality of 
low-bit rate audio coded transient material. To enable the decoder to efficiently perform transient 
pre-noise processing with minimal decoding complexity, transient location detection and time 
scaling synthesis analysis is performed by the encoder and the information transmitted to the 
decoder. The encoder performs transient pre-noise processing for each full bandwidth audio 
channel and transmits the information once per frame. The transmitted transient location and 
time scaling synthesis information are relative to the first decoded PCM sample contained in the 
audio frame containing the bit stream information. It should be noted that it is possible for the 
time scaling synthesis parameters contained in audio frame N, to reference PCM samples and 
transients located in audio frame N+1, but this does not create a requirement for multi-frame 
decoding. 

3.7.2 Application of Transient Pre-Noise Processing Data 

The bit stream syntax and high level description of the transient pre-noise parameters contained 
in the audio frame field are outlined in Sections 2.2.3 and 2.3.2, respectively. The parameter 
transproce indicates whether any of the full bandwidth channels in the current audio frame have 
associated transient pre-noise time scaling synthesis processing information. If transproce is set 
to a value of ‘1’, then the parameter chintransproc[ch] can be set for each full bandwidth channel. 
For each full bandwidth channel where chintransproc[ch] is set to a value of ‘1’, the transient 
location parameter transprocloc[ch] and time scaling length parameter transproclen[ch] are each set to 
values that have been calculated by the encoder. 

Figure E3.2 provides an overview of how the transient pre-noise parameters that are 
computed and transmitted by the encoder are applied in the decoder. As shown in Figure E3.2a, 
the parameter transprocloc[ch] identifies the location of the transient relative to the first sample of 
decoded PCM channel data in the audio frame that contains the transient pre-noise processing 
parameters. As defined, transprocloc[ch] has four sample resolution to reduce the data rate required 
to transmit the transient location and must be multiplied by 4 to get the location of the transient 
in samples. As also shown in Figure E3.2a, the parameter transproclen[ch] provides the time scaling 
length, in samples, relative to the leading edge of the audio coding block prior to the block in 
which the transient is located. As shown in Figure E3.2b, the location of the leading edge of the 
audio coding block prior to the block containing the transient indicates the start of the transient 
pre-noise. The start of the previous audio coding block and location of the transient provide the 
total length of the transient pre-noise in samples, PN. As part of the normal decoding operation, 
the decoder inherently knows the starting location of the audio coding block that contains the 
transient and this does not need to be transmitted. 
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Figure E3.2 Transient pre-noise time scaling synthesis summary. 

Also shown in Figure E3.2b is how the time scaling synthesis audio buffer, which is used to 
modify the transient pre-noise, is defined relative to the decoded audio frame. The time scaling 
synthesis buffer is (2*TC1 + PN) PCM samples in length, where TC1 is a time scaling synthesis 
system parameter equal to 256 samples. The first sample of the time scaling synthesis buffer is 
located (2*TC1 + 2*PN) samples before the location of the transient. 

Figure E3.2c outlines how the time scaling synthesis buffer is used along with the 
transproclen[ch] parameter to remove the transient pre-noise. As shown in Figure E3.2c the original 
decoded audio data is cross-faded with the time scaling synthesis buffer starting at the sample 
located (PN + TC1 + transproclen[ch]) samples before the location of the transient. The length of 
the cross-fade is TC1 or 256 samples. Nearly any pair of constant amplitude cross-fade windows 
may be used to perform the overlap-add between the original data and the synthesis buffer, 
although standard Hanning windows have been shown to provide good results. The time scaling 
synthesis buffer is then used to overwrite the decoded PCM audio data that is located before the 
transient, including the transient pre-noise. This overwriting continues until TC2 samples before 
the transient where TC2 is another time scaling synthesis system parameter equal to 128 
samples. At TC2 samples before the transient, the time scaling synthesis audio buffer is cross-
faded with the original decoded PCM data using a set of constant amplitude cross-fade windows. 

The following pseudo code outlines how to implement the transient pre-noise time scaling 
synthesis functionality in the decoder for a single full bandwidth channel, [ch]. 

Where: 
 win_fade_out1 = TC1 sample length cross-fade out window (unity to zero in value) 
 win_fade_in1 = TC1 sample length cross-fade in window (zero to unity in value) 
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 win_fade_out2 = TC2 sample length cross-fade out window (unity to zero in value) 
 win_fade_in2 = TC2 sample length cross-fade in window (zero to unity in value) 

 
Pseudo Code 
/* unpack the transient location relative to first decoded pcm sample. */ 
transloc = transprocloc[ch]; 
/* unpack time scaling length relative to first decoded pcm sample. */ 
translen = transproclen[ch]; 
/* compute the transient pre-noise length using audio coding block first sample, aud_blk_samp_loc. */ 
pnlen = (transloc – aud_blk_samp_loc); 
/* compute the total number of samples corrected in the output buffer. */ 
tot_corr_len = (pnlen + translen + TC1); 
 
/* create time scaling synthesis buffer from decoded output pcm buffer, pcm_out[ ]. */ 
for (samp = 0; samp < (2*TC1 + pnlen); samp++) 
 synth_buf[samp] = pcm_out[(transloc – (2*tc + 2*pnlen) + samp)]; 
end 
 
/* use time scaling synthesis buffer to overwrite and correct pre-noise in output pcm buffer. */ 
start_samp = (transloc – tot_corr_len); 
for (samp = 0; samp < TC1; samp++) 
{ 
 pcm_out[start_samp + samp] = (pcm_out[start_samp + samp] * win_fade_out1[samp]) + 
  (synth_buf[samp] * win_fade_in1[samp]);  
} 
for (samp = TC1; samp < (tot_corr_len – TC2); samp++) 
{ 
 pcm_out[start_samp + samp] = synth_buf[samp];  
} 
for (samp = (tot_corr_len – TC2); samp < tot_corr_len; samp++) 
{ 
 pcm_out[start_samp + samp] = (pcm_out[start_samp + samp] * win_fade_in2[samp]) + 
  (synth_buf[samp] * win_fade_out2[samp]);  
} 

3.8 Channel and Program Extensions 

The E-AC-3 bit stream syntax allows for time-multiplexed substreams to be present in a single 
bit stream. By allowing time-multiplexed substreams, the E-AC-3 bit stream syntax enables a 
single program with greater than 5.1 channels, multiple programs of up to 5.1 channels, or a 
mixture of programs with up to 5.1 channels and programs with greater than 5.1 channels, to be 
carried in a single bit stream. 

3.8.1 Overview 

An E-AC-3 bit stream must consist of at least one independently decodable stream (type 0 or 2). 
Optionally, E-AC-3 bit streams may consist of multiple independent substreams (type 0 or 2) or 
a combination of multiple independent (type 0 and 2) and multiple dependent (type 1) 
substreams. 

The reference enhanced AC-3 decoder must be able to decode independent substream 0, and 
skip over any additional independent and dependent substreams present in the bit stream. 

Optionally, E-AC-3 decoders may use the information present in the acmod, lfeon, strmtyp, 
substreamid, chanmape, and chanmap bit stream parameters to decode bit streams with a single 
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program with greater than 5.1 channels, multiple programs of up to 5.1 channels, or a mixture of 
programs with up to 5.1 channels and programs with greater than 5.1 channels. 

3.8.2 Decoding a Single Program with Greater than 5.1 Channels 

When a bit stream contains a single program with greater than 5.1 channels, independent 
substream 0 contains a 5.1 channel downmix of the program for compatibility with playback 
systems containing 5.1 speakers (Figure E3.3). The audio in independent substream 0 can also be 
downmixed for compatibility with playback systems containing less than 5.1 speakers. Decoders 
reproducing 5.1 or fewer channels from a program containing greater than 5.1 channels shall 
decode only independent substream 0 and skip all associated dependent substreams. 

In order to accommodate playback by systems with greater than 5.1 speakers, the E-AC-3 bit 
stream will carry one or more dependent substreams that contain channels that either replace or 
supplement the 5.1 channel data carried in independent substream 0. 

 

Figure E3.3 Bitstream with a single program of greater than 5.1 channels. 

If the chanmape parameter of a dependent substream is set to 0, then the acmod and lfeon 
parameters of the dependent substream are used to identify the channels present in the dependent 
substream, and the corresponding audio channels in the independent substream are overwritten 
with the dependent audio channel data. For example, if the dependent substream uses acmod 1/0 
(center channel only) and has lfeon set to 1, then the center channel audio data carried in the 
dependent stream will replace the center channel audio data carried in the independent stream, 
and the LFE audio data carried in the dependent stream will replace the LFE data carried in the 
independent stream. 

If the chanmape parameter of a dependent substream is set to 1, then the chanmap parameter is 
used to determine the channel mapping for all channels contained in the dependent stream. Each 
bit of the chanmap parameter corresponds to a particular channel location. Audio data is contained 
in the dependent substream for each chanmap bit that is set to 1. The order of the coded channels 
in the dependent substream is the same as the order of the bits set to 1 in the chanmap parameter. 
For example, if the Left channel bit is set to 1 in the channel map field, then Left channel audio 
data will be contained in the first coded channel of data in the dependent substream. If channels 
are present in the dependent substream that correspond to channels in the associated independent 
substream, then the dependent substream data for those channels replaces the independent 
substream data for the corresponding channels. All channels present in the dependent substream 
that do not correspond to channels in the independent substream are used to enable output for 
speaker configurations with greater than 5.1 channels. 

The maximum number of channels rendered for a single program is 16. 

3.8.3 Decoding Multiple Programs with up to 5.1 Channels 

When an E-AC-3 bit stream contains multiple independent substreams, each independent 
substream corresponds to an independent audio program (Figure 3.4). The application interface 
may inform the decoder which independent audio program should be decoded by selecting a 
specific independent substream ID. The decoder should then only decode substreams with the 
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desired independent substream ID, and skip over any other programs present in the bit stream 
with different substream ID’s. The default program selection should always be Program 1. 

In some cases, it may be desirable to decode multiple independent audio programs. In these 
cases, the application interface should inform the decoder which independent audio programs to 
decode by selecting specific independent substream ID’s. The decoder should then decode all 
substreams with the desired independent substream ID’s, and skip over any other programs 
present in the bit stream with different substream ID’s. 

 

Figure E3.4 Bitstream with multiple programs of up to 5.1 channels. 

3.8.4 Decoding a Mixture of Programs with up to 5.1 Channels and Programs with Greater than 
5.1 Channels 

When an E-AC-3 bit stream contains multiple independent and dependent substreams, each 
independent substream and its associated dependent substreams correspond to an independent 
audio program (Figure 3.5). The application interface may inform the decoder which 
independent audio program should be decoded by selecting a specific independent substream ID. 
The decoder should then only decode the desired independent substream and all its associated 
dependent substreams, and skip over all other independent substreams and their associated 
dependent substreams. If the selected independent audio program contains greater than 5.1 
channels, the decoder should decode the selected independent audio program as explained in 
Section 3.8.2. The default program selection should always be Program 1. 

In some cases, it may be desirable to decode multiple independent audio programs. In these 
cases, the application interface should inform the decoder which independent audio programs to 
decode by selecting specific independent substream ID’s. The decoder should then decode the 
desired independent substreams and their associated dependent substreams, and skip over all 
other independent substreams and associated dependent substreams present in the bit stream. 

 

Figure E3.5 Bitstream with mixture of programs of up to 5.1 channels and 
programs of greater than 5.1 channels. 

3.8.5 Dynamic Range Compression for Programs Containing Greater than 5.1 Channels 

A program using channel extensions to convey greater than 5.1 channels may require two 
different sets of compr and dynrng metadata words: one set for the 5.1 channel downmix carried 
by independent substream 0 and a separate set for the complete (greater than 5.1 channel) mix. If 
a decoder is reproducing the complete mix, the compr and dynrng metadata words carried in 
independent substream 0 shall be ignored. The decoder shall instead use the compr and dynrng 
metadata words carried by the associated dependent substream. If multiple associated dependent 
substreams are present, only the last dependent substream may carry compr and dynrng metadata 
words, and these metadata words shall apply to all substreams in the program, including the 
independent substream. 
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The compre bit is used by the decoder to determine which dependent substream in a program 
is the last dependent substream of the program. Therefore, the compre bit in the last dependent 
substream of a program must be set to 1, and the compre bit in all other dependent substreams of 
the program must be set to 0. Additionally, the compr2e, dynrnge, and dynrng2e bits for all but the 
last dependent substream of a program must be set to 0. The compr2e, dynrnge, and dynrng2e bits for 
the last dependent substream shall be set as required to transmit the proper compr2, dynrng, and 
dynrng2 words for the program. 

Note that the compr2e, compr2, dynrng2e, and dynrng2 metadata words are only present in the bit 
stream when acmod = 0. 

3.9 LFE downmixing decoder description 

For decoders with only 2-channel or mono outputs, where a dedicated LFE/Subwoofer output is 
not available, E-AC-3 enables the LFE channel audio to be mixed into the Left and Right 
channels at a level indicated by the LFE mix level code bit stream parameter.  

LFE downmixing occurs only if the LFE mix level code parameter is present in the bit stream 
and the decoder is operating in 1/0 (C only) or 2/0 (L/R) output modes with the LFE channel 
output disabled. For all other output modes, the LFE mixing information, if present, is ignored. 
Note that lfemixlevcode should be assumed to be 0 when it is not transmitted in the bit stream. For 
the 1/0 case, the decoder should perform a standard 2/0 downmix with the LFE mixed into the 
Left and Right channels, followed by a subsequent mix of the L/R channels to a mono C channel. 
The following pseudo code indicates how the decoder should perform the LFE downmix. 

Pseudo Code 
if (output mode == 1/0 or 2/0) && (lfeoutput == disabled) && (lfemixlevcode == 1)) 
{ 
 mix LFE into left with (LFE mix level - 4.5) dB gain 
 mix LFE into right with (LFE mix level - 4.5) dB gain 
} 
if (output mode == 1/0) 
{ 
 mix left into center with -6 dB gain 
 mix right into center with -6 dB gain 
} 

3.10 Control of Program Mixing  

The E-AC-3 bitstream syntax includes parameters that can be used to control the mixing of two 
audio programs after simultaneous decoding by a device containing an E-AC-3 decoder. 
Typically these two programs are (1) a main audio component, which contains the majority of 
the audio and is sufficiently complete that it can be decoded on its own to deliver a full audio 
presentation to the listener, and (2) an associated audio component, which contains 
supplementary audio content (for example a commentary or video description track) that is 
intended to be combined with the main audio service before presentation to the listener.  

These services should be delivered using one of the two following methods: 
1. As two separate E-AC-3 streams (with one program carried in independent substream 0 of 

the first E-AC-3 stream and the second carried in independent substream 0 of the second 
stream).  

2. As a single E-AC-3 stream with two (or more) independent substreams . 
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If case number 2 is used, then the main audio component shall be carried in independent 
substream 0 and dependent substreams associated with independent substream 0, if any; and the 
associated audio component shall be carried in an independent substream with a non-zero 
substreamid value. 

The mixing metadata parameters are carried within the Bit Stream Information (BSI) field of 
each E-AC-3 syncframe, and are defined in section E2.2.2 and section E2.3.1. The following 
sections provide information on the intended usage of each mixing metadata parameter when 
control of a mixing process is required. 

3.10.1 pgmscl 

The pgmscl (program scale factor) parameter is defined in section E2.3.1.13. This parameter 
specifies a gain value used to adjust the level of audio service that is being carried in the same 
substream as the pgmscl parameter. For example, if the pgmscl parameter is present in independent 
substream 0 of an E-AC-3 stream that is carrying a main audio service, and the pgmscl parameter 
specifies a gain of -3 dB, all audio channels of the main audio service carried in independent 
substream 0 will be attenuated by 3 dB during the mixing process.  

3.10.2 extpgmscl 

The extpgmscl (external program scale factor) parameter is defined in section E2.3.1.17. This 
parameter specifies a gain value used to adjust the level of an audio service that is being carried 
in a different E-AC-3 bitstream or substream from the bitstream or substream that contains the 
extpgmscl parameter. For example, if independent substream 1 of an E-AC-3 stream that is 
carrying an associated audio service contains extpgmscl data that specifies a gain value of -10 dB, 
and independent substream 0 of the same E-AC-3 stream contains the main audio service, all 
audio channels of the main audio service carried in independent substream 0 will be attenuated 
by 10 dB during the mixing process.  

3.10.3 mixdef 

The mixdef (mix control field length) parameter is defined in section E.2.3.1.18. This parameter 
defines the length of the mixdata field, which is a variable length container used to store a range of 
mixing metadata parameters that supplement the pgmscl, extpgmscl and panmean parameters, 
providing additional control of the mixing process. 

When the mixdef parameter is set to ‘00’, the mixdata field is not present in the syncframe, and 
only the pgmscl, extpgmscl and panmean parameters may be present in the E-AC-3 syncframe.  

When the mixdef parameter is set to ‘01’, the mixdata field is 5 bits long, and contains the 
premixcmpsel, drcsrc and premixcmpscl parameters. These parameters were originally defined to 
enable dynamic range compression to be applied to the main audio service as part of the mixing 
process, but this functionality is not supported by the E-AC-3 mixing model, so these parameters 
should be set to the values that are recommended in Section 2.3.1 by the encoder. 

When the mixdef parameter is set to ‘11’, the mixdata field can be between 2 and 33 bytes long, 
and the actual length of the mixdata field is defined by the mixdeflen parameter.  

3.10.4 mixdeflen 

When the mixdef parameter is set to ‘11’, the mixdeflen parameter specifies the length of the mixdata 
field in bytes. The range of the mixdeflen parameter is 0 to 31, which specifies a mixdata field 
length of between 2 and 33 bytes in one byte increments. In this case, the mixdata field is required, 
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at a minimum, to contain the mixdeflen, mixdata2e and mixdata3e parameters, and if the mixdata2e and 
mixdata3e flags are set to ‘0’, the remaining bits in mixdata are required to be set to ‘0’. 

3.10.5 mixdata2e 

The mixdata2e flag is set to ‘1’ when an additional set of mixing metadata parameters is included 
in the syncframe. These parameters enable control over individual channels of an external 
program. 

3.10.6 extpgm(X)scl 

Up to eight individual channel scaling parameters (extpgmXscl, where X is l, c, r, ls, rs, lfe, aux1 or 
aux2) are available to adjust the level of each individual channel in an external program 
containing up to 7.1 channels. These parameters are defined in sections E2.3.1.26, E2.3.1.28, 
E2.3.1.30, E2.3.1.32, E2.3.1.34, E2.3.1.36, E2.3.1.41 and E2.3.1.43. The parameters are named 
to match the corresponding channels – e.g. extpgmlscl adjusts the gain of the left channel of the 
external program, and extpgmrsscl adjusts the level of the right surround channel of the external 
program.  

The extpgmaux1scl and extpgmaux2scl parameters are used to adjust the level of channels with 
channel locations that can be specified only by using the chanmap parameter (e.g. the Vhc 
channel). The use of “auxiliary” rather than assigning fixed channel location labels is because 
E-AC-3 can assign a number of different channel locations to these coded channels through use 
of the chanmap parameter. Up to two of these auxiliary channels may be present in a program. 

The gain indicated by each of the individual channel scaling parameters is combined with the 
gain indicated by the extpgmscl parameter (which applies to all channels) to specify the total gain 
that is to be applied to that channel of the external program. For example, if independent 
substream 1 of an E-AC-3 stream that is carrying an associated audio service contains extpgmscl 
data that specifies a gain value of -10 dB, and also contains extpgmlsscl data that specifies a gain 
value of -10dB, and independent substream 0 of the same E-AC-3 stream contains the main 
audio service, all audio channels of the main audio service carried in independent substream 0 
will be attenuated by 10 dB during the mixing process (as specified by the value of extpgmscl), 
and the left surround channel of the main audio service will be attenuated by a further 10 dB (as 
specified by the value of extpgmlsscl). 

3.10.7 dmixscl 

When a multichannel audio program is downmixed to 2 channels within the E-AC-3 decoder, it 
is no longer possible to apply the individual channel scaling parameters to each individual 
channel of the multichannel audio program in the mixer as these channels have been combined 
during the downmixing process. In this situation it may still be desirable to apply additional 
attenuation to the downmixed audio that is output by the E-AC-3 decoder, and the dmixscl 
parameter is used for this purpose. Similarly to the individual channel scaling parameters, the 
gain indicated by the dmixscl parameter is combined with the gain indicated by the extpgmscl 
parameter to specify the total gain that is to be applied to the downmixed multichannel audio 
program. The dmixscl parameter should only be used when a multichannel audio program has 
been downmixed to 2 channels within the E-AC-3 decoder, preventing the use of individual 
channel scaling parameters. If the individual channels of the multichannel audio program are 
available to the mixer, then the individual channel scaling parameters are used, and the dmixscl 
parameter should be ignored.  
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3.10.8 panmean 

The panmean parameter allows a mono associated audio stream to be panned to any of the 
channels of the main audio service. When the value of the panmean parameter is 0, this indicates 
the panned virtual source points toward the center speaker location (defined as 0 degrees). The 
index indicates 1.5 degree increments in a clockwise rotation. Values 0 to 239 represent 0 to 
358.5 degrees, while values 240 to 255 are reserved.  

The proportion of associated audio in each channel of the main audio is dependent on the 
output configuration of the main audio decoder, and the number of channels in the main audio 
service.  

For mixing a mono associated audio service with a stereo (or downmixed) main audio 
service, the associated audio service is split into two channels, AL and AR, to be mixed with the 
Left and Right channels of the main audio respectively. Table E3.16 shows the scale factors to be 
applied to AL and AR prior to mixing with the corresponding main audio channel for each value 
of panmean. 

Table E3.15 Associated Audio Scale Factors for Stereo Output Panning 

panmean range AL scale factor  AR scale factor

0 – 19 ( )




 +=

40

20

2
cos

panmeanπ ( )




 +=

40

20

2
sin

panmeanπ

 
20 – 99 0 1 

100 – 139  ( )




 −=

40

100

2
sin

panmeanπ ( )




 −=

40

100

2
cos

panmeanπ

 
140 – 219 1 0 

220 – 239 ( )




 −=

40

220

2
cos

panmeanπ ( )




 −=

40

220

2
sin

panmeanπ

 

For mixing a mono associated audio service with a 5.1-channel main audio service, the 
associated audio service is split into five channels (the LFE channel is not included), AL, AC, AR, 
ALS and ARS, to be mixed with the Left, Center, Right, Left Surround and Right Surround 
channels of the main audio respectively. Table E3.17 shows the scale factors to be applied to AL, 
AC and AR prior to mixing with the corresponding main audio channel for each value of 
panmean. Table E3.18 shows the scale factor to be applied to ALS and ARS, prior to mixing with 
the corresponding main audio channel for each value of panmean. 
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Table E3.16 Associated Audio scale factors for 5.1-channel output 
panning: L, C, and R channels 

panmean 
value  

AL scale factor AC scale factor AR scale factor 

0–19 0 





=

202
cos

panmeanπ




=

202
sin

panmeanπ

20–72 0 0 ( )




 −=

53

20

2
cos

panmeanπ

73–166 0 0 0 

167–219 ( )




 −=

53

167

2
sin

panmeanπ 0 0 

220–239 ( )




 −=

20

220

2
cos

panmeanπ ( )




 −=

20

220

2
sin

panmeanπ 0 

Table E3.17 Associated Audio Scale Factors for 5.1-Channel Output 
Panning: Ls and Rs Channels 

panmean value ALS scale factor ARS scale factor

0-19 0 0 

20-72 0 ( )




 −=

53

20

2
sin

panmeanπ

 
73-166 
 

( )




 −=

94

73

2
sin

panmeanπ ( )




 −=

94

73

2
cos

panmeanπ

 
167-219 





 −=

53

167

2
cos

panmeanπ 0 

220-239 0 0 

4. AHT VECTOR QUANTIZATION TABLES 

Table E4.1 VQ Table for hebap 1 (16-bit two’s complement) 

index val[index][0] 
(16-bit two’s 
complement) 

val[index][1] 
(16-bit two’s 
complement) 

val[index][2]
(16-bit two’s 
complement) 

val[index][3]
(16-bit two’s 
complement) 

val[index][4] 
(16-bit two’s 
complement) 

val[index][5]
(16-bit two’s 
complement) 

0 0x1bff 0x1283 0x0452 0x10ad 0x28ac 0x12d4 

1 0xe9ba 0xf38d 0xc76d 0xfa90 0xf815 0x0351 

2 0x0279 0x1837 0x1b61 0xce15 0xf6fe 0xf5b4 

3 0xfa44 0xe489 0x1da8 0x2979 0xe8c6 0xf40a 
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Table E4.2 VQ Table for hebap 2 (16-bit two’s complement) 

index val[index][0] 
(16-bit two’s 
complement) 

val[index][1] 
(16-bit two’s 
complement) 

val[index][2]
(16-bit two’s 
complement) 

val[index][3]
(16-bit two’s 
complement) 

val[index][4] 
(16-bit two’s 
complement) 

val[index][5]
(16-bit two’s 
complement) 

0 0xd0d7 0x0260 0xe495 0x024e 0x0fa0 0x0365 

1 0x1a24 0x3d49 0xe7de 0xdbe9 0xffb6 0x0085 

2 0x073f 0xfc23 0x5074 0xf498 0xee85 0x00e1 

3 0xfb56 0xf0c3 0xfccb 0xe65a 0xfc95 0xb0b6 

4 0xf536 0xf393 0xf002 0xea09 0xbdcf 0x2625 

5 0x060b 0x1ab7 0x07bc 0x4f09 0xfbd1 0xec86 

6 0x184d 0xba05 0xea74 0x187a 0x0166 0x048a 

7 0x0ea9 0xfbd6 0x10bb 0xf365 0x3e38 0x27ca 

Table E4.3 VQ Table for hebap 3 (16-bit two’s complement) 

index val[index][0] 
(16-bit two’s 
complement) 

val[index][1] 
(16-bit two’s 
complement) 

val[index][2]
(16-bit two’s 
complement) 

val[index][3]
(16-bit two’s 
complement) 

val[index][4] 
(16-bit two’s 
complement) 

val[index][5]
(16-bit two’s 
complement) 

0 0xd8d4 0x512b 0x2ae6 0xee30 0x031e 0xffbc 

1 0x2b2a 0x500a 0xe627 0xeb22 0xf8fb 0xf9a1 

2 0x0f89 0xfde2 0x1bce 0xfb72 0x499c 0x3956 

3 0xef20 0xffa0 0xe381 0xfe14 0xa9de 0xef4b 

4 0x0a84 0x16e0 0x159a 0x5566 0xe3d4 0xeb33 

5 0xff79 0xa4a1 0x03c2 0x1fb3 0xfd7c 0x017e 

6 0xf9e5 0x0d48 0xf31d 0x1255 0xe514 0x577e 

7 0x0dcf 0x0bd6 0x1c80 0x1846 0x4ffc 0xd0bd 

8 0x0039 0xe559 0x0738 0xa8b3 0xe8e1 0x1aa7 

9 0xfccb 0xf1b9 0xfe7d 0xe793 0xf939 0xa89b 

10 0xe862 0x0632 0xb636 0xc7c8 0x23fe 0x02c1 

11 0xe9ac 0x0108 0xb9d4 0x391a 0x1ef1 0xfeaf 

12 0xff92 0x006c 0x0008 0x004a 0xffa7 0xffce 

13 0x19d4 0xfa13 0x54b7 0xf986 0xe0f3 0xff0a 

14 0x54a3 0xe741 0xdf9e 0xff9b 0xfabb 0xffea 

15 0xaa0d 0xe6b4 0x1f26 0x0288 0x0806 0xfeb5 
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Table E4.4 VQ Table for hebap 4 (16-bit two’s complement) 

index val[index][0] 
(16-bit two’s 
complement) 

val[index][1] 
(16-bit two’s 
complement) 

val[index][2]
(16-bit two’s 
complement) 

val[index][3]
(16-bit two’s 
complement) 

val[index][4] 
(16-bit two’s 
complement) 

val[index][5]
(16-bit two’s 
complement) 

0 0x5903 0x15c0 0xe9e6 0xff64 0xfe06 0xffdf 

1 0x19ec 0xee0f 0x375d 0xbc6f 0xbf75 0x0360 

2 0x0e4a 0x580c 0x0068 0xf91d 0xffac 0x0006 

3 0x544c 0xba69 0xe38e 0xf9d9 0xf7e2 0xfec0 

4 0xf747 0x2721 0xf558 0x3a5a 0xcab8 0xbb05 

5 0xf9e4 0xbab6 0xb527 0x35a7 0x0ac5 0x0b87 

6 0x11a8 0x1586 0x1ce1 0x2a2f 0x4b1f 0xca36 

7 0x018f 0x0ba0 0xfbb5 0x1395 0xfb79 0x564f 

8 0x0e28 0xf6c9 0x1248 0xf742 0x58ae 0x0eb5 

9 0xef97 0xdfa3 0xe566 0xcf9a 0xb812 0x3c16 

10 0xebb2 0xe52b 0xd8c1 0xdf54 0xc16a 0xafae 

11 0xff72 0xa771 0xfe90 0x1127 0xfe30 0xfff3 

12 0x032e 0xfba2 0xfbbf 0xa9fd 0x004a 0x0611 

13 0xf9ae 0x4b16 0xbb16 0xcb4e 0x034a 0xf6fb 

14 0x1251 0x406a 0x514d 0xc3e5 0xefbc 0xf080 

15 0xf314 0x2bce 0xcb1a 0x351f 0xb3ef 0x35ca 

16 0x0719 0x0356 0x52e9 0xfc3a 0xf995 0xfef4 

17 0xf5e5 0xff95 0xb146 0x0178 0x0496 0xfed0 

18 0xf499 0x01c5 0xeaf2 0x02ee 0xa9ee 0xfc2e 

19 0xb5bc 0x41c7 0x2710 0xf204 0x08a3 0x05b3 

20 0x0553 0xf59e 0xffdf 0xf01d 0x048d 0xaa1f 

21 0xde70 0xf538 0xbb90 0xc18f 0x3a31 0x052b 

22 0x028c 0xdb8d 0x0cb5 0xc6e2 0x2f95 0x4cec 

23 0xe727 0x168d 0xc3dd 0x438b 0x40ce 0xf496 

24 0xfd6b 0xfda7 0x0649 0x5852 0x03e0 0xfbeb 

25 0x1361 0x2393 0x2bd9 0x1e95 0x3fc0 0x48c3 

26 0xaa90 0xfa67 0x008a 0x05be 0xf89d 0xff3c 

27 0xb3d5 0xb8e5 0x2b30 0xfdfc 0x09ef 0xf737 

28 0xfb54 0xbb5a 0x4eb6 0x2cc6 0xfe6f 0x0a3b 

29 0x121e 0xe026 0x2e73 0xc271 0x44cf 0xc595 

30 0xffad 0x0116 0x0143 0x0037 0xff66 0x00e8 

31 0x1e6c 0x05b6 0x47db 0x3bc0 0xc26d 0xfb95 
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Table E4.5 VQ Table for hebap 5 (16-bit two’s complement) 

index val[index][0] 
(16-bit two’s 
complement) 

val[index][1] 
(16-bit two’s 
complement) 

val[index][2]
(16-bit two’s 
complement) 

val[index][3]
(16-bit two’s 
complement) 

val[index][4] 
(16-bit two’s 
complement) 

val[index][5]
(16-bit two’s 
complement) 

0 0xf2be 0xb2ee 0x0b93 0x2576 0x1234 0x4cd9 

1 0xc2cf 0xe6fb 0x4507 0x0f14 0xdfd8 0xb41b 

2 0x1173 0x019c 0xba2f 0xe09b 0x02b3 0xbc65 

3 0x0dfc 0x093b 0x1ae6 0x0eb3 0x18eb 0xafd6 

4 0xbcb2 0xc8cb 0xfa8c 0xa27d 0x20b5 0xcf07 

5 0xe077 0xac23 0xc2ea 0x0c8e 0x1fa9 0xe8b3 

6 0x10f7 0x1431 0x0a7b 0xbe4a 0xebe6 0xbf52 

7 0x18cc 0xd654 0x32c3 0x9c64 0xa9b6 0x0ffb 

8 0xf4c0 0xdf52 0xe8b0 0xbcfa 0xf5b2 0x5a5c 

9 0xec19 0xc837 0xa89d 0x54ed 0x0e69 0x0b91 

10 0xf675 0xbab5 0x6243 0x0a93 0x063a 0x0007 

11 0xb835 0x2332 0x10ae 0x02db 0xfe56 0xfd80 

12 0xa371 0x609c 0x160a 0x0264 0xfecc 0xfc3c 

13 0xfd01 0x04f4 0x00e1 0x0663 0x00ad 0x0394 

14 0x154f 0x195d 0x1326 0x2940 0x5a01 0xbd0c 

15 0x4343 0xadc2 0xb6e4 0x1348 0xf2a4 0x0d1d 

16 0xfa92 0x3c80 0xaa46 0xc6ed 0x053b 0x021e 

17 0xe52e 0xf732 0xd0da 0xf3fd 0xb1f3 0xaf72 

18 0xf8f5 0x2dff 0x053f 0x22d5 0x02b5 0x5fb1 

19 0xab96 0x24f6 0x1249 0x2426 0xe179 0x3e20 

20 0xea49 0xf436 0xdc2f 0xfabd 0xa7ed 0x3244 

21 0xfe92 0x13d4 0xf941 0x4fcb 0xfee5 0xf495 

22 0xf8a2 0xe757 0xfc55 0xf7df 0xfa89 0x0db9 

23 0xf3a7 0xfde7 0xec2d 0x2c04 0x4bc4 0x03dd 

24 0x0929 0x1039 0x1689 0xef4f 0x00e9 0xfe71 

25 0xaa7a 0xfb8e 0xbfa6 0x170e 0x1570 0xf375 

26 0x2717 0xcf0e 0x498d 0x51c4 0xfb7a 0x06fe 

27 0xfb73 0x1396 0xfb51 0x190f 0xdf1e 0xadd2 

28 0x0764 0xf232 0x0ee7 0xe92a 0x402b 0x4f40 

29 0xf598 0xd295 0xefcd 0xb879 0xa74a 0x3a00 

30 0x4368 0x28b3 0x1e54 0x2f08 0x4a0c 0x09dd 

31 0xac55 0xb703 0xd56f 0x1110 0xe475 0x11bb 

32 0xf9da 0x0802 0x1680 0x60b4 0x3e6f 0x450e 

33 0xfde6 0xa6ad 0x2b3b 0x283d 0x0181 0x0210 

34 0xdeef 0xf42f 0xc01b 0xa53b 0x406b 0x0e46 

35 0x16d0 0x023f 0x2e72 0x079b 0x6245 0x19fd 

36 0x19e1 0xf244 0xf854 0x0f0a 0xfe7a 0xff8c 

37 0x4655 0x51a4 0x37f3 0xe23b 0xd556 0x2e1a 

38 0xed07 0xf48c 0xcbea 0xe179 0x5476 0x08db 

39 0xfdbd 0xdb29 0xfd14 0xacb7 0x304f 0x2049 

40 0xdf83 0x055f 0xba49 0x0b69 0x2366 0x561e 

41 0x47de 0x21bb 0xfa21 0xf68e 0xb889 0xc672 

42 0xf455 0x3b19 0xf2fd 0x571c 0x3636 0xcab9 
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index val[index][0] 
(16-bit two’s 
complement) 

val[index][1] 
(16-bit two’s 
complement) 

val[index][2]
(16-bit two’s 
complement) 

val[index][3]
(16-bit two’s 
complement) 

val[index][4] 
(16-bit two’s 
complement) 

val[index][5]
(16-bit two’s 
complement) 

43 0x16f2 0xb5ae 0x3ce3 0x2c56 0xaefe 0x07b3 

44 0x062d 0xe4d5 0xac40 0x0997 0x0041 0x019e 

45 0x0203 0xee8c 0xfd67 0xedc0 0x007d 0xb4ea 

46 0x53f7 0xb0b3 0xf8b0 0xf87a 0xff2d 0xfc02 

47 0x1445 0xd026 0xf911 0xa402 0xee3e 0x16b5 

48 0x0141 0xe745 0x3936 0x1b3f 0xf913 0x0363 

49 0xca0a 0x0c6c 0x1ef7 0x01bc 0x4c60 0x0c4a 

50 0xe5fc 0x2fdc 0xf84c 0x4400 0xa128 0xcd64 

51 0xfd17 0x3814 0xfbad 0x5cbe 0xda61 0xb858 

52 0x476c 0xe11b 0xe295 0x4aae 0x1e29 0xce8d 

53 0x0786 0x3afd 0xcdd0 0x0869 0x547f 0x0748 

54 0xf7ae 0x5b78 0x42a0 0xc313 0xf9f8 0x0057 

55 0x207a 0xd1d0 0x38f5 0xaf91 0x1ed3 0xf7cd 

56 0x4c90 0x591e 0xbc68 0xf808 0x011d 0xf0e9 

57 0xdfea 0xb86e 0x29e4 0xca50 0xcb63 0xf97e 

58 0x380f 0x1310 0xb1be 0x03c4 0xef83 0xff4c 

59 0x9fea 0xbf05 0x4d0c 0x1725 0x12a9 0x113e 

60 0xf641 0x5bc5 0xc0f3 0x0b66 0xfbf2 0xf826 

61 0x4a1e 0xf614 0x341f 0x057d 0xe7ce 0xfb90 

62 0x09b9 0x3566 0x586e 0xe371 0xff7f 0xf518 

63 0xc976 0x4187 0x59e4 0x02d8 0x0d45 0x00a2 

64 0x0bde 0x03e1 0x2246 0xaa2f 0xe62f 0x038e 

65 0xcf64 0xa88e 0xf5be 0xeb51 0x4c40 0x2690 

66 0xf889 0xb89e 0xb7b6 0xc58e 0x1298 0x1bcf 

67 0x206a 0xf45e 0x651e 0x1dec 0xe127 0x03fc 

68 0x17f4 0x3b17 0x4945 0xa0ce 0xe67f 0xe61d 

69 0x1ef4 0x2f5d 0xdb0d 0xa266 0x157e 0x03a9 

70 0xbd60 0xeb03 0x09da 0x0147 0x0469 0xfe7a 

71 0x3d9e 0x4df3 0xd774 0x2ba4 0xf3dd 0x3a05 

72 0xd180 0xe065 0xb9f8 0xa8f1 0xbcab 0xe56d 

73 0xcdc2 0xf784 0xe693 0x1727 0x30aa 0xa8ad 

74 0xfe0f 0x0142 0x040e 0xe60d 0xeae4 0x4f57 

75 0x043b 0xa638 0xded2 0x2f62 0xfd06 0x0a3f 

76 0x13cb 0x4d00 0xf893 0xffe2 0xfebb 0x0055 

77 0x03db 0xe93a 0x1074 0xdcba 0x23a1 0x9e32 

78 0xe144 0x1c74 0xcffc 0x3272 0xaba8 0x51cd 

79 0xf9a2 0xe1f2 0xf775 0xdeb3 0xea1c 0x9d94 

80 0xe5f4 0x0184 0xa7f9 0x05f6 0x237a 0x00c1 

81 0xe145 0xa8dc 0x142b 0x016a 0x03b0 0xfefd 

82 0x0ef0 0xd1b6 0x1da7 0xa578 0x62fe 0x5cdb 

83 0xd6f8 0x101b 0xad89 0x52b5 0x57a7 0xfcba 

84 0xed8d 0x5523 0x1828 0xff86 0x066a 0xfd33 

85 0x5fb8 0x4daf 0xf805 0x03da 0x0007 0xffc9 

86 0x954f 0xff79 0x0985 0x0103 0x0059 0x0133 

87 0x5f7e 0xf0df 0xeaf1 0xfccc 0xf6ad 0x0169 
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index val[index][0] 
(16-bit two’s 
complement) 

val[index][1] 
(16-bit two’s 
complement) 

val[index][2]
(16-bit two’s 
complement) 

val[index][3]
(16-bit two’s 
complement) 

val[index][4] 
(16-bit two’s 
complement) 

val[index][5]
(16-bit two’s 
complement) 

88 0x1599 0x1698 0x48fa 0x00f2 0xaa78 0xf05d 

89 0x5720 0x1183 0x02d2 0xd02e 0x1d92 0x3c58 

90 0x21e1 0x0bc1 0x4fd5 0x5274 0xad94 0xf3f8 

91 0xfb94 0x0a91 0xf8df 0x152c 0xfcef 0x4864 

92 0x4224 0xcb33 0xbf83 0xc5f6 0xb099 0xc873 

93 0x08ab 0x0564 0x53e2 0xfb98 0x0147 0x0053 

94 0xf77f 0x540d 0xf0f0 0xc89c 0xff34 0xf771 

95 0x03b9 0xdb2e 0x3e02 0xd62a 0xf361 0x5226 

96 0xfe5b 0xfa9f 0x0280 0xdfd1 0xae10 0x087e 

97 0x10d5 0x4852 0xdc74 0xb871 0xc362 0x0e78 

98 0xe8c9 0x01c1 0xdf3d 0x0433 0xa93e 0xec80 

99 0x0b89 0x31f4 0x476d 0x0596 0x3a59 0x54e3 

100 0xf49f 0x0191 0xed7d 0xb177 0x06a3 0xfb85 

101 0x0d79 0x1479 0x2295 0x5676 0xe285 0x05ab 

102 0xf796 0x2188 0x46c8 0xc302 0x4b77 0xe899 

103 0x0dad 0x0b19 0x1709 0x18fd 0x21b6 0x59ea 

104 0x09a3 0x0b8c 0x017b 0x1647 0xa9e1 0xf773 

105 0xbdbd 0xfdae 0x4986 0xeb51 0x0668 0x0306 

106 0x0b50 0xfa70 0x0e02 0xf70c 0x4dc6 0xf8e2 

107 0xb771 0x52e3 0xc94f 0xcee3 0x4052 0x027b 

108 0xf832 0xb48e 0xbf71 0x2fb0 0xbf40 0xe152 

109 0xda36 0x03f4 0xab73 0x0b43 0xce58 0x0911 

110 0xfc13 0x01d7 0xf1d3 0x1f6d 0xd4b1 0x63bd 

111 0x102d 0xac20 0xf58f 0x02f4 0xfd69 0xfdf5 

112 0x195a 0x2153 0x4b59 0x4a05 0x17cc 0xdb7d 

113 0x4245 0x6017 0x36c8 0x2758 0xfde8 0xd73a 

114 0xe02d 0x0861 0xa60c 0xbd4f 0x154b 0xeecf 

115 0xc5e7 0x5028 0xb881 0xda0b 0xd193 0xba59 

116 0xf70e 0xc8d8 0x0816 0x57c3 0x0687 0x02d5 

117 0xdea6 0x3925 0x0dc1 0xaf9f 0x1a11 0x2008 

118 0x4f18 0x113a 0xfaaa 0xfdb7 0x04cd 0xf66f 

119 0x1d2b 0xe414 0x3563 0xdfca 0x5778 0xbc58 

120 0xf874 0x0f23 0xdc98 0xf11c 0x03be 0x0109 

121 0xeed1 0x0b8f 0xc1d9 0x4c8e 0x135a 0xfbaf 

122 0x4659 0xd93d 0xb927 0xf0ea 0x2baa 0x16bd 

123 0xc6fc 0xfb35 0x25bc 0x5473 0x2bdc 0xd237 

124 0xfd2f 0xf95c 0x006d 0xf7a2 0x003d 0xe58c 

125 0x9fd5 0xa808 0x15e8 0xf85b 0xf91f 0xfc0c 

126 0xa350 0xee9d 0xf580 0xc6a9 0xef56 0x26bf 

127 0x212f 0xfc82 0x4fd6 0xca04 0xbc8d 0x008b 
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Table E4.6 VQ Table for hebap 6 (16-bit two’s complement) 

index val[index][0] 
(16-bit two’s 
complement) 

val[index][1] 
(16-bit two’s 
complement) 

val[index][2]
(16-bit two’s 
complement) 

val[index][3]
(16-bit two’s 
complement) 

val[index][4] 
(16-bit two’s 
complement) 

val[index][5]
(16-bit two’s 
complement) 

0 0x27aa 0x1cc5 0x41dd 0x48f9 0xa693 0xf1cc 

1 0xf5c5 0xf134 0xea67 0xebb8 0xdccf 0xb0b6 

2 0xea31 0xa6f0 0x5331 0x1b64 0x02e9 0x02d0 

3 0x01ac 0xfa4d 0x006d 0xf3f6 0x0169 0xdf2d 

4 0x1fe1 0x5781 0x00f1 0x06db 0xfc96 0xf4f8 

5 0x0474 0x3163 0x0902 0x56f7 0x9dc6 0xbb6b 

6 0xf5cf 0x0d33 0x2861 0xb2ee 0xc394 0xa278 

7 0xf038 0xce04 0x9b54 0x3328 0x0f41 0x0523 

8 0x1210 0xa309 0x3528 0x62e5 0xfb69 0x087d 

9 0xff9f 0x35b3 0xebfe 0x5ad7 0x1076 0xa97f 

10 0x1ade 0xfebe 0x4758 0xfcaa 0xd174 0xfd23 

11 0x4380 0xce83 0xda23 0x5c0b 0xc090 0xfae3 

12 0x16aa 0xec98 0x4c46 0xad36 0x9fd2 0xff49 

13 0x16db 0xc0f7 0x3b7d 0xdae8 0xf9fe 0x0179 

14 0x3710 0x61e1 0x346b 0x2062 0x5b18 0x41b2 

15 0xe3a3 0x0076 0xc205 0x4a99 0x2635 0xfeeb 

16 0xef40 0x5455 0xcc18 0xc07d 0x40f9 0xed02 

17 0x132d 0xb4ef 0x5b73 0x3971 0xfd2e 0x007d 

18 0x4c06 0xed84 0xf878 0xd2f9 0x5122 0x1531 

19 0x9456 0xf4bf 0xef15 0x0180 0xf7c9 0x0557 

20 0xfef6 0xdc29 0x1541 0x66dd 0xf87c 0x107d 

21 0xf466 0xb136 0xaac8 0x154a 0xe2fe 0x14e0 

22 0xff23 0xe5d8 0x025b 0xdc4c 0x051c 0x948e 

23 0x2595 0xdf44 0xf851 0x24bb 0xf98d 0x5921 

24 0x1d8e 0xeb7e 0xefbb 0x0569 0xfc22 0x0230 

25 0xfb12 0x60a2 0xb58f 0x29f5 0x1da1 0xe446 

26 0x01c3 0x4ea2 0xd923 0xe881 0xf774 0xfa4e 

27 0x56e9 0x24a4 0x2388 0x2acf 0xf6c3 0xf174 

28 0x48ec 0xfd76 0xfb2e 0x2b54 0x1dfe 0x1751 

29 0x4b07 0xfa33 0xfbcc 0xfd25 0xfd54 0x002b 

30 0xec93 0x3476 0x4eab 0x003c 0x01dc 0xfc59 

31 0xb1c3 0x2206 0x09c3 0x03f8 0xfb7a 0x014f 

32 0x98d3 0x48a6 0xf767 0xfd63 0x0d51 0x0319 

33 0xed8a 0x22ab 0x9fe1 0xda52 0x0e3b 0xfee5 

34 0x33f7 0xac64 0xf195 0xfb60 0xf84e 0x064c 

35 0x00ad 0x003c 0x0397 0x04cd 0x1b1e 0xfd67 

36 0x3ff9 0x425f 0x14dd 0xc941 0xf700 0xb05a 

37 0x62f6 0xd68f 0x2eab 0xe21b 0xe725 0x36ea 

38 0x5d79 0xcc35 0xe3c6 0xfc57 0x00ea 0xff45 

39 0x18a7 0xf8ab 0x30da 0xf8a9 0x493f 0xa4d3 

40 0x026d 0x192d 0x0d1a 0xa12e 0x20d6 0x14c3 

41 0xf31f 0xec56 0xeda0 0xec28 0x9b7e 0x14e3 

42 0xfb05 0xcc11 0xfc3b 0xa4ea 0x04be 0x6693 



ATSC A/52:2012 A/52 Annex E 17 December 2012 

 241

index val[index][0] 
(16-bit two’s 
complement) 

val[index][1] 
(16-bit two’s 
complement) 

val[index][2]
(16-bit two’s 
complement) 

val[index][3]
(16-bit two’s 
complement) 

val[index][4] 
(16-bit two’s 
complement) 

val[index][5]
(16-bit two’s 
complement) 

43 0xe794 0x2733 0xb177 0x3bc5 0xc137 0x1410 

44 0x255a 0xf0b9 0xb3ca 0x1289 0x56fe 0xefb5 

45 0x1f2a 0xb370 0x36c8 0xe98f 0xae89 0x22eb 

46 0x0007 0xf039 0x03df 0xe84f 0x0034 0xb421 

47 0x0d9d 0x0b99 0x1e34 0x1e6a 0x62e0 0x183e 

48 0xfc41 0xcdf4 0xf8d0 0xa729 0x1c9c 0x2a4e 

49 0xedb2 0x068e 0xd844 0xebab 0x10c6 0xfb09 

50 0x0f31 0x0516 0x1d1a 0x027e 0x4f96 0xf3c3 

51 0xcf30 0xdc5d 0x481f 0xcfc9 0xe3ba 0x4878 

52 0xe7d7 0x21c9 0xe509 0xfc81 0x42d5 0x40dc 

53 0xd958 0x6fa3 0x0b1d 0x0668 0x0b6d 0xfed6 

54 0x3a78 0x9a7c 0x3a1e 0xa234 0x0717 0xe6b6 

55 0x65fb 0x142e 0x52e9 0x3e01 0x5471 0x39e9 

56 0xab4c 0x4036 0x5018 0xc7f6 0xe436 0xefbe 

57 0x6fe7 0x005a 0xf9dc 0x0315 0xfc7a 0xffb5 

58 0xfa39 0x09a7 0xf023 0x0e1c 0xf740 0x2aa2 

59 0x21a8 0x4453 0x4367 0xbbd0 0x427e 0xc01b 

60 0xaf0e 0xb75b 0x62ba 0x4538 0xf20b 0x069f 

61 0xfc1b 0x17f1 0xe761 0x2bf2 0xd3a1 0xb2e5 

62 0xffb6 0xf05f 0xf9d0 0x3448 0x00a2 0xff70 

63 0xfdef 0x524c 0x1ef3 0xd37c 0x01a6 0xffe6 

64 0x1bbe 0xcb25 0xb1a9 0x0a45 0xff4e 0xfe53 

65 0x23f1 0x0558 0xa922 0x0a3f 0xafed 0x6139 

66 0xfe50 0x1a13 0xfef6 0x2213 0x0050 0x6d78 

67 0x4c25 0xf3dc 0xdbd3 0x0776 0xaaef 0x14e1 

68 0x36ff 0xd31f 0x313c 0x17bf 0x4da5 0x0523 

69 0x2ac3 0x266d 0xb74c 0x3d7e 0x12b8 0x025d 

70 0xf90f 0x0eae 0xf009 0x54c0 0x1788 0xfdc0 

71 0x0def 0xf206 0x3ffb 0x0a78 0xf928 0x02cc 

72 0xec47 0xfa89 0xee3a 0xfd74 0xbac7 0xf2da 

73 0xf1cd 0xeeec 0xe686 0xa978 0x1cd6 0x05b2 

74 0x2fd2 0x4af6 0x160e 0xe179 0xb0bf 0x5360 

75 0xe2ac 0x4df0 0x5bf6 0xd9e7 0x1625 0xf83a 

76 0xf71d 0x3c4e 0x2a9b 0xba29 0x1961 0x350e 

77 0xc1ea 0xc2e2 0xed94 0x1783 0x5eba 0xe7dd 

78 0xf7ff 0xe538 0xfb48 0x0396 0x4547 0xffbb 

79 0xf177 0x238b 0xc13f 0xa3bb 0x175d 0xf6d8 

80 0x1eb6 0xdd2a 0x5de1 0x63a4 0xd4e7 0xfd1b 

81 0xced4 0x4c0c 0x3939 0x3c5b 0xad16 0x0493 

82 0x0836 0x047b 0x0ae5 0x1000 0x0883 0x222e 

83 0xb8da 0xbaa2 0xd782 0xebad 0xfbd6 0xf22b 

84 0xf4fd 0xb20a 0xd16f 0x1790 0x207b 0x2886 

85 0xdc8a 0xf7cc 0x4be7 0xffef 0x02dc 0xfd4f 

86 0xc750 0xb4e8 0xe449 0x4927 0x074e 0x597a 

87 0x0f48 0x0293 0x63fd 0xf05a 0x2593 0x036d 
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index val[index][0] 
(16-bit two’s 
complement) 

val[index][1] 
(16-bit two’s 
complement) 

val[index][2]
(16-bit two’s 
complement) 

val[index][3]
(16-bit two’s 
complement) 

val[index][4] 
(16-bit two’s 
complement) 

val[index][5]
(16-bit two’s 
complement) 

88 0x0a38 0x58a7 0xe976 0x4600 0x0ee4 0x4efc 

89 0x0a01 0x68df 0xeb83 0xd564 0x08d0 0xfdfb 

90 0xec92 0x00c6 0xaa21 0xf1e8 0x569e 0xb614 

91 0x533c 0xfb45 0x4ac8 0x4133 0xf9cc 0x2c7e 

92 0xf902 0x0f77 0xf260 0x1b5b 0xe43d 0x518d 

93 0xe824 0xb9dd 0xb6de 0x60bb 0x407c 0x0c8b 

94 0x4fee 0x9e65 0xb077 0x1184 0xec09 0xfe22 

95 0xe716 0xf832 0xd80b 0xfdcf 0xa9e9 0xa8bd 

96 0x0be7 0xb65e 0x1da2 0x3997 0xb26a 0x18cf 

97 0xec49 0x057d 0xda38 0x041f 0xaa87 0x2ba2 

98 0x0d99 0xda1d 0x197e 0xbef1 0x591d 0x5593 

99 0xb776 0x445d 0x3948 0x050b 0x13a2 0x4cdc 

100 0x3f06 0xb29e 0xbdc4 0xb9ed 0xbddb 0x16a8 

101 0xdfe0 0x132c 0x22e7 0x08e0 0xfb8c 0xa54f 

102 0x0624 0x0ac1 0xf9c2 0x085f 0xf2ee 0xaa5a 

103 0xd998 0xfbdc 0x9356 0x04be 0x1c79 0x0096 

104 0x0062 0x0602 0x0217 0x4415 0xa562 0xfc7b 

105 0x535c 0xb14e 0x0ce1 0xf930 0xdff1 0xac2a 

106 0xefba 0xede7 0xba12 0x1566 0x0505 0x0088 

107 0x4919 0x520b 0x60f2 0x2c9d 0x0502 0xedf6 

108 0xf231 0x1dd4 0xfef7 0x085d 0xfcc3 0xf80d 

109 0xf390 0x4d01 0x0ad7 0xfffe 0x0442 0x0068 

110 0xe58d 0xb127 0x0b7a 0xf7b3 0xffdc 0x04f4 

111 0x2558 0x24d6 0x2572 0x5654 0x3603 0x1898 

112 0xfde9 0xb1ce 0x10b4 0xf8b4 0xfe40 0xbce1 

113 0xa0e0 0x37a4 0xcab1 0xadd0 0x08df 0x2d23 

114 0xf5aa 0x3c4d 0xee13 0x48ce 0xef35 0xfd92 

115 0xb1a0 0x1049 0x46c3 0xfa84 0x359a 0xf8df 

116 0xc019 0x2378 0x02e8 0x5605 0x007d 0x2a2a 

117 0x25ac 0xc6f1 0xb7d1 0xc686 0x2ba6 0xaeee 

118 0xfeba 0xa32e 0x1800 0x1ee5 0x025a 0x0604 

119 0xe606 0x19ea 0xce75 0x5394 0x5131 0xe549 

120 0x109c 0xadcd 0x15fc 0x48ff 0x5d34 0x2088 

121 0x4642 0x1648 0xeb83 0xb953 0xfdd5 0x0c93 

122 0x17cb 0x3798 0xec03 0xbbd0 0xb404 0xd27f 

123 0xabae 0x2c26 0x3c4a 0x63f6 0x1a79 0x97c5 

124 0x536b 0xdfcc 0x16f5 0xf22c 0x17bf 0xf5f9 

125 0x0a2b 0xf669 0x152d 0xd002 0xb564 0x15c6 

126 0xf947 0x98e7 0xa390 0x5978 0xfea3 0x0ecb 

127 0x088d 0xfb4d 0x14dc 0x0cb1 0xa7a7 0x0068 

128 0xf980 0xd4f4 0xf4d7 0xaf0d 0xa20f 0x4dbc 

129 0x5959 0xe34f 0xb7cf 0xc6e8 0xdf30 0xcd5b 

130 0x0ec1 0x0f76 0x202f 0x500e 0xe4b1 0xfb4f 

131 0xff60 0xf9b3 0xfce7 0xde17 0x023d 0x0308 

132 0x10c9 0xf136 0x4f95 0x17c2 0xeb37 0xb820 
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index val[index][0] 
(16-bit two’s 
complement) 

val[index][1] 
(16-bit two’s 
complement) 

val[index][2]
(16-bit two’s 
complement) 

val[index][3]
(16-bit two’s 
complement) 

val[index][4] 
(16-bit two’s 
complement) 

val[index][5]
(16-bit two’s 
complement) 

133 0x4939 0x099f 0x3102 0xe1bb 0xe1ca 0xf779 

134 0x2b42 0xed90 0x5667 0x0721 0xa0e1 0x0ff0 

135 0x05df 0xb516 0xf9df 0x000d 0xfec7 0x0177 

136 0x013e 0xfdc1 0x09f0 0x00b2 0x0066 0x0028 

137 0xc184 0x96ef 0x1390 0x0cf8 0x02ae 0x0487 

138 0x649b 0x6906 0x023e 0xe8d6 0xf0b4 0x057f 

139 0xdc44 0xe20f 0xf4c5 0xdf40 0xb719 0x6720 

140 0xe2eb 0xb988 0xb824 0x2262 0xf734 0xaa82 

141 0x1eab 0x2dfd 0x6b5d 0xcdd1 0xfa7e 0x4c86 

142 0x08c0 0x173b 0x2bef 0x3e6c 0xe69d 0x5ed8 

143 0x54a9 0xb7ad 0x262b 0x1996 0xf556 0x014e 

144 0xefcb 0x0628 0xd4fe 0x0059 0xa093 0xe9b2 

145 0x1e28 0x05c6 0x53a4 0x9e3f 0xdf3f 0x0009 

146 0xf670 0x27ea 0xce2c 0xc131 0x0489 0xacdc 

147 0xddcb 0xc7a3 0xa67a 0xc624 0x0a45 0x3614 

148 0xe3ac 0x0b1b 0xda59 0x0b42 0xc6df 0x5fb1 

149 0xfd5e 0xe67e 0x019e 0xa4db 0xaca1 0x01c6 

150 0x0838 0xe758 0x2a87 0x46a7 0xfb51 0x00af 

151 0xfe13 0xfdce 0xf54d 0x0076 0xfbce 0x005d 

152 0xd8e5 0xf015 0x9259 0x56a4 0x3ae5 0xfd84 

153 0xede3 0xbfe8 0xdcd5 0xb03e 0xd2a8 0xae3c 

154 0x12cf 0x3e14 0x5eae 0xcabe 0xf3fe 0xfbdd 

155 0xe5bc 0x1202 0xb6ac 0xc44d 0xbed3 0x5db4 

156 0x3bf5 0xfd5e 0xf19e 0x54af 0x117b 0xd0c8 

157 0x1294 0x0a21 0x14ea 0x1771 0x3ad7 0x677a 

158 0xa2f9 0xbc9d 0x1b20 0x017a 0x02b6 0x029e 

159 0x5b60 0xdd79 0xc687 0x1d78 0xfc94 0x2b50 

160 0x0e38 0x0d08 0x5841 0xf259 0xf6e8 0xff8f 

161 0x011c 0x1b02 0x0c19 0x27bb 0x19ee 0xb743 

162 0x09a8 0x1758 0x2b2e 0xd160 0xfda5 0xfd69 

163 0x3f2f 0x4039 0x336c 0xf035 0x123b 0x1d07 

164 0x4b8a 0x3cae 0xe67b 0x0691 0xed07 0x4298 

165 0x4283 0x0214 0xb588 0xfa5f 0xebf6 0x043d 

166 0xceb7 0xbb37 0x080e 0x9d0c 0x4a41 0xc107 

167 0x2748 0xadf8 0xcabe 0xf47b 0x3c07 0x4dde 

168 0xfd78 0xf9bb 0x273e 0xf9c8 0x33f0 0x4d60 

169 0xfbe2 0x29f8 0x021a 0x616a 0x259e 0xdca4 

170 0xd88d 0x0be2 0x9e0c 0xa20c 0x3693 0x0064 

171 0x1993 0x1afb 0x1b77 0x286c 0x5cdf 0xba22 

172 0xa6f7 0xf840 0xfa8f 0xf2fe 0x2433 0x37ed 

173 0xc7f6 0xf081 0x0be2 0x3f7e 0xbc69 0x25ae 

174 0xac6f 0x5c4c 0x4185 0x02cc 0x0a67 0x0072 

175 0xb5b8 0xf422 0x0626 0xff0b 0x05b7 0xfce7 

176 0x578a 0x5b91 0xc6d3 0xfdee 0x439e 0x3531 

177 0xd2c2 0x1eff 0xc97e 0x5ba9 0x9fcc 0x67b6 
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index val[index][0] 
(16-bit two’s 
complement) 

val[index][1] 
(16-bit two’s 
complement) 

val[index][2]
(16-bit two’s 
complement) 

val[index][3]
(16-bit two’s 
complement) 

val[index][4] 
(16-bit two’s 
complement) 

val[index][5]
(16-bit two’s 
complement) 

178 0xfbeb 0x0e5f 0xf756 0x294c 0x5207 0xf18a 

179 0xc367 0x00c5 0x414e 0x9fe5 0x1351 0x0005 

180 0x2a1d 0x10ef 0x68a6 0xdc9d 0xc0e8 0xf4e8 

181 0x3ecb 0xa1dc 0xf0a3 0xe54f 0x3165 0xe48b 

182 0x0830 0x9c1c 0xdf4e 0x1a9e 0x000b 0x049a 

183 0xd1b8 0xfdb9 0xdd47 0xafc1 0xd719 0xfe84 

184 0xf649 0x60c9 0xab79 0xb473 0x067c 0xfd24 

185 0x0909 0x356f 0x0ff5 0x5fe5 0x6073 0xad45 

186 0xf6c2 0xfe08 0xefde 0xd6b6 0x5c74 0x07a9 

187 0x4f9b 0x4591 0xdade 0x0e95 0xb5f6 0xe76c 

188 0xf0f0 0x41a2 0xfc5f 0xb0aa 0xbab5 0x1a8d 

189 0x308f 0x17be 0xd3f8 0xc78e 0x1b01 0x5bb4 

190 0x1dd4 0xf989 0x59e9 0x29df 0xdf9c 0x0346 

191 0xde91 0xfb2d 0xb950 0x0f39 0x3edd 0x05d2 

192 0xf1fe 0x2054 0x3b3d 0xf131 0xad63 0x06cd 

193 0xee6f 0x54eb 0x093e 0xfeea 0xed48 0x3cbd 

194 0xa5ae 0xca74 0x1df4 0x3f68 0x5e38 0x3ab1 

195 0xb1b5 0x3215 0xb140 0x4133 0xd279 0xc12f 

196 0xcec7 0x4f0f 0x0da8 0xf60b 0xe5a7 0xd1b6 

197 0x1159 0x1e84 0x512f 0x42b8 0x2d03 0xda55 

198 0x60be 0x212e 0xa4fe 0xf342 0x2b5d 0xe430 

199 0xd885 0xe239 0xa978 0xb881 0x6815 0x254e 

200 0x9c33 0x01dd 0x1ec2 0xf9fe 0x0463 0xff58 

201 0x01d6 0x266a 0xfea5 0x5d89 0xd773 0xdb05 

202 0xf000 0xda1a 0xe538 0xabd8 0x516d 0x1c06 

203 0x14fa 0x2614 0xa32b 0xfb5a 0x0200 0xf9fe 

204 0xfc12 0xd8c2 0xce97 0x4b22 0xf902 0xfc86 

205 0x3b04 0x5c44 0xc2e2 0xf626 0xfb4d 0xfad3 

206 0xe312 0xf5d3 0x0447 0xff09 0xfe27 0x00b1 

207 0x1f99 0x0004 0x3088 0xa8f4 0x28a5 0xe1d0 

208 0x56b4 0x2a17 0xec4d 0x02b2 0x0216 0xff2c 

209 0xf3af 0xfa76 0xbe3d 0x47fa 0x3dcd 0x59ac 

210 0x1631 0xf74b 0x0c7c 0xf2aa 0xaac7 0xc629 

211 0x0013 0x0313 0x0408 0x00aa 0xdf99 0xfd7b 

212 0xfc8e 0xf6f1 0x961f 0x01b0 0xeed8 0x05db 

213 0xfab6 0xd1d5 0xffb4 0xb064 0xd7cb 0x2c40 

214 0x00d3 0xed6f 0xedbd 0xe4eb 0xcb1e 0x388f 

215 0x179b 0x148c 0xfe35 0xfe32 0x008f 0xffbf 

216 0xf5f4 0x1c58 0xf30b 0x23fc 0xa570 0xd8fa 

217 0x9ece 0xdac4 0x49ba 0x17d5 0x097d 0xc76e 

218 0x207a 0x08e5 0x3770 0x0db8 0x6519 0x55f0 

219 0x00d0 0x4efa 0xfee7 0x9f36 0xffc1 0xfb61 

220 0x0447 0xe86e 0x0a92 0xaa51 0xf5a1 0x0233 

221 0x0017 0xe8d6 0x00f3 0xdce3 0x14e1 0x504e 

222 0xc396 0x319b 0x1040 0x2b4f 0x508d 0xd750 
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index val[index][0] 
(16-bit two’s 
complement) 

val[index][1] 
(16-bit two’s 
complement) 

val[index][2]
(16-bit two’s 
complement) 

val[index][3]
(16-bit two’s 
complement) 

val[index][4] 
(16-bit two’s 
complement) 

val[index][5]
(16-bit two’s 
complement) 

223 0x5203 0xffab 0xdeec 0x00c2 0x03eb 0xdad5 

224 0xb34b 0xf2f9 0xc8ff 0x0df6 0xa4ab 0xfd65 

225 0xf7e4 0x0da1 0xf388 0xb459 0x021b 0xfa06 

226 0x1cb8 0xc493 0x5844 0x4ba9 0x0413 0x40f3 

227 0xf8b0 0xfe63 0x04d3 0xeb64 0xf222 0x558f 

228 0x1efb 0xf828 0x4248 0xe571 0x72d1 0xf655 

229 0xcaeb 0x20c5 0xa3ac 0xa9b5 0xc89e 0xc827 

230 0xd2c9 0xb186 0x3eb8 0xf8c8 0x3d69 0x1194 

231 0x0f09 0xbf3b 0x4ec1 0xad5d 0x1e62 0x2e58 

232 0xe66d 0xfb07 0xb66b 0xd42e 0x2d74 0x0414 

233 0x09e0 0xe5dd 0xba03 0xd39e 0xece2 0xfc10 

234 0x04d9 0x10a4 0x090f 0x17df 0x0d9d 0x4ef1 

235 0x0bc6 0xf418 0x14c4 0xee45 0x515f 0x21fe 

236 0xf902 0xc6a5 0x0116 0x3684 0xd8af 0xd6cd 

237 0xa734 0xe0eb 0xfb7e 0x35fd 0xfa34 0xfb21 

238 0xe36b 0xfd99 0x3326 0x49ef 0x26a9 0x05ac 

239 0x09f8 0xf6de 0x0d60 0xedea 0x2b74 0xb380 

240 0xd48b 0xafb7 0xd599 0xd5e1 0xaee1 0x1ab1 

241 0x03d8 0xc509 0x168f 0x6225 0x1501 0xb2a9 

242 0x0205 0x33d8 0xe2de 0xf951 0x5084 0xe883 

243 0xac57 0x33c3 0xaec5 0x3489 0x4381 0x3330 

244 0xc23d 0xc088 0x5a35 0xf03b 0xdffd 0x0367 

245 0x0246 0x311b 0xad77 0xc652 0xdc1d 0x1635 

246 0x10de 0xf910 0x2ca1 0xba9d 0xd93f 0x0241 

247 0x177d 0x41be 0x44f7 0x9b5a 0xeed0 0xf222 

248 0xca50 0xbf63 0x0e34 0xf2fe 0xad9d 0xc1f2 

249 0x19a5 0xd475 0x21c9 0xccc6 0x5b31 0xcb03 

250 0xf612 0xdcaa 0xe27a 0x7238 0x0e75 0xfe81 

251 0xd68c 0x61a3 0x0765 0xdfee 0x51b8 0xc0ae 

252 0x149c 0x4156 0x29a3 0x4de4 0xed41 0xb484 

253 0xfdec 0xdbac 0x6cd0 0x1365 0xff0f 0x0218 

254 0xfd03 0xaf1e 0xf2ac 0x49b6 0x0acd 0x058c 

255 0xf40d 0x0a94 0xb5b2 0xfeb5 0x0dd1 0x0074 
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Table E4.7 VQ Table for hebap 7 (16-bit two’s complement) 

index val[index][0] 
(16-bit two’s 
complement) 

val[index][1] 
(16-bit two’s 
complement) 

val[index][2]
(16-bit two’s 
complement) 

val[index][3]
(16-bit two’s 
complement) 

val[index][4] 
(16-bit two’s 
complement) 

val[index][5]
(16-bit two’s 
complement) 

0 0xad4b 0x5585 0x2896 0x354e 0x29de 0xdc27 

1 0xa809 0xdfff 0x4798 0xe61b 0x63ae 0xd5a0 

2 0x1a90 0xca42 0xcc22 0x5792 0x394b 0xae36 

3 0x092b 0x2914 0x0465 0xf281 0x15c1 0x6a00 

4 0xe627 0x2e4b 0xa034 0x5999 0x4f8a 0xe87d 

5 0xaaf8 0x29b9 0xb361 0xc553 0xdee2 0xf7df 

6 0xf547 0x21ec 0xece1 0x6c5b 0x1d82 0xd147 

7 0xfc04 0x099c 0xfc46 0x1292 0xfd8d 0xc010 

8 0xb30a 0x5a39 0x004b 0xca8c 0xf5ac 0x083c 

9 0x0fd1 0xf4c8 0x16db 0xee95 0x5686 0x3110 

10 0xacc8 0xbd17 0xfd26 0x1cfb 0xd276 0xd6e5 

11 0x2c44 0x0700 0x682a 0x5bde 0xb397 0xfe15 

12 0xba5d 0xbe77 0xcada 0xc7cb 0xa9f3 0xf660 

13 0x0443 0xe8b1 0xe0d9 0xbdaf 0xb030 0xaa55 

14 0x47d4 0xfbb1 0x078d 0x341e 0xbbc9 0x46c2 

15 0x5876 0x43c1 0xd912 0x45ff 0x4762 0x02ba 

16 0x05cc 0x4f49 0xe986 0x986d 0x134d 0xa909 

17 0xf5d5 0x11eb 0xe92e 0x4820 0x223f 0xf5f8 

18 0xf513 0xf9be 0x54d1 0x0c1b 0x9bad 0x0c98 

19 0xb5ad 0x1255 0xec71 0x17ac 0x07b4 0xc509 

20 0xf773 0x252c 0xfdee 0x50bd 0xedca 0xdf93 

21 0xa8cb 0xdd49 0x09e1 0xd3a8 0x1564 0x03e6 

22 0x5654 0xec44 0x0673 0xf59f 0x1207 0x090f 

23 0x5177 0xf3fa 0xf2fe 0x1009 0x349e 0x0bfd 

24 0x0055 0x4389 0x2818 0xc660 0x00d6 0x005a 

25 0x9903 0xb65f 0xb468 0x4b2c 0xd816 0x26b5 

26 0xd9f5 0x5011 0xe64d 0xe4b9 0x0b4b 0xfd1e 

27 0x505f 0xc20c 0xa67f 0x1ad6 0x004c 0x0147 

28 0x2228 0xcdb3 0xa65f 0xf6bc 0xb420 0xd9d5 

29 0xcdaa 0x3f37 0x525c 0x0eed 0x02ed 0xca20 

30 0xc185 0x47df 0x0957 0xbb03 0x4c1c 0xe87e 

31 0x058f 0x2dd6 0x0fd3 0x4b5a 0x1ac9 0xb31f 

32 0xebb0 0x2626 0x4746 0x099f 0x494c 0xed0c 

33 0xfdab 0x4c2a 0x052b 0xdc78 0xfecc 0xfbb0 

34 0xf3e5 0x9b7d 0xc2cf 0x62f4 0x121a 0x0a4b 

35 0x4ca7 0xf6b0 0xe117 0x2e14 0xdb8b 0xc8fc 

36 0x0a52 0x6755 0xad9d 0xd78e 0xf963 0xf951 

37 0x560f 0x5479 0x2d3c 0xa67d 0xefd3 0x0081 

38 0xe816 0x0dd6 0x0393 0xfefb 0xffef 0xfe81 

39 0x06a0 0x1a30 0xfa6f 0x5166 0x0359 0xeec0 

40 0x058f 0xc450 0xde9a 0xda3d 0x145a 0x1637 

41 0xee58 0xfd9b 0xd25d 0x15f2 0x1086 0x026b 

42 0x03a9 0xec9d 0xc8ea 0xbd30 0xe506 0xe8c0 
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index val[index][0] 
(16-bit two’s 
complement) 

val[index][1] 
(16-bit two’s 
complement) 

val[index][2]
(16-bit two’s 
complement) 

val[index][3]
(16-bit two’s 
complement) 

val[index][4] 
(16-bit two’s 
complement) 

val[index][5]
(16-bit two’s 
complement) 

43 0xc524 0xfe1f 0xe3bb 0xc5d2 0x49bc 0x54a9 

44 0x9bc6 0x0b5e 0x0477 0xfeb9 0xfe36 0xfc1d 

45 0xda48 0xfccd 0x9ebc 0x0af4 0x4f01 0x043b 

46 0xfba9 0xf19e 0xf904 0xb3dc 0x03c6 0x0335 

47 0x1c7d 0xab01 0x2a26 0xe46d 0xa503 0xf945 

48 0xfee6 0xd4ab 0x00aa 0xae2a 0x8f02 0x3147 

49 0x4612 0x0e81 0xf9e5 0x0375 0x0005 0x0234 

50 0x17e4 0x58a8 0x08c2 0xe4d9 0x26f7 0xe80c 

51 0x10f2 0x68b8 0xf187 0x07b8 0xfbc9 0xf5f6 

52 0xfd6b 0xe123 0xf594 0xc4a6 0x453a 0x1117 

53 0xefb2 0xd4d3 0x02cd 0xa816 0x061a 0x2fdc 

54 0xe6fb 0x479e 0x17d7 0x1b47 0x1744 0x4713 

55 0x267b 0x14fa 0x5c34 0xe533 0xe657 0xffc2 

56 0x55cc 0x342f 0xfd55 0x0ec9 0x0878 0x00d1 

57 0xf20f 0xfb99 0xb2f4 0xf9f8 0x051c 0xfcdd 

58 0xf3f5 0x3eb1 0xca21 0xf3fb 0x10c6 0x5ca1 

59 0xd8f1 0x26d7 0xc200 0x3286 0xa3b1 0x54c3 

60 0x25fa 0x5935 0x2fa0 0x3af3 0x159d 0x12e5 

61 0x08c3 0x0833 0x04db 0x0ff9 0x128c 0x329c 

62 0x0fa7 0xf65c 0x0d19 0xf3ec 0x228b 0x4280 

63 0x10ea 0x17ef 0x15ad 0x2421 0x2bda 0x6fb0 

64 0xda8e 0xdd87 0x00ec 0x03f1 0x01c7 0xfc3c 

65 0x1aad 0x4b5a 0xfc06 0x00c8 0x071d 0x0242 

66 0x144c 0x03bd 0x2884 0x0d02 0xce00 0xff81 

67 0xf432 0xdfff 0xc723 0x562d 0x1720 0x041d 

68 0x2ae6 0x6556 0xa01e 0xa512 0xd17f 0xe57b 

69 0x588b 0xd4fe 0x1668 0x0a07 0x5c99 0xd7f3 

70 0xf2f1 0xef77 0xeaae 0x50bb 0xd5a5 0xf1eb 

71 0xefdd 0xf1e4 0x11df 0xfcc3 0xfea2 0xfcb1 

72 0xf319 0x0d7b 0xe31a 0xd2ac 0x0bcf 0x01c7 

73 0x0c80 0xdab5 0x0c82 0xa693 0x2bb0 0x989e 

74 0xc8f3 0xefeb 0x3c16 0x37d7 0xd55d 0xb067 

75 0x0edf 0xd4f8 0x5624 0x3822 0xc420 0xe1cb 

76 0xe76d 0xbac9 0xf9e8 0x2f10 0xb2a3 0xfe45 

77 0xe7fd 0xef76 0xff60 0x20ab 0x586e 0x2e87 

78 0x4afd 0x0497 0x1cfe 0xd96d 0xefd8 0x1260 

79 0xffb8 0xe21c 0xff90 0xd14d 0xf362 0x6a27 

80 0x0cca 0x174b 0x1d4d 0xbd85 0x0362 0x9c94 

81 0x02e1 0x0745 0x0729 0x07e6 0x0950 0x1293 

82 0xeb9f 0x1d58 0x0cfb 0x0a9b 0x0bf9 0xf9ba 

83 0x1097 0x0235 0x15fd 0x09c1 0x4663 0xecc8 

84 0xf4ef 0xba00 0xe082 0x3d7a 0xfc06 0x0858 

85 0x0bea 0xb3e5 0x4222 0x748b 0xd812 0x3b31 

86 0xd3ae 0x0076 0x9b3c 0xca3f 0x3bd8 0xfe2c 

87 0xed28 0x1360 0xef59 0x0627 0xd69f 0x4c69 



ATSC A/52:2012 A/52 Annex E 17 December 2012 

 248

index val[index][0] 
(16-bit two’s 
complement) 

val[index][1] 
(16-bit two’s 
complement) 

val[index][2]
(16-bit two’s 
complement) 

val[index][3]
(16-bit two’s 
complement) 

val[index][4] 
(16-bit two’s 
complement) 

val[index][5]
(16-bit two’s 
complement) 

88 0xdff5 0xfa7f 0xfd05 0xfb8d 0xfda1 0x0580 

89 0xf765 0xd369 0x07e5 0xe70c 0xf5d8 0x02c7 

90 0xfe63 0xf631 0xff28 0xf241 0x9195 0x06b7 

91 0xc792 0x429a 0x365d 0x34bb 0x9b5e 0xc107 

92 0x4b1c 0x1cad 0xcff3 0x02aa 0xf131 0xff39 

93 0xef9f 0x510a 0xc2dd 0x2c55 0x16e4 0xfcc8 

94 0xac0e 0xf226 0xfffd 0xf957 0xf089 0x23fd 

95 0x3c55 0xf8ac 0x07dc 0xb355 0x3f64 0xed13 

96 0xf4cd 0xf16b 0xe346 0xff51 0xb169 0x2ba6 

97 0xf20d 0x9ff5 0x4cf4 0x19fe 0x03d3 0xfd72 

98 0x553c 0xe2fa 0xe611 0xd5f1 0xdf56 0x3cb7 

99 0x39eb 0x4639 0xe3dc 0xf2af 0x0772 0xbc78 

100 0x0dc5 0xf095 0xfa79 0xf512 0x44f0 0x0822 

101 0xe64c 0xc469 0xba07 0x0539 0x3bea 0x52a6 

102 0x1842 0x25e2 0x3b33 0x9fa6 0xa815 0xf061 

103 0xf934 0xfdaf 0x0447 0xe19d 0x61e2 0x15e1 

104 0x53a7 0xfe50 0xf986 0xe50e 0xfa62 0xc78a 

105 0xe4e1 0x02bc 0xd095 0xfd17 0xa185 0x57c2 

106 0x188f 0x0cd3 0x2afe 0x0f04 0x4af0 0x39bd 

107 0xa81a 0x3baa 0x1543 0xf508 0xfc36 0xf2f1 

108 0x0cb9 0xf184 0x1288 0xdf93 0x591e 0xd820 

109 0x5f1a 0xae16 0x4d86 0x03db 0xd14a 0xe77b 

110 0x0f42 0xb30b 0x3304 0xf9b7 0x48d1 0x1d2a 

111 0x98d7 0xa7eb 0x3fb1 0x07de 0x2adf 0x4670 

112 0xe481 0x122f 0xc61e 0x4933 0x3dad 0x0510 

113 0x245e 0xf96f 0x394b 0xf302 0x67a7 0xd1b3 

114 0x1660 0x171d 0x3458 0x2724 0xf744 0x9f80 

115 0x06cd 0xe5b9 0x3197 0xaa07 0x0ff0 0x154a 

116 0xf5c3 0x24b1 0x5297 0x9aae 0xf3a6 0xf61f 

117 0x50c0 0x49ce 0xc98d 0x1b4e 0xdfbc 0x3dc3 

118 0xa2f6 0x2baf 0xcab9 0x2e5c 0x3ead 0x0a46 

119 0x47b9 0xd814 0x033d 0x0358 0xfc0e 0x009d 

120 0x3840 0xedba 0x1421 0xcc16 0x94d6 0xd4ec 

121 0x546d 0x2bf8 0x442d 0x1db4 0x334a 0xfe1c 

122 0x0007 0x04d4 0x023d 0x1076 0x15c8 0xf3f7 

123 0x0394 0xdc7c 0x0505 0xdd02 0x04a1 0x8fe5 

124 0x5453 0x5c8f 0x4aac 0xf4bb 0xc836 0xdf0a 

125 0x5b76 0xe7ef 0x32b2 0x0bf5 0xdb79 0x08bc 

126 0xf402 0xe350 0xb154 0x169c 0x0246 0xfdd9 

127 0xf067 0x013b 0xe1a3 0x2020 0x924e 0xcf4f 

128 0x35c6 0xc403 0x4b05 0xaf70 0x32f3 0xb4d1 

129 0x0ec1 0xff4f 0x1f5d 0xfc17 0x4594 0x142a 

130 0xe374 0xef19 0xb950 0xfd94 0xfaba 0x3a54 

131 0x39a4 0xfb3b 0xcded 0xc5b6 0xfddd 0x69f5 

132 0x08ba 0x06ac 0x0acc 0x1528 0x1f32 0x9db5 
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index val[index][0] 
(16-bit two’s 
complement) 

val[index][1] 
(16-bit two’s 
complement) 

val[index][2]
(16-bit two’s 
complement) 

val[index][3]
(16-bit two’s 
complement) 

val[index][4] 
(16-bit two’s 
complement) 

val[index][5]
(16-bit two’s 
complement) 

133 0x0b39 0x0e34 0x0f98 0x14e0 0x279e 0x530b 

134 0x0486 0x1503 0x01fc 0xd6ee 0x0122 0xf9b1 

135 0x045a 0x60d5 0x40bf 0x9db0 0xfed6 0xf4f0 

136 0xfbad 0xe800 0xf882 0xe191 0xf465 0xa514 

137 0x0fb0 0x2a29 0x43a5 0xef0a 0xae0a 0xf2c9 

138 0xee72 0xff31 0xd921 0xf209 0x1f0b 0x0482 

139 0xe268 0x1fb5 0xc921 0x4256 0x98a7 0x946c 

140 0xc4c4 0x3ee0 0xbe34 0xdd4a 0xa358 0x3e22 

141 0x615a 0x1630 0xf8ae 0x01a4 0x0084 0x0075 

142 0xfe06 0xb492 0xff3a 0x019c 0xfec9 0x02f0 

143 0xf88e 0x0f8d 0xe1f8 0x40b6 0xb4a5 0xc67e 

144 0xfe71 0xfd27 0xf121 0xef9c 0xcf95 0x1dd7 

145 0x0d28 0x091a 0x2384 0x5c86 0xd7ce 0xf957 

146 0xf3b4 0x0a24 0xe0ce 0x390a 0xed39 0x40f3 

147 0x1f79 0x05c9 0x0031 0x4335 0x6125 0x1d32 

148 0xb498 0xfdff 0x2e81 0x092a 0x15d4 0x0d25 

149 0xec39 0xaacc 0x2c6a 0x2a90 0x1311 0x0105 

150 0x12ba 0x5061 0x13f5 0xe877 0xe08f 0xfa0f 

151 0x1fbd 0xc65c 0x509f 0xc5ba 0x5d85 0xf1be 

152 0x30a3 0x0565 0x0e1d 0x21ef 0xa23e 0x12f0 

153 0x1a46 0x2993 0x2766 0x6281 0x9db9 0xfbd7 

154 0x19a1 0x3699 0x0b5f 0x54e9 0x4051 0x9a3e 

155 0xf910 0x0a0f 0xb36a 0xbe60 0x0bd8 0x1a17 

156 0x3aa4 0xba0a 0xdf0a 0xabce 0x9619 0x2e20 

157 0x0d78 0xfc64 0xc1d7 0xfb91 0x1406 0xaf7b 

158 0x1e28 0x08b2 0x4437 0x153a 0x710e 0x4490 

159 0x04de 0x3cfe 0xd221 0x602a 0xbb7d 0x0cc8 

160 0x0c8f 0x461e 0x0adf 0xfd2e 0xa770 0x175b 

161 0xe9d2 0xf390 0x9a19 0x65b2 0x19b7 0x0ce6 

162 0x4f56 0xf21d 0xf565 0xfe44 0xfa31 0x05f6 

163 0xaf60 0xaa2e 0xd051 0x9b3f 0x229f 0xfbf4 

164 0x45e0 0x023a 0xc11a 0x2089 0xf607 0x3bab 

165 0xf58b 0x26de 0xf8a9 0x405d 0xce26 0x8eb1 

166 0xff88 0xf753 0x00db 0x0061 0x016d 0x0023 

167 0x04f6 0xfd32 0x05c8 0xf57f 0x078a 0xe299 

168 0x0768 0x222e 0x0772 0x473b 0xce6c 0xe7e2 

169 0xf16b 0x3591 0xd966 0xc1a8 0xfaa0 0xe416 

170 0xd698 0x2130 0x3e5f 0xdda8 0x1d6c 0x4fd7 

171 0x0be1 0xcb6f 0x0408 0x96b8 0x169b 0x6198 

172 0xee12 0xdfe4 0xdb96 0xe820 0xbca5 0x6491 

173 0xba70 0x1b3a 0x0ea8 0x0272 0xff8e 0x0882 

174 0x1161 0xed02 0x1b8e 0xeae4 0x1282 0xf4f5 

175 0x133a 0xfd75 0x49fb 0xd976 0x0350 0x075e 

176 0xfeb0 0xeade 0x1c42 0x4fdc 0xda91 0xfda8 

177 0x030d 0xb3ee 0xce98 0x19ea 0x0586 0x01c2 
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index val[index][0] 
(16-bit two’s 
complement) 

val[index][1] 
(16-bit two’s 
complement) 

val[index][2]
(16-bit two’s 
complement) 

val[index][3]
(16-bit two’s 
complement) 

val[index][4] 
(16-bit two’s 
complement) 

val[index][5]
(16-bit two’s 
complement) 

178 0xf2b9 0xbe7e 0x2b63 0x3390 0xea86 0x549f 

179 0xf33f 0x12fb 0xe8b7 0x1d6a 0xd5ab 0x6db6 

180 0x286e 0xcd9b 0x6463 0x6428 0xfd81 0x015f 

181 0x048b 0x494b 0xeaa6 0xc511 0xff6f 0xfa9f 

182 0xc773 0x6a5d 0x8569 0x8073 0x53bf 0xf4b2 

183 0x3c3c 0x4987 0x5670 0x4bc6 0x5837 0x3513 

184 0xd64e 0x29d6 0x13e1 0xed6c 0x038d 0xaee8 

185 0xcd6c 0xaf4c 0x1cf2 0x0aa2 0x0d63 0x2d41 

186 0xfbaf 0x47c6 0x4d13 0xda4e 0x57aa 0x4cb2 

187 0xfed8 0xe572 0xc6ab 0x5463 0x4d54 0x5397 

188 0xb46a 0xe2b3 0x6366 0x3358 0x218c 0x9d2e 

189 0x0c14 0xd686 0x51a0 0x2421 0xf302 0x0704 

190 0xfcd5 0x05a9 0x0c22 0x128c 0x2f29 0xc84a 

191 0xaf10 0x37c3 0xef14 0x9b12 0xe96b 0xad63 

192 0xebf4 0x293a 0xc93c 0xa97a 0x0b18 0xfdd6 

193 0x63bd 0x44f0 0x3a26 0xadae 0x099b 0x6236 

194 0xdb66 0xf904 0xcdc2 0xe912 0x9b2d 0xd4f1 

195 0x1a2a 0x0333 0x2849 0x00a6 0x6bbd 0x020b 

196 0x0065 0xb444 0x0d55 0x25a6 0x0040 0x0326 

197 0xf54a 0xb9f5 0xf5f0 0x5922 0x2169 0x0466 

198 0x0b9c 0x3b63 0x0700 0x635a 0xe9a0 0xbc8f 

199 0xfa75 0x0644 0x112e 0x2cbc 0x06c3 0x5ceb 

200 0xebf0 0x1211 0xd663 0x6d4d 0x26a9 0xf632 

201 0xd6e0 0x927f 0x0bb7 0xfa06 0xfcc0 0xfcc2 

202 0xd483 0xcf21 0x56be 0xe3b5 0xa3e6 0xab3e 

203 0x4227 0xaa7c 0x0745 0xda7a 0x24d8 0x4a52 

204 0x2825 0x252c 0x68bf 0x07da 0xecb1 0xdc88 

205 0x15ab 0xf75e 0x37be 0xc43c 0xb48c 0x071e 

206 0xed0e 0xfcf1 0xdd01 0xf3fc 0xb1a8 0xf383 

207 0x2028 0xf516 0xbaa8 0x33fc 0x0c9d 0xfc21 

208 0xd033 0xe64b 0x284b 0xdab0 0x08d4 0xaf58 

209 0xe4a8 0x1599 0xe27f 0xe2be 0xd79a 0xd7e6 

210 0x0e39 0x4c17 0xe8ac 0xb567 0xb776 0x3205 

211 0x0503 0xefbc 0x1066 0x90c7 0xf63e 0x074a 

212 0x3eaf 0x68ca 0xcd03 0xe754 0x03d9 0xf9c3 

213 0xfe6d 0x3570 0x1939 0x61ee 0x69f4 0xaf1a 

214 0xb96a 0xf902 0x9e66 0x1741 0xfc46 0x67e8 

215 0xa160 0xc3e9 0x60d4 0x07a1 0xfb90 0x00bb 

216 0xf70f 0x30d9 0xaefe 0xfc78 0x4794 0x530a 

217 0x0a62 0xe804 0x3f33 0x5704 0xfdd4 0x086a 

218 0xe839 0x367e 0x9bae 0x93bf 0x0fd1 0xed45 

219 0xac34 0x6769 0x4beb 0xdc5c 0x037f 0x012f 

220 0xa948 0x99bf 0xe876 0x6099 0xa672 0xdcba 

221 0xc83c 0xc192 0x5cb4 0xa6bd 0x2434 0xf0ff 

222 0x732a 0x55a3 0xe7bb 0x068f 0xf7f5 0xfba0 
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index val[index][0] 
(16-bit two’s 
complement) 

val[index][1] 
(16-bit two’s 
complement) 

val[index][2]
(16-bit two’s 
complement) 

val[index][3]
(16-bit two’s 
complement) 

val[index][4] 
(16-bit two’s 
complement) 

val[index][5]
(16-bit two’s 
complement) 

223 0xfe4d 0x264a 0xf0cd 0x3047 0xef40 0xb5e5 

224 0x4d38 0xffaa 0x09a3 0x07c6 0xfc03 0xeb16 

225 0x51fa 0xddb1 0xeb2f 0xa3f6 0xed86 0x0a71 

226 0xec19 0x15e5 0xedeb 0x4ace 0x65b5 0xd01d 

227 0x03cc 0x1aca 0x11c7 0x6d2d 0xf047 0xf720 

228 0x17bb 0xf344 0xec83 0xfe8b 0xf9dd 0xf16e 

229 0xe3a8 0xcd40 0xdd8c 0xec0b 0x5a0e 0x13be 

230 0x0398 0x0a37 0x1ee8 0xe347 0xecd7 0x4eda 

231 0xff06 0x154e 0x0c44 0x1b10 0xb6dd 0xf7fd 

232 0xd7c5 0xeeec 0x4c98 0x130f 0xfd6b 0xf8a3 

233 0x39e0 0xde65 0xb299 0x17f7 0xad26 0x371c 

234 0xd157 0xf751 0x139a 0x2e74 0x58d5 0x0196 

235 0xcc80 0xf5cb 0xcc38 0xa85f 0xcf3e 0xdf44 

236 0x42aa 0x62b3 0xf71f 0x13c0 0xfeaa 0x0091 

237 0x20d1 0xbaed 0x4aa8 0x2977 0xb403 0x42bb 

238 0x5155 0xe9bc 0x300a 0x9c02 0x2897 0x1e0c 

239 0x11c6 0x3da3 0x43ba 0xb44d 0xed60 0x04b6 

240 0xe1d5 0x2a54 0x95e4 0xd351 0x1ab3 0xf910 

241 0x09ee 0x0c7f 0x115a 0x4469 0xf181 0xfc6e 

242 0x51e0 0xbe7a 0xe94a 0x2b4f 0xffba 0x59b1 

243 0x0ce9 0x0b67 0x1870 0xed40 0xae1a 0xf362 

244 0x1724 0xbf5d 0x0887 0x0aad 0x0d76 0xa4f6 

245 0xe853 0xff3e 0xc9e4 0xd525 0x4c20 0x0405 

246 0x1173 0xe8b4 0xb5c4 0x05ef 0xfe99 0x0357 

247 0xf9d3 0xe249 0x5636 0xd2c4 0xd8d0 0x42ce 

248 0xcf84 0x09f9 0x10e4 0x57e4 0x1677 0x2f8a 

249 0x9dd9 0x464c 0xe710 0x049c 0x049e 0x2596 

250 0x5ba6 0xdee9 0xeed8 0xf593 0x1dd6 0xbe3d 

251 0xea79 0xf4b9 0xd5fb 0xae6d 0x1c4e 0x041d 

252 0x0a8f 0xaf86 0xe27e 0x1d5c 0xe1c4 0x16ec 

253 0x50be 0x558d 0x01c9 0x3a79 0xbb07 0xd16f 

254 0x0e13 0xf9c5 0xf77f 0xff63 0xffd5 0x025d 

255 0x09d1 0x22fa 0x291f 0x581f 0xc11c 0xc157 

256 0x1772 0x1357 0x1a8b 0xed02 0xa880 0x49a1 

257 0x1da6 0xf963 0x9f90 0xf2b4 0x3759 0x04be 

258 0xeed2 0xe5f9 0xe52a 0xd89d 0x9fec 0x2425 

259 0x28e4 0x4557 0xe1bc 0x0093 0xe756 0x1143 

260 0x3f3b 0xbf53 0xefe9 0x10ce 0x1dc9 0x1521 

261 0x0ce7 0x0aaf 0x1d22 0xb242 0xf732 0xf18a 

262 0xf7e3 0x5469 0x3a16 0x3101 0xe83f 0xf91c 

263 0x1246 0x2ddc 0x0b2b 0x1b29 0x077f 0xf0e1 

264 0x0dc2 0xaaa3 0xf65b 0xd72b 0x49cd 0xd60a 

265 0x0eaf 0xd831 0xecfe 0xf59d 0xba59 0xfb26 

266 0x3a8f 0x2487 0x2e5e 0xf9db 0xed10 0x5815 

267 0x2525 0x95f0 0x29ee 0x5173 0x99b7 0xba2a 
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index val[index][0] 
(16-bit two’s 
complement) 

val[index][1] 
(16-bit two’s 
complement) 

val[index][2]
(16-bit two’s 
complement) 

val[index][3]
(16-bit two’s 
complement) 

val[index][4] 
(16-bit two’s 
complement) 

val[index][5]
(16-bit two’s 
complement) 

268 0xe3fe 0xfa90 0xb3d9 0x31ca 0x2006 0xf83c 

269 0x075b 0x6dfe 0xfcb2 0xe3bd 0x00f9 0x00e9 

270 0xe3e0 0x029d 0xfe8d 0xf47c 0x5ac2 0xe9fd 

271 0x0c45 0x0120 0x0c97 0xfb16 0xff9e 0x9429 

272 0x43dd 0xa53d 0x13f6 0xd441 0xf5f2 0xd321 

273 0xecc0 0x05ee 0xeab0 0x029e 0xb89a 0x079f 

274 0x285e 0xb267 0xedd7 0x0169 0xff60 0xfc65 

275 0x492c 0x37b8 0xf3ad 0xe2c3 0xf300 0x1747 

276 0xf1e2 0x5255 0x1c6c 0x0dd0 0x1fb9 0xfa08 

277 0xdf1a 0x01f4 0xb512 0x49f1 0x6718 0xfbf1 

278 0x3d17 0x6444 0x20b7 0x076f 0x0799 0xd135 

279 0xf564 0x0d3d 0x68e2 0xee15 0x070b 0x0016 

280 0x0499 0xfd71 0x04d1 0xf7b0 0x1ea4 0x06e7 

281 0xfd07 0x2011 0xb4a6 0xee0f 0x0783 0xfea9 

282 0xfd4f 0xf236 0xf33d 0xf124 0xf53f 0x4886 

283 0xf7c2 0x07aa 0xfab7 0x4103 0x0acd 0xa5c2 

284 0xfe4f 0x1329 0x012e 0x32d8 0x3e3d 0xe8ef 

285 0x0c83 0x101e 0x2bad 0xea88 0xf61f 0xfb78 

286 0xfbbd 0xe6bb 0xfa79 0x1632 0xfef4 0x0247 

287 0xdb43 0xb38c 0x1848 0x067a 0x03e1 0xffb5 

288 0xf961 0xee68 0xf70f 0xf008 0xe664 0xbf3f 

289 0x1298 0xfc84 0xd56a 0x1974 0x5e87 0xe885 

290 0xff03 0x03e8 0x003f 0xffaf 0xff8d 0xfe82 

291 0xfacb 0x5ea0 0xfd46 0xedc5 0xf50f 0xb538 

292 0xfc94 0x8f3e 0xaa8f 0x3185 0xe738 0x0ca3 

293 0x41cf 0x5299 0x99c4 0xf391 0xfe74 0x00e6 

294 0x4778 0xe192 0xcdc7 0xfd59 0xfa3f 0x0005 

295 0xd708 0x2ca5 0x64cd 0xfb9e 0x0579 0xfe4a 

296 0x0ec6 0xe2fb 0x6860 0x449f 0x4b39 0x30fe 

297 0x18bc 0xfd16 0x31f5 0x2464 0xa7f2 0xeb16 

298 0x0d5a 0xa738 0x6962 0x477f 0x0434 0x03bc 

299 0x954d 0xf454 0x0398 0x00eb 0x08b9 0x0051 

300 0x1837 0x14b0 0x3edd 0x39b0 0xdf13 0xfba8 

301 0xe6e0 0x4b2c 0x26c1 0xf34b 0x04fe 0xfc46 

302 0x5e95 0x0801 0xa66d 0x0a19 0xf696 0xef88 

303 0x2446 0x37ca 0xb2e9 0xf06f 0xf6d8 0x0404 

304 0xb160 0x4649 0xdb0e 0x59e4 0xbda9 0x21b1 

305 0xe510 0xaf06 0x0eb2 0x4407 0x5745 0x4a50 

306 0x034a 0x5e75 0x61e6 0xe931 0xffb2 0x03a9 

307 0xfd93 0x4d0a 0xa174 0xf856 0xc5fa 0xffc8 

308 0x58ee 0xec01 0x43d5 0x5d3c 0xb3e8 0xe662 

309 0xf792 0x4452 0xac45 0x0d0c 0xcded 0xb0b9 

310 0xda6b 0x43ad 0x02cb 0x08d9 0xefe5 0xfe14 

311 0x23c4 0x3293 0x6aa7 0xad49 0xe848 0xdb0f 

312 0xcc94 0xa51b 0xc94a 0xefa8 0x1b42 0x0002 
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index val[index][0] 
(16-bit two’s 
complement) 

val[index][1] 
(16-bit two’s 
complement) 

val[index][2]
(16-bit two’s 
complement) 

val[index][3]
(16-bit two’s 
complement) 

val[index][4] 
(16-bit two’s 
complement) 

val[index][5]
(16-bit two’s 
complement) 

313 0x03aa 0xcbbb 0x0dc0 0xa117 0x5976 0x4c85 

314 0xecd1 0xb2c2 0x4d34 0xdba2 0xce96 0x0eeb 

315 0xeaaa 0xef67 0xe4b5 0xe78c 0xc989 0x9dc2 

316 0x247d 0x2881 0xc9da 0xe5d0 0x581c 0xfdf9 

317 0x19fb 0x4950 0xed09 0x311a 0x398a 0xd81f 

318 0xfcc9 0x46c7 0x018e 0xf9d2 0xff8c 0xfe95 

319 0xe4e9 0xce6a 0x9118 0x2168 0x1b31 0xff11 

320 0xf5d6 0xeda0 0xfc03 0x07df 0x1409 0x5c76 

321 0xcef1 0xe002 0x9e3c 0x4870 0x3763 0x067f 

322 0x0ee5 0x522c 0xda6c 0xec45 0xf8f8 0xfbc1 

323 0xa9d7 0x4123 0x3a70 0x24f3 0x0ae2 0x425f 

324 0x9a48 0xb48a 0xe6f2 0x0450 0x16a6 0xb989 

325 0xf937 0x60f9 0x28b1 0xd4b1 0x0380 0xeb67 

326 0xf8c1 0x2d8d 0xf50d 0x60e9 0xac45 0xb2b0 

327 0xa44f 0xbea7 0xe96a 0x160b 0x0a4c 0x134c 

328 0xf944 0x1124 0x97cf 0xca81 0x294a 0x9ad9 

329 0x3bfe 0xb3d8 0x6682 0xb7c3 0x06c8 0x1f76 

330 0x1634 0x519a 0x0ffb 0xb564 0xc704 0xd71c 

331 0x436c 0xc05d 0x3a0b 0xbad1 0xb51a 0x3093 

332 0x95cf 0xcee3 0x1a57 0xfdce 0x03d0 0xfeff 

333 0x306b 0xde56 0xa918 0xb27d 0x2b05 0x1e52 

334 0x0ed7 0x2e4d 0x941a 0xdee7 0x0441 0xfa29 

335 0x102d 0xf77a 0x97a0 0xfd21 0xfcfa 0x05bd 

336 0x0c35 0x35c2 0x11fe 0x7249 0x4953 0xd91a 

337 0xbbc7 0xdb1b 0xbb66 0xf61e 0xe6dd 0xf172 

338 0xf932 0x10ff 0xe547 0xb2c3 0x259b 0xd662 

339 0x1c53 0x0dc5 0x2a53 0x15e1 0x626e 0xa4cc 

340 0xd7c4 0xba5a 0x0277 0x2d78 0x07fc 0xae72 

341 0xfc97 0xdeca 0xfbd9 0xc2c6 0xd63b 0x3a56 

342 0xc1ab 0x6de9 0x1494 0x01dd 0xfbe3 0x0486 

343 0xfa29 0xdd92 0xe97c 0x9e7b 0x6584 0x1ee3 

344 0xfbf2 0xff8e 0xf6fc 0xfad9 0xe6b0 0x05c0 

345 0x131f 0xba17 0x9b06 0x14b5 0xff44 0x062d 

346 0x0c80 0x4349 0x10fa 0x5655 0xb791 0x560c 

347 0xd7f6 0x0221 0xd54c 0x08e4 0x925a 0x1fb6 

348 0x3bef 0x0919 0x2464 0x5039 0x3a3c 0x521d 

349 0x18b9 0x17f2 0xa044 0x0345 0xde43 0xe92c 

350 0x1cda 0xfe0b 0x2907 0x4ea3 0x2cab 0xed6d 

351 0xf547 0x5e6e 0xdbc6 0x3ba9 0xdf3b 0xe935 

352 0x0bb0 0xf4d0 0x17a0 0xe2cf 0x2da7 0xb1e4 

353 0xfc8d 0xd14e 0xd908 0xaabb 0xeeac 0x95d6 

354 0x0d82 0x4caa 0x0500 0x0a25 0x4d89 0x1487 

355 0xeb3d 0x4abd 0xc74a 0xdd0e 0x35b5 0xfab8 

356 0x48d2 0x44f7 0x2af9 0x1aa1 0xb80e 0x18c0 

357 0xf95f 0x08c4 0xede0 0x0f6c 0xcda6 0xeb67 
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index val[index][0] 
(16-bit two’s 
complement) 

val[index][1] 
(16-bit two’s 
complement) 

val[index][2]
(16-bit two’s 
complement) 

val[index][3]
(16-bit two’s 
complement) 

val[index][4] 
(16-bit two’s 
complement) 

val[index][5]
(16-bit two’s 
complement) 

358 0x4fcc 0x292e 0x104a 0xfc0c 0x4bef 0x54bb 

359 0xf481 0xb2e9 0xef90 0x0528 0x038d 0xdd3f 

360 0x2487 0xe07e 0xf5c6 0xcd7b 0x67d6 0x0db3 

361 0x25e9 0xa79c 0x2077 0x1fe7 0xcc13 0x15e8 

362 0x0c96 0x0ea5 0xfa1c 0x00a5 0xffcc 0xff3c 

363 0x0066 0xa728 0xdd80 0x0387 0xd363 0xc6ba 

364 0xff88 0x176e 0x4d35 0x3459 0x0e2c 0x144d 

365 0x2150 0x16c3 0xfbd6 0x0306 0xffd9 0xff5a 

366 0x24c3 0xdafc 0x256d 0xcd34 0x5f88 0x6144 

367 0x45d6 0x08bb 0xab79 0x4ffe 0x126c 0xe3ea 

368 0xf64e 0x2527 0x064b 0xaa49 0x3796 0xfaf7 

369 0x2448 0xf70d 0x5aaf 0xf284 0xd5a6 0x000b 

370 0x2518 0x0be1 0x140a 0xf0ce 0xad1d 0xa7c3 

371 0x37b6 0xd992 0x4ee3 0x36c3 0x005b 0xbcd0 

372 0xb761 0x03d4 0x0011 0x0335 0x0078 0xfdc2 

373 0x2ffd 0xb4bb 0x35ae 0x3ff5 0xff5f 0x1789 

374 0xf2dc 0x05fa 0xf05b 0x0996 0xd588 0xa2e1 

375 0x0069 0x13dd 0xfefc 0x169e 0xfdb4 0x4ae2 

376 0x1019 0x1049 0x347f 0x3934 0x51a3 0x1d0a 

377 0xff51 0x332d 0xf188 0x5ac1 0x0f43 0x277a 

378 0xe82b 0x5bab 0x1454 0xfac3 0x063f 0x3376 

379 0xf36f 0xf25a 0x3b0d 0xdf3d 0xd20e 0xed72 

380 0x047a 0x1243 0xb44e 0x3a45 0xec1d 0x00f9 

381 0xabfe 0x2798 0xbfa7 0xcc07 0x47ce 0xde67 

382 0x0274 0x098f 0x0d10 0x0c3a 0xec05 0x0077 

383 0x45ec 0xa86a 0xbb1f 0x55cf 0xc05b 0xe204 

384 0x41df 0x5e96 0x15ec 0xf0ee 0xfcd7 0x0eee 

385 0xf70d 0x276b 0xf6c8 0x9deb 0xfb36 0x0138 

386 0x0b8d 0x2bf8 0x6879 0xcc2e 0xf281 0xfb98 

387 0xb2ce 0xf56c 0x11fc 0x18d3 0x0666 0x639d 

388 0xb377 0xe1b7 0x0c57 0xffab 0xfe17 0xf8c1 

389 0x032e 0x30de 0x4a85 0xedb7 0xf5ce 0xfa3e 

390 0xa490 0xb5ad 0x1fc9 0x4da6 0x1ee8 0xfee6 

391 0x0347 0xb33c 0x2e97 0x6a8e 0xf375 0x08da 

392 0x0fb4 0xfbaa 0x2022 0xfb06 0x51ba 0x61e4 

393 0x67d0 0x0145 0xde0b 0xff18 0xf756 0xfd45 

394 0xd3e3 0xef98 0x070d 0xe5ef 0xa664 0xfac5 

395 0xf82b 0xc1f2 0xfbe9 0x93d9 0xcc4d 0x3822 

396 0xa9c7 0x079d 0x3377 0xc2d8 0xf8ca 0x1f77 

397 0x0bdf 0x2ef9 0x1bdc 0x9fc8 0x019d 0xf6d5 

398 0xa210 0xff32 0x30ab 0xe602 0xfe5f 0xd895 

399 0x4703 0xa378 0xafdd 0xbff4 0x1c3e 0x02fb 

400 0x161b 0xec23 0x3636 0xa34f 0xd4bb 0xb37d 

401 0x2c4c 0x01f5 0x61d0 0x1dc0 0xb336 0x0645 

402 0x97e6 0x22ae 0x2930 0x01a1 0x0513 0x0105 
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index val[index][0] 
(16-bit two’s 
complement) 

val[index][1] 
(16-bit two’s 
complement) 

val[index][2]
(16-bit two’s 
complement) 

val[index][3]
(16-bit two’s 
complement) 

val[index][4] 
(16-bit two’s 
complement) 

val[index][5]
(16-bit two’s 
complement) 

403 0x387c 0x2c69 0xf341 0x2706 0x2002 0x46bf 

404 0x054b 0xae9a 0xdc14 0xc144 0xde91 0xfd26 

405 0xf882 0xae37 0xb88b 0xf663 0xf5a5 0x10dc 

406 0xf506 0x5fc9 0xd50c 0x9b87 0x0134 0xfb2e 

407 0xdc8d 0xbc80 0xf8d7 0x8d62 0xa16b 0xbf09 

408 0xf4e5 0x27b5 0xeb25 0xf4b8 0x5562 0xaca4 

409 0xc228 0x3a01 0xa31c 0x1440 0x2781 0xaf61 

410 0xb3b1 0xd39f 0x20dd 0x05ce 0xa396 0xe981 

411 0xe2a8 0x0403 0xaec6 0x35a4 0x4db4 0xaa52 

412 0xd09c 0xe492 0xb519 0xdd78 0x566d 0xbf96 

413 0x0791 0x145a 0xe752 0xa314 0x3355 0x2b4a 

414 0xff33 0x1794 0xfe84 0x21d2 0xff17 0x6d74 

415 0xea6d 0x1d35 0x1dd3 0x5c2b 0x2623 0xf5e2 

416 0x549a 0x9167 0xf3f2 0xfed4 0xfbf8 0x06d0 

417 0xa8b0 0x4106 0x00d0 0x1a09 0xbc08 0xf42c 

418 0x4832 0x2478 0xf54f 0xb454 0x0197 0xeedb 

419 0xeccf 0xbc26 0x4983 0xbb0a 0x3468 0x3b80 

420 0x1e45 0x18e0 0x5a5f 0xb902 0x1da0 0xef68 

421 0xfa2f 0xe685 0x024a 0xd853 0x3a74 0x63e0 

422 0x0f04 0xe7f4 0x1321 0xcd0b 0xa802 0x160f 

423 0xded5 0xf7c7 0x9f3a 0x0389 0xdb92 0x05b0 

424 0xf420 0xfa3c 0x048e 0xeeb4 0x2be4 0x23f4 

425 0x0d45 0xfa55 0x351e 0xc21f 0x5fdc 0x16bb 

426 0x2123 0xf44f 0x542b 0xbdec 0x1e3d 0x5dd2 

427 0xc5ac 0xa332 0xeb2c 0xe5f8 0xee6f 0x33d3 

428 0x4bb3 0x3274 0xf7a2 0xfd1f 0x526c 0xa9ab 

429 0x0d41 0xedeb 0x1667 0xb61f 0xe4c7 0x0a7f 

430 0x047c 0xc0ed 0xac47 0x9241 0xfd8a 0xc78f 

431 0x1c84 0x02a0 0x4862 0xbbd4 0xd85b 0x015f 

432 0x2c5c 0xd522 0x433c 0x1210 0x0091 0x457f 

433 0xfd39 0xf269 0xf742 0x3e0f 0x07eb 0x0000 

434 0x9270 0x0702 0xfdaf 0xf53a 0xaaa4 0x2d0f 

435 0xb31d 0x1349 0x55f4 0x5413 0xf3b4 0x06fe 

436 0x032d 0x2027 0x0a49 0x2ecd 0xf41d 0x56b9 

437 0x22f8 0x9f48 0xfd4e 0x3a19 0xf6c2 0xeb04 

438 0x20d6 0xeac1 0xfeee 0xfd7e 0xff6f 0x030a 

439 0xe633 0x1c5a 0x512c 0xa42d 0xb73f 0x58fe 

440 0xa690 0x9c70 0x2724 0xf9b2 0x05e4 0xfa8f 

441 0x1db7 0x0197 0x9f9a 0xbfff 0xf8f4 0xeda5 

442 0xd6a0 0xb53d 0x28de 0xf15d 0x2211 0xe4f9 

443 0x32d2 0x14ac 0xe7aa 0xecec 0xae58 0xf8fb 

444 0x41fb 0xca36 0xfe2f 0x4b8f 0xd60b 0xcd61 

445 0x6269 0xc631 0xe9cf 0xfdf7 0xfebf 0xfb45 

446 0x1b05 0xf3eb 0x4ed7 0x96e9 0xd106 0x050f 

447 0x0131 0x07c8 0x4c01 0xfc27 0x0019 0xfdf7 
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index val[index][0] 
(16-bit two’s 
complement) 

val[index][1] 
(16-bit two’s 
complement) 

val[index][2]
(16-bit two’s 
complement) 

val[index][3]
(16-bit two’s 
complement) 

val[index][4] 
(16-bit two’s 
complement) 

val[index][5]
(16-bit two’s 
complement) 

448 0x1a33 0xf18e 0x20ad 0xde11 0x55a1 0x95e2 

449 0x123c 0x176d 0x1bcd 0x2db0 0x5f51 0xd5d6 

450 0x02e8 0xdb38 0x4db5 0x07ab 0x1ef2 0xd9a0 

451 0x0d66 0x5322 0xf938 0x2a5c 0x2275 0x6987 

452 0xdd93 0x05f1 0xa21a 0x0673 0x1e9e 0xfb48 

453 0x0f47 0xd42b 0x0cc9 0xcf03 0x1c00 0x47e2 

454 0x548a 0x239d 0xd2f0 0xeb78 0x1ba5 0x094e 

455 0x0064 0x0ee9 0xe5c7 0x04dc 0x05ee 0xfebf 

456 0x1f0a 0xb712 0x29ab 0xecfe 0x02d7 0x0308 

457 0xc1f5 0xe02a 0xf7d9 0x58d3 0x061f 0xf266 

458 0x111c 0xf551 0x2115 0xe48f 0xd360 0x0525 

459 0x695a 0x1129 0x1df1 0x4499 0xfd36 0x028a 

460 0xc0c1 0xfcbd 0x20ad 0x0703 0xc816 0x3fa9 

461 0x1198 0xd8c0 0x1dee 0x97be 0xbbec 0x0a14 

462 0x0030 0xf070 0x0234 0xe911 0x0a62 0xb71e 

463 0x3123 0x9a60 0xc2e6 0x0a70 0xfabd 0xfc89 

464 0xecaa 0x1070 0xe565 0x0a09 0xaf73 0xde2e 

465 0xf8d4 0xc61e 0xea3d 0xa4e6 0xc630 0x650b 

466 0x153a 0x9215 0xf6cb 0xf4bd 0xfdc6 0x097f 

467 0x3328 0xf52d 0x61a2 0xcf30 0x9f6d 0xfbff 

468 0xe9d4 0xef0d 0x0774 0x48c4 0xacb5 0x43d6 

469 0x6c0c 0x9307 0xc3cf 0x059c 0xe438 0xf73f 

470 0x1f53 0x0f07 0x5ff8 0xfe2b 0x25ca 0x29bb 

471 0xfc79 0xd85b 0x0709 0xacf4 0x12bb 0xddd1 

472 0x0462 0xda92 0x0a41 0x5907 0x03bc 0x0372 

473 0x1ec4 0x4a83 0xd954 0xa136 0x1d48 0x243d 

474 0x03d4 0x9774 0xeaf6 0x1514 0x043e 0x0670 

475 0x70a6 0xfb0a 0xfe41 0x0005 0xfe53 0xffec 

476 0xc44d 0x17f4 0x591c 0x04e4 0xd915 0x01ff 

477 0x0353 0x1ef5 0xfe37 0xd04e 0x10a5 0x1d9b 

478 0xee4e 0x2104 0xfb22 0x38a5 0x9e89 0xe980 

479 0xba6a 0xd619 0x269f 0xa287 0xcb88 0x0756 

480 0xc537 0x27b5 0x406b 0xc6f5 0xd240 0xad5c 

481 0xf30b 0x0348 0xe9cd 0x578d 0x07ca 0x024a 

482 0x5a76 0xe964 0xc53d 0xd77c 0xdbc9 0xcb2d 

483 0xfcfb 0xdadb 0xf067 0xa138 0x210f 0x16ac 

484 0xde9f 0xfd41 0xcf68 0xf06f 0x9dde 0x920d 

485 0xbeed 0x3e81 0x0aba 0x064b 0x13e9 0xfbed 

486 0x0029 0xe3f3 0x4dbf 0x7b43 0x8213 0x3667 

487 0xe9e6 0x034d 0xce1a 0x1649 0x4137 0xffaa 

488 0x14a2 0x3a1b 0x6992 0x5284 0x3da0 0xd713 

489 0x3978 0x4cc0 0xd321 0xcbcf 0xb11c 0xc483 

490 0x2195 0xdc4e 0xfd8e 0x2a8b 0xe881 0x18ca 

491 0xfa30 0xfb08 0xfa39 0xfae9 0xf188 0xea93 

492 0xf2d6 0x45cf 0xe634 0x6162 0x651e 0xf3c9 
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index val[index][0] 
(16-bit two’s 
complement) 

val[index][1] 
(16-bit two’s 
complement) 

val[index][2]
(16-bit two’s 
complement) 

val[index][3]
(16-bit two’s 
complement) 

val[index][4] 
(16-bit two’s 
complement) 

val[index][5]
(16-bit two’s 
complement) 

493 0x20e0 0x6c87 0xfa97 0x14e6 0xef5c 0x4e19 

494 0x1638 0x016a 0x435e 0x0ee1 0xf352 0x0440 

495 0xff97 0x8c59 0x0abb 0x3b77 0xff59 0x0e8a 

496 0x0dae 0xf385 0x219a 0x1e5c 0xf9e2 0xfc6d 

497 0xfe15 0x0cb9 0xf689 0x1592 0x507e 0xff9c 

498 0xc984 0xd398 0xc3f1 0xaa96 0xdeb8 0x2fbd 

499 0xfd98 0x0978 0xf819 0x112e 0xf123 0x1fac 

500 0xe3dc 0x5233 0x52db 0xdb4d 0xb441 0x0380 

501 0xe997 0xc4c8 0xacce 0x42aa 0xfc12 0xfe92 

502 0x1875 0x0ca8 0xd15f 0xc0ab 0xc234 0x19b5 

503 0xf3ad 0x60dc 0x0aad 0xfb17 0xfc95 0xf9c3 

504 0xb00b 0x2b56 0x5e07 0xdce5 0x3738 0x08ac 

505 0xc8e6 0x2eb7 0xa821 0x1027 0xfbe1 0xead4 

506 0x0321 0xf5a1 0x003c 0xeb34 0xfcea 0x1731 

507 0xe334 0xf91c 0xa85f 0x9a34 0x54cb 0x1052 

508 0xe9ad 0xe608 0xc5c4 0x052d 0xa214 0x05d5 

509 0xe878 0xcf38 0x5d7a 0x0b86 0x0641 0x0495 

510 0x4a7b 0x44de 0x4609 0xd662 0x2ab0 0xeca2 

511 0x0c9f 0xf32c 0x6ac8 0x104e 0xf96d 0x01f1 

 



ATSC A/52:2012 A/52 Annex F 17 December 2012 

 258

Annex F:  
AC-3 and Enhanced AC-3 bit streams in the ISO Base Media File 

Format 

Note: Storage of AC-3 and E-AC-3 bit streams in the ISO Base Media File Format is defined in 
ETSI TS 102 366 [9] Annex F. 
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Annex G:  
Enhanced AC-3 Elementary Streams in the MPEG-2 Multiplex 

(Normative) 

1. SCOPE 

This Annex contains certain syntax and semantics needed to enable the transport of one or more 
Enhanced AC-3 (“E-AC-3”) elementary streams in an MPEG 2 Transport Stream per ISO/IEC 
13818-1 [1]. 

2. GENERIC IDENTIFICATION OF AN E-AC-3 STREAM 

The selection of the method to identify an E-AC-3 stream in the multiplex is the responsibility of 
those defining how to construct the multiplex.  

For System A, this section extends the use of the AC-3 Registration Descriptor defined in 
Section A3 in combination with the E-AC-3 stream_type value defined below.  

For other systems, when the MPEG-2 Registration Descriptor is used to provide the 
identification, the format_identifier in that Registration Descriptor shall be 0x4541 4333 
(“EAC3”). For other systems that do not use the MPEG-2 Registration Descriptor, other 
identification means shall be defined. 

3. DETAILED SPECIFICATION 

This section establishes constraints and identifying parameter values. Note that ATSC uses an 
assigned value for stream_type (see Section G3.1 below) rather than an MPEG-2 Registration 
Descriptor. This standard does not preclude definition of other methods of stream identification 
by other standards development organizations. 

3.1 Stream Type 

E-AC-3 bit streams shall be identified with a stream_type value of 0x87 when transmitted as PES 
streams conforming to ATSC-published standards. Note that other standards development 
organizations may choose other stream_type values; (e.g., DVB, as documented in ETSI TS 101 
154 [9], chose 0x06). 

3.2 Stream Identification 

The value of stream_id in the PES header per ISO/IEC 13818-1 [1] shall be 0xBD (indicating 
private_stream_1). Multiple E-AC-3 streams may share the same value of stream_id since each 
stream is carried within TS packets identified by a unique PID value within that TS. The PID value 
and associated stream_type for each stream is found in the program map table (PMT). If two 
streams identified by separate PIDs are to be mixed, then flag values are set in the E-AC-3 
descriptors for both streams to define the relationship between the two streams (see Section 
G3.5).  

3.3 E-AC-3 Audio PES Constraints (System A) 

Each PES packet payload shall contain all the data needed by the E-AC-3 decoder to produce 
1,536 samples of decoded audio for each audio channel present in the bitstream – defined as an 
E-AC-3 Access Unit. Therefore six blocks of audio data from every substream present in the E-
AC-3 stream shall be included in the PES packet payload. As an E-AC-3 syncframe may contain 
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fewer than six blocks of audio data, it may be necessary to group multiple syncframes to 
accumulate the required six blocks. 

The following requirements and constraints shall be met when placing the E-AC-3 
syncframes within the PES packet payload: 

• Within the PES, E-AC-3 syncframe bytes shall be placed in big-endian format (first byte 
is 0x0B). 

The E-AC-3 stream shall be byte-aligned within the MPEG-2 PES packet payload. 
Therefore, the initial 8 bits of an E-AC-3 syncframe shall reside in a single byte, placed at the 
start of the PES packet payload. 

The first syncframe in the PES packet payload shall be the syncframe which has a strmtyp 
value of 0 (independent) and a substreamid value of 0. 

Syncframes shall be assembled in the same sequence in the PES packet payload as they occur 
in the E-AC-3 stream. 

For streams that consist of syncframes containing fewer than 6 blocks of audio, the first 
syncframe of the PES packet payload shall be the syncframe which has a strmtyp value of 0 
(independent), a substreamid value of 0, and has the convsync flag set to ‘1’.  

An E-AC-3 Access Unit shall not span multiple PES packet payloads.  
Multiple, complete E-AC-3 Access Units may be placed within a single PES packet payload, 

but fragmentation of E-AC-3 Access Units within a payload, or across multiple payloads, is not 
permitted.  

These constraints ensure the correct operation of a downstream E-AC-3 decoding device, 
particularly when this device is capable of converting the E-AC-3 stream to AC-3. This 
conversion requires the correct set of six blocks of audio data to produce an AC-3 syncframe. 
Figure G.1 shows the construction of the PES packet payload contents, including three examples 
of how E-AC-3 data within the PES packet payload is structured for bitstreams with different 
configurations. 
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Figure G.1 E-AC-3 syncframes within the PES packet payload. 

3.4 E-AC-3 Audio PES Constraints for Dual-Decoding 

3.4.1 Encoding 

The audio decoder may be capable of simultaneously decoding two elementary streams 
containing different program elements, and then combining the program elements into a 
complete program. 

Most of the program elements are found in the main audio service. Another program element 
(such as a narration of the picture content intended for the visually impaired listener) may be 
found in the associated audio service. 

In order to have the audio from the two elementary streams reproduced in exact sample 
synchronism, it is necessary for the original audio elementary stream encoders to have encoded 
the two audio services frame synchronously; i.e., if audio stream 1 has sample 0 of frame n taken 
at time t0, then audio stream 2 should also have frame n beginning with its sample 0 taken the 
identical time t0. If the encoding of multiple audio services is done frame and sample 
synchronous, and decoding is intended to be frame and sample synchronous, then the PES 
packets of these audio services shall contain identical values of PTS which refer to the audio 
access units intended for synchronous decoding. 
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Audio services intended to be combined together for reproduction shall be encoded at an 
identical sample rate. 

3.4.2 Decoding 

If audio access units from two audio services which are to be simultaneously decoded have 
values of PTS within 4 PTS clock periods (equivalent to 45 microseconds) indicated in their 
corresponding PES headers, then the corresponding audio access units shall be presented to the 
audio decoder for simultaneous synchronous decoding. Synchronous decoding means that for 
corresponding audio frames (access units), corresponding audio samples are presented to the 
listener at the same time. 

If the PTS values do not match (indicating that the audio encoding was not frame 
synchronous) then the audio frames (access units) of the main audio service may be presented to 
the audio decoder for decoding and presentation at the time indicated by the PTS. An associated 
service which is being simultaneously decoded may have its audio frames (access units), which 
are in closest time alignment (as indicated by the PTS) to those of the main service being 
decoded, presented to the audio decoder for simultaneous decoding. In this case the associated 
service may be reproduced out of sync by as much as 1/2 of a frame time. (This is typically 
satisfactory; a visually impaired narration does not require highly precise timing.) 

3.5 E-AC-3 Audio Descriptor 

When an E-AC-3 audio bit stream is present in an ATSC digital television transport stream, an 
E-AC-3 Audio Descriptor (E-AC-3_audio_stream_descriptor()) shall be included in the descriptor loop 
immediately following the ES_info_length field in the TS_program_map_section() describing that 
Elementary Stream. The syntax shall be as given in Table G.1. The descriptor has a minimum 
length of two bytes, but may be longer depending upon the state of the flags and the additional 
info loop. Note that horizontal lines in the table indicate allowable termination points for the 
descriptor. 

Table G.1 E-AC-3 Audio Descriptor Syntax 

Syntax No. of Bits Format 

E-AC-3_audio_descriptor(){   

 descriptor_tag 8 uimsbf 

 descriptor_length 8 uimsbf 

 reserved 1 ‘1’ 

 bsid_flag 1 bslbf 

 mainid_flag 1 bslbf 

 asvc_flag 1 bslbf 

 mixinfoexists 1 bslbf 

 substream1_flag 1 bslbf 

 substream2_flag 1 bslbf 

 substream3_flag 1 bslbf 

 reserved 1 ‘1’ 

 full_service_flag 1 bslbf 

 audio_service_type 3 uimsbf 

 number_of_channels 3 uimbsf 

 language_flag 1 bslbf 

 language_flag_2 1 bslbf 
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 reserved 1 bslbf 

 if (bsid_flag == 1) {   

  bsid 5 uimsbf 

 }   

 else {   

  zero_bits 5 ‘00000’ 

 }   

 if (mainid_flag == 1) {   

  reserved 3 ‘111’ 

  priority 2 uimsbf 

  mainid 3 uimsbf 

 }   

 if (asvc_flag == 1) {   

  asvc 8 bslbf 

 }   

 if (substream1_flag == 1) {   

  substream1 8 uimsbf 

 }   

 if (substream2_flag == 1) {   

  substream2 8 uimsbf 

 }   

 if (substream3_flag == 1){   

  substream3 8 uimsbf 

 }   

 if (language_flag == 1){   

  language 3x8 uimbsf 

 }   

 if (language_2_flag == 1){   

  language_2 3x8 uimbsf 

 {   

 if (substream1_flag == 1){   

  substream1_lang 3x8 uimsbf 

 }   

 if (substream2_flag == 1){   

  substream2_lang 3x8 uimsbf 

 }   

 if (substream3_flag == 1){   

  substream3_lang 3x8 uimsbf 

 {   

 for (i=0;i<N;i++){   

  additional_info_byte nx8 uimbsf 

 }   

}   

descriptor_tag — The value assigned to the E-AC-3_audio_descriptor() tag is 0xCC. 
descriptor_length — The 8-bit descriptor_length field specifies the total number of bytes of the data 

portion of the descriptor following the byte defining the value of this field. The 
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E-AC-3_audio_descriptor() has a minimum length of two bytes but may be longer depending on 
the use of the optional flags and the additional_info_loop. 

bsid_flag — The 1-bit bsid_flag field shall be set to ‘1’ when the optional bsid field is present in the 
descriptor. 

mainid_flag — The 1-bit mainid_flag field shall be set to ‘1’ when the optional mainid field is present 
in the descriptor. 

asvc_flag — When the E-AC-3 stream consists of a single independent substream with a 
substreamid value of ‘0’, and is carrying an associated audio service that is associated with one 
or more main audio services carried in the same program, the asvc_flag shall be set to ‘1’ to 
include the asvc field in the descriptor. 

mixinfoexists — The mixinfoexists field shall be set to ‘1’ when the independent substream 0 being 
described carries an associated audio service intended to be mixed with a main audio service 
carried in another AC-3 or E-AC-3 stream, and one or more of the following conditions are 
met by the described independent substream 0: 
• The pgmscle parameter is set to ‘1’ 
• The extpgmscle parameter is set to ‘1’ 
• The mixdef parameter is set to a value greater than 0 
• The paninfoe parameter is set to ‘1’ 

Note: The mixing metadata described in Section E3.10 controls this mixing. 

substream1_flag — The substream1_flag shall be set to ‘1’ when the E-AC-3 stream contains an 
additional associated audio service that is carried in independent substream 1 and that is 
encoded to enable and control mixing with the main audio service that is carried in 
independent substream 0 and in any dependent substreams associated with independent 
substream 0. If an independent substream with a substreamid value of ‘1’ is not present in the 
bitstream, this flag shall be set to ‘0’. 

substream2_flag — The substream2_flag shall be set to ‘1’ when the E-AC-3 stream contains an 
additional associated audio service that is carried in independent substream 2 and that is 
encoded to enable and control mixing with the main audio service that is carried in 
independent substream 0 and in any dependent substreams associated with independent 
substream 0. If an independent substream with a substreamid value of ‘2’ is not present in the 
bitstream, this flag shall be set to ‘0’. 

substream3_flag — The substream3_flag shall be set to ‘1’ when the E-AC-3 stream contains an 
additional associated audio service that is carried in independent substream 3 and that is 
encoded to enable and control mixing with the main audio service that is carried in 
independent substream 0 and in any dependent substreams associated with independent 
substream 0. If an independent substream with a substreamid value of ‘3’ is not present in the 
bitstream, this flag shall be set to ‘0’. 

full_service_flag — The 1-bit full_service_flag indicates whether or not the audio service carried in 
independent substream 0 (and any dependent substreams associated with independent 
substream 0) of the E-AC-3 stream is a full service suitable for presentation, or whether this 
audio service is only a partial service which should be combined with another audio service 
before presentation. The full_service_flag shall be set to a ‘1’ if the audio service is sufficiently 
complete to be presented to the listener without being combined with another audio service 
(for example, a visually impaired service which contains all elements of the program; music, 
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effects, dialogue, and the visual content descriptive narrative). The full_service_flag should be 
set to a ‘0’ if the service is not sufficiently complete to be presented without being combined 
with another audio service (e.g., a visually impaired service which only contains a narrative 
description of the visual program content and which needs to be combined with another 
audio service which contains music, effects, and dialogue). 

audio_service_type — The 3-bit audio_service_type field indicates the type of audio service being 
conveyed in independent substream 0 (and any dependent substreams associated with 
independent substream 0) of the E-AC-3 stream. The audio_service_type field shall be 
interpreted as shown in Table G.2. 

Table G.2 audio_service_type field 

audio service type field values Description Restrictions (See note 1) 

full service flag number of channels field

000 Complete Main (CM) must be set to ‘1’  

001 Music and Effects (ME) must be set to ‘0’  

010 Visually Impaired (VI)   

011 Hearing Impaired (HI)   

100 Dialogue (D) must be set to ‘0’  

101 Commentary (C)  must be set to ‘000’ 

110 Emergency (E) must be set to ‘1’ must be set to ‘000’ 

111 Voiceover (VO) must be set to ‘0’ must be set to ‘000’ 

111 Karaoke must be set to ‘1’ must be set to ‘010’, ‘011’ or ‘100’ 

Note 1: The values of the audio service type field shall only be considered valid if the conditions identified in the 
“Restrictions” columns are satisfied.  

number_of_channels — The 3-bit number_of_channels field indicates the number of channels present 
in independent substream 0 (and any dependent substreams associated with independent 
substream 0) of the E-AC-3 stream. The number_of_channels field shall be interpreted as shown 
in Table G.3 
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Table G.3 number_of_channels field 

number of channels field 
values 

Description Restrictions (See note 2)

full service flag audio service type 
field 

000 Mono   

001 1+1 Mode   

010 2-channel (stereo) (see note 3)   

011 2-channel Dolby Surround encoded (stereo) 
(see note 3) 

  

100 Multichannel audio (> 2 channels; <= 3/2 + 
LFE channels) 

  

101 Multichannel audio (> 3/2 + LFE channels) Must be set to 
‘1’  

Must be set to ‘000’  

110 reserved for future use   

111 reserved for future use   

Note 2: The values of the number of channels field shall only be considered valid if the conditions identified in the 
“Restrictions” column are satisfied. 
Note 3: For 2-channel E-AC-3 streams, the number of channels field should be set to ‘011’ when the dsurmod 
parameter is set to ‘011’ (Dolby Surround-encoded), and should be set to ‘010’ if the dsurmod parameter is set to 
any other value, or is not present.  

language_flag – This is a 1-bit flag that indicates whether or not the 3-byte language field is present 
in the descriptor. If this bit is set to ‘1’, then the 3-byte language field is present. If this bit is 
set to ‘0’, then the language field is not present.  

language_flag_2 – This is a 1-bit flag that indicates whether or not the 3-byte language_2 field is 
present in the descriptor. If this bit is set to ‘1’, then the 3-byte language_2 field is present. If 
this bit is set to ‘0’, then the language_2 field is not present. This bit shall always be set to ‘0’ 
unless the E-AC-3 stream audio coding mode is 1+1 (dual mono) and the number of channels 
field is set to ‘001’, indicating the audio coding mode is 1+1 (dual mono), in which case this 
bit may be set to ‘1’. 

bsid — The 5-bit bsid field indicates the E-AC-3 coding version. If the bsid field is included, the 
value of the field is to be set to the same value as the bsid parameter in independent substream 
0 of the E-AC-3 stream, ‘10000’ (= 16) in the current version of E-AC-3. 

priority — This is a 2-bit field that indicates the priority of the audio service that is carried in 
independent substream 0 (with or without any associated dependent substreams). This field 
allows an audio service to be marked as the primary audio service. Table A4.6 defines the 
values for this field when present. 

mainid — The 3-bit mainid field contains a number in the range 0 to 7 which identifies a main 
audio service. For programs that contain multiple E-AC-3 streams, each carrying a main or 
associated audio service, the mainid field shall be included, and each main service in the 
program shall be tagged with a unique number. This value is used as an identifier to link 
associated services with particular main services. 

asvc — The 8-bit asvc field is optional, but shall be included if the E-AC-3 stream consists of a 
single independent substream with a substream ID of 0, and is carrying an associated audio 
service that is associated with one or more main audio services carried in the same program. 
Each bit (0 to 7) identifies with which main service(s) this associated service is associated. 
For example, to associate an associated audio service with a main audio service that has a 
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mainid value of 0, the value of the asvc field is set to ‘00000001’ (0x01). To associate an 
associated audio service with main audio service that has a mainid value of ‘3’, the value of 
the asvc field is set to ‘00001000’ (0x08). 

substream1 — The 8-bit substream1 field indicates the type of audio carried in independent 
substream 1 of the E-AC-3 stream. The value assignments of each bit are indicated in Table 
G.4. The substream1 field shall be included if the E-AC-3 stream contains an independent 
substream with a substreamid value of ‘1’. 

substream2 — This 8-bit substream2 field indicates the type of audio carried in independent 
substream 2 of the E-AC-3 stream. The value assignments of each bit are indicated in Table 
G.4. The substream2 field shall be included if the E-AC-3 stream contains an independent 
substream with a substreamid value of ‘2’. 

substream3 — This 8-bit substream3 field indicates the type of audio carried in independent 
substream 3 of the E-AC-3 stream. The value assignments of each bit are indicated in Table 
G.4. The substream3 field shall be included if the E-AC-3 stream contains an independent 
substream with a substreamid value of ‘3’. 

Table G.4 substream1-3 Field Bit Value Assignments 

substream1-3 bits Description

b7 (MSB) reserved (shall be set to ‘1’) 

b6 substream_priority 

b5 to b3 audio service type flags (see Table G.5) 

b2 to b0 number of channels flags (see Table G.6) 

substream_priority – The substream_priority flag is used to indicate that one associated audio service 
carried in an independent substream with a non-zero substreamid value has the highest 
decoding priority when the value of substream_priority is set to ‘1’. It is used when the E-AC-3 
stream contains two or more independent substreams with non-zero substreamid values, and 
the associated audio services carried by these independent substreams are of the same audio 
service type and language. The value of substream_priority set to ‘0’ means “not highest” when 
another substream is identified by having a substream_priority flag set to ‘1’, otherwise it means 
not specified. 
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Table G.5 substream1-3 Audio Service Type Flags 

audio service type flags bit values Description Restrictions (See note 1)

b5 b4 b3 

0 0 0 reserved  

0 0 1 Music and Effects (ME)  

0 1 0 Visually Impaired (VI)  

0 1 1 Hearing Impaired (HI)  

1 0 0 Dialogue (D)  

1 0 1 Commentary (C) must be set to ‘000’ 

1 1 0 reserved  

1 1 1 Voiceover (VO) must be set to ‘000’ 

Note 1: The values of the audio service type flags bit values shall only be considered valid if the conditions 
identified in the “Restrictions” column are satisfied.  

Table G.6 substream1-3 Number of Channels Flags 

number of channels flags Description

b2 b1 b0 

0 0 0 Mono 

0 0 1 reserved for future use 

0 1 0 2 channel (stereo) (see note 4) 

0 1 1 2 channel Dolby Surround encoded (stereo) (see note 4) 

1 0 0 Multichannel audio (> 2 channels; <= 3/2 + LFE channels) 

1 0 1 reserved for future use 

1 1 0 reserved for future use 

1 1 1 reserved for future use 

Note 4: For 2-channel substreams, the number of channels field should be set to 011 when the dsurmod parameter 
is set to ‘011’ (Dolby Surround-encoded), and should be set to 010 if dsurmod is set to any other value, or is not 
present. 

language – This field is a 3-byte language code per ISO 639-2/B [1] defining the language of this 
audio service. If the E-AC-3 stream audio coding mode is 1+1 (dual mono), this field 
indicates the language of the first channel (channel 1, or "left" channel). The language field 
shall contain a three-character code as specified by ISO 639-2/B [1]. Each character is coded 
into 8 bits according to ISO 8859-1 (ISO Latin-1) [3] and inserted in order into the 24-bit 
field2. The coding is identical to that used in the MPEG-2 ISO_639_language_code value in the 
ISO_639_language_descriptor specified in ISO/IEC 13818-1 [1]. 

Note: In the event that there is a single Main service that alternates between 
different languages, the ISO 639 Language descriptor may be used to 
communicate that additional information. 

language_2 – This field is only present if the E-AC-3 stream audio coding mode is 1+1 (dual 
mono). This field is a 3-byte language code per ISO 639-2/B [1] defining the language of the 
second channel (channel 2, or "right" channel) in the E-AC-3 bit stream. The language_2 field 
shall contain a three-character code as specified by ISO 639-2/B [1]. Each character is coded 
into 8 bits according to ISO 8859-1 (ISO Latin-1) [3] and inserted in order into the 24-bit 
field. The coding is identical to that used in the MPEG-2 ISO_639_language_code value in the 
ISO_639_language_descriptor specified in ISO/IEC 13818-1 [1]. 
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substream1_lang – This field is a 3-byte language code per ISO 639-2/B [1] defining the language 
of the audio service carried in independent substream 1. If the language of the audio service 
carried in independent substream 1 is different from the language of the audio service carried 
in independent substream 0, the substream1_lang field shall contain a three-character code as 
specified by ISO 639-2/B [1]. Each character is coded into 8 bits according to ISO 8859-1 
(ISO Latin-1) [3] and inserted in order into the 24-bit field. The coding is identical to that 
used in the MPEG-2 ISO_639_language_code value in the ISO_639_language_descriptor specified in 
ISO/IEC 13818-1 [1]. 

substream2_lang – This field is a 3-byte language code per ISO 639-2/B [1] defining the language 
of the audio service carried in independent substream 2. If the language of the audio service 
carried in independent substream 2 is different from the language of the audio service carried 
in independent substream 0, the substream2_lang field shall contain a three-character code as 
specified by ISO 639-2/B [1]. Each character is coded into 8 bits according to ISO 8859-1 
(ISO Latin-1) [3] and inserted in order into the 24-bit field. The coding is identical to that 
used in the MPEG-2 ISO_639_language_code value in the ISO_639_language_descriptor specified in 
ISO/IEC 13818-1. 

substream3_lang – This field is a 3-byte language code per ISO 639-2/B [1] defining the language 
of the audio service carried in independent substream 3. If the language of the audio service 
carried in independent substream 3 is different from the language of the audio service carried 
in independent substream 0, the substream3_lang field shall contain a three-character code as 
specified by ISO 639-2/B [1]. Each character is coded into 8 bits according to ISO 8859-1 
(ISO Latin-1) [3] and inserted in order into the 24-bit field. The coding is identical to that 
used in the MPEG-2 ISO_639_language_code value in the ISO_639_language_descriptor specified in 
ISO/IEC 13818-1 [1]. 

additional_info_byte — These optional bytes are reserved for future use. 

3.6 STD Audio Buffer Size  

3.6.1 ATSC 

When an E-AC-3 stream is carried by an MPEG-2 transport stream that conforms to ATSC-
published standards, the transport stream shall be compliant with the audio buffer size of: 

BSn = BSmux + BSpad + BSdec 

where: 
BSmux = 736 bytes 

BSpad = 64 bytes 

BSdec = 12096 bytes 

The value of BSdec employed shall be that of the highest bit rate supported by the system (i.e. 
the buffer size is not decreased when the audio bit rate is less than the maximum value allowed 
by a specific system). In this case the value is equal to the size in bytes of 1536 samples of 
E-AC-3 audio at a data rate of 3,024 kbit/s. The 64 bytes in BSpad are available for BSoh and 
additional multiplexing. This constraint makes it possible to implement decoders with the 
minimum possible memory buffer. 
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3.6.2 Other Systems 

The T-STD for E-AC-3 streams carried in an MPEG-2 Transport Stream that conforms to 
System B is defined in ETSI TS 101 154 [9]. 
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