

THE ECONOMICS

OF SOFTWARE MAINTENANCE
IN THE TWENTY FIRST CENTURY

Version 3 – February 14, 2006

Abstract

All large companies utilize software in significant amounts. Some companies exceed
1,000,000 function points in the total volume of their corporate software portfolios.
Much of this software is now more than 10 years old, and some applications are more
than 25 years old. Maintenance of aging software tends to become more difficult year by
year since updates gradually destroy the original structure of the applications.

Starting at the end of the twentieth century a series of enormous maintenance problems
began to occur. The first of these problems consisted of the software updates necessary to
support the unified European currency or Euro. The second problem consisted of the
software updates to repair or and minimize the impact of the Year 2000 software bug in
existing portfolios. Two similar problems that will occur later in the century will be the
need to add digits to U.S. telephone numbers and to add digits to social security numbers.

The resources devoted to the Euro and Y2K problems caused delays in many other
projects. Mass-update and other maintenance projects will potentially absorb almost 70%
of the world’s software professionals during much of the 21st century. Mass update
software projects can top five trillion dollars in overall costs before the middle of the
twenty first century. It is obvious that better maintenance tools and technologies are an
urgent global priority.

Capers Jones, Chief Scientist Emeritus
Software Productivity Research, Inc.

Email CJones@SPR.com
Web http://www.spr.com

Copyright � 1998 - 2006 by Capers Jones.
All Rights Reserved.

2

THE ECONOMICS OF SOFTWARE MAINTENANCE
IN THE TWENTY-FIRST CENTURY

INTRODUCTION

As the twenty-first century advances more than 50% of the global software population is
engaged in modifying existing applications rather than writing new applications. This
fact by itself should not be a surprise, because whenever an industry has more than 50
years of product experience the personnel who repair existing products tend to outnumber
the personnel who build new products. For example there are more automobile
mechanics in the United States who repair automobiles than there are personnel employed
in building new automobiles.

At the end of the twentieth century software maintenance grew rapidly during 1997-2000
under the impact of two “mass updates” that between them are required modifications to
about 85% of the world’s supply of existing software applications.

The first of these mass updates was the set of changes needed to support the new unified
European currency or Euro that rolled out in January of 1999. About 10% of the total
volume of world software needed to be updated in support of the Euro. However in the
European Monetary Union, at least 50% of the information systems required modification
in support of the Euro.

The second mass-update to software applications was the “Y2K” or year 2000 problem.
This widely discussed problem was caused by the use of only two digits for storing
calendar dates. Thus the year 1998 would have been stored as 98. When the century
ended, the use of 00 for the year 2000 would violate normal sorting rules and hence cause
many software applications to fail or to produce incorrect results unless updated.

The year 2000 problem affected as many as 75% of the installed software applications
operating throughout the world. Unlike the Euro, the year 2000 problem also affected
some embedded computers inside physical devices such as medical instruments,
telephone switching systems, oil wells, and electric generating plants.

Although these two problems were taken care of, the work required for handling them
triggered delays in other kinds of software projects and hence made software backlogs
larger than normal.

Under the double impact of the Euro conversion work and year 2000 repair work it is
appeared that more than 65% of the world’s professional software engineering population
was engaged in various maintenance and enhancement activities during 1999 and 2000.

Although the Euro and the Y2K problem are behind us, they are not the only mass-update
problems that we will face. For example it may be necessary to add one or more digits to

3

U.S. telephone numbers by about the year 2015. The UNIX calendar expires in the year
2038 and could troublesome like the year 2000 problem. Even larger, it may be necessary
to add at least one digit to U.S. social security numbers by about the year 2050.

The imbalance between software development and maintenance is opening up new
business opportunities for software outsourcing groups. It is also generating a significant
burst of research into tools and methods for improving software maintenance
performance.

What is Software Maintenance?

The word “maintenance” is surprisingly ambiguous in a software context. In normal
usage it can span some 21 forms of modification to existing applications. The two most
common meanings of the word maintenance include: 1) Defect repairs; 2) Enhancements
or adding new features to existing software applications.

Although software enhancements and software maintenance in the sense of defect repairs
are usually funded in different ways and have quite different sets of activity patterns
associated with them, many companies lump these disparate software activities together
for budgets and cost estimates.

The author does not recommend the practice of aggregating defect repairs and
enhancements, but this practice is very common. Consider some of the basic differences
between enhancements or adding new features to applications and maintenance or defect
repairs as shown in table 1:

Table 1: Key Differences Between Maintenance and Enhancements

 Enhancements Maintenance
 (New features) (Defect repairs)

Funding source Clients Absorbed
Requirements Formal None
Specifications Formal None
Inspections Formal None
User documentation Formal None
New function testing Formal None
Regression testing Formal Minimal

Because the general topic of “maintenance” is so complicated and includes so many
different kinds of work, some companies merely lump all forms of maintenance together
and use gross metrics such as the overall percentage of annual software budgets devoted
to all forms of maintenance summed together.

4

This method is crude, but can convey useful information. Organizations which are
proactive in using geriatric tools and services can spend less than 30% of their annual
software budgets on various forms of maintenance, while organizations that have not
used any of the geriatric tools and services can top 60% of their annual budgets on
various forms of maintenance.

Although the use of the word “maintenance” as a blanket term for more than 20 kinds of
update activity is not very precise, it is useful for overall studies of national software
populations. Table 2 shows the estimated U.S. software population for the United States
between 1950 and 2025 divided into “development” and “maintenance” segments.

In this table the term “development” implies creating brand new applications or adding
major new features to existing applications. The term “maintenance” implies fixing bugs
or errors, mass updates such as the Euro and Year 2000, statutory or mandatory changes
such as rate changes, and minor augmentation such as adding features that require less
than a week of effort.

Table 2: U.S. Software Populations in Development and Maintenance

Year Development Maintenance Total Maintenance

 Personnel Personnel Personnel Percent

1950 1,000 100 1,100 9.09%
1955 2,500 250 2,750 9.09%
1960 20,000 2,000 22,000 9.09%
1965 50,000 10,000 60,000 16.67%
1970 125,000 25,000 150,000 16.67%
1975 350,000 75,000 425,000 17.65%
1980 600,000 300,000 900,000 33.33%
1985 750,000 500,000 1,250,000 40.00%
1990 900,000 800,000 1,700,000 47.06%
1995 1,000,000 1,100,000 2,100,000 52.38%
2000 750,000 2,000,000 2,750,000 72.73%
2005 775,000 2,500,000 3,275,000 76.34%
2010 800,000 3,000,000 3,800,000 78.95%
2015 1,000,000 3,500,000 4,500,000 77.78%
2020 1,100,000 3,750,000 4,850,000 77.32%
2025 1,250,000 4,250,000 5,500,000 77.27%

Notice that under the double impact of the Euro and the Year 2000 so many development
projects were delayed or cancelled so that the population of software developers in the
United States actually shrank below the peak year of 1995. The burst of mass update
maintenance work is one of the main reasons why there is such a large shortage of
software personnel.

As can be seen from table 2, the work of fixing errors and dealing with mass updates to
aging legacy applications has become the dominant form of software engineering. This

5

tendency will continue indefinitely so long as maintenance work remains labor-intensive.

Before proceeding, let us consider 21 discrete topics that are often coupled together under
the generic term “maintenance” in day to day discussions, but which are actually quite
different in many important respects:

Table 3: Major Kinds of Work Performed Under the Gener ic Term “ Maintenance”

1. Major Enhancements (new features of > 20 function points)
2. Minor Enhancements (new features of < 5 function points)
3. Maintenance (repairing defects for good will)
4. Warranty repairs (repairing defects under formal contract)
5. Customer support (responding to client phone calls or problem reports)
6. Error-prone module removal (eliminating very troublesome code segments)
7. Mandatory changes (required or statutory changes)
8. Complexity analysis (quantifying control flow using complexity metrics)
9. Code restructuring (reducing cyclomatic and essential complexity)
10. Optimization (increasing performance or throughput)
11. Migration (moving software from one platform to another)
12. Conversion (Changing the interface or file structure)
13. Reverse engineering (extracting latent design information from code)
14. Reengineering (transforming legacy application to client-server form)
15. Dead code removal (removing segments no longer utilized)
16. Dormant application elimination (archiving unused software)
17. Nationalization (modifying software for international use)
18. Year 2000 Repairs (date format expansion or masking)
19. Euro-currency conversion (adding the new unified currency to financial applications)
20. Retirement (withdrawing an application from active service)
21. Field service (sending maintenance members to client locations)

Although the 21 maintenance topics are different in many respects, they all have one
common feature that makes a group discussion possible: They all involve modifying an
existing application rather than starting from scratch with a new application.

Although the 21 forms of modifying existing applications have different reasons for being
carried out, it often happens that several of them take place concurrently. For example,
enhancements and defect repairs are very common in the same release of an evolving
application. There are also common sequences or patterns to these modification
activities. For example, reverse engineering often precedes reengineering and the two
occur so often together as to almost comprise a linked set. For releases of large
applications and major systems, the author has observed from six to 10 forms of
maintenance all leading up to the same release!

6

Nominal Default Values for Maintenance and Enhancement Activities

The nominal default values for exploring these 21 kinds of maintenance are shown in
table 4. However, each of the 21 has a very wide range of variability and reacts to a
number of different technical factors, and also to the experience levels of the maintenance
personnel. Let us consider some generic default estimating values for these various
maintenance tasks using two useful metrics: “assignment scopes” and “production rates.”

The term “assignment scope” refers to the amount of software one programmer can keep
operational in the normal course of a year, assuming routine defect repairs and minor
updates. Assignment scopes are usually expressed in terms of function points and the
observed range is from less than 300 function points to more than 5,000 function points.

The term “production rate” refers to the number of units that can be handled in a standard
time period such as a work month, work week, day, or hour. Production rates are usually
expressed in terms of either “ function points per staff month” or the similar and
reciprocal metric, “work hours per function point.”

We will also include “Lines of code per staff month” with the caveat that the results are
merely based on an expansion of 100 statements per function point, which is only a
generic value and should not be used for serious estimating purposes.

Table 4: Default Values for Maintenance Assignment Scopes and Production Rates

 Assignment Production Production Production
 Scopes Rates Rates Rates
 in Function (Funct. Pts. (Work Hours (LOC per
 Points per Month) per Funct. Pt.) Staff Month)

Customer support 5,000 3,000 0.04 300,000
Code restructuring 5,000 1,000 0.13 100,000
Complexity analysis 5,000 500 0.26 50,000
Reverse engineering 2,500 125 1.06 12,500
Retirement 5,000 100 1.32 10,000
Field service 10,000 100 1.32 10,000
Dead code removal 750 35 3.77 3,500
Enhancements (minor) 75 25 5.28 2,500
Reengineering 500 25 5.28 2,500
Maintenance (defect repairs) 750 25 5.28 2,500
Warranty repairs 750 20 6.60 2,000
Migration to new platform 300 18 7.33 1,800
Enhancements (major) 125 15 8.80 1,500
Nationalization 250 15 8.80 1,500
Conversion to new interface 300 15 8.80 1,500
Mandatory changes 750 15 8.80 1,500
Performance optimization 750 15 8.80 1,500
Year 2000 repairs 2,000 15 8.80 1,500

7

Euro-currency conversion 1,500 15 8.80 1,500
Error-prone module removal 300 12 11.00 1,200

Average 2,080 255 5.51 25,450

Each of these forms of modification or support activity have wide variations, but these
nominal default values at least show the ranges of possible outcomes for all of the major
activities associated with support of existing applications.

Table 5 shows some of the factors and ranges that are associated with assignment scopes,
or the amount of software that one programmer can keep running in the course of a
typical year.

In table 5 the term “experienced staff” means that the maintenance team has worked on
the applications being modified for at least six months and are quite familiar with the
available tools and methods.

The term “good structure” means that the application adheres to the basic tenets of
structured programming; has clear and adequate comments; and has cyclomatic
complexity levels that are below a value of 10.

The term “ full maintenance tools” implies the availability of most of these common
forms of maintenance tools: 1) Defect tracking and routing tools; 2) Change control
tools; 3) Complexity analysis tools; 4) Code restructuring tools; 5) Reverse engineering
tools; 6) Reengineering tools; 7) Maintenance “workbench” tools; 8) Test coverage
tools.

The term “high level language” implies a fairly modern programming language that
requires less than 50 statements to encode 1 function point. Examples of such languages
include most object-oriented languages such as Smalltalk, Eiffel, and Objective C.

By contrast “ low level languages” implies language requiring more than 100 statements
to encode 1 function point. Obviously assembly language would be in this class since it
usually takes more than 200 to 300 assembly statements per function point. Other
languages that top 100 statements per function point include many mainstream languages
such as C, Fortran, and COBOL.

In between the high-level and low-level ranges are a variety of mid-level languages that
require roughly 70 statements per function point, such as Ada83, PL/I, and Pascal.

The variations in maintenance assignment scopes are significant in understanding why so
many people are currently engaged in maintenance of aging legacy applications. If a
company owns a portfolio of 100,000 function points maintained by generalists many
more people will be required than if maintenance specialists are used. If the portfolio
consists of poorly structured code written in low-level languages then the assignment
scope might be less than 500 function points or a staff of 200 maintenance personnel.

8

If the company has used complexity analysis tools, code restructuring tools, and has a
staff of highly trained maintenance specialists then the maintenance assignment scope
might top 3,000 function points. This implies that only 33 maintenance experts are
needed, as opposed to 200 generalists. Table 5 illustrates how maintenance assignment
scopes vary in response to four different factors, when each factor switches from “worst
case” to “best case.” Table 5 assumes Version 4.1 of the International Function Point
Users Group (IFPUG) counting practices manual.

Table 5: Variations in Maintenance Assignment Scopes Based on Four Key Factors
(Data expressed in terms of function points per maintenance team member)

 Worst Average Best
 Case Case Case

Inexperienced staff 100 200 350
Poor structure
Low-level language
No maintenance tools

Inexperienced staff 150 300 500
Poor structure
High-level language
No maintenance tools

Inexperienced staff 225 400 600
Poor structure
Low-level language
Full maintenance tools

Inexperienced staff 300 500 750
Good structure
Low-level language
No maintenance tools

Experienced Staff 350 575 900
Poor structure
Low-level language
No maintenance tools

Inexperienced staff 450 650 1,100
Good structure
High-level language
No maintenance tools

Inexperienced staff 575 800 1,400
Good structure
Low-level language
Full maintenance tools

9

Experienced staff 700 1,100 1,600
Good structure
Low-level language
No maintenance tools

Inexperienced staff 900 1,400 2,100
Poor structure
High-level language
Full maintenance tools

Experienced staff 1,050 1,700 2,400
Poor structure
Low-level language
Full maintenance tools

Experienced staff 1,150 1,850 2,800
Poor structure
High-level language
No maintenance tools

Experienced staff 1,600 2,100 3,200
Good structure
High-level language
No maintenance tools

Inexperienced staff 1,800 2,400 3,750
Good structure
High-level language
Full maintenance tools

Experienced staff 2,100 2,800 4,500
Poor structure
High-level language
Full maintenance tools

Experienced staff 2,300 3,000 5,000
Good structure
Low-level language
Full maintenance tools

Experienced staff 2,600 3,500 5,500
Good structure
High-level language
Full maintenance tools

 Average 1,022 1,455 2,278

10

None of the values in table 5 are sufficiently rigorous by themselves for formal cost
estimates, but are sufficient to illustrate some of the typical trends in various kinds of
maintenance work. Obviously adjustments for team experience, complexity of the
application, programming languages, and many other local factors are needed as well.

Metr ics Problems With Small Maintenance Projects

There are several difficulties in exploring software maintenance costs with accuracy. One
of these difficulties is the fact that maintenance tasks are often assigned to development
personnel who interleave both development and maintenance as the need arises. This
practice makes it difficult to distinguish maintenance costs from development costs
because the programmers are often rather careless in recording how time is spent.

Another and very signficant problem is that fact that a great deal of software maintenance
consists of making very small changes to software applications. Quite a few bug repairs
may involve fixing only a single line of code. Adding minor new features such as
perhaps a new line-item on a screen may require less than 50 source code statements.

These small changes are below the effective lower limit for counting function point
metrics. The function point metric includes weighting factors for complexity, and even if
the complexity adjustments are set to the lowest possible point on the scale, it is still
difficult to count function points below a level of perhaps 15 function points.

Quite a few maintenance tasks involve changes that are either a fraction of a function
point, or may at most be less than 10 function points or about 1000 COBOL source code
statements. Although normal counting of function points is not feasible for small
updates, it is possible to use the “backfiring” method or converting counts of logical
source code statements in to equivalent function points. For example, suppose an update
requires adding 100 COBOL statements to an existing application. Since it usually takes
about 105 COBOL statements in the procedure and data divisions to encode 1 function
point, it can be stated that this small maintenance project is “about 1 function point in
size.”

If the project takes one work day consisting of six hours, then at least the results can be
expressed using common metrics. In this case, the results would be roughly “6 staff
hours per function point.” If the reciprocal metric “ function points per staff month” is
used, and there are 20 working days in the month, then the results would be “20 function
points per staff month.”

Best and Worst Practices in Software Maintenance

Because maintenance of aging legacy software is very labor intensive it is quite important
to explore the best and most cost effective methods available for dealing with the millions
of applications that currently exist. The sets of best and worst practices are not
symmetrical. For example the practice that has the most positive impact on maintenance

11

productivity is the use of trained maintenance experts. However the factor that has the
greatest negative impact is the presence of “error –prone modules” in the application that
is being maintained.

Table 6 illustrates a number of factors which have been found to exert a beneficial
positive impact on the work of updating aging applications and shows the percentage of
improvement compared to average results:

Table 6: Impact of Key Adjustment Factors on Maintenance
(Sorted in order of maximum positive impact)

Maintenance Factors Plus

 Range

Maintenance specialists 35%
High staff experience 34%
Table-driven variables and data 33%
Low complexity of base code 32%
Y2K and special search engines 30%
Code restructuring tools 29%
Reengineering tools 27%
High level programming languages 25%
Reverse engineering tools 23%
Complexity analysis tools 20%
Defect tracking tools 20%
Y2K “mass update” specialists 20%
Automated change control tools 18%
Unpaid overtime 18%
Quality measurements 16%
Formal base code inspections 15%
Regression test libraries 15%
Excellent response time 12%
Annual training of > 10 days 12%
High management experience 12%
HELP desk automation 12%
No error prone modules 10%
On-line defect reporting 10%
Productivity measurements 8%
Excellent ease of use 7%
User satisfaction measurements 5%
High team morale 5%

Sum 503%

At the top of the list of maintenance “best practices” is the utilization of full-time, trained
maintenance specialists rather than turning over maintenance tasks to untrained
generalists. The positive impact from utilizing maintenance specialists is one of the
reasons why maintenance outsourcing has been growing so rapidly. The maintenance
productivity rates of some of the better maintenance outsource companies is roughly
twice that of their clients prior to the completion of the outsource agreement. Thus even

12

if the outsource vendor costs are somewhat higher, there can still be useful economic
gains.

Let us now consider some of the factors which exert a negative impact on the work of
updating or modifying existing software applications. Note that the top-ranked factor
which reduces maintenance productivity, the presence of error-prone modules, is very
asymmetrical. The absence of error-prone modules does not speed up maintenance work,
but their presence definitely slows down maintenance work.

Error-prone modules were discovered by IBM in the 1960’s when IBM’s quality
measurements began to track errors or bugs down to the levels of specific modules. For
example it was discovered that IBM’s IMS data base product contained 425 modules, but
more than 300 of these were zero-defect modules that never received any bug reports.
About 60% of all reported errors were found in only 31 modules, and these were very
buggy indeed.

When this form of analysis was applied to other products and used by other companies, it
was found to be a very common phenomenon. In general more than 80% of the bugs in
software applications are found in less than 20% of the modules. Once these modules are
identified then they can be inspected, analyzed, and restructured to reduce their error
content down to safe levels.

Table 7 summarizes the major factors that degrade software maintenance performance.
Not only are error-prone modules troublesome, but many other factors can degrade
performance too. For example, very complex “spaghetti code” is quite difficult to
maintain safely. It is also troublesome to have maintenance tasks assigned to generalists
rather than to trained maintenance specialists.

A very common situation which often degrades performance is lack of suitable
maintenance tools, such as defect tracking software, change management software, test
library software, and so forth. In general it is very easy to botch up maintenance and
make it such a labor-intensive activity that few resources are left over for development
work. The simultaneous arrival of the year 2000 and Euro problems have basically
saturated the available maintenance teams, and are also drawing developers into the work
of making mass updates. This situation can be expected to last for many years, and may
introduce permanent changes into software economic structures.

13

Table 7: Impact of Key Adjustment Factors on Maintenance
(Sorted in order of maximum negative impact)

Maintenance Factors Minus

 Range

Error prone modules -50%
Embedded variables and data -45%
Staff inexperience -40%
High complexity of base code -30%
No Y2K of special search engines -28%
Manual change control methods -27%
Low level programming languages -25%
No defect tracking tools -24%
No Y2K “mass update” specialists -22%
Poor ease of use -18%
No quality measurements -18%
No maintenance specialists -18%
Poor response time -16%
Management inexperience -15%
No base code inspections -15%
No regression test libraries -15%
No HELP desk automation -15%
No on-line defect reporting -12%
No annual training -10%
No code restructuring tools -10%
No reengineering tools -10%
No reverse engineering tools -10%
No complexity analysis tools -10%
No productivity measurements -7%
Poor team morale -6%
No user satisfaction measurements -4%
No unpaid overtime 0%

Sum -500%

Given the enormous amount of effort that is now being applied to software maintenance,
and which will be applied in the future, it is obvious that every corporation should
attempt to adopt maintenance “best practices” and avoid maintenance “worst practices” as
rapidly as possible.

Software Entropy and Total Cost of Ownership

The word “entropy” means the tendency of systems to detstabilize and become more
chaotic over time. Entropy is a term from physics and is not a software-related word.
However entropy is true of all complex systems, including software.: All known
compound objects decay and become more complex with the passage of time unless
effort is exerted to keep them repaired and updated. Software is no exception. The
accumulation of small updates over time tends to gradually degrade the initial structure of
applications and makes changes grow more difficult over time.

14

For software applications entropy has long been a fact of life. If applications are
developed with marginal initial quality control they will probably be poorly structured
and contain error-prone modules. This means that every year, the accumulation of defect
repairs and maintenance updates will degrade the original structure and make each change
slightly more difficult. Over time, the application will destabilize and “bad fixes” will
increase in number and severity. Unless the application is restructured or fully
refurbished, eventually it will become so complex that maintenance can only be
performed by a few experts who are more or less locked into the application.

By contrast, leading applications that are well structured initially can delay the onset of
entropy. Indeed, well-structured applications can achieve declining maintenance costs
over time. This is because updates do not degrade the original structure, as happens in
the case of “spaghetti bowl” applications where the structure is almost unintelligible
when maintenance begins.

The total cost of ownership of a software application is the sum of four major expense
elements: 1) the initial cost of building an application; 2) the cost of enhancing the
application with new features over its lifetime; 3) the cost of repairing defects and bugs
over the application’s lifetime; 4 The cost of customer support for fielding and
responding to queries and customer-reported defects.

Table 8 illustrates the total cost of ownership of three similar software applications under
three alternate scenarios. Assume the applications are nominally 1000 function points in
size. (To simplify the table, only a 5-year ownership period is illustrated.)

The “ lagging” scenario in the left column of table 8 assumes inadequate quality control,
poor code structure, up to a dozen severe error-prone modules, and significant “bad fix”
injection rates of around 20%. Under the lagging scenario maintenance costs will
become more expensive every year due to entropy and the fact that the application never
stabilizes.

The “average” scenario assumes marginal quality control, reasonable initial code
structure, one or two error-prone modules, and an average bad-fix injection rate of around
7%. Here too entropy will occur. But the rate at which the application’s structure
degrades is fairly slow. Thus maintenance costs increase over a five-year period, but not
at a very significant annual rate.

The “ leading” scenario assumes excellent quality control, very good code structure at the
initial release, zero error-prone modules, and a very low bad-fix injection rate of 1% or
less. Under the leading scenario, maintenance costs can actually decline over the five-
year ownership period. Incidentally, such well-structured applications of this type are
most likely to be found for systems software and defense applications produced by
companies at or higher the Level 3 on the Software Engineering Institute (SEI) capability
maturity model (CMM) scale.

15

Table 8: Five-Year Cost of Software Application Ownership
 (Costs are in Dollars per Function Point)

 Lagging Average Leading
 Projects Projects Projects

DEVELOPMENT $1,200.00 $1,000.00 $800.00

Year 1 $192.00 $150.00 $120.00
Year 2 $204.00 $160.00 $112.00
Year 3 $216.00 $170.00 $104.00
Year 4 $240.00 $180.00 $96.00
Year 5 $264.00 $200.00 $80.00
MAINTENANCE $1,116.00 $860.00 $512.00

TOTAL COST $2,316.00 $1,860.00 $1,312.00

Difference $456.00 $0.00 -$548.00

Under the lagging scenario, the five-year maintenance costs for the application (which
include defect repairs, support, and enhancements) are greater than the original
development costs. Indeed, the economic value of lagging applications is questionable
after about three to five years. The degradation of initial structure and the increasing
difficulty of making updates without “bad fixes” tends toward negative returns on
investment (ROI) within a few years.

For applications in COBOL there are code restructuring tools and maintenance
workbenches available that can extend the useful economic lives of aging legacy
applications. But for many languages such as assembly language, Algol, Bliss, CHILL,
CORAL, and PL/I there are few maintenance tools and no commercial restructuring tools.
Thus for poorly structured applications in many languages, the ROI may be marginal or
negative within less than a 10 year period. Of course if the applications are vital or
mission critical (such as air traffic control or the IRS income tax applications) there may
be no choice but to keep the applications operational regardless of cost or difficulty.

Under the average scenario, the five-year maintenance costs for the application are
slightly below the original development costs. Most average applications have a mildly
positive ROI for up to 10 years after initial deployment.

Under the leading scenario with well-structured initial applications, the five-year
maintenance costs are only about half as expensive as the original development costs.
Yet the same volume of enhancements is assumed in all three cases. For leading
applications, the ROI can stay positive for 10 to 20 years after initial deployment. This is
due to the low entropy and the reduced bad-fix injection rate of the leading scenario. In
other words, if you build applications properly at the start, you can get many years of

16

useful service. If you build them poorly at the start, you can expect high initial
maintenance costs that will grow higher as time passes. You can also expect a rapid
decline in return on investment (ROI).

The same kind of phenomena can be observed outside of software. If you buy an
automobile that has a high frequency of repair as shown in Consumer Reports and you
skimp on lubrication and routine maintenance, you will fairly soon face some major
repair problems – probably before 50,000 miles.

By contrast, if you buy an automobile with a low frequency of repair as shown in
Consumer Reports and you are scrupulous in maintenance, you should be able to drive
the car more than 100,000 miles without major repair problems.

Summary and Conclusions

In every industry maintenance tends to require more personnel than those building new
products. For the software industry the number of personnel required to perform
maintenance is unusually large and may soon top 75% of all technical software workers.
The main reasons for the high maintenance efforts in the software industry are the
intrinsic difficulties of working with aging software, and the growing impact of “mass
updates” that began with the roll-out of the Euro and the arrival of the year 2000 problem.
However similar mass-updates will occur in the future as we run out of telephone
numbers and social security numbers.

Given the enormous efforts and costs devoted to software maintenance, every company
should evaluate and consider best practices for maintenance, and should avoid worst
practices if at all possible.

References

Arnold, Robert S.; Software Reengineering; IEEE Computer Society Press, Los Alamitos,

CA; 1993; ISBN 0-8186-3272-0; 600 pages.

Arthur, Lowell Jay; Software Evolution - The Software Maintenance Challenge; John

Wiley & Sons, New York; 1988; ISBN 0-471-62871-9; 254 pages.

Boehm, Barry Dr.; Software Engineering Economics; Prentice Hall, Englewood Cliffs,

NJ; 1981; 900 pages.

Brown, Norm (Editor); The Program Manager’s Guide to Software Acquisition Best

Practices; Version 1.0; July 1995; U.S. Department of Defense, Washington, DC;
142 pages.

17

Department of the Air Force; Guidelines for Successful Acquisition and Management of
Software Intensive Systems; Volumes 1 and 2; Software Technology Support Center,
Hill Air Force Base, UT; 1994.

Gallagher, R.S.; Effective Customer Support; International Thomson Computer Press,

Boston, MA; 1997; ISBN 1-85032-209-0; 480 pages.

Grady, Robert B.; Practical Software Metrics for Project Management and Process

Improvement; Prentice Hall, Englewood Cliffs, NJ; ISBN 0-13-720384-5; 1992; 270
pages.

Grady, Robert B. & Caswell, Deborah L.; Software Metrics: Establishing a Company-

Wide Program; Prentice Hall, Englewood Cliffs, NJ; ISBN 0-13-821844-7; 1987;
288 pages.

Jones, Capers; Applied Software Measurement; McGraw Hill, 2nd edition 1996; ISBN 0-

07-032826-9; 618 pages.

Jones, Capers; Critical Problems in Software Measurement; Information Systems

Management Group, 1993; ISBN 1-56909-000-9; 195 pages.

Jones, Capers; Software Productivity and Quality Today -- The Worldwide Perspective;

Information Systems Management Group, 1993; ISBN -156909-001-7; 200 pages.

Jones, Capers; Assessment and Control of Software Risks; Prentice Hall, 1994; ISBN 0-

13-741406-4; 711 pages.

Jones, Capers; New Directions in Software Management; Information Systems
Management Group; ISBN 1-56909-009-2; 150 pages.

Jones, Capers; Patterns of Software System Failure and Success; International Thomson

Computer Press, Boston, MA; December 1995; 250 pages; ISBN 1-850-32804-8;
292 pages.

Jones, Capers; The Year 2000 Software Problem - Quantifying the Costs and Assessing

the Consequences; Addison Wesley, Reading, MA; 1998; ISBN 0-201-30964-5; 303
pages.

Jones, Capers; Software Quality – Analysis and Guidelines for Success; International

Thomson Computer Press, Boston, MA; ISBN 1-85032-876-6; 1997; 492 pages.

Jones, Capers; Software Assessments, Benchmarks, and Best Practices; Addison Wesley

Longman, Boston, MA; ISBN 0-201-48542-7; 2000; 657 pages.

18

Jones, Capers: “Sizing Up Software;” Scientific American Magazine, Volume 279, No. 6,

December 1998; pages 104-111.

Kan, Stephen H.; Metrics and Models in Software Quality Engineering; Addison Wesley,

Reading, MA; ISBN 0-201-63339-6; 1995; 344 pages.

Howard, Alan (Ed.); Software Maintenance Tools; Applied Computer Research (ACR;
Phoenix, AZ; 1997; 30 pages.

Marciniak, John J. (Editor); Encyclopedia of Software Engineering; John Wiley & Sons,

New York; 1994; ISBN 0-471-54002; in two volumes.

McCabe, Thomas J.; “A Complexity Measure” ; IEEE Transactions on Software

Engineering; December 1976; pp. 308-320.

Mertes, Karen R.; Calibration of the CHECKPOINT Model to the Space and Missile

Systems Center (SMC) Software Database (SWDB); Thesis AFIT/GCA/LAS/96S-
11, Air Force Institute of Technology (AFIT), Wright Patterson AFB, Ohio;
September 1996; 119 pages.

Muller, Monika & Abram, Alain (editors); Metrics in Software Evolution; R. Oldenbourg

Vertag GmbH, Munich; ISBN 3-486-23589-3; 1995.

Multiple authors; Rethinking the Software Process; (CD-ROM); Miller Freeman,

Lawrence, KS; 1996. (This is a new CD ROM book collection jointly produced by
the book publisher, Prentice Hall, and the journal publisher, Miller Freeman. This
CD ROM disk contains the full text and illustrations of five Prentice Hall books:
Assessment and Control of Software Risks by Capers Jones; Controlling Software
Projects by Tom DeMarco; Function Point Analysis by Brian Dreger; Measures for
Excellence by Larry Putnam and Ware Myers; and Object-Oriented Software Metrics
by Mark Lorenz and Jeff Kidd.)

Parikh, Girish; Handbook of Software Maintenance; John Wiley & Sons, New York;

1986; ISBN 0-471-82813-0; 421 pages.

Pigoski, Thomas M.; Practical Software Maintenance - Best Practices for Managing Your

Software Investment; IEEE Computer Society Press, Los Alamitos, CA; 1997; ISBN
0-471-17001-1; 400 pages.

Putnam, Lawrence H.; Measures for Excellence -- Reliable Software On Time, Within

Budget; Yourdon Press - Prentice Hall, Englewood Cliffs, NJ; ISBN 0-13-567694-0;
1992; 336 pages.

19

Putnam, Lawrence H and Myers, Ware.; Industrial Strength Software - Effective
Management Using Measurement; IEEE Press, Los Alamitos, CA; ISBN 0-8186-
7532-2; 1997; 320 pages.

Rubin, Howard; Software Benchmark Studies For 1997; Howard Rubin Associates,

Pound Ridge, NY; 1997.

Sharon, David; Managing Systems in Transition - A Pragmatic View of Reengineering

Methods; International Thomson Computer Press, Boston, MA; 1996; ISBN 1-
85032-194-9; 300 pages.

Shepperd, M.: “A Critique of Cyclomatic Complexity as a Software Metric” ; Software

Engineering Journal, Vol. 3, 1988; pp. 30-36.

Stukes, Sherry, Deshoretz, Jason, Apgar, Henry and Macias, Ilona; Air Force Cost

Analysis Agency Software Estimating Model Analysis ; TR-9545/008-2; Contract
F04701-95-D-0003, Task 008; Management Consulting & Research, Inc.; Thousand
Oaks, CA 91362; September 30 1996.

Symons, Charles R.; Software Sizing and Estimating – Mk II FPA (Function Point

Analysis); John Wiley & Sons, Chichester; ISBN 0 471-92985-9; 1991; 200 pages.

Takang, Armstrong and Grubh, Penny; Software Maintenance Concepts and Practice;

International Thomson Computer Press, Boston, MA; 1997; ISBN 1-85032-192-2;
256 pages.

Zvegintzov, Nicholas; Software Management Technology Reference Guide; Dorset

House Press, New York, NY; ISBN 1-884521-0; 1994; 240 pages.

