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Who We Are

• Who I am 
– Matt Yonkovit – Principal Architect
– Veteran of MySQL/SUN/Percona
– 13 Years

• Who we are
– Percona is a top MySQL consulting, support, training, and 

development firm
– Creator of XtraDB and XtraBackup



What We Do

• Consulting
– Architecture and Design
– Performance Tuning
– High Availability
– Custom Builds
– Troubleshooting

• Support
• Training
• Development
• Benchmarking



Who we do it for



Disclaimer

• Goal is to walk you through the general differences 
that can cause issues with a migration

• This is not a presentation on Innodb or XtraDB. 
– Consider training or read supplemental materials for details 

on Innodb

• I assume the audience has some knowledge of 
MySQL and storage engines in general



MyISAM

• Long history
– Been around since MySQL 3.x
– Many applications still have optimizations for MyISAM

• Simple Storage Engine without a lot of complex 
moving parts
– Is less better or worse?
– There is a lot less configuration options to tweak 

performance

• Built in Support for Full-Text Indexes
• Compression of data



Issues With MyISAM

• Does Table Level Locking
• Not Crash Safe (Not ACID Compliant)

– Who likes losing data

• Only index pages are in the Key Buffer
– Non-indexed columns read from disk or filesystem cache

• You have to be aware of certain maintenance that 
should take place regularly
– Optimize, analyze, check, etc.

• Limited options for instrumentation and tweaking
• Limited development

– Maria/Aria was going to be the replacement



Enter Innodb

• Innodb is an ACID Compliant Storage Engine for 
MySQL.
– As a storage engine it works as a drop in replacement for 

other storage engines like MyISAM ( No SQL  CHANGES!  
Yeah! )

• Added to 3.23 max & MySQL 4.x around 2001, 
•  



Innodb

• Row Level Locking
• Crash Recovery 
• Both Data Pages and Indexes can be stored in 

memory
• Foreign Key Support
• Automated maintenance tasks ( i.e.  building stats )



Innodb History & Problems

• Innodb was originally written in the mid to late 90's, 
so much of the code was optimized for machines 
with limited horsepower
– Comments in the code referred to 100 disk io limit of 

current hardware
– Multi-core machines did not exist, so lots of optimization 

for 1 or 2 CPU Cores

• As commodity hardware costs declined, these 
assumptions were pushed and invalidated



Not so distant past:More is Less

• Changes were made to increase scalability, but 
problems still persisted, and regressions happened



Community Responds

• Google Patches
• Percona Patches
• Innodb Plugin
• XtraDB



Development work on innodb

• Majority of development being done around innodb, 
the performance benefits have been substantial. 

• Updated several times a year, ( 10 releases since 
2008 )

• Makes sense for this to be the default storage engine 
going forward



Default = Innodb

• Coming in MySQL 5.5, Innodb will become the 
default storage engine in MySQL.  
– This means that people not specifying the engine on 

create will start getting Innodb based tables, where 
previously they had gotten MyISAM

– If these people are not paying attention performance is 
going to suffer as the database is more then likely not 
designed and optimized for both storage engines.

– This does not mean you have to move from MyISAM



What tables are you using?

• There are several ways to check to see what storage 
engine you are using including:
– Show create table 'xxxx';
– Show table status;
– select TABLE_SCHEMA,TABLE_NAME,ENGINE from 

information_schema.tables;

• If your already all Innodb based, your in good shape 
for the change.

• What if you find some tables that are accidently 
MyISAM?  
– --default-storage-engine



Migrate storage engines

Lets Assume Your Ready to Migrate to Innodb



Preparing for the change

• Treat this like any other upgrade
• Plan lots of testing

– Regression testing
– Benchmarking
– Unit Tests

• Check the latest readme and storage engine specific 
information



Feature Gotcha's

• Full Text Indexes
• Compact/Compress

– Innodb has the ability to compress data automatically

• Multi-column Auto-Inc PK's
• GIS/Spartial Indexes
• Merge Tables
• Segmented Key Caches
• Deal With Deadlocks
• Locking



Full Text Indexes

• Innodb does not support full text indexes
– Check for full-text indexes before you begin

• This is one of the big reasons people continue to use 
MyISAM in some limited capacity
– If you do this make sure you keep enough memory 

allocated to MyISAM

• Alternative is you could consider switching to sphinx, 
lucene, or some other alternative
– Sphinx has a MySQL storage engine
– Doing full text searches outside the DB can scale better



Table Locking Be Gone!

• One of the key benefits people look for when 
migrating is Innodb's locking mechanism
– Instead of doing table level locking, row level locking is 

used
– Locking is much more in align with other RDBM's on the 

market

• If you issue “lock table” statements, innodb will gladly 
lock the table 



Locking Exceptions

• Older versions of Innodb, and newer versions with 
innodb_autoinc_lock_mode = 0 will perform a low 
level lock on the table in order to grab the next auto-
inc key when needed

• “Insert into select * from”, load data, bulk inserts, etc 
will still lock the table!
– Select into outfile is does not lock
– Note that some of these locking issues are being fixed with 

row-based replication

• Be Careful:  In MyISAM autocommit = 0 means 
nothing, In Inndob you may never commit...  very evil



What if you need

• If you need a MyISAM feature for a table or two you 
can have both
– Later we will talk about the disadvantages to this

• Consider running Innodb on the Master, MyISAM on 
the slave

• Look to alternatives for features
– i.e. sphinx for full text search



Benchmarking

• Capture a query stream for some amount of time and 
replay it against a database that has MyISAM and 
one that has Innodb and compare the results. 
– Look for regressions
– Look for performance boosts
– Mk-upgrade or Mk-query-digest are your friends



Do you need more hardware?

• Innodb stores its data completely differently then 
MyISAM, as a result its footprint on disk can be 
larger.  Do you have enough space to handle this?

• Additionally the extra space translates into extra 
memory usage



Quick Tip: Indexing

• One of the largest contributors to excessive space usage 
is Innodb is a large primary key.
– Innodb uses the Primary Key as a clustered index, keeping all 

data sorted by the Primary Key on disk.  Additionally the primary 
key is copied into every secondary index to be used as a pointer 
back to the row on disk.  Here size matters!

• Sometimes converting large multi-key primary keys into a 
single auto-inc field can save a lot of space and boost 
performance

• Also note, because the data is stored in PK order on 
disk, this can allow you to boost performance
– Example:  If you always search based on date, including date as 

the first column in the PK can boost performance



Space Consideration

• Why Does Innodb appear to take more space?
– Indexes contain the PK
– 768 Byte Prefix for externally stored large columns
– Transaction details
– Undo Space 
– Row Versions
– Pages are not filled to 100%



New Set of my.cnf params

• MyISAM and Innodb Don't share the exact same set 
of parameters
– Key Buffer is the most important MyISAM parameter, this 

should be reduced ( but can not be eliminated completely ) 
when you move fully to innodb

– The Innodb_buffer_pool_size is the the closest thing to an 
equvilant

• Key difference here is the innodb buffer pool contains data and 
index pages, while the key buffer contains only index pages

• Innodb buffer pool is also used for other internal operations
– i.e.  insert buffer



Quick Tips!

• While it may seem subtle, the difference between the 
key buffer and Innodb buffer pool can make a huge 
performance difference. 
– Double edge sword, memory in MyISAM is Index only...  

With Innodb its Indexes + data... 
– Less index pages in memory as its shared

• Don't over-allocate memory!



Other Key Parameters

• innodb_flush_log_at_trx_commit
• innodb_flush_method
• innodb_log_file_size
• innodb_thread_concurrency



Pro Tip

innodb_flush_log_at_trx_commit = 2



Innodb Plugin & Xtradb

• innodb_adaptive_flushing
• innodb_io_capacity
• innodb_read_ahead
• innodb_read_io_threads
• innodb_write_io_threads



How are you going to migrate?

• Could be as simple as “alter table XXX engine = 
innodb”... or a simple dump and reload..  but it could 
be much more complex every situation is unique

• Size makes a huge difference
– Alter table engine= will cause locking, so plan for 

application downtime, as the data size is larger the time 
require gets longer



TIP:  Use replication

• Replication is a great way to stage your changes 
without massive amounts of downtime on a large 
database.
– Alter tables on the slaves to change the engine to be 

innodb
– Run your tests against the slave to verify all is working
– Plan to promote the master to be a slave  



Stats Gathering

• With MyIsam the optimizer benefited from updating 
your statistics with the analyze command, this does 
not work the same with innodb
– Stats are gathered behind the scenes when certain 

thresholds are reached
– Larger datasets can cause issues

• Helpful sometimes to use:  innodb_stats_auto_update and 
innodb_stats_sample_pages



Backups

• No Longer forced to do mysqldump or cold backups
• Mysqldump

- use --single-transaction

• Hot Backups Can be done with Innodb using SAN 
Snapshots, LVM Snapshots, or XtraBackup
– Note this can still cause resource contention (IO) if run on 

your production server
– MyISAM Can use these but requires table locking



Recovery 

• One of the big benefits of Innodb is better 
recoverability and durability
– This does not mean data will not become corrupt
– This does not also mean you will never lose data

• innodb_flush_log_at_trx_commit
• Replication issues
• Bugs and Errors

• Corruption in MyISAM is bad, as the data lost can 
have no pattern to it.



Performance

• Select count(*) on the full table in innodb is much 
slower then in MyISAM

• In Innodb,PK Order can make operations faster or 
slower

• Realize Innodb will require more tuning to achieve 
optimal performance then MyISAM



Caution

• When converting from MyISAM beware of the 
changing your bottleneck

• EXAMPLE
– Locking bottleneck freed, increased cpu because more 

threads active
– System stats are good, response time is better 
– IO can increase!
– Some apps optimized for MyISAM



Pro Tip

• Absolutes are difficult in the performance world, in 
many causes the answer is:  It Depends!

• Don't believe everything you hear, for instance:
• “MyISAM is faster on Reads”



More then Just the Database

• Your durability and recoverability is only as good as 
your infrastructure
– Using Raid?
– Battery Backed Cache on your Raid Card?
– Journaling File-system?



Mix Innodb & MyISAM

• Joining the two table types in one statement will 
cause innodb and MyISAM will revert to the lowest 
set of features
– Table Locking
– No Transactions
– Etc.

• Each uses separate memory pools that can not 
share
– Split resources



Percona Training

• Looking for help with understanding how Innodb 
works?  Percona offers 1 day and multi day training 
classes



Percona Consulting

• Percona offers a full range of support and consulting 
services

• We can help you asses and execute a migration from 
MyISAM to Innodb
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