
Switching to Innodb from
MyISAM

Matt Yonkovit
Percona

-2-

www.percona.com

DIAMOND SPONSORSHIPS

THANK YOU
TO OUR

 DIAMOND SPONSORS

-3-

Who We Are

• Who I am
– Matt Yonkovit – Principal Architect
– Veteran of MySQL/SUN/Percona
– 13 Years

• Who we are
– Percona is a top MySQL consulting, support, training, and

development firm
– Creator of XtraDB and XtraBackup

What We Do

• Consulting
– Architecture and Design
– Performance Tuning
– High Availability
– Custom Builds
– Troubleshooting

• Support
• Training
• Development
• Benchmarking

Who we do it for

Disclaimer

• Goal is to walk you through the general differences
that can cause issues with a migration

• This is not a presentation on Innodb or XtraDB.
– Consider training or read supplemental materials for details

on Innodb

• I assume the audience has some knowledge of
MySQL and storage engines in general

MyISAM

• Long history
– Been around since MySQL 3.x
– Many applications still have optimizations for MyISAM

• Simple Storage Engine without a lot of complex
moving parts
– Is less better or worse?
– There is a lot less configuration options to tweak

performance

• Built in Support for Full-Text Indexes
• Compression of data

Issues With MyISAM

• Does Table Level Locking
• Not Crash Safe (Not ACID Compliant)

– Who likes losing data

• Only index pages are in the Key Buffer
– Non-indexed columns read from disk or filesystem cache

• You have to be aware of certain maintenance that
should take place regularly
– Optimize, analyze, check, etc.

• Limited options for instrumentation and tweaking
• Limited development

– Maria/Aria was going to be the replacement

Enter Innodb

• Innodb is an ACID Compliant Storage Engine for
MySQL.
– As a storage engine it works as a drop in replacement for

other storage engines like MyISAM (No SQL CHANGES!
Yeah!)

• Added to 3.23 max & MySQL 4.x around 2001,
•

Innodb

• Row Level Locking
• Crash Recovery
• Both Data Pages and Indexes can be stored in

memory
• Foreign Key Support
• Automated maintenance tasks (i.e. building stats)

Innodb History & Problems

• Innodb was originally written in the mid to late 90's,
so much of the code was optimized for machines
with limited horsepower
– Comments in the code referred to 100 disk io limit of

current hardware
– Multi-core machines did not exist, so lots of optimization

for 1 or 2 CPU Cores

• As commodity hardware costs declined, these
assumptions were pushed and invalidated

Not so distant past:More is Less

• Changes were made to increase scalability, but
problems still persisted, and regressions happened

Community Responds

• Google Patches
• Percona Patches
• Innodb Plugin
• XtraDB

Development work on innodb

• Majority of development being done around innodb,
the performance benefits have been substantial.

• Updated several times a year, (10 releases since
2008)

• Makes sense for this to be the default storage engine
going forward

Default = Innodb

• Coming in MySQL 5.5, Innodb will become the
default storage engine in MySQL.
– This means that people not specifying the engine on

create will start getting Innodb based tables, where
previously they had gotten MyISAM

– If these people are not paying attention performance is
going to suffer as the database is more then likely not
designed and optimized for both storage engines.

– This does not mean you have to move from MyISAM

What tables are you using?

• There are several ways to check to see what storage
engine you are using including:
– Show create table 'xxxx';
– Show table status;
– select TABLE_SCHEMA,TABLE_NAME,ENGINE from

information_schema.tables;

• If your already all Innodb based, your in good shape
for the change.

• What if you find some tables that are accidently
MyISAM?
– --default-storage-engine

Migrate storage engines

Lets Assume Your Ready to Migrate to Innodb

Preparing for the change

• Treat this like any other upgrade
• Plan lots of testing

– Regression testing
– Benchmarking
– Unit Tests

• Check the latest readme and storage engine specific
information

Feature Gotcha's

• Full Text Indexes
• Compact/Compress

– Innodb has the ability to compress data automatically

• Multi-column Auto-Inc PK's
• GIS/Spartial Indexes
• Merge Tables
• Segmented Key Caches
• Deal With Deadlocks
• Locking

Full Text Indexes

• Innodb does not support full text indexes
– Check for full-text indexes before you begin

• This is one of the big reasons people continue to use
MyISAM in some limited capacity
– If you do this make sure you keep enough memory

allocated to MyISAM

• Alternative is you could consider switching to sphinx,
lucene, or some other alternative
– Sphinx has a MySQL storage engine
– Doing full text searches outside the DB can scale better

Table Locking Be Gone!

• One of the key benefits people look for when
migrating is Innodb's locking mechanism
– Instead of doing table level locking, row level locking is

used
– Locking is much more in align with other RDBM's on the

market

• If you issue “lock table” statements, innodb will gladly
lock the table

Locking Exceptions

• Older versions of Innodb, and newer versions with
innodb_autoinc_lock_mode = 0 will perform a low
level lock on the table in order to grab the next auto-
inc key when needed

• “Insert into select * from”, load data, bulk inserts, etc
will still lock the table!
– Select into outfile is does not lock
– Note that some of these locking issues are being fixed with

row-based replication

• Be Careful: In MyISAM autocommit = 0 means
nothing, In Inndob you may never commit... very evil

What if you need

• If you need a MyISAM feature for a table or two you
can have both
– Later we will talk about the disadvantages to this

• Consider running Innodb on the Master, MyISAM on
the slave

• Look to alternatives for features
– i.e. sphinx for full text search

Benchmarking

• Capture a query stream for some amount of time and
replay it against a database that has MyISAM and
one that has Innodb and compare the results.
– Look for regressions
– Look for performance boosts
– Mk-upgrade or Mk-query-digest are your friends

Do you need more hardware?

• Innodb stores its data completely differently then
MyISAM, as a result its footprint on disk can be
larger. Do you have enough space to handle this?

• Additionally the extra space translates into extra
memory usage

Quick Tip: Indexing

• One of the largest contributors to excessive space usage
is Innodb is a large primary key.
– Innodb uses the Primary Key as a clustered index, keeping all

data sorted by the Primary Key on disk. Additionally the primary
key is copied into every secondary index to be used as a pointer
back to the row on disk. Here size matters!

• Sometimes converting large multi-key primary keys into a
single auto-inc field can save a lot of space and boost
performance

• Also note, because the data is stored in PK order on
disk, this can allow you to boost performance
– Example: If you always search based on date, including date as

the first column in the PK can boost performance

Space Consideration

• Why Does Innodb appear to take more space?
– Indexes contain the PK
– 768 Byte Prefix for externally stored large columns
– Transaction details
– Undo Space
– Row Versions
– Pages are not filled to 100%

New Set of my.cnf params

• MyISAM and Innodb Don't share the exact same set
of parameters
– Key Buffer is the most important MyISAM parameter, this

should be reduced (but can not be eliminated completely)
when you move fully to innodb

– The Innodb_buffer_pool_size is the the closest thing to an
equvilant

• Key difference here is the innodb buffer pool contains data and
index pages, while the key buffer contains only index pages

• Innodb buffer pool is also used for other internal operations
– i.e. insert buffer

Quick Tips!

• While it may seem subtle, the difference between the
key buffer and Innodb buffer pool can make a huge
performance difference.
– Double edge sword, memory in MyISAM is Index only...

With Innodb its Indexes + data...
– Less index pages in memory as its shared

• Don't over-allocate memory!

Other Key Parameters

• innodb_flush_log_at_trx_commit
• innodb_flush_method
• innodb_log_file_size
• innodb_thread_concurrency

Pro Tip

innodb_flush_log_at_trx_commit = 2

Innodb Plugin & Xtradb

• innodb_adaptive_flushing
• innodb_io_capacity
• innodb_read_ahead
• innodb_read_io_threads
• innodb_write_io_threads

How are you going to migrate?

• Could be as simple as “alter table XXX engine =
innodb”... or a simple dump and reload.. but it could
be much more complex every situation is unique

• Size makes a huge difference
– Alter table engine= will cause locking, so plan for

application downtime, as the data size is larger the time
require gets longer

TIP: Use replication

• Replication is a great way to stage your changes
without massive amounts of downtime on a large
database.
– Alter tables on the slaves to change the engine to be

innodb
– Run your tests against the slave to verify all is working
– Plan to promote the master to be a slave

Stats Gathering

• With MyIsam the optimizer benefited from updating
your statistics with the analyze command, this does
not work the same with innodb
– Stats are gathered behind the scenes when certain

thresholds are reached
– Larger datasets can cause issues

• Helpful sometimes to use: innodb_stats_auto_update and
innodb_stats_sample_pages

Backups

• No Longer forced to do mysqldump or cold backups
• Mysqldump

- use --single-transaction

• Hot Backups Can be done with Innodb using SAN
Snapshots, LVM Snapshots, or XtraBackup
– Note this can still cause resource contention (IO) if run on

your production server
– MyISAM Can use these but requires table locking

Recovery

• One of the big benefits of Innodb is better
recoverability and durability
– This does not mean data will not become corrupt
– This does not also mean you will never lose data

• innodb_flush_log_at_trx_commit
• Replication issues
• Bugs and Errors

• Corruption in MyISAM is bad, as the data lost can
have no pattern to it.

Performance

• Select count(*) on the full table in innodb is much
slower then in MyISAM

• In Innodb,PK Order can make operations faster or
slower

• Realize Innodb will require more tuning to achieve
optimal performance then MyISAM

Caution

• When converting from MyISAM beware of the
changing your bottleneck

• EXAMPLE
– Locking bottleneck freed, increased cpu because more

threads active
– System stats are good, response time is better
– IO can increase!
– Some apps optimized for MyISAM

Pro Tip

• Absolutes are difficult in the performance world, in
many causes the answer is: It Depends!

• Don't believe everything you hear, for instance:
• “MyISAM is faster on Reads”

More then Just the Database

• Your durability and recoverability is only as good as
your infrastructure
– Using Raid?
– Battery Backed Cache on your Raid Card?
– Journaling File-system?

Mix Innodb & MyISAM

• Joining the two table types in one statement will
cause innodb and MyISAM will revert to the lowest
set of features
– Table Locking
– No Transactions
– Etc.

• Each uses separate memory pools that can not
share
– Split resources

Percona Training

• Looking for help with understanding how Innodb
works? Percona offers 1 day and multi day training
classes

Percona Consulting

• Percona offers a full range of support and consulting
services

• We can help you asses and execute a migration from
MyISAM to Innodb

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

