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1 Introduction and goals

The goal of this laboratory assignment is to allow you to conduct a variety of experiments in the
Chisel simulation environment.

You will be provided a complete implementation of a speculative out–of–order processor. Stu-
dents will run experiments on it, analyze the design, and make recommendations for future devel-
opment. You can also choose to improve the design as part of the open-ended portion.

The lab has two sections, a directed portion and an open–ended portion. Everyone will do the
directed portion the same way, and grades will be assigned based on correctness. The open–ended
portion will allow you to pursue more creative investigations, and your grade will be based on the
effort made to complete the task or the arguments you provide in support of your ideas.

Students are encouraged to discuss solutions to the lab assignments with other students, but
must run through the directed portion of the lab by themselves and turn in their own lab report.
For the open-ended portion of each lab, students can work individually or in groups of two. Any
open-ended lab assignment completed as a group should be written up and handed in separately.
Students are free to take part in different groups for different lab assignments.

You are only required to do one of the open–ended assignments. These assignments are in
general starting points or suggestions. Alternatively, you can propose and complete your own
open–ended project as long as it is sufficiently rigorous. If you feel uncertain about the rigor of a
proposal, feel free to consult the TA or the professor.

1.1 Chisel & The Berkeley Out–of–Order Machine

The Chisel infrastructure is very similar to Lab 1, with the addition of a new processor, the
RISC-V Berkeley Out–of–Order Machine, or “BOOM”. BOOM is heavily inspired by the MIPS
R10k and the Alpha 21264 out–of–order processors[1, 3]. Like the R10k and the 21264, BOOM
is a unified physical register file design (also known as “explicit register renaming”). BOOM is a
superscalar processor; the width of its various stages is parameterizable.
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The Chip

For this lab, you will be given an entire functioning processor, implemented in Chisel. The Chisel
source code describes an entire “chip” with an interface to the outside world via a DRAM memory
link. On-chip is an out–of–order core, which is where the focus of this lab will be. The core, in this
case the BOOM processor, is directly connected to an instruction cache (16kB) and a non-blocking
data cache (32kB). Any miss in either cache will require a trip to DRAM[2] (located “off-chip”).

The BOOM Pipeline
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Figure 1: The Berkeley Out of Order Machine Processor. Shown is a single-issue version.

Conceptually, BOOM is broken up into 10 stages: Fetch, Decode, Register Rename, Dispatch,
Issue, Register Read, Execute, Memory, Writeback, and Commit. However, many of those stages
are combined in the current implementation, yielding six stages: Fetch, Decode/Rename/Dispatch,
Issue/RegisterRead, Execute, Memory, and Writeback (Commit occurs asynchronously).

Fetch Instructions are fetched from the Instruction Memory and placed into a four-
entry deep FIFO, known as the fetch buffer.1

Decode Decode pulls instructions out of the fetch buffer and generates the appropriate
“micro-op” to place into the pipeline.2

1While the fetch buffer is four-entries deep, it can instantly read out the first instruction on the front of the FIFO.
Put another way, instructions don’t need to spend four cycles moving their way through the fetch buffer if there are
no instructions in front of them. In fact, BOOM’s fetch buffer is a “flow-through queue” meaning if the queue is
empty, the Decode stage can immediately operate on the instructions returning from the instruction cache without
placing them in the queue first.

2Because RISC-V is a RISC ISA, nearly all instructions generate only a single micro-op, with the exception of
store instructions, which generate a “store address generation” micro-op and a “store data generation” micro-op.
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Rename The ISA, or “logical”, register specifiers are then renamed into “physical”
register specifiers.

Dispatch The instruction is then dispatched, or written, into the Issue Window.

Issue Instructions sitting in the Issue Window wait until all of their operands are ready,
and are then issued. This is the beginning of the out–of–order piece of the pipeline.

RF Read Issued instructions first read their operands from the unified physical register
file...

Execute and then enter the Execute stage where the integer ALU resides. Issued
memory operations perform their address calculations in the Execute stage, and
then the address is sent to the data cache (if it is a load) in which the data is
accessed during the Memory stage. The calculated addresses are also written into
the Load/Store Unit at the end of the Execute stage.

Memory The Load/Store Unit consists of three queues: a Load Address Queue (LAQ),
a Store Address Queue (SAQ), and a Store Data Queue (SDQ) (see Figure 5).
Loads are optimistically fired to memory when their address is added to the LAQ
during the Execute stage. In parallel, the incoming load compares its address
against the SAQ to find if there are any store addresses that the load depends on.
If the store data is present, the load receives the data from the store (store data
forwarding) and the memory request is killed. If the data is not present, the load
is put to sleep. Loads that are put to sleep are reissued to memory at a later time.
The current policy in BOOM is to retry the load at the head of the LAQ .3

Stores are fired to memory at commit, when both its address and its data are
present.

Writeback ALU operations and load operations are written back to the physical reg-
ister file.4

Commit The Reorder Buffer, or ROB, tracks the status of each instruction in the
pipeline. When the head of the ROB is not-busy, it commits the instruction. For
stores, the ROB signals to the store at the head of the Store Queue that it can now
write its data to memory. For loads, the ROB signals the Load/Store Unit to verify
that the load did not fail a memory ordering dependence (i.e., a load issued before
a store it depended on committed). If the load did fail, the entire pipeline must be
killed and restarted. Exceptions are also taken at this point, which requires slowly
unwinding the ROB to return the rename map tables to their proper state.

BOOM supports full branch speculation and branch prediction. Each instruction, no matter
where it is in the pipeline, is accompanied by a branch mask that marks which branches the
instruction is “speculated under”. A mispredicted branch requires killing all instructions that
depended on that branch. When a branch instructions passes through Rename, copies of the

3A higher performance processor would allow loads to track why they were put to sleep, and to wake and retry
loads once the issue has been resolved.

4Even the single-issue version of BOOM provides ALU operations and memory operations each their own write
port, meaning the register file is a two-read, two-write register file (two different destinations can be written si-
multaneously). Also notice that in a unified physical register file design, speculative instructions are being written
back.

3



Register Rename Table and the Free List are made. On a mispredict, the saved processor state is
restored.

The “front-end” contains a Branch History Table, composed of simple n-bit history counters
indexed by the PC. The BHT is read in parallel with instruction cache access. As an instruction
is returned from the cache and inserted into the fetch buffer, the instruction is quickly checked to
see if it is a branch. If the instruction is a branch, the prediction is used to redirect the front-end
on a TAKE BRANCH prediction. BOOM also has a Branch Target Buffer (BTB) that directs the
next pc.

BOOM implements the RISC-V variant RV64IMS5. RV64IMS is the 64-bit variant which pro-
vides the basic integer instructions, multiply/divide instructions, and the supervisor-level ISA.
BOOM does not provide hardware support for floating point.

See Figure 5 for a more detailed diagram of the pipeline. Additional information on BOOM can
be found in the appendices and the CS152 BOOM Section notes; in particular, the issue window,
the load/store unit, and the execution pipeline are covered in greater detail.

5Atomic memory operations and floating point instructions are the main categories of instructions that BOOM
does not implement.
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1.2 Graded Items

Submit your lab report as a file report.pdf in the top level of the lab3 directory in your private
repo on github. Some of the open-ended questions also request source code - please also submit
this to your git repo. Please label each section of the results clearly. The following items need to
be turned in for evaluation:

1. Problem 2.2: CPI, branch predictor statistics, and answers

2. Problem 2.3: CPI statistics and answers

3. Problem 2.4: Issue Window statistics and answers

4. Problem 2.5: Issue Window statistics, instrumentation code, and answers

5. Problem 3.1, /3.2 modifications and evaluations (open-ended portion)

2 Directed Portion

The questions in the directed portion of the lab use Chisel. A tutorial (and other documenta-
tion) on the Chisel language can be found at (http://chisel.eecs.berkeley.edu).6 Although
students will not be required to write Chisel code as part of this lab, students will need to write
instrumentation code in C++ code which probes the state of a Chisel processor.

WARNING: Chisel is an ongoing project at Berkeley and continues to undergo rapid devel-
opment. Any documentation on Chisel may be out of date, especially regarding syntax. Feel free
to consult with your TA with any questions you may have, and report any bugs you encounter.
Likewise, BOOM will pass all tests and benchmarks for the default parameters, however, changing
parameters or adding new branch predictors will create new instruction interleavings which may
expose bugs in the processor itself.

2.1 Setting Up Your Chisel Workspace

To complete this lab you will log in to an instructional server, which is where you will use Chisel

and the RISC-V tool-chain.
The tools for this lab were set up to run on any of the twelve instructional Linux servers

t7400-1.eecs, t7400-2.eecs, ..., t7400-12.eecs.

6Chisel documentation can also be found within the lab itself. Look under $Lab3Root/chisel/doc/ for more
information.
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First, download the lab materials into your private repo directory:7,8

inst$ cp -R ~cs152/sp14/lab3 ./lab3

inst$ cd ./lab3

inst$ export LAB3ROOT=$PWD

You should make sure to git add this directory structure and commit it to your
repo now, before you generate lots of extra stuff while compiling the emulator

We will refer to ./lab3 as ${LAB3ROOT} in the rest of the handout to denote the location of
the Lab 3 directory.

The directory structure is shown below:

• ${LAB3ROOT}/

– doc/ Useful documentation and related materials.

– csrc/ C++ simulation source code. The out-of-order tracer lives here, as does emulator.cc

– bsrc/ Chisel source code for BOOM.

∗ consts.scala BOOM configuration file. Parameters such as machine width, ROB

size, bypassing-enable, etc.

– emulator/Compiled emulator binaries and object files.

∗ Makefile The Makefile you’ll need to run experiments using the benchmarks

∗ generated-src/ C++ code generated by Chisel for the emulator

· Top.h Declarations of all Chisel signals in C++

∗ output/ results of make run and make run-bmarks-test (CPI etc.)

– riscv-test/ Source code for benchmarks and tests.

∗ benchmarks/ Benchmarks written in C.

· lsu forwarding/ A benchmark you can write for open-ended problem 3.2.

· lsu failures/ A benchmark you can write for open-ended problem 3.2.

∗ riscv-tests/ Tests written in assembly.

– install/ Install directory for tests and benchmarks that are visible to BOOM.

– chisel/ The Chisel source code.

– src/ Chisel code for interfacing BOOM with the surrounding simulator infrastructure

– uncore/ Chisel source code to the uncore (i.e., outside of the “tile”).

– riscv-pk/ Repository of the RISC-V proxy kernel. Serves as the OS for BOOM.

– dramsim2/ A DRAM simulator that the Chisel emulator hooks into.

– sbt/ Chisel/Scala voodoo.

– Makefile The high-level Makefile.

7The capital “R” in “cp -R” is critical, as the -R option maintains the symbolic links used.
8The actual name of the Lab3 directory might have letters appended to it to denote different versions. Newer

versions will be necessary as bugs are ironed out.
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The most interesting items have been bolded:emulator/Makefile to build and test the pro-
cessor, the Chisel source code found in bsrc, and the output files found in emulator/output/.

The following command will set up your bash environment, giving you access to the entire
CS152 lab tool-chain. Run it before each session:9 10

inst$ source ~cs152/sp14/.bashrc

To compile the Chisel source code for BOOM, compile the resulting C++ simulator, and run
all tests and benchmarks, run the following Bash script:

inst$ cd ${LAB3ROOT}/emulator

inst$ make run

To “clean” everything, simply run the same script with an additional parameter:

inst$ make clean

The entire build and test process should take around ten to fifteen minutes on the t7400 ma-
chines.11 The first time you make run, you may have to wait a little longer while the Scala Build
Tool downloads the Chisel compiler.

2.2 Gathering the CPI and Branch Prediction Accuracy of BOOM

For this problem, collect and report the CPI and branch predictor accuracy for the benchmarks
bubble, dhrystone, median, multiply, qsort, towers, and vvadd. You will do this twice for BOOM:
with and without branch prediction turned on. First, turn off branch prediction as follows:

inst$ vim ${LAB3ROOT}/bsrc/consts.scala

Change the lines USE_BRANCH_PREDICTOR and ENABLE_BTB to be set to “false”. Then compile
the resulting simulator and run it through the benchmarks as follows:

inst$ cd ${LAB3ROOT}/emulator

inst$ make run-bmarks-test

inst$ make stats

The make run and make run-bmarks-test commands compile Chisel code into C++ code,
and then compile theat C++ code into a cycle-accurate simulator. Finally, they call the RISC-V
front-end server to start the simulator and run a suite of tests and/or benchmarks, respectively,
on the target processor. The make stats command greps for * in the generated *.riscv.out files in
output/ to display the tracer’s statistics. Try running make run-bmarks-test now.

9Or better yet, add this command to your bash profile.
10If you see errors about “htif pthread.h”, then you probably have an improperly set environment.
11The generated C++ source code is ∼5MB in size, so some patience is required while it compiles.
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Then do it again, but with branch prediction turned on.12

The default parameters for BOOM are summarized in Table 1. While some of these parameters
(instruction window, ROB, LD/ST unit) are on the small side, the machine is generally well fed
because it only fetches and dispatches one instruction at a time, and the pipeline is not very long.13

Table 1: The BOOM Parameters for Problem 2.2.

Default

Register File 64 physical registers

ROB 32 entries

Inst Window 12 entries

LD Queue 8 entries

ST Queue 8 entries

Max Branches 8 branches

Branch Prediction 128 two-bit counters

Issue loads ASAP on

ALU Bypassing off

BTB off

Table 2: CPI for the in-order 5-stage pipeline and the out-of-order “6-stage” pipeline. Fill in the rest of the
table.

bubble dhry median multiply qsort towers vvadd

5-stage (interlocking) 1.90 n/a 2.42 2.00 2.24 1.56 2.75

5-stage (bypassing) 1.37 n/a 2.19 1.68 1.47 1.37 2.31

BOOM (PC+4)

BOOM (BHT)

Table 3: Branch prediction accuracy for predict PC+4 and a simple 2-bit BHT prediction scheme. Fill in
the rest of the table.

bubble dhry median multiply qsort towers vvadd

BOOM (PC+4)

BOOM (BHT)

Compare your collected results with the in-order, 5-stage processor. Notice that BOOM is a

12The default branch predictor provided with BOOM is a branch history table made up of 128 two-bit counters,
indexed by PC.

13Also, by keeping many of BOOM’s data structures small, it keeps compile time fast(er) and allows us to easily
visualize the entire state on the machine when viewing the debug versions of the *.out files generated by simulation.
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6-stage processor (with no bypassing enabled for this problem), so it can be most closely compared
to the in-order, 5-stage with no bypassing (i.e., interlocked). Explain the results you gathered. Are
they what you expected? Was out-of-order issue an improvement on the CPI for these benchmarks?
Was using a BHT always a win for BOOM? Why or why not? (Don’t forget to include the accuracy
numbers of the branch predictor!).14

Additional Notes: Jump-and-Link-Register (JALR) is included in the branch accuracy statis-
tics, while Jump-and-Link (JAL) is not. Jump-and-Link (JAL) is handled perfectly by the front-
end15, while JALR is always predicted as not taken.16 The CPI is calculated at the Commit stage.
Finally, the branch predictor accuracy is calculated based on the signals in the Execute stage, which
means that the reported accuracy is also including misspeculated instructions.17

2.3 Bottlenecks to performance

Building an out–of–order processor is hard. Building an out–of–order processor that is well balanced
and high performance is really hard. Any one piece of of the processor can bottleneck the machine
and lead to poor performance.

For this problem you will set the parameters of the machine to a low-featured “worst-case”
baseline (see Table 4).

Table 4: BOOM Parameters: worst-case baseline versus “default” for the rest of the lab questions.

Worst-case Default

Register File 33 physical registers 64 physical registers

Branch Prediction off 128 two-bit counters

Branch Target Buffer off 4 entries

Issue loads ASAP off on

ALU Bypassing off on

Begin by setting BOOM to the values in the “worst-case” column from Table 4. All of the
necessary parameters can be found in bsrc/consts.scala.18

Run the benchmarks (make run-bmarks-test; make stats) to collect the data for the first
row in Table 5. The performance should be dreadful. And when you see an error, don’t panic.19

14Hint: when a branch is misspredicted for BOOM, what is the branch penalty?
15Once the JAL instruction returns from the instruction cache, the front-end can quickly decode it, calculate

the target address, and redirect the PC. The JAL continues towards the backend where it is treated as a NOP, its
execution already handled by the front-end!

16This is a sign that yours truly needs to build a Return Address Stack to properly predict JALR instructions.
17The branch predictor itself is updated in the Commit stage.
18The exact name of the variables, in order, are “PHYS REG COUNT”, “USE BRANCH PREDICTOR”, “EN-

ABLE BTB”, “ENABLE SPECULATE LOADS”, and “ENABLE ALU BYPASSING”.
19You will probably see Dhrystone throw an error. Upon inspecting emulator/output/dhrystone.riscv.out, you

should see that Dhrystone timed out. This is normal (it just ran that slow!). The CPI measurements are still valid
and you can move on with the rest of the experiment.
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Table 5: CPI for the in-order 5-stage pipeline and the out-of-order “6-stage” pipeline. Gradually turn on
additional features as you move down the table. Fill in the rest of the table.

bubble dhry median multiply qsort towers vvadd

5-stage (interlocking) 1.90 n/a 2.42 2.00 2.24 1.56 2.75

5-stage (bypassing) 1.37 n/a 2.19 1.68 1.47 1.37 2.31

BOOM (worst case baseline)

BOOM (64 regs)

BOOM (BHT & BTB)

BOOM (fast loads)

BOOM (bypassing)

Now we will slowly add back the features we took away. For the 2nd row, return the physical
register count to 64 registers (from 33), and rerun the benchmarks (thought problem: why is 33
registers the smallest allowed amount?)20

For the 3rd row, add back branch prediction (both the BHT and the BTB). Then for the 4th
row add back load speculation (without load speculation, the loads will execute in order). And
for the last row, enable ALU bypassing (the last row in the table should have all of the “default”
values set).

Collecting this data is pretty straight-forward but admittedly time consuming (~5-10 minutes
per row in the table), so do walk away from the computer, go outside, get coffee, or watch Arrested
Development while your computer hums away. The idea here is to get a feel for the performance
numbers when certain features are missing. But not to worry, the lab picks up very quickly in the
next section!

2.4 Chisel: Analyzing the Issue Window, Part I

So far, you have been running BOOM in single-issue mode; all stages of the pipeline handle only
a single instruction at a time. However, it is more than possible to implement an out-of-order
processor that allows different stages to handle different amounts of instructions at a time (for
example, committing two instructions at a time for a single-issue machine makes a considerable
amount of sense. Why?21).

In fact, for this problem, your TA is wondering “Just how much performance is being left on
the table by only allowing one instruction to be issued out of the Issue Window at a time?”

Your job is to quantify this, and answer your TA’s question.
You will solve this question by writing C++ code in the “Out–of–Order Tracer” object that

probes the state of BOOM every cycle. The OOOTracer object is found in ${LAB3ROOT}/csrc/

oootracer.cpp/.h. It is the same Tracer object you saw in Lab 1, with a few modifications. For
this question, you will add any counters you need in the appropriate locations.22 The main piece

20Answer: the ISA has 32 registers, and you need one additional register to act as a temporary once you have
allocated all of the ISA registers.

21Answer: because waiting on hazards to resolve can back the machine up, potentially making the ROB commit
the bottleneck.

22Grep for “Step”.
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of your logic will go into the Tracer_t::monitor_issue_window() function. Read the instruc-
tions provided in $LAB3ROOT/csrc/oootracer.cpp for additional information. See Appendix A
for details on how the Issue Window works.

To answer this question, count the number of cycles in which at least two issue slots
are requesting to be issued. Make sure you are only counting cycles in which “Tracer.paused”
is not asserted. Some sample code is provided in Tracer_t::monitor_issue_window() to show
how to detect that issue slot #0 is “valid”.

Also, make sure to edit consts.scala and set FETCH_WIDTH equal to 2. The reason for
doing this is that the limited fetch bandwidth of a one-wide machine will make the apparent benefit
of dual-issue artificially small.23

For all benchmarks, report how many cycles contain two instructions requesting to be issued.
Do you think it would be beneficial to issue up to two instructions every cycle out of the issue
window?

2.5 Chisel: Analyzing the Issue Window, Part II

Issuing two instructions simultaneously could be very expensive: it would require adding two more
read ports and a third write port to the register file to handle the worst case of two ALU operations
being issued and writing back in the same cycle that a load from memory comes back.

Instead, your TA proposes to issue two instructions simultaneously if and only if one instruction
is an ALU operation and the second instruction is a memory operation. This will require adding
a second ALU to perform address calculations, and an additional read port to read out the base
address or store data required for load and store micro-ops.

To answer this question, augment your previous C++ probing code by checking the micro-op
code, or “uopc” tag, on each issue slot (See Figure 3): count the number of cycles in which
at least one ALU micro-op and one memory micro-op requests to be issued. The values
of each “uopc” can be found in bsrc/consts.scala (roughly lines 192-64).

Consider any non-Load and non-Store to be an ALU operation, for the purposes of this question.
Report your results for the benchmarks, and submit your code via Github. Having collected

data for Sections 2.4 and 2.5, what is your final recommendation on supporting multiple issue in
BOOM? Is single-issue out of the Issue Window good enough, or would ALU/Mem dual-issue or
even full dual-issue be worth the added costs?

2.6 Chisel: Analyzing the Issue Window, Part III

Now that you’ve analyzed the theoretical benefit of wider issue, you can see how much actual
performance the current BOOM implementation manages to gain from going two-wide. Open up
consts.scala once more and set ISSUE_WIDTH equal to two. Now run make run and look at the
new CPIs. How much did performance actually improve?

23Imagine, a program containing only addi instructions with no dependencies. Each instruction will be removed
from the issue window as soon as it is put there, and so there will never be more than one requesting instruction at
any time). However, if instructions were fetched in pairs, it would become obvious that two instructions could be
issued every cycle.
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3 Open-ended Portion

All open-ended questions should use the following parameters, as shown in Table 6 (unless otherwise
specified).

Table 6: The Default BOOM Parameters for the Open-ended Questions.

Default

Fetch Width 1 wide

Issue Width 1 wide

Register File 64 physical registers

ROB 32 entries

Inst Window 12 entries

LD Queue 8 entries

ST Queue 8 entries

Max Branches 8 branches

Branch Prediction 128 two-bit counters

Issue loads ASAP on

ALU Bypassing on

3.1 Designing Issue-select Policies

You are a new employee at Processors-R-Us charged with analyzing and improving the performance
of your company’s latest processor. Under heavy pressure to make the looming tape-out deadline
(contracts with your customers are pretty strict), the lead architect and your boss, Chris, decided
to cut corners on the issue window and copied the MIPS R10K’s simple issue-select scheme.24

However, you believe you can come up with a better design in time for the impending tape-out
(and also make the lawyers happy).

Issue-select is a critical part of an out-of-order processor. After decode and rename, micro-ops
sit in the issue window waiting for their operands to become ready. Once ready, micro-ops then
request to be issued. However, many more micro-ops may be requesting than can be issued. The
role of the issue-select policy is to choose which of the possible requesting micro-ops
should be issued. Your job for this question will be to design, implement, and experiment with
different issue-select policies in Chisel.

Currently, BOOM mimics the MIPS R10K’s policy - micro-ops are selected based on their static
position in the issue window and not based on age or other metrics. Considering that Micro-ops
are inserted into the issue window wherever an empty slot exists, one can imagine that this policy
is very suboptimal!25

An intern has recently added to BOOM a new “two-level issue-select” scheme, and he suggests
you can use this to implement a better issue-select policy. Each issue slot now provides two
request bits - a request signal that denotes the micro-op is requesting to be issued, and a request hp

24This hypothetical is in no way auto-biographical.
25Chris should have first taken a quick look at the MIPS R12K, the successor to the R10K. If he had, he would

have found out that one of the few things changed was the move to an aged-based issue-select policy!
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Figure 2: The issue logic and execution pipeline for a single-issue pipeline. For Question 3.1, you will modify
the logic in the issue window slot.

signal to denote that the request is “high priority”. The issue-select logic first selects amongst
all “high priority” requestors before then filling any remaining issue ports from the “low priority”
requestors.26

Your job is to modify the logic in the issue window slot that generates the high priority
signal. In doing so, you can change the policy of which micro-ops will get picked first by the issue-
select logic!

There are a lot of possible schemes for choosing high priority. The intern suggests that branches
should be given high priority. His theory is that mispredicted branches are expensive, so it is best to
resolve branches as soon as possible to prevent too much misspeculated work from being executed.
Another idea of his is to give priority to load instructions, as they are longer latency instructions
that may require a trip to DRAM to resolve. Another co-worker suggests trying psuedo-age priority.
For that, she explains, each micro-op counts how many cycles it’s been sitting in the issue window;
once it’s been sitting for “too long” (a tunable parameter), it then asserts high priority. “Randomly
assigning high priority may also be interesting!” exclaims another co-worker.

To implement giving branches high priority, open the issue.scala code in the BOOM source
directory. Search for “High Priority Request” (around lines 150- this is the code for the issue slot).
Set the high priority variable to check if the slot’s micro-op is a branch or jump:

high priority := slotUop.is br or jmp

26A very common approach amongst modern, high-performance out-of-order processors is to use a “collapsing”
queue. New instructions are inserted at the bottom of the queue, and the instructions are issued in priority starting
from the top of the queue. As instructions are issued, the queue shifts all the instructions up to fill in the gaps. In
this manner, the issue-select is biased to picking the oldest ready instructions first. As one can imagine, a collapsing
queue is both very power hungry and very tough on the critical path of the processor. For BOOM a much simpler
two-level scheme was chosen, which does not require the complications of moving micro-ops around.

13



Take a look in dpath.scala for the definition of the MicroOp bundle (around lines 120-170).
There you can see all of the information stored in a micro-op bundle that may be useful for this
problem (e.g., is load tells you if the micro-op is a load instruction).

For this project you should explore a number of ideas (try and be creative). Some of your ideas
(such as age-based schemes) will require a parameter sweep to find the optimal tuning parameters.
Provide data on which schemes worked and which schemes did not, and explain your theories on
why each scheme performed the way it did. And finally, which scheme do you propose to your team
as what should be used for the next tape-out?

To help shed insight into the effects of issue-select logic, you should run your designs on two
different versions of BOOM:

Table 7: New BOOM parameters for use with the issue-select policy question.

Single Issue Dual Issue

Issue Width 1 2

Fetch Width 2 2

In both cases, BOOM will be fetching/decoding/rename/dispatching two instructions every
cycle. But for the single-issue version, one can imagine which micro-op you choose to issue will be
even more important because of the mismatch between fetch bandwidth and issue bandwidth (lots
of micro-ops should be getting backed up in the issue window!). See Appendix E for some starting
information on writing Chisel code.

Caveats: this is a new feature running on real RTL running on very small benchmarks - we
cannot promise that the results you get will be interesting! Also, the initial state of the hardware
is random and as such, rerunning the benchmarks can provide different performance results each
time. You should probably average multiple runs together and have error bars on your graphs to
properly establish your designs are providing a statistically significant change in performance! And
it’s okay if your designs do not work out (we care more about your effort and insight).
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3.2 Writing torture benchmarks: create code that exercises different features
in the LSU.

The goal of this open-ended assignment is to purposefully design a set of benchmarks which stress
different parts of BOOM. This problem is broken down into two parts:

• Write two benchmarks to stress the Load/Store Unit

• Write a benchmark(s) to introspect a parameter within BOOM

3.2.1 Part 1: Load/Store Unit Micro-benchmarks

You may have noticed that many of the benchmarks do not use all of the (very complicated)
features in the Load/Store Unit. For example, few benchmarks perform any store data forwarding.
For this part, you will implement two (small) benchmarks, each attempting to exercise a different
characteristic.

• Maximize store data forwarding

• Maximize memory ordering failures

As a reminder, “store data forwarding” is when a load is able to use the data waiting in the
store data queue (SDQ) before the store has committed (there is a store->load dependence in
the program). A memory ordering failure is when a load that depends on a store (a store->load

dependence) is issued to memory before the store has been issued to memory - the load has received
the wrong data.

There is no line limit for the code used in this problem. Each benchmark must run for at least
twenty thousand cycles (as provided by the SetStats() printout).

Two skeleton benchmarks are provided for you in riscv-tests/benchmarks/lsu_forwarding/

and riscv-tests/benchmarks/lsu_failures/. To build and test them under the RISC-V ISA
simulator:

inst$ cd ${LAB3ROOT}/riscv-tests/benchmarks/

inst$ make run

Once you are satisfied with your code and would like to run it on BOOM, type:

inst$ cd ${LAB3ROOT}/riscv-tests/benchmarks/

inst$ make; make run-riscv

... to compile your benchmarks and run them on the ISA simulator.27

Finally, you can run BOOM as usual:

inst$ cd ${LAB3ROOT}/emulator

inst$ make run-bmarks-test

27See Appendix F for more information on how to add a new benchmark (aside from lsu forwarding,
lsu failiures, or param introspection) to the benchmark suite and run it on BOOM.
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Be creative! When you are finished, submit your code via Github. In your report, discuss some
of the ideas you considered, and describe how your final benchmarks work.

Finally, it is possible that you may uncover bugs in BOOM through your stress testing: if you
do, consider your benchmarking efforts a success! (save a copy of any offending code and let your
TA know about any bugs you find).

How to use the benchmark templates We’ve provided a basic template for your bench-
mark codes in this section as C source files in riscv-tests/benchmarks/lsu_forwarding/lsu_

forwarding.c and in analogous locations for the other two parts of this problem. If you open up
this file, you’ll notice that it contains a main() function that calls setStats() before and after
calling a function called benchmark():

//--------------------------------------------------------------------------

// the main computations

//

// Call functions, run highly nested loops, write inline assembly... go crazy.

// Just be sure to look at the objdumps to make sure the compiler is not

// undoing your work.

__attribute__ ((noinline)) void benchmark()

{

// maximize store-data forwarding

}

The comment instructs you to check that the compiler hasn’t undone your work. This means
you should examine the automatically-generated disassembly file, in this case lsu_forwarding.

riscv.dump 28, and verify that the assembly code is what you’d expected.
If your code involves new functions, you might want to make sure the compiler isn’t inlining them

and optimizing away the function calls. This property is assured for the benchmark() function via
the addition of the __attribute__ ((noinline)) directive, and you can use this for your functions
too. Assuming it’s not optimized away, you can find your function in the disassembly by grepping
for “function-name>:”.

You should be able to use printfs to debug your code. It is highly recommended that you
debug your benchmark using make run-riscv in the benchmarks directory before you try running
on BOOM, since the former is a much faster method of testing.

3.2.2 Part 2: Parameter Introspection

Now the real challenge! Pick a non-binary parameter in BOOM’s design and try to discover its
value via a benchmark you design and implement yourself!

The basic strategy is as follows. Step 1) implement a micro-benchmark that stresses a certain pa-
rameter of the machine and measure the machine’s performance. Step 2) go into bsrc/consts.scala
to change the parameter you are studying, and rerun your benchmark. Step 3) Repeat to gather

28You can always use the RISC-V disassembly tool, riscv-objdump -D lsu forwarding.riscv, to generate this
output manually.
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more results. Step 4) Build a model to describe how performance is affected by modifying your
parameter.

Your model should be good enough that the TA can take your model and benchmark, run it on
a machine and discover the value of the parameter in question without knowing its value a priori
(even better if the TA can change other parameters of the machine so your model is not simply a
lookup table).

Here are a set of parameters to choose from:29

• ROB size

• Number of physical registers

• Maximum number of branches

• Number of issue slots

• Number of entries in the load and store queues

• Number of entries in the fetch buffer

• Number of entries in the BHT

• Data cache associativity

Submit your code, describe how it works, and what ideas you explored. Also submit your data
and your model showing how well it works on BOOM.

Naturally, this is a challenging task. The goal of this project is to make you think very carefully
about out-of-order micro-architecture and write code to defeat the processor. There may not
necessarily be a “clean” answer here.

Warning: not all parameters are created equally. Some will be harder challenges than others,
and we cannot guarantee that all parameters will be doable. But with a dose of cleverness, you
might be surprised what you can discover! (especially when you can white-box test your ideas).

29You may not use cache size(number of sets) as a parameter, as that is too easy.
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A Appendix: The Issue Window

Figure 3 shows a single issue slot from the Issue Window.30

Instructions (actually they are “micro-ops” by this stage) are dispatched into the Issue Window.
From here, they wait for all of their operands to be ready (“p” stands for presence bit, which marks
when an operand is present in the register file).

Once ready, the issue slot will assert its “request” signal, and wait to be issued. Currently,
BOOM uses a fixed priority encoding to give the lower ID entries priority. Question 3.1 covers a
two-level issue select scheme in which uops asserting a high priority request are selected first, before
choosing from the remaining, lower priority requestors.

ready

UOP Code BrMask RS1 p1RDstCtrl...

WD
es
t0

WD
es
t1

=
=

RS2 p2

=
=

(From the register file's two write ports)

Resolve
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Val
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Control Signals
Physical 
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Register

Physical Source
Registers

Figure 3: A single issue slot from the Issue Window.

30Conceptually, a bus is shown for implementing the driving of the signals sent to the Register Read Stage. In
reality, for now anyways, BOOM actually uses muxes.
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B Appendix: The BOOM Source Code

The BOOM source code can be found in {LAB3ROOT}/bsrc.
Some of the code structure is shown below:

• bsrc/

– consts.scala All constants and adjustable parameters.

– tile.scala The tile, instantiates memory and the core.

– core.scala The top-level of the processor core component.

– issue.scala The issue-window and associated issue-select logic.

– icache.scala Instruction cache.

– dpath.scala Main chunk of the BOOM datapath and control code.

– brpredictor.scala Branch predictor. Uses a table of n-bit history counters.

– prefetcher.scala Data prefetcher.

– decode.scala Decode table.

– rename.scala Register renaming logic, map tables, and free-list logic.

– rob.scala Re-order Buffer.

– lsu.scala Load/Store Unit.

– dcachewrapper.scala Instantiates the DC and translates into OoO-speak.

– functional unit.scala Encapsulates the functional units.

– execute.scala Logic that ties functional units together into execution units.

– util.scala Some helpful utility functions.

C Appendix: How to Read Chisel Signals in the C++ Test-
Harness Code

In this lab, we will be exercising the C++ tool-flow of Chisel (Chisel can also emit a Verilog
version of a design). Often, whether for debugging purposes or for instrumentation, we will often
want to probe the state of a Chisel design from the C++ test-harness.

As an example, let’s probe the “micro-op opcode” signal (“uop code”, or “uopc”) that is stored
in the issue slot of the Issue Window (see Figure 3). If we look through the Chisel code of BOOM,
we see that the IntegerIssueSlot component is what describes the issue slot, and that it contains
the variable slotUop.31 The slotUop is a Chisel “Bundle”, or group of signals (think “struct”
in C). We can see the definition of the “MicroOp” bundle in dpath.scala, near lines 50-100.
One of the field variables within the bundle is uopc: this is the “micro-op opcode”. Thus, the
“uopc” within the issue slot would be “slotUop.uopc” in Chisel, or slotUop uopc once it has been
generated into C++ code. The slotUop signal is a Reg type, or register, and is written to on the
positive-edge of the clock signal when the issue slot’s write-enable signal is asserted.

Each IntegerIssueSlot component is instantiated inside the DatPath component, which itself
is instantiated inside the Core component, which in turn is instantiated inside the BoomTile com-
ponent, which in turn is instantiated inside the Top component (phew!). When Chisel generates
the resulting C++ code, the signal slotUop uopc contains its entire parentage in its name-mangled
C++ name.

31The code for the issue slot can be found in bsrc/dpath.scala, near lines 200-300.
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C.1 Finding the C++ Variable

The best way to find the C++ variable name for slotUop uopc is to look through the gener-
ated C++ code in ${LAB3ROOT}/emulator/generated-src/Top.h, which holds all Chisel signals.
Grepping for slotUop uopc we find the variables:

dat_t<9> Top_BoomTile_core_dpath_issue_unit_IntegerIssueSlot_6__slotUop_uopc;

dat_t<9> Top_BoomTile_core_dpath_issue_unit_IntegerIssueSlot_6__slotUop_uopc_shadow;

dat_t<9> Top_BoomTile_core_dpath_issue_unit_IntegerIssueSlot_5__slotUop_uopc

Top_BoomTile_core_dpath_issue_unit_IntegerIssueSlot_5__slotUop_uopc_shadow;

etc....
First, since there are 8 issue slots in BOOM by default, we will find 4 chunks of “slotUop uopc”

signals. Chisel will automatically add 1,2,3... to the component’s name when it finds multiple
instantiations of it. Second, we see the full path name to slotUop uopc: the top-level module is
“Top”, followed by “BoomTile”, “core”, “d” (for datapath), and finally “IntegerIssueSlot.”

Third, we see an additional version of the slotUop uopc variable: a shadow version. You can
safely ignore these variables.32

C.2 Reading out the value from the C++ Variable

Although we have now found the variable we are interested in
(Top_BoomTile_core_dpath_issue_unit_IntegerIssueSlot_0__slotUop_uopc,
Top_BoomTile_core_dpath_issue_unit_IntegerIssueSlot_1__slotUop_uopc, etc.), we can see
that it is of type dat_t<9>. This is a special templated class type that encapsulates all Chisel
variables. In this case, it is describing an 9-bit wide value. The problem is we may occasionally
want to describe variables of over 128 bits in our Chisel design, but natively C and C++ can only
handle double the size of the native host machine’s register. Thus, Chisel uses its own data-type
class which maps to an array of uint64 t variables under the hood.

The important thing to know is that we can use the function .lo word() to pull out the lowest
64-bits from a dat t<> variable.

Top_t *tile = new Top_t(); // instantiate our Chisel design

uint64_t slot0_uopc = tile->Top_BoomTile_core_dpath_issue_unit_IntegerIssueSlot_0_slotUop_uopc.lo_word();

uint64_t slot1_uopc = tile->Top_BoomTile_core_dpath_issue_unit_IntegerIssueSlot_1__slotUop_uopc.lo_word();

etc...

D Appendix: The Load/Store Unit

The Load/Store Unit is responsible for deciding when to fire memory operations to the memory
system. There are three queues: the Load Address Queue (LAQ), the Store Address Queue (SAQ),
and the Store Data Queue (SDQ). Load instructions generate a “uopLD” micro-op. When issued,
“uopLD” calculates the load address and places its result in the LAQ. Store instructions generate
two micro-ops, “uopSTA” (Store Address Generation) and “uopSTD” (Store Data Generation).

32They exist because slot uopc is a register. On clock lo the shadow version is updated, and on clock hi the
regular version is updated to the shadow version’s value.
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The STA micro-op calculates the store address and places its result in the SAQ queue. The STD
micro-op moves the store data from the register file to the SDQ. Each of these micro-ops will issue
out of the Issue Window as soon their operands are ready.

D.1 Store Instructions

Entries in the Store Queue33 are allocated in the Decode stage (the appropriate bit in the stq entry val

vector is set). A “valid” bit denotes when an entry in the SAQ or SDQ holds a valid address or
data (saq val and sdq val respectively). Store instructions are fired to the memory system at
Commit; the ROB notifies the Store Queue when it can fire the next store. By design, stores are
fired to the memory in program order.

D.2 Load Instructions

Entries in the Load Queue (LAQ) are allocated in the Decode stage (laq entry val). In Decode,
each load entry is also given a store mask (laq st mask), which marks which stores in the Store
Queue the given load depends on. When a store is fired to memory and leaves the Store Queue,
the appropriate bit in the store mask is cleared.

Once a load address has been computed and placed in the LAQ, the corresponding valid bit is
set (laq val).

Loads are optimistically fired to memory on arrival to the LSU (getting loads fired early is a
huge benefit of out–of–order pipelines). Simultaneously, the load instruction compares its address
with all of the store addresses that it depends on. If there is a match, the memory request is killed.
If the corresponding store data is present, then the store data is forwarded to the load and the load
marks itself as having succeeded. If the store data is not present, then the load goes to sleep. Loads
that have been put to sleep are woken up later. Once the sleeping load is at the head of the LAQ,
it is retried.34

D.3 Memory Ordering Failures

The Load/Store Unit has to be careful regarding store->load dependences. For the best perfor-
mance, loads need to be fired to memory as soon as possible.

sw x1 -> 0(x2)

ld x3 <- 0(x4)

However, if x2 and x4 reference the same memory address, then the load in our example depends
on the earlier store. If the load issues to memory before the store has been issued, the load will
read the wrong value from memory, and a memory ordering failure has occurred. On an ordering
failure, the pipeline must be flushed and the rename map tables reset. This is an incredibly
expensive operation.

To discover ordering failures, when a store address is computed and enters the SAQ, it checks
the entire LAQ for any address matches. If there is a match, the store checks to see if the load

33When I refer to the Store Queue, I really mean both the SAQ and SDQ.
34Higher performance processors will track why a load was put to sleep and wake it up once the blocking cause

has been alleviated.
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has executed, and if it got its data from memory or if the data was forwarded from an older store.
In either case, a memory ordering failure has occurred. The ordering failure information is sent
to the ROB and the load is marked as having thrown an exception (a memory ordering failure is
treated as an exception, as it requires clearing the pipeline, resetting the map tables, and retrying
the load).

See Figure 4 for more information about the Load/Store Unit.
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E Appendix: Some Notes on Writing Chisel Code

Some questions in this lab require writing Chisel code. Here is a short write-up on getting started.
See https://chisel.eecs.berkeley.edu for more information.

Chisel has three important signal types. One is Bool(), which unsurprisingly holds a single
boolean value. Use this for true/false control signals and state. The UInt(width=n) type holds an
unsigned integer that is n bits wide. Raw bits that don’t have any meaning as an integer should
be stored with the Bits(width = n). New signals can be declared as follows:

val my_bits = Bits(width = 4)

my_bits := Bits(0) // hard-wire my_bits to zero

val msb_is_hi = my_bits(3) === Bits(1)

In the above example, the my_bits is declared as a wire of width 4, and then hard-wired to 0.
The Chisel operator := wires one signal to another, whereas the single = is a Scala operator that
assigns a value to a Scala variable. So the above code declares a new Scala value, my_bits, that
contains a new instance of a Chisel wire of width four.

The msb_hi signal is a Bool() that is true when the MSB of my_bits is hi (so, in this case, it’s
always false).

The operator signal(i, j) extracts the ith through jth bits of signal. my_bits(3, 0) would
extract all bits of my_bits, for example. You can use the triple-equals comparison operator === to
check if two signals are equal to each other.

To add new registers, you can use the Chisel Reg() keyword:

val counter = Reg(init=UInt(0, width=4))

counter := counter + UInt(1)

This code declares a register called counter that stores 4-bit unsigned integer values, and then says
that the register is to be incremented by one on every clock cycle. Because the register is only four
bits wide, it will overflow to zero in 16 cycles. You can control when new values are assigned to a
register using a when statement:

when(slotUop.is_ret) {

counter := counter + UInt(1)

}

This only increments the counter when the uop in its slot is a function return instruction.
This should be enough Chisel advice to get you through this problem. You’ll likely find

it helpful to glance at some other Chisel code while you work, particularly in issue.scala and
dpath.scala. Note how the fields of the MicroOp bundle are declared at the beginning of dpath.scala.
You can find more documentation on Chisel at https://chisel.eecs.berkeley.edu/.

F Appendix: Adding a New Benchmark

For some of these questions, you will either need to create new benchmarks, or add existing bench-
marks to the build system.
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F.1 Creating a new benchmark

The source code for all benchmarks can be found in test/riscv-bmarks/. Each benchmark is
given its own directory. To create a new benchmark, it is easiest to copy an existing benchmark
directory.

inst$ cp -r vvadd my_new_bench

inst$ cd my_new_bench; ls

bmark.mk dataset1.h vvadd_gendata.pl vvadd_main.c

First, open bmark.mk. You will want to find and replace all instances of “vvadd” with “my new bench”.
If your benchmark requires multiple C files, add them to vvadd c src. Likewise, any assembly files
can be added to vvadd riscv src. The build system should be able to take care of actually building
and linking your different source files.

The vvadd benchmark has a Perl script vvadd gendata.pl to generate a random input set of
arrays, which are stored in dataset1.h. This removes the processor from having to generate and
test its own input vectors. You can safely ignore these files (or repurpose them for your own use).

The vvadd main.c file holds the main code for vvadd. Rename this file to fit the file name
declared in bmark.mk (probably my new bench main.c). Now you can add your own code in
here. You can delete pretty much everything except for the vital setStats(int) function. The
setStats(int) turns on and off the statistic tracking used by oootracer.*. Note: setStats() should
only be called twice in your benchmark, as only the last set of data will be stored by oootracer.*.
Note also that the value returned from main() will indicate to the proxy-kernel whether or not the
test was a success (return 0 for success or an error code of your choice on failure).

F.2 Adding a benchmark to the build system

Once you are happy with your new benchmark, you need to modify two Makefiles. First, open
riscv-test/benchmarks/Makefile, and find the bmarks variable. Add “my new bench” to the
listing. You can now build your benchmark and test it on the ISA simulator.

inst$ make; make run;

Once you are satisfied, you must “install” the benchmark to install/riscv-bmarks. This is
where BOOM looks for benchmarks to run.

inst$ make install

One final Makefile modification is required. Open ${LAB3ROOT}/Makefrag and find the vari-
able global bmarks. Add your benchmark to this variable as well but make sure to add the
extension .riscv. Now running make run-bmarks-test in emulator/ will run your benchmark
on BOOM as well!
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