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ABSTRACT

In this paper we 1ntroduce a new paradigm, Random Sample Consensus
(RANSAC), for fitting a model to experimental data. RANSAC 1s capable
of interpreting/smoothing data containing a significant percentage of
gross errors, and thus is 1deally suited for applications in automated
image analysis where Interpretation is based on the data provided by
error-prone feature detectors. A major portion of this paper describes
the application of RANSAC to the Location Determination Problem
(LDP): given an 1image depicting a sgset of landmarks with known
locations, determine that point 1n space from which the 1image was
obtained. In response to a RANSAC requirement, we derive new results on
the minimum number of landmarks needed to obtain a solution, and present
algorithms for computing these minimum=-landmark solutions in closed
form. These results provide the basis for an automatic system that can
solve the LDP under difficult viewlng and analysis conditions.

Implementation detalls and computational examples are also presented.
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I INTRODUCTICHN

In this paper we introduce a new paradigm, Random Sample Consensus
(RANSAC), for fitting a model to experimental data; and we illustrate
its use in scene analysis and automated cartography. The application
discussed, the location determination problem (LDP), is treated at a
level beyond that of a mere example of the use of the RANSAC paradigm;
we present new basic findings concemming the conditions under which the
LDP can be solved, and describe a comprehensive approach to the solution
of this problem that we anticipate will have near-term practical

applications.

To a large extent, scene analysis (and in fact, science in general)
is concerned with the interpretation of sensed data in terms of a set of
predefined models. Conceptually, interpretation involves two distinct
activities: first, there 1is the problem of £finding the best mnmatch
between the data and one of the available models (the classification
problem); second, there is the problem of computing the best values for
the free parameters of the selected model (the parameter estimation
problem). In practice, these two problems are not independent--a
solution to the parameter estimation problem is often required to solve

the classification problem.

Classical techniques for parameter estimation, such as '"least

squares,"

optimize (according to a specified objective function) the fit
of a functional description (model)} to ALL of the presented data. These
techniques have no internal mechanisms for detecting and rejecting gross
errors. They are averaging techniques that rely on the assumption (the
"smoothing assumption”)} that the maximum expected deviation of any datum
from the assumed model 1s a direct function of the size of the data set,
and thus regardless of the size of the data set, there will always be

enough "good" values to "smooth ocut" any gross deviationms.

In many practical parameter estimation problems the smoothing

assumption does not hold; that is, the data contalns uncompensated gross .



errors. To deal with this situation, a number of heuristics have been
proposed. The technique usually employed is some variation of the idea
of first using all the data to derive the model parameters; next, locate
the datum that i1s farthest from agreement with the instantiated model,
assume that it 1s a gross error, delete 1t, and iterate this process
until either the maximum deviation 1s less then some preset threshold,

or until there 1s no longer sufficient data to proceed.

It can easily be shown that a single gross error .("poisoned
point"), mixed in with a set of good data, can cause the above heuristie
to fail (for example, see Figure 1). It is our contention that

averaging 1s not an appropriate technique to apply to an "unverified"

data set.

In the following section we introduce the RANSAC paradigm, which is
capable of smoothing data that contains a significant percentage of
gross errors. This paradigm 41s particularly applicable to scene
analysis because local feature detectors, which of ten make mistakes, are
the source of the data provided to the interpretation algorithms. Local
feature detectors make two types of errors=-classification errors and
measurement errors. Classification errors occur when a feature detector
incorrectly identifies a portion of an 1image as an occurrence of a
feature. Measurement errors occur when the feature detector correctly
identifies the feature, but slightly miscalculates one of 1its parameters
(e.g., 1ts image location). Measurement errors generally follow a
normal distribution, and therefore the smoothing assumption applies to
them. Classification errors, however, are gross errors because they
have a siénificantly larger effect than measurement. errors and they do

not average out.

In the final sections of this paper we discuss the application of
RANSAC to the locatilon determination problem:

Given a set of "landmarks" ("control points"), whose
locations are known in some coordinate frame, determine
the location (relative to the coordinate frame of the
landmarks) of that point in space from which an image of
the landmarks was obtained.



In response to a RANSAC requirement, we £irst derive . some new
results on the minimum number of landmarks needed to obtain a solution,
and then present algorithms for computing these mipnimum~landmark
gsolutions in closed form. (Conventional techniques are iterative and
require a good initial guess to assure convergence.) These results form
the basis for an automatic system that can solve the LDP under severe
viewing and analysis conditions. In particular, the gystem performs
properly even i1f a significant number of the landmarks are incorrectly
located due to low visibility, terrain changes, or image analysis
8rrors. Implementation details and experimental results are presented

to complete our description of the LDP application.

II RANDOM SAMPLE CONSENSUS

The philosophy of RANSAC 1is opposite to that of conventional
smoothing techniques--rather than using as much of the data as possible
to obtain an initial sclution and then attempting to eliminate the
invalid data points, RANSAC uses as small an initial data set as
feagsible and enlarges this set with consistent data when possible. For
example, given the task of fitting am arc of a circle to a set of two-
dimensional points, the RANSAC approach would be to select a set of
three points (since three points are required to determine a circle),
compute the center and radius of the implied circle, and count the
number of points that are close enough to that circle to suggest their
compatibility with it (i.e., their deviations are small enough to be
measuremené Errors). If there are enough compatible points, RANSAC
would employ a smoothing technique, such as least squares, to compute an
improved estimate for the parameters of the circle now that a set of

mutually consistent points has been identified.

The RANSAC paradigm is more formally stated as follows:

Given a model that requires a minimum of n data points to
instantiate its free parameters, and a set of data points P
such that the number of points in P is greater than n

(#(P) > n), randomly select a subset Sl of n data points



from P and instantiate the model. Use the instantiated
model M1l to determine the subset S1* of points in P that
are within some error tolerance of Ml. The set Sl* ig
called the consensus set of S1.

If #(S1*) is greater than some threshold t, which is a
function of the estimate of the number of gross errors in P,
use S51* to compute (possibly using least squares) a new
model M1*,

If #(S1*) is less than t, randomly select a new subset 52
and repeat the above process. If, after some predetermined
number of trials, no consensus set with t or more members
has been found, either solve the model with the largest
consensus set found, or terminate in failure.

There are two obvious improvements to the above algorithm: first,
if there is a problem~related rationale for selecting points to form the
5°s, use a deterministic selection process instead of the random one;
second, once a suitable consensus set S$* has been found and a model M*
instantiated, add amy new points from P that are consistent with M* to

S* and compute a new model on the basis of this larger set.

The RANSAC paradigm contains three unspecified parameters: (1) the
error tolerance used to determine whether or not a point is compatible
with a model, (2) the mumber of subsets to try, and (3) the threshold t,
which is the number of compatible points used to imply that the correct
model has been found. We discuss methods for computing reasonable

values for these parameters in the following subsections.

A. Error Tolerance For Establishing Datum/Model Compatibility

The deviation of a datum from a model is a function of the error
assoclated with the datum and the error assoclated with the model
(which, 1n part, is a function of the errors assoclated with the data
used to instantiate the model) . If the model is a simple function of
the data polnts, it may be practical to establish reasomable bounds on
error tolerance analytically., However, this straightforward approach is
often unworkable; for such cases it is generally possible to estimate

bounds on error tolerance experimentally. Sample deviations can be’



produced by perturbing the data, computing the model, and measuring the

implied errors. The error tolerance could themn be set at one or two

standard deviations beyond the measured average error.

The expected deviatlion of datum from an assumed model islgenerally
a function of the datum and, therefore, the error tolerance should be
different for each datum. However, the varlation in error tolerances is
usually relatively small compared to the size of a gross error. Thus, a

single error tolerance for all data is often sufficient.

B. The Maximum Number of Attempts to Find a Consensus Set

The decision to stop selecting new subsets of P can be based upon
the expected number of trials k required to select a subset of n good
data points. Let w be the probability that any selected data point is

within the error tolerance of the model. Then we have:

E(k) = b + 2%(1-b)*b + 3*(1-b)2 *b ,.. + 1%(1-b)1-1xp + ...
E(k) = b*[1 + 2*a + 3%a2 ,,, + i*al=l 4+ | ]

where: E(k) is the expected value of k, b = wB, and a = (l-b).
An didentity for the sum of a geometric series is:

a/(l-a) = a+ a2+ a3 ... +al + ...

Differentiating the above identity with respect to a, we have:

1/(1"‘3.)2 = 1 + 2%3 + 3*32 ess + i*ai_l + e
Thus:

E(k) = 1/b = w0




The following 1s a tabulation of some values of E(k) for

corresponding values of n and w:

w n=1 2 3 4 5 6

.9 1.1 1.2 1.4 1.5 1.7 1.9
.8 1.3 1.6 2.0 2.4 3.0 3.8
.7 l.4 2.0 2.9 be2 5.9 8.5
.6 1.7 2.8 4.6 7.7 13 21
.5 2.0 4.0 8.0 16 32 64
A 2.5 6.3 16 39 98 244
.3 3.3 11 37 123 412

.2 5.0 25 125 625

In general, we would probably want to exceed E(k) trials by one or
two standard deviations before we give up. We note that the atandard
deviation of k, 5D(k), 1s given by:

SD(k) = sqrt(E(k2) - E(k)2] .
Then:
E(k2) = SIGMA(1): {b*i2%al-1}
= SIGMA(L): {b*i*({-1)*al=1} + SIGMA(1): {b*i*al-1)
but (using the geometric series ildentity and two differentiations):
2a/(l=a)3 = SIGMA(1): {i*(i-1)%*al-1} —
thus:
E(k2) = (2-b)/(b2)
and:

SD(k) = [sqrt(l - w@)]*(1l/wD)

We note that generally SD(k) will be approximately equal to E(k);
thus, for example, 1if (w = .5) and (n =4), then E(k) =16 and
SD(k) = 15.5. This means that we might want to try two or three times
the expected number of random selections 1implied by k (as tabulated

above) to obtain a consensus set of more than t members.



From a slightly different point of view, if we want to ensure with
probability =z that at least one of our random selections is an error-
free set of n data points, then we must expect to make at least k

selections (n data points per selection), where:
(10)K = (1-2)

k = [log(l-z)]/[log{l-b)]

For example, if (w = .5) and (n = 4), then (b = 1/16). To obtain a

90% assurance of making at least one error-free selectiom,

k = log(.1)/log(15/16) =35.7

C. A Lower Bound On the Size of an Acceptable Consensus Set

The threshold t, an unspecified parameter in the formal statement
of the RANSAC paradigm, 1s used as the basis for determining that an n-
subset of P has heen found that lmplies a sufficiently large consensus
set to permit the algorithm to terminate. Thus, t must be chosen large
enough to satisfy two purposes: that the correct model has been found
for the data; and that a sufficient number of mutually consistent polnts
has been found to satisfy the needs of the £final smoothing procedure

(which computes improved estimates for the model parameters).

To ensure against the possibility of the final consensus set being
compatible with an incorrect model, and assuming that v 1s the
probability that any given data point is within the error tolerance of
an incorrect model, we would like y*=@ to be very small. While there is
no general way of precisely determining y, it is certainly reascnable to
assume that it 1s less than w (w is the a priorl probability that a
given data point 1s within the error tolerance of the correct model).
Assuming y < .5, a value of t-n equal to 5 will provide a better than
957 probability that compatibility with an incorrect model will not

OCCUr.




To satisfy the needs of the final smoothing procedure, the
particular procedure to be employed must be specified; if least-squares
smoothing is to be used, there are many situations where formal methods
can be invoked to determine the number of points required to produce a

desired precision (e.g., see Sorenson [1970]).

D. Example

Let us apply RANSAC to the example described in Figure 1. A value
of w (the probability that any selected data point is within the error
tolerance of the model) equal to .85 1s consistent with the data, and a
tolerance (to establish datum/model compatibility} of .8 units was
supplied as part of the problem statement. We will accept the RANSAC-
supplied model without external smoothing of the final consensus set;
thus, we would like to obtain a consensus set - that contains all seven
data points. Since one of these polints is a gross error, it is obvious
that we will not find a consensus set of the desired size, and so we
will terminate with the largest set we are able to find. The theory
presented earlier indicates that if we take two data points at a time,
compute the line through them and wmeasure the deviations of the
remalning points from this line, we should expect to find a suitable
consensus set within two or three trials; however, because of the
limited amount of data, we might be willing to try all 21 combinations
to find the largest consensus set. In either case, we easily find the
consensus set containing the 9ix valid data points and the line that
they imply.



III THE LOCATION DETERMINATION PROBLEM (LDP)

A core problem in image anmalysis 1s that of establishing a
correspondence between the elements of two representations of a given
scene. One variation of this problem, especlally important inm
cartography, 1s to determine the location in space from which an image
or photograph was obtained by recognizing a set of landmarks ("control
points") appearing in the image (this 1s variously called the problem of
determining the elements of exterior camera orientation, or the camera
calibration problem, or the image-to-data-base-correspondence problem).
It is routinely solved using a least-squares technique (e.g., see Wolf
[1974] or Keller [1966]) with a human operator interactively
establishing the association between image- points and the three=
dimensional coordinates of the corresponding landmarks. However, in a
fully automated system, where the correspondences mist be based on the
decisions of marginally competent feature detectors, least squares is
often incapable of dealing with the gross errors that may result; this
consideration, discussed at length i1in the precéding section, is
illustrated for the Location Determination Problem in an example to be

presented later (see the section on experimental results}.

In this section we present a new solution to the Location
Determination Problem (LDP) based on - the RANSAC paradigm, which is
unique din its ability to tolerate gross errors im the input data. We
will first examine the conditions under which a solution to the LDP is
possible and describe new results concerning this question; we then
present a  complete description of the RANSAC-based algorithm, and
finally, describe experimental results obtained through use of the
algorithm. |

We formally define the LDP as follows:

Given a set of m landmarks, whose 3-D coordinates are
known in some coordinate frame, and given an image in
which some subset of the m landmarks is visible, determine
the location (relative to the coordinate system of the
landmarks) from which the image was obtained.



We will initially assume that we know the correspondences between n
image points and landmarks; later we consider the situation in which
some of these correspondences are imvalid. We will also assume that
both the principal point in the image plane (where the optical axis of
the camera pilerces the image plane) and the focal -length of the imaging
system are known; thus (see Figure 2) we can easilly compute the angle to
any palr of landmarks from the Center of Persgpective (CP). Finally, we
assume that the camera resides outside and "above" a convex hull

encloging the control polints.

We will later demonstrate {(Appendix A) that if we can compute the
lengths of the rays from the CP to three of the landmarks, then we can
directly solve for the location of the CP (and the orientation of the
image plane 1f desired). Thus, an' equivalent, but mathematically more

concise statement of the LDP, 1is:

Glven the relative spatial locations of n control points,
and given the angle to every pair of control points from
an additional point called the Center of Perspective (CP),
find the lengths of the line segments ("legs") joining
the CP to each of the control polnts. We call this the
"perspective-n-point” problem (PnP).

In order to apply the RANSAC paradigm, we wish to determine the
smallest value of n for which it 1s possible to solve the PnP problem.

A. Solution of the Perspective-N=Point Problem

The PILP problem (n = 1) provides no constraining information, and
thus an iﬁfinity of solutions 1s possible. The P2P problem (n = 2),
1llustrated 1in Figure 3, also admits an Infinity of solutions; the CP
can reside anywhere on a circle of dliameter Rab/sin{Oab), rotated in

space about the chord (line) joining the two control points A and B.

The P3P problem (n = 3) requires that we determine the lengths of
the three legs of a tetrahedron, given the base dimensions and the face

angles of the opposing trihedral angle (see Figure 4). The solution to

10



this problem is implied by the three equations [A*]:

(Rab)2 = a2 + b2 - 2%a*bh* [Cos(Bab)]
(Rac)2 = a2 + ¢2 - 2*g*ck[Cos(Bac)] [A*%]
(Rbc)2 = b2 + ¢ - 2*b*c*[Cos(6be) ]

It is known that n independent polynomial equations, in n~ unknowns,
can have no more solutions than the product of their respective degrees.
Thus, the system A* can have a maximum of elght solutions. However,
because every term i1in the system A* is elther a constant, or of second
degree, for every real positive solution there 1s a geometrically
isomorphic negative solution. Thus, there are at most four positive
solutions to A*, and in Figure 5 we show an example demonstrating that

the upper bound of four solutions is attainable.

In Appendix A we derive an explicit algebralec solution for the
system A*. This 1s accomplished by reducing A* to a biquadratic
{(quartic) polynomial 1m one unknown representing the ratio of two legs
of the tetrahedron, and then directly solving this equation (we also
present a very simple iterative method for obtaining the solutions from

the given problem data).

For the case n = 4, when all four control points 1lie in a common
plane (not containing the CP, and such that mo more than two of the
control poimts 1lie on any single Iline), we provide a technique, 1n
- Appendix B, that will always produce a unique solution. Surprisingly,
when all four control points do not lie in the same plane, a unique
solution cannot always be assured; an example, presented in Figure 6,
shows that at least two solutions are possible for the P4P problem with

the control points in "general position.”

To solve for the location of the CP in the case of four nonplanar
control points, we can use the algorithm presented in Appendix A on two
distinct subsets of the control points taken three at a time; the
solution(s) common to both subsets locate the CP to within the ambiguity‘

inherent 1in the given information.

11




The approach used to construct the example shown in Figure 6 can be
extended to any number of additiormal points. It 1s based om the
principal depicted in Figure 3: if the CP and any number of control
points lie on the same c¢ircle, then the angle between any pair of
control points and the CP will be independent of the location on the
circle of the CP (and hence the location of the CP cannot be
determined). Thus, we are able to construct the example shown 1n
Figure 7, 1n which five coatrol points in general position imply two
solutlions to the P5P problem. While the same technique will work for
six or more control polnts, four or more of these points must now lie in

same plane and are thus no longer in general positiom.

To prove that six (or more) control points in general position will
always produce a unique solution to the P6P problem, we note that for
this case we can always solve for the 12 coefficients of the 3 x 4
matrix T that specifies the mapping (in homogeneous coordinates) from
three space to two space; each of the six correspondences provides three
new equations and introduces one additional wunknown (the homogeneous
coordinate scale factor). Thus, for six control points, we have 18
linear equations to solve for the 18 unknowns (actually, it can be shown
that, at most, 17 of the unknowns are 1independent}. Given the
transformation matrix T, we can construct an additional {synthetic)
control point lying in a common plane with three of the given control
points and compute its location in the image plane; the technique
described in Appendix B can now be used to find a unique solution.

12



IV  IMPLEMENTATION DETAILS AND EXPERIMENTAL RESULTS

A. The RANSAC/LD Algorithm

The RANSAC/LD algorithm accepts as input the following data:

(1}

A list L of m 6-tuples—-each 6~tuple containing the 3-D
spatlal coordinates of a control point, its corresponding
2-D dimage plane coordinates, and an optional qumber
giving the expected error (in pixels) of the given
location in the image plane.

{(2) The focal length of the imaging system and the image
plane coordinates of the principal point.

{3) The probability (l-w) that a 6-tuple contains a gross
mismatch.

{4) A "confidence' number G which is used to set the internal
thresholds for acceptance of Intermediate results
contributing to a solution. A confidence number of one
forces very conservative behavior on the algorithm; a
confidence number of zero will call almost anything a
valid solution.

The RANSAC/LD algorithm produces as output the following

information:

(1) The 3-D spatial coordinates of the lens center {(i.e., the

(2)

Center of Perspective), and an estimate of the
corresponding error.

The spatlal orientation of the image plane.

The RANSAC/LD algorithm operates as follows:

(1)

(2)

(3)

Three 6-tuples are selected from list L-by a quasi-random
method that ensures a reasonable spatial distribution for
the corresponding control points. This initial selection
1s called SI.

The CP (called CPl) corresponding to selection S1 1is
determined using the closed-form solution provided in
Appendix A; multiple solutions are treated as i1if they
were obtalned from separate selections in the following
steps.

The error in the derived location of CPl is estimated by
perturbing the input coordinates (either by the amount
specified 1in the 6-tuples or by a default value of omne
pixel), and recomputing the effect this would have on the
location of the CPl.

13




{(4) Given the error estimate £for the CPl, we wuse the
technique described in Bolles [1978] to determine error
ellipses {dimensions based upon the supplied confidence
number) in the image plane for each of the control points
specified in list L; 1f the assoclated image coordinates
reside within the corresponding error ellipse, then the
6-tuple is appended to the consensus set S1/CPl.

(5) If the size of S1/CPl equals or exceeds some threshold
value t (nominally equal to a value between 7 and mw),
then the consensus set SI/CPl 1is supplied to a least=-
squares routine (see Bolles [1978] or Genmmery [1975]) for
final determination of the CP location and image plane
orientation.® Otherwise, the above sSteps are repeated
with a new random selection S2, 83, ...

{(6) If the number of iterations of the above steps exceeds
k = [1og(1-G)]/[log(l-w3)], then the largest consensus
set found so far 1s used to compute the final sclution
{or we terminate in failure 1f this largest consensus set
contains fewer than six members).

B. Experimental Results

To demonstrate the validity of our theoretical results, we
performed three experiments. In the first experiment we found a
specific Location Determination Problem 1n which the common least-
squares pruning heuristic failed, and showed that RANSAC successfully
solved this problem. In the second experiment, we applied RANSAC to
fifty synthetic problems 1in order to check the reliability of the
approach over a wide range of parameter values. In the third experiment
we used standard feature detection techniques to locate landmarks in an
aerial i1image and then wused RANSAC to determine the position and

orientation of the camera.

* An alternmative to least squares would be to average the parameters
computed from random triples in the consensus set that fall within (say)
the center 50% of the associated histogram.

14



C. A Location Determination Problem Example of a Least-Squares Pruning
Error

The LDP in this experiment was based upon 20 landmarks and their
locations 1in an image. Five of the twenty correspondences were gross
errors; that is, their given location; in the image were further than 10
pixels from their actual 1locations. The image locations for the "good"
correspondences were normally distributed about their actual locations

with a standard deviation of one pixel.
The heuristic to prune gross errors was the following:

* Use all of the correspondences to Ilnstantlate a model.

* (On the basis of that model, delete the correspondence that
has the largest deviation from 1its predicted d1image
location.

*# Instantiate a new model without that correspondence.

*# If the new model implies a normalized error for the deleted
correspondence that is larger than three standard
deviations, assume that it i1s a gross error, leave it out,
and continue deleting correspondences. OQtherwilse, assume

- that it 1s a good correspondence and return the model that
included it as the solution to the problem.

This heuristic successfully deleted two of the gross errors; but

after deleting a third, it decided that the new model did not imply a
significantly large error, so it returned a solution based upon eighteen

correspondences, three of which were gross errors.

When RANSAC was applied to this problem, it located the correct
solution on the second triple of selected points. The final consensus
set contained all of the good correspondences and none of the gross

errors.

D. Fifty Synthetic Location Determination Problems

In this experiment we appllied RANSAC to £ifty syanthetic LDPs. Each
problem was based upon thirty landmark-to-image correspondences. A
range of probabilities were used to determine the number of gross errors
in the problems; the image location of a gross error was at least 10

plxels from its actual location. The location of a good correspondence

15



was distributed about 1ts actual location with a normal distribution
having a standard deviation of one pixel. Two different camera
positions were used--one looking straight down on the landmarks and one
looking at them from an oblique angle. The RANSAC algorithm described
earlier in this section was applied to these problems; however, the
simple iterative technique described in Appendix A was used to locate
solutions to the P3P problems 1in place of the closed form method also
described in that appendix, and a second least-squares fit was used to
extend the final consensus set (as suggested in second section of this
paper). Table 1 summarizes the results for tem typical problems (RANSAC
successfully avolided including a gross error in its final consensus set
in all of the problems}; in five of these problems the probability of a
good correspondence was 0.8, and 1n the other five problems it was 0.6.
The execution time for the current program is approximatel& one second

for each camera position considered.

| No. of _ |
| Corresp. No. of |
| No. of in Final No. of Camera

| Good Consensus Triples Positions |
| Corresp. Set Considered Considered |
[ —————— —_ |
| w = .8 |
| |
| 22 19 6 10 |
| 23 23 1 3 |
| 19 19 2 3 |
| 25 25 1 2 |
| 24 23 3 8 |
| - I
| w = .6 |
| |
] 21 20 11 21 |
| 17 17 1 1 |
| 17 16 6 8 |
| 18 16 9 21 |
| 21 18 9 15 |

TABLE 1
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E. A "Real" Location Determination Problem

 Cross-correlation was used to locate 25 landmarks im an aerial
image taken from approximately 4,000 feet with a 6-~inch lens. The image
was digitized on a grid of 2,000 by 2,000 pixels, which implies a ground
resolution of approximately two feet per pixel. Three gross errors were
made by the correlation feature detector. When RANSAC was applied to
this problem, it located a consensus set of 17 on the first triple
selected and then extended that set to 1nclude all 22 good
correspondences after the initial least-squares fit. The fimal standard

deviations about the camera parameters were as follows:

0.1 feet Heading: .0l degrees
Y: 6.4 feet Pitch: +10 degrees
2.1 feet Roll: +12 degrees

V  CONCLUDING COMMENTS

In this paper we have introduced a new paradigm, Random Sample
Consensus (RANSAC), for fitting a model to experimental data. RANSAC 1is
capable of interpreting/smoothing data containing a significant
percentage of gross errors, and thus is ideally suited for applications
in automated image analysis where interpretation is based on the data

provided by error-prone feature detectors.

A major portion of this paper describes the application of RANSAC
to the Location Determination Problem (LDP): given an image depicting a
set of landmarks with known locations, determine that point in space
from which the image was obtalned. Most of the results we present
concerning solution techniques and the geometry of the LDP problem are
either new or not generally known. The current photogrammetric
literature offers no analytic solution, other than variants of least
squares and the Church method, £for solving the perspective-n-point
problems. The Church method, which provides an iterative solution for
the P3P problem, is presented (see Church [1945] or Wolf [1974]) Without‘
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any indication that more than one physically real solution is possible;
there 1is certainly no 1indication that anyone realizes that physically
real multiple solutions are possible for more than three control points
in general position. {It should be noted that becauge the multiple
gsolutions can be arbitrarilly close together, even when an 1iterative
technique is initialized to a value close to the correct solution, there

is no assurance that it will converge to the desired value).

In the section on the LDP problem {(and associated appendices) we
have completely characterized the P3P problem and provided a closed-form
solution. We have shown that multiple physically real solutions can
exist for the P4P and P5P problems, but also demonstrated that a unique
solution is assured when four of the control points reside on a common
plane (solution techniques are provided for each of these cases). The
issue of determining the maximum number of solutions possible for the
P4P and P5P problems remains open, but we have shown that a unique
solution exists for the P6P problem when the control points are din

general position.
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Appendix A

AN ANALYTIC SOLUTION FOR THE PERSPECTIVE-3-POINT PROBLEM

In the main body of this paper, we have established that P3P
problems can have as many as four solutious. In this appendix, we will
derive a closed form expression for obtaining these solutions. Our
approach involves three steps: we first find the lengths of the legs of
the ("perspective")} tetrahedron given the base (defined by the three
control points) and the face angles of the opposing trihedral angle (the
three angles to the three palrs of control points as viewed from the
CP); we mnext locate the CP with respect to the 3=D reference frame in
which the control points were originally specified; and finally, compute

the orientation of the image plane with respect to the reference frame.

a. A Solution for the Perspective Tetrahedron (see Figure 4)

Given the lengths of the three sides of the base of a
tetrahedron (Rab,Rac,Rbc), and given the corresponding face angles of
the opposing trihedral angle (8ab,B8ac,8bc), find the lengths of the
three rémaining sides of the tetrahedron (a,b,c).

A  solution to the above problem can be obtained by

simultaneously solving the system of equations:

[Al] (Rab)2 = a2 4 b2 - 2*a*b*cos(Bab)
[(A2] (Rac)2 = a2 + ¢2 - 2*%a*c*cos(Bac)

[A3] (Rbe)2 = b2 4 2 - 2*p*c*kcos(Bbe)

We now proceed as follows:

[A4] let b = x*a and c = y*a

[A5] (Rac)? = a2 + (y2)#(a2) - 2%(al)*y*cos(Bac)
[A6] (Rab)2 = al + (x2)*(al) - 2*(al)*x*cos(Bab)
[A7]  (@®Rbe)2 = (x2)*(al) + (y2)*(a2) - 2%(al)*x*y*cos(6be)
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from [A5] and [A7]
[A8] (Rbc)2)*[ 1 + (y2) - 2%y*coa(Bac) ] =

(Rae)2)*[ (x2) + (y2) ~ 2*x*y*cos(6be) 1]

from (A6] and [A7]
(A9] (@®be)2)*[ 1 + (x2) - 2*x*cos(8ab) ] =
(Rab)2)*[ (x2) + (y2) - 2%*x*y*cos(6bc) ]
(Rbc)2 (Rbe)2

(Al0] Let = - = Kl and —-———— = K2
(Rac)2 (]E?;::'I.I':)2

From [A8] and [A9]
[All] O = (yz)*[l-KI] + 2*y* [Kl*cos(Bac)-x*cos (6bc)]

+ [(x2)=K1]

From [A9] and [AlQ]
[AI2] 0 = (y2) 4 2*%y*[-x*cos(6bc)]

+ [(x2)*(1-K2) + 2*x*K2%*cos(9ab) - K2]

Equations [All] and [Al2] have the form:
[A13] 0 = m*(y2) + p*y + q

[Al4] O =m"*(y2) + p*y + q°

Multiplying [Al3] and [Al4] by m’ and m respectively, and subtracting:

[Al5] 0 = [p*m” - p #*m]*y + [m"*q = m%*q"]
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Multiplying {Al3] and [Al4] by q° and q respectively, subtracting, and
dividing by y:

0 = [m’*q - m*q”]*(y2) + [p’*q - p*q’]*y

(Al6] 0 = [m"*q — m*q ]*y + [p"*q - p*q”]

Assuming m‘*q is not equal (#) to m*q”, that is
[(x2)=K1] # [(x2)*(1~K1)*(1-K2) + 2*x*K2*(1-K1)*cos{(Bab) - (1-K1)*K2]
then [Al15] and [Al6] are equivalent to [Al1l3] and [Al4].

We now multiply [Al5) by [m°*q = m*q”], and multiply [A16] by
(p*m” « p“*m], and subtract to obtain:

[A17] 0 = (m'*q - m*q“)2 - [p*m" — p“*m]*[p“*q —-p*q”]
Expanding [Al7] and grouping terms we obtain a biquadratic {(quartic)
polynomial in x:

[A18] 0 = G4*(x4) + G3*(x3) + G2*(x2) + Gl*(x) + GO
where:

[A19] G4 = (K1*K2 - K1 = K2)2 = 4*K1*K2* [Cos(Bbc)2]

[A20] G3 = 4*[K1*K2-K1-K2]*K2* (1-K1)*Cos(Bab)

+ 4*K1*Cos(8be)*[(K1*K2+K2 -Kl1)*Cos(Bac)
+ 2*K2#*Cos(Bab)*cos(6bec)]
[A21] G2 = [2*K2*(1-K1)Cos(8ab)]2
+ 2% [K1*K2+K1-K2] * [K1*K2-K 1-K2]
+ 4*R1*[(K1-K2)*(Cos(8bc)2) + (1-K2)*K1*(Cos(Bac)?2)

- 2*K2*(14K1)*Cos{(0ab)*Cos(Bac)*Cos(8be)]

[A22] Gl = 4*(K1*K2+K1-K2)*K2* (1-K1)*Cos (8ab)
+ 4*K1*[(K1*K2-K1+K2)*Cos(Bac)*Cos(Bbe)
+ 2#K1*K2 *Cos(8ab)*(Cos(Bac)?)]

[A23] GO = (K1*K2+K1-K2)2 - 4*(R12)#*K2*(Cos(Qac)2)
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Roots of [423] can be found in closed form (see Dehn {1960}1), or by
iterative techniques (see Conte [1965]1).

For each positive real root of [Al8], we determine a single positive
real value for each of the sides ™a" and "b." TFrom [A6] we have:

Rab
[A24] a = e e
SORT [(x2) - 2*x*Cos(8ab) + 1]

and from [A4] we obtain:

[A25] b = a*x

If m"*q # m*q”, then from (A16] we have:

If m"*q = m*q", then [A26] i3 undefined and we obtain two values of y
from [A5]:

A - (Rac)2 - (a2)
[A27] y = Cos(Bac) 4= SQRT [(Cos(Bac))2 + 5 ]
(a<)

For each real positive value of y, we obtain a value of "c¢" from [A4]:

[A28] ¢ = y*a

When values of y are obtained from [A5], rather than [A26], the
resulting solutions can be invalid; they must be shown to satisfy [A3]
before they are accepted.

It should be noted that because each root of [Al8] can
conceivably lead to two distinct solutions, the existence of the
biquadratic, by itself, doés not Iimply a maximum of £our solutionsg to
the P3P problem; some additional argument, such as the one given in the
main body of this paper, 1s necessary to establish the upper bound of

four solutions.
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b. Example

For the perspective tetrahedrom showm in Figure 5, we have the

following parameters:

Rab = Rac = Rbc = 2*SQRT(3)

(a2) + (b2) - (Rab)2 20
Cos{(Bab) = Cos({Bac) = Cos(Bbec) = —_— 3 ——
2% g%} 32

Subgtituting these values into equations [Al19] through [A23], we obtain
the coefficients of the biquadratic defined in [A18]:

{-.5625, 3.515625, =5.90625, 3.515625, —.5625]
The roots of the above equation are:
(1, 1, 4, 0.25]

For each root we have:

ROQT a b y c
1 4 4 1 4
1 4 4 «25 1
4 1 4 4 4
«25 4 1 1 4

¢+ An Iterative Solution for the Perspective Tetrahedromn (see
Figure 8)

_ A simple way to locate solutioms to P3P problems, which 1s
sometimes an adequate substitute for the wmore involved procedure
described in the preceding subsection, 1s to slide one vertex of the
control-point triangle down its leg of the tetrahedrom and look for
positions of the triangle in which the other two vertices lie on thelr
regpective legs. If vertex A is at a distance "a" from L. (L is the
center of perspective), the lengths of the sides Rab and Rac restrict
the triangle to four possible positions. Gilven the angle between legs

LA and LB, compute the distance of point A from the line LB and then.
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compute points Bl and B2 on LB that are at the proper distance from A to
ingert a line segment of length Rab. Similarly, we compute (at most)
two locations for C on 1its leg. Thug, given a position for A, we have
found (at most) four positions for a triangle that have one side of
length Rab and one of length Rac. The lengths of the third sides (BC)
of the four triangles vary (non=linearly) as point A 1is moved down its
leg. Solutions to the problem can be obtalned by iteratively
repositioning A to imply a third side of the required leugth.‘

d. Computing the 3-D Location of the Center of Pergpective (see
Figure 9)

Given the three-dimensional locations of the three control
points of a perspective tetrahedron, and the lengths of the three legs,
the 3~D location of the center of perspective can be computed as

follows:

{1) Construct a plane Pl that 1s normal to AB and passes
through the center of perspective, L. This plane can be
constructed without knowing the position of L, which is
what we are trylng to compute. Consider the face of the
tetrahedron that contains vertices A, B, and L. Knowing
the lengths of sides LA, LB and AB, we can use the law of
cosines to find the angle LAB, and then the projection QA
of LA on AB. (Note that angle LQA 1s a right angle, and
the point Q 1s that point on line AB that is closest to
L). Construct a plane normal to AB passing through Q;
this plane also passes through L.

(2) Similarly construct a plane P2 that 1s normal to AC and
passes through L.

{3) Construct the plane P3 defined by the three points A, B,
and C.

(4) Intersect planes Pl, P2, and P3. By construction, the
point of intersection R 1is the point on P3 that 1is
closest to L.

(5) Compute the length of the 1line AR and use that din
conjunction with the length of LA to¢ compute the length
of the line RL, which 1s the distance of L from the plane
P3.

(6) Compute the cross product of vectors AB and AC to form a
vector perpendicular to P3. Then scale that vector by
the length of RL and add 1t to R to get the 3-D location
of the center of perspective L.
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If the focal length of the camera and the principal point in
the image plane are known, it 1s possible to compute the orientation of
the image plane with respect to the world coordinate system; that is,
the location of the origin and the orientation of the image plane
coordinate system with respect to the 3-D reference frame. This can be

done as follows:

(1) Compute the 3-D reference frame coordinates of the‘center
of perspective (as described above).

(2) Compute the 3-D coordinates of the image locations of the
three control points: since we know the 3-D coordinates
of the CP and control points, we can compute the 3-D
coordinates of the three rays between the CP and the
control points. FKnowing the focal length of the imaging
system, we can compute, and subtract from each ray, the
distance from the CP to the image plane along the ray.

(3) Compute the equation of the plane contalining the image
using the three points found in step (2). The normal to
this plane, passing through the CP, gives us the origin
of the image plane coordinate system (i.e., the 3-D
location of the principal point), and the Z axis of this
system.

{4) The orientation of the image plane about the Z axis can
be obtained by computing the 3-D coordinates of a vector
from the principal point to any one .of the polnts found
in (2).
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Appendix B
AN ANALYTIC SOLUTION FOR THE PERSPECTIVE-4-POINT PROBLEM
(with all control points lying in a common plane)

In this appendix, we present an analytic technique for obtaining a
unique solution to the P4P problem, when the four given control points

all lie in a common plane:

a. Problem Statement (see Fipure 10Q)

GIVEN: a correspondence between four points lying 1in a plane in 3-D
space (called the object plaﬁe), and four points lying in a distinect
plane (called cthe image plane); and given the distance between the
center of perspective and the image plane (l.e., the focal length of the
imaging system); and also given the principal point din the image plane
(i.e., the location, in image plane coordinates, of the point at which
the optical axis of the lense plerces the ilmage plane).

FIND: the 3-D location of the Center of Perspective relative to the

coordinate system of the object plane.

b. Notation

* Let the four given I1mage points be labeled {Pi}, and the
four corresponding object points {Qi}.

* We will assume that the 2-D Image Plane coordinate system
has its origin at the principal point (PPI).

* We will assume that the Object Plane has the equation Z = 0
in the reference coordinate system. Standard techniques
are avallable to transform from this coordinate system into

a ground reference frame (e.g., see Duda [1973] or Rogers
[1976]).

* Homogeneous coordinates will be assumed (e.g., see Wylie
[19701).

* Primed symbols represent transposed structures.
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a)

b)

e)

d)

e)

£)

C. Solution Procedure

Compute the 3 x 3 collineation matrix T which maps points from
Object Plane to Image Plane (a procedure for computing T is given
later):

(1) [Pi] = [TI*[Qi]

where  [Pi] = [ki*xi,ki*yi,ki]’
[Qi] = [XL,¥i,1]°

The ideal line in the Object Plane, with coordinates [0,0,117, 1is
mapped into the vanishing line in the Image Plane [VLI] by the
transformation:

(2)  [VLI] = [iav([T]]"*[0,0,1]7

Determine the distance DI from the origin of the Image Plane (PPI)
to the vanishing line [VLI] = [al,a2,a3]":

(3) | a3 |
DI = |
| sqrt[(al)2 + (a2)2] |

Solve for the dihedral (tilt) angle 6 between the Image and
Object planes:
£ .
(4) 8 = arctan{ =—=- )
DI

where £ = focal length

The ideal line in the Image Plane with coordinates [0,0,1]1° is
mapped into the vanishing line in the Object Plane [VLO] by the
transform:

(3 [VLO] = [T]"*[0,0,1]1"
Compute the location of point [PPO] in the Object Plane ([PPQ] is
the point at which the optical axis of the lense pierces the object

plane):

(6) [PPO] = [inv[T]]°*(0,0,1]1°
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g) Compute the distance DQ from [PPO] = [ecl,c2,c3]° to the vanishing
line [VLO] = [bl,b2,b3]" in the Object Plane:

bl*cl + b2%*c2 + b3*c3 |

[
(7) DO = |
| e3*sqre[(b1)2 + (b2)2] |

h) Solve for the "pan" angle $ as the angle between the normal to
[VLO] = [bl,b2,b3]" and the X axis in the Object Plane:
=b2
(8) $ = arctan( ==== )
bl
1) Determine XSGN and YSGN:
If a line (parallel to the X axis In the object plane) through
{PPO] intersects [VLO] to the right of (PPQJ], then XSGN = 1
else XSGN = =1. Thus

bl#*cl + b2*c2-+ b3*c3

{9) 1f —— < 0
bl*c3
then XSGN = 1 else XSGN = =l
Simllarly,
bl*cl + b2#%c2 + b3*c3
(10) 41f -—-— —_—— < 0
b2*c3

then YSGN = 1 else YSGN = =1

j) Solve for the location of the CP in the object plane coordinate

system:

(11) DCP = DO*s3in(8)

(12) XCP = XSGN*abs [DCP*Sin(8)#*Cos($)] + cl/e3
(13) YCP = YSGN*abs[DCP*S1in(8)*Sin($)] + ¢2/¢3
(14) ZCP = DCP*cos(@)

Note: If [VL1], as determined in (b), has the coordinates [0,0,k],
then the image and object planes are parallel (B = 0). Rather
than continuing with the above procedure, we now solve for the
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desired information using similar triangles and Euclidean
geometry.

d. Computing the Collineation Matrix T

Let:
[| X1 YL 1 ||
(Q] = |1 X2 v2 1 || = [[Qll",[Q2]1",{Q3]"]
[l X3 3 1 ||
[l x1 yl 1 [}
[P] = || x2 y2 1 || = [[P1]°,([P2]°,[P3]"]
[l x3 y3 1 []
[Q4] = [X4,Y4,1]°
[P4] = [x4,y4,1]1°
[V] = [1av([P]] *[P4] = [vl,v2,v3]’
~[R] = [1av[Q]]“*[Q4] = [rl,x2,r3]’
vl 3
wl = -— R -
rl v3
v2 3
w2 = — X m-
r2 v3
[lwl 0 0[]
wl = ||] 0 w2 O[]
: || O 0 1 ||
Then:

[T1° = [INV[QII*[W]*(P]
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Such that:

[P1] = ki*[xi,yi,1] = [T]*[Qi]

Given:

f = .3048 meters (12 inches)

Pl = (-.071263, .029665) Ql = ( =30, 80)
P2 = (-.053033, -.006379) Q2 = (~100, =20)
P3 = (~-.014063, .061579) Q3 = ( 140, 50)
P4 = ( .080120, -.030305) Q4 = ( =40, =-240)
|| .000212 .000236 .000925 ||

a) [T}’ = || -.000368 .000137 .000534 ||
|| -.025404 .021650 .843879 ||

|| 1117.14 ~=2038.86 0.0 N

[inv{T]1]1” = || 3371.56 2302.22 -5.14991 ||

' i 1

~51.0636 -120.442 1.31713

b) kVLI] = [0, -5.14991, 1.31713]"

e) DI = .255758

d) @ = ,872665 radians (50 degrees)
e) [(vLo] = [ .000925, .000534, .843880]°

£) [PPO] = [-51.0636, -120.442, 1.31713]°

g) DO = 711.196
h) $ = -.523599 radians (=30 degrees)
1) XSGN = =l
YSGN = -1
P DCP = 544.8081
XCP = -400.202
YCP = ~300.117
ZCP = 350.196

31



Figure 1: PFailure of Least Squares (and the "throwing out the worst
residual"” heuristic), to deal with an erroneous data point.

Problem: GCiven the set of seven (x, y) pairs shown in the plot,
find a best fit line, assuming that no valid datum
deviates from this line by more than 0.8 units.

Ideal Model Line Point X y

{

Gross Error (Point 7)

Final Least
.Jquuares Line

v gy e e o .

[ IR R RN |

~] VA AN O —
O \NWMN =0
NN NN = O

1 23456789 10

Comment Six of the seven points are valid data and can be fit by
the solid line. Using Least Squares (and the "throwing
out the worst residual" heuristic), we terminate after
four iterations with four remaining points, including
the gross error at (10, 2) fit by the dashed line.

Successive Least Squares Approximations

I |
| |
! |
| :
| |
I T T I
E Iteration t Data Set % Fitting Line E
] 1 | 1
b 1 i 1,2,3,4,5,6,7 | 1.48 + .16x !
! 2 | 1,2,3,4,5,7 { 1.25 + .13x ;
i 3 | 1,2,3,4,7 , W96 + .14x
l 4 ! 2,3,4,7 ! 1.51 + .06x !
| | { o

|

i Computation of Residuals

| T : ; :

! Point | Iteration 1 | Iteration 2 | Iteration 3 | Iteration 4

i i Residuals E Residuals i Residuals | Residuals

1

| I ] | 1

L1 L 148 P 1.25 ! 96% | -

E 2 .64 } .38 { .10 ! .57

} 3 .20 l .49 | .76 { .37

| 4| .05 l .36 { .63 | .31

| 5 ; 1.05 | 1.36* | - | —-

; 6 | 1.89* | - | -- | --

i 7 i 1.06 E .57 I .33 ! 11

| | | ! I

! | I 1

i | | |
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FIGURE 5 AN EXAMPLE SHOWING FOUR DISTINCT
SOLUTIONS TO A P3P PROBLEM

Consider the tetrahedron in Figure Sa. The hase
ABC is an equilateral triangle and the "legs”
(i.e., LA, L8, and LC) are all equal. Therefore,
the three face angles at L (i.e., <ALB, <¢ALC, and
<BLC) are all equal. By the law of cosines we
have:

Cos{Alpha} = 5/8.

This tetrahedron defines one solution to a P3P
problem. A gsecond solution is shown in Figure 5b.
It is obtained from the first by rotating L about
BC. It is necessary to verify that the length of
L'A can be 1, given the rigid triangle ABC and the
angle alpha, From the law of cosines we have:

2 2 2
{2*sqrt{3}) =4 + (L'A) - 2%*(L'AY*(5/8)
which reduces to:
(L'A - 1) * (L'A - 4) = 0.

Therefore, L'A can be either | or 4. Figure 3a
illustrates the L'A = 4 case and Figure 5b
illustrates the L'A = 1 case.

HWotice that repositioning the base triangle so that
its vertices move to different leocations on the
legs is equivalent to repositioning L. Figure Sc
shows the position of the base triangle that
corresponds to the second solution.

Since the tetrahedron in Figure Sa is threefold
rotationally symmetric, two more aolutions can he
obtained by rotating the triangle about AB and AC.
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FIGURE B AN EXAMPLE OF A P4P PROBLEM
WITH TWO SOLUTIONS

Figure 6a specifies a P4P problem and demcnstrates
one solution. A second sclution can be achieved by
rotating the base about BC so that A is positioned
at a different point on its leg (see Figure 6b}. To
verify that this is a valid solution consider the
plane X = O, which is normel to BC and contains the
points L, &, and D. Figure &c shows the important
features in this plane. The cosine of alpha is
119/169. A rotation of beta about BC repositions A
at A'. The law of cosines can be used to verify the
position aof &'.

To complete this sclution it is necessary to verify
that the rotated position of D is on LD. Consider
the point D' in Figure 6c. It is at the same
distance from P as D is and by the law of coaines
We can show that gamma equals beta., Therefore, D',
which is on LD, is the rotated position of D. The
points A', B, C, and D' form the second solution to
the problem.



E
o
/E/ A’
\\ Y
~ s
\ 4
~ Vi
AN s
~ -4 Vi
\\(,f"’* /
\\ // /..uD
~ e
N //"a o

FIGURE 7 AN EXAMPLE OF A PSP PROBLEM
WITH TWO SOLUTIONS

This example is the same as the P4P example described
in Figure 6 except that a fifth control point, EH,
has been added. The initial position for E and its
rotated position, E', are shown in Figure 7. The
points E and E' were consftructed to be the mirror
images of A" and A about the line LP; therefore, a
rotation of alpha about P repomitions E at E'. One
solution of the PSP problem is formed by points A,
B, ¢, and D {(shown in Figure 6a) plus point E. The
second sclution is formed by points A', B, ¢, D',
and E'. (onsequently there are two different
positiona of L such that all five points lie on
their appropriate legs.
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FIGURE B GEOMETRY FOR AN ITERATIVE
SOLUTION TO THE P3P PROBLEM
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FIGURE 9 COMPUTING THE 3-D LOCATION OF FIGURE 10 GECMETRY OF THE P4P PROBLEM
THE CENTER OF PERSPECTIVE (L) {WITH ALL CONTROL POINTS

LYING IN A COMMON PLANE)
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