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Abstract 
The concept of swarming has been invoked to describe both human military tactics and the be-
havior of simple biological systems. Most research on the underlying mechanisms of swarming 
is in the biological community, and it is often not clear how these can be implemented in military 
systems. This paper reviews several architectures that have shown promise for generating 
swarming behavior in military systems, and briefly discusses how to measure and control such 
activity.  

1 Introduction 
The word “swarming” is currently in vogue to describe two widely different types of systems. 
Students of biological systems use it to describe decentralized self-organizing behavior in popu-
lations of (usually simple) animals [8, 9, 16, 40]. Table 1 lists a few examples that have been 
studied. Military historians use it to describe a battlefield tactic that involves decentralized, 
pulsed attacks [2, 22, 23, 33]. 

The link between these two uses of the word is not coincidental. Insect self-organization is ro-
bust, adaptive, and persistent, as anyone can attest who has tried to keep ants out of the kitchen 
or defeat a termite infestation, and military commanders would love to be able to inflict the frus-
tration, discomfort, and demoralization that a swarm of bees can visit on their victims. The link-
age between swarming and warfare is ancient. In the Bible, God promises to demoralize the in-
digenous population of Canaan before the invading Israel-

 

Figure 1: Egyptian “fly” medal 
for military heroes, 1550 BC 
(National Gallery of Art) 

Table 1: Some Examples of Swarming in Nature 

Swarming Behavior Entities 
Pattern Generation Bacteria, Slime Mold 
Path Formation Ants 
Nest Sorting Ants 
Cooperative Transport Ants 
Food Source Selection Ants, Bees 
Thermoregulation Bees 
Task Allocation Wasps 
Hive Construction Bees, Wasps, Hornets, 

Termites 
Synchronization Fireflies 
Feeding Aggregation Bark Beetles 
Web Construction Spiders 
Schooling Fish 
Flocking Birds 
Prey Surrounding Wolves 
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ites in the words, “I will send the hornet before you” (Exodus 23:28; cf. Deuteronomy :20; 
Joshua 24:12). In the eighteenth dynasty (1550 BC), the ancient Egyptians awarded military he-
roes a gold and silver medal in the form of a stylized fly (Figure 1) [32], and there are docu-
mented cases of the ancients’ hurling hives of stinging insects against their enemies [39].  

In spite of the military promise of swarming, little attention has been given to how to implement 
the mechanisms observed in biological communities into military systems. To the contrary, many 
conventional aspects of military C3I, such as centralized command and assumptions about the 
availability of high-bandwidth battlefield communications, may actually make it more difficult to 
achieve swarming behavior. This paper bridges this gap by reporting on a number of architec-
tures that have been used to produce swarming. Section 2 defines swarming more precisely and 
outlines its value to modern warfighting. Section 3 describes several architectures that support 
swarming, and Section 4 briefly reviews how one can measure and control swarming to ensure 
that the commander’s intent is being achieved. Section 5 offers a summary and conclusion. 

2 What is Swarming, and Why is it Desirable? 
Numerous definitions have been proposed for swarming. We compare these definitions, offer a 
synthesis, and discuss some of the benefits of a swarming approach in modern warfare. 

2.1 Definitions 
Definitions of swarming have been proposed by insect ethologists, roboticists, and military histo-
rians. Of the many definitions that have been proposed, a few will illustrate the main themes. 

Biologists studying swarming (e.g., [9]) define swarming as “distributed problem-solving de-
vices inspired by collective behavior of social insect colonies and other animal societies.”  

The use of the term to describe artificial systems can be traced to Beni, Hackwood, and Wang in 
the late 1980’s [4-7, 30, 31]. Their work focuses on populations of cellular robots, and they use 
the term to describe self-organization through local interactions. In the context of unpiloted air 
vehicles (UAV), Clough defines a swarm as a “collection of autonomous individuals relying on 
local sensing and reactive behaviors interacting such that a global behavior emerges from the in-
teractions” [17]. He distinguishes swarming (resulting from reactive behaviors of simple homo-
geneous entities performing simple tasks) from the emergent behavior of heterogeneous teams of 
deliberative entities performing complex tasks.  
Military historians focus less on the process of self-organization and more on the resulting or-
ganization itself: “the systematic pulsing of force and/or fire by dispersed, internetted units, so as 
to strike the adversary from all directions simultaneously” [2]; a “scheme of maneuver” consist-
ing of “a convergent attack of several semi-autonomous (or autonomous) units on a target” [23]. 

For the purpose of this paper, we will define swarming as “useful self-organization of multiple 
entities through local interactions.” This definition highlights elements of the others that have 
been suggested. 

“Useful” emphasizes that we are interested in engineering systems that are answerable to a 
commander for their behavior. Some forms of self-organized behavior, such as riots and oscilla-
tion, might be interesting to a biologist, but undesirable in a robotic or military application. The 
military definition of swarming as convergent attack describes one form of useful behavior that 
an engineered military swarm should be able to produce. From a C4ISR perspective, we should 
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expand the range of system-level behaviors that we consider useful. Swarming mechanisms can 
support many functions other than convergent attack, including maintaining communications 
networks, recognizing patterns in sensor arrays, and coordinating multi-phase missions. 

Self-organization is most prominent in the robotic definitions, since the concern there is to dis-
tinguish swarming from conventional top-down control schemes. The military definition does 
not emphasize self-organization, perhaps because of a historic tradition of top-down centralized 
control. A system that can organize itself will be able to configure itself when deployed, helping 
to achieve the Objective Force requirements of deploying a brigade in 96 hours, a Division in 5 
days, and five Divisions in 30 days [45]. It will be more robust in the fog and friction of war, and 
will adapt quickly to alternative missions. We do not require that the self-organization result 
from reactive rather than deliberative individual behavior. Thus our definition includes not only 
Clough’s “swarms” but also his “teams,” if they meet the other terms of the definition. 

The notion of multiple entities is common to all the earlier definitions, and indeed is intrinsic to 
the common-sense use of the term. A major motivator for swarming in military operations is the 
proliferation of robotic platforms, such as vehicles and sensor systems. Although these systems 
are often referred to as “unmanned,” in current practice it would be more accurate to describe 
them as “remotely manned.” The flight crew for a Predator consists of two people. Housing them 
in a control van rather than on board the flying platform considerably reduces their risk, but does 
not reduce the manpower requirements for fielding the vehicle. A major promise of swarming is 
multiplying the number of platforms that a single warfighter can effectively control. 

Our focus on local interactions has two motivations: a need and a promise. The need is a grow-
ing concern about the availability of long-range high-bandwidth links on the battlefield. The 
promise is the observation that local interactions suffice to maintain long-range coordination in 
biological systems, so that we ought to be able to reverse-engineer the underlying mechanisms 
for use in military systems.  

2.2 Desirability 
Swarming as defined above is appropriate for problems with four characteristics, which we 
summarize mnemonically as D4: Diverse, Distributed, Decentralized, and Dynamic. 

Diverse.—Swarming handles a number of forms of diversity, beginning with the multiple plat-
forms in the swarm itself. It can integrate diverse functions, including communications among 
platforms, command oversight, and information management to enable the platforms to make 
reasonable decisions. It can handle information of diverse kinds, including imagery, vibration, 
chem/bio, ELINT, etc. This information may concern diverse entities, including a heterogeneous 
population of unmanned vehicles (air and ground), targets to be approached, threats to be 
avoided, and the presence of other friendly units with which coordination is required. It may also 
come from diverse sources, including local ground sensors, information from other nearby 
friendly units, and far-distant intelligence (e.g., national assets). 

Distributed.—The US military is facing a serious shortfall in long-range communications 
bandwidth. Warfighters cannot assume the availability of unlimited satcom channels [1], placing 
a premium on innovative processing mechanisms as a way of reducing bandwidth requirements 
[18]. Distributing the C2 system physically over the battlespace addresses this problem in three 
ways. 
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1. The “local interaction” nature of swarming means that entities need communicate mainly 
with nearby neighbors using relatively low power, thus permitting bandwidth to be reused 
beyond a local horizon.  

2. The distributed entities in a swarm can themselves form a communication network that 
propagates messages long distances through multiple short-range hops [27].  

3. Much information about the battlespace has a strong geographical component, and is needed 
most by forces close to where the information is generated. A distributed system can store in-
formation close to where it is generated and close to where it is needed, rather than in some 
central repository. This strategy greatly reduces the need to move large bodies of information 
over long distances. 

Decentralized.—The self-organizing capability of a swarm, based on the local autonomy of in-
dividual entities, reduces the need for detailed centralized C2. There are several motives for al-
lowing members of a swarm to make local decisions, within the scope of responsibility originally 
assigned to them, without detailed explicit commands from a central point. 

• The current (centralized) model of robotic control requires a team of two or three humans 
for each entity. The manpower costs of this model make it prohibitive to field large num-
bers of elements. 

• The time delay for a central command to process data from sensing elements and gener-
ate new commands is unacceptable in rapidly changing combat situations. 

• Centralized control generates “choke points” that impede system operation, in two ways. 
First, a single central control can be overloaded by data from many subordinate elements. 
Second, a central control facility presents the adversary with a single point of vulnerabil-
ity that can disable the entire system with a single attack. 

Dynamic.—The battlespace is an uncertain and rapidly changing environment. Red forces will 
try to change unexpectedly. Imperfect knowledge about Blue may lead to changed assessments. 
The nonlinear nature of warfare [35] may itself generate unexpected changes in the situation. 
The self-organizing ability of swarms enables them to respond autonomously to such changes. 

3 How can we Generate Swarming? 
There are three major approaches to the command and control of multiple robotic entities, which 
can be distinguished on the basis of the location in the architecture at which intelligent decisions 
are concentrated (Table 2). Centralized command and control, which is not swarming under our 
definition, treats the centralized commander as the main locus of intelligence. Classical AI 
mechanisms seek to endow the individual entity with local intelligence, while stigmergic mecha-
nisms generate system-level intelligent 
behavior through the interactions 
among entities that individually may 
not exhibit high levels of intelligence. 

Table 2: Approaches to Controlling Multiple Enti-
ties 

Approach Locus of Intelligence 
Centralized C2 Distinguished agent (“commander”) 
Classical AI Each individual agent 
Stigmergy Interactions among agents 

3.1 Centralized C2 
The classic model of centralized C2 en-
visions decisions being made by the  
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central commander and then propagated through a hierarchy of subordinates for refinement and 
execution. Most intelligence is concentrated in the central commander, not in the other entities in 
the system. This model satisfies only the first and third elements of our definition, and so does 
not constitute swarming. 

• The resulting behavior may be useful, although the time delays associated with central 
decision-making may compromise its performance. 

• It certainly is not self-organizing. Rather, the organization is defined by the central au-
thority and imposed top-down on the elements. 

• It can coordinate multiple entities, although limitations in human span of attention re-
quire multiple layers of hierarchy as the number of entities increases. 

• Local communications are not generally sufficient for such schemes. In fact, much of 
the emphasis on long-range high-bandwidth communications capacity in modern military 
systems can be traced to the desire to support centralized command.  

3.2 Intelligent Agents 
Most research in multi-agent systems (e.g., [52]) seeks to endow the individual agent with intel-
ligence. At some level, most of these systems can be described as a finite-state machine (FSM). 
Work by the team at JHU-APL [50, 51] is an important example of how these systems can be 
applied to unpiloted vehicles. 

The basic idea of an FSM is that the agent at any time is in one of a number of distinct states, and 
moves from one state to another based on events that it experiences or conditions that it detects 
in the environment. Figure 2 is an example of a fragment of an actual UAV FSM. This fragment 
records four states in which the UAV may be, indicated by non-italic type, and six conditions 
under which it may change state, in italics. For example, if the UAV is in the “Global Search” 
state and receives a message requesting it to search a particular area, it enters the “Goto Search 
Point” state, which invokes the flight control system to move the UAV to the waypoint specified 
in the search request message. When the UAV reaches that waypoint, it enters the “Local 
Search” state, which now tells the 
avionics to perform local search 
operations. If two transitions out of 
a state are enabled, the choice be-
tween them is made nondeterminis-
tically. 

As this example shows, interactions 
among entities are one class of 
events that can trigger a transition 
from one state to another. Such in-
teractions may be of different 
types: one entity may detect the 
presence of another (e.g., to avoid 
collision), command another to 
carry out an action (thus imple-
menting a centralized C2 scheme), 

Global
Search

Goto
Search
PointrcvSearchMsg

Local
Search

reachedWP

Coord
Locali-
zation

detect

detect
invalidDetect

invalidDetect

 

Figure 2: Fragment of a UAV FSM (from [51]) 
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or negotiate with other entities. A population of individually intelligent agents can function in 
different modes, including central command and what we have defined as swarming. Swarming 
will result if the interactions are local and if resulting interplay of the individual FSM’s leads to 
self-organization. 

Many refinements of FSM’s hold promise for swarming military systems. Three in particular are 
the use of nondeterminism within states, the subsumption architecture, and market models.  

• As described in [50, 51], the behavior of a platform while in a given state is deterministic, 
and the system exhibits nondeterminism only in deciding among multiple eligible transi-
tions. Adding nondeterminism within states, and refining its application in state transi-
tions, can make FSM’s more robust, as discussed in Section 3.3.2 below. 

• In the subsumption architecture [11, 34], the states are arranged in a series of levels. 
Lower-level states define default behaviors that may be overridden by higher-level states 
in the presence of specific stimuli. The RAND PRAWN model of swarming UAV’s [26] 
uses this architecture.  

• Market models [20, 49] structure the negotiations among entities in economic terms, 
building on an early agent protocol known as the “contract net” [19]. Agents responsible 
for high-level tasks publish descriptions of subtasks, for which other agents bid according 
to their capabilities. The market dynamics rationalize the allocation of tasks across 
agents. 

FSM’s and other architectures with individually intelligent agents offer a number of benefits. 
The states of each vehicle map directly onto features of the domain in a way that human users 
can easily understand, and the interactions of agents are also understandable. A set of well-
chosen states and transitions can be configured to address a variety of tasks and missions. These 
architectures can control all aspects of the system, not just platform motion, and can be applied 
to heterogeneous platforms.  

At the same time, these architectures pose some notable challenges. Because the states are de-
fined at a high conceptual level, a FSM can be brittle, and its performance can deteriorate when 
its predefined collection of states and transitions does not map neatly onto the environment. 
(Adding nondeterminism can reduce this brittleness.) Defining the correct set of states and transi-
tions is a non-trivial knowledge engineering task. The architecture encourages commands be-
tween entities rather than negotiation, leading to rigid task assignment (although market models 
can be more flexible). As the number of platforms increases, coordination becomes increasingly 
difficult, leading to scaling problems with large populations. 

3.3 Stigmergic Systems 
“Stigmergy” is a term coined in the 
1950’s by the French biologist Grassé 
[29] to describe a broad class of multi-
agent coordination mechanisms that 
rely on information exchange through a 
shared environment. The term is formed 
from the Greek words stigma “sign” 
and ergon “action,” and captures the 

Table 3: Varieties of Stigmergy 

 Marker-Based Sematectonic 

Quantitative 
Gradient following 
in a single 
pheromone field 

Ant cemetery 
clustering 

Qualitative 
Decisions based 
on combinations 
of pheromones  

Wasp nest 
construction 
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notion that an agent’s actions leave signs in the environment, signs that it and other agents sense 
and that determine their subsequent actions. Different varieties of stigmergy can be distin-
guished. One distinction concerns whether the signs consist of special markers that agents de-
posit in the environment (“marker-based stigmergy”) or whether agents base their actions on the 
current state of the solution (“sematectonic stigmergy”). Another distinction focuses on whether 
the environmental signals are a single scalar quantity, analogous to a potential field (“quantita-
tive stigmergy”) or whether they form a set of discrete options (“qualitative stigmergy”). As 
shown in Table 3, the two distinctions are orthogonal.  

Whatever the details of the interaction, examples from natural systems show that stigmergic sys-
tems can generate robust, complex, intelligent behavior at the system level even when the indi-
vidual agents are simple and individually non-intelligent. In these systems, intelligence resides 
not in a single distinguished agent (as in the centralized model) nor in each individual agent (the 
intelligent agent model), but in the interactions among the agents and the shared dynamical envi-
ronment.  

Stigmergic mechanisms have a number of attractive features for military systems.  

Simplicity.—The logic for individual agents is much simpler than for an individually intelligent 
agent. This simplicity has three collateral benefits. 

1. The agents are easier to program and prove correct at the level of individual behavior. 

2. They can run on extremely small platforms (such as microchip-based “smart dust” [44]). 

3. They can be trained with genetic algorithms or particle-swarm methods rather than re-
quiring detailed knowledge engineering. 

Scalable.—Stigmergic mechanisms scale well to large numbers of entities. In fact, unlike many 
intelligent agent approaches, stigmergy requires multiple entities to function, and performance 
typically improves as the number of entities increases. 

Robustness.—Because stigmergic deployments favor large numbers of entities that are continu-
ously organizing themselves, the system’s performance is robust against the loss of a few indi-
viduals. The simplicity and low expense of each individual means that such losses can be toler-
ated economically. 

Environmental Integration.—Explicit use of the environment in agent interactions means that 
environmental dynamics are directly integrated into the system’s control, and in fact can enhance 
system performance. A system’s level of organization is inversely related to its symmetry 
(Figure 3), and a critical function in achieving self-organization in any system made up of large 
numbers of similar elements is breaking the natural symmetries among them [3]. Environmental 
noise is usually a threat to conven-
tional control strategies, but stigmer-
gic systems exploit it as a natural 
way to break symmetries among the 
entities and enable them to self-
organize. 

Increasing Organization

Increasing Symmetry
 

Figure 3: Symmetry vs. Organization.—Achieving 
high levels of organization requires breaking the sym-
metry among system components, a function that envi-
ronmental noise supports. 

A subset of stigmergic mechanisms, 
known as “coordination fields” or 
“co-fields” [36-38, 51], consists of 
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quantitative stigmergy (scalars 
mapped to the problem topology). 
The scalar field is generated by a 
combination of attracting and repel-
ling components, and the agents fol-
low gradients in this field, thus tend-
ing to avoid repellers and approach 
attractors. Such techniques have an 
extended history in controlling indi-
vidual robots [46]. Among numerous 
instances of this approach to model-
ing and controlling swarms of multi-
ple entities, three are illustrative, 
summarized in Table 4 and discussed 
in the next three subsections. 

Table 4: Examples of Co-Fields for Military 
Swarming 

Sandia 
Laboratories 

Particle 
Swarms 

Simulated Coulomb forces 
among the particles 

Johns 
Hopkins APL 

Extensions 
to FSM’s 

Gradients along contact 
vectors in space-time 

Altarum Digital 
Phero-
mones 

Agents deposit and sense 
digital pheromones in 
computational 
infrastructure that supports 
Aggregation, Evaporation, 
Diffusion 

 

3.3.1 Sandia: Particle Swarms 
The particle swarm approach to modeling swarms is based on an analogy between swarming en-
tities and physical particles: For example, one can view a swarm of robots as particles in a gas:  

• They have momentum. 

Targets

Initial 
Particle 

Locations

Targets

Initial 
Particle 

Locations

 

Figure 4: Ballistic simulation of a swarm in a complex urban environment. 
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• They respond to potential fields in the 
environment (including real potentials 
like gravity, drag, and propulsion, and 
artificial ones like repulsion from colli-
sions and attraction to targets). 

Table 5: Modeling Swarms with Particle 
Physics Codes 

Problem Simulation Code 
UAV’s Particle-in-Cell (PIC) 
UGV in Simple 
Environment Lattice Gas Automata 

Ballistic Code UGV in Complex 
Urban Environment Particle-in-Cell (PIC) 

• When they hit another robot or a wall, 
they bounce as in an elastic collision, 
responding to a simulated Coulomb 
field. 

Robots bounce around the environment until 
they find something interesting, then stop. Sandia has explored a variety of such models, leverag-
ing existing software codes for physical particles  (Table 5) [24]. This approach offers several 
advantages: 

 

• Existing particle simulation codes are benchmarked. 

• The statistical mechanics of finite-sized particles are well documented and understood. 

• These codes are highly efficient: some scale as O(n). 

• Single and parallel computer implementations are available. 

• The codes can support heterogeneous particles. 

Figure 4 shows the result of such a simulation in a complex urban environment. The vehicles 
start in two large clumps along the edges of the figure, and their task is to find the two targets at 
the upper right and lower left. Vehicles move following ballistic laws until they learn of the loca-
tion of a target, then they stop (and turn a lighter shade in the display). When a vehicle learns the 
location of a target (either by running into it, or by hearing from another vehicle), it broadcasts 
the location to others. Though the communication range of an individual vehicle is very small, 
eventually the knowledge propagates through the entire community. 

3.3.2 JHU APL: Extensions to FSM’s 
The JHU-APL team is applying co-fields to the coordination and control of UAV’s [51]. Their 
approach  has two important features.  

Strong “attraction” 
to target

Weak 
“attraction”

to peer 
vehicle

Weak “repulsion” 
from peer 

Acting 
vehicleResulting 

vector

Strong “attraction” 
to target

Weak 
“attraction”

to peer 
vehicle

Weak “repulsion” 
from peer 

Acting 
vehicleResulting 

vector

 

Figure 5: Local estimation of co-field from 
propagated influence vectors. 

First, they use co-fields in a hybrid architec-
ture, jointly with FSM’s. FSM’s provide 
high-level control of entities, and co-fields 
define the detailed behavior of an entity 
while it is in a single state. They are also be-
ing explored as a way to resolve ambiguous 
transitions between states. This hybrid archi-
tecture illustrates an important point that can 
be generalized across the techniques summa-
rized in this paper: swarming technologies 
are not necessarily mutually exclusive, but 
can often be combined in complementary 
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ways to solve a problem. 

Second, they do not attempt to generate a co-field covering the entire problem space, but rather 
propagate influence vectors among neighboring vehicles. A vehicle sums the influence vectors 
from its neighbors with that resulting from its own sensors, and follows the resultant (Figure 5). 
This technique is an example of how a technique inspired by natural systems can be abstracted 
and simplified so that its implementation is structurally more amenable to digital computation 
than the biological counterpart. 

3.3.3 Altarum: Digital Pheromones 
Our own research has concentrated on applications of co-fields modeled rather closely on the 
pheromone fields that many social insects use to coordinate their behavior. We have developed a 
formal model of the essentials of these fields, and applied them to a variety of problems. 

The real world provides three continuous processes on chemical pheromones that support pur-
posive insect actions.  

• It aggregates deposits from individual agents, fusing information across multiple agents and 
through time.  

• It evaporates pheromones over time. This dynamic is an innovative alternative to traditional 
truth maintenance in artificial intelligence. Traditionally, knowledge bases remember every-
thing they are told unless they have a reason to forget something, and expend large amounts 
of computation in the NP-complete problem of reviewing their holdings to detect inconsis-
tencies that result from changes in the domain being modeled. Ants immediately begin to 
forget everything they learn, unless it is continually reinforced. Thus inconsistencies auto-
matically remove themselves within a known period. 

• It diffuses pheromones to nearby places, disseminating information for access by nearby 
agents. 

These dynamics can be modeled in a system of difference equations across a network of “places” 
at which agents can reside and in which they deposit and sense increments to scalar variables that 
serve as “digital pheromones,” and these equations are provably stable and convergent [12]. 
They form the basis for a “pheromone infrastructure” that can support swarming for various 
C4ISR functions, including path planning and coordination for unpiloted vehicles, and pattern 
recognition in a distributed sensor network. 

Path Planning.—Ants construct networks of paths that connect their nests with available food 
sources. Mathematically, these networks form minimum spanning trees [28], minimizing the en-
ergy ants expend in bringing food into the nest. Graph theory offers algorithms for computing 
minimum spanning trees, but ants do not use conventional algorithms. Instead, this globally op-
timal structure emerges as individual ants wander, preferentially following food pheromones and 
dropping nest pheromones if they are not holding food, and following nest pheromones while 
dropping food pheromones if they are holding food.  

We have adapted this algorithm to integrate ISR into a co-field that then guides unpiloted vehi-
cles away from threats and toward targets [43]. The battlespace is divided into small adjoining 
regions, or “places,” each managed by a “place agent” that maintains the digital pheromones as-
sociated with that place and serves as a point of coordination for vehicles in that region. The 
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network of place agents can execute on a sensor network distributed physically in the battle-
space, onboard individual vehicles, or on a single computer at a mission command center. When 
a Red entity is detected, a model of it in the form of a software agent is initiated in the place oc-
cupied by the Red entity, and this agent deposits pheromones of an appropriate flavor indicating 
the presence of the entity. The agent can also model any expected behaviors of the Red entity, 
such as movement to other regions. Blue agents respond to these pheromones, avoiding those 
that represent threats and approaching those that represent targets, and depositing their own 
pheromones to coordinate among themselves. (The distinction between threat and target may de-
pend on the Blue entity in question: a SEAD resource would be attracted to SAM’s that might 
repel other resources.) The emergence of paths depends on the interaction of a large number of 
Blue entities. If the population of physical resources is limited, a large population of software-
only “ghost agents” swarms through the pheromone landscape to build up paths that the physical 
Blue agents then follow. Figure 6 shows repulsive and attractive Red pheromones, and the result-
ing co-field laid down by Blue ghost agents that forms a path for a strike package to follow. This 
mechanism can discriminate targets based on proximity or priority, and can plan sophisticated 
approaches to highly-protected targets, approaches that centralized optimizers are unable to de-
rive. 

Red AD Pheromones Red HQ Pheromones Path Pheromones 
from Blue GhostsRed AD Pheromones Red HQ Pheromones Path Pheromones 
from Blue Ghosts

 
Figure 6: Digital Pheromones for Path Planning. 

Vehicle Coordination.—The algorithms developed in our path planning work were incorporated 
into a limited-objective experiment conducted by SMDC for J9 in 2001 [21, 48]. In this applica-
tion, up to 100 UAV’s coordinated their activities through digital pheromones. UAV’s that had 
not detected a target deposited a pheromone that repelled other UAV’s, thus ensuring distribution 
of the swarm over the battlespace. When a UAV detected a target, it deposited an attractive 
pheromone, drawing in nearby vehicles to join it in the attack. This capability enabled the de-
ployment of many more vehicles without an increase in human oversight, and yielded significant 
improvements in performance over the baseline, including a 3x improvement in Red systems de-
tected, a 9x improvement in the system exchange ratio, and a 11x improvement in the percentage 
of Red systems killed. 

Pattern Recognition.—The Army’s vision for the Future Combat System includes extensive use 
of networks of sensors deployed in the battlespace. Conventional exploitation of such a network 
pipes the data to a central location for processing, an architecture that imposes a high communi-
cation load, delays response, and offers adversaries a single point of vulnerability. We have 
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demonstrated an alternative 
approach in which pattern 
recognition is distributed 
throughout the sensor net-
work, enabling individual 
sensors to recognize when 
they are part of a larger pat-
tern [15]. The swarming 
agents are not physical, but 
purely computational, and 
move between neighboring 
sensors using only local 
communications. Figure 7a 
shows an example distribu-
tion of sensors (a 70x70 
grid). With a global view, we 
can quickly identify the sen-
sors with high readings (plot-
ted as white), but individual 
sensors do not have this per-
spective and cannot be sure 
whether they are high or low. 
One species of swarming agents compares each sensor’s readings with a summary of what it has 
seen on other sensors to estimate whether the current sensor is exceptional, and deposits search 
pheromones (Figure 7b) to attract its colleagues to confirm its assessment. Each agent has seen a 
different subset of the other sensors, so a high accumulation of find pheromone on a sensor 
(Figure 7c) indicates that the sensor really is high in comparison with the rest of the network, and 
it can call for appropriate intervention. A second species of agents moves over the sensors both 
spatially and (through stored histories of recent measurements) chronologically. The movement 
of this species is not random, but embodies a spatio-temporal pattern, and its pheromone deposits 
highlight sensors that are related through this pattern (in Figure 7d, an orientation from SW to 
NE).  

a. Input Indicators

d. Pattern Pheromones 
Select Patterns

b. Search Pheromones 
Concentrate Walkers

c. Find Pheromones 
Localize Behaviors

a. Input Indicators

d. Pattern Pheromones 
Select Patterns

b. Search Pheromones 
Concentrate Walkers

c. Find Pheromones 
Localize Behaviors

 
Figure 7: Multiple species of software agents swarming over 
a sensor network can enable the network to detect patterns 
without centralizing the data. 

4 How can we Measure and Control Swarming? 
The mechanisms outlined in the previous section can enable populations of software or hardware 
entities to self-organize through local interactions, but to be useful, human overseers must be 
able to measure their performance and control their actions. This section briefly discusses ap-
proaches to these important functions. 

4.1 Measurement 
We have defined swarming as “useful self-organization of multiple entities through local interac-
tions.” The terms in this definition offer a useful template for measuring the performance of a 
swarm. The criteria of “multiple entities” and “local interactions” identify independent variables 
that characterize the kind of swarm being considered, while the notion of “useful self-
organization” leads to several dependent variables. Because of the nonlinearities involved in both 
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individual agent behavior and the interactions among agents, the values of the dependent vari-
ables can change discontinuously as the independent variables are adjusted, and qualification of a 
swarm requires careful study of such “phase shifts.” An example of such a study is [42].  

Multiple entities.—Sometimes mechanisms that work satisfactorily for small numbers of enti-
ties do not scale well as the population increases. In other cases, there may be a critical minimum 
population below which the swarm will not function. (The latter condition motivated our use of 
“ghost agents” in the path planning example discussed above.) In evaluating swarms, it is crucial 
to study how the performance varies with population. 

Local interactions.—Another set of variables under the direct control of the implementer of a 
swarm is the nature of local interactions among swarm members. This interaction may be varied 
along a number of dimensions, including mode (direct messaging, either point-to-point or broad-
cast, or sensing), range, and bandwidth.  

Measures of Usefulness.—The measures used to assess the usefulness of a swarm are drawn 
directly from the MOE’s and MOP’s appropriate to the application problem. For example, in the 
LOE exploring the use of swarming UAV’s for SEAD reported above, the MOE’s were Percent 
of Red assets detected, Percent reduction of successful TBM launches, Percent of Red assets de-
stroyed (by type), Percent of Blue assets destroyed, Time first Red units are detected, and System 
Exchange Ratio (SER). The MOP’s were Number of Red targets detected by type and time, 
Number of Red targets nominated by type, Number of Red targets attacked by type, Number of 
Red targets destroyed by type, Number of Blue assets destroyed by type, and Number of TBM 
launches. 

Measures of Self-Organization.—Some of the benefits of swarming are difficult to measure 
directly, but are directly correlated with the degree to which a swarm can organize itself. For ex-
ample, directly assessing a swarm’s robustness to unexpected perturbations would require a very 
large suite of experiments, but our confidence in this robustness can be strengthened if we can 
measure its self-organizing capabilities. We have found a variety of measures derived from sta-
tistical physics to be useful indicators of self-organization, including measures of entropy over 
the messages exchanged by agents, their spatial distribution, or the behavioral options open to 
them at any moment [13]. Frequently, local measures of these quantities permit us to deduce the 
global state of the swarm, a crucial capability for managing a distributed system [41]. It has re-
cently been suggested that a Lebesgue measure of the portion of the swarm’s space of behaviors 
that is dominated by the Pareto frontier might also be a useful measure of self-organization [25].  

4.2 Control 
The “self-organizing” aspect of a swarm implies that its global behavior emerges as it executes, 
and may vary in details from one run to the next because of changes in the environment. Detailed 
moment-by-moment control of the swarm would damp out this self-organization and sacrifice 
many of the benefits of swarming technology. However, swarming does not imply anarchy. 
Swarms can be controlled without sacrificing their power in two ways: by shaping the envelope 
of the swarm’s emergent behavior, and by managing by exception. 

Envelope Shaping.—While the details of a swarm’s behavior may vary from one run to the 
next, those variations often are constrained to an envelope that depends on the configuration of 
the swarm. An illustration of this distinction can be seen in the Roessler attractor from chaos 
theory (Figure 8). This figure is a plot in three-dimensional phase space of a set of differential 
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equations in their chaotic regime. The line that twists through 
this figure indicates the trajectory of this system, a trajectory 
that is so intertwined that arbitrarily small differences in ini-
tial conditions can lead to widely varying outcomes. For in-
stance, if the system starts at location “A,” it is in principle 
impossible to predict whether at a specified future time it will 
be at location B or location C. However, in spite of its detailed 
unpredictability, the system is confined to a highly structured 
envelope, and it is impossible for it to visit the point D.  

To shape a swarm’s envelope, it is exercised in simulation, 
and human overseers evaluate its performance, rewarding ap-
propriate behavior and punishing inappropriate behavior. Evo-
lutionary or particle swarm methods then adjust the behaviors of individual swarm members so 
that desirable behavior increases and undesirable behavior decreases [10, 47]. The process ad-
justs the envelope of the system’s behavior so that undesirable regions are avoided. Incidentally, 
these techniques enable swarms to be trained rather than designed, an approach that reduces the 
need for specialized software skills on the part of the warfighter. Evolution can also be used to 
explore the behavioral space of a swarm in much greater detail than exhaustive simulation would 
permit, by selectively altering later simulation runs based on the results of earlier ones [14]. 

A

D

C

B

A

D

C

B

 

Figure 8: The Roessler Attrac-
tor 

Managing by Exception.—Once a swarm has been launched, human overseers can observe its 
emerging behavior and intervene on an exception basis. For example, a swarm with kill capabil-
ity can autonomously detect a target and configure itself for attack, then apply for human permis-
sion to execute. Digital pheromones are especially amenable to human direction. Graphic marks 
on a map can be translated directly into pheromone deposits that modify the emergent behavior 
of the swarm in real-time (Figure 9). A path being formed by the system can be blocked or a 
whole region excluded; the priority of individual targets and threats can be adjusted; segments of 
paths can be explicitly designated; and bounds can be placed on performance metrics. The im-
portant point is that human interven-
tion is on an exception basis. Routine 
operation proceeds without detailed 
human control, freeing human war-
fighters to concentrate on more strate-
gic concerns and calling their attention 
to situations where their judgment is 
required. 

Inclusion/
Exclusion regions

Explicit path 
segments

Adjustment of 
individual targets 
and threats

+– –

Bounds on perfor-
mance metrics

Inclusion/
Exclusion regions

Explicit path 
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Figure 9: Human Direction of a Digital Pheromone 
System 

5 Conclusion 
Swarming is an ancient military vision 
that has been emulated by human war-
riors for centuries. Recent growth in 
our understanding of the mechanisms 
underlying natural swarming, and ad-
vances in information technology, en-
able us to construct, configure, and de-
ploy swarms of unmanned systems. 
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These systems are useful not only for the attack scenarios that have dominated history, but also 
for planning, communications management, and sensor processing, among other applications. 
These systems are measurable and controllable, and offer an important opportunity for military 
technologists to increase adaptability, robustness, and lethality, while reducing human manpower 
requirements and risk.  
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