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A great mathematical creation could be a profound and 
potent idea creating a fundamental and revolutionary 
impact by its very simplicity and elegance, or it could 
be a deep technical work of great complexity and ingenu
ity. In the history of mathematics, India seems to have 
the greatest contribution in introducing simplifying in
novations. Three grand instances are: the invention of 
the decimal notation and creation of modern arithmetic; 
the invention of the sine and cosine functions leading to 
the creation of modern trigonometry; and creation of al
gebra. These ma..'3ter-strokes have influenced and trans
formed the very nature of mathematics. However, due 
to the very simplicity of these profound contributions, 
we do not realise how much admiration they deserve. 

As examples of great works of complexity, one can cite 
the higher geometry of Archimedes and Apollonius, the 
calculus of Archimedes, and the Indian achievements in 
the study of indeterminate equations in higher arith
metic (number theory) and in analytic trigonometry. 
However, the latter works - too far ahead of contem
porary mathematical maturity - did not reach Europe 
during renaissance and had to be reinvented by some of 
the greatest minds of Europe during the 17th-18th cen
turies. Consequently the astonishing feats achieved in 
India in these two core areas of mathematics - algebraic 
number theory and analysis - often tend to get over
looked in accounts on the development of mathematics. 
Ironically, it is also due to the algebraic intricacies and 
abstractions involved in indeterminate or Diophantine 
analysis, that Indian progress in this area often gets ne
glected in popular writings involving mathematics cul
ture and history. These unfortunate omissions tend to 
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create an erroneous impression that the contributions 
of ancient India have been limited to commercial arith
metic or elementary mathematics. 

In Part 1 of this series, we had made only a brief men
tion of Diophantine equations. In this part, we shall 
elaborate a little more on the exciting Indian achieve
ments in this field and discuss Diophantine equations in 
the Sulbasutras and Aryabhatiya. We first make a few 
introductory remarks regarding Diophantine equations. 

Diophantine Equations: An Introduction 

Equations with integer coefficients whose solutions are 
to be found in integers (or sometimes rational numbers) 
are called Diophantine equations in the honour of Dio
phantus of Alexandria (250 AD) - the adjective 'Dio
phantine' pertains not so much to the nature of the equa
tion as to the nature of the admissible solutions of the 
equation. Problems in Diophantine equations are easy 
to state but usually hard to solve - the difficulty arises 
due to the stringent restriction of admitting only integer 
solutions. Often it is difficult even to ascertain whether 
an integer solution exists or not - an extreme example 
is the famous Diophantine equation xn + yn = zn, for 
arbitrary n(> 2). 

Indians were the first to systematically investigate meth
ods for determination of integral ~olutions of Diophan
tine equations. Diophantus had actually investigated 
solutions of equations in rational numbers (not integers) 
- rational solutions of equations are of considerable geo
Inetric interest. For homogeneous equations, the two 
problems are equivalent; but, in general, the problem of 
finding integer solutions to an equation is Hluch I110rC 
difficult than that of finding rational solutions. For in
stance, it is trivial to describe all rational solutions of a 
linear equation ax - by = c (a, b, c integers); whereas to 
describe all integer solutions requires some effort. 
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While Diophantus was interested in finding one ratio
nal solution, Indians investigated all integral solutions 
of Diophantine equations of first and second degree. By 
fifth century AD, the Indians had discovered a general 
method for the solution of the first degree Diophantine 
equation in two variables which we shall discuss in this 
issue. 

No general method is as yet known for solving general 
quadratic or higher Diophantine equations. Among the 
quadratic equations, the most famous are the special 
equations of the form x 2 - Dy2 = 1, known as the Pell 
equation, for which Indians had evolved a brilliant al
gorithm during the 7th-II th century AD which we shall 
discuss in a subsequent issue. 

Systematic investigation of integral solutions began in 
Europe only in the 17th century when interest in number 
theory was rekindled with the publication of Bachet's 
translation of Diophantus with a commentary. 

Diophantine Equations in Sulbasutras 

The Indian interest in integral solutions of Diophantine 
equations can be traced back to the Sulbasutras. Cer
tain brick constructions of the Vedic fire-altars provide 
interesting examples of specific simultaneous indetermi
nate equations. For instance, the Garhapatyagni altar is 
stipulated to have five layers of bricks, each layer con
taining 21 bricks, and forming an area of one square unit 
( vyayam). 

Now, not all bricks can be of same length; for, to have 
stability in the structure, the cleavages (between two 
adjacent bricks) of two successive layers should not co
incide. Suppose each layer has x square bricks of length 
.1.. unit each and y square bricks of length 1 unit each, 
m n 
with m > n. Then the altar-specifications lead to the 

________ .AAAAA, ______ __ 
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simultaneous Diophantine equations 

x y 
x+ Y = 21; - + - = 1 

m 2 n2 

having precisely two sets of positive integral solutions 
for (x, y, m, n), namely (16,5,6,3) and (9,12,6,4). The 
Baudhayana Sulbasutra prescribes making three types 
of square bricks of lengths ~,~ and i units and then 
placing 9 bricks of length ~ unit and 12 bricks of length 
~ unit in the first, third and fifth layers; and 16 bricks of 
length ~ unit and 5 bricks of length i unit in the second 
and fourth layers. That takes care of both the ritual as 
well as the engineering requirements. Mathematically 
speaking, Baudhayana has given all the positive integral 
solutions of the simultaneous equations described above. 

More difficult Diophantine problems arise from the con
structions of the syena-cit (falcon-shaped fire-altar). Two 
such examples, due to Baudhayana and Apastamba re
spectively, are: 

x y z u 1 
x + y + z + u = 200; - + - + - + - = 7-. 

m n p q 2 

x y z u v 1 
x+y+z+u+v=200; -+-+-+-+-=7-. 

m n p q r 2 

The actual difficulties of construction are much more 
than what appears from mere algebraic considerations. 
The bricks have further to be arranged in such a way as 
to have the prescribed shape of the falcon-altar! 

The Sulbasutras also give several examples of 'Pytha
gorean triples' (a triple of positive integers (a, b, c) satis
fying the equation x2 + y2 = Z2 is called a Pythagorean 
triple). Further, Katyayana gave an ingenious rule to 
combine n squares of length a to get a new square - this 
rule involves the formula na2 = ((n + 1)/2)2a2 - ((n-
1)/2)2a2

. From this identity it is easy to deduce a gen
eral formula to describe all Pythagorean triples. In view 
of the abundant numerical examples and Katyayana's 
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rule, it seems that the Vedic mathematicians were aware 
of such a general formula (for more details, see [1]). 

Kuttaka Algorithm of Aryabhata 

Introduction 

Systematic methods for finding integer solutions of Dio
phantine equations can be found in Indian texts from the 
time of Aryabhata (499 AD). The first explicit descrip
tion of the general integral solution of the linear Dio
phantine equation ay - bx = c occurs in his text A ryab
hatiya. This algorithm is considered to be the most sig
nificant contribution of Aryabhata in pure mathematics. 
The technique was applied by Aryabhata to give inte
gral solutions of simulataneous Diophantine equations 
of first degree - a problem with important applications 
in astronomy. 

Aryabhata describes the algorithm in just two stanzas 
of Aryabhatiya (verses 32 and 33 of the section Ganita). 
His cryptic verses were elaborated by Bhaskara I (6th 
century AD) in his commentary Aryabhatiyabhasya. Bha
skara I illustrated Aryabhata's rule with several exam
ples including 24 concrete problems from astronomy. 
Without the explanation of Bhaskara I, it would have 
been difficult to interpret Aryabhata's verses (for de
tails, see [2]). 

Bhaskara I aptly called the method 'kuttaka' (pulver
sisation) - the significance of the terminology would 
be clear from the algorithm. The kuttaka was subse
quently discussed, with variations and refinements, by 
several Indian mathematicians including Brahmagupta 
(628 AD), Mahavira (850), Aryabhata II (950), Sripati 
(1039), Bhaskara II (1150) and Narayana (1350). The 
idea in kuttaka was considered so important by the Indi
ans that initially the whole subject of algebra used to be 
called kuttaka-ganita, or simply kuttaka - Brahmagupta 
(628 AD) used this term! The current Sanskrit term 
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If we take a, b, c to be positive integers, then any lin
ear Diophantine equation in two variables is of the form 
ay - bx = ±c or ay + bx = ±c. Indians actually evolved 
algorithms for determining all positive integral solutions 
of such equations - an even more subtle problem. For 
the concrete applications in astronomy, one needed to 
pick out precisely the positive integral solutions of equa
tions of the type ay - bx = ±c. For simplicity, we shall 
not always be too meticulous on this technical point -
sometimes we shall talk about integers rather than pos
itive integers. 

The equation ay - bx = ±c was visualised by ancient 
Indians in the form y = bx;c. The quantities a, b, c, x, y 
were called hara (divisor), bhajya (dividend), ksepa (in
terpolator), gun aka (multiplier) and phala (quotient), 
respectively. During the early stages (i.e., the time of 
Aryabhata-Bhaskara I) when negative numbers had not 
yet taken firm roots in Indian algebra, the equation was 
arranged in the form y = bx;:-c or x = ay:c so as to 
ensure that the interpolator c comes with a positive 
sign. I t would be beyond the scope of this article to 
go into all the finer historical details on the kuttaka -
a thorough discussion involves 55 pages in ([3], Vol II. 
p. 87-141). For brevity, we present the essence of the 
algorithnl adopting modern style and notations but us
ing the various ideas introduced by the ancient Indian 
stalwarts. 

Now, it is easy to see that the equation ay - bx = c 
will have integral solutions only if c is divisible by the 
GCD (greatest common divisor) of a and b - this obser
vation was made, in some form or the other, by almost 
all ancient Indian writers. 

Using the Indian methods we shall deduce the converse: 

Indians evolved 

algorithms for 

determining all 

positive integral 

solutions of linear 

Diophantine 

equations in two 

variables. 
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If c is divisible by the GCD of a and b, then the equation 
ay - bx = c has infinitely many integral solutions. 

From now onwards, we shall assume that a, b, c are all 
positive and focus on the equations ay - bx = ±c. 

Reductions 

The quantities a, b, c were usually very large in the con
crete problems arising out of astronomy. For instance, 
Laghubhaskariya of Bhaskara I discusses a problem per
taining to the revolutions of Saturn which would lead 
to the equation 146564y - 1577917500x = 24. To sim
plify the laborious calculations, various devices were em
ployed by the Indians. It is now a standard trick in 
modern mathematics to be on the lookout for such sim
plifications or 'reductions' by which efforts are made to 
transfer a problem to a equivalent but neater and pos
sibly more tractable problem where the underlying fea
tures become more transparent. We now describe some 
of the reductions performed by the ancient Indians be
fore applying the kuttaka. 

First of all, cancelling gcd( a, b, c) (which is simply gcd( a, b) 
by earlier remark), one assumes that a and b are co
prime. By this reduction, not only do the coefficients be
come smaller (thereby simplifying computations), but, 
more importantly, one is now better equipped to tackle 
the problem as one has the advantage of the additional 
property of a and b being coprime - a property which 
is potentially useful. Bhaskara I, Brahmagupta, Aryab
hata II, Sripati and Bhaskara II, among others, explic
itly stated that all the coefficients should be divided by 
gcd( a, b), so that the coefficients in the reduced equation 
become relatively prime, or to use ancient terminology, 
(mutually) drdha (firm), niccheda (having no divisor), 
nirapavarta (irreducible). 

Secondly, following Bhaskara I, one can reduce the prob
lem of finding all the positive integral solutions to that 
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of finding one positive integral solution. Suppose that 
( u, v) is a positive integral solution of ay - bx = ±c. 
From (u, v), one first finds the minimum positive inte
gral solution. Dividing u and v by a and b respectively, 
we have u = pa + r and v = qb + s for some whole num
bers p, q, r, s such that r < a and s < b. If p = q, then 
(r, s) is clearly a solution of ay - bx = ±c; in fact, it is 
the minimum positive integral solution (proof is easy). 
If p i= q, then it can be seen that p < q when we con
sider the equation ay - bx = c; and p > q when we 
deal with ay - bx = -c. The minimum positive inte
gral solution in the two cases are (r, s + (q - p)b) and 
(r + (p - q )a, s), respectively. This rule for arriving at 
the minimum solution has been explained very lucidly 
by Aryabhata II but it is already implicit in Aryabhata
Bhaskara 1. Next, if (a, 13) is a minimum positive integral 
solution of ay - bx = ±c, then Bhaskara I and his suc
cessors described the general positive integral solution 
as (a + ta, 13 + tb), where t is a positive integer. This can 
be easily verified using that a, b are coprime. In fact, the 
general integral solution of ay - bx = ±c can be seen to 
be (x, y) = (u + ta, v + tb) where t is any integer and 
(u, v) any integer solution. 

Thirdly, it is clearly enough to solve an equation of 
the type ay - bx = ±1; for, if av - bu = ±1, then 
a( cv) - b( cu) = ±c. Such equations were called sthira
kuttaka (constant pulveriser). This simplification too 
was made by some of the Indian mathematicians right 
from Bhaskara 1. In problems of astronomy involving the 
equations ay - bx = ±c, the conditions were often such 
that the coefficients a, b would be the same in several 
equations but the interpolator c would vary. In such sit
uations, working first with the constant pulveriser and 
then modifying the solution according to the specific 
problem would have been convenient. 

We mention another subtle reduction of Aryabhata II, 
applicable in case there is a common factor between a 
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and c or between band c, which would further reduce the 
size of the coefficients of x and y. Let gl = gcd (a, c), 
a1 = ga , g2 = gcd (b,...£.) and b1 = .l!.... Then Aryabhata 

1 g1 g2 
II, and his successors like Bhaskara II, observed that 
the problem of solving ay - bx = ±c reduces to the 
problem of solving a1Y - blX = ±l: if (u, v) is an 
integral solution of the latter, then (~, f£) is an integral 

g2 g1 
solution of the original equation. 

Now, without loss of generality, we assume a > b. This 
step was achieved through two different methods. The 
later method corresponds to the modern approach: if 
b > a, think of the equation as bx - ay = =FC rather 
than ay - bx = ±c. But earlier writers like Bhaskara I, 
who already had to arrange the equation ay - bx = c so 
as to have only positive coefficients, used the following 
device when b > a: Let b = aq + b1 , where b1 < a. 
Then the original equation transforms into the equation 
aY1 - b1x = c (where Yl = Y - qx), which is of the 
desired form. If (u, v) is a solution of aYl - b1 x = c, then 
(u, v + qu) is a solution of ay - bx = c. The assumption 
a > b is not very crucial and not all Indian authors 
insisted on it; but it would facilitate our discussions. 

The Main Algorithm 

We now describe the central heart of Aryabhata's algo
rithm made explicit by Bhaskara I. For greater clarity 
and brevity, we take advantage of modern language, es
pecially the subscript notation. 

By successive division, we have a = a1b+TJ, b = a2Tl + 
T2, Tl = a3T2 + T3 and so on. Let n denote the number 
of steps after which the process terminates. Since the 
GCD of a and b is 1, the final relation is T n-2 = anT n-1 + 
1 (1 < Tn-l < Tn -2 < < Tl < b). Thus, Tn = 1 and 
Tn+l = O. Given a and b, the quantities aI, ,an can be 
quickly determined by the method of repeated division 
for computing GCD of a and b. 
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Now, for solving ay-bx = 1, define quantities Xn+2, Xn+l, 

Xn , by backward induction as follows: define Xn +2 

and Xn+l to be whole numbers satisfying the relation 
Tn-IXn+2 - Xn+l = (-I)n. Thus, if n is odd, one can 
simply take Xn+2 = 0 and Xn+l = 1; if n is even, one 
can take Xn+2 = 1 and Xn+l = T n-l - 1. Now define 
Xm (n ~ m ~ 1) by Xm = amXm+l + Xm+2. For quick 
computation of Xn , , X2, Xl, the Indians constructed 
convenient tables called valli (see Table 1 for one such ex
ample). Then we will have aX2 - bXI = 1 (as will be clear 
from subsequent discussions). Thus (x, y) = (Xl, X2) is 
a solution of the equation ay - bx = 1. 

Aryabhata-Bhaskar a I observed that one need not con
tinue the repeated division till the stage Tn = 1. One 
can terminate at an intermediate stage k if one can read
ily obtain (by inspection) a positive integral solution 
(Xk' Xk+l) of the equation Tk-IXk+2 - TkXk+1 = (_I)k. 

One can then define Xk, Xk-l, ,X2 (= y), Xl (= X) re
cursively, as before, and obtain a solution of the equation 
aY - bX = 1. The quantity Xk+l was called mati. 

For solving ay - bx = -1, one defines the mati Xk+l 

(k ::; n) and Xk+2 to be numbers satisfying Tk-IXk+2 -
TkXk+1 = (_I)k+l; the rest is as above. Or, one could 
take the approach of Bhaskara II : solve ay - bx = 1 
and use the fact that if (0:, (3) is the minimum positive 
integral solution of ay - bx = 1, then (a - Q, b - (3) is 
the Ininimum positive integral solution of ay - bx = -1 
Brahmagupta, Bhaskara II and Narayana gave similar 
rules for deriving integer solutions of ay + bx = c from 
ay - bx = c. 

Hidden in the deceptively simple kuttaka algorithm lies 
a beautiful idea which has inspired a powerful technique 
in modern number theory. 

The Key Idea 

Using rnodern approach, the underlying idea of Aryab-
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hata for solving ay - bx = ±1 may be formulated as 
follows (to fix our ideas, let us take the RHS to be 1): 

(1) Assume the existence of a positive integral solution 
(x, y) to the equation aY - bX = 1; then 

(2) Transform this equation by successive steps into equa
tions with smaller and smaller solutions eventually ar
riving at an equation a'YI - X' = ± 1 with an obvious 
solution (x', y') = (a't =f 1, t) for any t; 

(3) Then work backwards from this obvious solution 
(x', y') of the reduced equation to determine the desired 
solution (x, y) of the original equation. 

To elaborate this interesting idea, assume that (x, y) 
is a positive solution of the equation aY - bX = 1. 
Recall that we are assuming 0 < b < a and a, bare 
coprime. If a - b = 1, then (1, 1) is a solution of aY -
bX = 1. So we may further assume that a - b > 1. 
Then x > y. Note that if b had been 1, we would have 
been through. So why not try to 'break' the coefficients 
a, b into smaller ones? Recall the relation a = alb + rl 
with 0 < rl < b. The pair (b, rl) is smaller than the 
pair (a, b) but both determine each other. Now try to 
transform the equation aY - bX = 1 to get an equation 
with coefficients band rl. The relation ay - bx = 1 leads 
to the relation (aIY - x)b + rlY = 1. 

Put x = alY + z. Then clearly 0 < z < Y and bz - rlY = 
-1. Now (y,z) is a positive solution of the equation 
bZ - rl Y = -1 which is again a linear equation of 
the original form; but now the solution (y, z) is co
ordinate-wise smaller than the original (x, y) and, more
over, the coefficients (of the new equation) too have be
come smaller since 0 < b < a and 0 < rl < b. The two 
pairs of solutions being linearly related; if one can de
termine the smaller pair (y, z), one can easily compute 
the original (x, y) . 

Denote x, Y, z by Xl, X2, X3, respectively. Keep on pro-
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ceeding as above introducing X4, Xs, " etc .. As per our 
earlier notations, since rn = 1, we eventually arrive at 
the easily solvable equation rn- 1X n+2 - Xn+l = (-l)n. 
From this equation, we work backwards to arrive at the 
solution (x, y) of the original equation aY - bX = 1. 

Thus, the main algorithm itself is an illustration of a 
non-trivial application of the modern 'reduction' prin
ciple: for, it transfers, through a sequence of steps, a 
somewhat involved problem to a problem with obvious 
solution! Since the process involves .the breaking up of 
the original data (both solutions and coefficients) into 
smaller and smaller numbers by repeated division, the 
Indians appropriately described the algorithm as 'kut
taka' (pulverizer). 

A crucial principle involved in this algorithm is that a 
decreasing sequence of positive integers must terminate 
after a finite stage - which is but a version of Fermat's 
celebrated principle of descent! 

To realise the significance of the kuttaka idea, we briefly 
discuss some relevant developments that took place in 
Europe more than 1000 years after Aryabhata. 

Aryabhata's Kuttaka and Fermat's Infinite Descent 

The integer solution of the linear Diophantine equation 
was described in Europe for the first time in 1621 AD by 
Bachet, 1122 years after Aryabhata. Bachet's solution
which is essentially same as the kuttaka - was rediscov
ered by Euler in 1 735. In the preface to his book on the 
Theory of Numbers (1798), the great Legendre paid a 
tribute to Bachet making a special mention of his 'very 
ingenious method' for solving the indeterminate equa
tion of the first degree. 

Bachet's rediscovery of the kuttaka triggered several fruit
ful ideas in number theory. The principle was inge
niously developed by Fermat, Brouncker and Wallis in 
their researches on number theory both for construct-
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ing solutions of equations and for showing that certain 
equations do not have integral solutions! The most pro
found example is Fermat's famous principle of 'infinite 
descent' (or, simply 'descent'). 

As a simple illustration of the descent principle, one can 
show that the equation X4 + y4 = Z2 has no non-trivial 
integral solution (in particular, Fermat's last theorem is 
true for n = 4). The basic idea is: Assume (xo, Yo, zo) 
is a positive integral solution; without loss of generality, 
Xo and Yo are coprime and Xo is even. Then (X02, Yo2, zo) 
must be of the form (2mn, m2 - n2 , m 2 + n 2 ) - a fact 
known from the ancient times (it occurs explicitly in 
Euclid, Diophantus and Brahmagupta). Now after some 
elementary algebraic manipulations (see [4]), one can 
construct another solution (Xl, YI, Zl) with 0 < Zl < 
Zoo But then, repeating the process,_ one would have an 
infinite sequence of solutions (Xi, Yi, Zi) with Zo > Zl > 
Z2 > > 0 which is absurd! 

The resemblance with the kuttaka idea is unmistak
able! As Andre Weil (1906-1999), one of the giants in 
20th century mathematics, remarked about Aryabhata's 
method: 'In later Sanskrit texts this became known as 
the kuttaka (= 'pulverizer') method; a fitting name, re
calling to our mind Fermat's 'infinite descent'.' 

In a subsequent issue, we shall refer to another cute 
improvization of the 'kuttaka' or 'descent' principle in 
connection with the so-called Pell's equation. 

Fermat used the descent method to prove that the area 
of a Pythagorean triangle (a right-angled triangle with 
rational sides) can neither be a square nor twice a square. 
He was extremely (and justly) proud of his descent prin
ciple. In a letter written towards the end of his life, 
Fermat (1601-1665) stated that all his proofs of his dis
coveries in number-theory used the descent method! He 
predicted that "this method will enable extraordinary de
velopments to be made in the theory of numbers." This 
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technique has indeed turned out to be a powerful tool 
of fundamental importance in modern number theory! 
It has been crucially used, directly or implicitly, in sev
eral deep theorems in the area, especially in the study 
of elliptic curves. 

K uttaka and Continued Fractions 

Continued fractions is an useful topic in number theory 
(for basic concepts and results, see [4]). Incidentally, Ra
manujan had a phenomenal mastery of continued frac
tions. 

The kuttaka may be interpreted as a technique in the 
theory of continued fractions - in fact, Aryabhata's for
mulation y = bx+c and method of solution strongly sug-

a 
gests that the discovery of the kuttaka algorithm was 
preceded by a discovery of the basic principles of con
tinued fractions (see [5]). 

Knowledge of continued fractions is even more appar
ent in some of the later Indian works. In the origi
nal kuttaka of Aryabhata, after obtaining the quotients 
aI, ,an, one computes quantitites X n, X n-!, in the 
backward direction (i.e., one moves from below to top 
in the table). But in certain later Indian texts like the 
anonymous Karanapaddhati and the Yuktibhasa (1540) 
of Jyesthadeva (1500-1600 AD), a more direct approach 
is taken : having obtained the quotients aI, , an, in
stead of the XiS, one constructs two sequences of num
bers Pm and qm successively using the following recur
rence relations 

Po = 1,PI = al; Pm = amPm-1 + Pm-2 

qo = 0, ql = 1; qm = amqm-l + qm-2 

till one reaches P·n and qn (where n is as before). Then 
aqn - bPn = (-lr~+I, i.e., (Pn, qn) is a solution of one 
of the equatio~s ay - bx = ± 1 (the solutions of the 
other equation can be derived using techniques discussed 
earlier). 

The kuttaka may 

be interpreted as a 

technique in the 

theory of continued 

fractions. 
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This direct method can be best understood in the lan
guage and framework of continued fractions. One has 
been calculating the simple continued fraction expan
sion of ~; the quantities aI, a2,· ,an, an+l(= rn-l) are 
th ' t· t'· a - [ ] d ~ e quo len s, l.e., -b - aI, ,an, rn-l , an are 

qrn 

the successive convergents (which are actually charac-
terised by the above recurrence relations). Recall the 
identity Pmqm-l - qmPm-1 = (-l)m. Since Pn+l = a and 
qn+l = b, we have the relation aqn - bPn = (-1 )n+l . 

It is remarkable that the Indians had discovered the ba
sic principles underlying the theory of continued frac
tions; especially the recurrence relations for defining Pm 
and qm and the crucial identity Pmqm-l - qmPm-1 = 

( -l)m. The solution of the linear Diophantine equation 
in the notation of continued fraction was given by Saun
derson in England in 1740 and Lagrange in France in 
1767. 

Kuttaka and Matrix Operations 

The kuttaka algorithm of Aryabhata may also be inter
preted as the solution of a system of linear equations by 
matrix operations. 

The linear transformations a = al b + rl, b b; x 
alY + Z, Y = Y may be expressed as 

(~ t) = (t ;) (~1 ~) = 

(t r:)(~ ~)(i ~r 
Proceeding in this manner, eventually the LHS can be 
expressed as a product of invertible matrices with entries 
0,1. 

Simultaneous Linear Indeterminate Equations 

The original problem of Aryabhata (dvicchedagra), which 
led to the kuttaka, was to find a number N, which when 
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divided by given numbers aI, ,ab leave respectively 
given remainders r}, ,rk; the ai were termed variously 
as ccheda, bhajak or bhagahara (divisors) and the ri were 
called agra or sesa (remainders). Let N = alYl + rl = 

a2Y2 + rz = = akYk + rk' Applying kuttaka first on 
the equation al Yl + rl = a2Y2 + r2, one can get a mini
mum positive as well as the general solution for (Yl, Y2). 
The general solution is in terms of a single parameter 
t 1; both the expressions alYI + rl and a2Y2 + r2 take the 
form bl tl + Sl for some bb 81' The process is repeated 
with bltl + 81 = a3x3 + r3, and so on. 

Mahavira, Aryabhata II, Sripati and Bhaskara II de
scribed similar methods for solving simultaneous lin
ear Diophantine equations - samslista kuttaka (conjunct 
pulveriser) - of the form blYl = alx±ct, b2Y2 = a2x±c2, 
b3Y3 = a3 x ± C3 

The kuttaka technique' was applied by the Indians to 
solve important problems arising out of astronomy and 
calendar-making - {or instance, the determination of the 
time when a certain constellation of the planets would 
occur in the heavens, especially eclipses. To see the con
nection, note that if k events E I, . Ek occur regularly 
with periods at, , ak with Ei happening at times ri, 
ri + ai, ., then the k events occur simultaneously at 
time N where N is a number which, when divided by 
each ai, (1 ~ i ::; k), leaves remainder rio 

We skip concrete examples from astronomy as some back
ground details would be needed. Instead, we quote four 
historical problems that can be solved using kuttaka. 
The first two are popular riddles. 

Eg 1. (Bhaskara I; 6th century) Find the least natural 
number N which leaves the remainder 1 when divided 
by 2,3,4,5 or 6 but is exactly divisible by 7. [Ans : 301] 
This problem also occurs in Ibn-al-Haitam (1000 AD) 
and Leonardo Fibonacci (1202 AD). 
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arising out of 
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Eg 2 (Brahmagupta 628 AD) Find the least natural 
number N which on division by 6,5,4,3, leave the re
mainders 5,4,3,2, respectively. (Ans : 59J 

Eg 3 (Bhaskara I) Find the least number N which when 
divided by 8 leaves 5 (as remainder), divided by 9 leaves 
4 and divided by 7 leaves 1. [Ans: 85] 

Eg 4 (Mahavira 850 AD) Five heaps of fruits added with 
two fruits were divided (equally) between nine travellers; 
six heaps added with four were divided amongst eight; 
four heaps increased by one were divided amongst seven. 
Tell the nUlllber of fruits in each heap. [(Least) Ans: 
194) 

From the time of Brahmagupta (628 AD), Indians be
gan attempting the harder problems of solving various 
Diophantine equations of the second degree. We shall 
discuss some of their outstanding achievements in the 
next part of the article. 
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