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SECTION 1

INTRODUCTION

THE PROBLEM ADDRESSED BY CEP

This paper describes an algorithm for calculating Circular Error

Probability (CEP). CEP relates measurement errors to the errors in a

calculation that is computed from those measurements. As such, It is

a useful tool for assessing the accuracy and sensitivity of any cal-

culated quantity to eirored inputs. CEP is frequently used with

target location estimates. It is obtained under the assumption that

the measurement variances are known.

THE INTERPRETATTON OF CEP

The CEP associated with an estimated target location (x,y) is

defined to be the radius of the smallest circle with center at (x,y)

which has a 50% probability of containing the true target coordinates.

Note that the value of CEP '. a distance associated with the 50%

probability and not a probability itself, as is suggested by the name.

CEP pre)vides a measure of thi. search area within which the true target

location cani be expected to be found. The better the accuracy of the

(x,y) estimate, the smaller the value of CEP.

ORGANIZATION OF THE PAPER

In section 2 the relevant equations for CEP computation are

developed. Computational steps are delineated along with required

assumptions and a mathematical foundation is provided. A simplified

algorithm that approximates CEP, and which is often quoted in litera-

ture, is discussed in this paper. The algorithm has a high degree ofI
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accuracy. A full derivation of the algorithm is found in appendix A.

Also included in section 2 is a discvdion of the Trace of the covar-

lance error matrix. Under certain conditions the square root of the

Trace is shown to be proportional to the CEP.

Section 3 is a summary of the algorithmic procedure for

obtaining CEP from measurement data. It is the vorking guide to be

used in CEP computation. Section 4 gives a brief descr t ption of a

planar bistatic environment. This geometry is frequently used in

emitter location. Section 5 gives examples of CEP calculations and

their interpretation in a bistatic environment. Three commonly

occurring cases are discussed. Section 6 is a summary of the paper.
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SECTION 2

THE MATHEMATICS OF CEP

THE FUNDAMENTAL EQUATION

By definition the CEP is the radius of a circle about the (x,y)

estimate which has a 50% probability of containing the target. The

equation for any circle of radius CEP and center (x,y) is

(x,-x) 2 + (y,-y) 2 a CEP 2

Let u - x'-x and v - y'-y, and rewrite the circle equation as

u + V CEP

If we assume (u,v) are Gaussian variables with mean (0,0) and

variances (%2 ,0v ), their joint distribution is given by

p(u,v) e= (1)

and the requirement that the CEP has a 50% probability of containing

the target is expressed by the integral relation

IJI p(u,v)dudv - 0.5 . (2)

u2 + v _< CEP2

To obtain the correct value of CEP one must solve equation (2).

3



Evaluation of (2) involves numerical approximation since (except

for some specific values of a. and a,) the integral has no known

antiderivative. Nevertheless, an explicit forqula for CEP can be

obtained vhich approximates the solution to (2) with a high degree of

accuracy. An approximating formula for CEP is de3cribed in the

following subsection.

A SIMPLIFIED FORMULA FOR CEP

Whenever the following two conditions hold,

1. the error variables (dx,dy) are uncorrelated, and

2. the error probability densities are zero mean Gaussian

distributions with variances (a..2 ldy2)

then the following approximating formula for CEP may be used:

vL(0.67+0.8w2) if O< v <0.5

0.59vL(l4w) if 0.5< v < 1

where

aL = Maximum[ad., ady ,

Os ' Minimum[adX.adYJ
v. a s/ UL.

A derivation 3f (3) is found in appendix A.

4



Quality of the Approximation

Figure 1 shows the graph of (CEP/aL) versus a/a for both the
"exact" value of CEP and the approximation. The "exact" value was

computed from equation (2) to four decimal figure accuracy. The

approximation was obtained from formula (3). A measure of the

difference between the graphs is shown by figure 2.

In figure 2, deviations between the two graphs are displayed in

terms of the percent error, defined by

I( CEP).exact - (CEP).approxl

Percent Error i 100 ... . . . .

I (CEP)exact

Figure 2 shows that the formula (3) approximation differs from the

true CEP by a maximum of 1.5 percent, with the average error less

than one percent. The approximation is thus seen to be an extremely

accurate measure of true CEP.

DETERMINATION OF THE STANDARD DEVIATION

Assumptions

Use of the CEP formulas require knowledge of the standard

deviations (adX,ady). In this section we show how to obtain

(*XGdy) in terms of the measurement errors. The following

assumptions are used:

If m is a measurement used in the calculation of x or y,

then dm (i.e., the error in m) is assumed to be a Gaussian

random variable with mean zero and with known standard

deviation ad."

5
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The standard deviation for each of the dm variables is

sufficiently "small" so that second-order terms in the

Taylor expansion of dm can be neglected.

. All of the dm variables are statistically independent.

For application of the CEP formulas, one must be sure that these

assumptions are met.

An Expression for the (dx,dy) Errors

Our initial objective is to express the errors (dx,dy) in terms

of the dm errors. Initially, we must have (x,y) expressed analyti-

cally in terms of measurements. If this can be done, then a good

approximation to the (dx,dy) errocs is provided by the derivative of

(x,y). A required assumption for the approximation is that each of

the dm errors are "small." For illustration we use the case where x

and y are computed from three measurements (m 1 m2 ,m3 ) as we trace

through the mathematical development. The extension to an arbitrary

number of measurements follows a similar pattern.

The quantities (dx,dy) are estimated by taking the total

derivative of x and y, namely,

dx =xd_ + 2dm + !kdm. (4a)
am1 1 am 2 2 3m 33

dy = -akmdm + -X-dm + 21 dm . (4b)
3m 1 aM 2 2 am 33

Relationship (4) shows that errors dx and dy are expressed as &

linear combination of the measurement errors. From statistical

theory, the linearity provides an important observation, that is to

8



say, if each of the error variables (dmldm2 tdm3 ) are assumed to be

Gaussian with mean (0,0,0), then the variables (dx,dt-) will also be

Gaussian with mean (0,0). Thus, our assumption of Gaussian behavior

for the measurement errors allows us to describe the errors (dx,dy)

by means of a Gaussian analysis.

In matrix form, the (dx,dy) relations are expressed compactly as

rdxl ['*m I"

Idy] M Kdm2 I(5)
where M is the Jacobian of the transformation, expressed as

h a am3Sam 2(6)

m1 a2 a3

An Expression for the Covariance of (dxdy)

The covariance of (dx,dy) is a 2x2 matrix from whose elements

the standard deviations of dx and dy can be derived (a iquired next

step in our CEP computation). In appendix B it is shorn that the

covariance of (dx,dy) is expressible in terms of the matrix M and the

covariance of the (dm,,dm2 ,dm3 ) variables by

Cov(dx,dy) = M Cov(dml,dm2,dm3) M* , (7)

where M* is the transpose of matrix M. Multiplication of the

expression in (7) gives

Cov(dxdy) al[ a 12 (8)

a 2 1 a 2 2  ,

9



where

fax 2 don2 + (B )

al1 = (--) 2 dm+ + .) dm + 2 (:W dm 3  (9a)

a1  =a 2  ()()m 1 + ~ 2 (~)m, + (14-3()dmL3d (9b)

122 2)2 23

a)2L~ dm,3 + 2~ dff2 + 2~n din (9c)

Extracting Standard Deviations from the Covariance Matrix

The standard deviations (ad.,'dy) can be extracted from the

covariance matrix (8) using the following considerations.

If an appropriate coordinate system were chosen for the (dx,dy)

joint distribution, and (dx,dy) were independent variables (as we are

assuming), then the covariance of (dx,dy) would identify with the

standard deviations (adX,udY) by

21

Cov(dxdy) = [ x I(10)

In general, however, the a1 2 term of the covariance matrix (8) will

not be zero and a diagonalization of the matrix (equivalent to a

rotation of the axes) is required to convert matrix (8) into the form

of equation (10). After rotation, equation (8) will have the form

Covldx,dy) x,11

10

10



where \,,2 are eigenvalues of (5). The eigenvalues are given by

Trace + JTrace2-41et (12a)

2 2

Trace lTrace2-4Det
- 2 2 (12b)

where:

Trace - a,, + a 22 and (.2c)
2

Det = a1 1 a 2 2 - a12 2

Since eigenvalues of a matrix are invariant under rotatior,, the

eigenvalues in (12) must equal the variances, namely,

( X1, 2) _ (a, ady )

As a caveat, note that when the eigenvalues are computed from

(12), it is not clear (without further analysis) which eigenvalue
2 2associates with ax. and which associates with ady . However, this

knowledge is not required for computation of the CEP. Only the ratio

of smaller to larger eigenvalues is needed (see CEP formula (3)).

Significance of the Trace of the Covariance Matrix

Under certain conditions, the CEP can be shown to be proportional

to the square root of the Trace. The behavior of zhe Trace thus
provides both a qualitative and quantitative description of CEP

behavior.

11



The necessary condition involves the radicand in (12) that is

used to obtain the eigenvalues X and X.. For simplicity, we rewrite

(12) in the form

Trace [ 1 ± 41 - 4et/Trace (1.1,2) (13)

While the positiveness of the covariance matrix always guarantees

that the radicand is positive, i.e.,

0 < 4Det/Trace 2 < 1

we consider the cases for which the Det is significantly smaller than

the square of the Trace, i.e., the condition

0 < 4Det/Trace 2 << 1 . (14)

For this condition, we can neglect the second term in the radicand of

(13) and replace it by zero as a first approximation. The two
2 2

eigenvalues (equivalent to the two variances ad.2 and VdY2) take on

the value )ymTrace and X2=0. Thus, the larger standard deviation

becomes L= Trae and the smaller is ý =0. Substituting these

values into the CEP formula (3), we obtain w=O and

CEP = 0.67 4FFe. (15)

Therefore, under condition (14) the square root of the Trace can

be used us a "quick look" estimate of the CEP. Some examples are

discussed in section 5.

12



SECTION 3

A SUMMARY OF THE COMPUTATIONAL STEPS INVOLVED

IN A CEP DETERMINATION OF TARGET ACCURACY

This section provides a working guide xor computation of CEP.

The reader is reminded that underlying assumptions must be met to

insure both validity and accuracy of the CEP estimate. Chief among

these are the following:

* The measurements used in the computation of target location

have errors that can be treated as Gaussian random variables

with zero mean and known standard deviation.

* The measurement errors are statistically independent.

* The standard deviation for each of the measurement errors is

sufficiently small so that the second order terms in the

Taylor expansion of the m~asi.rement error can be neglected.

Under these conditions the computational steps for obtaining CEP are

summarized below.

Steps in the Computation of CE?

Step 1. Establish an analytic relationship between (x,y) and

the measurement variables.

SItep2. Obtain partial derivatives of (x,y) with respect to the

independent measurement variables being used in the

(x,y) computation.

13



Step 3. Substitute the partial derivatives of (x,y) into

equation (9) to obtain the matrix components

a11la 2 ,sa1 2 6

Step 4. Substitnte the matrix components into formula (12c) to

calculate the Trace and Determinant (Det). If

relationship 4Det(<Trace2 holds, then the pro~uct

0.67"*T•race provides an excellent estimate of the

CEP. Alternatively, continue on and compute the

eigenval1Aes • and X from formulas (12a) and (12b).

Step 5. Obtain the standard deviations ad and ady by taking

the square root of X, and X,.

Step 6. Substitute the values of adx and ady into formula (3)

to obtain the CEP.

14



SECTION 4

BISTATIC TARGET LOCATION

In bistatic detection, two platforms are used to acquire infor-

mation about a target T. The platforms may be either moving or

stationary. Either one (or both) may be illuminating the target. In

mathematical analysis, the two platforms and target are geometrically

portrayed as a triangle on which simple equations can be used to

describe distances and angles.

GEOETRY

Figure 3 describes a planar view of the geometry used in

bistatic calculations. Platform A is located at the origin (0,0).

Platform B is located at (Rt,O). The target T is located at (x,y).

All these coordinates are measured relative to the local origin A.

In practice, the line directions and locations of the A,B,T

triangle are also measured relative to an external reference frame.

For ex3mple, if platform B was functioning as an information Collec-

tor, it would be natural to collect all directional information

relative to its own heading. In this paper we assume that informa-

tion is measured relative to some reference direction on platform B,

and that this direction lies in the same plane as the triangle formed

by A, B, and T.

Figure 3 displays the angles measured relat!ove to platform B. #t

defines the bearing angle (measured counterclockwise) from platform B

direction to the target; +j defines the angle (measured counter-

clockwise) that the line connecting the two platforms makes with the

platform B direction. Similarly, 9 - #j defines the bearing angle

15



y-axis

S• Rt

A (0,0) x-axls B (R1.0)

Figure 3. Bistatic Geometry
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from A to the target T aa seen from the platform 3 perspective. e is

measured clockwise from the 4, bearing line. Prom the geometry, the
base angles of the triangle with vertices AIBT are given by A + 9 -

+, and +, -

TYPICAL PLATFORM MEASUREMENTS

Various combinations of information can be used to acquire an

estimate of target location. Some of the commoui measurements

%couired are listed below.

Ri The measured distance between platform B and platform A.

Ri has an associated measurement error, dR,, whose average

value is zero and whose standard deviation, a , is known.
I

*j T.e measured angle, relative to a platform B frame of

reference, which defines the direction of the line from

platform A to platform B. 4, has an nssociated measurement

error, d#,, whose average value is zero and whose standard

deviation, ad. , is known.
I

*t The measured angle, relative to a platform B frame of

reference, which defines the bearing of the line from

platform B to the target. *t has an associated measurement

error, d*t, whose average value is zero and whose standard

deviation, ad. is known.
t

17



0 The measured angle, relative to a platform B frame of
reference, which defines the bearing of the line from

platform A to the target. 9 has an associated measurement

error, de, whose average value is zero and whose standard

deviation, Od., is known.

R• The measured distance from platform A to the target. R.

has an associated measurement error, dR , whose average

value is zero and whose standard deviation, a. , is known.
p

Rt The measured distance from platform B to the target. Rt

has an associated measurement error, dRt, whose average

value is zero and whose standard deviation, ea. , is known.
t

AT The Time-Difference-of-Arrival (TDOA) of a signal received

by platform B from two different paths. If, for example,

platform A were illuminating a target (e.g., in the case of

a radar), or interrogating a target (e.g., in the case of a

beacon system), the signal would be received directly by

platform B (along the line connecting A and B) in time T1,

and received again at a later time T, (along the lines

connecting A to T and T to B) from reflection off or

response by the target. The time difference would be AT

T2 - Tie If the signal is a response from the target, the

time T2 includes any fixed and/or random time delays

introduced by the target transponder. Note that in the

case of beacon systems, the "target" could be the Interro-

gator and A the transponder. AT has an associated measure-

ment error, dAT, whose average value is zero and whose

standard deviation, ad.T, is known.

18
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SECTION 5

EXAMPLES

Assuming that the angle +j and the distance Ri between the

platforms A and B have already been obtained (i.e., the base of the

triangle with vertices A,B,T has been determined in the geometry of

figure 3), then two additional measurements relating to target are

required to compute the target location. We describe here the common

cases where two angle bearings, or one angle bearing with TDOA

measurement, are available.

CASE 1. TWO BEARING ANGLES TO TARGET ARE MEASURED

Bearing angles 9 and +t are acquired with known standard

deviations ao and d4 , respectively. Geometrically, target
t

location (x,y) will be the intersection of the relative bearing lines

defined by 11 + e - +, and +j - +t (see figure 4). Analytically,

(x,y) is obtained by solving the simultaneous equations

Tan(S-+i) = y/x and Tan(+t-+,) - -y/(R,-x)

The partial derivatives of (x,y) with respect to the measurement

variables are given in appendix C. The Trace and Det are obtained by

substituting these derivatives into equation (13). Evaluation gives

2 2 2 2 2 2+ 2

Rp2 ad + Rt2 ad + Ri2 ad + sinf2(0-)OdRi

Trace =

sin2 (c)

19



y-axis

T (x,y)

A (0,0) x-axis B (R 1 ,0)

Figure 4. Case 1 Geometry: Target Location by the Intersection

of Two Bearing Angles
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and

+2. 2 2 2 2 )(2 + 2 2
De p~t•vdevd•+ a de crd #i) +d 2 pi d~i)dRi

Det =

sin (0)

where t +t - e.

Figure 5 is a plot of CEP contours for the Case 1 geometry with

+, - 0 deg, R, = 150 nmi and with standard deviations ode - 5 deg,

0d =5 deg, ad* - 0 deg, adR , 0 deg. Platform locations A and B
t j i

are on the axes. The graph is to be interpreted as follows: Select
a point (x,y). Linearly extrapolate (as a first approximation)

between curves to estimate the curve passing through (x,y). The

contour number associated with that curve corresponds to the CEP for

point (x,y).

As discussed earlier, the square root of the Trace may be used

to qualitatively describe the CEP. For the geometry of figure 4,
division by zero occurs in the Trace under three sets of conditions:

1) +t - 0, e = 0, 2) #t - 180, e = 180, and 3) +t - 90, 0 - 90.
Conditions 1 and 2 occur along the horizontal axis of figure 4. This

axis, and a small band around it, is commonly called the "black hole"
region. Along this line, the CEP is infinite. Targets near the

horizontal axis are located very poorly using this measurement set.

Condition 3 corresponds to targets being extremely far from platforms

A and B. Such targets will also have extremely high CEP.

In general, the triangulation process of Case 1 for obtaining

target location applies to any two bearing measurement systems (e.g.,

two ground radars, a ground radar and aircraft radar, etc.). An
example of Case 1 application is the cooperative triangulation of two

E-3 aircraft.
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CASE 2. ONE BEARING ANGLE TO TARGET AND TDOA IS MEASURED FROM

ILLUMINATION OF PLATFORM A BY THE TARGET (HYPERBOLA)

The geometry for this case is described in figures 6a and 6b.

Bearing angle 8 (or +t) is acquired with knovn standard deviation a.,

(or ado ). The time difference of arrival, AT, o, the target signal
t

from two different directions is also acquired at point B. The two

directions traversed by the acquired signals are as follows:

Direction 1 is the direct d4.stance Rt from the target to point B.

Direction 2 is the distance traveled by the signal (e.g., radar or

beacon) from the target to the platform A plus the distance from the

platform A to platform B (i.e., R + Ri). Time along direction 1 is

received at Ti. Time along direction 2 is received at T2 . The time

difference is AT = T2 - T1 . if the signal is a response from tne

target, the time T2 Includes any fixed and/or random time delays
introduced by the target transponder. AT has an associated

measurement error, dAT, whose average value is zero and whose

standard daviation, VdWT, is known.

One can show from analytic geometry that the target location

will lie on a hyperbola defined by AT and Ri (see figure 6b). The

hyperbola has foci at (-COAT/2,O) and (Ri+C 0 AT/2,O), and eccentricity

equal to Ri/COAT, where C. is the speed of light. Geometrically,

target location will be the intersection of the relative bearing line

H + e - +j (or +, - +t) with the hyperbola. Analytically, target

location (x,y) is obtained by solving the simultaneous equations

Tan(G-#,) = y/x ( or Tan(#t-#±) -y/(R1 -x) )
and

Rp + Ri -Rt COAT.
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Figure 6a. Case 2: Signal Direction of the Time Measurements
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Figure 6b. Case 2: Targec Location by the Intersection of a

Bearing line vith a Hyperbola
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The partial derivatives of (x,y) with respect to the measurement

variables are given in appendix C. The Trace and Det are obtained by

substituting these derivatives into equation (13). Evaluation gives

2R 2+a 2)(1_rosa) + Co 2 +dR2

Trace =(1-cosot) 2

and

R 2(e + 2d)[Co2 'a2 + (l+cos(#t--+1)) 2  2i

Det p= r d# Tt, O
(1-cosM) 2

where c = #t - e.

Figure 7 is a plot of CEP contours for the Case 2 geometry with

= 0deg, Ri = 150 nmj and with standard deviations "de = 5 deg,

=0 deg, adAT = 10-6 sec. Platform locations A and B are
i

marked on the axes. Similar to Case 1, the graph is to be inter-

pre ed a3 follows: Select a point (x,y). Linearly extrapolate (as a

fi-qt approximation) between curves to estimate the curve passing

through (x,y). The contour number associated with that curve

corresponds to the CEP for point (x,y).

As discussed earlier, the square root of the Trace way be used

to qualitatively describe the CEP. In the above equation, division

by zero occurs when cos(u) = 1. This condition occurs along the hori-

zontal axis of figure 5 to the left of A (when e " 180, +t = 180),

and to the right of B (when e = 0, #t = 0). For this geometry, these

external intervals on the horizontal axis (and a small band around

them) are called "black hole" regions. Along these Intervals, the

CEP is infinite. Targets near these intervals have extremely poor
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location measurement. In contrast, targets between A and B along the

horizontal axis are able to be located with good accuracy.

Tactical Air Navigation System (TACAN) is an example of Case 2

application. Here the airborne target interrogates the ground station

(i.e., the ground station at location A is the transponder).

CASE 3. ONE BEARING ANGLE TO TARGET AND TDOA IS MEASURED FROM
ILLUMINATION OF THE TARGET BY PLATFORM A (ELLIPSE).

The geometry for this case is described in figures 8a and 8b.

Bearing angle e (or +t) is acquired with known standard deviation a.,

(or ad4 ). "he time difference of arrival, AT, of the target signal
t

from two different directions is also acquired at point B with stan-

dard deviation Vd6T" However, as opposed to Case 2, the directions

traversed by the acquired signals are different. Direction 1 is the

distance traveled by the signal from the platform A to the target

plus the distance from the target to point B (i.e., Rp + Rt). Direc-

tion 2 is the direct distance Ri from the platform A to platform B.

The signal along direction 1 is received at Ti. The signal

along direction 2 is received at T2. The time difference is AT=T 2-T 1 .

If the signal is a response from the target, the time T2 includes any

fixed and/or random time delays introduced by the target transponder.

AT has an associated measurement error, dAT, whose average value is

zero and whose standard deviation, dT, is known.

For this case one can show from analytic geometry that the

target location will lie on an ellipse defined by AT and R, (see

figure 8b). The ellipse has foci at (Ri-C.AT/2,O) and (C,4T/2,O),

and t eccentricity equal to -l+C 0 AT/Ri, where C. is the speed of
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Figure 8a. Case 3: Signal Direction of the Time Measurements
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Figure 8b. Case 3: Target Location by the Intersection of a Bearing

Line with an Ellipse
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light. Geometrically, target location vill be the intersection of
the relative bearing line a + e - s, (or $, - #t) vith the ellipse.

Analytically, target location (x,y) is obtained by solving the

simultaneous equations

Tan(S-#,) - y/x ( or Tan(#t-+*) - -y/(Rj-x) )

and
Rp + Rt - Ri - COAT

The partial derivatives of (x,y) vith respect to the measurement

variables are given in appendix C. The Trace and Det are obtained by

substituting these derivatives into equation (13). Evaluation gives

2R 2(ade2+ad,)(l+cose) + Col a a a1c5*~±JoR

Trace -(1+cos) 2

and

R a( 2 + [ 2 22
e = p + Od d#)[CoodaT + (l+cos(¢t-#i))1adRi]

(1+cost) 2

where a - +t - 0.

Figure 9 is a plot of CEP contours for the Case 3 geometry with

4, "0 deg, R, - 150 nmi and with standard deviations a., - 5 deg,

a., - 0 deg, udAT - 10-6 sec. Platform locations A and B are

marked on the axes. Similar to Case 1, the graph is to be interpreted

as follows: Select a point (x,y). Linearly extrapolate (as a first
approximation) between curves to estimate the curve passing through

(x,y). The contour number associated with that curve corres.ponds to

the CEP for point (x,y).
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As discussed earlier, the square root of the Trace may be used to

qualitatively describe the CEP. In the above equation, division by

zero occurs when cos(e). -1. This condition occurs along the hori-

zontal axis of figure 8 on the interval between A and B (when e - 0,

Ot- 180, or 09 - 180, #t - 0). For Case 3 geometry, this interior
interval on the horizontal axis, (and a small band around It) is

called a "black hole" region. Along this interval the CEP is

infinite. Targets near this interval have extremely poor location

measurement. In contrast, targets outside of A and B along the

horizontal axis are able to be located with good accuracy.

An example of Case 3 application is identification, friend or

foe (1FF), interrogation of targets from a (location A) ground or

airborne station.
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SECTION 6

CONCLUSIONS

This paper describes an algorithm for calculating Circular Error

Probability (CEP). CEP relates measurement errors to the variation

of a calculation that is computed from those measurements. As such,

it is a useful tool for assessing the accuracy and sensitivity of any

calculated quantity to errored inputs. CEP is frequently used with

target location estimates.

A mathematical foundation is provided for the CEP estimate, and

the algorithm is shown to be extremely accurate. It differs from the

true CEP estimate by less than one percent on average and has a

maximum error of 1.5 percent.

Three common cases of CEP application are discussed. All deal

with assessing the accuracy of a target location in a bistatic

environment. Examples of CEP contours are generated for the special

conditions R, = 150 nmi, +j - 0 deg, dR = 0 nm, ad# = 0 deg.
C I

Regions of poor target detectability are indicated.
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APPENDIX A

DERIVATION OF THE SIMPLIFIED CEP FORMULA

CEP is defined as that value of R that satisfies the integral

equation

JJp(uv)dudv = 0.5 (Al)

u +v2 < P.

where p(u,v) is the joint Gaussian distribution of variables (u,v)

with mean (0,0) and variances (ou2 2

1 exp (u [2-

p(u,v) =(2)

S2 a 2L ou 2 / • "

We make the following change of variables:

Let oL. Maximum[ %u,a ,

as. Mlnimum[%,ov] ,(A3)

w - as/% , O< w < 1

and define s - U/OL , (A4)

t . v/ .L

If, for the sake of discussion, we suppose that aL= -u (the same

argument will hold for oL.o.), then integral (Al) can be reexpressed

as

39
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Fs2nv J [ 2 2 dsdt (AS)

OL 2 w

s2  + t 2  _< L - -
L

Symbolically, we write (Al) in the form

F wCEP = 0.5 (A6)

to emphasize the fact that integration of (A5) results in an implicit

relation between (CEP/aL) 2 and w.

In general, it is not always possible to obtain an unambiguous

solution from an implicit relation. (Remember that our object is to

solve (A6) for CEP). However, if it can be shown that (CEP 2/UL2 ) is

an increasing function of v, then the Inverse Mapping Theorem of

Calculus argues that we may uniquely solve equation (A6) for

(CEP2/OL2) as a function of v.

We show that (CEP 2 /UL2 ) is an increasing function of w by

proving that its derivative with respect to w is positive.

Differentiating (A6) we obtain

VF d(CEP2 / a)

aT + (-CEP 2 / ' .) •- 0 • (A7)

Solving for the derivative in (A7) gives

d(CEP2 / .) F/
- p 2) (A8)

dw F/ 8(CEP2 /
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The positiveness or negativeness of the partial derivatives on the

right-hand side of (A8) can be obtained by the following arguments:

1. As (CEP 2 / 2) increases, the circle area over which integration

takes place increases. Therefore, the value of the integral F

will also increase for each fixed w. We conclude that

8 > 0
N(CEP2 /O2)>0

2. As w increases, the limits of integration remain constant but

the integrand decreases. Therefore, the value of the integral

(i.e., F) will decrease for each fixed (CEP 2 /a2).

We conclude that

< 0

The above inequalities guarantee that the derivative in (A8) is

positive. Thus (CEP 2 /oe2) is a monotonically increasing function of

W.

The Inverse Mapping Theorem of Calculus can now be applied. It

states that we can (in theory) uniquely solve equation (A6) for

(CEP 2 /aL 2 ) as a function of w. Thus for some function h(w) we will

have

[-P] 2  h(w) and CEP = aL h(w) . (A9)
LL

Equation (A9) gives an explicit representation for the form of the

CEP solution as a function of w.
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The function TO) can be tabulated numerically from equation

(Al) by selecting a value for w and then solving for the value of

CEP/aL which will make the integral equal 0.5. Figure 5 shows the

plot of the tabulated point pairs (w,CEP/oL). One notes that on the

interval 0 < v < 0.5 the curve follows a quadratic pattern, while on

the interval 0.5 < w < 1 the curve is essentially linear.

The simplified approximation formula for CEP is nothing more

than a reflection of this observation. It involves a quadratic fit

to the curve for fh(w) on the interval 0 < v < 0.5 and a linear fit

h(w) on the interval 0.5 < w < 1, namely,

0.67 + 0.8w2  if 0 < v < 0.5
=hW -- (Al0)4v0.59(1 + w) if 0.5 < w < 1

Equation (AlO) is an excellent approximation to CEP/aL. On

average, the error to the true curve is less than 1% over the

interval 0 < w < 1.
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APPENDIX B

THE COVARIANCE OF (dx,dy)

The covariance of a vector variable v with mean 0 is defined by

Cov(v) = E(vv*) , (B1)

where E(.) is the expected value operator and v* means the transpose

of v. The operator S is linear and has the property for constants

a,b and variables v1 ,v 2 that

E(av, + bvy) = aE(vl) + bE(v 2 ) . (B2)

If v is of dimension N, the covariance of v will be an NxN matrix.

Let v = tdx,dy)* and q - (dmi,dm2 .dm 3 )*. From equation (5) of

section 2 we are given the relation

v = Mq , (B3)

where H is a matrix of constants.

The :o'.uoiny :.ý.;.utations now give us the desired relationship:

vv* - (Mq)(Mq)* M Hqq*M*, (from property of transpose)

E(vv*) - E(Hqq*M'. ME(qq*)M*, (from B2)

Cov(v) - ME(qq*'.- HCov(q)M*. (from B1, def. of covariance)
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APPENDIX C

CEP DERIVATIVE COMPUTATIONS FOR CASES 1, 2, 3

Case 1. R are measured with error variances (ad,, adR I
i

ad, ,adq). Geometrically, target location (x,y) is obtained as the
t

intersection of two bearing lines. From the triangle relationships in

the geometry of figure 3, the equations from which target location

can be obtained analytically are

Tan(8-#j) = y/x and Tan(+t-#i) = -y/(R1 -x)

The partial derivatives of x and y are given by

ax Rtcos(O-#i )-R cos (*#t-#.) ax cos(0-* 1 )sin(*+t-- 1 )

8#, sin(a) ' i = sin(#t-e)

ax Rt cos(O- a ) ax -Rtsin(G-4i)

a~t sin(#t-e) ao sin( +t-°)

ay Rtsin(9G-.# )-RIsin( #t-#) ay cos(9-#j )sin(#t-*1 )

84, sin(ce) aRi sin(#t.-O)

ay Rtcos(G-+1 ) ay -Rtsin(O-#1 )

ot sin( +t ~) ae sin(#t-e)

where t - t- .
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Case 2. (e, AT,R 1 , *±P'*t) are measured with error variances

(Odh,adaTO4R P#, ,d# ). The target location will lie on an
i L t

hyperbola defined by AT and Ri. The hyperbola has foci at

(-C 4T/2,O) and (R1 +C,4T/2,O), and eccentricity equal to Ri/CoaT,

where CO is the speed of light. Geometrically, target location will

be the intersection of the relative bearing line R + e - 4* (or

4, - 4t) vith the hyperbola. The equations from which the target

location (x,y) can be obtained analytically are

Tan(e.-+j) - y/x ( or Tan(+t-+j) -y/(R4 -x) )
and

RP + Ri - Rt = Coal

The partial derivatives of x and y are given by

Ox RP [ sin(*+t- +)-sin( S- +ji ax +lCcos( t- +± ) 1
T, * ... .1-cos(a) , = - c r-os(O) cos(-)

ax RD [sin(+t-+i)-sin(9-+i)J ax COcos(O-*t)

- 1-cos(a) a 4T 1-cos(a)

ay RV [cos(+t-+±)-cos(G-+±)] ay +Cos(+t-#i)]
TO-- - , -c-s(a) •, L - cos(a)

ay R p [ cos(+t-+t)-cosS(•"*i)j BY coStn(e-4i)

30 1-cos(a) a4T 1-cos(a)

where a +t - Band C0 is the speed of light.
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Case 3. (+t0, AT,Ri ,*j) are measured vith error variances ( a,
t

Vd OdR ',ad# ) The target location will lie on an ellipse

defined by 4T and Ri. The ellipse has foci at (R1 -CoAT/2,0) and
(C0&T/2,O), and with eccentricity equal to -1+C,&T/R 1 , where C. is
the speed of light. Geom-Aetrically, target location will be the

intersection of the relative bearing line H + e - *4 (or +, - +t)
with the ellipse. The equations from which target location (x,y) can

be obtained analytically are

Tan(9-41 ) - y/x ( or Tan(#t-#,) = -y/(R1 -x) )
and

Rp + Rt - Ri - COAT

The partial derivatives of x and y are given by

aX Rp [ sin( +t-#i )+sin( e-#i )] ax 1+COS(+t-#, ) 6 4

•1+cos(*) ' r- - 1*cos(M) c)s(o-*s )

ax Rp [ sin(*+t-#)+sin(G-±)jl a] Cocos(•.-+)

ae 1+cos(a) a AT 1+cos (a)

ay Rp [ cos(*t- *+ )cos( -), ay [lFcos(*t-±,)1
i= - 1+cos(*) ' 3R - L 1+cos(a)Jsin(e-,j)

ay Rp [cos(*t-*±)+cos(e-* )] ay Cosin(e-*1 )

ae l+cos(a) BaT l+cos(a)

where a- *t-e and C. is the speed of light.
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APPENDIX D

TARGET LOCATION WHEN DISTANCE BETWEEN PLATFORMS IS NOT KNOWN

An interesting but more complex case occurs if one assumes that

the distance R, between the platforms is an unknown. In this case,

two bearing angle measurements and a TDOA of Case 3 type (ellipse)

will provide a solution not only for ta:get location, but also for R,.

Relationships between the sides and angles of triangle A,BT in

the geometry of figure 2 are given by

Rp R, R,
-- = -(The Law of Sines)

sin(+t-#j) sin(G-+.) sin(at)

y - -(Ri-x)tan(+t-#,) and y = xtan(O-+,)

R + Rt - Ri - CO AT

The solution of these simultaneous equations for x,y and Ri is

C. ATsin(a)

sin(e-4,) + sin(#t-#,) + sin(*)

C. ATcos(Se-* )sin(+t-#j)
X-

sin(e-4,) + sin(#t-#1 ) + sin(*)

C. ATsin( e-*i )sin( +t -+)

sin(e-*1 ) + sin(#t-+,) + sin(s)

where a- #t- e and C0 is the speed of light.
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The partial derivatives of x, y and R are given by

Rte•com(S-€4 ) [ +cos(Ct-€) )I

Tit D

ax R [lsn4-t)i(-t)cs4-t

ae D

ax Cc cos (e- +,)sin(+ - +j)

aT D

By R sin(+-#•*)[+cos(e•j-*)J

-Y - i(•t i) -o 0 I)|

ae D

ay Cosin(e-+j)sin(+t-#j)

a T 0

3R1  Rt [ sin(a)cos ( #t- #j )+sin( #t- +j)+sin(S- +)]
Wi•t " - - Dsin( €•-€ )

8Ri Rp [ sin(a) s in( S-#j )+cos( 0- +)+cos( #t 1 )j

3e Dcos(e-+1 )

aRi Cosin(5)

HT D

where D - sin(+t-+±) + sin(6-41 ) - sin(a)

a- Ot - e and C. is the speed of light.
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