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Introducing The Quaternions

The Complex Numbers

I The complex numbers C form a plane.
I Their operations are very related to two-dimensional

geometry.
I In particular, multiplication by a unit complex number:

|z|2 = 1

which can all be written:

z = eiθ

gives a rotation:
Rz(w) = zw

by angle θ.
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The Complex Numbers

How does this work?
I C =

{
a + bi : a,b ∈ R, i2 = −1

}
I Any complex number has a length, given by the

Pythagorean formula:

|a + bi | =
√

a2 + b2.

I We can add and subtract in C. For example:

a + bi + c + di = (a + c) + (b + d)i .

I We can also multiply, which is much messier:

(a + bi)(c + di) = (ac − bd) + (ad + bc)i

What does this last formula mean?
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The Complex Numbers

Fortunately, there is a better way to multiply complex numbers,
thanks to Leonhard Euler:

Figure: Handman’s portrait of Euler. Wikimedia Commons.

who proved:
eiϕ = cosϕ+ i sinϕ
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The Complex Numbers

Geometrically, this formula says eiϕ lies on the unit circle in C:

Figure: Euler’s formula. Wikimedia Commons.
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The Complex Numbers

I eiϕ has unit length.
I If we multiply by a positive number, r , we get a complex

number of length r :
reiϕ.

I By adjusting the length r and angle ϕ, we can write any
complex number in this way!

I In a calculus class, this trick goes by the name polar
coordinates.
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The Complex Numbers

And this gives a great way to multiply complex numbers:
I Remember our formula was:

(a + bi)(c + di) = (ac − bd) + (ad + bc)i

I Instead, we can write each factor in polar coordinates:

a + bi = reiϕ, c + di = seiθ

I And now:

(a + bi)(c + di) = reiϕseiθ = rsei(ϕ+θ).

I In words: to multiply two complex numbers, multiply their
lengths and add their angles!
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The Complex Numbers

In particular, if we multiply a given complex number z by

eiϕ

which has unit length 1, the result:

eiϕz

has the same length as z.

It is rotated by ϕ degrees.
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Hamilton’s Discovery

So, we can use complex arithmetic (multiplication) to do a
geometric operation (rotation).

The 19th century Irish mathematician and physicist William
Rowan Hamilton was fascinated by the role of C in
two-dimensional geometry.
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Hamilton’s Discovery

For years, he tried to invent an algebra of “triplets” to play the
same role in three dimenions:

a + bi + cj ∈ R3.

Alas, we now know this quest was in vain.

Theorem
The only normed division algebras, which are number systems
where we can add, subtract, multiply and divide, and which
have a norm satisfying

|zw | = |z||w |

have dimension 1, 2, 4, or 8.
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Hamilton’s Discovery

Hamilton’s search continued into October, 1843:

Every morning in the early part of the above-cited month, on
my coming down to breakfast, your (then) little brother William
Edwin, and yourself, used to ask me: “Well, Papa, can you
multiply triplets?” Whereto I was always obliged to reply, with a
sad shake of the head: “No, I can only add and subtract them.”
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Hamilton’s Discovery

On October 16th, 1843, while walking with his wife to a meeting
of the Royal Society of Dublin, Hamilton discovered a
4-dimensional division algebra called the quaternions:

That is to say, I then and there felt the galvanic circuit of thought
close; and the sparks which fell from it were the fundamental
equations between i, j, k; exactly such as I have used them ever
since:

i2 = j2 = k2 = ijk = −1.
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Hamilton’s Discovery

Hamilton carved these equations onto Brougham Bridge. A
plaque commemorates this vandalism today:

Figure: Brougham Bridge plaque. Photo by Tevian Dray.
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The Quaternions

The quaternions are

H = {a + bi + cj + dk : a,b, c,d ∈ R} .

I i , j and k are all square roots of −1.
I ij = k = −ji , jk = i = −kj , ki = j = −ik .
I As we shall see, we can use quaternions to do rotations in

3d.

Puzzle
Check that these relations (ij = k = −ji , etc) all follow from
Hamilton’s definition:

i2 = j2 = k2 = ijk = −1.
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The Quaternions

I The quaternions don’t commute!
I A useful mnemonic for multiplication is this picture:

Figure: Multiplying quaternions. Figure by John Baez.
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The Quaternions

I If you have studied vectors, you may also recognize i , j and
k as unit vectors.

I The quaternion product is the same as the cross product
of vectors:

i× j = k, j× k = i, k× i = j.

I Except, for the cross product:

i× i = j× j = k× k = 0

while for quaternions, this is −1.
I In fact, we can think of a quaternion as having a scalar

(number) part and a vector part:

v0 + v1i + v2j + v3k = (v0,v).
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The Quaternions

We can use the cross product, and the dot product:

v ·w = v1w1 + v2w2 + v3w3

to define the product of quaternions in yet another way:

(v0,v)(w0,w) = (v0w0 − v ·w, v0w + w0v + v×w).

Puzzle
Check that this formula gives the same result for quaternion
multiplication as the explicit rules for multiplying i , j , and k .
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Rotations Using Quaternions

I promised we could use quaternions to do 3d rotations, so
here’s how:

I Think of three-dimensional space as being purely
imaginary quaternions:

R3 = {xi + yj + zk : x , y , z ∈ R} .

I Just like for complex numbers, the rotations are done using
unit quaternions, like:

cosϕ+ i sinϕ, cosϕ+ j sinϕ, cosϕ+ k sinϕ.

I By analogy with Euler’s formula, we will write these as:

eiϕ, ejϕ ekϕ.
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Rotations Using Quaternions

But there are many more unit quaternions than these!
I i , j , and k are just three special unit imaginary quaternions.
I Take any unit imaginary quaternion, u = u1i + u2j + u3k .

That is, any unit vector.
I Then

cosϕ+ u sinϕ

is a unit quaternion.
I By analogy with Euler’s formula, we write this as:

euϕ.
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Rotations Using Quaternions

Theorem
If u is a unit vector, and v is any vector, the expression

euϕve−uϕ,

gives the result of rotating v about the axis in the u direction.
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Rotations Using Quaternions

Proof.
I will prove this for u = i , since there is nothing special about
the i direction.

eiϕ(v1i + v2j + v3k)e−iϕ

= eiϕ(v1i + (v2 + v3i)j)e−iϕ Puzzle!
= eiϕ(v1i)e−iϕ + eiϕ(v2 + v3i)je−iϕ

= eiϕ(v1i)e−iϕ + eiϕ(v2 + v3i)e+iϕj Puzzle!
= v1i + ei2ϕ(v2 + v3i)j Puzzle!

Note the 2ϕ!
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Rotations Using Quaternions

Theorem (Improved)
If u is a unit vector, and v is any vector, the expression

euϕve−uϕ,

gives the result of rotating v about the axis in the u direction by
2ϕ degrees.

Amazingly, this 2ϕ is important when describing electrons!
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Rotating an Electron

Let’s write the rotation we get from the unit quaternion euϕ as:

Reuϕ(v) = euϕve−uϕ

This is a rotation by 2ϕ. To rotate by ϕ, we need:

Reuϕ/2(v) = euϕ/2ve−uϕ/2

And to say how this relates to electrons, we need to talk about
quantum mechanics.
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Rotating an Electron

Quantum mechanics says that particles are represented by
waves:

I The simplest kind of wave is a function:

ψ : R→ R

I But since we live in three dimensions:

ψ : R3 → R

I And because it’s quantum, it’s complex-valued:

ψ : R3 → C

I Yet, in 1924, Wolfgang Pauli (secretly) discovered that for
electrons, it’s quaternion-valued:

ψ : R3 → H
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Rotating an Electron

If we rotate most particles, we rotate its wave:

Reuϕ/2ψ(v) := ψ(Re−uϕ/2(v)).

But to rotate an electron, Pauli found:

Reuϕ/2ψ(v) := euϕ/2ψ(Re−uϕ/2(v)).

In particular, for a ϕ = 360◦ rotation:

Reu 360◦/2ψ(v) = eu 180◦ψ(v) = −ψ(v).

Electrons can tell if they have been rotated 360 degrees!
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