

OpenCable™ Specifications
Home Networking 2.0

Home Networking Protocol 2.0

OC-SP-HNP2.0-I10-130530

ISSUED

Notice

This OpenCable specification is the result of a cooperative effort
undertaken at the direction of Cable Television Laboratories, Inc. for the
benefit of the cable industry and its customers. This document may
contain references to other documents not owned or controlled by
CableLabs®. Use and understanding of this document may require
access to such other documents. Designing, manufacturing,
distributing, using, selling, or servicing products, or providing services,
based on this document may require intellectual property licenses from
third parties for technology referenced in this document.

Neither CableLabs nor any member company is responsible to any
party for any liability of any nature whatsoever resulting from or arising
out of use or reliance upon this document, or any document referenced
herein. This document is furnished on an "AS IS" basis and neither
CableLabs nor its members provides any representation or warranty,
express or implied, regarding the accuracy, completeness,
noninfringement, or fitness for a particular purpose of this document, or
any document referenced herein.

 Cable Television Laboratories, Inc. 2008-2013

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

ii CableLabs 05/30/13

DISCLAIMER

This document is published by Cable Television Laboratories, Inc. ("CableLabs®").

CableLabs reserves the right to revise this document for any reason including, but not limited to, changes in laws,
regulations, or standards promulgated by various agencies; technological advances; or changes in equipment design,
manufacturing techniques, or operating procedures described, or referred to, herein. CableLabs makes no
representation or warranty, express or implied, with respect to the completeness, accuracy, or utility of the document
or any information or opinion contained in the report. Any use or reliance on the information or opinion is at the risk
of the user, and CableLabs shall not be liable for any damage or injury incurred by any person arising out of the
completeness, accuracy, or utility of any information or opinion contained in the document.

This document is not to be construed to suggest that any affiliated company modify or change any of its products or
procedures, nor does this document represent a commitment by CableLabs or any cable member to purchase any
product whether or not it meets the described characteristics. Nothing contained herein shall be construed to confer
any license or right to any intellectual property, whether or not the use of any information herein necessarily utilizes
such intellectual property. This document is not to be construed as an endorsement of any product or company or as
the adoption or promulgation of any guidelines, standards, or recommendations.

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs iii

Document Status Sheet

Document Control Number: OC-SP-HNP2.0-I10-130530

Document Title: Home Networking Protocol 2.0

Revision History: I01 - Released 4/18/08

I02 - Released 12/17/09

I03 - Released 6/3/10

I04 - Released 2/24/11

I05 - Released 5/12/11

I06 - Released 1/12/12

I07 - Released 2/24/12

I08 - Released 5/31/12

I09 - Released 4/18/13

I10 - Released 5/30/13

Date: May 30, 2013

Status: Work in
Progress

Draft Issued Closed

Distribution Restrictions: Author Only CL/Member CL/ Member/
Vendor

Public

Key to Document Status Codes:

Work in Progress An incomplete document, designed to guide discussion and generate feedback, that
may include several alternative requirements for consideration.

Draft A document in specification format considered largely complete, but lacking review
by Members and vendors. Drafts are susceptible to substantial change during the
review process.

Issued A stable document, which has undergone rigorous member and vendor review and
is suitable for product design and development, cross-vendor interoperability, and
for certification testing.

Closed A static document, reviewed, tested, validated, and closed to further engineering
change requests to the specification through CableLabs.

Trademarks

CableLabs® is a registered trademark of Cable Television Laboratories, Inc. Other CableLabs marks are listed at
http://www.cablelabs.com/certqual/trademarks. All other marks are the property of their respective owners.

http://www.cablelabs.com/certqual/trademarks

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

iv CableLabs 05/30/13

Contents

1 SCOPE .. 1

1.1 Introduction and Overview .. 1
1.2 Purpose of document ... 1
1.3 Requirements ... 1

2 REFERENCES .. 2

2.1 Normative References .. 2
2.2 Informative References .. 4
2.3 Reference Acquisition .. 5

2.3.1 OpenCable Bundle Requirements .. 5
2.3.2 Other References.. 5

3 TERMS AND DEFINITIONS .. 6

4 ABBREVIATIONS AND ACRONYMS .. 7

5 TECHNICAL REQUIREMENTS .. 8

5.1 UPnP Protocol ... 8
5.2 DLNA Compliance .. 9
5.3 Networking and Connectivity .. 10

5.3.1 Persistent Link-Local Addressing .. 10
5.4 Device Discovery and Control ... 11

5.4.1 Eventing ... 11
5.5 Media Management ... 12

5.5.1 Device Namespace ... 13
5.5.2 Metadata Namespace ... 13
5.5.3 Middleware Elements .. 13
5.5.4 CDS Features ... 14

5.6 Media Transport .. 14
5.6.1 HTTP Headers ... 15
5.6.2 Streaming Live Content to DLNA Clients .. 20
5.6.3 Adaptive Streaming .. 24

5.7 Content Transformation Device Virtualization .. 25
5.8 Content Formats ... 25
5.9 Quality of Service (QoS) ... 27
5.10 Content Protection ... 27
5.11 UPnP Interoperability .. 27
5.12 Parental Control ... 28
5.13 View Primary Output Port (OPTIONAL) .. 29

5.13.1 View Primary Output Port (VPOP) Content Item .. 30
5.13.2 View Primary Output Port (VPOP) Service ... 31

5.14 UPnP Diagnostics .. 36

6 UPNP MAPPING REQUIREMENTS ... 37

6.1 Device Registry .. 37
6.2 Package org.ocap.hn .. 37

6.2.1 ContentServerNetModule interface.. 37
6.2.2 Device interface ... 39
6.2.3 DeviceEvent class .. 41
6.2.4 NetActionEvent class ... 41

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs v

6.2.5 NetActionRequest ... 41
6.2.6 HomeNetPermission class ... 42
6.2.7 NetManager class .. 42
6.2.8 NetModuleEvent class .. 43
6.2.9 NetModule interface .. 43
6.2.10 PropertyFilter class ... 43

6.3 Package org.ocap.hn.content .. 43
6.3.1 AudioResource Interface.. 43
6.3.2 ContentContainer .. 44
6.3.3 ContentEntry Interface .. 48
6.3.4 ChannelContentItem Interface ... 49
6.3.5 ContentEntryFactory class .. 49
6.3.6 ContentItem Interface .. 50
6.3.7 ContentResource interface ... 50
6.3.8 IOStatus interface .. 51
6.3.9 MetadataNode class ... 51
6.3.10 VideoResource Interface .. 59
6.3.11 StreamingActivityListener interface ... 60
6.3.12 StreamableContentResource interface ... 60
6.3.13 ContentFormat Interface ... 61
6.3.14 OutputVideoContentFormat Interface ... 61

6.4 Package Org.ocap.hn.content.navigation ... 61
6.4.1 ContentDatabaseFilter class ... 61
6.4.2 ContentList class .. 61
6.4.3 DatabaseQuery class ... 62
6.4.4 DeviceFilter class .. 62

6.5 Package org.ocap.hn.profile.upnp .. 62
6.5.1 UPnPConstants interface .. 62

6.6 Package org.ocap.hn.security ... 66
6.6.1 NetAuthorizationHandler interface ... 66
6.6.2 NetAuthorizationHandler2 interface ... 67
6.6.3 NetSecurityManager class ... 68

6.7 Package org.ocap.hn.service .. 69
6.7.1 RemoteService interface .. 69
6.7.2 ServiceResolutionHandler interface .. 69
6.7.3 MediaServerManager class ... 69
6.7.4 HttpRequestResolutionHandler interface .. 69

6.8 Package org.ocap.hn.recording .. 70
6.8.1 NetRecordingEntry interface ... 70
6.8.2 NetRecordingRequestManager .. 71
6.8.3 NetRecordingRequestHandler interface .. 71
6.8.4 RecordingNetModule interface .. 74
6.8.5 RecordingContentItem interface .. 76

6.9 Package javax.tv.selection ... 77
6.9.1 ServiceContext Interface .. 77

6.10 Package org.javax.media (JMF) .. 79
6.10.1 Clock interface ... 79
6.10.2 Controller interface ... 80
6.10.3 Player interface ... 80

6.11 Package org.ocap.hn.ruihsrc .. 80
6.11.1 RemoteUIServerManager class ... 80

6.12 Package org.ocap.hn.transformation .. 81
6.12.1 TransformationManager abstract class ... 81
6.12.2 Transformation Interface ... 81
6.12.3 TransformationListener Interface .. 82

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

vi CableLabs 05/30/13

ANNEX A XML DOCUMENTS (NORMATIVE) .. 83

A.1 OCAP Root Device Description .. 83
A.2 OC-DMS Device Description .. 83
A.3 ViewPrimaryOutputPort Service Description .. 85

ANNEX B USE OF TRICK MODES HEADERS ... 87

ANNEX C OCAP NAME SPACE ... 89

C.1 Properties ... 89
C.1.1 RecordingContentItem CDS object property definitions ... 89
C.1.2 Definitions of SRS properties ... 95
C.1.3 Definitions of OCAP-extended properties of CDS item class for series recordings 96
C.1.4 Definitions of OCAP-extended properties of CDS item class for Live Streaming 97

C.2 Actions ... 97
C.2.1 Recording X_PrioritizeRecordings .. 97

ANNEX D CONTENT TSPEC POPULATION REQUIREMENTS ... 99

D.1 Default TSPEC values for Content Item .. 99

APPENDIX I COMPLEX MAPPING DIAGRAMS (INFORMATIVE) ... 100

I.1 Scheduling a Recording Sequence ... 101
I.2 Cancel Individual Recording ... 104
I.3 Stop Individual Recording ... 105
I.4 Delete Individual Recording .. 107
I.5 Schedule Local Recording ... 107
I.6 Add Individual Recording to Series Recording ... 109

APPENDIX II REVISION HISTORY .. 112

Figures
Figure 5–1 - OCAP Home Networking Framework for UPnP .. 8
Figure 5–2 - UPnP Device Architecture Protocol Stack .. 9
Figure 5–3 - Tuner Feature .. 14
Figure 5–4 - Tuning for Live Streaming .. 22
Figure 5–5 - Streaming Live Content to DLNA Device .. 24
Figure 5–6 - Signal Flow Example .. 27
Figure 6–1 - ServiceContext States during RemoteService Presentation ... 78
Figure B–1 - Trick Mode Response ... 88
Figure I–1 - Recording Schedule Sequence Diagram 1 ... 101
Figure I–2 - Cancel Individual Recording Sequence Diagram .. 104
Figure I–3 - Stop Individual Recording Diagram .. 105
Figure I–4 - Delete Individual Recording Diagram ... 107
Figure I–5 - Schedule Local Recording Diagram .. 107
Figure I–6 - Add Recording to Series Diagram ... 109

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs vii

Tables
Table 5–1 - HTTP Header Requirements .. 16
Table 5–2 - Mandatory and Optional Media Formats by Device Class ... 25
Table 5–3 - Parental Control Ratings and Rating Dimensions... 28
Table 6–1 - TransferStatus Return Values ... 41
Table 6–2 - Recording Request State Mapping ... 73
Table 6–3 - Recording Properties .. 75
Table C–1 - Arguments for X_PrioritizeRecordings() ... 97
Table C–2 - Error Codes for X_Prioritize() ... 98
Table D–1 - Default TSPEC parameter values .. 99

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

viii CableLabs 05/30/13

This page left blank intentionally.

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 1

1 SCOPE

1.1 Introduction and Overview

The OpenCable Home Networking Protocol defines the minimum requirements based on the Host Home Networking
2.0 Extension [HOSTHN] and the OCAP Home Networking Extension [OCAP-HN]. This specification is
independent of the physical network implementation, but runs over Internet Protocol (IP). It is designed to provide
interoperability between OpenCable devices and a common protocol layer on a home network.

The UPnP protocol layer mapping is defined in Section 6. Alternative protocol layers may be added as sequential
sections immediately following Section 6.

1.2 Purpose of document

This specification defines minimum technical requirements and additional features that must be implemented in
order to provide a mapping to a protocol layer service over a home network.

1.3 Requirements

Throughout this document, the words that are used to define the significance of particular requirements are
capitalized. These words are:

"SHALL" This word means that the item is an absolute requirement of this specification.

"SHALL NOT" This phrase means that the item is an absolute prohibition of this specification.

"SHOULD" This word means that there may exist valid reasons in particular circumstances to ignore this
item, but the full implications should be understood and the case carefully weighed before
choosing a different course.

"SHOULD NOT" This phrase means that there may exist valid reasons in particular circumstances when the
listed behavior is acceptable or even useful, but the full implications should be understood
and the case carefully weighed before implementing any behavior described with this label.

"MAY" This word means that this item is truly optional. One vendor may choose to include the item
because a particular marketplace requires it or because it enhances the product, for example;
another vendor may omit the same item.

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

2 CableLabs 05/30/13

2 REFERENCES

2.1 Normative References

In order to claim compliance with this specification, it is necessary to conform to the following standards and other
works as indicated, in addition to the other requirements of this specification. Notwithstanding, intellectual property
rights may be required to use or implement such normative references.

All references are subject to revision, and parties to agreement based on this specification are encouraged to
investigate the possibility of applying the most recent editions of the documents listed below.

References are either specific (identified by date of publication, edition number, version number, etc.) or non-
specific:

• For a specific reference, subsequent revisions do not apply.

• For a non-specific, non-Bundle reference, the latest version applies.

• For non-specific CableLabs references that are part of the [OC-BUNDLE], the versions mandated in a particular
Bundle apply.

[CEA-766] CEA-766-C (ANSI): U.S. and Canadian Region Rating Tables (RRT) and Content Advisory

Descriptors for Transport of Content Advisory Information Using ATSC Program and System
Information Protocol (PSIP), April 2008.

[DLNA CR-214] DLNA Change Request 00214: Clarification of MPEG-2 bitstream compliance during server side
trick mode playback (Server Side Trick Modes), May 16, 2012.

[DLNA Diag] Digital Living Network Alliance Diagnostics Guidelines v0.70.

[DLNAe2] DLNA 1.5 Guidelines Errata Volume 2, August 14, 2007.

[DLNA RUIH] Digital Living Network Alliance HTML5 Guidelines v0.85
https://members.dlna.org/apps/org/workgroup/tc-html5-tf/download.php/25176/HTML-
5_RUI_Guidelines_0_85.doc

[DLNA vol 1] Digital Living Network Alliance Home Networked Device Interoperability Guidelines;
expanded: October 2006, Volume 1: Architectures and Protocols.

[DLNA vol 2] Digital Living Network Alliance Home Networked Device Interoperability Guidelines;
expanded: December 2011, Volume 2: Media Format Profiles.

[DLNA vol 3] Digital Living Network Alliance Home Networked Device Interoperability Guidelines,
expanded: October 2006, Volume 3: Link Protection.

[DLNA vol 5] Digital Living Network Alliance Home Networked Device Interoperability Guidelines, Volume
V: Device Profiles.

[DLNA 3D MF] Digital Living Network Alliance 3D Media Formats: referenced to [DLNA vol 2].

[DLNA HTTP-
AD]

Digital Living Network Alliance HTTP Adaptive Delivery Guidelines v.0.50.

[DTCP-IP] DTCP Volume 1 Supplement E Mapping DTCP to IP (Informational Version), version 1.2, Jun
15 2007.

[HN-SEC] Home Networking Security Specification, OC-SP-HN-SEC, Cable Television Laboratories, Inc.
Referenced in [OC-BUNDLE].

https://members.dlna.org/apps/org/workgroup/tc-html5-tf/download.php/25176/HTML-5_RUI_Guidelines_0_85.doc
https://members.dlna.org/apps/org/workgroup/tc-html5-tf/download.php/25176/HTML-5_RUI_Guidelines_0_85.doc

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 3

[HOST] OpenCable Host Device 2.1 Core Functional Requirements, OC-SP-HOST2.1, Cable Television
Laboratories, Inc. Referenced in [OC-BUNDLE].

[MIB-HN] OpenCable Home Networking MIB Specification, OC-SP-MIB-HN, Cable Television
Laboratories, Inc. Referenced in [OC-BUNDLE].

[MPEG2-1] ISO/IEC 13818-1:2000 Information technology -- Generic coding of moving pictures and
associated audio information: Systems, International Standards Organization.

[OC-BUNDLE] OC-SP-BUNDLE, OpenCable Bundle Requirements. See Section 2.3.1 to acquire this
specification.

[OCAP-DVR] OCAP Digital Video Recorder (DVR), OC-SP-OCAP-DVR, Cable Television Laboratories, Inc.
Referenced in [OC-BUNDLE].

[OCAP-HN] OpenCable Host Home Networking Extension 2.0, OC-SP-HOST-HN2.0, Cable Television
Laboratories, Inc. Referenced in [OC-BUNDLE].

[OCAP] OpenCable Application Platform (OCAP), OC-SP-OCAP, Cable Television Laboratories, Inc.
Referenced in [OC-BUNDLE].

[RFC 2045] IETF RFC 2045: Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet
Message Bodies, N. Freed, N. Borenstein, November 1996.

[RFC 2616] IETF RFC 2616: Hypertext Transfer Protocol – HTTP/1.1, R. Fielding, UC Irvine, J. Gettys,
Compaq/W3C, J. Mogul, Compaq, H. Frystyk, W3C/MIT, L. Masinter, Xerox, P. Leach,
Microsoft, T. Berners-Lee, June 1999.

[RFC 3986] IETF RFC 3986: Uniform Resource Identifiers (URI): Generic Syntax, T. Berners-Lee,
MIT/LCS, R. Fielding, U.C. Irvine, L. Masinter, Xerox Corporation, January 2005.

[RSD PROT] OpenCable Home Networking – Reserved Services Domain Protocol Specification, OC-SP-RSD-
PROT-I01-080821, August 21, 2008, Cable Television Laboratories, Inc.

[SCTE 43] ANSI/SCTE 43 2005, Digital Video Systems Characteristics for Cable Television.

[UPNP AVTS] UPnP AVTransport v2, AVTransport:2 Service Template Version 1.01, UPnP Forum, May 31,
2006.

[UPNP CDS] UPnP ContentDirectory v3, ContentDirectory:3 Service Template Version 1.01, UPnP Forum,
September 30, 2008.

[UPNP CMS] UPnP ConnectionManager v2, ConnectionManager:2 Service Template Version 1.01, UPnP
Forum, May 31, 2006.

[UPNP DA] UPnP Device Architecture Version 1.0: UPnP Device Architecture Specification Version 1.0.1,
UPnP Forum, July 20, 2006.

[UPNP MS] UPnP MediaServer v2, MediaServer:2 Device Template Version 1.01, UPnP Forum, May 31,
2006.

[UPNP RUISS] UPnP RemoteUIServer v1, RemoteUIServer:1 Service Template Version 1.01, UPnP Forum,
September 2, 2004.

[UPNP SRS] UPnP ScheduledRecording v1, ScheduledRecording:1 Service Template Version 1.01, UPnP
Forum, September 19, 2007.

[XML] XML W3C Recommendations: Extensible Markup Language (XML) 1.0 (Second Edition), W3C
Recommendation, October 6, 2000.

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

4 CableLabs 05/30/13

2.2 Informative References

This specification uses the following informative references:

[DC] Dublin Core Metadata Element Set, Version 1.1.

[DIDL-L] Digital Item Declaration Language – Lite.

[DVB-MHP
1.1.3]

ETSI TS 102 812 V1.3.1, DVB Multimedia Home Platform 1.1.3, DVB-MHP 1.1.3, Blue book
A068r3.

[HOSTHN] OpenCable Host 2.0 Home Networking Extension, OC-SP-HOST2-HNEXT-I01-060630, June
30, 2006, Cable Television Laboratories, Inc.

[ISO 8601] ISO 8601:2000 Data elements and interchange formats – Information interchange --
Representation of dates and times, International Standards Organization, December 21, 2000.

[MPEG1] ISO/IEC 11172-3:1993 Information technology -- Coding of moving pictures and associated
audio for digital storage media at up to about 1.5 Mbit/s -- Part 3: Audio (MPEG-1Audio),
International Standards Organization.

[MPEG2-11] ISO/IEC 13818-11:2004 Information technology -- Generic coding of moving pictures and
associated audio information – Part 11:IPMP on MPEG-2 Systems, International Standards
Organization.

[MPEG2-2] ISO/IEC 13818-2:2000 Information technology -- Generic coding of moving pictures and
associated audio information: Video, International Standards Organization.

[MPEG2-3] ISO/IEC 13818-3:1998 Information technology -- Generic coding of moving pictures and
associated audio information: Audio, International Standards Organization.

[PNG] W3C PNG Recommendations: Portable Network Graphics (PNG) Specification (Second Edition)
Information technology – Computer graphics and image processing – Portable Network Graphics
(PNG): Functional specification, ISO/IEC 15948:2003 (E), W3C, November 10, 2003.

[RFC 1812] IETF RFC 1812: Requirements for IP version 4 Routers, F. Baker, June 1995.

[RFC 1945] IETF RFC 1945: Hypertext Transfer Protocol – HTTP/1.0, T. Berners-Lee, MIT/LCS, R.
Fielding, UC Irvine, H. Frystyk, May 1996.

[RFC 2145] IETF RFC 2145: Use and Interpretation of HTTP Version Numbers, J. C. Mogul, DEC, R.
Fielding, UC Irvine, J. Gettys, DEC, H. Frystyk, MIT/LCS, May 1997.

[RFC 2326] IETF RFC 2326: Real Time Streaming Protocol (RTSP), H. Schulzrinne, Columbia U. A. Rao,
Netscape, R. Lanphier, RealNetworks, April 1998.

[RFC 3003] IETF RFC 3003: The audio/mpeg Media Type, M. Nilsson, November 2000.

[RFC 3066] IETF RFC 3066: Tags for the Identification of Languages, H. Alvestrand, January 2002.

[RFC 3551] IETF RFC 3551/STD0065: RTP Profile for Audio and Video Conferences with Minimal Control,
H. Schulzrinne and S. Casner, July 2003.

[RFC 3555] IETF RFC 3555: MIME Type Registration of RTP Payload Formats, S. Casner, Packet Design,
P. Hoschka, July 2003.

[RFC 3927] IETF RFC 3927: Dynamic Configuration of IPv4 Link-Local Addresses, May 2005.

[RFC 4248] IETF RFC 4248: The telnet URI Scheme. P. Hoffman. October 2005.

[RFC 4266] IETF RFC 4266: The gopher URI Scheme. P. Hoffman. November 2005.

[SCTE 54] SCTE 54 2006, Digital Video Service Multiplex and Transport System Standard for Cable
Television, Society of Cable Telecommunications Engineers Inc.

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 5

[UPNP QMS] UPnP QoS Manager Service 3.0, Service Template Version 1.01, UPnP Forum, March 20, 2008.

[XML NS] Namespaces in XML 1.0 (Second Edition), W3C Recommendation, 16 August 2006.

2.3 Reference Acquisition

2.3.1 OpenCable Bundle Requirements

The OpenCable Bundle Requirements specification [OC-BUNDLE] indicates the set of CableLabs specifications
required for the implementation of the OpenCable Bundle. The version number of [OC-BUNDLE] corresponds to
the release number of the OpenCable Bundle that it describes. One or more versions of [OC-BUNDLE] reference
this specification. Current and past versions of [OC-BUNDLE] may be obtained from CableLabs at
http://www.cablelabs.com/opencable/specifications.

2.3.2 Other References

• Cable Television Laboratories, Inc., 858 Coal Creek Circle, Louisville, CO 80027;
Phone +1-303-661-9100; Fax +1-303-661-9199; Internet: http://www.cablelabs.com/

• Digital Living Network Alliance (DLNA), Internet: http://www.dlna.org/home

• Dublin Core Metadata Initiative®, www.dublincore.org/documents/dces/

• European Telecommunications Standards Institute, Internet: http://www.etsi.org/home.htm

• International Organization for Standardization (ISO/IEC),
Internet: http://www.iso.org/iso/en/prods-services/ISOstore/store.html

• Internet Engineering Task Force (IETF), Internet: http://www.ietf.org

• Society of Cable Telecommunication Engineers (SCTE), Internet: http://www.scte.org/standards

• UPnP, Internet: http://www.upnp.org/

• World Wide Web Consortium (W3C), Internet: www.w3.org

http://www.cablelabs.com/opencable/specifications
http://www.cablelabs.com/
http://www.dlna.org/home
http://www.dublincore.org/documents/dces/
http://www.etsi.org/home.htm
http://www.iso.org/iso/en/prods-services/ISOstore/store.html
http://www.ietf.org/
http://www.scte.org/standards
http://www.upnp.org/
http://www.w3.org/

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

6 CableLabs 05/30/13

3 TERMS AND DEFINITIONS

This specification uses the following terms:

HNIMP An OCAP implementation that provides a network interface compliant with the Home
Networking Interface Mapping Protocol (this specification).

OC-DMP OpenCable Digital Media Player. When a Host device is in the DMP device class as
defined by this specification and complies with the requirements for an HNIMP in this
specification, then it meets the criteria for an OC-DMP.

OC-DMS OpenCable Digital Media Server. When a Host device is in the DMS device class as
defined by this specification and complies with the requirements for an HNIMP in this
specification, then it meets the criteria for an OC-DMS.

Broadcast Content Any MSO Content streamed from an HFC network, and received by using the tuner of an
OCHN Device.

Recorded Content Broadcast content that is stored to disk as a permanent recording (e.g., an instance of
OcapRecordingRequest).

Time-shifted
content

Broadcast content that is stored temporarily to disk for the purposes of time-shifted
presentation.

Live Content Broadcast content that is not time shifted.

OpenCable Bundle The OpenCable Bundle defines a set of specifications required to build a specific version of
an OpenCable device. See [OC-BUNDLE].

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 7

4 ABBREVIATIONS AND ACRONYMS

This specification uses the following abbreviations and acronyms.

CA Conditional Access

CCI Copy Control Information

CCIF CableCARD Interface

CDS Content Directory Service

CMS ConnectionManager Service

CSV Comma Separated Value list; see [UPNP CDS] for definition

DIDL-L Digital Item Declaration Language – Lite

DMS Digital Media Server

EDN Event Detection and Notification

GENA General Event Notification Architecture

GOP Group Of Pictures

HN Host Home Networking Host

HTTP Hypertext Transfer Protocol

IFO InFOrmation (file extension format for DVD burning)

JMF Java Media Framework

JPEG Joint Photographic Experts Group

LPCM Linear Pulse Code Modulation

MPEG Moving Picture Experts Group

OCAP OpenCable Application Platform

OCAPHN OCAP Home Networking Extension

PID Packet Identifier

PNG Portable Network Graphics

PTS Presentation Time Stamps; any reference to PTS is in compliance with [MPEG2-1]

SOAP Simple Object Access Protocol

SSDP Simple Service Discovery Protocol

TSB Time Shift Buffer

TSPEC Traffic Specification

UPnP Universal Plug-n-Play

URI Uniform Resource Identifier

UTF-8 Universal Transformation Format - 8

XML eXtensible Markup Language

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

8 CableLabs 05/30/13

5 TECHNICAL REQUIREMENTS

5.1 UPnP Protocol

Figure 5–1 shows an overview of the various layers that make up the OpenCable Home Networking Architecture.
The OCAP HN APIs provide a high level abstraction of functionality that is independent of the underlying transport
and network protocols and specific physical layer mechanism. The OpenCable HN Architecture maps the OCAP HN
APIs to the UPnP Device Architecture/UPnP AV Architecture in order to provide device discovery and control,
media management, and media transport functions. The UPnP Architecture itself is built on the standard TCP/UDP
over IPv4 and IPv6 suite of protocols.

Figure 5–1 - OCAP Home Networking Framework for UPnP

Ethernet: 802.3i, 802.3u
Wireless: 802.11a/b/g PHY / MAC Layer

Connectivity

IPv4, IPv6, TCP / UDP /
HTTP, RTP Network Protocol

Stack

UPnP A/V Architecture Media Management

UPnP Device Architecture Device Discovery and
Control

OCAP APIs, OCAP HN
APIs, OCAP DVR APIs Platform Middleware

OCAP HN Application Application S/W

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 9

Figure 5–2 shows the UPnP Device architecture stack in more detail.

Figure 5–2 - UPnP Device Architecture Protocol Stack

5.2 DLNA Compliance

The HNIMP definition is based on the Digital Living Network Alliance (DLNA) specifications. DLNA clarifies the
use of the UPnP architecture, content formats, protocols, and so forth. This specification makes HNIMP
requirements based on DLNA and adds or modifies requirements as appropriate for OpenCable device types. Where
the DLNA Guidelines [DLNA vol 1] is referenced, the DLNA Guidelines Errata [DLNAe2] SHALL apply.

An OCAP Set-top or Terminal device, as defined by [HOST] specification, or later versions of that specification, is
considered to be in the HND device category as defined by [DLNA vol 1] section 5.4 Device Categories.

When an HNIMP device supports playback of content received from a Home network, the device SHALL be
considered to be in the DMP device class as defined by [DLNA vol 1] section 5.5 Device Classes and Roles.

When an HNIMP device supports transfer of local content to other devices on a Home network, the device SHALL
be considered to be in the DMS device class as defined by [DLNA vol 1] section 5.5 Device Classes and Roles.

When an HNIMP supports the DMS device class and [OCAP-DVR] is supported, the HNIMP SHALL:

• support the aspects of the Scheduled Recording Service (SRS) identified in Section 6. SRS actions required
by this specification SHALL comply with [UPNP SRS]; and

• operate under a Uniform Client Data Availability Model (UCDAM) (see section 7.4 of [DLNA vol 1]);

• support "Full Random Access Data Availability" model (see guideline 7.4.15 of [DLNA vol 1]) for
recorded content, including in-progress recordings;

XML

HTTP

Media
Transport

SSDP

Device
Discovery

SOAP GENA HTML

Device
Control

Eventing Presentation

HTTP, RTP

TCP

IP

NETWORK CONNECTIVITY (Ethernet, 802.11)

UDP

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

10 CableLabs 05/30/13

• support "Limited Random Access Data Availability" Model Mode 0 (see guideline 7.4.16 of [DLNA vol 1])
for trick play of channel content items. (The HNIMP OC-DMS need not support trick play if [OCAP-DVR]
is not supported.)

NOTE: The HNIMP will be operating under increasing SN model for in progress recordings, and under the
increasing S0 model for time-shifted content.

When an HNIMP supports the DMS device class, the HNIMP SHALL support the +RUIHSRC+ capability defined
in [DLNA RUIH] with the following requirements:

• The HNIMP SHALL support the UIListingUpdate evented state variable in [UPNP RUISS].

• If the HNIMP serves an RUI-H application, the RUI-H Transport Server (RUIHTS) device function
SHALL be mandatory; otherwise, the RUI-H Transport Server is optional.

This specification extends [DLNA vol 1] references, and any [DLNA vol 1] reference to [59] AVTransport SHALL
be read as a [UPNP AVTS] reference as defined in Section 2.1.

This specification extends [DLNA vol 1] references, and any [DLNA vol 1] reference to [60] ConnectionManager
SHALL be read as a [UPNP CMS] reference as defined in Section 2.1.

This specification extends [DLNA vol 1] references, and any [DLNA vol 1] reference to [61] ContentDirectory
SHALL be read as a [UPNP CDS] reference as defined in Section 2.1.

This specification extends [DLNA vol 1] references, and any [DLNA vol 1] reference to [62] Device Architecture
SHALL be read as a [UPNP DA] reference as defined in Section 2.1.

This specification extends [DLNA vol 1] references, and any [DLNA vol 1] reference to [64] MediaServer SHALL
be read as a [UPNP MS] reference as defined in Section 2.1.

5.3 Networking and Connectivity

When the HNIMP supports a hardware interface type defined by [DLNA vol 1] section 7.1 Networking and
Connectivity, the HNIMP SHALL adhere to requirements from that section that apply to the interface type.

The HNIMP SHALL adhere to protocol requirements defined in [DLNA vol 1] section 7.1 Networking and
Connectivity.

5.3.1 Persistent Link-Local Addressing

Typically per [UPNP DA] an Auto-IP address is only acquired when no routable IP address can be acquired by
DHCP and released if/when DHCP-based address acquisition is successful. These transitions between link-local and
DHCP-assigned routable addresses can result in dropped streaming sessions and other anomalies. Persistent Link-
Local Addressing is a condition where the HNIMP maintains a link-local address (i.e., a non-routable address in the
range 169.254.x.x obtained via Auto-IP) regardless of whether an interface has acquired a routable IP address via
DHCP [RFC 3927]. Persistent Link-Local Addressing is indicated by the
ocHnNetConfigPersistentLinkLocalAddress MIB defined in [MIB-HN]. The HNIMP SHALL query the value of this
MIB object at the beginning of normal operation (see [OCAP] "Boot Process"). If the value of the
ocHnNetConfigPersistentLinkLocalAddress MIB object is true, the HNIMP SHALL acquire a link-local IP address
as defined by [UPNP DA] sections 0.2 and 0.3, even if an IP address has been received using DHCP. If the value of
the ocHnNetConfigPersistentLinkLocalAddress MIB object is true and a DHCP-assigned address is received after a
link-local address is acquired, the HNIMP SHALL retain the link-local address. If the value of the
ocHnNetConfigPersistentLinkLocalAddress MIB object is false or undefined, the HNIMP SHALL follow [UPNP
DA] section 0.1 to determine when a link-local address needs to be acquired. The HNIMP SHALL ignore any
changes to the ocHnNetConfigPersistentLinkLocalAddress MIB object after the start of normal operation.

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 11

5.3.1.1 HNIMP OC-DMS Requirements

When an HNIMP OC-DMS is configured with multiple IP addresses, it SHALL send UPnP advertisements for these
IP addresses with a discreet unique device number (UDN) for each address. See [UPNP DA] for UDN definition and
usage. M-SEARCH request responses SHALL incorporate the UDN corresponding to the subnet of the source IP
address of the request. If the request does not correspond to any subnet configured on the DMS, then the OC-DMS
SHALL issue an M-SEARCH response incorporating the UDN associated with the link-local address if the value of
the ocHnNetConfigPersistentLinkLocalAddress MIB object is true. If the value is false or undefined, the OC-DMS
SHALL issue the response incorporating a UDN associated with any OC-DMS configured address. To improve
interoperability with control points that have difficulty processing UPnP messages containing link-local addresses in
a mixed-IP network, UPnP advertisement messages (ssdp:alive, update, and byebye) and M-SEARCH response
messages for link-local addresses SHALL be issued after the corresponding non-link-local message when both
address types are utilized.

If the HNIMP OC-DMS receives a CDS:Browse or CDS:Search SOAP request with the ALLIP filter value omitted,
the HNIMP OC-DMS SHALL incorporate res URI values corresponding to the subnet of the destination IP address
of the request into the request response. See [DLNA vol 1] Annex C for more information.

5.4 Device Discovery and Control

The HNIMP SHALL adhere to [DLNA vol 1] section 7.2 Device Discovery and Control for requirements that
correspond to DLNA device classes supported by the implementation.

When an HNIMP supports the DMS device class, it SHALL adhere to the OC-DMS Device XML Template in
Annex A.1.

NOTE: The above requirement on HNIMP is about compliance to the format of the Template in Annex A.2. Section
5.2 identifies requirements about services that need to be implemented by the HNIMP. The HNIMP populates only
the implemented services in the OC-DMS device description.

The HNIMP SHALL provide an implementation of a UPnP Control Point as defined in [UPNP DA] for discovery
and control of UPnP devices on the LAN.

When an HNIMP supports the DMS and/or DMP device class, it SHALL comply with [DLNA vol 1] guideline
7.1.29.1. In guideline 7.1.29.1, the word “should” is replaced with the normative “SHALL”.

When an HNIMP supports simultaneous operation of MoCA and Ethernet, or MoCA and 802.11 interfaces, then the
guidelines in [DLNA vol 1] annexes A.2.23, A.2.24, and A.2.25 are considered mandatory and the HNIMP SHALL
comply with them. Within annexes A.2.23, A.2.24, and A.2.25, all occurrences of the word “should” are replaced
with the normative “SHALL”

5.4.1 Eventing

5.4.1.1 Last Change Events

LastChange events from a CDS, see [UPNP CDS], can be listened for by an application using a
ContentServerNetModule when the represented CDS supports the LastChange state variable. A control point can
determine if the LastChange state variable is supported if it is present in the service description. When an HNIMP
subscribes to a CDS LastChange event, it is implementation-specific. However, if an HNIMP is not subscribed to
LastChange events when an application calls ContentServerNetModule.addContentServerListener method and the
service supports the LastChange state variable, then the HNIMP SHALL subscribe to LastChange events for that
service at that time. In that case, the addContentServerListener method MAY return before the subscription
completes. An HNIMP SHALL maintain a LastChange subscription as long as there are registered listener
applications.

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

12 CableLabs 05/30/13

When CDS LastChange events are received corresponding to a ContentServerNetModule an application is listening
to, the HNIMP SHALL generate one or more ContentServerEvent objects corresponding to the CDS event message
and pass them to the corresponding ContentServerListener. When an HNIMP receives a LastChange message, it
SHALL generate one ContentServerEvent object for all objAdd entries, another for all objMod entries, and another
for all objDel entries in the LastChange message.

5.4.1.2 SystemUpdateID Events

SystemUpdateID events from a CDS, see [UPNP CDS], can be listened for by an application using the NetModule.
When an HNIMP subscribes to a CDS SystemUpdateID event, it is implementation-specific. However, if an HNIMP
is not subscribed to SystemUpdateID events when an application calls the NetModule.addNetModuleEventListener
method, then the HNIMP SHALL subscribe to SystemUpdateID events for that service at that time. In that case, the
addNetModuleEventListener method MAY return before the subscription completes. An HNIMP SHALL maintain a
SystemUpdateID subscription as long as there are registered listener applications.

When SystemUpdateID events are received corresponding to a CDS NetModule (ContentServerNetModule) an
application is a listener to, the HNIMP SHALL generate a NetModuleEvent with STATE_CHANGE type that
corresponds to the SystemUpdateID message.

5.5 Media Management

The HNIMP SHALL adhere to [DLNA vol 1] section 7.3 Media Management for requirements that correspond to
device types supported by the implementation.

The [DLNA vol 1] specification section 7.3.84.1 is extended and an HNIMP SHALL support BCM. The [DLNA
vol 1] specification section 7.4.54.3 is extended and an HNIMP that is an HTTP client endpoint SHALL use a
scid.dlna.org header in subsequent HTTP requests to identify a known and associated UPNP AV Connection only if
the HTTP requests are for the same URI.

An HNIMP OC-DMS SHALL support the following CDS actions:

• UpdateObject

• DeleteResource

• DestroyObject

• Search

• GetFeatureList

An HNIMP that implements a ContentDirectory service SHALL implement the Tracking Changes Option as defined
by [UPNP CDS] section 2.2.10.

An HNIMP OC-DMS SHALL use the same port number in the <res> value (URI) for all audio and video content
items added to a ContentDirectory service that are streamed over HTTP.

NOTE (Informative): The HNIMP OC-DMS should allow the port number to be specified using some boot time or
deployment time configuration and should attempt to use that port number first. If that port number cannot be used
for any reason (e.g., the port is in use), then the OC-DMS should select an alternate port number.

When the HNIMP supports the MediaRenderer service, it SHALL support volume control. See [DLNA vol 1]
requirement 7.3.108 for further requirements implications.

When a upnp:channelID, ocap:scheduledChannelID, or srs:scheduledChannelID is used and the type is SI, the value
SHALL be as specified in section B.4.2 of [UPNP SRS] and the fields SHALL be populated as follows:

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 13

• Network ID: any value (including the empty string) may appear; the following comma is required. This field
is not used by this specification.

• Transport Stream ID: any value (including the empty string) may appear; the following comma is required.
This field is not used by this specification.

• Service ID: the source_id signaled in a Virtual Channel Table.

Examples:

1. <upnp:channelID>,,3</upnp:channelID>
2. <upnp:channelID>0,0,42</upnp:channelID>

5.5.1 Device Namespace

OCAP HN devices SHALL employ the <ocap:X_OCAPHN> XML element inside the <device> element of the
device description document to indicate adherence to a particular OCAP Home Networking Protocol document
version. The value of this element is the DLNA device class, a dash character, followed by the numeric version value
of the document. The <ocap:X_OCAPHN> element indicates compliance for a specific <device>, excluding its
embedded devices listed in <deviceList>. An example of <ocap:X_OCAPHN> element is shown as follows:

<ocap:X_OCAPHN xmlns:ocap="urn:schemas-cablelabs-com:device-1-0">OC-DMS-1.0</
ocap:X_OCAPHN>

The "urn:schemas-cablelabs-com:device-1-0" namespace SHALL be specified for the < ocap:X_OCAPHN >
element, and the namespace prefix SHALL be "ocap:". The namespace prefix declaration MAY be specified in the
<root> element of the device description. The value of the < ocap:X_OCAPHN > element is a string as defined
below. Linear white spaces (LWS) are not implied in this definition below.

ocaphn-value = ocaphn-dev-class "-" ocaphn-version
ocaphn-dev-class = "DMS" (DMS = Digital Media Server)
ocaphn-version = major-version "." minor-version
major-version = DIGIT
minor-version = DIGIT

5.5.2 Metadata Namespace

The HNIMP SHALL consider the namespaces specified in Table 1-3 of [UPNP CDS] as standardized namespaces
for this specification.

In addition, for the ocap properties defined in Annex C populated in the DIDL-Lite document, the HNIMP SHALL
use the following namespace: "urn:schemas-cablelabs-org:metadata-1-0/", and the HNIMP SHALL use "ocap" as
namespace prefix for these properties. This namespace is not defined through a formal XML schema. This allows
definition of new XML attributes in the future without having to define a new namespace or schema.

This requirement standardizes the "ocap" namespace so that it can be placed anywhere in the DIDL-Lite document.

5.5.3 Middleware Elements

OCAP HN devices SHALL employ the <ocap:X_MiddlewareProfile> XML element inside the <device> element of
any root device description document to indicate the [OC-BUNDLE] version, e.g., 1.2.0. The value of this element
matches the [OC-BUNDLE] version supported, e.g., "1.2.0". An example of <ocap:X_MiddlewareProfile> element
is shown as follows:

<ocap:X_MiddlewareProfile xmlns:ocap="urn:schemas-cablelabs-com:device-1-
0">1.2.0</ ocap:X_MiddlewareProfile>

OCAP HN devices SHALL employ the <ocap:X_MiddlewareVersion> XML element inside the <device> element
of any root device description document to indicate the vendor-specific OCAP implementation version. An example
of <ocap:X_MiddlewareVersion> element is shown as follows:

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

14 CableLabs 05/30/13

<ocap:X_MiddlewareVersion xmlns:ocap="urn:schemas-cablelabs-com:device-1-
0">1a.2.3</ ocap:X_MiddlewareVersion>

5.5.4 CDS Features

If any ChannelGroupContainer has been published in the CDS, then the HNIMP SHALL respond to the
CDS:GetFeatureList action with indication of support of the TUNER feature as defined in appendix E.2 of [UPNP
CDS].

OC-DMS
HNIMP

OCAP
APP

DLNA
Device

CDS:GetFeatureList()

Indicate support of “TUNER” feature

Create Channel Lineup Container and
add Channel Items

OC-DMS

Supported Features

Figure 5–3 - Tuner Feature

5.6 Media Transport

The HNIMP SHALL adhere to all requirements in [DLNA vol 1] section 7.4 Media Transport for requirements that
correspond to device types supported by the implementation.

When an HNIMP is a DMS device, it SHALL support the TimeSeekRange.dlna.org HTTP header field on all
recorded or Time-Shifted Content; see [DLNA vol 1] section 7.4.40.

When an HNIMP is a DMS device, it SHALL support the PlaySpeed.dlna.org HTTP header field on all recorded or
Time-Shifted Content; see [DLNA vol 1] section 7.4.70.

When an HNIMP is a DMS device, it SHALL support the Range HTTP header field on all recorded or Time-Shifted
Content to which Link Protection is not applied; see [DLNA vol 1] section 7.4.38.

When an HNIMP is a DMS device, it SHALL support the Range.dtcp.com HTTP header field on all recorded or
Time-Shifted Content to which DTCP-IP Link Protection is applied; see [DLNA vol 3] section 8.4.1.

When serving streaming video, the HNIMP SHALL NOT exceed a maximum bitrate of (1.5 * normal play speed
bitrate of the media format) based on peak bitrate output measurement, regardless of trick mode speed and QoS
configuration. Normal play speed bitrates are defined in [DLNA vol 2] as bitrates for specific media formats.

If the ServerSidePacedStreaming header is provided by the client to perform trick modes, then the HNIMP OC-DMS
SHOULD attempt to re-stamp the PTS and PCR in the MPEG2-TS stream.

For trick mode support, an HNIMP OC-DMS that does not re-stamp the PTS/PCR in the stream SHALL,

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 15

• Use the FrameRateInTrickMode.ochn.org header if the client has sent the FrameRateInTrickMode.ochn.org
header in the trick mode request.

• Use the FrameRateInTrickMode.dlna.org header as defined in [DLNA CR-214] if the client has not sent the
FrameRateInTrickMode.ochn.org header in the trick mode request.

The HNIMP OC-DMS MAY keep the discontinuities in the resulting re-stamped content if there is a time stamp
discontinuity in the original stream or when jumping across segments of a segmented recording. In the case of a
segmented recording, the HNIMP OC-DMS MAY restart the re-stamping with the PTS and PCR values of the
segment when transitioning from one segment to another.

Note (Informative): The HNIMP OC-DMS is expected to use the FrameRateInTrickMode.dlna.org header to
communicate the rate at which the client is expected to play the frames in order to provide the requested trick mode
operation as per [DLNA CR-214]. However, in order to provide backward compatibility, the HNIMP OC-DMS is
expected to use the FrameRateInTrickMode.ochn.org header for clients that have explicitly used it in the request. In
cases where the client has sent the ServerSidePacedStreaming header in the request and the server is not re-stamping
the PTS/PCR, the server should use the FrameRateInTrickMode.dlna.org header.

During trick mode operations, the HNIMP client device SHALL be able to playback streams with decrementing PTS
and PCR.

The HNIMP client devices SHALL be able to playback content streams whether or not PTS and PCR re-stamping is
performed by the HNIMP server during trick mode operations.

Note (Informative): During the trick mode operation, the HNIMP server is not required to maintain the same frame
rate as for the normal playback.

During the fast forward operation using HTTP transport on content stream that is currently being recorded, the
HNIMP Server SHALL close the HTTP connection with the client when the server reaches a live point in the content
stream. The HNIMP server SHALL NOT close the connection until it has sent all the content up to the live point in
the content stream.

When a client HNIMP supports RTP, it SHOULD NOT request Wall Clock Time Samples; see [DLNA vol 1]
requirement 7.4.117.1.

When an HNIMP supports RTP and a PLAY request includes the Supported header with the feature tag
dlna.announce, then the Serving Endpoint SHALL send an ANNOUNCE request to the Receiving Endpoint when
the last RTP packet has been sent. This is recommended by [DLNA vol 1] requirement 7.4.261.1.

5.6.1 HTTP Headers

HNIMP rendering devices that use scaled network traffic for trick modes when streaming video SHOULD maintain
the jitter characteristics of local recording rendering. This specification defines a number of HTTP headers in
addition to [DLNA vol 1] in the ochn.org name space that add characteristics to video streaming in order to assist
with media presentation and reduce noticeable anomalies. When encountering syntax errors with any HTTP headers
in the ochn.org name space, the HTTP server SHALL use the HTTP response code 400 (Bad Request). When
encountering an HTTP header in the ochn.org name space that is not supported, the HTTP server SHALL use the
HTTP response code 406 (Not Acceptable).

The table below lists the headers, indicates direction from client to server, the server support requirement, and, if the
header is used in trick play, normal play or both. When the header direction is bi-directional, it begins with a client
request.

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

16 CableLabs 05/30/13

Table 5–1 - HTTP Header Requirements

Header Direction Server support Trick/Normal

CurrentDecodePTS.ochn.org Client→Server optional Trick

ChunkEncodingMode.ochn.org Client→Server required Trick

MaxGOPsPerChunk.ochn.org Client↔Server required Trick

MaxFramesPerGOP.ochn.org Client→Server optional Trick

ServersidePacedStreaming.ochn.org Client↔Server optional Trick

FrameTypesInTrickMode.ochn.org Client↔Server required Trick

FrameRateInTrickMode.ochn.org Client↔Server required Trick

PresentationTimeStamps.ochn.org Server→Client optional Trick/Normal

AVStreamParameters.ochn.org Server→Client optional Trick/Normal

5.6.1.1 CurrentDecodePTS

An HNIMP OC-DMS MAY support the CurrentDecodePTS.ochn.org header. This header SHALL NOT be included
in any response. The definition of this header is the renderer current decoder timestamp in 32 bit hex format based
on the 45 KHz clock. The notation for the CurrentDecodePTS.ochn.org header is defined as follows:

• CurrentDecodePTS -line = "CurrentDecodePTS.ochn.org" *LWS ":" *LWS current decoder PTS

• current decoder PTS = "PTS" "=" pts

• pts = 8 hexdigit

• hexdigit = <hexadecimal digit: "0"-"9", "A"-"F", "a"-"f">

Note that the "PTS" token is case sensitive.

Example:

• CurrentDecodePTS.ochn.org : PTS=00070800

5.6.1.2 ChunkEncodingMode

An HNIMP OC-DMP MAY use the ChunkEncodingMode header to request Chunked Transfer Coding as per
[DLNA vol 1]. The ChunkEncodingMode.ochn.org header SHALL be supported by an HNIMP OC-DMS. Defined
as an indication for chunked encoding type where type can be GOP, Frame, or other.

The "Frame" chunk type SHALL be used in conjunction with the frame types defined in the
FrameTypesInTrickMode.ochn.org header. The ChunkEncodingMode header with "Frame" chunk type SHALL be
ignored if the FrameTypesInTrickMode header is not present in the HTTP request. When the ChunkEncodingMode
header is included in a normal playback HTTP request, i.e., the PlaySpeed.dlna.org header is not present or the
PlaySpeed is set to 1, the OC-DMS SHALL also ignore this header request.

The notation for the ChunkEncodingMode.ochn.org header is defined as follows:

• ChunkEncodingMode -line = "ChunkEncodingMode.ochn.org" *LWS ":" *LWS chunk type

• chunk type : "chunk" "=" <"GOP" | "Frame" | "Other">

Note 1: the "chunk" token is case sensitive.

Note 2: "Other" MAY include, for example; crypto-chunk, where the chunk contents are server-specific.

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 17

Example:

• ChunkEncodingMode.ochn.org : chunk="GOP"

When OC-DMS receives a request with this header with PlaySpeed different than 1, the OC-DMS SHALL send the
response using Chunked Transfer Coding where each chunk is made with specified unit. Note that when the OC-
DMS sends out only I-frame in trick mode, "chunk=GOP" means each chunk be made of one I-frame only.

5.6.1.3 MaxGOPsPerChunk

An HNIMP OC-DMP MAY use the MaxGOPsPerChunk header to specify the maximum number of GOPs per chunk
when in trick mode. This header MAY be ignored if the current mode is not chunked encoding or the play rate speed
is 1. An HNIMP OC-DMS SHALL support the MaxGOPsPerChunk.ochn.org header. The definition of this header is
the maximum number of groups of pictures per chunk. The notation for the MaxGOPsPerChunk.ochn.org header is
defined as follows:

• MaxGOPsPerChunk-line = "MaxGOPsPerChunk.ochn.org" *LWS ":" *LWS number of GOPs

• number of GOPs = "gops" "=" gops

• gops = 3 decdigit

• decdigit = <decimal digit: "0"-"9">

Note that the "gops" token is case sensitive.

Example:

• MaxGOPsPerChunk.ochn.org : gops=1

When OC-DMS receives the HTTP GET request with MaxGOPsPerChunk header from OC-DMP, the OC-DMS
SHALL construct each chunk from a maximum of the number of GOPs as specified by this header, and the OC-DMS
SHALL include this header set to the number of GOPs of each chunk. For example,

• When OC-DMP sends HTTP GET request with MaxGOPsPerChunk set to 1, the OC-DMS constructs each
chunk from exactly one GOP.

• When OC-DMP sends HTTP GET request with this parameter set to 3, the OC-DMS constructs each chunk
from at most three GOPs.

5.6.1.4 MaxFramesPerGOP

An HNIMP OC-DMP MAY use the MaxFramesPerGOP header to request the maximum number of frames per GOP
in trick mode and has no effect unless current mode is chunked encoding. An HNIMP OC-DMS MAY support the
MaxFramesPerGOP.ochn.org header. The definition of this header is the maximum number of frames per group of
pictures in trick mode. The notation for the MaxFramesPerGOP.ochn.org header is defined as follows:

• MaxFramesPerGOP -line = "MaxFramesPerGOP.ochn.org" *LWS ":" *LWS number of frames

• number of frames = "frames" "=" frames

• frames = 3 decdigit

• decdigit = <decimal digit: "0"-"9">

Note that the "frames" token is case sensitive.

Example:

• MaxFramesPerGOP.ochn.org : frames=1

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

18 CableLabs 05/30/13

5.6.1.5 ServersidePacedStreaming

An HNIMP OC-DMP MAY use the ServersidePacedStreaming header to request a server to enable pacing of MPEG
data based on time stamps in the content. If the HNIMP client sends a trick play request including the
ServersidePacedStreaming header, then the server SHOULD respond with an MPEG stream where both the PCR
time stamp in the TS header's adaptation field and the PTS time stamp in the PES header are re-stamped, such that a
client device that displays each frame as soon as its time stamp matures will play out at the requested trick play rate.

An HNIMP OC-DMS MAY support the ServersidePacedStreaming.ochn.org header. The notation for the
ServersidePacedStreaming.ochn.org header is defined as follows:

• ServersidePacedStreaming -line = "ServersidePacedStreaming.ochn.org" *LWS ":" *LWS pacing enabled

• pacing enabled : "pacing" "=" <"YES" | "NO">

Note that the "pacing" token is case sensitive.

Example:
• ServersidePacedStreaming.ochn.org : pacing=YES

If the server supports ServersidePacedStreaming and performs restamping for this request, then it SHALL return the
ServersidePacedStreaming header in the response. If it does NOT perform restamping for this request, then it
SHALL NOT return the ServersidePacedStreaming header in the response.

Note (Informative):

As an example, let us assume for simplicity that the original stream is 30fps and that the GOP size is 30 (fixed GOPs,
with 1 I-frame per second). If the client asks for 10x FF playback, and the server responds with a stream consisting
of I-frames that are 5 seconds apart in the original stream, and the first frame returned happens to have the time
stamp 300, then the original (unmodified) sequence of time stamps for that I-frame data would be

300, 305, 310, 315, 320, 325, 330, 335, 340, 345 . . .

(These times are represented in seconds for simplicity of presentation; the actual time stamps would be in units of 27
MHz or 90 kHz.)

The requested MODIFIED time stamps for this sequence of frames would be:

300, 300.5, 301, 301.5, 302, 302.5, 303, 303.5, 304, 304.5 . . .

Thus, playing these frames according to their time stamps would result in each frame being displayed for 1/2 second.

5.6.1.6 FrameTypesInTrickMode

An HNIMP OC-DMP MAY use the FrameTypesInTrickMode header to request a server to respond with the frame
types in trick mode value. An HNIMP OC-DMS SHALL support the FrameTypesInTrickMode.ochn.org header, i.e.,
OC-DMS SHALL select the frames whose type is specified by this header and SHALL include this header with the
correct value. The definition of this header is a value returned from the server to indicate the frame types that can be
expected in the next group of pictures. The notation for the FrameTypesInTrickMode.ochn.org header is defined as
follows:

• FrameTypesInTrickMode -line = "FrameTypesInTrickMode.ochn.org" *LWS ":" *LWS frame types

• frame types = "frames" "="<"I" | "IP" | "all">

Note that the frames token is case sensitive.

Example:
• FrameTypesInTrickMode.ochn.org : frames=I

• FrameTypesInTrickMode.ochn.org : frames=all

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 19

When the OC-DMP sends the HTTP-GET request which has this header with "frame=I", the OC-DMS SHALL
include this header in the response with "frame=I" and SHALL thereafter send only I-frames.

When the OC-DMP sends the HTTP-GET request which has this header with "frame=IP", the OC-DMS SHALL
include this header in the response with "frame=I" or "frame=IP" and SHALL thereafter send only I-frames or I and
P frames, respectively.

When the OC-DMP sends the HTTP-GET request which has this header with "frame=all", the OC-DMS SHALL
include this header in the response with "frame=I", "frame=IP" or "frame=all" and SHALL thereafter send only I-
frames, I and P frames or all frames, respectively.

5.6.1.7 FrameRateInTrickMode

An HNIMP OC-DMS SHALL support the FrameRateInTrickMode.ochn.org header. The definition of this header is
a value returned from the server to indicate the frames per second at the current play speed. An OC-DMP MAY send
this header without a value to request OC-DMS to report the frame rate in the response. OC- DMS MAY select the
frame rate considering the current play speed, bandwidth limitation, etc. OC-DMS SHALL include this header with
the value of selected frame rate in the response. The notation for the FrameRateInTrickMode.ochn.org header is
defined as follows:

• FrameRateInTrickMode -line = "FrameRateInTrickMode.ochn.org" *LWS ":" *LWS frame rate

• frame rate = "rate" "=" rate

• rate = 2 decdigit

• decdigit = <decimal digit: "0"-"9">

Note that the "rate" token is case sensitive.

Example:
• FrameRateInTrickMode.ochn.org : rate=15

Note (Informative): The functionality provided by the FrameRateInTrickMode.ochn.org header has been superseded
by the introduction of the FrameRateInTrickMode.dlna.org header [DLNA CR-214]. It is recommended that HNIMP
OC-DMS and OC-DMP use the FrameRateInTrickMode headers as per Section 5.6 and Annex B.

5.6.1.8 PresentationTimeStamps

An HNIMP OC-DMS MAY use the PresentationTimeStamps header in a response to a request for an MPEG stream
of finite duration, in order to inform an OC-DMP what the first and last presentation time stamp values are for the
stream. An OC-DMP MAY use this information to assist with presentation. The notation for the
PresentationTimeStamps.ochn.org header is defined as follows:

• PresentationTimeStamps -line = " PresentationTimeStamps.ochn.org"*LWS"."*LWS startPTS *LWS
endPTS

• startPTS="startPTS" "=" pts

• endPTS="endPTS" "=" pts

• pts = 8 hexdigit

• hexdigit = <hexadecimal digit: "0"-"9", "A"-"F", "a"-"f">

Note that the "startPTS" and "endPTS" tokens are case sensitive.

Note that values of the pts term are in 45 KHz units.

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

20 CableLabs 05/30/13

5.6.1.9 AVStreamParameters

An HNIMP OC-DMS MAY use the AVStreamParameters header to inform an OC-DMP of audio and video PID and
stream type values for a connection that is being used to stream MPEG content. The PID and stream type values are
for primary audio and video and do not include other streams, e.g., alternate languages. An OC-DMP MAY use this
information to assist with presentation. The notation for the AVStreamParameters.ochn.org header is defined as
follows:

• AVStreamParameters -line = " AVStreamParameters.ochn.org"*LWS"."*LWS videoPID *LWS videoType
*LWS audioPID *LWS audioType

• videoPID =" videoPID" "=" decdigit

• videoType =" videoType" "=" decdigit

• audioPID =" audioPID" "=" decdigit

• audioType =" audioType" "=" decdigit

• decdigit=<decimal digit: "0"-"9">

Note that the "videoPID", "videoType", "audioPID", and "audioType" tokens are case sensitive.

Note that the videoType and audioType values SHALL adhere to stream type assignments defined in [MPEG2-1].

5.6.2 Streaming Live Content to DLNA Clients

A DLNA client initiates streaming of live content by making an HTTP or RTP request using a URI value that maps
to a <res> value referencing a content binary. Upon receipt of such a streaming request, the HNIMP OC-DMS
SHALL map the request URI to the associated content binary as per the mapping logic in Section 5.6.2.1.

5.6.2.1 Request URI Mapping

1. If the incoming request is an RTP Play request, it is considered mapped if a <res> element is found whose
URI matches the incoming request URI.

2. If the incoming request is an HTTP GET or HEAD request, it is considered mapped if one of the following
returns a match:

a. If registered, the HttpRequestResolutionHandler is invoked, and if the resolveHttpRequest method
returns a URI, then the implementation uses this URI in place of the request URI in the next step.

b. The implementation attempts to find a <res> URI that matches either the URI from Step-a or the
incoming request URI if Step-a was not successful. If the match with <res> URI fails and if the
<res> element contains the res@ocap:alternateURI property, the implementation attempts to match
the request URI with the value of this property as per the matching rules specified in Annex
C.1.4.1. The request URI is considered mapped if either a <res> URI or an alternateURI is
matched as per their respective matching rules.

If the request URI is successfully mapped to a <res> value referencing a content binary, the HNIMP OC-DMS
SHALL perform authorization checking as specified by the Network Authorization Handler in [HN-SEC].

NOTE (Informative): If the port number on which the OC-DMS listens for media streaming is also being used for
other services (e.g., CDS), it may receive non-streaming related HTTP requests and may invoke the
HttpRequestResolutionHandler for such requests. To avoid this, it is recommended that the OC-DMS use a separate
port to listen for media streaming requests.

5.6.2.2 Tuner Resource Acquisition

If the request is authorized as per the Network Authorization Handler in [HN-SEC], then the OC-DMS HNIMP
SHALL attempt to acquire a tuner in order to tune and stream content. If no tuner is available to tune to the requested

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 21

Service, the HNIMP SHALL resolve the conflict based on 19.2.1.1 of [OCAP]. If the conflict resolution requires
invocation of a ResourceContentionHandler to resolve the contention, then the OC-DMS HNIMP SHALL pass a
NetResourceUsage to represent the request. The HNIMP SHALL populate the NetResourceUsage object as follows:

• The NetResourceUsage.getInetAddress method SHALL return the InetAddress of the requesting client;

• The NetResourceUsage.getUsageType method SHALL return “Presentation”;

• The NetResourceUsage.getAppId method SHALL return null;

• The NetResourceUsage.getResourceNames method SHALL return a single element array with an element value
of “org.davic.net.tuning.NetworkInterfaceController”;

• The NetResourceUsage.getOcapLocator method SHALL return an OcapLocator denoting the requested service.

When resolving the contention, the application priority associated with the NetResourceUsage SHALL be considered
0. If the contention cannot be resolved, then the OC-DMS HNIMP SHALL fail the streaming request with error 503
(service unavailable).

If a tuner is already tuned to the requested Service, then the HNIMP SHALL utilize the already-tuned tuner and any
associated time-shift resources to honor the live streaming request. In the event of subsequent resource contention,
the HNIMP SHALL represent the shared reservation of the tuner with a SharedResourceUsage containing a
NetResourceUsage object as described above.

5.6.2.3 Tuning for Live Streaming

If a tuner is available that can stream the requested channel, then the OC-DMS HNIMP SHALL get the
ChannelContentItem’s Locator (returned by the ChannelContentItem.getChannelLocator method). The
implementation SHALL take action based on the value of the returned Locator as follows:

• If the Locator is frequency based, attempt to tune to the channel,

• If the Locator is source ID based, perform a JavaTV Service lookup and:

• If a Service is found and contains tuning parameters, attempt to tune to the channel.

• If a Service is found but does not contain tuning parameters, determine if a SelectionProvider is registered
for the “ocap://” scheme and supports the service represented by the ChannelContentItem, and if so, attempt
to resolve tuning parameters as defined in Section 5.6.2.3.1.

• If the Locator returned by getTuningLocator() is null, and a ServiceResolutionHandler is registered, resolve
the tuning parameters by calling the ServiceResolutionHandler as defined in Section 5.6.2.3.2.

• If ServiceResolutionHandler.resolveChannelItem returns True, attempt to tune to the locator returned by
ChannelContentItem.getTuningLocator.

• Otherwise fail the request.

See Figure 5–4.

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

22 CableLabs 05/30/13

ChannelContentItem.getChannelLocator

a tuner is available that can stream
the requested channel

Frequency
Based?

perform JavaTV Service lookup

has tuning
parameters?

Resolve tuning parameters
defined in 5.6.2.2.1

Selection
Provider

Registered?
Yes

getTuningLocator
!= null

ServiceResolutionHandler
Registered? Yes

No

No

No

No

Yes

Resolved?Yes

No

Yes

FAIL

No

Yes

getTuningLocator
!= null

True

Yes

No

FAIL

ServiceResolutionHandler
.resolveChannelItem()

False

Tune
Figure 5–4 - Tuning for Live Streaming

5.6.2.3.1 Tuning Resolution with Service Provider

Section 10.2.2.2.5 of [OCAP] describes how the Service Provider Interface (SPI) defined in [DVB-MHP 1.1.3]
Annex AN is complied with in tru2way for use with local Host SDV. The SPI can also be used for SDV during live
streaming on a home network. When the OC-DMS HNIMP receives a streaming request containing a URI that refers
to a ChannelContentItem that has a source ID based Locator, as returned from

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 23

ChannelContentItem.getChannelLocator, then the OC-DMS HNIMP SHALL determine if a SelectionProvider is
registered that:

1. Is registered to handle the “ocap://” scheme, AND

2. Has indicated support for the Locator passed to the ContentEntryFactory.createChannelContentItem method via
the SelectionProvider and SelectionProviderContext APIs.

In that case, the OC-DMS HNIMP SHALL handle live streaming activities for a ChannelContentItem when
supported by a registered SelectionProvider as defined by [OCAP] section 10.2.2.2.5 and [DVB-MHP 1.1.3] Annex
AN. That is, a JavaTV Service lookup is made based on the source ID Locator, and a SelectionSession is created and
managed for each streaming activity to a SelectionProvider supported service.

The OC-DMS HNIMP SHALL fail the streaming request with error 503, Service Unavailable under any of the
following conditions:

• If the Locator returned by SessionSelection.select does not work for tuning, or

• If the tune fails for any other reason.

When a SelectionProvider application uses the SPI to remove tuning information from a JavaTV Service being used
for ChannelContentItem streaming, the implementation SHALL stop content streaming and close the connection.

5.6.2.3.2 Tuning Resolution with ServiceResolutionHandler

When the OC-DMS receives a streaming request containing a URI that refers to a ChannelContentItem that does not
have a tuning Locator (that is, ChannelContentItem.getTuningLocator returns null), and if a
ServiceResolutionHandler has been set by a call to ContentServerNetModule.setServiceResolutionHandler, then
OC-DMS HNIMP SHALL notify the application by invoking ServiceResolutionHandler.resolveChannelItem,
passing the untunable channel item as a parameter.

If the ServiceResolutionHandler application is able to establish an SDV session such that the channel becomes
tunable, then it updates the ChannelContentItem’s Locator (by calling ChannelContentItem.setTuningLocator) and
the ServiceResolutionHandler.resolveChannelItem method returns true. If the ServiceResolutionHandler application
is unable to establish an SDV session for the requested channel, then ServiceResolutionHandler.resolveChannelItem
returns false.

Upon successful return from the ServiceResolutionHandler.resolveChannelItem method, the HNIMP SHALL call
ChannelContentItem.getTuningLocator to obtain a Locator suitable for tuning the requested channel.

The OC-DMS HNIMP SHALL fail the streaming request with error 503, Service Unavailable under any of the
following conditions:

• If the ServiceResolutionHandler.resolveChannelItem method returns false, or

• If there is no ServiceResolutionHandler and no SelectionProvider and the OC-DMS HNIMP is unable to
obtain a Locator from the ChannelContentItem.getTuningLocator method, or

• If the OC-DMS HNIMP is able to obtain a Locator from the ChannelContentItem.getTuningLocator
method, but is unable to tune the channel for any other reason.

For an ServiceResolutionHandler application to terminate an SDV session, it informs the HNIMP that the SDV
channel is no longer available, by calling the ChannelContentItem.setTuningLocator method and passing null for the
new Locator. If the ChannelContentItem.setTuningLocator method is called with a null argument, then the OC-DMS
HNIMP SHALL terminate any active streaming sessions on this ChannelContentItem before returning from the
ChannelContentItem.setTuningLocator method. Changing the tuning locator from a non-null value to a different non-
null value also terminates an SDV session, but a new session is immediately available for streaming.

NOTE: An application may determine that there are no longer any streaming activities for an SDV channel based on
notifyActivityStart / notifyActivityEnd callbacks. The application may choose to terminate an SDV session with the
headend when it determines that there are no longer any streaming activities for an SDV channel; or at program
boundaries; or at any other time based on any other application logic.

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

24 CableLabs 05/30/13

5.6.2.4 Live Streaming Media Transport

Upon successful tuning of a channel for a live streaming request, the OC-DMS HNIMP SHALL stream contents of
the channel to the requesting client. The HNIMP SHALL protect the content as required by Section 5.10.

5.6.2.5 Live Streaming Trick Play Support

If the OC-DMS HNIMP is capable of supporting a TSB, then the OC-DMS HNIMP SHALL support the DLNA
Limited Random Access Data Availability Model for the purposes of live streaming requests, as specified in
Section 5.2.

5.6.2.6 Sequence Diagrams

OC-DMS
HNIMP

OCAP
APP

DLNA
Device

CDS:Search or Browse to obtain channel items
(class object.item.videoItem.videoBroadcast)

Channel Items

notifyActivityStart

RCH if Tuner Conflict

HTTP Get – ChannelContentItem URI

Live Content

OC-DMS

resolveChannelItem(if needed)

notifyTuneFailed (if needed)

Figure 5–5 - Streaming Live Content to DLNA Device

5.6.3 Adaptive Streaming

When content is streamed using adaptive streaming over HTTP mechanism, the HNIMP OC-DMS SHALL respond
to the HTTP Get request with a manifest file that conforms to the adaptive streaming mechanism (see Section
6.3.13.1). Based on the MIME type set in the res@protocolInfo property and the content of the manifest file received
from the HNIMP OC-DMS, the client determines the following:

a. The adaptive streaming mechanism (e.g., MPEG-DASH) (Section 6.3.13.1)

b. Container Format of the content (MPEG-TS or MP4) (Section 6.3.13.1)

c. Required Link Protection (Section 6.3.13.2)

d. URI to the first fragment of the content

For MPEG-DASH, the client can determine any required DRM by parsing the manifest file received from the
HNIMP OC-DMS.

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 25

The specific sequence of actions the HNIMP OC-DMP executes with the HNIMP OC-DMS depends on the specific
combination of the above parameters that are applied to the content, e.g., if the content is within an MP4 container
and requires DTCP-IP, the HNIMP OC-DMP needs to perform the PCP-UR subfunction of the DTCP-IP AKE (see
[HN-SEC]).

This data determines the sequence of actions that the HNIMP OC-DMP performs and the sequence of messages the
HNIMP OC-DMP exchanges with the HNIMP OC-DMS in order to complete the required DRM/Link Protection
protocol successfully and initiate streaming of the selected content.

5.7 Content Transformation Device Virtualization

When the HNIMP implements a virtual server or renderer as defined by [DLNA vol 1] section 7.5, it SHALL adhere
to all requirements in [DLNA vol 1] section 7.5 Content Transformation Device Virtualization.

5.8 Content Formats

An HNIMP DMP and DMS SHALL support content formats as specified in [OCAP]. This includes broadcast
streaming, monomedia, and stored content formats. Additionally, an HNIMP DMS and DMP SHALL support the
subset of the content formats defined in [DLNA vol 2] indicated in Table 5–2.

Table 5–2 - Mandatory and Optional Media Formats by Device Class

DLNA Profile OC-
DMS

OC-
DMP

Informative Note

Image

JPEG_SM R R JPEG_SM is the DLNA HND required image format.
The remaining formats are OCAP extensions to the
DLNA requirement. JPEG_MED R R

JPEG_LRG R R

JPEG_TN R R

JPEG_SM_ICO R R

JPEG_LRG_ICO R R

PNG_TN R R

PNG_SM_ICO R R

PNG_LRG_ICO R R

PNG_LRG R R

GIF_LRG R R

A/V
MPEG_TS_NA_ISO R R OC-DMS: Required per [HOST]

OC-DMP: Required per [DLNA vol 5]

AVC_TS_NA_ISO R R OC-DMS: Required per [HOST]

OC-DMP: Required [DLNA vol 5]

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

26 CableLabs 05/30/13

DLNA Profile OC-
DMS

OC-
DMP

Informative Note

AVC_TS_NA_T O R OC-DMS: No requirement

OC-DMP: Required [DLNA vol 5]

MPEG_TS_SD_NA_ISO R R OC_DMS: Provides backward compatibility

OC_DMP: Required per [DLNA vol 2] Table 6-1 and
helps to maintains backward compatibility

MPEG_TS_HD_NA_ISO R R OC_DMS: Maintains backward compatibility

OC_DMP: Maintains backward compatibility

MPEG_TS_SD_NA_T O R OC_DMP: Required per [DLNA vol 2] Table 6-1

MPEG_TS_HD_NA_T O R Required for backward compatibility

MPEG_PS_NTSC O R OC_DMP: Required per [DLNA vol 2] Table 6-1

MPEG_TS_SD_NA O R OC_DMP: Required per [DLNA vol 2] Table 6-1

AVC_TS_NA_3DFC_ISO R O OC_DMS: Required per [DLNA 3D MF]

MPEG_TS_NA_3DFC_ISO R O OC_DMS: Required per [DLNA 3D MF]

Audio

LPCM R R DLNA HND requirement

AC3 R R OC_DMS: Required per [HOST] & [OCAP]

OC_DMP: Required per [HOST] & [OCAP]

MP2_MPS R R OC_DMS: Required per [HOST] & [OCAP]

OC_DMP: Required per [HOST] & [OCAP]

MP3 R R OC_DMS: Required per [HOST] & [OCAP]

OC_DMP: Required per [HOST] & [OCAP]

When content for any profile ID that begins with MPEG_TS or AVC_TS is being streamed using any network
protocol such as HTTP, the server SHALL include PAT and PMT occurrences at rates defined by [MPEG2-1] with
respect to the wall clock time. In addition, any data streams that are part of the source service SHALL be included in
the output data stream. The HNIMP server SHALL include only one PMT entry in the PAT (i.e., content stream
served by the HNIMP server needs to be a SPTS).

An HNIMP OC-DMS SHALL support transformation of MPEG_TS_* (H.262) source content to
AVC_TS_NA_ISO (H.264) based content.

In order to allow for appropriate audio channel selection, an HNIMP OC-DMS SHALL transform all audio streams
and associated descriptor metadata into the transformed content resource when transforming MSO local content.
Additionally, the HNIMP OC-DMS MAY create multiple audio stream representations from any audio streams
within the source content.

When adaptive streaming over HTTP is supported, an HNIMP OC-DMS SHALL support MPEG-DASH as per
[DLNA HTTP-AD].

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 27

5.9 Quality of Service (QoS)

The HNIMP MAY support quality of service functionality as defined in [RSD PROT].

5.10 Content Protection

The current version of [HOSTHN] allows for discovery and rendering of personal content as well as cable recorded
services and the transport of cable-delivered broadcast content on the LAN. When cable recorded or live services are
transported over a Home network, they SHALL be protected as defined in the [HN-SEC] specification.

When content is streamed using adaptive streaming over HTTP, the getProtectionType method on the
ContentFormat interface returns the protection type to be used (see Section 6.3.13.2).

5.11 UPnP Interoperability

The HNIMP SHALL comply with UPnP interoperability guidelines as specified in [UPNP DA]. Figure 5–6
demonstrates a sample interaction between UPnP device discovery and an application discovering devices and then
performing basic UPnP actions. Some of the UPnP actions depicted are optional, e.g., CM:PrepareForConnection.

Host A Host BUPnPApplication Application

SSDP:Alive

SSDP:Discover

HTTP GET Description

URL

Device Description
UPnP Device

Template

addNetModuleChangeListener

NetModuleEvent

getNetModuleList

NetListFind
ContentServer getRootContainer

NetManager

CDS:Search

ContentList

ContentContainer

getEntry

Content Entry or Item
Find Desired

Locator Select() or
createRemotePlayer()

CM:PrepareForConnection

AV Transport Handle

Figure 5–6 - Signal Flow Example

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

28 CableLabs 05/30/13

5.12 Parental Control

The [UPNP CDS] specification defines the upnp:rating property that can be used by clients to determine the parental
control rating of a content item. An application may set the upnp:rating property using the MetadataNode API. An
HNIMP OC-DMS SHALL NOT modify a upnp:rating property that has been set by an application.

The upnp:rating@type is used to define the rating dimension. The values that can be used in the United States
include:

• "TV Parental Guideline Age-Based Rating for Entire Audience"

• "TV Parental Guideline Age-Based Rating for Children's Programs"

• "MPAA Rating"

The rating dimension values were taken from [CEA-766] section 5.1. Values for the Dialog Flag, Language Flag,
Sexual Content Flag, Violence Flag, and Fantasy Violence Flag were not included because they are combined with
other rating dimensions using upnp:rating property values; see Table 5–3.

The upnp:rating property can be used to represent values from multiple rating dimensions as defined in the Message
column of Table 3 in [CEA-766]. Table 5–3 identifies the upnp:rating values that apply to each upnp:rating@type
value:

Table 5–3 - Parental Control Ratings and Rating Dimensions

Rating Dimension
(upnp:rating@type value)

Applicable Ratings
(upnp:rating value)

"TV Parental Guideline Age-Based Rating for Children's Programs" "TV–Y"
"TV–Y7"
"TV–Y7–FV"1

"TV Parental Guideline Age-Based Rating for Entire Audience" "TV–None"
"TV–G"
"TV–PG"
"TV–PG–D"2
"TV–PG–L"2
"TV–PG–S"2
"TV–PG–V"2
"TV–PG–D–L"2
"TV–PG–D–S"2
"TV–PG–D–V"2
"TV–PG–L–S"2
"TV–PG–L–V"2
"TV–PG–S–V"2
"TV–PG–D–L–S"2
"TV–PG–D–L–V"2
"TV–PG–D–S–V"2
"TV–PG–L–S–V"2
"TV–PG–D–L–S–V”2
"TV–14"

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 29

Rating Dimension
(upnp:rating@type value)

Applicable Ratings
(upnp:rating value)

"TV–14–D"2
"TV–14–L"2
"TV–14–S"2
"TV–14–V"2
"TV–14–D–L"2
"TV–14–D–S"2
"TV–14–D–V"2
"TV–14–L–S"2
"TV–14–L–V"2
"TV–14–S–V"2
"TV–14–D–L–S"2
"TV–14–D–L–V"2
"TV–14–D–S–V"2
"TV–14–L-S–V"2
"TV–14–D–L–S–V"2
"TV–MA"
"TV–MA–L"2
"TV–MA–S"2
"TV–MA–V"2
"TV–MA–L–S"2
"TV–MA–L–V"2
"TV–MA–S–V"2
"TV–MA–L–S–V"2

"MPAA Rating" "MPAA–N/A"
"MPAA–G"
"MPAA–PG"
"MPAA–PG13"
"MPAA–R"
"MPAA–NC–17"
"MPAA–X"
"MPAA–Not Rated"

Note 1: These rating values include the Fantasy Violence rating dimension.

Note 2: These rating values include one or more of the Dialog Flag, Language Flag, Sexual Content Flag, or
Violence Flag rating dimensions.

5.13 View Primary Output Port (OPTIONAL)

Support for the View Primary Output Port (VPOP) feature is indicated by the
ocHnNetConfigViewPrimaryOutputPort MIB object, as defined in [MIB-HN]. The HNIMP OC-DMS SHALL query
the value of this MIB object at the beginning of normal operation (see [OCAP] "Boot Process"). If the value of the
ocHnNetConfigViewPrimaryOutputPort MIB object is true, the HNIMP OC-DMS SHALL support the VPOP

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

30 CableLabs 05/30/13

feature, per the requirements listed below. If the value of the ocHnNetConfigViewPrimaryOutputPort MIB object is
false or undefined, the HNIMP OC-DMS SHALL NOT support the VPOP feature. The HNIMP OC-DMS SHALL
ignore any changes to the ocHnNetConfigViewPrimaryOutputPort MIB object after the start of normal operation.

5.13.1 View Primary Output Port (VPOP) Content Item

When the VPOP feature is supported, the HNIMP OC-DMS SHALL adhere to the following behaviors:

1. Create a content item in CDS (the "VPOP content item") representing the service currently presented to the
default HScreen.

a. Content streamed from a VPOP content item:

• includes a presenting broadcast channel (including SDV and time-shifted content),
completed and in-progress recordings, and VOD assets;

• excludes presenting content streamed in from a home network interface;

• may exclude analog services;

• excludes graphics.

b. The upnp:class of a VPOP content item is object.item.videoItem.vpop.

c. The VPOP content item is published as an immediate child of the root container (i.e., @parentID
equals 0).

d. A <res> property is populated where the DLNA.ORG_PN field of the res@protocolInfo property
matches the presenting content as defined in [DLNA vol 1]. The value of the DLNA.ORG_PN
field is updated if the media format of the presenting content changes.

e. The a-val and b-val parameters of the res@protocolInfo property DLNA.ORG_OP field will be set
to '0', the DLNA.ORG_PS field will be omitted from the res@protocolInfo property, and the DMS
will not support HTTP time or range headers for VPOP access. As a consequence, home network-
based trick mode control of the VPOP content item will not be supported.

f. The <res> URI value in a VPOP content item references the presenting content and is constant
through changes to the presenting service.

g. The ocap:accessPermissions property of the VPOP content item SHALL be set to read-only unless
otherwise indicated by the ocHnNetConfigViewPrimaryOutputPortOrgID MIB object defined in
[MIB-HN]. The HNIMP OC-DMS SHALL query the value of the
ocHnNetConfigViewPrimaryOutputPortOrgID MIB object at the beginning of normal operation
(see [OCAP] "Boot Process"). If the value of this MIB object is non-zero, then the HNIMP OC-
DMS SHALL update the other_org field of the VPOP ocap:accessPermissions property to permit
write access by applications whose organization ID match the value of the MIB object. Other
fields in the VPOP ocap:accessPermissions property SHALL always be set to read-only (i.e., the
owner_org-write, owner_app-write, and world-write flags SHALL be set to '0'). The HNIMP OC-
DMS SHALL ignore any changes to the ocHnNetConfigViewPrimaryOutputPortOrgID MIB
object after the start of normal operation.

h. The dc:title property of a VPOP content item SHOULD be a descriptive value indicating its
function.

2. When the URI of a VPOP content item is used to stream content using HTTP, the HNIMP OC-DMS will
maintain the streaming session through changes to the presenting service so long as the media container
format remains unchanged. The HNIMP OC-DMS will close the streaming session when the media
container format of the content changes, but maintain the HTTP persistent connection per [DLNA vol 1]
guidelines.

a. If the HNIMP OC-DMS runs out of content during the service selection process, it MAY halt data
transmission or transmit MPEG null packets until the selected content is available.

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 31

b. The service acquisition process may cause client underflow and subsequent client-specific
behavior, such as black screen or freeze frame.

c. Streaming clients SHOULD continue playback of VPOP content through changes to the content
format, including changes to resolution, frame rate and codec, as well as timestamp and PID
discontinuities.

d. When content is streamed from a VPOP content item, DTCP encapsulation is always applied and
content encryption is used as applicable to content CCI values. Copy freely content that does not
have EPN asserted is not encrypted, but is sent in DTCP-IP Protected Content Packets. See [HN-
SEC] for DTCP definition.

e. When broadcast content presenting from a TSB is streamed from a VPOP content item, then the
content streamed represents the presentation point in the TSB.

f. When content is streamed from a VPOP content item, it is not altered to match video scaling of the
presentation.

g. Per the requirements of [DLNA vol 1] section 7.4 "Media Transport", the HNIMP OC-DMS
SHALL maintain media format compliance of VPOP streamed content during trick-mode playback
of content presented to the default HScreen. The HNIMP OC-DMS MAY exclude user data and
audio from the VPOP streamed content during trick mode playback. The HNIMP OC-DMS MAY
halt data transmission or transmit MPEG null packets until normal playback rate is resumed.

h. Only a single streaming session associated with a VPOP content item is permitted at a time. If an
HNIMP OC-DMS has an in-progress VPOP session with a client and the client sends a request for
VPOP content, the HNIMP OC-DMS SHALL close the in-progress session and process the
request. If an HNIMP OC-DMS has an in-progress VPOP session and a request for VPOP content
comes from a client that is not part of the in-progress session, then the HNIMP OC-DMS SHALL
respond to the second streaming request with HTTP error 503 (service temporarily overloaded).

i. The HNIMP OC-DMS SHALL deny streaming requests originating from the same device hosting
the HNIMP OC-DMS.

3. Support the View Primary Output Port Service; see Section 5.13.2.

5.13.2 View Primary Output Port (VPOP) Service

When the VPOP feature is supported, the View Primary Output Port service SHALL be added to the OCAP Media
Server, as defined below. This service SHALL have the service type “urn:cablelabs-
com:service:ViewPrimaryOutputPort:1”.

5.13.2.1 State Variables

5.13.2.1.1 A_ARG_TYPE_ConnectionID

This state variable provides the ConnectionID value used as an IN argument to several actions of this service. This
state variable is not evented. In general, the value of the ConnectionID parameter must match the ConnectionID of
an in-progress VPOP content item for the action to succeed.

5.13.2.1.2 X_ARG_TYPE_PowerStatus

This state variable provides the power status value returned as an OUT argument by the PowerStatus() action. This
state variable is not evented.

5.13.2.1.3 X_ARG_TYPE_TuneParameters

This state variable provides the channel values used as an IN argument to the Tune() action. This state variable is not
evented.

The TuneParameters argument is formatted according to the following BNF:

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

32 CableLabs 05/30/13

<major_channel_number>[“,”<minor_channel_number>]

major_channel_number = decimal_string

minor_channel_number = decimal_string

decimal_string = 1*digit

digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

5.13.2.2 Actions

5.13.2.2.1 AudioMute()

This action allows a rendering endpoint or control point to pass a "mute audio" remote control command to an
HNIMP OC-DMS. Upon receiving a call to this action, the HNIMP OC-DMS SHALL pass the command to the
OCAP Host device for processing. If the OCAP Host device is in an unmuted state, it SHALL take action as if the
"Mute Volume" key had been pressed on its remote control; otherwise, it SHALL do nothing. See [OCAP]"Input
Events" for more information.

If the value of the ConnectionID parameter does not match the ConnectionID of an in-progress VPOP content item
streaming session, then the HNIMP OC-DMS SHALL respond with UPnP error code 606 Action Not Authorized.

5.13.2.2.1.1 Arguments

Argument Direction Related State Variable

ConnectionID IN A_ARG_TYPE_ConnectionID; see 5.13.2.1.1

5.13.2.2.1.2 Dependency on State

None.

5.13.2.2.1.3 Effect on State

None.

5.13.2.2.1.4 Errors

errorCode errorDescription Description

400-499 Defined Elsewhere See UPnP Device Architecture section on Control.

500-599 Defined Elsewhere See UPnP Device Architecture section on Control.

600-699 Defined Elsewhere See UPnP Device Architecture section on Control.

5.13.2.2.2 AudioRestore()

This action allows a rendering endpoint or control point to pass a "restore audio" remote control command to an
HNIMP OC-DMS. Upon receiving a call to this action, the HNIMP OC-DMS SHALL pass the command to the
OCAP Host device for processing. If the OCAP Host device is in a muted state, it SHALL take action as if the "Mute
Volume" key had been pressed on its remote control; otherwise, it SHALL do nothing. See [OCAP] "Input Events"
for more information.

If the value of the ConnectionID parameter does not match the ConnectionID of an in-progress VPOP content item
streaming session, then the HNIMP OC-DMS SHALL respond with UPnP error code 606 Action Not Authorized.

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 33

5.13.2.2.2.1 Arguments

Argument Direction Related State Variable

ConnectionID IN A_ARG_TYPE_ConnectionID; see 5.13.2.1.1

5.13.2.2.2.2 Dependency on State

None.

5.13.2.2.2.3 Effect on State

None.

5.13.2.2.2.4 Errors

errorCode errorDescription Description

400-499 Defined Elsewhere See UPnP Device Architecture section on Control.

500-599 Defined Elsewhere See UPnP Device Architecture section on Control.

600-699 Defined Elsewhere See UPnP Device Architecture section on Control.

5.13.2.2.3 PowerOn()

This action allows a rendering endpoint or control point to pass a "power on" remote control command to an HNIMP
OC-DMS. Upon receiving a call to this action, the HNIMP OC-DMS SHALL pass the command to the OCAP Host
device for processing. If the OCAP Host device is in standby power mode, it SHALL take action as if the "Power
On/Off" key had been pressed on its remote control; otherwise, it SHALL do nothing. See [OCAP] "Input Events"
for more information.

5.13.2.2.3.1 Arguments

None.

5.13.2.2.3.2 Dependency on State

None.

5.13.2.2.3.3 Effect on State

None.

5.13.2.2.3.4 Errors

errorCode errorDescription Description

400-499 Defined Elsewhere See UPnP Device Architecture section on Control.

500-599 Defined Elsewhere See UPnP Device Architecture section on Control.

600-699 Defined Elsewhere See UPnP Device Architecture section on Control.

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

34 CableLabs 05/30/13

5.13.2.2.4 PowerOff()

This action allows a rendering endpoint or control point to pass a "power off" remote control command to an
HNIMP OC-DMS. Upon receiving a call to this action, the HNIMP OC-DMS SHALL pass the command to the
OCAP Host device for processing. If the OCAP Host device is in full power mode, it SHALL take action as if the
"Power On/Off" key had been pressed on its remote control; otherwise, it SHALL do nothing. See [OCAP] "Input
Events" for more information.

If the value of the ConnectionID parameter does not match the ConnectionID of an in-progress VPOP content item
streaming session, then the HNIMP OC-DMS SHALL respond with UPnP error code 606 Action Not Authorized.

5.13.2.2.4.1 Arguments

Argument Direction Related State Variable

ConnectionID IN A_ARG_TYPE_ConnectionID; see 5.13.2.1.1

5.13.2.2.4.2 Dependency on State

None.

5.13.2.2.4.3 Effect on State

None.

5.13.2.2.4.4 Errors

errorCode errorDescription Description

400-499 Defined Elsewhere See UPnP Device Architecture section on Control.

500-599 Defined Elsewhere See UPnP Device Architecture section on Control.

600-699 Defined Elsewhere See UPnP Device Architecture section on Control.

5.13.2.2.5 PowerStatus()

This action allows a rendering endpoint or control point to query the power status of an HNIMP OC-DMS. This
action will report the current power status of the OCAP Host device, either FULL POWER or STANDBY.

5.13.2.2.5.1 Arguments

Argument Direction Related State Variable

PowerStatus OUT X_ARG_TYPE_PowerStatus; see 5.13.2.1.2

5.13.2.2.5.2 Dependency on State

None.

5.13.2.2.5.3 Effect on State

None.

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 35

5.13.2.2.5.4 Errors

errorCode errorDescription Description

400-499 Defined Elsewhere See UPnP Device Architecture section on Control.

500-599 Defined Elsewhere See UPnP Device Architecture section on Control.

600-699 Defined Elsewhere See UPnP Device Architecture section on Control.

5.13.2.2.6 Tune()

This action allows a rendering endpoint or control point to pass a "tune" remote control command to an HNIMP OC-
DMS. Upon receiving a call to this action, the HNIMP OC-DMS SHALL pass the command and its parameters to
the OCAP Host device. The OCAP Host device SHALL then generate the following key events, in order:

• VK_0 through VK_9, corresponding to the major_channel_number component of the TuneParameters
argument,

• if the minor_channel_number component is present in the TuneParameters argument: VK_PERIOD
followed by VK_0 through VK_9 corresponding to minor_channel_number,

• VK_ENTER.

See [OCAP] "Input Events" for more information.

If the value of the ConnectionID parameter does not match the ConnectionID of an in-progress VPOP content item
streaming session, then the HNIMP OC-DMS SHALL respond with UPnP error code 606 Action Not Authorized. If
the value of the TuneParameters argument does not match the required syntax, the HNIMP OC-DMS SHALL
respond with UPnP error code 600 Argument Value Invalid.

5.13.2.2.6.1 Arguments

Argument Direction Related State Variable

ConnectionID IN A_ARG_TYPE_ConnectionID; see 5.13.2.1.1

TuneParameters IN X_ARG_TYPE_TuneParameters; see 5.13.2.1.3

5.13.2.2.6.2 Dependency on State

None.

5.13.2.2.6.3 Effect on State

None.

5.13.2.2.6.4 Errors

errorCode errorDescription Description

400-499 Defined Elsewhere See UPnP Device Architecture section on Control.

500-599 Defined Elsewhere See UPnP Device Architecture section on Control.

600-699 Defined Elsewhere See UPnP Device Architecture section on Control.

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

36 CableLabs 05/30/13

5.14 UPnP Diagnostics

An HNIMP OC-DMS SHALL support the +DIAGE+ capability defined in [DLNA Diag].

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 37

6 UPNP MAPPING REQUIREMENTS

OCAP Home Networking Extension-compliant devices [OCAP-HN] implementing the UPnP protocol SHALL map
OCAP Home Networking API methods to UPnP actions and properties, per this section. The same mappings apply
whether the API object is created by an application or the HNIMP. In addition, the mappings apply to API objects
that represent local UPnP objects.

6.1 Device Registry

OCAP Home Networking Extension-compliant devices [OCAP-HN] implementing the UPnP protocol maintain a
current list of devices and services based on received UPnP device available and device unavailable messages as
specified in [UPNP DA]. The HNIMP SHALL maintain local devices and services in the device and network
module lists returned by the HN API defined in [OCAP-HN]. The HNIMP SHOULD maintain the latest device and
service description information as defined by [UPNP DA] in order to respond to Device and NetModule method
calls without blocking.

When the HNIMP receives a device description, it SHALL create a Device object for it and populate the property
fields from the device description accordingly, e.g., manufacturer.

When the HNIMP receives a device description that contains a service description, it SHALL create a NetModule
that coincides with service type. When a CDS description is received, the HNIMP SHALL create a
ContentServerNetModule in the corresponding Device. When an SRS description is received, the HNIMP SHALL
create a RecordingNetModule in the corresponding Device.

While a device subscription is in effect as described by [DLNA vol 1] requirements 7.2.21 and 7.2.22, the HNIMP
SHALL generate NetModule events for services to which the control point is subscribed.

When a device subscription times out as defined by [DLNA vol 1] requirements 7.2.21 and 7.2.22, the HNIMP
control point SHALL NOT generate NetModule events for the timed out service.

When an HNIMP responds to a device discovery request, it SHALL send "OCAP-HOST" or "OCAP-TERMINAL"
as the root device. In addition, the HNIMP SHALL include "OC-DMS" as a sub-device, if supported. Any UPnP
Remote UI device, if supported, that is part of the +RUIHSRC+ capability SHALL also be included as a sub-device
of the root device. Any UPnP Device Management service that is part of the +DIAGE+ capability SHALL be
included as a service of the root device.

The HNIMP SHALL create a org.ocap.hn.Device object for each remote device and sub-device discovered. The
HNIMP SHALL create a org.ocap.hn.Device object for each local device transmitted in an M-SEARCH response.
The HNIMP SHALL create a org.ocap.hn.Device object corresponding to an OC-DMP if supported.

The HNIMP MAY include each supported RSD device as a sub-device in UPnP device discovery; see [RSD PROT]
for RSD device details.

6.2 Package org.ocap.hn

6.2.1 ContentServerNetModule interface

6.2.1.1 requestRootContainer method

The getRootContainer method SHALL use the ContentDirectory service Browse action with the following argument
settings:

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

38 CableLabs 05/30/13

• ObjectID set to 0,

• BrowseFlag set to BrowseMetadata,

• StartingIndex set to 0,

• RequestedCount set to 0,

• SortCriteria set to ""

The ContentList result SHALL be returned via the corresponding NetActionEvent.getResponse method. It SHALL
contain one entry, which is a ContentContainer representing the root container of the server. Mandatory OCAP and
UPnP CDS properties that apply to the container SHALL be included in the response.

6.2.1.2 requestBrowseEntries method

The requestBrowseEntries method SHALL use the [UPNP CDS] Browse action. The action input arguments SHALL
be mapped to the method parameters as follows:

• ObjectID set to the startingEntryID parameter,

• BrowseFlag set to BrowseDirectChildren when browseChildren parameter is true; otherwise it is set to
BrowseMetadata,

• StartingIndex set to startingIndex parameter,

• Filter set to the propertyFilter parameter,

• RequestedCount set to requestedCount parameter,

• SortCriteria derived from the sortCriteria parameter if not null. If null, empty string is used.

The HNIMP receiving the action SHALL include all properties required by this specification for the object type in
the returned result in addition to those properties specified in the propertyFilter parameter.

The ContentList result SHALL be returned via the corresponding NetActionEvent.getResponse method. Each entry
in the list SHALL be a ContentEntry that maps to a content item or container in the CDS that was browsed. The
HNIMP receiving the action response SHALL include all properties contained in the UPnP action response in the
returned result.

6.2.1.3 requestSearchCapabilities method

The requestSearchCapabilities method SHALL use the [UPNP CDS] GetSearchCapabilities action. The ContentList
result SHALL be returned via the corresponding NetActionEvent.getResponse method. It SHALL contain one entry,
which is a String object matching the search criteria parameter format defined by the requestSearchEntries method
description.

6.2.1.4 requestSearchEntries method

The requestSearchEntries method SHALL use the [UPNP CDS] Search action. The action input arguments SHALL
be mapped to the method parameters as follows:

• ContainerID set to the parentID parameter,

• SearchCriteria set to the searchCriteria parameter. If the searchCriteria parameter contains a value of null,
SearchCriteria SHALL be set to "*".

• Filter set to the propertyFilter parameter,

• StartingIndex set to startingIndex parameter,

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 39

• RequestedCount set to requestedCount parameter,

• SortCriteria derived from the sortCriteria parameter if not null. If null, empty string is used.

The HNIMP receiving the action SHALL include all properties required by this specification for the object type in
the returned result in addition to those properties specified in the propertyFilter parameter. The ContentList result
SHALL be returned via the corresponding NetActionEvent.getResponse method. Each entry in the list SHALL be a
ContentEntry that maps to a content item or container in the CDS that was searched. The HNIMP receiving the
action response SHALL include all properties contained in the UPnP action response in the returned result.

6.2.1.5 addContentServerListener method

See Section 5.4.1.1, Last Change Events.

6.2.1.6 removeContentServerListener method

See Section 5.4.1.1, Last Change Events.

6.2.2 Device interface

6.2.2.1 getVersion method

The getVersion method SHALL return the version value from the deviceType element found in the device's UPnP
Device Description document. The version value is the last numerical term in the deviceType element.

6.2.2.2 getCapabilities method

The getCapabilities method SHALL return an enumeration of capabilities string constants defined in the Device
interface. When the device is a server device, the getCapabilities method SHALL return the
CAP_STREAMING_SUPPORTED constant. When the device contains an SRS service, the getCapabilities method
SHALL return the CAP_RECORDING_SUPPORTED constant. When the device is an OC-DMS, the
getCapabilities method SHALL return the CAP_REMOTE_STORAGE_SUPPORTED, as well as the
CAP_TUNER_SUPPORTED constants. Any capability returned from a sub-device SHALL also be returned for its
root device.

6.2.2.3 getName method

The getName method SHALL return the same value as the getProperty method when passed the
PROP_FRIENDLY_NAME constant.

6.2.2.4 getProperty method

This method takes a property name string constant defined in the Device interface and returns a value mapped to the
device discovery. Values returned from elements in each <device> element that is part of the root device or a sub-
device and defined by the long description defined in [UPNP DA] section 2.1 SHALL be populated as follows:

• PROP_DEVICE_TYPE parameter returns value from the <deviceType> element.

• PROP_FRIENDLY_NAME parameter returns value from the <friendlyName> element.

• PROP_MANUFACTURER parameter returns value from the <manufacturer> element.

• PROP_MANUFACTURER_URL parameter returns value from the <manufacturerURL> element.

• PROP_MODEL_DESCRIPTION parameter returns value from the <modelDescription> element.

• PROP_MODEL_NAME parameter returns value from the <modelName> element.

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

40 CableLabs 05/30/13

• PROP_MODEL_NUMBER parameter returns value from the <modelNumber> element.

• PROP_MODEL_URL parameter returns value from the <modelURL> element.

• PROP_SERIAL_NUMBER parameter returns value from the <serialNumber> element.

• PROP_UDN parameter returns value from the <UDN> element.

• PROP_UPC parameter returns value from the <UPC> element.

• PROP_PRESENTATION_URL parameter returns value from the <presentationURL> element.

Values taken from the <device> element in the root device and returned for the Device representing a root device, as
well as each Device representing a sub-device under the same root, SHALL be populated as follows:

• PROP_MIDDLEWARE_PROFILE parameter returns value from the <ocap:X_MiddlewareProfile>
element.

• PROP_MIDDLEWARE_VERSION parameter returns value from the <ocap:X_MiddleVersion> element.

• The PROP_LOCATION value SHALL be returned from the LOCATION field of a search response defined
in [UPNP DA] section 1.2.3 for a root device and each sub-device. This always provides the location URL
of the root device.getType method.

This method returns one of the TYPE constants defined in the Device interface. The TYPE constant returned
SHALL be determined by the <deviceType> element from the UPnP discovery message for the root or sub-device
represented by the Device object this method is called in.

6.2.2.5 getInetAddress

The getInetAddress method SHALL return an object implementing an appropriate sub-interface of the
java.net.InetAddress interface. This may be Inet4Address or Inet6Address. This object SHALL represent the
originating IP address of the device description documents received for this Device during device discovery.

6.2.2.6 setFriendlyName method

The setFriendlyName method modifies the <friendlyName> property within the <device> element of the HNIMP
device description. The method SHALL throw IllegalArgumentException if the value parameter is greater than 63
characters or contains characters that are not valid for the language indicated by the ACCEPT-LANGUAGE or
CONTENT-LANGUAGE headers. See the [UPNP DA] specification for device description definition and the
[DLNA vol 1] specification for DLNA defined device properties.

When the value parameter is valid and different from the existing <friendlyName> property, the HNIMP SHALL
adhere to the following steps in order:

1. Return from the method.

2. Send an ssdp:byebye message.

3. Update the <friendlyName> property using the value parameter.

4. Send an ssdp:alive message.

5. Generate device events to DeviceListener objects.

If the value parameter matches the <friendlyName> property, this method does nothing and returns successfully.

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 41

6.2.3 DeviceEvent class

When the HNIMP performs an M-SEARCH operation, it SHALL generate DeviceEvent and NetModuleEvent
occurrences to registered listener applications as appropriate for the changes in configuration.

When a ssdp:alive message cache duration expires, the HNIMP SHALL generate DeviceEvent and NetModuleEvent
occurrences to registered listener applications as appropriate for changes in the configuration.

When an HNIMP receives a ssdp:byebye message and the device sending the message is in the current device list of
the HNIMP, the HNIMP SHALL generate DeviceEvent and NetModuleEvent occurrences to registered listener
applications as appropriate for changes in the configuration. If the device that sent the byebye message is not in the
current device list of the HNIMP, then the HNIMP SHALL NOT generate any events for that device.

6.2.4 NetActionEvent class

6.2.4.1 getActionStatus method

The getActionStatus method SHALL be mapped to UPnP action status as per the following table:

Table 6–1 - TransferStatus Return Values

TransferStatus value Value returned by getActionStatus

STOPPED ACTION_CANCELLED

ERROR ACTION_FAILED

COMPLETED ACTION_COMPLETED

6.2.4.2 getError method

When the getActionStatus method returns ACTION_FAILED, the getError method returns UPnP Error code
provided by the action response associated with this NetActionEvent as defined in [UPNP DA]. This method returns
-1 if this action has not failed or has not completed.

6.2.4.3 getResponse method

Returns an object derived from a UPnP response. The object is specific to the request; see methods that take a
NetActionHandler parameter. When the object returned is a ContentList, each object type contained is determined by
the properties returned in the action response for the object. When a returned UPnP object contains a
upnp:srsRecordScheduleID property but no upnp:srsRecordTaskID property, the HNIMP SHALL create a
NetRecordingEntry and contain it in the ContentList. When a returned UPnP object contains a
upnp:srsRecordTaskID property, the HNIMP SHALL create a RecordingContentItem and contain it in the
ContentList. Otherwise, the HNIMP SHALL create a ContentItem and contain it in the ContentList.

6.2.5 NetActionRequest

6.2.5.1 cancel method

When the in progress action is a CDS ImportResource or ExportResource action, the cancel method SHALL use the
[UPNP CDS] StopTransferResource action. If the action is not an in-progress CDS ImportResource or
ExportResource action, then this method SHALL return false.

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

42 CableLabs 05/30/13

6.2.5.2 getActionStatus method

The getActionStatus method returns one of the constants defined in the NetActionEvent interface. Implementations
SHALL map UPnP action Result values to the constants as appropriate.

NOTE (informative): Applications checking the values MAY receive any defined constant value for any action
response depending on the implementation-specific mappings of response values to constant values.

6.2.5.3 getProgress method

When the action is a CDS ImportResource action, the getProgress method SHALL use the [UPNP CDS]
GetTransferProgress action. In this case, when the TransferStatus result value is IN_PROGRESS the value returned
SHALL be determined by the following statement:

If the GetTransferProgress action TransferTotal or TransferLength arguments are
indeterminate, or if any UPnP errors are encountered
 Return -1.0
Else If (TransferTotal – TransferLength) > 0
Return ((TransferTotal – TransferLength) / TransferTotal) rounded to one decimal
place
Else
 Return 1.0

If the action is ImportResource and the TransferStatus result value is COMPLETED, this method SHALL return 1.0.
If the TransferStatus result value is STOPPED or ERROR, this method SHALL return 0.0. If the action is not
ImportResource, this method SHALL return -1.0.

6.2.6 HomeNetPermission class

No UPnP mapping is defined for the HomeNetPermission class.

6.2.7 NetManager class

6.2.7.1 getDevice method

The HNIMP SHALL search for the device by comparing the name parameter to the <friendlyName> element in the
device description; see [UPNP DA].

6.2.7.2 getDeviceList method

All of the getDeviceList methods SHALL return a list of org.ocap.hn.Device objects created during discovery as
defined in Section 6.1. For each device the list SHALL be ordered by root device, then sub-devices within the root.
Local devices SHALL appear in the list first.

6.2.7.3 getNetModuleList method

All of the getNetModuleList methods SHALL return a list of org.ocap.hn.NetModule objects created during
discovery as defined in Section 6.1. NetModules in the list SHALL be ordered by root device, then sub-devices
within the root. Local devices SHALL appear in the list first.

6.2.7.4 updateDeviceList method

The updateDeviceList method SHALL cause the HNIMP to send out an ssdp:all broadcast discover request as
defined in [UPNP DA]. Any changes to home network configuration SHALL generate appropriate DeviceEvent and
NetModuleEvent generation.

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 43

6.2.8 NetModuleEvent class

No UPnP mapping is defined for the NetModuleEvent class.

6.2.9 NetModule interface

6.2.9.1 getNetModuleId method

The getNetModuleId method SHALL return the same value as getProperty when passed the
PROP_NET_MODULE_ID constant.

6.2.9.2 getNetModuleType method

The getNetModuleType method SHALL return one of the CONTENT constants in the NetModule interface. The
constant returned SHALL be determined based on the following criteria:

• CONTENT_SERVER when the NetModule is a ContentServerNetModule.

• CONTENT_RECORDER returned when the NetModule is a RecordingNetModule.

6.2.9.3 getProperty method

The getProperty method takes a property name string constant defined in the NetModule interface and returns a
value mapped to device discovery. Values returned from elements in a <service> element the NetModule was
created for and defined by the description defined in [UPNP DA] section 2.1 SHALL be populated as follows:

• PROP_NETMODULE_ID parameter value returned from the <serviceId> element.

• PROP_DESCRIPTION_URL parameter value returned from <SCPDURL> element.

• PROP_CONTROL_URL parameter value returned from <controlURL> element.

• PROP_EventSub_URL parameter value returned from <eventSubURL> element.

• PROP_NETMODULE_TYPE parameter value returned from <serviceType> element.

6.2.10 PropertyFilter class

No UPnP mapping is defined for the PropertyFilter class.

6.3 Package org.ocap.hn.content

6.3.1 AudioResource Interface

6.3.1.1 getSampleFrequency method

The getSampleFrequency method maps to the [DIDL-L] property res@sampleFrequency, which is referenced in
[UPNP CDS]. This is the sample frequency in Hertz (Hz).

To obtain the sample frequency value using org.ocap.hn.content.ContentResource.getResourceProperty(String key),
the key parameter value SHALL be “res@sampleFrequency”. ContentResource.getResourceProperty(String key)
SHALL return a java.lang.Integer wrapping the same integer value returned by the
AudioResource.getSampleFrequency() method. If the sample frequency is unknown, then a java.lang.Integer
representing a value of -1 SHALL be returned.

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

44 CableLabs 05/30/13

6.3.1.2 getNumberOfChannels method

The getNumberOfChannels method maps to the [DIDL-L] property res@nrAudioChannels, which is referenced in
[UPNP CDS]. This integer refers to the number of audio channels within the resource, such as 1 for monaural, 2 for
stereo, or 6 for Dolby surround sound.

To obtain the number of audio channels using org.ocap.hn.content.ContentResource.getResourceProperty(String
key), the key parameter value SHALL be “res@nrAudioChannels”. ContentResource.getResourceProperty(String
key) SHALL return a java.lang.Integer wrapping the same integer value returned by the
AudioResource.getNumberOfChannels() method. If the number of channels is unknown, then a java.lang.Integer
representing a value of -1 SHALL be returned.

6.3.1.3 getBitsPerSample method

The getBitsPerSample method maps to the [DIDL-L] property res@bitsPerSample, which is referenced in [UPNP
CDS]. This integer refers to the number of bits per sample within the resource.

To obtain the number of bits per sample using org.ocap.hn.content.ContentResource.getResourceProperty(String
key), the key parameter value SHALL be “res@bitsPerSample”. ContentResource.getResourceProperty(String key)
SHALL return a java.lang.Integer wrapping the same integer value returned by the
AudioResource.getBitsPerSample() method. If the bits per sample is unknown, then a java.lang.Integer representing
a value of -1 SHALL be returned.

6.3.1.4 getLanguages method

The getLanguages method maps to the [DIDL-L] property dc:language, which is referenced in [UPNP CDS]. This
method SHALL return an array of Strings with one entry for each value associated with the multi-valued dc:language
property. If the optional dc:language property is not present, this method SHALL return a zero length array of
Strings.

To obtain the array of Strings returned by getLanguages() using
org.ocap.hn.content.ContentResource.getResourceProperty(String key), the key parameter value SHALL be
“dc:language”. ContentResource.getResourceProperty(String key) SHALL return an array of java.lang.String
identical to the array of Strings returned by the AudioResource.getLanguages() method. If the languages for the
resource are unknown, then a zero length array SHALL be returned.

6.3.2 ContentContainer

A local ContentContainer represents CDS entries that are exposed by an OC-DMS on the home network. Cable
services such as broadcast services and recordings made from broadcast services SHALL NOT be exposed in a CDS
service browse or search action response unless they were added to a local ContentContainer using either the
addContentEntry or addContentEntries methods.

Whenever a ContentContainer object is created, it is associated with a UPnP ContainerID that SHALL be unique
across all ContentContainer objects.

6.3.2.1 addContentEntry method

If the ContentContainer on which this method called does not have the parentID property, that is, the
ContentContainer is not added to CDS, the HNIMP SHALL throw IllegalStateException.

If this container has class object.container.channelGroup (or a subclass), and the parameter is NOT an instance of
ChannelContentItem, then the HNIMP Shall return false.

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 45

Otherwise, if the ContentEntry parameter has a parentID property, the HNIMP SHALL remove the CDS entry with
an @id property matching the value returned from the ContentEntry.getID method from the CDS content container
whose @id property matches the ID contained in the parentID property, and SHALL add the CDS entry to the CDS
content container matching the parentID of the ContentEntry parameter.

Otherwise, the ContentContainer.addContentEntry method adds the ContentEntry parameter to the
ContentContainer. In this case, the process of this method is based on the ContentEntry type or derived ContentEntry
type of the ContentEntry parameter. Any properties added to a CDS entry by this method are also added to the
ContentEntry parameter.

When the addContentEntry method is called with a parameter Object that implements the ContentEntry interface, but
does not implement any other interface that derives from ContentEntry, then the HNIMP SHALL create a CDS item
for the ContentEntry. See Section 6.3.3 for a mapping to ContentItem attributes to CDS properties.

When the parameter is a ContentContainer, the HNIMP SHALL create a CDS container and add it to CDS at a
location where this ContentContainer is the parent.

When the parameter is a RecordingContentItem, the HNIMP SHALL create a CDS content item and add it to the
CDS container corresponding to this ContentContainer. The HNIMP SHALL add the OCAP properties defined in
Annex C.1.1 to the CDS content item. The property values SHALL be taken from the Object that implements the
RecordingContentItem and OcapRecordingRequest interfaces using the corresponding attributes in the
OcapRecordingRequest. If the RecordingContentItem is not an instance of OcapRecordingRequest, then this method
SHALL return false. If the HNIMP supports SRS, it SHALL perform the following tasks:

1. If the RecordingContentItem does not already contain a upnp:srsRecordScheduleID property, the HNIMP
SHALL create a SRS object.recordSchedule.direct.manual as defined by [UPNP SRS]. The HNIMP
SHALL add a upnp:srsRecordScheduleID property containing the ID of the RecordSchedule to the CDS
content item corresponding to the RecordingContentItem.

2. If the RecordingContentItem does not already contain a upnp:srsRecordTaskID property, the HNIMP

SHALL create a SRS object.recordTask as defined by [UPNP SRS] and add the RecordTask to the SRS
RecordSchedule whose ID is indicated by the upnp:srsRecordScheduleID property of the
RecordingContentItem. The HNIMP SHALL add a upnp:srsRecordTaskID property containing the ID of
the RecordTask to the CDS content item corresponding to the RecordingContentItem. The HNIMP SHALL
also add ocap:scheduledCDSEntryID defined in C.1.2 to the RecordTask.

3. If step 2 described above was performed and the RecordingContentItem is included in a

NetRecordingEntry, the HNIMP SHALL add ocap:netRecordingEntry property to the CDS content item
corresponding to the RecordingContentItem. The ocap:netRecordingEntry must contain the CDS ObjectID
of the NetRecordingEntry. In addition, the HNIMP SHALL add the CDS ObjectID of the
RecordingContentItem to a list contained in the ocap:RCIList property of the CDS content item
corresponding to the NetRecordingEntry. The definitions of ocap:netRecordingEntry property and
ocap:RCIList property are described in C.1.3.

NOTE: The ocap:RCIList property includes Comma Separated Value (CSV) list which represents the list of the
ObjectIDs of the RecordingContentItems added both to the NetRecordingEntry and to the CDS. When the OC-DMS
responds to CDS:Browse or CDS:Search, which retrieves the CDS content item corresponding to a
NetRecordingEntry, the OC-DMS HNIMP SHALL include the ocap:RCIList property to the <item> block
corresponding to the NetRecordingEntry by using ocap namespace <desc> block.

When the parameter is a NetRecordingEntry, the HNIMP SHALL create a CDS content item and add it to the CDS
container corresponding to this ContentContainer. If the HNIMP supports SRS, it SHALL create a SRS
object.recordSchedule.direct.manual as defined by [UPNP SRS] The HNIMP SHALL add a
upnp:srsRecordScheduleID property containing the ID of the RecordSchedule to the CDS content item
corresponding to the NetRecordingEntry. The HNIMP SHALL also add an ocap:scheduledCDSEntryID and an

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

46 CableLabs 05/30/13

ocap:cdsReference to the RecordSchedule. The definitions of ocap:scheduledCDSEntryID and ocap:cdsReference
are described in C.1.2. The ocap:scheduledCDSEntryID SHALL contain the object ID of the CDS entry created for
the NetRecordingEntry. The ocap:cdsReference SHALL contain the properly escaped DIDL-Lite document of the
CDS content item corresponding to the NetRecordingEntry.

When the parameter is an instance of ChannelContentItem, the HNIMP SHALL create a CDS content item and add it
to the CDS container corresponding to this ContentContainer (see Section 6.3.2.5). The HNIMP SHALL publish a
res property for each associated ContentResource. Each res@protocolInfo property SHALL indicate the supported
operations for the content binary indicated by the URI of the corresponding res property (see Section 5.2). The URI
of the res property is implementation-dependent. The HNIMP SHALL include a TSPEC as defined in Annex D.

Regardless of the type of the ContentEntry parameter, when the created CDS entry corresponding to the
ContentEntry parameter is added to CDS, the HNIMP SHALL add a parentID property containing the ObjectID of
this ContentContainer to the CDS entry.

Note that this method can only add a local ContentEntry object to a local ContentContainer. If either this
ContentContainer or the ContentEntry parameter is not a local object, this method returns false.

6.3.2.2 addContentEntries method

The addContentEntries method causes the same mapping as the addContentEntry method with the addition that the
mapping SHALL be made for each ContentEntry passed to this method in the parameter array. When this method is
used to add CDS entries, the HNIMP SHALL add all of the parameter content entries before generating
corresponding CDS changed events. The OC-DMS HNIMP SHALL add the entries into the container in their order
in the array argument (this is important for ordering of ChannelContentItems; see [DLNA vol 1] B.2.1).

6.3.2.3 createContentContainer method

The HNIMP SHALL create a CDS container corresponding to the newly-created ContentContainer and add it to the
CDS at a location where this ContentContainer is the parent. When creating the new content container, the HNIMP
SHALL add CDS properties as required by this specification for a CDS container. The container dc:title property
SHALL be populated with the title parameter. The HNIMP SHALL populate the ocap:accessPermissions property
with the permissions parameter.

6.3.2.4 createChannelGroupContainer method

When this method is called, the HNIMP SHALL create a content container with class object.container.channelGroup
as a child of this ContentContainer. The OC-DMS HNIMP SHALL set the channel group container’s
dlna:containerType property to the value “Tuner_1_0”. The OC-DMS HNIMP SHALL set the channel group
container’s dc:title property to the value of the name argument. If this ContentContainer’s isLocal method returns
false, then this method SHALL return false.

The OC-DMS HNIMP SHALL include the objectID of this ChannelGroup in the Tuner Feature returned by the CDS
GetFeatureList action.

6.3.2.5 createContentItem method

The OC-DMS HNIMP SHALL return false if this container is an instance of object.container.ChannelGroup. The
HNIMP SHALL create a CDS item corresponding to the newly-created ContentItem and add it to CDS at a location
where this ContentContainer is the parent. When creating the new content item, the HNIMP SHALL create a
ContentItem object that maps to a UPnP object of the item class. The item dc:title property SHALL be populated
with the title parameter. The HNIMP SHALL populate the ocap:accessPermissions property with the permissions
parameter. The HNIMP SHALL create remaining properties for the item as required by [DLNA vol 1]. The HNIMP
SHALL create <res> elements for the content parameter as defined by [DLNA vol 1] for a file resource of unknown
MIME type.

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 47

6.3.2.6 delete method

When the delete method is invoked, the HNIMP SHALL remove the corresponding local CDS container with the
@id property that matches the ObjectID as return value of the getID method of this ContentContainer, if and only if
that container does not contain any other CDS entries. Upon successful removal from the CDS, the method returns
true. If the local CDS container contains other CDS entries, then the HNIMP SHALL take no action and the method
returns false.

6.3.2.7 deleteContents method

When the deleteContents method is invoked, the HNIMP SHALL remove all direct child CDS items from the local
CDS container. Direct child items are identified as those with an @parentID property that matches the return value
of the getID method of this ContentContainer, i.e., the @id property of the CDS container corresponding to this
ContentContainer. The HNIMP SHALL use the deleteEntry method of each direct child CDS item for the removal.

6.3.2.8 deleteEntry method

When the deleteEntry method is invoked, the HNIMP SHALL remove the corresponding local CDS container with
the @id property matching the return value of the getID method of this ContentContainer. If the CDS container with
the same @id contains CDS entries, those entries will also be removed from the CDS recursively using the
deleteEntry method mapping as defined for each entry's corresponding ContentEntry type.

6.3.2.9 getContainerClass method

The getContainerClass method returns a constant that maps to the UPnP class of the container. See the
ContentContainer interface for class constants.

6.3.2.10 removeContentEntry method

When the removeContentEntry method is called on a local ContentContainer and the ContentEntry parameter passed
to this method is contained in the ContentContainer, the HNIMP SHALL perform the following process:

1. When the parameter is a ContentContainer, the HNIMP SHALL remove all of the child ContentEntry
objects of the ContentContainer parameter first by calling this method recursively. After that, the HNIMP
removes the ContentContainer parameter from this ContentContainer object.

2. When the parameter is a RecordingContentItem that contains a upnp:srsRecordTaskID property, the

HNIMP removes the SRS object.recordTask indicated by the property. The HNIMP also removes the
property from the parameter.

3. When the parameter is a RecordingContentItem that contains a upnp:srsRecordScheduleID property and is

not added to any NetRecordingEntry, the HNIMP removes the SRS object.recordSchedule.direct.manual
indicated by the property. The HNIMP also removes the property from the parameter.

4. When the parameter is a RecordingContentItem that contains a upnp:srsRecordScheduleID property and the

RecordingContentItem is added to a NetRecordingEntry, the HNIMP removes ocap:netRecordingEntry
property from the RecordingContentItem. In addition, the HNIMP removes the ObjectID of the parameter
from the ocap:RCIList of the NetRecordingEntry The HNIMP also removes the ObjectID of the parameter
from the ocap:RCIList of the CDS content item corresponding to the NetRecordingEntry. Finally, the
HNIMP also removes the ContentEntry parameter from the corresponding NetRecordingEntry.

5. When the parameter is a NetRecordingEntry that contains a upnp:srsRecordScheduleID and contains no

RecordingContentItemItem objects, the HNIMP removes the SRS object.recordSchedule.direct.manual
object indicated by the property. The HNIMP also removes the property from the parameter.

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

48 CableLabs 05/30/13

6. When the parameter is a NetRecordingEntry that contains a upnp:srsRecordScheduleID and contains one or
more RecordingContentItems, the HNIMP throws IllegalArgumentException.

7. If no exception was thrown, th HNIMP removes the ContentEntry parameter from the ContentContainer.

The CDS entry corresponding to the ContentEntry parameter is also taken from CDS. In addition, the
HNIMP removes the parentID property from the ContentEntry parameter.

When this method is used to remove a CDS container, the HNIMP SHALL recursively remove all child CDS entries
of that container and generate corresponding CDS changed events. Moderated CDS events sent out at
implementation-specific intervals during the removal SHALL have the <stUpdate> element set to "1" for items that
are part of the removal. When the removal is complete, the CDS event containing the last of the events
corresponding to the removal SHALL include an <stDone> element for the subtree root of the removal.

Removal of a CDS content item SHALL have no effect on in-progress streaming session for that content item, i.e.,
any in-progress streaming session for a CDS content item will remain unaffected even after a CDS content item is
removed.

If the removeContentEntry method is called on a remote ContentContainer or the ContentEntry parameter is not
contained in the ContentContainer, the HNIMP SHALL return false.

NOTE (informative): The lifetime of the RecordTask after the recording finishes is compliant with the definition in
[UPNP SRS].

6.3.2.11 removeContentEntries method

The removeContentEntries method causes the same mapping as the removeContentEntry method with the addition
that the mapping SHALL be made for each ContentEntry passed to this method in the parameter array. When this
method is used to remove CDS entries, the HNIMP SHALL remove all of the parameter content entries before
generating corresponding CDS changed events.

6.3.3 ContentEntry Interface

For each ContentEntry, the implementation SHALL add properties required by [DLNA vol 1] to the metadata entries
in the MetadataNode contained in the ContentEntry.

6.3.3.1 deleteEntry method

When the deleteEntry method is invoked, the HNIMP SHALL remove the local CDS entry with the @id property
that matches the return value of the getID method of this ContentEntry.

6.3.3.2 getID method

[UPNP CDS] does not export the file name of a resource. The CDS Object ID SHALL be returned by the getID
method. This is the name of the content entry, and is not the title of a piece of content, but rather an identifier of a
physical piece of content. The HNIMP SHALL set the CDS ObjectID for locally hosted ContentEntrys.

6.3.3.3 getContentSize method

The getContentSize method maps to the [DIDL-L] property res@size, which is referenced in [UPNP CDS]. This
unsigned long value is the size in bytes of the resource. The HNIMP SHALL NOT set the res@size property for
locally hosted ContentEntrys that are not RecordingContentItems unless directed to do so by an application.

The HNIMP SHALL ensure that the res@size property for a locally hosted RecordingContentItem that represents a
recording in progress is set at the conclusion of the recording.

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 49

6.3.3.4 getCreationDate method

The getCreationDate method maps to the [DC] property dc:date if available. The HNIMP SHALL NOT set the
dc:date property for locally hosted ContentEntrys that are not RecordingContentItems unless directed to do so by an
application.

6.3.3.5 getExtendedFileAccessPermissions method

The getExtendedFileAccessPermissions method returns an ExtendedFileAccessPermission that maps to the
ocap:accessPermissions property contained in a CDS entry when available. If that property doesn't exist, the
implementation SHALL return null. The HNIMP SHALL NOT set the ocap:accessPermissions property for locally
hosted ContentEntrys that are not RecordingContentItems unless directed to do so by an application.

6.3.3.6 getLocation method

[UPNP CDS] does not offer file location, so this string can be created using the identifiers of the content and its
parent.

6.3.3.7 getEntryParent method

If the CDS entry for the parent of the ContentEntry is in cache, the HNIMP SHALL map it to a ContentContainer as
defined in Section 6.3.2.3 and returned from this method.

6.3.3.8 getParentID method

The HNIMP SHALL return the res@parentID property of this entry. The HNIMP SHALL set the res@parentID
property for locally hosted ContentEntrys.

6.3.3.9 getContentClass method

The getContentClass method returns a constant that maps to the UPnP class of the content item. See class constants
defined in the ContentItem interface.

6.3.4 ChannelContentItem Interface

A ChannelContentItem represents a channel that is exposed to clients in a ChannelGroup container.
ChannelContentItems are created via the ContentEntryFactory.createChannelContentItem method.

6.3.5 ContentEntryFactory class

6.3.5.1 createChannelContentItem method

When this method is called, the OC-DMS HNIMP SHALL create an instance of the ChannelContentItem interface.
The OC-DMS HNIMP SHALL create a ContentResource object corresponding to each supported protocol (such as
HTTP, RTP).

The OC-DMS HNIMP SHALL set channel content item’s @restricted property to “1”.

The OC-DMS HNIMP SHALL create a MetadataNode in the ChannelContentItem with the following properties:

• upnp:class populated from the channelType argument (required). For compliance with [UPNP CDS], the
upnp:class SHALL be set to “object.item.videoItem.videoBroadcast” when
“object.item.videoItem.videoBroadcast.vod” is provided as the channelType.

• upnp:channelID, populated from channelNumber argument per the requirements of [UPNP CDS] and
[UPNP SRS] (if non-null)

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

50 CableLabs 05/30/13

• upnp:channelID@type, attribute of the upnp:channelID property; the channelID must be of type DIGITAL
or ANALOG (required if there is a channelID property)

• upnp:channelNr, populated from the value of the upnp:channelID property, per the requirements of [UPNP
CDS] (if non-null)

• dc:title: populated from the channelTitle argument (required)

• upnp:channelName populated from the channelName argument (required)

• ocap:appID populated from the application identifier of the application that called this method

• ocap:accessPermissions populated from the permissions parameter

The OC-DMS HNIMP SHALL configure every res property in a channel content item for DTCP-IP as defined in
[HN-SEC].

6.3.6 ContentItem Interface

6.3.6.1 deleteEntry method

When ContentItem.deleteEntry method is invoked, the HNIMP SHALL perform the same steps as identified in the
mapping of ContentEntry.deleteEntry. In addition, the HINMP SHALL remove from storage all binaries represented
by <res> blocks in the CDS item mapping this ContentItem.

6.3.7 ContentResource interface

An HNIMP OC-DMS SHALL include one and only one ContentResource in a ContentItem object for each <res>
element representing non-transformed (non-converted) content. An HNIMP OC-DMS SHALL only expose
transformed representations in content items when specifically enabled via any of the transformation setter methods
in the TransformationManager.

6.3.7.1 getContentLocator method

This method returns a Locator that can be used on the OC-DMP for service selection, in order to initiate streaming.

If the ContentResource is associated with a RecordingContentItem, then the getLocator method returns a Locator
that maps to the required ocap:contentURI property.

If the ContentResource is associated with a ChannelContentItem, then the getLocator method returns a Locator based
on the URI value of the res property.

6.3.7.2 getProtocol method

The getProtocol method returns a String that maps to the protocol contained in the res@protocolInfo property.

6.3.7.3 getNetwork method

The getNetwork method returns a String that maps to the network contained in the res@protocolInfo property.

6.3.7.4 getContentFormat

The getContentFormat method returns a String that maps to the MIME type contained in the res@protocolInfo
property.

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 51

6.3.7.5 get ResourceProperty method

The getResourceProperty method returns properties of the resource. Subinterfaces of ContentResource provide
access to a set of defined properties that are specific to each subinterface. The subinterface is responsible for
identifying the key parameter value to getResourceProperty() for each resource property.

The getResourceProperty method also allows for custom or new properties. The getResourceProperty method
SHALL return a java.lang.String when a property is not mapped to a specific data type and is present in the resource
metadata. Null SHALL be returned if the key parameter does not match any property.

6.3.7.6 getTransformedContentFormats method

For content resources acquired from local content items, the getTransformedContentFormats method SHALL return
an array of available transformed ContentFormat instances. For HTTP Adaptive content, there SHALL be one
element representing each Representation in the MPD. For all other formats, the method SHALL return a single
instance representing the transformed content binary format.

NOTE: For HTTP Adaptive content, there may be multiple ContentFormat instances per AdaptationSet that have
the same content protection parameters.

6.3.8 IOStatus interface

6.3.8.1 isInUse method

This method SHALL consider an asset to be in use if there is an active network transport protocol session to the URI
associated with the <res> block represented by the ContentResource object, and that URI is hosted by the local
OCAP device. An "active network transport protocol session" SHALL be considered to be an active HTTP or RTSP
session, or a currently valid UPnP AV Connection as identified by a BCM or ConnectionManager ConnectionID.

6.3.9 MetadataNode class

A MetadataNode has a collection of metadata entries, each of which is a key/value pair where the key and value map
to the name and value, respectively, of a CDS property. CDS properties and their names and values are described in
[UPNP CDS] section 2.2.20. The rest of this section defines the mapping from keys and values to CDS property
names and values.

The key parameter for various methods in the MetadataNode class can include the OCAP application default name
space (i.e., "ocapApp"), a vendor-defined name space, a standardized name space (Section 5.5.2), (e.g., "dc",
"upnp", "ocap"), or no name space, which implies the OCAP application default namespace (i.e., "ocapApp"). As
specified in Section 5.5.2, the HNIMP uses "ocap" namespace for properties defined in Annex C.

NOTE (informative): DIDL-Lite is the default namespace in DLNA, so no prefix is required for DIDL-Lite defined
properties in DLNA. See guideline 7.3.25.2 of [DLNA vol 1]. However, for MetadataNode objects, "ocapApp" is
the default namespace, so applications need to explicitly specify "didl-lite" as the namespace prefix when dealing
with DIDL-Lite properties in a MetadataNode.

A key maps to a CDS property name in the following manner:

1. If the MetadataNode does not have a parent MetadataNode, the CDS property name is the key.

2. If the MetadataNode has a parent MetadataNode, the CDS property name is the CDS property name to

which the key of the MetadataNode with respect to its parent MetadataNode maps, followed by “::”,
followed by the key.

NOTE (informative): For example, in an unparented MetadataNode, suppose the key in a key/value pair is
“upnp:foreignMetadata” and the value is a reference to another MetadataNode. Then within the first MetadataNode

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

52 CableLabs 05/30/13

the key “upnp:foreignMetadata” maps to the CDS property name “upnp:foreignMetadata”, and within the second
MetadataNode the key “fmBody” maps to the CDS property name “upnp:foreignMetadata::fmBody”.

NOTE (informative): A CDS property is dependent or independent, depending on whether or not, respectively, its
name contains an “@” symbol. A dependent CDS property is associated with either zero or one independent CDS
property.

A value maps to a CDS property value in the following manner:

[1] If the key in a key/value pair maps to the name of an independent CDS property:

[1.1] If the value is a reference to a nonarray object, then the CDS property is single-valued, and the value
of its single occurrence is determined as follows:

[1.1.1] If the value is a reference to an instance of java.lang.String, the CDS property value is the
string value.

[1.1.2] If the value is a reference to an instance of java.lang.Integer and the key is not
ocap:scheduledDuration, the CDS property value is the integer value as computed by the
java.lang.Integer.toString() method. If the value is a reference to an instance of
java.lang.Integer and the key is ocap:scheduledDuration, the CDS property value is as defined
in Section C.1.1.3.

[1.1.3] If the value is a reference to an instance of java.lang.Long, the CDS property value is the long
value as computed by the java.lang.Long.toString() method.

[1.1.4] If the value is a reference to an instance of java.lang.Boolean, the CDS property value is the
Boolean value as computed by the java.lang.Boolean.toString() method.

[1.1.5] If the value is a reference to an instance of java.util.Date, the CDS property value is the
date/time value in the "yyyy-mm-ddThh:mm:ss" format defined by [ISO 8601].

[1.1.6] If the value is a reference to a fully serializable instance of another class, the CDS property
value is as defined in Section 6.3.9.1.1.

[1.1.7] If the value is a reference to an instance of a class that extends MetadataNode, the CDS
property value is as defined in Section 6.3.9.1.1.

[1.1.8] If the value is a reference to an instance of org.dvb.application.AppID, the CDS property value
is as defined in Section C.1.1.10.

[1.1.9] If the value is a reference to an instance of org.ocap.storage.ExtendedFileAccessPermissions,
the CDS property value is as defined in Section C.1.1.8.

[1.2] If the value is a reference to an array object, then the CDS property is multi-valued, and the values of
its multiple occurrences are determined by the values of the elements of the array object, in order of
increasing subscript I, as follows:

[1.2.1] If the ith value is null, the ith CDS property value is the empty string.

[1.2.2] If the ith value is not null, the ith CDS property value is as defined in clause [1.1].

[2] If the key in a key/value pair maps to the name of a dependent CDS property that is associated with an
independent CDS property:

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 53

[2.1] If the value is a reference to a java.lang.String object, then the associated independent CDS property is
single-valued, the dependent CDS property occurs within the independent CDS property, and its value
is the string value.

[2.2] If the value is a reference to a java.lang.String[] object, then the associated independent CDS property
is multi-valued, and the nature of the dependent CDS property within the multiple occurrences of the
independent CDS property is determined by the values of the elements of the java.lang.String[] object,
in order of increasing subscript i, as follows:

[2.2.1] If the ith value is null, the ith dependent CDS property does not occur.

[2.2.2] If the ith value is not null, the ith dependent CDS property occurs, and its value is the string
value.

[3] If the key in a key/value pair maps to the name of a dependent CDS property that is not associated with an
independent CDS property, the CDS property value is the string value.

Immediately before and immediately after invocation of each public MetadataNode method, the following invariant
SHALL hold: for each key/value pair kd/vd where the key maps to the name of a dependent CDS property with an
associated independent CDS property, there shall be a key/value pair ki/vi where the key maps to the name of the
associated independent CDS property, and exactly one of the following statements SHALL be true:

• vd is a reference to a java.lang.String object and vi is a reference to a nonarray object.

• vd is a reference to a java.lang.String[] object and vi is a reference to an array object of the same (nonzero)
length.

NOTE (informative): For example, if an addMetadata method is called to associate a single URI with the key
“upnp:author@role”, then a single value must thereby be associated with the key “upnp:author” as well; but if an
addMetadata method is called to associate an array of two URIs with the key “upnp:author@role”, then an array of
two values must thereby be associated with the key “upnp:author” as well.

When the MetadataNode has an associated CDS content entry, the HNIMP SHALL maintain an association of that
CDS content entry’s properties to MetadataNode fields in an implementation-specific fashion for the lifetime of the
MetadataNode object.

6.3.9.1 addMetadata method

The format of the key argument is expected to be in the format defined in [UPNP CDS] section 2.2.20, with the
exception that child (nested) properties are identified by their simple names, not their fully qualified names.

When one of these method is called, the HNIMP SHALL adhere to the following steps in order:

1. Determine the namespace of the property to be added, modified, or deleted. See Section 6.3.9 for more
details. If the namespace is not "ocapApp" or has not been added by a prior call to the addNameSpace
method and is consequently unknown, this method throws an IllegalArgumentException.

2. Determine permissions of the calling application to write the property. Compare the key argument to

existing property names in the pre-determined namespace, and if found, verify the calling application has
permission to write to the property based on the permissions of the property. If the calling application does
not have permission, throw the appropriate exception; see the method description in the[OCAP-HN]
specification.

3. Process a property addition, modification, or deletion as follows:

[3.1] If the value argument is neither null nor a reference to a zero-length array object and the key argument
was not found in the property namespace, then add a new metadata entry to the MetadataNode and a
new property to the associated CDS content entry (if there is one) using the key and value arguments.

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

54 CableLabs 05/30/13

[3.2] If the value argument is neither null nor a reference to a zero-length array object and the key argument
was found in the property namespace, then change the corresponding metadata entry value and the
corresponding property value (if there is one) using the value argument.

[3.3] If the value argument is null or a reference to a zero-length array object, then delete the corresponding
metadata entry value (if there is one) and the corresponding property value (if there is one).

4. Establish the invariant of Section 6.3.9 as follows:

[4.1] If the key argument maps to the name of an independent CDS property with associated dependent
CDS properties:

[4.1.1] If the property change was an addition, do nothing.

[4.1.2] If the property change was a modification from a reference to object A to a reference to object
B, do the appropriate one of the following for each associated dependent CDS property p:

[4.1.2.1] If A and B are both nonarray objects, do nothing.

[4.1.2.2] If A and B are both array objects of the same length, do nothing.

[4.1.2.3] If A is a nonarray object and B is an array object of length n, process a property
modification for p that changes its String value v to the String[] value w, computed as
if by the statement (w = new String[n])[0] = v;. (NOTE (informative): In other words,
convert its value to an array by extending it "on the right" with nulls.)

[4.1.2.4] If A is an array object and B is a nonarray object, compute the String value v from p's
String[] value w as if by the statement v = w[0];; then, if v is null, process a property
deletion for p, otherwise process a property modification for p that changes its value
to v. (NOTE (informative): In other words, truncate its value "on the right".)

[4.1.2.5] If A and B are both array objects and the length of A is less than the length of B,
process a property modification for p that null-extends its String[] value to the length
of B.

[4.1.2.6] If A and B are both array objects and the length of A is greater than the length of B,
process a property modification for p that truncates its String[] value to the length of
B.

[4.1.3] If the property change was a deletion, process property deletions for all associated dependent
CDS properties.

[4.2] If the key argument maps to the name of a dependent CDS property associated with an independent
CDS property p:

[4.2.1] If the property change was an addition of a reference to object B, do the appropriate one of the
following for p:

[4.2.1.1] If there is not yet a key/value pair where the key maps to the name of p, process a
property addition for p that adds its value defined as follows:

[4.2.1.1.1] If B is a String object, the value is the empty string.

[4.2.1.1.2] If B is a String[] object of length n, the value is the String[] value w,
computed as if by the statement (w = new String[n])[0] =

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 55

"";. (NOTE (informative): In other words, it gets an array value that is
an empty string extended "on the right" with nulls.)

[4.2.1.2] If there is already a key/value pair where the key maps to the name of p and the value
is a reference to object A, do the appropriate one of the following for p:

[4.2.1.2.1] If A and B are both nonarray objects, do nothing.

[4.2.1.2.2] If A and B are both array objects of the same length, do nothing.

[4.2.1.2.3] If A is a nonarray object and B is a String[] object of length n, process a
property modification for p that changes its T value v to the T[] value w,
computed as if by the statement (w = new T[n])[0] = v;. (NOTE
(informative): In other words, convert its value to an array by extending it
"on the right" with nulls.) Propagate the property change for p to other
dependent CDS properties, as described in clause [4.1.2.3].

[4.2.1.2.4] If A is an array object and B is a String object, compute the T value v
from p's T[] value w as if by the statement v = w[0];; then, if v is null,
process a property deletion for p, otherwise process a property
modification for p that changes its value to v. (NOTE (informative): In
other words, truncate its value "on the right".) Propagate the property
change for p to other dependent CDS properties, as described in clause
[4.1.3] or [4.1.2.4], respectively.

[4.2.1.2.5] If A and B are both array objects and the length of A is less than the length
of B, process a property modification for p that null-extends its T[] value
to the length of B. Propagate the property change for p to other dependent
CDS properties, as described in clause [4.1.2.5].

[4.2.1.2.6] If A and B are both array objects and the length of A is greater than the
length of B, process a property modification for p that truncates its T[]
value to the length of B. Propagate the property change for p to other
dependent CDS properties, as described in clause [4.1.2.6].

[4.2.2] If the property change was a modification from a reference to object A to a reference to object
B, do the appropriate one of the following for p:

[4.2.2.1] If A and B are both String objects, do nothing.

[4.2.2.2] If A and B are both String[] objects of the same length, do nothing.

[4.2.2.3] If A is a String object and B is a String[] object of length n, process a property
modification for p that changes its T value v to the T[] value w, computed as if by the
statement (w = new T[n])[0] = v;. (NOTE (informative): In other words,
convert its value to an array by extending it "on the right" with nulls.) Propagate the
property change for p to other dependent CDS properties, as described in clause
[4.1.2.3].

[4.2.2.4] If A is a String[] object and B is a String object, compute the T value v from p's T[]
value w as if by the statement v = w[0];; then, if v is null, process a property
deletion for p, otherwise process a property modification for p that changes its value
to v. (NOTE (informative): In other words, truncate its value "on the right".)

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

56 CableLabs 05/30/13

Propagate the property change for p to other dependent CDS properties, as described
in clause [4.1.3] or [4.1.2.4], respectively.

[4.2.2.5] If A and B are both String[] objects and the length of A is less than the length of B,
process a property modification for p that null-extends its T[] value to the length of B.
Propagate the property change for p to other dependent CDS properties, as described
in clause [4.1.2.5].

[4.2.2.6] If A and B are both String[] objects and the length of A is greater than the length of
B, process a property modification for p that truncates its T[] value to the length of B.
Propagate the property change for p to other dependent CDS properties, as described
in clause [4.1.2.6].

[4.2.3] If the property change was a deletion, do nothing.

Example:
public class Example
{
 private static final String[] res =
 {
 "http://168.192.1.1/audio197.mp3",
 "http://10.0.0.1/contentdir?id=10"
 };

 private static final String[] resProtocolInfo =
 {
 "http-get:*:audio/mpeg:*",
 "http:*:audio/mp3:*"
 };

 private static final String[] resSize =
 {
 "3558000",
 null
 };

 public static void main(String[] args)
 {
 MetadataNode mn = MetadataNode.createMetadataNode();

 mn.addMetadata("didl-lite:res", res);
 mn.addMetadata("didl-lite:res@protocolInfo", resProtocolInfo);
 mn.addMetadata("didl-lite:res@size", resSize);
 mn.addMetadata("upnp:channelID", "");
 mn.addMetadata("upnp:channelID@type", "SI");

 /*
 XML equivalent:

 <res protocolInfo="http-get:*:audio/mpeg:*" size="3558000">
 http://168.192.1.1/audio197.mp3
 </res>
 <res protocolInfo="http:*:audio/mp3:*">
 http://10.0.0.1/contentdir?id=10
 </res>
 <upnp:channelID type="SI"/>
 */
 }
}

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 57

6.3.9.1.1 Adding Metadata to CDS

Application metadata items are added to a CDS entry using the desc and desc@nameSpace properties as defined in
[UPNP CDS]. In order to allow multiple vendor properties to be embedded within a single <desc> property, an OC-
DMS HNIMP SHALL validate <desc> properties with the maxOccurs attribute equal to "unbounded". When a
<desc> property is created based on a call to this method, the HNIMP SHALL create a <desc> property and add it to
the content item as follows:

If the key parameter contains a name space term and it isn't "ocapApp" or one of the standardized namespaces,
the HNIMP SHALL create the name space using the name space term from the key parameter and the URI from
the URI parameter. Below is an example of the <desc> element where an application is adding the first property
to the "myNameSpace" name space:

<desc xmlns:myNameSpace="[URI passed to the addNameSpace method]"
nameSpace="[URI passed to the addNameSpace method]" >

If the key parameter includes a name space term that is "ocapApp" or does not include a name space term, the
HNIMP SHALL create a name space using the format "urn:schemas-opencable-com". Below is an example of
the <desc> element where an application is adding a value without a name space term, or the name space term is
"ocapApp" in the key parameter, and consequently the OCAP application default name space is used:

<desc xmlns:ocapApp="urn:schemas-opencable-com:ocap-application"
nameSpace="urn:schemas-opencable-com:ocap-application">

Metadata values with the same name space SHALL be placed in the same <desc> block. The HNIMP SHALL create
an element (property) with a name matching the key parameter, not including any name space term, and a value
matching the value parameter and encoded as described below, and add it to the <desc> block created for the name
space. The value can be an empty string.

When the value parameter is of type java.lang.String, the HNIMP SHALL NOT serialize the object and instead
SHALL encode the String value as defined by section 2.4 of [XML] and section 7.2.5.9 of [DLNA vol 1]. An
HNIMP SHALL serialize a java.lang.String object if it is contained in a serializable object.

When the HNIMP serializes an object as described by the javadoc for this method in [OCAP-HN], the HNIMP
SHALL encode the object in the DIDL-Lite document using Base64 as defined in [RFC 2045]. In addition, the
HNIMP SHALL add the ocapSerializedObject attribute to the element tag corresponding to the object being
serialized and set the value to "1". For example:
<desc id="descriptorX" xmlns:myNameSpace="urn:schemas-opencable-com:<vendor
added name space>" nameSpace="urn:schemas-opencable-com:<vendor added name
space>">
 <myNamespace:objectX ocapSerializedObject="1">
 <...objectX Base64 encoding...>
 </myNamespace:objectX>
</desc>

The HNIMP SHALL create an XML document that matches metadata nesting when responding to UPnP actions. For
instance, if a MetadataNode contains a property with the key "Band-Members" and that property contains another
MetadataNode that contains a property with the key "Guitar-Player", then the element for "Band-Members" would
contain a "Guitar-Player" element.

6.3.9.1.2 MetadataNode Transmission

When a MetadataNode is transmitted on a home network, it is conveyed in a DIDL-Lite document compliant with
[UPNP CDS]. An HNIMP SHALL set the id attribute of a <desc> element to an implementation-specific value. The

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

58 CableLabs 05/30/13

following example demonstrates a metadata document containing fields as described above with the OCAP
application default name space:
<DIDL-Lite
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/"
 xmlns:upnp="urn:schemas-upnp-org:metadata-1-0/upnp/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/
 http://www.upnp.org/schemas/av/didl-lite-v2-20060531.xsd
 urn:schemas-upnp-org:metadata-1-0/upnp/
 http://www.upnp.org/schemas/av/upnp-v2-20060531.xsd">
 <item id="18" parentID="13" restricted="0">
 <dc:title>Try a little tenderness</dc:title>
 <upnp:class>object.item.audioItem.musicTrack</upnp:class>
 <res protocolInfo="http-get:*:audio/mpeg:*" size="3558000">
 http://168.192.1.1/audio197.mp3
 </res>
 <desc id="descriptorX" xmlns:ocapApp="urn:schemas-opencable-com:ocap-
application" nameSpace="urn:schemas-opencable-com:ocap-application">
 <ocapApp:Band-Members>
 <ocapApp:Guitar-Player>John Smith</ocapApp:Guitar-Player>
 </ocapApp:Band-Members>
 </desc>
 </item>
</DIDL-Lite>

6.3.9.2 getMetadata method

The format of the key argument is expected to be in the format defined in [UPNP CDS] section 2.2.20, with the
exception that “::” is replaced by “#”. For example, when passed the value "dc:title", the method will return the title
in the Dublin Core namespace if the property is present.

For each property defined by UPNP, DLNA, [OCAP-HN], or this specification, the HNIMP SHALL return the
property values from the getMetadata method as a java.lang.String object if the property is defined as single-valued
and a java.lang.String[] object if the property is defined as multi-valued, unless specified otherwise by this
specification or property constants that begin with "PROP_" defined in [OCAP-HN] Annex F.

For each vendor-defined property contained within a desc block with a desc@nameSpace value of "ocapApp", the
HNIMP SHALL return the property values from the getMetadata method as a java.lang.String object.

For each vendor-defined property contained within a desc block with the attribute ocapSerializedObject set to "1",
the HNIMP SHALL attempt to deserialize the contained data using both the system and application class loaders.
Implementations SHALL NOT attempt to deserialize contained data until an application requests such data using this
method. Failure to deserialize such data SHALL result in a ClassDefNotFound exception thrown by this method.

6.3.9.3 addNameSpace method

When this method is called, the HNIMP SHALL adhere to the follow steps in order:

1. Evaluate the namespace and URI parameters for [UPNP CDS] compliance with a name space in a CDS
content item. If either of the parameters is invalid, this method SHALL do nothing and return successfully.

2. Compare the namespace parameter to "ocapApp", and if it matches, this method SHALL do nothing and

return successfully.

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 59

3. Compare the namespace parameter to the name spaces already added to the MetadataNode via this method.
If a match is found, this method SHALL do nothing and return successfully.

4. Compare the URI parameter to the URI terms already added to the MetadataNode via this method and to

URI parameters that have been passed to this method and retained but not yet added to the CDS content
item. If a match is found, this method SHALL do nothing and return successfully.

5. Retain the namespace and URI parameter values for use with calls to the addMetadata method. Retention of

these values is not persistent across HNIMP reboot.

6.3.9.4 createMetadataNode method

The HNIMP SHALL NOT use the key argument to the one-parameter form of this method.

6.3.9.5 getExtendedFileAccessPermissions method

The format of the key argument is expected to be in the format defined in [UPNP CDS] section 2.2.20, with the
exception that “::” is replaced by “#”.

6.3.9.6 getKey Method

When this method is called, the HNIMP SHALL return the value of the key parameter that can be utilized to retrieve
this MetadataNode from this node's parent. The HNIMP SHALL include the namespace prefix in the value returned.
DIDL-Lite is the default namespace in DLNA, so no prefix is required for DIDL-Lite defined properties in DLNA.
Thus, for MetadataNode created from DLNA defined DIDL-Lite properties without a prefix, the HNIMP SHALL
include “didl-lite” namespace prefix in the value returned.

6.3.9.7 getKeys Method

When this method is called, the HNIMP SHALL return values of key parameters for all metadata contained within
this MetadataNode. The HNIMP SHALL include the namespace prefix in the values returned. For MetadataNode
created from DLNA defined DIDL-Lite properties without a prefix, the HNIMP SHALL include “didl-lite”
namespace prefix in values returned.

NOTE: Based on the requirements in Section 6.3.9, the HNIMP is required to explicitly specify namespace prefix
when returning values for key parameters in getKey and getKeys methods.

6.3.10 VideoResource Interface

6.3.10.1 getColorDepth method

The getColorDepth method maps to the [DIDL-L] property res@colorDepth, which is referenced in [UPNP CDS].
This unsigned integer value is the encoding characteristic of the resource.

To obtain the color depth value using org.ocap.hn.content.ContentResource.getResourceProperty(String key), the
key parameter value SHALL be “res@colorDepth”. ContentResource.getResourceProperty(String key) SHALL
return a java.lang.Integer wrapping the same unsigned integer value returned by the VideoResource.getColorDepth()
method. If the color depth is unknown, then a java.lang.Integer representing a value of -1 SHALL be returned.

6.3.10.2 getResolution method

The getResolution method maps to the [DIDL-L] property res@resolution, which is referenced in [UPNP CDS].
This pattern string identifies the XxY resolution of the resource in pixels (typically an image item or video item).
String pattern is of the form: [0-9] + x[0-9] + (one or more digits, 'x', followed by one or more digits).

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

60 CableLabs 05/30/13

To obtain the resolution value using org.ocap.hn.content.ContentResource.getResourceProperty(String key), the key
parameter value SHALL be “res@resolution”. ContentResource.getResourceProperty(String key) SHALL return a
java.awt.Dimension matching the value returned by the VideoResource.getResolution() method. If the resolution is
unknown, then null SHALL be returned.

6.3.11 StreamingActivityListener interface

6.3.11.1 notifyStreamingStarted method

When content streaming begins and the ContentItem corresponding to the content binary being streamed is of a type
the application registered for when it called the ContentServerNetModule.addStreamingActivityListener method, an
OC-DMS HNIMP SHALL call this method. Content streaming start is identified by an OC-DMS HNIMP when it is
preparing to send or has sent the first transmission containing some or all of the requested content binary for an
activity. An OC-DMS HNIMP MAY call this method in preparation of sending the transmission or concurrently with
transmission commencement.

6.3.11.2 notifyStreamingChanged method

When the notifyStreamingStarted method was called for an activity and content streaming changes for that activity,
the OC-DMS HNIMP SHALL call this method. Content streaming change is identified by the OC-DMS HNIMP
when a different content binary URI is requested without ending the activity, e.g., play list streaming, or the
CDS:X_DLNA_SelectChannel action is used to request a different channel ID from a virtualTuner.

6.3.11.3 notifyStreamingEnded method

When the notifyStreamingStarted method was called for an activity and content streaming ends for that activity, the
OC-DMS HNIMP SHALL call this method. Content streaming end is identified by the OC-DMS HNIMP when the
receiving device terminates the activity successfully using a transport protocol message, e.g., RTSP TEARDOWN,
UPnP action, e.g., CM:ConnectionComplete, or times out when the server is waiting for a request for additional
content. The timeout is OC-DMS HNIMP specific and is typically based on the transport protocol. Content
streaming end is also identified by the OC-DMS HNIMP when a failure occurs that prevents further transmission of
the content binary. For example, the consumer loses entitlement to view the content while streaming is in progress.
The success and failure types are defined in the Java source for the StreamingActivityListener interface.

6.3.12 StreamableContentResource interface

6.3.12.1 getBitRate method

The getBitRate method maps to the [DIDL-L] property res@bitrate, which is referenced in [UPNP CDS].

To obtain the bit rate using org.ocap.hn.content.ContentResource.getResourceProperty(String key), the key
parameter value SHALL be “res@bitrate”. ContentResource.getResourceProperty(String key) SHALL return a
java.lang.Long wrapping the same long value returned by the StreamableContentResource.getBitRate() method. If
the bit rate is unknown, then a java.lang.Long representing a value of -1 SHALL be returned.

6.3.12.2 getDuration method

The getDuration method maps to the [DIDL-L] property res@duration, which is referenced in [UPNP CDS]. The
HNIMP SHALL NOT set the res@duration property for locally hosted ContentEntrys that are not
RecordingContentItems unless directed to do so by an application.

The HNIMP SHALL ensure that the res@duration property for a locally hosted RecordingContentItem that
represents a recording in progress is set at the conclusion of the recording.

To obtain the duration using org.ocap.hn.content.ContentResource.getResourceProperty(String key), the key
parameter value SHALL be “res@duration”. ContentResource.getResourceProperty(String key) SHALL return the

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 61

same javax.media.Time returned by the StreamableContentResource.getDuration() method. If the duration is
unknown, null SHALL be returned.

6.3.13 ContentFormat Interface

This interface represents content metadata in the same format as fields in the <res> element protocolInfo parameter.

6.3.13.1 getContentProfile method

This method returns a DLNA media format profile identifier, or a vendor-specific media format profile identifier.
When the ContentFormat is associated with a CDS content item <res> element with the DLNA.ORG_PN parameter
set in the protocolInfo property, this method SHALL return the string value of that parameter, e.g.,
“AVC_TS_MP_HD_AC3_ISO”, “DASH_MPD”

6.3.13.2 getProtectionType method

This method returns the content protection portion of DLNA profile identifier when content protection is being used.
When the ContentFormat is associated with a CDS content item <res> element with the DLNA.ORG_PN parameter
set in the protocolInfo property and the parameter includes a content protection prefix indicating link protection
support, e.g., “DTCP”, this method returns that prefix.

6.3.14 OutputVideoContentFormat Interface

This interface provides additional parameters for transforming video content.

6.3.14.1 getVerticalResolution method

This method communicates the maximum vertical resolution of the transformed content.

6.3.14.2 getHorizontalResolution method

This method communicates the maximum horizontal resolution of the transformed content.

6.3.14.3 getBitRate method

This method communicates the target bitrate of the transformed content.

6.3.14.4 isProgressive method

This method indicates if the transformed content will be interlaced or progressive.

6.4 Package Org.ocap.hn.content.navigation

6.4.1 ContentDatabaseFilter class

No UPnP mapping is defined for the ContentDatabaseFilter class.

6.4.2 ContentList class

No UPnP mapping is defined for the ContentList class.

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

62 CableLabs 05/30/13

6.4.3 DatabaseQuery class

No UPnP mapping is defined for the DatabaseQuery class.

6.4.4 DeviceFilter class

No UPnP mapping is defined for the DeviceFilter class.

6.5 Package org.ocap.hn.profile.upnp

6.5.1 UPnPConstants interface

6.5.1.1 actor field

The actor field maps to the UPnP property upnp:actor, which is defined in the UPnP Content Directory Service
[UPNP CDS]. This string value is the name of an actor appearing in a video item.

6.5.1.2 actor_at_role field

The actor_at_role field maps to the UPnP property actor@role, which is defined in the UPnP Content Directory
Service. This string value is the role of the actor in the video item.

6.5.1.3 album field

The album field maps to the UPnP property upnp:album, which is defined in the UPnP Content Directory Service.
This string value is the title of the album to which the item belongs.

6.5.1.4 album_art field

The album_art field maps to the UPnP property upnp:albumArtURI, which is defined in the UPnP Content Directory
Service. This URI value is a reference to album art. Values SHALL be properly escaped URIs, as described in [RFC
3986].

6.5.1.5 artist field

The artist field maps to the UPnP property upnp:artist, which is defined in the UPnP Content Directory Service. This
string value is the name of the artist.

6.5.1.6 artist_at_role field

The artist_at_role field maps to the UPnP property upnp:artist@role, which is defined in the UPnP Content
Directory Service. This string value is the role of an artist in a work.

6.5.1.7 artist_discography field

The artist_discography field maps to the UPnP property upnp:artistDiscographyURI, which is defined in the UPnP
Content Directory Service. This URI value is a reference to the artist's discography. Values SHALL be properly
escaped URIs, as described in [RFC 3986].

6.5.1.8 author field

The author field maps to the UPnP property upnp:author, which is defined in the UPnP Content Directory Service.
This string value is the name of an author of a text item.

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 63

6.5.1.9 author_at_role field

The author_at_role field maps to the UPnP property upnp:author@role, which is defined in the UPnP Content
Directory Service. This string value is the role of an author in the work, such as lyrics.

6.5.1.10 channel_name field

The channel_name field maps to the UPnP property upnp:channelName, which is defined in the UPnP Content
Directory Service. This string value is used for identification of channels themselves, or information associated with
a piece of recorded content.

6.5.1.11 channel_number field

The channel_number field maps to the UPnP property upnp:channelNr, which is defined in the UPnP Content
Directory Service. This integer value is used for identification of tuner channels themselves, or information
associated with a piece of recorded content.

6.5.1.12 comments field

The comments field maps to the UPnP property upnp:userAnnotation, which is defined in the UPnP Content
Directory Service. This string value is a general-purpose tag where a user can annotate an object with some user-
specific information.

6.5.1.13 contributor field

The contributor field maps to the Dublin Core [DC] property dc:contributor, which is referenced in the UPnP
Content Directory Service. It is recommended in the UPnP Content Directory Service specification that the
contributor property include the name of the primary content creator or owner (Dublin Core 'creator' property).

6.5.1.14 creation_date field

The creation_date field maps to the Dublin Core property dc:date, which is referenced in the UPnP Content
Directory Service. This string identifies the creation date of a piece of content.

6.5.1.15 creator field

The creator field maps to the Dublin Core property dc:creator, which is referenced in the UPnP Content Directory
Service. The value of this string is the primary content creator or owner of the object.

6.5.1.16 description field

The description field maps to the Dublin Core property dc:description, which is referenced in the UPnP Content
Directory Service. This string contains a brief description of the content item.

6.5.1.17 director field

The director field maps to the UPnP property upnp:director, which is defined in the UPnP Content Directory Service.
This string identifies the name of the director of the video content item.

6.5.1.18 dvd_region_code field

The dvd_region_code field maps to the UPnP property upnp:DVDRegionCode, which is defined in the UPnP
Content Directory Service. The value of this integer is the region code of the DVD.

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

64 CableLabs 05/30/13

6.5.1.19 genre field

The genre field maps to the UPnP property upnp:genre, which is defined in [UPNP CDS]. This string identifies the
name of the genre to which an object belongs.

6.5.1.20 id field

The id field maps to the DIDL-Lite property didl-lite:(object)@id, which is referenced in the UPnP Content
Directory Service. This string contains an identifier for the object. The value of each object ID property SHALL be
unique with respect to the UPnP Content Directory and the server hosting this content.

6.5.1.21 language field

The language field maps to the Dublin Core property dc:language, which is referenced in the UPnP Content
Directory Service. This string identifies the language as defined by [RFC 3066].

6.5.1.22 long_description field

The long_description field maps to the UPnP property upnp:longDescription, which is defined in the UPnP Content
Directory Service. This string contains a few lines of description of the content item, and is longer than the Dublin
Core description field.

6.5.1.23 lyrics_ref field

The lyrics_ref field maps to the UPnP property upnp:lyricsURI, which is defined in the UPnP Content Directory
Service. This URI refers to the lyrics of the song, or the whole album. Values SHALL be properly escaped URIs, as
described in [RFC 3986].

6.5.1.24 media_id field

The media_id field maps to the UPnP property upnp:toc, which is defined in the UPnP Content Directory Service.
The value of this string is the identifier of an audio CD.

6.5.1.25 playlist field

The playlist field maps to the UPnP property upnp:playlist, which is defined in the UPnP Content Directory Service.
The value of this string is the name of the playlist to which the item belongs.

6.5.1.26 producer field

The producer field maps to the UPnP property upnp:producer, which is defined in the UPnP Content Directory
Service. The value of this string is the name of the producer, such as the producer of a video or of a CD.

6.5.1.27 publisher field

The publisher field maps to the Dublin Core property dc:publisher, which is referenced in the UPnP Content
Directory Service. This string identifies the publisher of the content.

6.5.1.28 radio_band field

The radio_band field maps to the UPnP property upnp:radioBand, which is defined in the UPnP Content Directory
Service. The value of this string is the radio station frequency band. Recommended values are "AM", "FM",
"Shortwave", "Internet", or "Satellite".

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 65

6.5.1.29 radio_call_sign field

The radio_call_sign field maps to the UPnP property upnp:radioCallSign, which is defined in the UPnP Content
Directory Service. The value of this string is a radio station call sign, such as "KIFM".

6.5.1.30 radio_station_id field

The radio_station_id field maps to the UPnP property upnp:radioStationID, which is defined in the UPnP Content
Directory Service. The value of this string is some identification of the broadcast frequency of the radio station, such
as "107.7".

6.5.1.31 rating field

The rating field maps to the UPnP property upnp:rating, which is defined in the UPnP Content Directory Service.
The value of this string is the rating of the object's resource, for "parental control" filtering purposes, such as "R",
"PG-13", and "X".

6.5.1.32 region field

The region field maps to the UPnP property upnp:region, which is defined in the UPnP Content Directory Service.
The value of this string is some identification of the region associated with the source of the object, such as "U.S.",
"Latin America", or "Seattle".

6.5.1.33 relation field

The relation field maps to the Dublin Core property dc:relation, which is referenced in the UPnP Content Directory
Service. This URI property is a reference to related resources. Values SHALL be properly escaped URIs as
described in [RFC 3986].

6.5.1.34 rights field

The rights field maps to the Dublin Core property dc:rights, which is referenced in the UPnP Content Directory
Service. The value of this string is information about rights held in and over the resource.

6.5.1.35 scheduled_end_time field

The scheduled_end_time field maps to the UPnP property upnp:scheduledEndTime, which is defined in the UPnP
Content Directory Service. The value of this string is date and time, in the "yyyy-mm-ddThh:mm:ss" format defined
by [ISO 8601], used to indicate the end time of a scheduled program, indented for use by timers.

6.5.1.36 scheduled_start_time field

The scheduled_start_time field maps to the UPnP property upnp:scheduledStartTime, which is defined in the UPnP
Content Directory Service. The value of this string is date and time, in the "yyyy-mm-ddThh:mm:ss" format defined
by [ISO 8601], used to indicate the start time of a scheduled program, indented for use by timers.

6.5.1.37 storage_medium field

The storage_medium field maps to the UPnP property upnp:storageMedium, which is defined in the UPnP Content
Directory Service. The value of this string indicates the type of storage medium used for the content.

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

66 CableLabs 05/30/13

6.5.1.38 title field

The title field maps to the Dublin Core property dc:title, which is referenced in the UPnP Content Directory Service.
The value of this string is the name of the object, such as the title of a song, recording, photograph, or book.

6.5.1.39 track field

The track field maps to the UPnP property upnp:originalTrackNumber, which is defined in the UPnP Content
Directory Service. This integer value indicates the original track number on an audio CD or other medium.

6.6 Package org.ocap.hn.security

6.6.1 NetAuthorizationHandler interface

6.6.1.1 notifyActivityStart method

When the NetAuthorizationHandler was registered using the one argument
NetSecurityManager.setAuthorizationHandler method, or if it was registered with the three-argument
setAuthorizationHandler method and the notifyTransportRequests parameter was set to true, then the OC-DMS
HNIMP SHALL call the notifyActivityStart method for every HTTP and RTSP message received for an activity that
is accessing MSO content from the OC-DMS HNIMP. MSO content identification is defined in [HN-SEC].

When the NetAuthorizationHandler was registered using the three-argument setAuthorizationHandler method and
the notifyTransportRequests parameter was set to false, then the OC-DMS HNIMP SHALL call the
notifyActivityStart method for the first HTTP or RTSP message for an activity that is accessing MSO content from
the OC-DMS HNIMP. Identification of the first message in an activity is defined in [HN-SEC].

If the message protocol is HTTP and an scid.dlna.org header is present in the request, the OC-DMS HNIMP SHALL
set the activityID parameter to the ConnectionID value of the scid.dlna.org header. If the message protocol is RTP
and an RTSP session-id header is present in the RTSP SETUP request, the OC-DMS HNIMP SHALL set the
activityID parameter to the ConnectionID value of the session-id header. If no ConnectionID value is present in the
HTTP or RTSP request, then the OC-DMS HNIMP SHALL generate a ConnectionID per the requirements of BCM
(see Section 5.5) and set the activityID parameter to the ConnectionID value; if the NetAuthorizationHandler permits
the operation, the OC-DMS HNIMP SHALL report the generated ConnectionID value in the HTTP or RTSP
response.

When the notifyActivityStart method is called, the OC-DMS HNIMP SHALL NOT process the request until this
method returns. If the request is denied, the OC-DMS HNIMP SHALL fail the request and return an error code 401
Not Authorized. If the request is granted, the OC-DMS HNIMP SHALL stream the requested content to the client.

6.6.1.2 notifyActivityEnd method

When an application has set a NetAuthorizationHandler object by calling the
NetSecurityManager.setAuthorizationHandler method, the OC-DMS HNIMP SHALL call the notifyActivityEnd
method when the activity terminates. Identification of activity termination is defined in [HN-SEC].

The OC-DMS HNIMP SHALL match activity end occurrences with activity start occurrences and pass the activity
ID parameter to the notifyActivityEnd method that was previously provided in the corresponding call to the
notifyActivityStart method.

NOTE (informative): To be notified of a UPnP action that terminates a session, an application can register action
names, e.g., "CM::ConnectionComplete", using the setAuthorizationHandler method, and be notified via the
notifyAction method.

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 67

6.6.1.3 notifyAction method

When an application has set a NetAuthorizationHandler object by calling the overloaded
NetSecurityManager.setAuthorizationHandler method with the actionNames parameter and passes in one or more
action names to that method, then the OC-DMS HNIMP SHALL call the notifyAction method of that object
whenever an action matching one of those names is received. When the action is CM:PrepareForConnection, the
OC-DMS HNIMP SHALL set the activityID parameter to the value to be placed in the action ConnectionID OUT
argument. When the action is CM:CompleteConnection or CM:GetCurrentConnectionInfo, the OC-DMS HNIMP
SHALL set the activityID parameter to the value of the action ConnectionID IN argument. For all other actions, the
OC-DMS HNIMP SHALL set the activityID parameter to the value of -1. The OC-DMS HNIMP SHALL NOT
process the action until this method returns action accepted or denied. If this method returns denied, the OC-DMS
HNIMP SHALL fail the action and return UPnP error code 606 Action Not Authorized.

6.6.2 NetAuthorizationHandler2 interface

6.6.2.1 notifyActivityStart method

When the NetAuthorizationHandler2 was registered using the overloaded
NetSecurityManager.setAuthorizationHandler method that takes a NetAuthorizationHandler2 parameter and the
notifyTransportRequests parameter was set to true, then the OC-DMS HNIMP SHALL call the notifyActivityStart
method for every HTTP and RTSP message received for an activity that is accessing MSO content from the OC-
DMS HNIMP. MSO content identification is defined in [HN-SEC].

When the notifyTransportRequests parameter was set to false, then the OC-DMS HNIMP SHALL call the
notifyActivityStart method for the first HTTP or RTSP message for an activity that is accessing MSO content from
the OC-DMS HNIMP. Identification of the first HTTP or RTSP message in an activity is defined in [HN-SEC].

If the message protocol is HTTP and an scid.dlna.org header is present in the request, the OC-DMS HNIMP SHALL
set the activityID parameter to the ConnectionID value of the scid.dlna.org header. If the message protocol is RTP
and an RTSP session-id header is present in the RTSP SETUP request, the OC-DMS HNIMP SHALL set the
activityID parameter to the ConnectionID value of the session-id header. If no ConnectionID value is present in the
HTTP or RTSP request, then the OC-DMS HNIMP SHALL generate a ConnectionID per the requirements of BCM
(see Section 5.5) and set the activityID parameter to the ConnectionID value; if the NetAuthorizationHandler permits
the operation, the OC-DMS HNIMP SHALL report the generated ConnectionID value in the HTTP or RTSP
response.

When the notifyActivityStart method is called, the OC-DMS HNIMP SHALL determine if the url parameter
uniquely matches the URI value of a content item res property in the OC-DMS HNIMP CDS, and if it does, the OC-
DMS HNIMP SHALL set the entry parameter to an object reference corresponding to the content item. If no content
item is found, the OC-DMS HNIMP SHALL set the value null.

The OC-DMS HNIMP SHALL set the request parameter to the message request. In that case, when the protocol is
HTTP, the first String in the array SHALL be set to the HTTP Request-Line, and subsequent Strings in the array
SHALL be set to the HTTP headers in the order they were received. Trailing CRLF characters, the blank line
following the HTTP headers, and the HTTP message body SHALL NOT be included in the array. (See [RFC 2616].)
When the protocol is RTSP, the OC-DMS HNIMP SHALL set the request parameter to an empty array.

When the notifyActivityStart method is called in response to a network request, the OC-DMS HNIMP SHALL NOT
process the request until this method returns. If the notifyActivityStart method returns false, the OC-DMS HNIMP
SHALL fail the request and return an error code 401 Not Authorized. If the notifyActivityStart method returns true,
the OC-DMS HNIMP SHALL stream the requested content to the client.

6.6.2.2 notifyActivityEnd method

When an application has set a NetAuthorizationHandler2 object by calling the overloaded
NetSecurityManager.setAuthorizationHandler method that takes a NetAuthorizationHandler2 parameter, the OC-
DMS HNIMP SHALL call the notifyActivityEnd method when the activity terminates. Identification of activity
termination is defined in [HN-SEC].

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

68 CableLabs 05/30/13

The OC-DMS HNIMP SHALL match activity end occurrences with activity start occurrences and pass the activityID
parameter to the notifyActivityEnd method that was previously provided in the corresponding call to the
notifyActivityStart method.

The OC-DMS HNIMP SHALL set the resultCode parameter as follows:

1. If the activity was terminated by a message from the OC-DMS HNIMP to a remote device, then set the
resultCode to the response value returned in the message. This will be one of the HTTP, RTSP, or UPnP
response codes.

2. If the activity was terminated by a detected network failure or timeout, set the resultCode to 408 Request
Timeout.

NOTE (informative): To be notified of a UPnP action that terminates a session, an application can register action
names, e.g., "CM::ConnectionComplete", using the setAuthorizationHandler method, and be notified via the
notifyAction method.

6.6.2.3 notifyAction method

When an application has set a NetAuthorizationHandler2 object by calling the overloaded
NetSecurityManager.setAuthorizationHandler method that takes a NetAuthorizationHandler2 parameter and passes
in one or more action names to that method, then the OC-DMS HNIMP SHALL call the notifyAction method of that
object whenever an action matching one of those names is received.

When the action is CM:PrepareForConnection, the OC-DMS HNIMP SHALL set the activityID parameter to the
value to be placed in the action ConnectionID OUT argument. When the action is CM:CompleteConnection or
CM:GetCurrentConnectionInfo, the OC-DMS HNIMP SHALL set the activityID parameter to the value of the action
ConnectionID IN argument. For all other actions, the OC-DMS HNIMP SHALL set the activityID parameter to the
value of -1.

The OC-DMS HNIMP SHALL set the request parameter to the message request. In that case, when the protocol is
HTTP, the first String in the array SHALL be set to the HTTP Request-Line, and subsequent Strings in the array
SHALL be set to the HTTP headers in the order they were received. Trailing CRLF characters, the blank line
following the HTTP headers, and the HTTP message body SHALL NOT be included in the array. (See [RFC 2616].)
When the protocol is RTSP, the OC-DMS HNIMP SHALL set the request parameter to an empty array.

The OC-DMS HNIMP SHALL NOT process the action until this method returns true or false. If this method returns
false, the OC-DMS HNIMP SHALL fail the action and return UPnP error code 606 Action Not Authorized.

6.6.3 NetSecurityManager class

6.6.3.1 revokeAuthorization method

When a privileged application calls the revokeAuthorization method with an activity identifier parameter that
matches in-progress content streaming that was authorized with the same identifier, the OC-DMS HNIMP SHALL
stop the stream and send messages to the recipient appropriate for the transport protocol being used.

6.6.3.2 setAuthorizationHandler overloaded method

For the overloaded setAuthorizationHandler method with the actionNames parameter, the parameter is either empty
array or an array of strings where each string is the name of an action that the authorization application is interested
in. See Section 6.6.1.3 for further processing of this parameter. The format of each name is as follows:

request_type_name = [action_name]

action_name = upnp_service_abbrev ":" upnp_action_name

upnp_service_abbrev = "*" | <UPnP service abbreviation, e.g., "CDS", "CM", "SRS", "AVT", "RCS">

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 69

upnp_action_name = "*" | <UPnP action name, e.g., "PrepareForConnection", "UpdateObject">

The asterisk "*" is a wildcard and MAY be used to set multiple action names. The following example sets all actions
from any CDS service:

"CDS:*"

The following example sets all actions from any service:

"*:*"

The names are case-sensitive and always in all capitals. When an unrecognized name is parsed, the OC-DMS
HNIMP SHALL ignore it.

UPnP service abbreviations and action names are defined in respective service specifications. If an element of the
actionNames parameter contains an unknown service abbreviation or action name or violates the format defined in
this section, the method SHALL throw IllegalArgumentException.

6.6.3.3 queryTransaction method

The actionName parameter is the name of the action, and the format of the String has the same definition as defined
in Section 6.6.3.2.

6.7 Package org.ocap.hn.service

6.7.1 RemoteService interface

No UPnP mapping is defined for RemoteService interface.

6.7.2 ServiceResolutionHandler interface

6.7.2.1 notifyTuneFailed method

The OC-DMS HNIMP SHALL call this method when a tuning request to stream a ChannelContentItem over the
network fails for any reason.

6.7.2.2 resolveChannelItem method

The OC-DMS HNIMP SHALL call this method when a request to stream a ChannelContentItem over the network is
received but the ChannelContentItem does not contain tuning parameters.

6.7.3 MediaServerManager class

6.7.3.1 getHttpMediaPortNumber() method

The getHttpMediaPortNumber method returns the port number assigned to the <res> value (URI) in all audio and
video content items that are streamed over HTTP.

6.7.4 HttpRequestResolutionHandler interface

6.7.4.1 resolveHttpRequest method

The HNIMP OC-DMS calls this method to resolve HTTP GET or HEAD requests to a <res> URI as per Section
5.6.2.

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

70 CableLabs 05/30/13

6.8 Package org.ocap.hn.recording

6.8.1 NetRecordingEntry interface

6.8.1.1 addRecordingContentItem method

When the addRecordingContentItem method is called on a NetRecordingEntry object, the HNIMP SHALL perform
the following process:

1. If the RecordingContentItem already contains a upnp:srsRecordScheduleID, throw an
IllegalArgumentException.

2. If this NetRecordingEntry does not contain a upnp:srsRecordScheduleID, throw an IllegalStateException.

3. If no exception was thrown, add a upnp:srsRecordScheduleID property to the parameter
RecordingContentItem and set the value of the property to the value in the NetRecordingEntry
upnp:srsRecordScheduleID property, and contain the RecordingContentItem within this NetRecordingEntry.

6.8.1.2 6.8.1.2 deleteEntry method

When the deleteEntry method is invoked, the HNIMP SHALL perform the same steps as identified in the mapping of
ContentContainer.removeContentEntry method with ContentEntry input parameter of NetRecordingEntry.

6.8.1.3 getConflictingRecordings method

When the getConflictingRecordings method is called on a non-local NetRecordingEntry object, the HNIMP SHALL
cause an SRS GetRecordTaskConflicts action for each RecordingContentItem in the parameter. The list of conflicts
from each response will be conglomerated in a ContentList that SHALL be returned from the
NetActionEvent.getResponse method in the event generated when all of the conflicts have been discovered.

6.8.1.4 removeRecordingContentItem method

When the RecordingContentItem parameter was added to this NetRecordingEntry, the HNIMP SHALL perform the
following process:

1. If the RecordingContentItem contains a upnp:srsRecordTaskID, throw an IllegalArgumentException.

2. If the RecordingContentItem does not contain upnp:srsRecordTaskID, remove the RecordingContentItem
from this NetRecordingEntry, and remove upnp:srsRecordScheduleID from the RecordingContentItem.

NOTE (informative): The sequence of removing a series recording on the OC-DMS device is as follows:

1. Remove all RecordingContentItems, each of which represents individual recording from CDS, by calling
ContentContainer.removeContentEntry method or ContentContainer.removeContentEntries method. All
related SRS recordTask objects are removed.

2. Remove the RecordingContentItems from the NetRecordingEntry corresponding to the series recording by
calling NetRecordingEntry.removeRecordingContentItem method.

3. Remove the NetRecordingEntry from CDS by calling ContentContainer.removeContentEntry method or
ContentContainer.removeContentEntries method.

6.8.1.5 getRecordingContentItemIDs method

When the getRecordingContentItemIDs method is called, the HNIMP SHALL return the java.lang.String object
array that contains the ObjectIDs of RecordingContentItems extracted from the value of the ocap:RCIList property
of this NetRecordingEntry.

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 71

NOTE (informative): This method can work both on a local NetRecordingEntry and on a remote
NetRecordingEntry. On the other hand, getRecordingContentItems can work on a local NetRecordingEntry. When
the OC-DMP device retrieves the remote NetRecordingEntry by CDS:Browse or CDS:Search action, the
ocap:RCIList property is returned in the response. The OC-DMP HNIMP SHALL create the array of the ObjectIDs
included in the ocap:RCIList property. The OC-DMP HNIMP can use these ObjectIDs to retrieve the individual
recording by using CDS:Browse or CDS:Search action.

6.8.2 NetRecordingRequestManager

6.8.2.1 setNetRecordingRequestHandler method

No UPnP mapping is defined for setNetRecordingRequestHandler method.

6.8.2.2 createNetRecordingEntry method

No UPnP mapping is defined for createNetRecordingEntry method.

6.8.3 NetRecordingRequestHandler interface

Once a privileged application has registered itself as a NetRecordingRequestHandler on an HNIMP DMS device, the
HNIMP will call the application based on actions caused by other applications running in remote devices.

6.8.3.1 notifyDisable method

When an HNIMP receives a SRS DisableRecordSchedule or DisableRecordTask action and the related
RecordScheduleID or RecordTaskID corresponds to a recording published in the CDS, the implementation SHALL
call the notifyDisable method of the NetRecordingRequestHandler object set by an application. If no
NetRecordingRequestHandler is set, or if the notifyDisable method returns false, the implementation SHALL fail the
action with error 720, cannot process the request. The Device InetAddress passed to the method SHALL represent an
IP address of the device that sent the action. The ContentEntry parameter SHALL represent the individual or series
recording published in the CDS.

6.8.3.2 notifyDelete method

When an HNIMP receives a CDS DestroyObject action and the related ObjectID corresponds to a recording
published in the CDS and remote modification of that recording is not disallowed by requirements in Section
C.1.1.8, the implementation SHALL call the notifyDelete method of the NetRecordingRequestHandler object set by
an application. If no NetRecordingRequestHandler is set, or if the notifyDelete method returns false, the
implementation SHALL fail the action with error 720, cannot process the request. The InetAddress parameter passed
to the method SHALL represent an IP address of the device that sent the action. The ContentEntry parameter
SHALL represent the individual or series recording published in the CDS.

6.8.3.3 notifyDeleteService method

When an HNIMP receives a SRS DeleteRecordSchedule or DeleteRecordTask action and the related
RecordScheduleID or RecordTaskID corresponds to a recording published in the CDS, the implementation SHALL
call the notifyDeleteService method of the NetRecordingRequestHandler object set by an application. P SHALL
NOT delete SRS or CDS entries corresponding to the ObjectID unless directed to do so by the
NetRecordingRequestHandler as the result of a notifyDeleteService method invocation. If no
NetRecordingRequestHandler is set, or if the notifyDeleteService method returns false, the implementation SHALL
fail the action with error 720, cannot process the request. The InetAddress parameter passed to the method SHALL
represent an IP address of the device that sent the action. The ContentEntry parameter SHALL represent the
individual or series recording published in the CDS.

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

72 CableLabs 05/30/13

6.8.3.4 notifyPrioritization method

When an HNIMP receives an OCAP X_PrioritizeRecordings action, it SHALL call the notifyPrioritization method
of the NetRecordingRequestHandler object set by an application. If no NetRecordingRequestHandler is set, or if the
notifyPrioritization method returns false, the implementation SHALL fail the action with UPnP error 720, cannot
process the request. The InetAddress parameter, which represents an IP address of the request source device passed
to the method, SHALL be the object corresponding to the device that sent the action.

When the NetRecordingRequestHandler application receives a prioritization request, it will either deny the action by
returning false or accept the action by returning true. When true is returned, the implementation SHALL update
fields in the CDS and SRS entries corresponding to any changes made to the RecordingRequest(s) by the handler
application. Changing recording prioritization MAY change recording states and resources.

6.8.3.5 notifyReschedule method

The HNIMP definition extends the [UPNP SRS] and allows a CreateRecordSchedule to be sent with an srs:item
element whose id property is not empty. The effect of this is the receiving device SHALL evaluate the id property to
determine if a matching schedule has already been published in CDS. The value of the id is the id of a
recordSchedule or the id of a recordTask on the device. If a matching schedule is found, the HNIMP SHALL call the
notifyReschedule method of the NetRecordingRequestHandler object set by an application. If no
NetRecordingRequestHandler is set, or the notifyReschedule method returns false, the implementation SHALL fail
the action with UPnP error 720, cannot process the request. The InetAddress parameter passed to the method
SHALL represent an IP address of the device that sent the action. If the value of the id property in the action is the id
of a recordSchedule, the ContentEntry parameter SHALL be the NetRecordingEntry object corresponding to the
recordSchedule. If the value of the id property in the action is the id of a recordTask, the ContentEntry parameter
SHALL be the RecordingContentItem object corresponding to the recordTask. The NetRecordingEntry parameter
SHALL contain the property and value pairs received with the action and defined in Table 6–3 as defined in Section
6.8.4.7 in this specification.

When the NetRecordingRequestHandler application receives a schedule request, it will either deny the action by
returning false or accept the action by returning true. When true is returned, the implementation SHALL update
fields in the CDS and SRS entries corresponding to any changes made to the RecordingRequest by the handler
application.

6.8.3.6 notifySchedule method

When an HNIMP receives an SRS CreateRecordSchedule action, the HNIMP SHALL check whether the action
contains all required SRS properties for object.recordSchedule.direct.manual. If not, the HNIMP SHALL fail the
action with UPnP error 708. When the HNIMP receives the SRS CreateRecordSchedule action with an item element
whose id property is empty, the HNIMP SHALL call the notifySchedule method of the
NetRecordingRequestHandler object set by an application. If no NetRecordingRequestHandler is set, or the
notifySchedule returns false, the implementation SHALL fail the action with UPnP error 720, cannot process the
request. When true is returned, a record schedule for the action will have been created during the process of this
method; however, the HNIMP SHALL NOT start a recording based on the schedule, as the
NetRecordingRequestHandler is responsible for that. The InetAddress parameter passed to this method SHALL
represent an IP address of the device that sent the action. The NetRecordingEntry parameter SHALL contain the
property and value pairs received with the action and defined in Table 6–3. If the action does not contain
ocap:scheduledStartDateTime, ocap:scheduledChannelID, ocap:scheduledChannelIDType, and
ocap:scheduledDuration, the HNIMP SHALL create the missing properties among them by using SRS properties and
their values in the action, and SHALL add the created properties to the NetRecordingEntry. The relationship
between these OCAP properties and SRS properties is as represented in Table 6–3. The HNIMP SHALL convert
srs:title in the action to dc:title in the NetRecordingEntry parameter. In addition, the HNIMP SHALL add all the
property and value pairs received with the action, whose name space is not SRS namespace, to the

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 73

NetRecordingEntry parameter. Note that the HNIMP SHALL NOT add SRS properties to the NetRecordingEntry
parameter.

When the NetRecordingRequestHandler application receives a schedule request, it will either deny the action by
returning false or accept the action by returning true. When true is returned, the implementation SHALL verify the
NetRecordingEntry parameter includes a parent container Id property, in order to verify the
NetRecordingRequestHandler application added a CDS entry for the parameter. If the NetRecordingEntry parameter
was added to CDS, the HNIMP SHALL succeed this action and return the UPnP response. The HNIMP SHALL
contain all the "ocap" and "ocapApp" name space properties received with the action to the response. In this case,
the HNIMP creates an association between the NetRecordingEntry parameter and the CreateRecordSchedule action
during the processing of this method as defined in Section 6.3.2.1 of this specification, regarding NetRecording
Entry. The HNIMP SHALL update content of the ocap:cdsReference in the RecordSchedule associated with the
NetRecordingEntry, if necessary. If the NetRecordingEntry was not added to CDS, the HNIMP SHALL fail the
action with UPnP error 720, cannot process the request.

Section 6.8.1.1 defines implementation behavior when the NetRequestHandler application calls the
NetRecordingEntry.addRecordingContentItem method using the NetRecordingEntry passed to this method.

6.8.3.7 Event Generation method

Use of a number of methods in this interface may cause asynchronous event generation.

6.8.3.7.1 Recording Request Events

An Object that implements the RecordingContentItem interface SHALL also implement the
org.ocap.dvr.OcapRecordingRequest interface. Hence, an SRS RecordTask associated with a RecordingContentItem
as defined by Section 6.8.3.6 is also associated with the corresponding OcapRecordingRequest. When the
implementation generates events for a RecordTask based on OcapRecordingRequest state changes, the
implementation SHALL map the OcapRecordingRequest state to the RecordTask state as shown in Table 6–2.
Changes in state of the OcapRecordingRequest map to changes in the ocap:taskState property of the
RecordingContentItem. Whenever CDS properties in the OCAP name space change, the HNIMP SHALL generate a
CDS changed event.

Table 6–2 - Recording Request State Mapping

OCAP RECORDING
REQUEST STATE VALUE

OCAP RECORDING REQUEST
STATE NAME

UPNP SRS RECORD
TASK STATE

1 PENDING_NO_CONFLICT_STATE IDLE.READY

2 PENDING_WITH_CONFLICT_STATE IDLE.ATRISK

4 IN_PROGRESS_STATE ACTIVE.TRANSITION.FROMSTART

16 IN_PROGRESS_INCOMPLETE_STATE ACTIVE.TRANSITION.RESTART

15 IN_PROGRESS_WITH_ERROR_STATE ACTIVE.NOTRECORDING

4 IN_PROGRESS_STATE ACTIVE.RECORD.FROMSTART.OK

5 IN_PROGRESS_INSUFFICIENT_SPACE_STATE ACTIVE.RECORDING.FROMSTART.ATRISK

16 IN_PROGRESS_INCOMPLETE_STATE ACTIVE.RECORDING.RESTART.OK

<NO MAPPING> <NO MAPPING> ACTIVE.RECORDING.RESTART.ATRISK

7 COMPLETED_STATE DONE.FULL

6 INCOMPLETE_STATE DONE.PARTIAL

8 FAILED_STATE DONE.EMPTY

10 CANCELLED_STATE DONE.EMPTY

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

74 CableLabs 05/30/13

OCAP RECORDING
REQUEST STATE VALUE

OCAP RECORDING REQUEST
STATE NAME

UPNP SRS RECORD
TASK STATE

9 TEST_STATE

14 DELETED_STATE DONE.EMPTY

6.8.4 RecordingNetModule interface

6.8.4.1 requestDelete method

The requestDelete method SHALL use the [UPNP CDS] DestroyObject action for the ObjectID of the CDS entry
associated with the RecordingContentItem parameter.

6.8.4.2 requestDeleteService method

If the ContentEntry passed to this method is a RecordingContentItem, the requestDeleteService method SHALL use
the DeleteRecordTask action for the ObjectID included in the upnp:srsRecordTaskID contained in the ContentEntry
parameter. If the ContentEntry passed to this method is a NetRecordingEntry, the requestDeleteService method
SHALL use the DeleteRecordSchedule action for the ObjectID in the upnp:srsRecordScheduleID contained in the
ContentEntry parameter.

6.8.4.3 requestDisable method

The requestDisable method SHALL use the [UPNP SRS] DisableRecordSchedule action when the parameter is a
NetRecordingEntry, or the DisableRecordTask action when the parameter is a RecordingContentItem. The
implementation SHALL use the RecordScheduleID and RecordTaskID, respectively, associated with the parameter.

6.8.4.4 getRootContainer method

The root container for the module is returned during discovery, and no mapping for this method is needed.

6.8.4.5 requestPrioritize methods

The requestPrioritize methods SHALL use the OCAP X_PrioritizeRecordings action defined in Annex C.2.1. The
parameter SHALL be converted to a list of RecordSchedule IDs or RecordTask IDs, depending on whether an array
of NetRecordingEntry objects or an array of RecordingContentItem object is passed in, respectively; see the javadoc
for both variants of this method.

6.8.4.6 requestReschedule method

The requestReschedule method maps to UPnP actions the same way as the requestSchedule method, except the
HNIMP SHALL populate the srs:item element of the [UPNP SRS] CreateRecordSchedule action with the srs:@id
property of the srs:item of a schedule that was created in a previous call to the requestSchedule method. If the
ContentEntry parameter passed to this method is the NetRecordingEntry object, the HNIMP SHALL set the value of
upnp:srsRecordScheduleID property of the NetRecordingEntry object to the srs:@id property in the action. If the
ContentEntry parameter is the RecordingContentItem object, the HNIMP SHALL set the value of
upnp:srsRecordTaskID property of the RecordingContentItem object to the srs:@id property in the action.

If the ContentEntry parameter is neither the NetRecordingEntry with upnp:srsRecordScheduleID property nor the
RecordingContentItem with upnp:srsRecordTaskID property, or if the NetRecordingSpec parameter does not contain
the required properties for recording, the HNIMP SHALL throw the IllegalArgumentException.

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 75

6.8.4.7 requestSchedule method

The requestSchedule method SHALL use the [UPNP SRS] CreateRecordSchedule action and populate the messages
so that the receiving device can create an object.recordschedule.direct.manual class as defined by [UPNP SRS]
section 2.9.3.1.1. The calling application is responsible for adding metadata to the NetRecordingSpec parameter with
all required properties except for srs:@id and srs:class for creating an object.recordschedule.direct.manual class on a
remote device. If the NetRecordingSpec parameter does not include all required properties except for srs:@id and
srs:class, the HNIMP SHALL throw IllegalArgumentException. Application-specific metadata is added to the
CreateRecordSchedule action using the <desc> element as described in Section 6.3.9.1.2. The [UPNP SRS]
specification table C.7 defines required and optional properties applicable to the object.recordschedule.direct.manual
class. In addition, Annex C.1.1 defines properties for the OCAP name space, and the HNIMP SHALL support
OCAP properties for purposes of remote recording scheduling in a NetRecordingSpec as specified the left column in
the table below. If the ocap:scheduledStartDateTime is included in the NetRecordingSpec parameter, the
implementation SHALL copy its value to srs:scheduledStartDateTime property in the CreateRecordSchedule action
and SHALL NOT add the ocap:scheduledStartDateTime property. The same rule SHALL be applied to
ocap:scheduledChannelID and srs:scheduledChannelID pair, ocap:scheduledChannelID@type and
ocap:scheduledChannelIDType pair, and ocap:scheduledDuration and srs:scheduledDuration pair. The
implementation SHALL ignore srs:@id and srs:class in the NetRecordingSpec parameter if they are specified. The
implementation SHALL add the application-specific metadata in the NetRecordingSpec to the
CreateRecordSchedule action using DIDL-Lite <desc>block as defined in 6.3.9.1.2 of this specification. Note that
the default namespace of the XML document of CreateRecordSchedule action is srs: namespace (whose namespace
URI is "urn:schema-upnp-org:av:srs") and that <desc> element is defined in didl-lite namespace (whose namespace
URI is "urn:schema-upnp-org:metadata-1-0/DIDL-Lite/"). Therefore, unlike adding <desc> block to CDS, the
implementation SHALL add the namespace declaration of didl-lite namespace to the document as defined in XML
namespace specification [XML NS]. In addition, the HNIMP SHALL add <didl-lite:DIDL-Lite> element to the
document and add <didl-lite:desc> elements inside the <didl-lite:DIDL-Lite> element because the <didl-lite:desc>
element cannot be a direct child element of the srs:item element as defined by DIDL-Lite XML schema.

NOTE (informative): The calling application should not add optional SRS properties to the NetRecordingSpec
parameter.

Table 6–3 - Recording Properties

OCAP Property Use for SRS property if specified

ocap:scheduledStartDateTime srs:scheduledStartDateTime

ocap:scheduledChannelID srs:scheduledChannelID

ocap:scheduledChannelIDType srs:scheduledChannelID@type

ocap:scheduledDuration srs:scheduledDuration

ocap:priorityFlag

ocap:retentionPriority

ocap:accessPermissions

ocap:organization

ocap:appID

ocap:msoContentIndicator

ocap:expirationPeriod

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

76 CableLabs 05/30/13

The calling application MAY add additional properties in the "ocapApp" namespace as defined in Section 6.8.5. The
HNIMP SHALL include any properties in the NetRecordingSpec in the corresponding SRS:CreateRecordSchedule
action.

When the action returns successfully, the action response includes ocap:scheduledCDSEntryID and
ocap:cdsReference. Then, the implementation SHALL create a NetRecordingEntry for the scheduled recording from
the ocap:cdsReference property value in the action response, which includes all of the properties of the CDS item
corresponding to the recordSchedule in the action response. The implementation SHALL associate the
CreateRecordSchedule action response RecordScheduleID, Result, and UpdateId with the NetRecordingEntry
created on the DMP. See Appendix I.1 for the sequence of events caused by the CreateRecordSchedule action in an
HNIMP device. The NetRecordingEntry SHALL be returned from the NetActionEvent.getResponse method from
the NetActionEvent created for requestSchedule response.

6.8.5 RecordingContentItem interface

When a RecordingContentItem is created as a result of org.ocap.dvr.shared.RecordingRequest creation, the HNIMP
SHALL set the upnp:class property to "object.item.videoItem" and populate the properties in the
RecordingContentItem using corresponding OCAP properties and fields from the corresponding
org.ocap.dvr.shared.RecordingRequest. See section C.1.1 for OCAP property definitions. When a
RecordingContentItem is created by any means, the HNIMP SHALL include a TSpec as defined in Annex D. When
the HNIMP creates a RecordedService for the RecordingRequest, it SHALL add a <res> element to the CDS entry
for the RecordingContentItem that corresponds to the recorded content. The OC-DMS HNIMP SHALL populate the
res property from the required ocap:contentURI. If a RecordingRequest is deleted, HNIMP SHALL delete the
corresponding RecordingContentItem, any associated metadata, and any SRS and CDS entries.

If the RecordedService(s) associated with a RecordingRequest are deleted, the HNIMP SHALL delete the
ContentResource objects and resource metadata from the corresponding RecordingContentItem.

NOTE: Calling RecordingContentItem.deleteEntry() only deletes the corresponding RecordingContentItem, any
associated metadata, and any SRS and CDS entries - not the corresponding recording on the DVR server. Therefore,
in order to properly delete a recording from a DVR server, applications must invoke RecordingRequest.delete()
rather than RecordingContentItem.deleteEntry().

6.8.5.1 deleteEntry method

When the deleteEntry method is invoked, the HNIMP SHALL perform the same steps as identified in the mapping of
ContentContainer.removeContentEntry with the ContentEntry input parameter of RecordingContentItem.

6.8.5.2 requestConflictingRecordings method

The requestConflictingRecordings method SHALL map to the [UPNP SRS] GetRecordTaskConflicts action. The
HNIMP SHALL use the RecordTaskID determined from the requestSchedule response for this
RecordingContentItem; see [UPNP SRS] RecordTaskID definition. When the HNIMP receives a successful response
for the GetRecordTaskConflicts action, it SHALL send a CDS Search action and retrieve the CDS items by
searching for upnp:srsRecordTaskID property values that coincide with the GetRecordTaskConflicts results.

When successful, the ContentList result SHALL be returned via the corresponding NetActionEvent.getResponse
method. Each entry in the list SHALL be a RecordingContentItem returned from the CDS search.

When either the GetRecordTaskConflict or the Search action is unsuccessful, a NetActionEvent is generated and no
other UPnP action traffic for this method is instigated.

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 77

6.8.5.3 requestSetMediaTime method

The requestSetMediaTime method maps to the UpdateObject action; see [UPNP CDS]. The client and server
HNIMP SHALL use the parameter as the new value for the ocap:mediaPresentationPoint property in the CDS
content item corresponding to the RecordingContentItem. The server HNIMP SHALL update the RecordedService
associated with the RecordingContentItem with the new value of the ocap:mediaPresentationPoint property, with the
same effect as calling setMediaTime() on that RecordedService, provided remote modification of that
RecordingContentItem is not disallowed by requirements in Section C.1.1.8.

6.8.5.4 getRecordingEntryID method

The getRecordingEntryID method returns the ObjectID that is contained in ocap:netRecordingEntry property of this
RecordingContentItem. If the ocap:netRecordingEntry property was not added to this RecordingContentItem, this
method SHALL return null.

NOTE (informative): A RecordingContentItem has an ocap:netRecordingEntry only when the RecordingContentItem
is added both to a NetRecordingEntry and to CDS.

6.8.5.5 ocap:mediaPresentationPoint property

The server HNIMP SHALL set the ocap:mediaPresentationPoint property to the value of the media time that is set
by the method org.ocap.shared.dvr.RecordedService.setMediaTime or the first media time of the RecordedService if
setMediaTime has never been called on this RecordedService.

The client HNIMP SHALL start playback of a RecordingContentItem from the media time that is specified in the
ocap:mediaPresentationPoint property. For example, if HTTP is being used, the client HNIMP MAY use the
TimeSeekRange.dlna.org header.

Following any changes to the ocap:mediaPresentationPoint property in a server RecordingContentItem, the server
HNIMP SHALL update the RecordedService associated with the RecordingContentItem with the new value of the
ocap:mediaPresentationPoint property, with the same effect as calling setMediaTime() on that RecordedService.

6.9 Package javax.tv.selection

6.9.1 ServiceContext Interface

6.9.1.1 select method

The select method establishes a means for an application in a DMP to playback a remote recording. When the select
method is called, the HNIMP SHALL supply ServiceMediaHandler objects necessary to render the format type of
the selected content. When starting a ServiceMediaHandler (Player), the UPnP Control Point SHALL perform the
necessary UPnP Connection Manager functions:

a) Server and ClientNegotiations

Get capabilities
Negotiation of delivery protocol
Negotiation of content format / options

b) Connection Setup

Reserve resources
Register QoS (if available)
Verify access permissions
Get AV Transport handle from server (push) or renderer (pull), (optional when supported)

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

78 CableLabs 05/30/13

Figure 6–1 illustrates ServiceContext states and event generation during remote service presentation.

Playback started by call to
ServiceContext.select(Service)
with a RemoteService, state is
PRESENTATION_PENDING

Control Point
ConnectionManager:Prepare

ForConnection
(optional)

Selection Failed,
generate

AlternativeContentErrorEvent
with

CONTENT_NOT_FOUND
error reason

communications failure

Control Point
commences media content

transfer

Presentation Terminated,
generate

AlternativeContentErrorEvent
With error reason

CONTENT_NOT_FOUND

Packets received in
buffers, ServiceContext
state to PRESENTING,

generate
NormalContentEvent

Rate changed by call to
ServiceMediaHandler (Player)

setRate method, generate
RateChangedEvent.

communications failure

Packets received from Server

Presentation stopped
by call to ServiceContext.stop,
state to NOT_PRESENTING,

generate
PresentationTerminatedEvent

End of media reached. Note: Automatically pause on
last frame if play rate > 0 in
forward direction or < 0 in

reverse direction.

ConnectionManager:
ConnectionComplete

(optional)

Media location changed by call to
ServiceMediaHandler (Player)

setMediaTime method, generate
MediaTimeSetEvent

Figure 6–1 - ServiceContext States during RemoteService Presentation

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 79

Once the connection has been established, the JMF player MAY provide an interface to connection manager
functions (for connection status) if supported by both the OC-DMP and OC-DMS. When HTTP is used, the OC-
DMP SHALL provide playback control (e.g., fast forward, rewind) for all content items that support a DLNA
Random Access Data Availability Model, as defined in Section 5.2. When the presentation is ended due to failure or
consumer selection of a different presentation, the control point implementation is responsible for closing the
connection and MAY cause the optional ConnectionManager::ConnectionComplete action.

Supported JMF player controls will vary widely from renderer to renderer. A simple audio device, for example, may
only support the GainControl object and associated methods. More sophisticated AV renderers may support trick-
play (setRate()). A complete list of supported JMF controls supported by a given module are provided by the player's
getControls() method.

Once the connection manager has established the connection protocol and prepared the connection, the control point
will communicate with the Server to begin media transfer. [DLNA vol 1] allows a number of protocols to be used for
media transfer based on client/server negotiations. Annex B describes some techniques that can provide smooth
trick-mode presentation using HTTP.

6.9.1.2 destroy method

If any connections for remote service presentation are open, the destroy method SHALL cause them to be closed
based on the protocol used to establish the connections. Any remote resources used for the presentation SHALL be
released when the connections are closed. Once connections are closed, further network actions SHALL NOT be
taken by subsequent calls to the destroy or stop methods.

6.9.1.3 stop method

The stop method SHALL cause the same network actions as the destroy method.

6.10 Package org.javax.media (JMF)

6.10.1 Clock interface

6.10.1.1 setMediaTime method

The setMediaTime method SHALL cause a jump to the media time parameter. For network actions, implementations
SHOULD handle this in a manner specific to the negotiated transfer protocol. For example, if HTTP is being used
the control point MAY use the TimeSeekRange.dlna.org header.

6.10.1.2 setRate method

The setRate method SHALL cause a change in presentation play speed based on the media time parameter. For
network actions, implementations SHOULD handle this in a manner specific to the negotiated transfer protocol. For
example, if HTTP is being used, the control point MAY use the PlaySpeed.dlna.org header.

6.10.1.3 stop method

This stop method SHALL cause the same network actions as ServiceContext.stop; see Section 6.9.1.3.

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

80 CableLabs 05/30/13

6.10.2 Controller interface

6.10.2.1 realize method

If the media source Server protocol information has not been determined by the control point when the realize
method is called, the control point SHALL cause a ConnectionManager::GetProtocolInfo() action to the source OC-
DMS.

6.10.2.2 prefetch method

In order to reduce start-up latency, the control point MAY download media content based on the protocol negotiated
with the Server.

6.10.2.3 deallocate method

The deallocate method SHALL cause the same network actions as ServiceContext.stop; see Section 6.9.1.3.

6.10.2.4 close method

The close method SHALL cause the same network actions as ServiceContext.stop; see Section 6.9.1.3.

6.10.3 Player interface

6.10.3.1 start method

The start method starts presentation and SHALL initiate media download if not already initiated by the
Controller.prefetch method defined in Section 6.10.2.2. The start method SHALL commence or continue ongoing
media download for presentation based upon the protocol negotiated with the media content Server.

6.11 Package org.ocap.hn.ruihsrc

6.11.1 RemoteUIServerManager class

6.11.1.1 setUIList method

The setUIList method sets the remote user interface description XML document used in the UPnP Remote UI Server
Service defined in [UPNP RUISS]. Until this method is called, an HNIMP OC-DMS SHALL return an empty list in
a response to the GetCompatibleUIs action; see section 2.4.1 of [UPNP RUISS]. An HNIMP OC-DMS SHALL
NOT persist a remote user interface description set by this method across reboot or power-cycle.

When an application calls the setUIList method, the HNIMP OC-DMS SHALL,

1. throw an IllegalArgumentException if the XML document is not null and is detected to be invalid as per the
schema defined in [UPNP RUISS] section 4.

2. remove any existing uiList document that was previously set.

3. set the uiList XML document as the new source against which matching remote user interfaces are sent in
response to a GetCompatibleUIs action; [UPNP RUISS] section 2.4.1. If the uiList parameter is a null, an
empty list will be sent in response to subsequent GetCompatibleUIs actions.

4. send the UIListingUpdate event; [UPNP RUISS] section 2.2.1.

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 81

6.12 Package org.ocap.hn.transformation

6.12.1 TransformationManager abstract class

This class can be used to cause a content binary to be transformed, and CDS content item <res> elements to be
published representing the transformed content. The API allows content to be transformed to HTTP Adaptive
streaming profiles defined in [DLNA HTTP-AD].

When an HNIMP OC-DMS publishes a CDS <res> element that represents HTTP Adaptive content, it SHALL
populate the res@protocolInfo field as defined in [DLNA HTTP-AD].

6.12.1.1 setDefaultTransformations method

When the setDefaultTransformations method is invoked, the HNIMP OC-DMS SHALL set those transformations to
be applied by default to all newly-created server local MSO content. Subsequent calls to the method SHALL replace
the existing default transformations.

6.12.1.2 getDefaultTransformations method

Returns the transformations that have been configured by a call to the setDefaultTransformations method.

6.12.1.3 getSupportedTransformations method

When the getSupportedTransformations method is invoked, the HNIMP OC-DMS creates an array of
Transformation objects that match the set of transformations the device is capable of representing with the ci-param
flag in the 4th field of the protocolInfo property. The set of Transformation objects returned is implementation-
specific.

6.12.1.4 getTransformations method

The getTransformations method provides the existing transformations that are applied to the content item.

6.12.1.5 setTransformations method

When the setTransformations method is invoked, the HNIMP OC-DMS SHALL add <res> elements that correspond
to supported transformations to each applicable ContentItem object in the array parameter that represents server local
MSO content. The <res> elements that correspond to a transformation are identified by the presence of the ci-param
flag in the 4th argument of the protocolInfo property.

Invoking a setTransformations method that explicitly takes the Transformation array parameter removes any existing
transformations before applying the new transformations.

If any affected ContentItem object is associated with a published CDS content item, then the HNIMP OC-DMS
SHALL make the same changes to the CDS content item.

6.12.1.6 addTransformationListener method

This method allows an application to register a listener and receive callbacks from the HNIMP OC-DMS when
transformations are being applied to ContentItems. An application can register multiple unique listeners using this
method.

6.12.1.7 removeTransformationListener method

This method allows an application to remove a previously registered listener and stop receiving callbacks.

6.12.2 Transformation Interface

This interface represents the content transformation capability of the implementation or communicates a desired
content transformation to the implementation.

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

82 CableLabs 05/30/13

6.12.2.1 getInputContentFormat method

This method returns the ContentFormat of the source content.

6.12.2.2 getOutputContentFormats method

This method returns an array of ContentFormat objects.

6.12.3 TransformationListener Interface

An application can implement this interface to receive callbacks from the TransformationManager as transformations
are being applied to content items. An application SHALL receive one and only one notification for each requested
ContentFormat transformation.

6.12.3.1 notifyTransformationReady method

The HNIMP OC-DMS SHALL call this method upon creation of each ContentResource representing the output
ContentFormat of a transformation being applied to a ContentItem. Upon receiving this notification, the application
can assume that the <res> elements representing the transformation associated with the content item have been
added.

6.12.3.2 notifyTransformationFailed method

The HNIMP OC-DMS SHALL call this method with an appropriate reason code if a transformation being applied to
a ContentItem fails.

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 83

Annex A XML Documents (Normative)

A.1 OCAP Root Device Description

Note the <deviceType> element SHALL be set to "OCAP-HOST" when the device is an OpenCable Set-top or
"OCAP-TERMINAL" when the device is an OpenCable terminal. See [HOST] for OpenCable Set-top and Terminal
definitions.
<?xml version="1.0"?>
<root xmlns="urn:schemas-upnp-org:device-1-0">
 <specVersion>
 <major>1</major>
 <minor>0</minor>
 </specVersion>
 <URLBase>base URL for all relative URLs</URLBase>
 <device>
 <deviceType>
 urn:schemas-opencable-com:device:OCAP_HOST|OCAP_TERMINAL:1
 </deviceType>
 <friendlyName>short user-friendly title</friendlyName>
 <manufacturer>manufacturer name</manufacturer>
 <manufacturerURL>URL to manufacturer site</manufacturerURL>
 <modelDescription>long user-friendly title</modelDescription>
 <modelName>model name</modelName>
 <modelNumber>model number</modelNumber>
 <modelURL>URL to model site</modelURL>
 <serialNumber>manufacturer's serial number</serialNumber>
 <UDN>uuid:UUID</UDN>
 <UPC>Universal Product Code</UPC>
 <ocap:X_MiddlewareProfile xmlns:ocap="urn:schemas-cablelabs-com:device-
1-0">OCAP profile
 </ocap:X_MiddlewareProfile>
 <ocap:X_MiddlewareVersion xmlns:ocap="urn:schemas-cablelabs-com:device-
1-0">vendor version
 </ocap:X_MiddlewareVersion>
 <iconList>
 <icon>
 <mimetype>image/format</mimetype>
 <width>horizontal pixels</width>
 <height>vertical pixels</height>
 <depth>color depth</depth>
 <url>URL to icon</url>
 </icon>
 XML to declare other icons, if any, go here
 </iconList>
 <deviceList>
 Description of embedded devices added by UPnP vendor
 (if any) go here
 </deviceList>
 <presentationURL>URL for presentation</presentationURL>
 </device>
</root>

A.2 OC-DMS Device Description

The OC-DMS device description is based on the UPnP MediaServer XML template.
<?xml version="1.0" ?>
<root xmlns="urn:schemas-upnp-org:device-1-0">

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

84 CableLabs 05/30/13

 <specVersion>
 <major>1</major>
 <minor>0</minor>
 </specVersion>
 <device>
 <deviceType>urn:schemas-upnp-org:device:MediaServer:2</deviceType>
 <ocap:X_OCAPHN xmlns:ocap="urn:schemas-cablelabs-com:device-1-0">OC-DMS-
1.0</ocap:X_OCAPHN>
 <dlna:X_DLNADOC xmlns:dlna="urn:schemas-dlna-org:device-1-0">
 DMS-1.50
 </dlna:X_DLNADOC>
 <UDN>uuid:UUID</UDN>
 <friendlyName>friendlyName</friendlyName>
 <manufacturer>manufacturer</manufacturer>
 <manufacturerURL>manufactureURL</manufacturerURL>
 <modelName>modelName</modelName>
 <modelNumber>modelNumber</modelNumber>
 <modelDescription>modelDescription</modelDescription>
 <serialNumber>serialNumber</serialNumber>
 <presentationURL>URL for Presentation</presentationURL>
 <ocap:X_PacingSupported xmlns:ocap="urn:schemas-cablelabs-com:device-1-
0">
 Yes or No
 </ocap:X_PacingSupported>
 <serviceList>
 <service>
 <serviceType>urn:schemas-upnp-
org:service:ConnectionManager:2</serviceType>
 <serviceId>urn:upnp-org:serviceId:ConnectionManager</serviceId>
 <SCPDURL>ConnectionManager.xml</SCPDURL>
 <eventSubURL>ConnectionManager/Event</eventSubURL>
 <controlURL>ConnectionManager/Control</controlURL>
 </service>
 <service>
 <serviceType>urn:schemas-upnp-
org:service:ContentDirectory:3</serviceType>
 <serviceId>urn:upnp-org:serviceId:ContentDirectory</serviceId>
 <SCPDURL>ContentDirectory.xml</SCPDURL>
 <eventSubURL>ContentDirectory/Event</eventSubURL>
 <controlURL>ContentDirectory/Control</controlURL>
 </service>
 <service>
 <serviceType>urn:schemas-upnp-
org:service:AVTransport:2</serviceType>
 <serviceId>urn:upnp-org:serviceId:AVTransport</serviceId>
 <SCPDURL>AVTransport.xml</SCPDURL>
 <eventSubURL>AVTransport/Event</eventSubURL>
 <controlURL>AVTransport/Control</controlURL>
 </service>
 <service>
 <serviceType>urn:schemas-upnp-
org:service:ScheduledRecording:1</serviceType>
 <serviceId>urn:upnp-org:serviceId:ScheduledRecording</serviceId>
 <SCPDURL>ScheduledRecording.xml</SCPDURL>
 <eventSubURL>ScheduledRecording.xml/Event</eventSubURL>
 <controlURL>ScheduledRecording.xml/Control</controlURL>
 </service>
 <service>
 <serviceType>urn:cablelabs-
com:service:ViewPrimaryOutputPort:1</serviceType>
 <serviceId>urn:cablelabs-

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 85

com:serviceId:ViewPrimaryOutputPort</serviceId>
 <SCPDURL>ViewPrimaryOutputPort.xml</SCPDURL>
 <eventSubURL>ViewPrimaryOutputPort.xml/Event</eventSubURL>
 <controlURL>ViewPrimaryOutputPort.xml/Control</controlURL>
 </service>
 </serviceList>
 </device>
</root>

A.3 ViewPrimaryOutputPort Service Description
<?xml version="1.0"?>
<scpd xmlns="urn:schemas-upnp-org:service-1-0">
 <specVersion>
 <major>1</major>
 <minor>0</minor>
 </specVersion>
 <actionList>
 <action>
 <name>Tune</name>
 <argumentList>
 <argument>
 <name>ConnectionID</name>
 <direction>in</direction>

 <relatedStateVariable>A_ARG_TYPE_ConnectionID</relatedStateVariable>
 </argument>
 <argument>
 <name>TuneParameters</name>
 <direction>in</direction>

 <relatedStateVariable>X_ARG_TYPE_TuneParameters</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>AudioMute</name>
 <argumentList>
 <argument>
 <name>ConnectionID</name>
 <direction>in</direction>

 <relatedStateVariable>A_ARG_TYPE_ConnectionID</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>AudioRestore</name>
 <argumentList>
 <argument>
 <name>ConnectionID</name>
 <direction>in</direction>

 <relatedStateVariable>A_ARG_TYPE_ConnectionID</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>PowerOn</name>
 </action>
 <action>

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

86 CableLabs 05/30/13

 <name>PowerOff</name>
 <argumentList>
 <argument>
 <name>ConnectionID</name>
 <direction>in</direction>

 <relatedStateVariable>A_ARG_TYPE_ConnectionID</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>PowerStatus</name>
 <argumentList>
 <argument>
 <name>PowerStatus</name>
 <direction>out</direction>

 <relatedStateVariable>X_ARG_TYPE_PowerStatus</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 </actionList>
 <serviceStateTable>
 <stateVariable sendEvents="no">
 <name>X_ARG_TYPE_TuneParameters</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_ConnectionID</name>
 <dataType>i4</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>X_ARG_TYPE_PowerStatus</name>
 <dataType>string</dataType>
 <allowedValue>FULL POWER</allowedValue>
 <allowedValue>STANDBY</allowedValue>
 </stateVariable>
 </serviceStateTable>
</scpd>

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 87

Annex B Use of Trick Modes Headers

When making a trick mode request, an HNIMP OC-DMP may explicitly request the server to re-stamp the PTS and
PCR. A client may also implicitly assume that the PTS and PCR in the response stream are re-stamped based on the
absence of the FrameRateInTrickMode.dlna.org header. Subsequently when responding to a trick mode request, an
HNIMP OC-DMS may not re-stamp the PTS and PCR and instead indicate to the client the frame rate at which the
response is to be played out. The server will use either the FrameRateInTrickMode.ochn.org or the
FrameRateInTrickMode.dlna.org header depending on the client request. The following diagram clarifies the
conditions under which the HNIMP OC-DMS includes the various headers in the trick mode response.

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

88 CableLabs 05/30/13

Figure B–1 - Trick Mode Response

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 89

Annex C OCAP Name Space

Properties, actions, and action arguments are defined in an OCAP XML name space in cases where UPnP does not
provide direct mappings for OCAP attributes that must be conveyed in UPnP actions.

C.1 Properties

C.1.1 RecordingContentItem CDS object property definitions

The following properties are mapped from the OCAP DVR RecordingRequest interface to a corresponding
RecordingContentItem and CDS videoItem object. When a CDS videoItem representing a RecordingContentItem
has been published to the network, these properties are mapped from the local RecordingRequest to the local CDS
by the host implementation. Property values in the CDS are implicitly updated by the host as RecordingRequest
parameters are updated, whether through normal DVR schedule operation or through manipulation by local OCAP
applications. The properties listed in Table 6–3 are also used for requesting the scheduled recording.

In order to ensure interoperability with older implementations, the HNIMP SHALL provide both
ocap:scheduleStartDateTime and ocap:scheduledStartDateTime property keys in both the RecordingContentItem and
CDS videoItem when either is present. The HNIMP SHALL guarantee identical values for both
ocap:scheduleStartDateTime and ocap:scheduledStartDateTime property keys when either one is present. It SHALL
be implementation-dependent as to which value the HNIMP uses if both ocap:scheduleStartDateTime and
ocap:scheduledStartDateTime property keys are set with differing values.

NOTE: This mapping does not extend to any SRS mapping requirement, which remains
ocap:scheduledStartDateTime to srs:scheduledStartDateTime.

 Task State C.1.1.1

Namespace: ocap Property Data Type: xsd:int Multi-Valued: NO

Description: The taskState property indicates the current state of the recording for both the SRS RecordTask and the
OCAP RecordingRequest. The value SHALL be one of the integer state constants of the
org.ocap.dvr.OcapRecordingRequest interface.

Default Value: N/A – Output Only

Sort Order: Sequenced Numeric

Property Key: ocap:taskState

 Start Time C.1.1.2

Namespace: ocap Property Data Type: xsd:dateTime Multi-Valued: NO

Description: The start time property indicates the date and time that the recording is scheduled to start

Default Value: N/A – Output Only

Sort Order: Sequenced date and time

Property Key: ocap:scheduledStartDateTime and ocap:scheduleStartDateTime

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

90 CableLabs 05/30/13

 Duration C.1.1.3

Namespace: ocap Property Data Type: xsd:string Multi-Valued: NO

Description: The scheduledDuration property indicates the duration requested for recording. This duration does not
include any adjustments. These are reflected in the srs:scheduledDurationAdjust property. The syntax of the
scheduledDuration property is the same as the srs:scheduledDuration property defined in [UPNP SRS]. This
property is converted to an Integer when accessed from the MetadataNode.getMetadata(String) method with a
parameter of PROP_DURATION.

Default Value: N/A – Output only.

Sort Order: Property Specific, based on elapsed time. Ascending: shortest elapsed time first.

Property Key: ocap:scheduledDuration

 Source (OCAP Locator) C.1.1.4

Namespace: ocap Property Data Type: xsd:string Multi-Valued: NO

Description: The ocap:scheduledChannelID property provides channel information. Its format depends on the
associated ocap:scheduledChannelIDType property. The definition of this property is the same as
srs:scheduledChannelID property except for using ocap:scheduledChannelIDType property for type property. See
[UPNP SRS] Appendix B.4.2. When ocap:scheduledChannelID@type is "SI", the format of the fields is defined by
Section 5.5 of this specification.

Default Value: N/A – Output only.

Sort Order: Same as ocap:scheduledChannelIDType property.

Property Key: ocap:scheduledChannelID

 Recording Destination C.1.1.5

Namespace: ocap Property Data Type: xsd:string Multi-Valued: NO

Description: The destination property indicates the URI where the recorded content will be saved. It is
implementation-specific regarding whether this property matches the ocap:contentURI property.

Default Value: N/A – Output Only

Sort Order: String alpha-numeric

Property Key: ocap:destination

 Recording With Conflicts Priority C.1.1.6

Namespace: ocap Property Data Type: xsd:int Multi-Valued: NO

Description: The priorityFlag property indicates whether a recording should be made even if resource conflicts
exist. The value SHALL adhere to the definition in [OCAP-DVR].

Default Value: N/A – Output Only

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 91

Sort Order: Sequenced Numeric

Property Key: ocap:priorityFlag

 Recording Retention Priority C.1.1.7

Namespace: ocap Property Data Type: xsd:int Multi-Valued: NO

Description: The retentionPriority property indicates the priority of storage retention after a recording has expired.
The value SHALL adhere to the definition in [OCAP-DVR].

Default Value: N/A – Output Only

Sort Order: Sequenced Numeric

Property Key: ocap:retentionPriority

 Access Permissions C.1.1.8

Namespace: ocap Property Data Type: xsd:string Multi-Valued: NO

Description: The accessPermissions property indicates the permissions for reading or writing the content. This
specification distinguishes between remote access (access via a CDS action) and local access (all other access).

For remote access:

1. The HNIMP SHALL only honor the world-read and world-write permission flags and SHALL ignore all
other permission flags.

2. Content metadata and content binary may be modified remotely only if world-write access is granted. An
attempt to modify content metadata or content binary remotely when world-write access is denied SHALL
result in UPnP error 501 (Action Failed).

3. The HNIMP SHALL NOT allow remote modifications to accessPermissions property.
4. If accessPermissions property and the @restricted property are both present and the @restricted property is

set to 1, then the @restricted property SHALL override accessPermissions property for purposes of write
access.

For local access:

1. The HNIMP SHALL honor all permission flags.
2. If the ocap:appID property is present, then the HNIMP SHALL use it to determine whether to grant or deny

owner-read, owner-write, organization-read, and organization-write access; otherwise, the HNIMP SHALL
deny such access.

3. The accessPermissions property may be modified after it is added to the CDS database; the world-write and
world-read flags may be changed. In this case, the CDS eventing SHALL reflect the remote view of the
CDS database, e.g., if world-read flag for an item is changed from ‘0’ to ‘1’, the CDS eventing SHALL
reflect ‘item added;' event.

For both remote and local access:

1. If the world-read flag is set to '0' for a content item or container, then:
a. the implementation SHALL NOT allow the item or container to be discovered or read by non-

privileged applications (i.e., those without owner_app, owner_org or other_org privileges) via any
CDS action, (e.g., CDS:Search).

b. the implementation SHALL NOT generate any events for the content item, e.g., CDS LastChange.
2. If the world-read is set to '0' for a content container, then world-read access SHALL NOT be granted to any

content item or container contained within that container regardless of the world-read flag value of the

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

92 CableLabs 05/30/13

contained item or container. This overrides the access permission rules defined above and is necessary to
ensure that content items or containers within a hidden container remain hidden.

The heterogeneous CSV string SHALL have the following BNF:

accessPermissions = world "," read "," write "," owner_org "," read "," write "," owner_app "," read "," write
","

[1 * (other_org "," read "," write)]
world = "w="
owner_org = "o=" hex_string
owner_app = "a=" hex_string
other_org = "r=" hex_string
read = "1" | "0"
write = "1" | "0"
hex_string = "0x" 1*hex
hex = digit | "A" | "B" | "C" | "D" | "E" | "F" | "a" | "b" | "c" | "d" | "e" | "f"
digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

Where the terms are given the following definitions:

Term Definition

world Read and write access for all applications and devices not covered by the owner_app, owner_org or
other_org permissions.

owner_org Read and write permission for applications in the same organization of the owner application. The
value of this field (represented by 'hex_string' in the BNF) is no longer used but is retained for
backward compatibility. The HNIMP SHALL populate it in accordance with the format specified
above with an implementation-specific value. However, the HNIMP SHALL ignore its value for
granting owner access.

owner_app Read and write permissions for the application that owns the content. The value of this field
(represented by 'hex_string' in the BNF) is no longer used but is retained for backward
compatibility. The HNIMP SHALL populate it in accordance with the format specified above with
an implementation-specific value. However, the HNIMP SHALL ignore its value for granting
owner access.

other_org Read and write permissions for organizations other than the owning organizations. This is an
optional field, and any number of organizations MAY be listed. This value will match the
organization_id in the application_identifier signaling found in an AIT or XAIT.

read Read access is granted or denied depending on whether the value is "1" or "0", respectively (except
as noted above).

write Write access is granted or denied depending on whether the value is "1" or "0", respectively (except
as noted above).

This property is converted to an org.ocap.storage.ExtendedFileAccessPermissions object when accessed from the
metadataNode.getMetadata(String) method with a parameter of PROP_ACCESS_PERMISSIONS.

Default Value: N/A – Output Only

Sort Order: N/A multi-valued

Property Key: ocap:accessPermissions

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 93

 Organization C.1.1.9

Namespace: ocap Property Data Type: xsd:string Multi-Valued: NO

Description: The organizationString property indicates the organization that this recording is tied to. This field is
used to authenticate playback by matching this property to an organization name field in any playback application's
certificate chain, as defined in [OCAP-DVR].

Default Value: N/A – Output Only

Sort Order: Sequenced Numeric

Property Key: ocap:organization

 Application Identifier C.1.1.10

Namespace: ocap Property Data Type: xsd:long Multi-Valued: NO

Description: The appID property indicates the application identifier of the application that owns the content. This
value will match the application_id in the application_identifier signaling found in an AIT or XAIT. Specifically,
this value encodes the organization and application Ids as (orgID << 16) | appID. This property is converted to an
org.dvb.application.AppID object when accessed from the MetadataNode.getMetadata(String) method with a
parameter of PROP_APP_ID.

Default Value: N/A – Output Only

Sort Order: Sequenced Numeric

Property Key: ocap:appID

 Space Required C.1.1.11

Namespace: ocap Property Data Type: xsd:long Multi-Valued: NO

Description: The spaceRequired property indicates the amount of space in bytes needed for the content.

Default Value: N/A – Output Only

Sort Order: Sequenced Numeric

Property Key: ocap:spaceRequired

 URI For Recorded Content C.1.1.12

Namespace: ocap Property Data Type: xsd:string Multi-Valued: NO

Description: The contentURI property indicates the location of the content. This URI MAY be used for playback of
recorded content. This URI corresponds to the <res> element created for the recording request. It is implementation-
specific regarding whether this property matches the ocap:destination property. An HNIMP SHALL format the value
as defined for the A_ARG_TYPE_URI in the [UPNP CDS] specification.

Default Value: N/A – Output Only

Sort Order: Sequenced alpha-numeric

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

94 CableLabs 05/30/13

Property Key: ocap:contentURI

 Media Presentation Point C.1.1.13

Namespace: ocap Property Data Type: xsd:long Multi-Valued: NO

Description: The mediaPresentationPoint property indicates a resume media time in the content. The value is an
offset in milliseconds from the beginning of the recording. An HNIMP does not set the value of this property except
when a recording content item is created, at which point the HNIMP SHALL initialize the value to -1, which
indicates not set. A control point MAY change the value; see Section 6.8.5.3.

Default Value: N/A – Output Only

Sort Order: Sequenced Numeric

Property Key: ocap:mediaPresentationPoint

 MSO Recorded Content Indicator C.1.1.14

Namespace: ocap Property Data Type: xsd:boolean Multi-Valued: NO

Description: The msoContentIndicator property indicates the content item is recorded content from a cable service.
The value of true indicates the content is a recording, and the value of false indicates it is not content that was
streamed, recorded, or copied from an MSO network.

Default Value: N/A – Output Only

Sort Order: Sequenced numeric

Property Key: ocap:msoContentIndicator

 Expiration Period C.1.1.15

Namespace: ocap Property Data Type: xsd:long Multi-Valued: NO

Description: The expiration property indicates the period in seconds the recording expires after recording initiates.

Default Value: N/A – Output Only

Sort Order: Sequenced Numeric

Property Key: ocap:expirationPeriod

 First Media Time C.1.1.16

Namespace: ocap Property Data Type: xsd:long Multi-Valued: NO

Description: The first media time property is an offset in milliseconds to the first media time in the content. The
HNIMP SHALL set this value to the same value returned by the RecordedService.getFirstMediaTime for the same
content.

Default Value: N/A – Output Only

Sort Order: Sequenced alpha-numeric

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 95

Property Key: ocap:mediaFirstTime

 Channel Format C.1.1.17

Namespace: ocap Property Data Type: xsd:string Multi-Valued: NO

Description: The ocap:scheduleChannelIDType property determines the format that is used for
ocap:scheduledChannelID property as defined above. The definition of this property is same as
srs:sheduledChannelID@type property. See [UPNP SRS] Appendix B.4.2.1.

NOTE (informative): The value of this property may be extended as "Vendor-defined" type in the future
specification.

Default Value: N/A – Required on input.

Sort Order: Same as srs:scheduledChannelID@type.

Property Key: ocap:scheduledChannelIDType

C.1.2 Definitions of SRS properties

The following properties are used in the SRS objects.

 ScheduledCDSEntryID C.1.2.1

Namespace: ocap Property Data Type: xsd:string Multi-Valued: No

Description: The scheduledCDSEntryID property contains the didl-lite:@id property value of the CDS object
created for the NetRecordingEntry or the didl-lite:@id property value of the CDS object created for the
RecordingContentItem with the associated recordTask.

Default Value: N/A – Required on input

Sort Order: Lexical or Lexical Numeric.

Each implementation SHOULD use the sort method most appropriate for its method of generating didl-lite:@id
values. If didl-lite:@id values contain a numeric (sub)string that contains values that increment with each new object
creation, then use Lexical Numeric; otherwise, use Lexical.

Input: The desired setting

Output: The current setting

Property Key: ocap:scheduledCDSEntryID

 CDS Reference C.1.2.2

Namespace: ocap Property Data Type: xsd:string Multi-Valued: No

Description: The cdsReference property MUST only contain metadata of a CDS object that is referenced directly by
a recordSchedule or recordTask object using ocap:scheduledCDSEntryID property.

The cdsReference property MUST contain a valid and properly escaped DIDL-Lite XML Document. Here is the
example value of this property.

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

96 CableLabs 05/30/13

<?xml version="1.0" encoding="UTF-8"?>
<DIDL-Lite
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:upnp="urn:schemas-upnp-org:metadata-1-0/upnp/"
xmlns="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/">
<item id="RCI01" parentID="container001"
restricted="0">
<dc:title>Music Show</dc:title>
<upnp:class>
object.item.videoItem
</upnp:class>
⁢ocap:scheduledStartDateTime>20090503T19:00:00</ocap:scheduledStartDateTime>
⁢ocap:scheduledDuration>P01:00:00</oca:scheduledDuration>
<ocap:scheduledChannelIDType>DIGITAL</ocap:scheduledChannelIDType>
<ocap:scheduledChannelID>5,1</ocap:scheduledChannelID>
<desc xmlns:ocapApp="urn:schemas-opencable-com:ocap-application
namespace="urn:schemas-opencable-com:ocap-application"
id="descriptorX">
<ocapApp:Band-Members>
<ocapApp:Guitar-Player> John Smith </ocapApp:Guitar-Player>
</ocapApp:Band-Members>
</desc>
</item>
</DIDL-Lite>

Note that this is NOT a multi-valued property, unlike srs:cdsReference. So, this property can be obviously associated
with the ocap:scheduledCDSEntryID property that is included in the same recordSchedule or recordTask.

Default Value: N/A – Output only.

Sort Order: Sorting on this property is meaningless and will be ignored.

Input: N/A.

Output: The current setting

PropertyKey: ocap:cdsReference

C.1.3 Definitions of OCAP-extended properties of CDS item class for series recordings

The following properties are used to represent the relationship between a RecordingContentItem and a
NetRecordingEntry. The ocap:netRecordingEntry property is included in the CDS entry corresponding to the
RecordingContentItem. The ocap:RCIList property is included in the CDS entry corresponding to the
NetRecordingEntry.

 NetRecordingEntry ID C.1.3.1

Namespace: ocap Property Data Type: xsd:string Multi-Valued: NO

Description: The CDS object ID of the NetRecordingEntry to which the RecordingContentItem was added.

Default Value: N/A

Property Key: ocap:netRecordingEntry

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 97

 RecordingContentItem List C.1.3.2

Namespace: ocap Property Data Type: xsd:string Multi-Valued: NO

Description: This property is composed of a comma-separated list of CDS object IDs of the RecordingContentItems
that the NetRecordingEntry contains.

Default Value: N/A

Property Key: ocap:RCIList

C.1.4 Definitions of OCAP-extended properties of CDS item class for Live Streaming

The following properties are used to indicate capabilities associated with Live Streaming.

 Alternate URI C.1.4.1

Namespace: ocap Property Data Type: xsd:string Multi-Valued: NO

Description: An application MAY add this property to provide a URI that is an alternate to a <res> property URI
value. This property is a dependent property of a <res> property. See [UPNP CDS] for dependent property
definition. During a content access, e.g., HTTP GET, if the <res> URI value does not match the URI in the request
and the <res> property contains a res@ocap:alternateURI property, then the implementation SHALL compare the
path component of the alternateURI to the path component of the request URI (i.e., the scheme, authority, query, and
fragment components are not used in the comparison). If the two path components are identical, the HNIMP SHALL
respond as if the <res> property URI value matched the request. If the request URI or the alternate URI are not
compliant with [RFC 3986], no comparison is performed.

When authorizing with the Network Authorization Handler, the implementation SHALL provide the original HTTP
request URI (including the URI query component, if present) to the handler.

Default Value: N/A

Property Key: res@ocap:alternateURI

C.2 Actions

UPnP actions are defined for OCAP requirements.

C.2.1 Recording X_PrioritizeRecordings

The X_PrioritizeRecordings action is a vendor action added by OpenCable to the UPnP Scheduled Recording
Service, and an OC-DMS SHALL support this action. This action prioritizes a set of record schedules or a set of
record tasks for resource usage. Recordings are ordered by RecordScheduleID or RecordTaskID. The order of
appearance determines the priority with a recording appearing before another recording having priority. When a
record schedule is listed without any record tasks, then all record tasks in that schedule will have priority over
subsequently listed record schedules and tasks. This action causes a "best effort" on the server where non-existent
RecordSchedule or RecordTask IDs are ignored, as is corresponding recording state.

 Arguments C.2.1.1

Table C–1 - Arguments for X_PrioritizeRecordings()

Argument Direction Related State Variable

RecordingIDs IN A_ARG_TYPE_ObjectIDList; see [UPNP CDS]

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

98 CableLabs 05/30/13

 Dependency on State C.2.1.2

None.

 Effect on State C.2.1.3

This action MAY cause changes in the state of RecordSchedule and RecordTasks objects.

 Errors C.2.1.4

Table C–2 - Error Codes for X_Prioritize()

errorCode errorDescription Description

400-499 Defined Elsewhere See UPnP Device Architecture section on Control.

500-599 Defined Elsewhere See UPnP Device Architecture section on Control.

600-699 Defined Elsewhere See UPnP Device Architecture section on Control.

714 Non-homogenous IDs X_PrioritizeRecordings() failed because the Object IDs specified by the
RecordingIDs argument contains both RecordSchedule and RecordTask
IDs.

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 99

Annex D Content TSPEC Population Requirements

The HNIMP SHALL populate the TSPEC associated with the content item in the CDS as specified in Annex C of
[UPNP QMS]. The actual values used for various TSPEC parameters are specified in subsequent sections.

D.1 Default TSPEC values for Content Item

If no specific values are provided for TSPEC parameters of a content item, the HNIMP SHALL use the following
default TSPEC parameter values depending on the type of a content item. See [UPNP QMS] for definition of TSPEC
parameters mentioned below.

Table D–1 - Default TSPEC parameter values

TSPEC Parameter High-Definition Content Standard-Definition Content

PeakDataRate 20 Mbps 10 Mbps

DataRate 20 Mbps (same as Peak Data Rate, thus all
streams are treated as Constant Bit Rate)

10 Mbps (same as PeakDataRate. Thus all
streams are treated as Constant Bit Rate)

MaxBurstSize 0 0

MaxPacketSize 1500 bytes for HTTP Transport

1374 bytes for RTP Transport

1500 bytes for HTTP Transport

1374 bytes for RTP Transport

E2EMaxDelayHigh 500 ms 500 ms

E2EMaxJitter 165 ms 165 ms

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

100 CableLabs 05/30/13

Appendix I Complex Mapping Diagrams (informative)

A number of HN API method calls may invoke complex UPnP action mappings where more than one action occurs
and where more than one device may be involved in a method mapping. The diagrams in this section demonstrate the
interactions of such method calls.

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 101

I.1 Scheduling a Recording Sequence

Loop: Add Local CDS
and SRS Entries

Loop: Add Local
RecordingRequest instance(s)

Loop: Retrieve OCAP
recording metadata

Loop: add OCAP
recording metadata

Recording App HNIMP HNIMP
Recording Request Handler

App

SRS:CreateRecordSchedule

NetRecordingRequestHandler.notifySchedule(Device, NetRecordingEntry)

RecordingManager.record()

Create SRS RecordTask()

CreateRecordSchedule return

RecordingNetModule.setNetRecordingRequestHandler

NetActionHandler.notify

NetActionEvent.getResponse()

returns NetRecordingEntry

CLIENT DEVICE SERVER DEVICE

Create NetRecordingEntry()

RecordingNetModule.requestSchedule(NetRecordingSpec, NetActionHandler)

MetadataNode.addMetadata()

new(NetRecordingSpec)

instance of NetRecordingSpec

true

rootnode.getMetadata(key)

value

Create CDS ContentItem()

ContentContainer.addContentEntry(RecordingContentItem)

NetRecordingEntry.getMetadataNode()

root node

return (status)

returns instance of NetActionRequest

NetRecordingSpec.getMetadata()

instance of MetadataNode

ContentContainer.addContentEntry(NetRecordingEntry)

Create SRS RecordSchedule()

return (true)

NetRecordingEntry.addRecordingContentItem

return (void)

For an individual recording, this loop
includes just one RecordingContentItem

For an individual recording, only one
RecordingRequest is scheduled

Figure I–1 - Recording Schedule Sequence Diagram 1

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

102 CableLabs 05/30/13

1. RecordingNetModule.setNetRecordingRequestHandler()

At some time, the Monitor Application or another privileged application registers a
NetRecordingRequestHandler.

2. new(NetRecordingSpec)

The client Recording Application creates a new RecordingSpec instance.

3. NetRecordingSpec.getMetadata()

The client Recording Application retrieves the root metadata node for the NetRecordingSpec.

4. MetadataNode.addMetadata()

The client Recording Application loops as needed to add metadata sufficient to completely specify the desired
recording, as required by the SRS CreateRecordSchedule method.

5. RecordingNetModule.requestSchedule(NetRecordingSpec, NetActionHandler)

The client Recording Application requests scheduling of recording from a RecordingNetModule that represents
a DVR device, passing the new NetRecordingSpec instance and its NetActionHandler. This method returns an
instance of a NetActionRequest which the client Recording Application can user to monitor the progress of the
network request.

6. SRS:CreateRecordSchedule

The HNIMP constructs a record schedule request from the NetRecordingSpec provided by the client Recording
Application, and passes this to the SRS in the server.

7. NetRecordingRequestHandler.notifySchedule(Device, NetRecordingEntry)

The HNIMP creates a NetRecordingEntry and populates the metadata node in this entry using the metadata
received from the client in the CreateRecordSchedule method. Then the HNIMP calls the registered
NetRecordingRequestHandler.notifySchedule method, passing the requested device instance and this
constructed NetRecordingEntry.

8. NetRecordingEntry.getMetadataNode

The Recording Request Handler Application retrieves the metadata node provided by the HNIMP with
the NetRecordingEntry.

9. getMetadata

The Recording Request Handler Application loops as needed to retrieve the metadata required to construct
a RecordingRequest for the recording.

10. RecordingManager.record()

The Recording Request Handler Application creates the recording or series of recordings by interacting with
the DVR API RecordingManager. The application is responsible for determining the components of a series
recording, and may create the hierarchy of parent/leaf recordings.

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 103

11. ContentContainer.addContentEntry(NetRecordingEntry)

The Recording Request Handler Application calls ContentContainer.addContentEnty() with the
NetRecordingEntry as a parameter, to have the HNIMP create a RecordSchedule.

12. NetRecordingEntry.addRecordingContentItem()

The Recording Request Handler Application calls NetRecordingEntry.addRecordingContentItem to associate
the RecordingContentItem with the series recording represented by the NetRecordingEntry.

13. ContentContainer.addContentEntry(RecordingContentItem)

The Recording Request Handler Application adds the RecordingContentItem to the ContentContainer.
The HNIMP then adds a RecordTask to the RecordSchedule associated with the NetRecordingEntry that
contains the RecordingContentItem. The HNIMP also creates a content item in the CDS with cross-reference
between the RecordTask and the content item.

14. SRS:CreateRecordSchedule return

The HNIMP sends the SRS:CreateRecordSchedule() method response back to the client. This includes the
metadata about the scheduled recording.

15. new(NetRecordingEntry)

The HNIMP creates a NetRecordingEntry and populates it with the recording metadata, associating the response
RecordScheduleID, Result and UpdateID with the NetRecordingEntry created on the client. This
NetRecordingEntry is returned from NetActionEvent.getResponse.

16. NetActionHandler.notify(NetActionEvent)

The HNIMP calls the event notification method of the NetActionHandler passed by the client Recording
Application to RecordingNetModule.requestSchedule(), passing an instance of NetActionEvent.

17. NetRecordingEvent.getResponse()

The client Recording Application retrieves the NetRecordingEntry that resulted from the request.

The client Recording Application can use the NetRecordingEntry to retrieve additional information about
the scheduled recording. For example, to display the schedule status to the end user, Recording Application
would perform these steps:

a. Call ContentServerNetModule.requestSearchEntries() with SearchCriteria that includes a condition for the
item that has RecordScheduleID associated with the NetRecordingEntry. The result is a list of
RecordingContentItem.

b. Call RecordingContentItem.getMetadata() to retrieve the root metadata node for each RecordingItem.

c. Call MetadataNode.getMetadata() to retrieve PROP_RECORDING_STATE.

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

104 CableLabs 05/30/13

I.2 Cancel Individual Recording

Recording
Not Started

Recording App

CLIENT DEVICE

HNIMP

RecordingNetModule.requestDisable(ContentEntry)

HNIMP

SRS:DisableRecordTask()

Recording Request Handler
App

SERVER DEVICE

NetRecordingRequestHandler.notifyDisable(Device, ContentEntry)

OcapRecordingRequest.cancel()

SRS Disable Record Task()

SRS:DisableRecordTask return()

NetActionHandler.notify()

returns instance of NetActionRequest

return (status)

Figure I–2 - Cancel Individual Recording Sequence Diagram

1. RecordingNetModule.requestDisable(ContentEntry, NetActionHandler)

Recording Application requests that a scheduled recording be disabled. The network host is identified by the
ContentEntry parameter. For RecordingNetModule.requestDisable(), if the recording is in progress, this method
requests that the recording be stopped. If the recording is pending, this method requests that the recording be
cancelled. This sequence diagram assumes that the recording has NOT started.

2. returns instance of NetActionRequest

The HNIMP returns an instance of a NetActionRequest which the Recording Application can use to monitor the
progress of the network request, if desired.

3. SRS:DisableRecordTask()

The HNIMP constructs a disable record task request from the RecordingContentItem in the ContentEntry
provided by Recording Application and passes this to the SRS in the recording server.

Instead of immediately modifying the SRS for the recording specified in the DisableRecordTask request, the
server HNIMP uses the RecordTaskID received with the DisableRecordTask method to locate
RecordingContentItem with the RecordTaskID for the recording. (If the request was attempting to cancel
an entire series recording, or a one-time recording, the HNIMP could use the RecordScheduleID to locate
the NetRecordingEntry.)

4. NetRecordingRequestHandler.notifyDisable(Device, ContentEntry)

The implementation calls the registered NetRecordingRequestHandler, passing the requested device instance
and this retrieved RecordingContentItem, referenced through the ContentEntry interface.

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 105

The Recording Request Handler Application retrieves the metadata node provided by the HNIMP with this
NetRecordingEntry, and can use the RecordingManager.getEntries(), filtering based on the recording metadata,
to retrieve the OcapRecordingRequest. It can check the status of the recording request.

5. OcapRecordingRequest.cancel()

Because the recording is NOT in progress, Recording Request Handler Application cancels the recording
request.

6. SRS:DisableRecordTask return

The HNIMP provides status back to the client.

7. NetActionHandler.notify(NetActionEvent)

The HNIMP calls the event notification method of the NetActionHandler passed by the client Recording
Application to RecordingNetModule.requestSchedule(), passing an instance of NetActionEvent. In this case,
NetActionEvent.getResponse() returns null. The result of processing can be obtained by
NetActionEvent.getActionStatus(). If processing failed, NetActionEvent.getError() returns the error number.

I.3 Stop Individual Recording

Recording
In Progress

CLIENT DEVICE SERVER DEVICE

Recording App HNIMP

RecordingNetModule.requestDisable(ContentEntry)

HNIMP

SRS:DisableRecordTask()

Recording Request Handler
App

NetRecordingRequestHandler.notifyDisable(Device, ContentEntry)

OcapRecordingRequest.stop()

SRS Disable Record Task

SRS:DisableRecordTask return()

NetActionHandler.notify()

returns instance of NetActionRequest

return (status)

Figure I–3 - Stop Individual Recording Diagram

1. RecordingNetModule.requestDisable(ContentEntry, NetActionHandler)

Recording Application requests that a scheduled recording be disabled. The network host is identified by the
ContentEntry parameter. For RecordingNetModule.requestDisable(), if the recording is in progress, this method
requests that the recording be stopped. If the recording is pending, this method requests that the recording be
cancelled. This sequence diagram assumes that the recording has started.

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

106 CableLabs 05/30/13

2. returns instance of NetActionRequest

The HNIMP returns an instance of a NetActionRequest which the Recording Application can use to monitor the
progress of the network request, if desired.

3. SRS:DisableRecordTask()

The HNIMP constructs a disable record task request from the RecordingContentItem in the ContentEntry
provided by Recording Application and passes this to the SRS in the recording server.

Instead of immediately modifying the SRS for the recording specified in the DisableRecordTask request, the
server HNIMP uses the RecordTaskID received with the DisableRecordTask method to locate
RecordingContentItem with the RecordTaskID for the recording.

4. NetRecordingRequestHandler.notifyDisable(Device, ContentEntry)

The implementation calls the registered NetRecordingRequestHandler, passing the requested device instance
and this RecordingContentItem.

The Recording Request Handler Application retrieves the metadata node provided by the HNIMP with this
NetRecordingEntry, and can use the RecordingManager.getEntries(), filtering based on the recording metadata,
to retrieve the OcapRecordingRequest. It can check the status of the recording request.

5. OcapRecordingRequest.stop()

Because the recording is in progress, Recording Request Handler Application stops the recording request.

6. SRS:DisableRecordTask return

The HNIMP provides status back to the client.

7. NetActionHandler.notify(NetActionEvent)

The HNIMP calls the event notification method of the NetActionHandler passed by the client Recording
Application to RecordingNetModule.requestSchedule(), passing an instance of NetActionEvent. The result of
processing can be obtained by NetActionEvent.getActionStatus(). If processing failed,
NetActionEvent.getError() returns the error number.

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 107

I.4 Delete Individual Recording

CLIENT DEVICE SERVER DEVICE

Recording App HNIMP

RecordingNetModule.requestDelete(ContentEntry)

HNIMP

CDS:DestroyObject()

Recording Request Handler
App

NetRecordingRequestHandler.notifyDelete()

DestroyObject return()

NetActionHandler.notify

RecordingRequest.delete()

true

Delete CDS Entry

Figure I–4 - Delete Individual Recording Diagram

I.5 Schedule Local Recording

HNIMP Recording Application

RecordingManager.record

Create SRS RecordTask()

DVR HOST DEVICE

return (true)

Create CDS ContentItem()

ContentContainer.addContentEntry(RecordingContentItem)

Create SRS RecordSchedule()
Because the application has not added the

RecordingContentItem to a NetRecordingEntry,
and the recording is not complete, HNIMP

creates a RecordSchedule for the recording.

Figure I–5 - Schedule Local Recording Diagram

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

108 CableLabs 05/30/13

1. RecordingManager.record()

The Recording Application in a DVR host device schedules a recording.

2. ContentContainer.addContentEntry(RecordingContentItem)

Although the Recording Request Handler Application notifySchedule() method is require to create
a NetRecordingEntry for remote recording requests, the local Recording Application is not required to create a
NetRecordingEntry. It can expose the recording by adding the RecordingContentItem to ContentContainer.

Because the RecordingContentItem is not contained in a NetRecordingEntry and has no associated
RecordSchedule, the HNIMP creates the RecordSchedule, creates the RecordTask, and also creates the CDS
ContentItem.

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 109

I.6 Add Individual Recording to Series Recording

Loop: Retrieve OCAP
recording metadata

Loop: add OCAP
recording metadata

Recording App HNIMP HNIMP
Recording Request Handler

App

SRS:CreateRecordSchedule()

NetRecordingRequestHandler.notifyReschedule(Device, ContentEntry, NetRecordingSpec)

RecordingManager.record()

Create SRS RecordTask()

CreateRecordSchedule return(Result, RecordScheduleID, UpdateID, cdsReference)

NetRecordingRequestManager.setNetRecordingRequestHandler()

NetActionHandler.notify()

NetActionEvent.getResponse()

returns NetRecordingEntry

CLIENT DEVICE SERVER DEVICE

Create NetRecordingEntry()

RecordingNetModule.requestReschedule(ContentEntry, NetRecordingSpec, NetActionHandler)

MetadataNode.addMetadata()

new(NetRecordingSpec)

instance of NetRecordingSpec

return (true)

rootnode.getMetadata(key)

value

Create CDS ContentItem()

ContentContainer.addContentEntry(RecordingContentItem)

NetRecordingEntry.getMetadataNode()

root node

return (status)

returns instance of NetActionRequest

NetRecordingSpec.getMetadata()

instance of MetadataNode

Because the application added the RecordingContentItem
to the NetRecordingEntry for the series, associating the
RecordScheduleID, HNIMP can create the RecordTask

and contain it in the RecordSchedule

NetRecordingEntry.addRecordingContentItem(RecordingContentItem)

return (void)

Figure I–6 - Add Recording to Series Diagram

1. RecordingNetModule.setNetRecordingRequestHandler()

At some time, the Monitor Application or another privileged application registers a
NetRecordingRequestHandler.

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

110 CableLabs 05/30/13

2. new(NetRecordingSpec)

The client Recording Application creates a new RecordingSpec instance.

3. NetRecordingSpec.getMetadata()

The client Recording Application retrieves the root metadata node for the NetRecordingSpec.

4. MetadataNode.addMetadata()

The client Recording Application loops as needed to add metadata sufficient to completely specify the desired
recording, as required by the SRS CreateRecordSchedule method.

5. RecordingNetModule.requestReschedule(NetRecordingSpec, NetActionHandler)

The client Recording Application requests changing the scheduled recording from a RecordingNetModule that
represents a DVR device, passing the existing ContentEntry representing the series recording, the new
NetRecordingSpec instance for the recording to be added to the series, and its NetActionHandler. This method
returns an instance of a NetActionRequest which the client Recording Application can user to monitor
the progress of the network request.

6. SRS:CreateRecordSchedule

The HNIMP constructs a record schedule request from the NetRecordingSpec provided by the client Recording
Application, and passes this to the SRS in the server.

7. NetRecordingRequestHandler.notifyReschedule(Device, NetRecordingEntry)

The HNIMP uses the metadata from the request received from the client in the CreateRecordSchedule method to
locate the existing ContentEntry that represents the series recording. It also constructs a NetRecordingSpec
representing the recording to be added to the series. Then the HNIMP calls the registered
NetRecordingRequestHandler.notifySchedule method, passing the requested device instance, the retrieved series
ContentEntry, and the new NetRecordingSpec.

8. NetRecordingEntry.getMetadataNode

The Recording Request Handler Application retrieves the metadata node provided by the HNIMP with
the NetRecordingEntry.

9. getMetadata

The Recording Request Handler Application loops as needed to retrieve the metadata required to construct
a RecordingRequest for the recording.

10. RecordingManager.record()

The Recording Request Handler Application creates the recording by interacting with the DVR API
RecordingManager.

11. NetRecordingEntry.addRecordingContentItem()

The Recording Request Handler Application identifies the NetRecordingEntry that represents the series
recording for the new recording, either by examining metadata, finding the ParentRecordingRequest of the new

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 111

RecordingRequest (not shown). Then it calls NetRecordingEntry.addRecordingContentItem to associate
the RecordingContentItem with the series recording represented by this NetRecordingEntry.

12. ContentContainter.addContentEntry(RecordingContentItem)

The Recording Request Handler Application adds the RecordingContentItem to the ContentContainer.
The HNIMP then adds a RecordTask to the RecordSchedule associated with the NetRecordingEntry that
contains the RecordingContentItem. The HNIMP also creates a content item in the CDS with cross-reference
between the RecordTask and the content item.

13. SRS:CreateRecordSchedule return

The HNIMP sends the SRS:CreateRecordSchedule() method response back to the client. This includes the
metadata about the scheduled recording.

14. new(NetRecordingEntry)

The HNIMP creates a NetRecordingEntry and populates it with the recording metadata, associating the response
RecordScheduleID, Result and UpdateID with the NetRecordingEntry created on the client. This
NetRecordingEntry is returned from NetActionEvent.getResponse.

15. NetActionHandler.notify(NetActionEvent)

The HNIMP calls the event notification method of the NetActionHandler passed by the client Recording
Application to RecordingNetModule.requestSchedule(), passing an instance of NetActionEvent.

16. NetRecordingEvent.getResponse()

The client Recording Application retrieves the NetRecordingEntry that resulted from the request.

The client Recording Application can use the NetRecordingEntry to retrieve additional information about
the scheduled recording. For example, to display the schedule status to the end user, Recording Application
would perform these steps:

a. Call ContentServerNetModule.requestSearchEntries() with SearchCriteria that includes a condition for
the item that has RecordScheduleID associated with the NetRecordingEntry. The result is a list of
RecordingContentItem.

b. Call RecordingContentItem.getMetadata() to retrieve the root metadata node for each RecordingItem.

c. Call MetadataNode.getMetadata() to retrieve PROP_RECORDING_STATE.

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

112 CableLabs 05/30/13

Appendix II Revision History

The following ECNs were incorporated into version I02 of this specification:

EC Identifier Accepted
Date

Title of EC

HNP2.0-N-09.1482-1 12/17/09 Clarifications about client and server trick mode behavior

HNP2.0-N-09.1472-1 12/17/09 Remove ParentRecordingRequest state mapping

HNP2.0-N-09.1467-1 12/17/09 Clarify that recording entry objectID is a CDS ObjectID

HNP2.0-N-09.1466-1 12/17/09 NetActionEvent.getError mapping clarification

HNP2.0-N-09.1461-1 12/17/09 AudioResource language mapping fix

HNP2.0-N-09.1453-2 12/17/09 Fix inconsistencies in ObjectID handling

HNP2.0-N-09.1445-2 12/17/09 Corrections and clarifications in the OC-DMS device description regarding
supported services

HNP2.0-N-09.1439-2 12/17/09 Event subscription clarification

HNP2.0-N-09.1433-1 12/17/09 Clarification about use of ocap namespace for OCAP properties defined in
Annex C

HNP2.0-N-09.1432-1 12/17/09 Corrections to make consistent use of "scheduledStartDateTime" and
"ocapApp"

HNP2.0-N-09.1431-1 12/17/09 Mandate server support for Range headers

HNP2.0-N-09.1426-1 12/17/09 Update OCAP Reference

HNP2.0-N-09.1393-2 12/17/09 Map new method Device.setProperties

HNP2.0-N-09.1369-3 12/17/09 Set RecordingContentItem class to videoItem

HNP2.0-N-08.1343-10 12/17/09 UPnP Object Clarifications

HNP2.0-N-08.1342-1 12/17/09 Remove ContentDatabase class from HNP

HNP2.0-N-08.1341-1 12/17/09 Remove ContentManagementNetModule interface from HNP2.0 and clarify
support CDS actions

HNP2.0-N-08.1340-3 12/17/09 Clarify SRS related methods in HNP2.0

HNP2.0-N-08.1334-5 12/17/09 Clarify processing of Schedule Recording

HNP2.0-N-08.1314-5 12/17/09 Revise informative appendix sequence diagrams and narrative

HNP2.0-N-08.1307-1 10/30/08 HN MSO Content Indicator property fix

HNP2.0-N-08.1299-7 12/17/09 HN Authorization API Mapping

HNP2.0-N-08.1298-3 12/17/09 Application Metadata in RecordingContentItem

HNP2.0-N-08.1289-1 12/17/09 Mandatory Media Format Profile fixes

HNP2.0-N-08.1257-2 7/14/08 Home Networking Recording API mapping fixes

HNP2.0-N-08.1254-1 7/14/08 Device IP Address Mapping

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 113

The following ECNs were incorporated into version I03 of this specification:

EC Identifier Accepted
Date

Title of EC

HNP2.0-N-09.1484-1 6/3/10 ContentEntry.getCreationDate() clarification

HNP2.0-N-10.1544-1 6/3/10 HNP2.0 Home Networking Asset In Use Detection

HNP2.0-N-10.1548-1 6/3/10 Synchronizing PresentationPoint and MediaTime for persistent bookmarking

The following ECNs were incorporated into version I04 of this specification:

EC Identifier Accepted
Date

Title of EC

HNP2.0-N-08.1300-3 2/24/11 MaxBandwidth HTTP Header Removal

HNP2.0-N-10.1597-1 2/24/11 Clarification of XML encoding rules

HNP2.0-N-10.1598-1 2/24/11 ocap:schedule[d]StartDateTime interoperability

HNP2.0-N-10.1599-1 2/24/11 Clarification of allowed object types in RecordingContentItem properties

HNP2.0-N-10.1600-1 2/24/11 Clarification of type-SI channel ID format

HNP2.0-N-10.1601-1 2/24/11 Defining ocap:taskState as integer

HNP2.0-N-10.1605-1 2/24/11 HNP: Clarify type of spaceRequired

HNP2.0-N-10.1607-1 2/24/11 Removing support for Media Storage Volume

HNP2.0-N-10.1609-1 2/24/11 Clarification about HN Content Format support

HNP2.0-N-10.1614-3 2/24/11 Clarification for deleting recording content item

HNP2.0-N-10.1615-2 2/24/11 Publishing Model Clarification

HNP2.0-N-10.1632-1 2/24/11 Namespace Clarifications

HNP2.0-N-10.1633-1 2/24/11 Clarification of setting res@size and res@duration properties

HNP2.0-N-11.1636-2 2/24/11 EFAP Clarification

HNP2.0-N-11.1638-1 2/24/11 Resolution of inter-spec contradictions about metadata property types

HNP2.0-N-11.1640-2 2/24/11 Multi-valued Metadata

The following ECN was incorporated into version I05 of this specification:

EC Identifier Accepted
Date

Title of EC

HNP2.0-N-11.1659-4 5/12/11 HNP Reference edits for OpenCable bundle inclusion

OC-SP-HNP2.0-I10-130530 Home Networking 2.0

114 CableLabs 05/30/13

The following ECNs were incorporated into version I06 of this specification:

EC Identifier Accepted
Date

Title of EC

HNP2.0-N-10.1613-2 1/12/12 HNP Copy Text

HNP2.0-N-11.1689-1 1/12/12 OC-DMS and OC-DMP compliance with DLNA QoS guidelines

HNP2.0-N-11.1694-2 1/12/12 HNP Live Streaming to DLNA 1.5 Devices

HNP2.0-N-11.1713-1 1/12/12 Hidden Container HNP

HNP2.0-N-11.1739-1 1/12/12 Alternate URI

HNP2.0-N-12.1747-1 1/12/12 HNP Service Resolution Handler

The following ECNs were incorporated into version I07 of this specification:

EC Identifier Accepted
Date

Title of EC

HNP2.0-N-12.1752-1 2/24/12 Parental Control Rating UPnP Property

HNP2.0-N-12.1760-3 2/24/12 View Primary Output Port

The following ECNs were incorporated into version I08 of this specification:

EC Identifier Accepted
Date

Title of EC

HNP2.0-N-11.1676-3 5/31/12 Update Media Format Requirements

HNP2.0-N-12.1783-2 5/31/12 URI Port Number Requirements

HNP2.0-N-12.1785-2 5/31/12 HTML5 RUI Server Compliance

HNP2.0-N-12.1789-1 5/31/12 Alternate URI Query

HNP2.0-N-12.1791-1 5/31/12 UPnP Rating Type Correction

Home Networking Protocol 2.0 OC-SP-HNP2.0-I10-130530

05/30/13 CableLabs 115

The following ECNs were incorporated into version I09 of this specification:

EC Identifier Author Accepted
Date

Title of EC

HNP2.0-N-12.1796-1 Ladd 4/18/2013 View Primary Output Port OrgID

HNP2.0-N-12.1802-1 Allanki 4/18/2013 Editorial changes to Media Format Requirements

HNP2.0-N-12.1803-1 Taylor 4/18/2013 Restamping in trick modes

HNP2.0-N-13.1816-1 Ladd 4/18/2013 HNP - Transformation API Mapping

HNP2.0-N-13.1817-2 Thakore 4/18/2013 HNP - Diagnostics EndPoint

HNP2.0-N-13.1826-1 Millard 4/18/2013 Update TuneParameters in VPOP SCPD

HNP2.0-N-13.1831-1 Millard 4/18/2013 VPOP Streaming Request Clarification

The following ECNs were incorporated into version I10 of this specification:

EC Identifier Author Accepted
Date

Title of EC

HNP2.0-N-13.1818-1 Millard 5/30/13 Remove RecordingContentItem from
NetRecordingEntry

HNP2.0-N-13.1829-1 Millard 5/30/13 NetManager NetList Query

HNP2.0-N-13.1840-1 Millard 5/30/13 ContentResource getResourceProperty Clarifications

HNP2.0-N-13.1841-1 Yelekyathanhalli 5/30/13 Hidden Container Update

HNP2.0-N-13.1842-1 Millard 5/30/13 Removing ContentResources When RecordedService is
Deleted

HNP2.0-N-13.1843-1 Millard 5/30/13 Incomplete URN for OCAP Namespace

HNP2.0-N-13.1846-1 Ladd 5/30/13 Preferred IP Address HNP

HNP2.0-N-13.1851-1 Pratt 5/30/13 New ChannelContentItem type
VIDEO_ITEM_BROADCAST_VOD

	1 SCOPE
	1.1 Introduction and Overview
	1.2 Purpose of document
	1.3 Requirements

	2 REFERENCES
	2.1 Normative References
	2.2 Informative References
	2.3 Reference Acquisition
	2.3.1 OpenCable Bundle Requirements
	2.3.2 Other References

	3 TERMS AND DEFINITIONS
	4 ABBREVIATIONS AND ACRONYMS
	5 TECHNICAL REQUIREMENTS
	5.1 UPnP Protocol
	5.2 DLNA Compliance
	5.3 Networking and Connectivity
	5.3.1 Persistent Link-Local Addressing

	5.4 Device Discovery and Control
	5.4.1 Eventing

	5.5 Media Management
	5.5.1 Device Namespace
	5.5.2 Metadata Namespace
	5.5.3 Middleware Elements
	5.5.4 CDS Features

	5.6 Media Transport
	5.6.1 HTTP Headers
	5.6.2 Streaming Live Content to DLNA Clients
	5.6.3 Adaptive Streaming

	5.7 Content Transformation Device Virtualization
	5.8 Content Formats
	5.9 Quality of Service (QoS)
	5.10 Content Protection
	5.11 UPnP Interoperability
	5.12 Parental Control
	5.13 View Primary Output Port (OPTIONAL)
	5.13.1 View Primary Output Port (VPOP) Content Item
	5.13.2 View Primary Output Port (VPOP) Service

	5.14 UPnP Diagnostics

	6 UPNP MAPPING REQUIREMENTS
	6.1 Device Registry
	6.2 Package org.ocap.hn
	6.2.1 ContentServerNetModule interface
	6.2.2 Device interface
	6.2.3 DeviceEvent class
	6.2.4 NetActionEvent class
	6.2.5 NetActionRequest
	6.2.6 HomeNetPermission class
	6.2.7 NetManager class
	6.2.8 NetModuleEvent class
	6.2.9 NetModule interface
	6.2.10 PropertyFilter class

	6.3 Package org.ocap.hn.content
	6.3.1 AudioResource Interface
	6.3.2 ContentContainer
	6.3.3 ContentEntry Interface
	6.3.4 ChannelContentItem Interface
	6.3.5 ContentEntryFactory class
	6.3.6 ContentItem Interface
	6.3.7 ContentResource interface
	6.3.8 IOStatus interface
	6.3.9 MetadataNode class
	6.3.10 VideoResource Interface
	6.3.11 StreamingActivityListener interface
	6.3.12 StreamableContentResource interface
	6.3.13 ContentFormat Interface
	6.3.14 OutputVideoContentFormat Interface

	6.4 Package Org.ocap.hn.content.navigation
	6.4.1 ContentDatabaseFilter class
	6.4.2 ContentList class
	6.4.3 DatabaseQuery class
	6.4.4 DeviceFilter class

	6.5 Package org.ocap.hn.profile.upnp
	6.5.1 UPnPConstants interface

	6.6 Package org.ocap.hn.security
	6.6.1 NetAuthorizationHandler interface
	6.6.2 NetAuthorizationHandler2 interface
	6.6.3 NetSecurityManager class

	6.7 Package org.ocap.hn.service
	6.7.1 RemoteService interface
	6.7.2 ServiceResolutionHandler interface
	6.7.3 MediaServerManager class
	6.7.4 HttpRequestResolutionHandler interface

	6.8 Package org.ocap.hn.recording
	6.8.1 NetRecordingEntry interface
	6.8.2 NetRecordingRequestManager
	6.8.3 NetRecordingRequestHandler interface
	6.8.4 RecordingNetModule interface
	6.8.5 RecordingContentItem interface

	6.9 Package javax.tv.selection
	6.9.1 ServiceContext Interface

	6.10 Package org.javax.media (JMF)
	6.10.1 Clock interface
	6.10.2 Controller interface
	6.10.3 Player interface

	6.11 Package org.ocap.hn.ruihsrc
	6.11.1 RemoteUIServerManager class

	6.12 Package org.ocap.hn.transformation
	6.12.1 TransformationManager abstract class
	6.12.2 Transformation Interface
	6.12.3 TransformationListener Interface

	Annex A XML Documents (Normative)
	A.1 OCAP Root Device Description
	A.2 OC-DMS Device Description
	A.3 ViewPrimaryOutputPort Service Description

	Annex B Use of Trick Modes Headers
	Annex C OCAP Name Space
	C.1 Properties
	C.1.1 RecordingContentItem CDS object property definitions
	C.1.2 Definitions of SRS properties
	C.1.3 Definitions of OCAP-extended properties of CDS item class for series recordings
	C.1.4 Definitions of OCAP-extended properties of CDS item class for Live Streaming

	C.2 Actions
	C.2.1 Recording X_PrioritizeRecordings

	Annex D Content TSPEC Population Requirements
	D.1 Default TSPEC values for Content Item

	Appendix I Complex Mapping Diagrams (informative)
	I.1 Scheduling a Recording Sequence
	I.2 Cancel Individual Recording
	I.3 Stop Individual Recording
	I.4 Delete Individual Recording
	I.5 Schedule Local Recording
	I.6 Add Individual Recording to Series Recording

	Appendix II Revision History

