
Physics 221A

Fall 2010

Notes 12

Rotations in Quantum Mechanics, and

Rotations of Spin- 1
2 Systems

1. Introduction

In these notes we develop a general strategy for finding unitary operators to represent rotations

in quantum mechanics, and we work through the specific case of rotations in spin- 1
2 systems. We find

that the relation between spin- 1
2 rotations and classical rotations is two-to-one, due to the appearance

of non-classical phase factors. In a certain sense spin- 1
2 rotations constitute a basic building block

in the theory of rotations in quantum mechanics, out of which rotations for an arbitrary system can

be constructed. The general theory of rotations in quantum mechanics will be developed in later

sets of notes.

2. Physical Meaning of Rotations in Quantum Mechanics

In classical mechanics, we can rotate the state of a dynamical system, that is, we can rotate all

the position and velocity vectors (r,v) for each particle, to create a new or rotated state. Similarly,

in quantum mechanics, given a state |ψ〉 (taken for simplicity to be pure), it is possible to define a

rotated state such that the expectation values of all vector operators in the rotated state are rotated

relative to the expectation values in the original state, exactly as classical vectors would transform

under rotations in a classical system. The transformation between the original quantum state |ψ〉
and the rotated quantum state is brought about by means of a certain rotation operator, which is

unitary because probabilities must be preserved under rotations.

What does it mean physically to rotate a quantum state? Certainly we cannot go in with

a wrench, and rotate the wave function of the electrons in an atom, or rotate the spins of those

electrons. In any case, as we have emphasized, the wave function represents the properties of an

ensemble of systems, not an individual system, so rotating a quantum state must be equivalent to

rotating the properties of the ensemble. One point of view is to identify a quantum state with the

apparatus that prepares the ensemble of systems about which the quantum state makes statistical

predictions. (The “apparatus” might be something we create in a laboratory, or it might be provided

for us by some natural, physical situation.) We can certainly rotate a preparation apparatus, and it

is logical to regard the state prepared by the rotated apparatus as the rotated state. This point of

view gives us a definition of a rotated state, without however specifying the phase of that state.

Alternatively, quantum systems may experience rotations as a result of their time evolution.

For example, many small molecules are approximately rigid bodies, and their time evolution is
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approximately given by a time-dependent rotation operator, just as the time evolution of a classical

rigid body is specified by a time-dependent rotation R(t) (see Sec. 11.11). For another example,

spins in magnetic fields evolve by means of a time-dependent rotation operator. The magnetic field

can either be external or internal; for example, the electrons in an atom precess in the magnetic field

of the nucleus (which is a moving charge in the electron rest frame, and which may have an intrinsic

magnetic field of its own). Or the magnetic field may be external, permitting experimental control

over the orientation of spins. Another example of rotations in quantum mechanics is produced by

Thomas precession, a relativistic but purely inertial effect that rotates all the dynamical variables

of an accelerated system, for example, the spin of an electron in an orbit in an atom. Different

subsystems of a given system may be rotated by different amounts, for example, it is possible to

change the orientation of a molecule without rotating its spins (hit it with another molecule), or vice

versa (apply a magnetic field). Thus we speak of spatial rotation operators, spin rotation operators,

etc.

The phases associated with rotations are observable. For example, in a neutron interferometer,

it is possible to split a beam of neutrons into two, and to subject one of the two resulting beams

to a magnetic field, which will rotate the neutron spins. By recombining the beams and observing

the interference pattern, phase shifts such as the −1 multiplicative factor that occurs on rotating

a spin- 1
2 system by 2π can be observed. This is a rather direct observation of a phase shift, but

phases also enter into quantization conditions (recall the Bohr-Sommerfeld rules), and theoretical

predictions of energy levels would not agree with experiment if all phases were not accounted for

correctly.

3. Postulates for Rotation Operators

Suppose we have some quantum mechanical system, and an associated Hilbert space of states.

We will be interested in finding operators that act on these states that represent the action of

rotations at the classical level. If a classical rotation is specified by a rotation matrix R (relative to

some inertial frame), then we will denote the associated operator by U(R). For the time being we

will work only with proper rotations, so that R ∈ SO(3). We will denote the association itself by

R 7→ U(R), (1)

which simply means that U is a function of the classical rotation R.

As you might imagine, the specific form of the operators U(R) depends on the system, but it

turns out that there is a great deal that can be said about these operators without going into the

specific nature of the system. These are the properties of rotation operators that follow from the

properties of classical rotations, that is, ultimately from the Euclidean geometry of three-dimensional

space. We will concentrate on these properties first, and then deal with specific physical systems

(spin systems, central force problems, atoms, etc) which are treated in later sets of notes.
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We make a series of reasonable assumptions or postulates that the rotation operators U(R)

should satisfy. First, these operators should be unitary, because a symmetry operation should

preserve probabilities:

U(R)−1 = U(R)†. (2)

Next, we assume that when the classical rotation is the identity, so is the unitary operator,

U(I) = 1. (3)

Finally, we assume that the unitary operator corresponding to the product of two rotations is the

product of the unitary operators, so that

U(R1)U(R2) = U(R1R2). (4)

This means that the unitary operators U(R) reproduce the multiplication law of classical rotations.

These requirements imply that inverse rotations are mapped into inverse unitary operators,

U(R−1) = U(R)−1 = U(R)†. (5)

If the requirements (2) to (5) are satisfied, then we say that U(R) (more precisely, the mapping

(1)) forms a representation of SO(3) by means of unitary operators. As we will see, these require-

ments are actually too strong, and in the case of systems of half-integral spin, they cannot be met;

for such systems we can almost find a representation, but we ultimately fail because of phase factors.

However, the search for a unitary representation of the classical rotations is educational, and the

phase factors are not so much a difficulty as an opportunity for obtaining a deeper understanding

of rotations, and for finding new physics at the quantum level.

In addition to the mathematical requirements given by Eqs. (3) to (5), the operators U(R) must

also satisfy physical properties we expect of rotations. For example, the expectation values of vector

operators should transform as classical vectors.

4. Representations of Near-Identity Rotations

The key to finding a unitary representation of the rotations is to begin with near-identity

rotations. First, some notation. We notice that a rotation in axis-angle form actually depends only

on the product θn̂ of the axis and the angle,

R(n̂, θ) = eθn̂·J, (6)

so we introduce a vector of angles θ defined by

θ = θn̂, (7)

and write R(θ) for the rotation. Now if the rotation is near-identity, we can approximate it by the

leading terms of the exponential series,

R(θ) = I + θ · J + . . . . (8)
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This implies that

Jk =
∂R(θ)

∂θk

∣

∣

∣

∣

θ=0

, (9)

for k = 1, 2, 3.

The unitary operator that corresponds to the rotation R(θ) can also be parameterized by θ, so

we will write U(θ) for it. In the case of small angles, we can approximate U(θ) by the leading terms

of its Taylor series,

U(θ) = 1 +
∑

k

∂U(θ)

∂θk

∣

∣

∣

∣

θ=0

θk + . . . , (10)

where the first term is 1 (the identity operator) because of Eq. (3). At this point you may wish to

review the manner in which we defined linear momentum p as the generator of translations in Notes 4,

or the manner in which we defined the Hamiltonian in Notes 5. See especially Eqs. (4.30), (4.60),

(5.6) and (5.7). Following the pattern of those definitions, we now define the angular momentum of

the quantum system as the vector operator J with components Jk given by

Jk = ih̄
∂U(θ)

∂θk

∣

∣

∣

∣

θ=0

. (11)

Notice that this only defines J relative to some definition for the unitary rotation operators U(R), so

we will have to fill in some things to make the definition complete. But it follows that a near-identity

rotation operator has an expansion that begins as

U(θ) = 1 − i

h̄
θ · J + . . . . (12)

We split off a factor of i in the definition of Jk in Eq. (11) so that the operators Jk will be Hermi-

tian, because in quantum mechanics we think of Hermitian operators as the generators of unitary

operators. The Hermiticity of Jk follows by substituting Eq. (12) into U(θ)U(θ)† = 1 (exactly as

we proved the Hermiticity of the operator k̂ in Sec. 4.5). As for the factor of h̄, it makes Jk have

dimensions of angular momentum.

Reverting now to our original axis-angle notation, we can write the near-identity rotation op-

erator as

U(n̂, θ) = 1 − i

h̄
θn̂ · J + . . . . (13)

Since the operators J were defined in terms of U(R), this is not an explicit solution for the rotation

operators U , even for infinitesimal rotations. But at least is shows how those rotation operators

depend on the axis and angle, which is progress. Note that J is a fixed set of three Hermitian

operators that are independent of the axis or angle. In a moment we will use the fact that large

angle rotations can be built up as products of large numbers of small angle rotations to extend this

relation to arbitrary angles.

When defining the angular momentum in quantum mechanics, we have some of the same issues

we faced earlier when trying to define linear momentum in quantum mechanics by taking over
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some definition from classical mechanics. In the case of linear momentum, we decided that the role

that linear momentum plays in classical mechanics as the generator of translations was the most

fundamental role; this supersedes definitions such as p = mv, which are not as general. Similarly,

in quantum mechanics, we will define the angular momentum as the generator of rotations, rather

than as r×p, which is not as general. For not only is r×p meaningless for systems such as spin

systems, but even for the spatial degrees of freedom of a spinless particle, it is not always true that

the generator of rotations is r×p (for example, in the presence of magnetic fields). We take the

generator of rotations to be the most fundamental role of angular momentum, because, among other

reasons, these generators (the components of J) are conserved in systems with rotational symmetry.

Moreover, the generality of our definition allows us to treat the angular momentum of orbital motion,

spin systems, systems in magnetic fields, multiparticle systems, relativisitic systems and quantum

fields under the same formalism.

5. Rotation Operators for Any Angle

The relation (13), which gives U(n̂, θ) when θ is small, can be extended to a closed formula

valid for any θ. The pattern follows what we did earlier with translation operators in Sec. 4.5 and

with classical rotations in Sec. 11.8. We begin by seeking a differential equation for U(n̂, θ). By the

definition of the derivative,

dU(n̂, θ)

dθ
= lim

ǫ→0

U(n̂, θ + ǫ) − U(n̂, θ)

ǫ
. (14)

But since the operators U(n̂, θ) form a representation of the classical rotations R(n̂, θ) (see Eq. (4))

and since rotations about a fixed axis commute (see Eq. (11.17)), we have

U(n̂, θ + ǫ) = U(n̂, ǫ)U(n̂, θ), (15)

and the numerator in Eq. (14) has a common factor of U(n̂, θ) that can be taken out to the right.

Thus we have
dU(n̂, θ)

dθ
= lim

ǫ→0

(

U(n̂, ǫ) − 1

ǫ

)

U(n̂, θ). (16)

The remaining limit can be evaluated in terms of the angular momentum J with the aid of Eq. (13),

where the small angle θ of that formula is identified with ǫ here. This gives the differential equation,

dU(n̂, θ)

dθ
= − i

h̄
(n̂ · J)U(n̂, θ). (17)

Subject to the initial condition U(n̂, 0) = 1, this has the unique solution,

U(n̂, θ) = exp
(

− i

h̄
θn̂ · J

)

. (18)

This solution can also be obtained as the limit of the product of a large number of small angle

rotations, as in Sec. 11.8 (see Eqs. (11.38)–(11.40)).
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Equation (18) shows that we can find the rotation operators U(n̂, θ) corresponding to the

classical rotations R(n̂, θ) once we know the angular momentum operators J. This greatly simplifies

the problem, because there are only three angular momentum operators, but an infinite family of

rotation operators. The angular momentum operators are not arbitrary, however; in addition to

being Hermitian, they must satisfy certain commutation relations.

6. Commutation Relations for Angular Momentum

Let us consider the rotation C defined in Eq. (11.61), and its unitary representative U(C). We

have

U(C) = U(R1)U(R2)U(R−1
1 )U(R−1

2 ). (19)

Let us expand both sides of this equation in a Taylor series in the angles θ1 and θ2, defined by

R1 = R(n̂1, θ1) and R2 = R(n̂2, θ2). The answer can be obtained in two ways. In one approach, we

expand the exponentials for U(R1), U(R2), etc., according to Eq. (18), and multiply the series. This

gives

U(C) =
[

1 − iθ1
h̄

(n̂1 · J) − θ21
2h̄2 (n̂1 · J)2 + . . .

][

1 − iθ2
h̄

(n̂2 · J) − θ22
2h̄2 (n̂2 · J)2 + . . .

]

×
[

1 +
iθ1
h̄

(n̂1 · J) − θ21
2h̄2 (n̂1 · J)2 + . . .

][

1 +
iθ2
h̄

(n̂2 · J) − θ22
2h̄2 (n̂2 · J)2 + . . .

]

(20)

The calculation is similar to that in Eq. (11.62) leading to Eq. (11.63). When the series are multiplied,

first order terms vanish, but at second order the product becomes

U(C) = 1 − 1

h̄2 θ1θ2[n̂1 · J, n̂2 · J] + . . . . (21)

On the other hand, according to Eq. (11.64), C is a near-identity rotation with axis m̂ and angle φ,

C = I + φm̂ · J, where m̂ and φ are given by Eq. (11.65). Therefore

U(C) = 1 − iφ

h̄
m̂ · J + . . . = 1 − i

h̄
θ1θ2(n̂1×n̂2) · J + . . . , (22)

where we use Eq. (11.65). This is consistent with Eq. (21) only if

[n̂1 · J, n̂2 · J] = ih̄(n̂1×n̂2) · J. (23)

By setting n̂1 and n̂2 to x̂, ŷ, ẑ, we obtain

[Ji, Jj ] = ih̄ ǫijk Jk.
(24)

These are the standard commutation relations for angular momentum in quantum mechanics, here

extracted from the properties of rotation operators. These commutation relations are the quantum

analogs of the classical commutation relations (11.30) for the J matrices; the two commutation

relations are the same, apart from conventional factors of i and h̄.
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The usual approach to deriving the angular momentum commutation relations (24) in elemen-

tary courses in quantum mechanics is to work with the specific example of orbital angular momen-

tum, whose definition L = r×p is taken over from classical mechanics. One then just works out the

commutators of the components of L, and argues that other forms of angular momentum such as

spin ought to have the same commutation relations. Here we have derived the angular momentum

commutation relations in all generality, following from the properties of rotations. The specific case

of orbital angular momentum L will be dealt with in a later set of notes.

We have shown that the only way the unitary operators U can reproduce the multiplication

law for the classical rotations R is if the infinitesimal generators in each case satisfy the same

commutation relations, apart from conventional factors of i and h̄. Therefore we adopt the following

strategy in developing the general theory of the representations of classical rotations. We begin by

seeking the most general form that a vector of Hermitian operators J can take, given that it satisfies

the commutation relations (24). For example, we will be interested in the matrices that represent

these operators in some appropriately chosen basis. When we have found specific operators J that

satisfy the commutation relations (24), we will say that we have found a representation of those

commutation relations. Next, given some such operators J, we exponentiate linear combinations of

them as in Eq. (18), to obtain the unitary rotation operators U(n̂, θ). These can also be represented

as matrices in some basis. Finally, we explore the physical implications of these operators, to

guarantee that they have the physical properties we expect of rotations.

7. Angular Momentum and Rotation Operators for Spin- 1
2 Systems

Thus, we must begin by finding a representation of the angular momentum commutation re-

lations (24). We will take up the general problem of doing this in the next set of notes; for the

remainder of these notes, however, we will restrict consideration to a spin- 1
2 system, which possesses

a 2-dimensional ket space. To find operators J acting on this space that satisfy the commutation

relations (24), we simply notice that

J =
h̄

2
σ (25)

will do the trick. This is because of the commutation relations for the Pauli matrices,

[σi, σj ] = 2i ǫijk σk. (26)

Therefore we provisionally take the rotation operators to be

U(n̂, θ) = e−iθn̂·σ/2 = cos
θ

2
− i(n̂ · σ) sin

θ

2
, (27)

where we use the standard properties of the Pauli matrices to reexpress the Taylor series for the

exponential in terms of trigonometric functions (see Prob. 1.1).

The identification of the operators U(n̂, θ) with rotations is provisional because we must show

that these operators make physical sense as rotations. For example, let us consider the Stern-Gerlach
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experiment, in which we measure the components of the magnetic moment vector µ. We showed

earlier that the operators corresponding to the components of µ, when represented in an eigenbasis

of µz with appropriate phase conventions, produce matrices proportional to the Pauli matrices σ.

Therefore, since we expect µ transform as a vector under rotations, so should σ. This means that

if we have an (old) state |ψ〉, and a new or rotated state |ψ′〉 = U(n̂, θ)|ψ〉, then we expect that the

expectation values of σ in the old and new states should be related by the classical rotation R(n̂, θ).

In other words, we should have

〈ψ′|σ|ψ′〉 = 〈ψ|U †σU |ψ〉 = R〈ψ|σ|ψ〉, (28)

or, since this must hold for all |ψ〉,
U †σU = Rσ, (29)

where it is understood that U = U(n̂, θ) and R = R(n̂, θ). To be a little more explicit, Eq. (29)

means

U †σiU =
∑

j

Rijσj . (30)

To see if Eq. (29) is true, we simply substitute Eq. (27) to obtain

U †σU =
[

cos
θ

2
+ i(n̂ · σ) sin

θ

2

]

σ
[

cos
θ

2
− i(n̂ · σ) sin

θ

2

]

= cos2
θ

2
σ + i cos

θ

2
sin

θ

2

[

n̂ · σ,σ
]

+ (n̂ · σ)σ(n̂ · σ) sin2 θ

2
. (31)

Next we use the properties of the Pauli matrices to derive the identities,

[

n̂ · σ,σ
]

= −2i n̂×σ, (n̂ · σ)σ(n̂ · σ) = 2n̂(n̂ · σ) − σ, (32)

which we use to rewrite Eq. (31) in the form,

U †σU = cos θσ + (1 − cos θ)n̂(n̂ · σ) + sin θ n̂×σ. (33)

Finally, by comparing this with Eq. (11.41), we see that Eq. (29) is verified. Encouraged by this

result, we henceforth consider the operators U(n̂, θ) defined by Eq. (27) to be rotation operators for

spin- 1
2 systems.

8. The Spin- 1
2 Adjoint Formula

Before leaving the result (29), however, we will comment on it further, since it is useful in its

own right. In fact, this result is a spinor version of the adjoint formula (11.45), which we derived

earlier for classical rotations. To see the analogy more clearly, we first replace U by U−1 = U † and

R by R−1 = Rt in Eq. (29), so that

UσU † = R
−1σ.

(34)
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Next we dot both sides by some vector a, and use the identity,

(RA) · B = A · (RtB), (35)

valid for any rotation R and any vectors A and B, to obtain

U(a · σ)U † = (Ra) · σ. (36)

This may be compared to the adjoint formula (11.45) for classical rotations, which we reproduce

here with a slight change of notation:

R(a · J)Rt = (Ra) · J. (37)

We will refer to Eq. (34) or its variants as the adjoint formula for spinor rotations.

9. The Double-Valued Representation

We seem to be in good shape for the interpretation of the operators U(n̂, θ) as spinor rotations.

There is, however, one wrinkle, which we find upon looking at specific examples of rotations. In

particular, if we rotate a spinor about some axis n̂ by the angles of θ = 0 and θ = 2π, we find

U(n̂, 0) = 1, U(n̂, 2π) = −1, (38)

according to Eq. (27). We see that the spinor of an electron or other spin- 1
2 particle rotated by 2π

does not return to its original value, but rather undergoes a phase change of −1.

The fact that a 2π rotation is not the identity operation is a nonclassical effect, and we must

first ask what the physical significance is (in particular, whether it has any physical consequences).

Certainly an overall phase factor of a quantum state has no physical significance, but it is possible to

split a beam of spin- 1
2 particles into two, and to subject one of the resulting beams to a rotation by

2π, whereupon the phase shift becomes observable in the interference pattern that results when the

beams are recombined. This experiment has actually been performed with neutron beams, which

are split and recombined by means of a neutron interferometer (essentially a large silicon crystal

used as a kind of neutron diffraction grating). These experiments are discussed in more detail by

Sakurai, and they show that we must take the −1 phase shift for 2π rotations to be real.

The fact that a 2π rotation is not the identity operation on spinors of spin-1
2 systems means

that we must reconsider our original quest for a representation of the classical rotations by means of

unitary operators acting on a ket space, as laid out by Eqs. (1)–(5). In fact, the U operators defined

by Eq. (27) do not form a representation of the classical rotations in the strict sense of the word,

simply because they are not parameterized by the classical rotations. That is, the U operators are

not a function of the R matrices, at least not in the sense of a single-valued function; this is clear

from the special case of

R(n̂, 0) = R(n̂, 2π) = I, (39)
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a single classical rotation for which there are two unitary operators, shown by Eq. (38). More

generally, it can be shown that corresponding to every classical rotation R there are two unitary

spinor rotations,

R(n̂, θ) 7→
{

U(n̂, θ),

U(n̂, θ + 2π) = −U(n̂, θ),
(40)

which replaces Eq. (1). The two unitary operators U corresponding to a given R differ by a sign.

We see that the association between classical and spinor rotations is not one-to-one, but rather

one-to-two.

In view of this, notation such as U(R) is not really proper for spin- 1
2 rotations, without some

understanding as to which of the two unitary operators is meant. [On the other hand, the notation

U(n̂, θ) is unambiguous, as indicated by Eq. (27).] For example, the representation law (4) could be

rewritten in the form,

U(R1)U(R2) = ±U(R1R2), (41)

which would mean that if we take one of the two unitary operators corresponding to R1 and R2 and

multiply them, we will obtain one of the two unitary operators corresponding to R1R2. With this

interpretation, Eq. (41) is correct for spinor rotations.

10. The Group Manifolds SU(2) and SO(3)

We explained in Notes 11 that the Baker-Campbell-Hausdorff theorem guaranteed that the

group composition or multiplication law for finite operations was effectively contained in the com-

mutation relations. This was why we focused first on finding a representation of the commutation

relations (24), a task that will occupy us at greater length in the next set of notes, and why we were

confident that when we exponentiated linear combinations of the angular momentum operators we

would obtain operators that would reproduce the composition law of the classical rotations. What,

then, has gone wrong, that we should end up with a double-valued representation, so that Eq. (4)

must be replaced by Eq. (41)? The answer is that the spinor representation of the rotations is locally

one-to-one, but globally one-to-two.

To explain this statement more precisely, we need to discuss the group SU(2). The notation

SU(2) is standard in mathematical physics for the group of 2 × 2 complex unitary matrices with

determinant +1. As in the notation SO(3), the S stands for “special,” which means the determinant

is +1.

The significance of SU(2) in the present discussion is that every spinor rotation U(n̂, θ) defined

by Eq. (27) for some axis n̂ and some angle θ is a member of the group SU(2); and, conversely,

every member of the group SU(2) can be written in the form U(n̂, θ) for some axis n̂ and some

angle θ. We will not prove these facts; the proofs are easy, and are left as exercises. But we note

the following consequence. Namely, since any group is closed under multiplication, if we form the

product of two spinor rotations of the form U(n̂, θ), we obtain another spinor rotation of the same

form. Thus, every spinor rotation can be written in axis-angle form, and (like the classical rotations)
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there is no loss of generality in assuming this form for a spinor rotation. We see that SU(2) is the

group of spinor rotations.

To understand the one-to-two association between SO(3) and SU(2) more thoroughly, it helps

to view things geometrically in terms of the respective group manifolds. As explained in Notes 11,

the group manifold for SO(3) can be seen as a 3-dimensional surface living in the 9-dimensional

space of all 3 × 3 real matrices. Similarly, the group manifold for SU(2) can be seen as a surface

living in the space of all 2 × 2 complex matrices. Since a 2 × 2 complex matrix has 4 complex

components, each with a real and imaginary part, it takes 8 real numbers to specify an arbitrary

2 × 2 complex matrix, and we can say that 2 × 2 complex matrix space is 8-dimensional. But the

condition U †U = 1 constitutes 4 real constraints, and the condition detU = +1 is one more real

constraint, for a total of 5 constraints on 8 variables. Therefore the group manifold SU(2) can be

seen as a 3-dimensional surface living in the 8-dimensional space of all 2 × 2 complex matrices. We

see that both group manifolds SO(3) and SU(2) are 3-dimensional; this is also evident from the

axis-angle parameterization of SU(2) matrices, which involves 3 real parameters.

SO(3) SU(2)

I 1

1-to-1

Fig. 1. There exist finite neighborhoods of the identity elements in the two groups, SO(3) and SU(2), which can be
placed into one-to-one correspondence in such as way that the composition law is reproduced, according to Eq. (4). But
the neighborhoods cannot be expanded to cover the whole group manifold without losing the one-to-one correspondence.

The identity matrix R = I is one point of interest on the group manifold SO(3), and the iden-

tity U = 1 is one point of interest on the group manifold SU(2). These two points are associated

with one another by the requirement (3). Next, once we have found a representation of the angu-

lar momentum commutation relations by Eq. (25), we have a one-to-one correspondence between

infinitesimal neighborhoods of the respective identity elements, as indicated by Eq. (13). Next,

the Baker-Campbell-Hausdorff theorem guarantees that by exponentiation we obtain a one-to-one

correspondence between finite neighborhoods of the identity elements, which moreover satisfies the

representation law (4). This is illustrated in Fig. 1, and it is in this sense that we say that the rep-

resentation of SO(3) by SU(2) is locally one-to-one. But if we try to expand the two neighborhoods

on the two group manifolds, we will find that when the neighborhood in SO(3) has covered the

whole group manifold, the corresponding neighborhood in SU(2) has only covered half of that group
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manifold. In effect, SU(2) is twice as big as SO(3), corresponding to the fact that the periodicity

of spinor rotations about a fixed axis is 4π, not 2π. Thus, we say that globally the representation is

one-to-two.

11. Explicit Relationship Between SU(2) and SO(3)

The one-to-two character of the spinor represenation of rotations can be seen in another way.

Let us return to the spinor adjoint formula (29), which we write in the form

U †σiU =
∑

j

Rij σj . (42)

We multiply this equation on the right by σk and take traces, using the identity

tr(σjσk) = 2δjk, (43)

to obtain

Rij =
1

2
tr

(

U †σiUσj

)

. (44)

The significance of this result is that it is an explicit formula giving, not U as a function of R, but

rather R as a function of U . We see that since the right hand side is quadratic in U , both U and −U
correspond to the same R. Furthermore, it is straightforward to show explicitly from this formula

that

R(U1)R(U2) = R(U1U2). (45)

Thus, although we started out looking for representations U = U(R) of the classical rotations

by unitary operators, in the case of spin- 1
2 systems what we have found instead is a representation

of unitary spin rotation operators by classical rotations, R = R(U). This suggests that the spin

rotation group SU(2) is really the more fundamental group, and that the general theory of rotations

is best formulated with SU(2) as the starting point. This indeed is the most useful point of view in

quantum mechanics, and it has its advantages even in purely classical problems.

12. The Cayley-Klein Parameters

We now consider the matter of the Cayley-Klein parameters, which are discussed briefly by

Sakurai. The Cayley-Klein parameters are a set of parameters for representing rotations, either

classical or spinor. They were discovered in the nineteenth century before the advent of quantum

mechanics, and were originally intended for use in classical problems of rigid body motion. (They

are still used for that purpose.) Pauli himself was familiar with the theory of the Cayley-Klein

parameters, which apparently helped him to discover the matrices that now bear his name, and to

get credit for the theory of electron spin.

To see how the Cayley-Klein parameters come about, we first write an arbitrary 2× 2 complex

matrix in terms of its four complex components,

U =

(

a b
c d

)

. (46)
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Next, the constraint that U be unitary is equivalent to the demand that the rows of U form a pair

of orthonormal unit vectors, or,

|a|2 + |b|2 = 1, (47a)

|c|2 + |d|2 = 1, (47b)

a∗c+ b∗d = 0. (47c)

Also, the requirement detU = 1 is equivalent to

detU = ad− bc = 1. (48)

Now if we take Eqs. (47c) and (48) and solve for c and d, assuming a and b are given, we find

c = −b∗, d = a∗, so that an arbitrary element of SU(2) can be written in the form,

U =

(

a b

−b∗ a∗
)

, (49)

where a and b are complex numbers satisfying the constraint (47a). Finally, if we break a and b into

their real and imaginary parts according to

a = x0 + ix3, b = x2 + ix1, (50)

then an arbitrary element of SU(2) has the form

U =

(

x0 + ix3 x2 + ix1

−x2 + ix1 x0 − ix3

)

= x0 + i(x1σ1 + x2σ2 + x3σ3) = x0 + ix · σ, (51)

where the four real numbers (x0, x1, x2, x3) satisfy the constraint

x2
0 + x2

1 + x2
2 + x2

3 = 1. (52)

The parameters (x0, x1, x2, x3) are the Cayley-Klein parameters, in terms of which an arbitrary

spinor rotation is represented by Eq. (51). An arbitrary classical rotation can also be written in

terms of Cayley-Klein parameters, by using Eq. (44) to write R in terms of U . One might ask why we

should parameterize rotations by four parameters, subject to one constraint, when we could use three

parameters subject to no constraints. The answer is that the various options for three parameters,

such as the Euler angles, are unsymmetrical and do not cover the group manifold without introducing

coordinate singularities (similar to the singularity in spherical coordinates at the north pole). The

lack of symmetry of the Euler angles quickly leads to ugly calculations, and coordinate singularities

are inconvenient for many purposes (computer programs, for example).

The constraint (52) is interesting, for it shows that the group manifold SU(2) can be seen as

a 3-dimensional surface living, not in 8-dimensional matrix space, as earlier, but in a 4-dimensional

space with coordinates (x1, x2, x3, x4). Furthermore, the surface in question is simply the set of all

points in this 4-dimensional space at a unit distance from the origin; the surface is the 3-dimensional

surface of a sphere in 4-dimensional space, or the manifold S3 in standard mathematical terminology.
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13. Spinor Rotations about the Coordinate Axes

Let us now tabulate the spinor rotations about the three coordinate axes, much as we did in

Eq. (11.18) for classical rotations. We have

U(x̂, θ) = cos
θ

2
− iσx sin

θ

2
=

(

cos θ
2 −i sin θ

2

−i sin θ
2 cos θ

2

)

,

U(ŷ, θ) = cos
θ

2
− iσy sin

θ

2
=

(

cos θ
2 − sin θ

2

sin θ
2 cos θ

2

)

,

U(ẑ, θ) = cos
θ

2
− iσz sin

θ

2
=

(

e−iθ/2 0
0 eiθ/2

)

. (53)

The matrix for U(ẑ, θ) is diagonal, because these matrices represent the corresponding operators in

the basis of eigenkets of Sz = (h̄/2)σz. Obviously, the exponential of a diagonal matrix is diagonal.

The elementary rotations in Eq. (53) can be combined to obtain an Euler angle parameterization

for spinor rotations. This is a direct transcription of Eq. (11.55),

U(α, β, γ) = U(ẑ, α)U(ŷ, β)U(ẑ, γ), (54)

and is just the spinor representative of the latter. However, the ranges on the Euler angles are

different from the classical case; here we have

0 ≤ α ≤ 2π,

0 ≤ β ≤ π,

0 ≤ γ ≤ 4π, (55)

where the final angle γ is allowed to range to 4π to cover the extra spinor rotations.

14. A Spin “Pointing In” a Given Direction

You have no doubt heard the expression, “a spinor pointing in the such-and-such direction.”

What does this language mean, considering that a spinor for spin- 1
2 particle is a complex 2-vector,

not a real 3-vector? To explain this terminology, we introduce the eigenbasis of the operator Sz,

which we denote by |±〉. These kets are of course represented by unit vectors in the Sz basis itself,

|+〉 =

(

1
0

)

, |−〉 =

(

0
1

)

, (56)

where to be precise the kets are not equal to the column vectors indicated, rather the components

of the kets in the Sz-basis are given. The 2-vectors corresponding to |+〉 and |−〉 are often denoted

in the literature by α and β (the “spin up” and “spin down” spinors, respectively).

To begin, we simply declare that the ket |+〉 is the spinor “pointing in the ẑ direction.” Next,

to obtain a spinor pointing in an arbitrary direction n̂, we first consider a classical rotation, say, R0,

which maps the ẑ direction into the n̂ direction,

n̂ = R0ẑ. (57)
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A rotation R0 with this property is easy to write down in Euler angle form; we simply let α be the

azimuthal angle of n̂ and β the polar angle, so that R0 has the form

R0 = R(α, β, 0) = R(ẑ, α)R(ŷ, β). (58)

The rotation R0 that satisfies Eq. (57) is not unique; we could allow any value of the Euler angle

γ (not just γ = 0). But R0 in Eq. (58) will work. Then to obtain the spinor “pointing in” the n̂

direction (call it |n̂; +〉), we simply define

|n̂; +〉 = U0|+〉, (59)

where U0 = U(R0). We don’t care about the overall phase of this spinor, which is why we can ignore

the Euler angle γ, and why we don’t care which of the two U0’s is chosen in Eq. (59).

It is easy to work out the 2-vector representing |n̂; +〉 in the Sz basis. We simply write out the

Euler angle representation of U0,

U0 = U(ẑ, α)U(ŷ, β), (60)

and appeal to the matrices (53). We find

|n̂; +〉 =

(

e−iα/2 cos β
2

eiα/2 sin β
2

)

. (61)

Since the overall phase is immaterial, we can multiply this by e±iα/2, if we like, to clear one or the

other of the two phase factors in the 2-vector.

The spinor |n̂; +〉 has several notable properties. First, it is an eigenspinor of n̂ · σ, that is, of

the component of the spin in the n̂ direction, with eigenvalue +1. This is easily proved with the

help of the spinor adjoint formula (29):

n̂ · σ|n̂; +〉 = U0U
†
0 (n̂ · σ)U0|+〉 = U0n̂ · (R0σ)|+〉

= U0

(

R
−1
0 n̂

)

· σ|+〉 = U0(ẑ · σ)|+〉

= U0σz |+〉 = U0|+〉 = |n̂; +〉, (62)

where we use Eq. (57). Next, the expectation value of the spin in any direction orthogonal to n̂,

taken with respect to |n̂; +〉, vanishes, as indicated by

〈n̂; +|σ|n̂; +〉 = n̂. (63)

To prove this we again use the adjoint formula to reexpress the left hand side,

〈n̂; +|σ|n̂; +〉 = 〈+|U †
0σU0|+〉 = R0〈+|σ|+〉. (64)

But the final expectation value in this expression is a vector whose x, y and z components are 0, 0,

and 1, as a direct appeal to the Pauli matrices will show. That is, this vector is the unit vector ẑ,

so the right hand side of Eq. (64) becomes n̂ in accordance with Eq. (57). This proves Eq. (63).
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It is a fact that for a spin- 1
2 system, every spinor “points in” some direction, that is, every

spinor is an eigenspinor of n̂ · σ for some n̂. This is not true for values of the spin greater than 1
2 .

This concludes what we have to say about rotations on spin- 1
2 systems. In the next notes we

consider the general problem of constructing representations of the angular momentum commutation

relations and the corresponding representations of rotations.

Problems

1. This is problem 3.8 of Sakurai, revised edition, or 3.9 of Sakurai and Napolitano, second edition.

Let

U(α, β, γ) = U(ẑ, α)U(ŷ, β)U(ẑ, γ) (65)

be the Euler angle representation of a rotation on a spin- 1
2 system. Here we can be sloppy and

ignore the distinction between the operator U and its matrix in the |m〉 basis, where m = ± 1
2 , but

it is traditional to denote the matrix by D, as does the book. Find the axis n̂ and angle θ of this

rotation in terms of the Euler angles.

2. You are probably aware that the Pauli matrices combined with the 2 × 2 identity matrix span

the space of 2 × 2 matrices, that is, an arbitrary 2 × 2 matrix A can be written in the form,

A = a0I + a · σ, (66)

where (a0,a) are the (generally complex) expansion coefficients. Notice that if A is Hermitian, then

(a0,a) are real. Notice also that

detA = a2
0 − a · a. (67)

It is convenient to write σ0 = I, and to regard σ0 as a fourth Pauli matrix. Then Eq. (66) becomes,

A =
3

∑

µ=0

aµ σµ. (68)

Notice that we have the orthogonality relation,

tr(σµσν) = 2δµν , (69)

which can be used to solve Eq. (68) for the expansion coefficients,

aµ =
1

2
tr(σµA). (70)

Use these results to show that

tr(AB) =
1

2

∑

µ

tr(σµA) tr(σµB), (71)
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where A and B are 2 × 2 matrices.

Use these results to prove Eq. (45).

3. This problem concerns the polarization states of classical electromagnetic waves, which can be

described by the same mathematical formalism used for spinors of spin- 1
2 particles. It is also provides

a good background for the subject of the polarization states of photons, which we will take up later

in the course.

(a) The spinor “pointing in” the n̂ direction was defined by Eq. (59). Show that every spinor

“points” in some direction. For this, it is sufficient to show that for every normalized spinor |χ〉,
〈χ|σ|χ〉 is a unit vector. You can prove this directly, or use the formalism based on Eq. (71) above.

This property only holds for spin- 1
2 particles.

(b) Consider now the phenomenon of polarization in classical electromagnetic theory. The most

general physical electric field of a plane light wave of frequency ω travelling in the z-direction can

be written in the form

Ephys(r, t) = Re

2
∑

µ=1

ǫ̂µEµe
i(kz−ωt), (72)

where µ = 1, 2 corresponds to x, y, where ǫ̂1 = x̂, ǫ̂2 = ŷ, and where E1 = Ex and E2 = Ey are

two complex amplitudes, and where ω = ck. Thus, the wave is parameterized by the two complex

numbers, Ex, Ey. Often we are not interested in absolute amplitudes, only relative ones, so we

normalize the wave by setting

|Ex|2 + |Ey|2 = E2
0 , (73)

for some suitably chosen reference amplitude E0. This allows us to associate the wave with a

normalized, 2-component complex “spinor,” according to

χ =
1

E0

(

Ex

Ey

)

. (74)

Furthermore, we are often not interested in any overall phase of this spinor, since such an overall

phase corresponds merely to a shift in the origin of time in Eq. (72). This cannot be detected anyway

in experiments that average over the rapid oscillations of the wave (a practical necessity at optical

frequencies).

If we normalize according to Eqs. (73) and (74) and ignore the overall phase, then the four real

parameters originally inherent in (Ex, Ey) are reduced to two, which describe the state of polarization

of the wave. For example, the spinors

χx =

(

1
0

)

, χy =

(

0
1

)

, (75)

correspond to linear polarization in the x- and y-directions, respectively. Notice that polarization

in the +x-direction is the same as that in the −x-direction; they differ only by an overall phase.
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Similarly, the spinors

χr =
1√
2

(

1
−i

)

, χℓ =
1√
2

(

1
i

)

, (76)

correspond to right and left circular polarizations, respectively. Right circular polarization means

the electric vector rotates in a clockwise direction in the x-y plane, tracing out a circle, whereas

in left circular polarization, the electric vector rotates counterclockwise. Sakurai says there is no

uniformity in the literature about these conventions, and in fact he uses the opposite conventions

for left and right circular polarizations; but the conventions I am quoting here are the ones used

by Jackson and Born and Wolf, and I think most physicists use them. Right circular polarization

corresponds to photons with negative helicity, and vice versa. In more general polarization states,

the electric vector traces out an ellipse in the x-y plane; these are called elliptical polarizations. A

limiting case of the ellipse is where the electric vector traces a line, back and forth; these are linear

polarization states.

In optics it is conventional to introduce the so-called Stokes’ parameters to describe the state

of polarization. These are defined by

s0 = (|Ex|2 + |Ey|2)/E2
0 = 1,

s1 = (|Ex|2 − |Ey|2)/E2
0 ,

s2 = 2 Re(ExE
∗
y )/E2

0 ,

s3 = 2 Im(ExE
∗
y )/E2

0 . (77)

(See Born and Wolf, Principles of Optics, p. 31.) Show that these parameters satisfy

s21 + s22 + s23 = 1, (78)

so that ŝ = (s1, s2, s3) is a unit vector. The sphere upon which this unit vector lies is called the

Poincaré sphere; points on this sphere correspond to polarization states. Notice that the Stokes’

parameters are independent of the overall phase of the wave, being bilinear in the field amplitudes

(Ex, Ey). Indicate which points on the Poincaré sphere correspond to linear x- and y-polarization,

and which to right and left circular polarization. What kind of polarization does the positive 2-axis

in s-space correspond to? What about the negative 2-axis? (We will refer to directions in s-space

by the indices 1,2,3, to avoid confusion with x, y, z in real space).

(c) Compute the expectation value 〈χ|σ|χ〉 = n̂ for the spinor (74), and relate the components of

n̂ to the Stokes’ parameters. You will see that Stokes and Poincaré didn’t exactly follow quantum

mechanical conventions (since quantum mechanics had not yet been invented in their day), but the

basic idea is that the point on the Poincaré sphere indicates the direction in which the spinor (74)

is “pointing.”

(d) Now suppose we have a quarter-wave plate with its fast and slow axes in the x- and y-direction,

respectively. This causes a relative phase shift in the x- and y-components of the spinor (74) by
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π/2, that is,
(

E′
x

E′
y

)

=

(

e−iπ/4 0
0 eiπ/4

) (

Ex

Ey

)

, (79)

where the unprimed fields are those entering the quarter wave plate, and the primed ones are those

exiting it. Show that the effect of the quarter wave plate on an incoming polarization state, as

represented by a point on the Poincaré sphere, can be represented by a rotation in s-space. Find

the 3 × 3 rotation matrix such that ŝ′ = Rŝ. Use this picture to determine the effect of the quarter

wave plate on linear x- and y- polarizations, and on right and left circular polarizations. What

polarization must we feed into the quarter wave plate to get right circular polarization coming out?


