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Abstract: I will introduce the Krull topology that one can de�ne on an in�nite Galois group
to obtain a similar correspondence theorem as in the �nite case. I will also introduce the pro�nite
group topology and explain how the Krull topology is a special case.

I. In�nite Galois Theory

Let K/F be a Galois extension of �elds with Galois group G = G(K/F ).

If the extension is �nite, then we know that there is a nice one-to-one correspondence between
subgroups of G and intermediate extensions of K/F.

Fundamental Theorem of Finite Galois Theory. There is a one-to-one correspondence
between subgroups of G and intermediate extensions of K/F, given by the maps

H 7→ F(H) and L 7→ G(K/L).

Futhermore, an intermediate extension L is Galois if and only the corresponding subgroup H is a
normal subgroup of G.

But what if the extension is in�nite? Do we still have this nice one-to-one correspondence?
The answer is no because in general there are more subgroups than intermediate �elds. However,
it turns out that if we put the right topology on the group G, then we can get an analogous
one-to-one correspondence between closed subgroups of G and intermediate extensions of K/F.
We even get that an intermediate extension is �nite if and only if the corresponding subgroup is
open.

Fundamental Theorem of In�nite Galois Theory. There is a one-to-one correspondence
between closed subgroups of G and intermediate extensions of K/F, given by the maps

H 7→ F(H) and L 7→ G(K/L).

Furthermore, an intermediate extension L is Galois if and only if the corresponding subgroup H
is a normal subgroup of G; and [L : F ] is �nite if and only if [G : H] is �nite and if and only if H
is open.

Although this is called Fundamental Theorem of In�nite Galois Theory, it is actually only a
generalization of the �nite case because the topology turns out to be discrete when K/F is �nite.

II. Krull Topology

So how do we de�ne a topology on G to make this work? We are going to specify what the
basis is. In particular, we want the topology to be generated by the basis

B = {σH : σ ∈ G, H = G(K/E), E/F �nite}.
If K/F is �nite then we can take E = K. In that case H is the trivial group so we get that every
σ ∈ G is in the basis. So we get the discrete topology in the �nite case, as mentioned before.

Observations.
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1) Every element in B is a clopen set: Since

G(E/F ) ' G(K/F )

G(K/E)
:=

G

H

(we know this is true when K/F is �nite but the in�nite case isn't exactly the same; so this
requires a proof but I am going to skip it here), if E/F is �nite then [G : H] is �nite also. Hence,
there exists σ1, ..., σn ∈ G such that

G =
n⊔

i=1

σiH.

Since σH is one of them and the union is disjoint, clearly σH is also a closed set.

2) The collection B is indeed a basis:

a. Take E = F above and we see that B covers the entire space G.

b. Let H1 = G(K/E1) and H2 = G(K/E2), where E1, E2 are �nite extensions of F. Then, E1E2

is �nite over F and H1 ∩H2 = G(K/E1E2) (this is obvious).

III. Pro�nite groups

The Krull topology can actually be realized as a pro�nite group topology. Essentially a pro�nite
group is built out of �nite groups. Let me explain what a it is and the natural topology we can
put on it.

De�nition. Let A is a partially ordered set. A family {Ga, φb,a} is called a projective family if

1) φb,a : Gb → Ga is a group homomorphism (a ≤ b);
2) φa,a : Ga → Ga is identity on Ga;
3) φb,a ◦ φc,b = φc,a whenever a ≤ b ≤ c.

We can view ordering as describing when a group Gb lies above another group Ga (a ≤ b) and
the φb,a as projections onto the group lying below. Then 2) says we must have the identity map
when projecting onto the same group; and 3) says we can project from Gc to Gb then to Ga or
directly from Gc to Ga, and the results are the same.

De�nition. A group G is a pro�nite group if G = lim
←−

Ga for a projective family {Ga, φb,a},
where each Ga is a �nite group. The notation lim

←−
Ga represents the projective limit (also called

inverse limit) of {Ga, φb,a} and is de�ned by

lim
←
Ga = {(ga)a∈A ∈

∏
a∈A

Ga| φb,a(gb) = ga ∀a ≤ b},

and the natural pro�nite group topology is simply

Ga discrete topology→
∏
a∈A

Ga product topology→ lim
←−

Ga subspace topology.

It turns out the G is always a closed subspace of the product space
∏
Ga.

We can think of the projective limit as a way to piece the smaller groups Ga together and it
naturally lies above all of them. In particular, for each Ga there is a natural projection map
φa : G → Ga. We want this extra condition φb,a(gb) = ga because we want to be able to project
from G to Gb then to Ga, or directly from G to Ga, and get the same result either way. That is,
we want the following diagram to commute:
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G
φb ↙ ↘ φa

↙ ↘
Gb −→−→−→ Ga

φb,a

Furthermore, if ρa : H → Ga has the same property, we want to be able to piece these maps
together to get a unique homomorphism from H to G. That is, we want there to exist a unique
group homomorphism χ : H → G so that the following diagram commutes:

G
χ ↗ ↘ φa

↗ ↘
H −→−→−→ Ga

ρa

This is actually another de�nition of pro�nite group by means of a univeral property.

Example. If we consider the projection family of Z/pnZ with the usual projective map,

Z
pZ
← Z

p2Z
← Z

p3Z
← · · · ← · · ·

then the projective limit gives us the p-adic integers. This is one of the common ways to de�ne
Zp other than the series representation.

IV. Krull topology on G = G(K/F ) as a pro�nite group topology

Now back to Krull topology. How do we de�ne it as a pro�nite group? There is only one natural
thing to do. We want a family of �nite groups, so the only thing we have is the �nite Galois groups,
and the natural way to order them is by inclusion of the corresponding �elds. More precisely, this
is what we are going to do.

Partially order the set

I = {E : E �nite intermediate extension of K/F}
by inclusion. For L ⊂ E de�ne

φE,L : G(E/F )→ G(L/F ) by letting σ 7→ σ|L.
Then we obtain a projective family

(G(E/F ), φE,L)E∈I .

Theorem. The topological groups lim
←−

G(E/F ) and G are homeomorphic under the map

χ : G→ lim
←−

G(E/F ) de�ned by σ 7→ (σ|E)E∈I .

Notice that χ is a group homomorphism also since restriction and composition of maps commute.

Proof. It is very easy to prove that χ is injective. For if σ|E = idE for all �nite extensions
E/F, then given any α ∈ K we can take E = K(α), which is �nite because α is algebraic, we
immediately see that σ(α) = α and so σ = idK .

V. Other characterizations of pro�nite group topology

It is amazing that every Galois group can be realized as a pro�nite group. What is even more cool
is the converse is actually true: every pro�nite group is the Galois group of some �eld extension.
In fact, we can even characterize a pro�nite or Galois group topologically by specifying that it is
compact, Hausdor�, and totally disconnected.



INFINITE GALOIS THEORY & PROFINITE GROUP TOPOLOGY 4

Theorem. Let T be a topological group. The following are equivalent:

1) T is the Galois group of some �eld extension.
2) T is a pro�nite group.
3) T is compact, Hausdor�, and totally disconnected.

Proof. The implication 2) =⇒ 3) is actually quite easy to prove if we assume that the
fact that projective limit is a closed subspace of the product space and use some basic facts from
topology. So let T = lim

←−
Ga be a pro�nite group.

a. T is compact: Each Ga is compact because it is �nite. Product of compact spaces is again
compact by Tychano� theorem. A closed subspace of a compact space is again compact.

b. T is Hausdor�: Each Ga is Hausdor� because it has the discrete topology. Product of
Hausdor� spaces is Hausdor� and a subspace of a Hausdor� space is again Hausdor�.

c. T is totally disconencted: Each Ga is totally disconnected because it has the discrete topol-
ogy. Product of totally disconnected spaces is totally disconnected and a subspace of a totally
disconnected space is again totally disconnected.

The materials here are based on:

1) Frederick Butler's thesis �In�nite Galois Theory�.
http://faculty.ycp.edu/~fbutler/MastersThesis.pdf


