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Abstract Recent literature on Bohm’s alternative to mainstream quantum mechanics may
create the misleading impression that, except for perfunctory dismissals, the theory was ignored
by the physics community in the years immediately following its proposal. As a matter of fact,
Einstein, Pauli, and Heisenberg all published criticisms of Bohm’s theory, explaining their
reasons for not accepting the theory. These criticisms will be discussed and evaluated in this
article.

1. Introduction

In 1952, David Bohm formulated a deterministic hidden-variable theory that supple-
ments the quantum-mechanical state description with definite trajectories for particles,
a theory that in many ways was anticipated by de Broglie’s earlier pilot wave theory (de
Broglie, 1928), which had been discussed at the 1927 Solvay congress. Bohm’s theory
did not meet with the acceptance in the physics community that Bohm had hoped for.
It was not, however, ignored; several prominent physicists, among which were Einstein,
Pauli, and Heisenberg, wrote articles expressing their reasons for not accepting Bohm’s
theory. These physicists regarded the discussion as a resumption of the discussion of de
Broglie’s theory that had taken place a quarter century earlier. After a brief introduction
to Bohm’s theory, these responses will be outlined in Section 3, below, and evaluated
in the following sections. It seems to the present author that consideration of these early
responses to Bohm’s theory can serve as a useful backdrop to current controversies over
the interpretation of quantum mechanics.

2. Bohm’s theory

In his textbook, Quantum Theory (Bohm, 1951), David Bohm advocated a fairly
orthodox version of the Copenhagen interpretation of quantum mechanics. The book is
unusual, however, in the extent of the attention paid to the question of hidden variables.
At several points in the course of the book the question is raised whether the
probabilities appearing in quantum mechanics might arise as averages over supplemen-
tary variables appearing in a deeper, deterministic theory, beginning with §2.5,
“Unlikelihood of Completely Deterministic Laws on a Deeper Level”. Bohm answers
the question in the negative in §22.19, “Proof that Quantum Theory is Inconsistent with
Hidden Variables”.
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It appears to be a dramatic change of viewpoint, therefore, when, shortly after
Quantum Theory appeared, Bohm published what he had in his book declared to be
impossible—an interpretation of quantum theory in terms of hidden variables (Bohm,
1952a, b). It has even been suggested (Olwell, 1999) that Bohm’s shift from an
orthodox viewpoint to a position somewhat removed from the mainstream opinion was
prompted by the shift in his personal life, stemming from his dismissal from Princeton,
from a position in the midst of a centre of physical research to a more marginal position
in São Paolo, Brazil (see Peat, 1997 for an account).

A close look at the position outlined in Quantum Theory, however, reveals that the
conceptual move from it to Bohm’s hidden-variables theory is not as great as it initially
appears. Bohm’s proof in §22.19 of the incompatibility of quantum theory with hidden
variables refers the reader back to §6.11, in which it is argued that “the wave aspects of
matter are as real as are the particle aspects and, that, to obtain a compete and
consistent theory, we must consider both aspects, each under its proper conditions”
(Bohm, 1951, p. 136). Bohm here seems to presume that a hidden-variables theory will
attempt to restore a picture of particles with definite positions and momenta, at the
expense of the wave aspects of matter. An argument for the reality of these wave aspects
counts, therefore, as an argument against hidden-variable theories.

In formulating his own hidden-variable theory, Bohm did not part with his view
that the wave aspects of matter are as real as the particle aspects. On Bohm’s theory,
both the wave aspects and particulate aspects of matter are regarded as real. The wave
function � is regarded as an actual physical field. Specification of the wave function,
however, does not exhaustively specify reality according to this theory; there are, in
addition, particles with definite trajectories, which depend on the wave function �. The
wave function is assumed to satisfy Schrödinger’s equation. Furthermore, it is assumed
that, at some time t0, the probability density for finding a particle in a given region is
given by the quantum-mechanical probability density

�(x, t0) � ��(x, t0)�2 (1)

and that the velocity of a particle located at point x at time t0 is

v(x, t0) � � (i�/2m�)(�*�� � ���*). (2)

The acceleration of a particle is obtained by adding to the classical potential V an
additional “quantum potential”, dependent on the wave function:1

U � � �2�2���/2m���. (3)

The assumption that the acceleration of a particle is given by ma � � �(V � U), together
with the assumption that the probability distribution for position and velocity satisfy the
conditions (1) and (2) at some t0, entails that the probability distribution will satisfy
these conditions at all other times as well.

The orthodox, Copenhagen interpretation holds that any adequate theory must
take into account both wave and particle aspects of matter. These aspects are held to be
mutually exclusive; the same object cannot be both a particle and a wave simul-
taneously. Therefore, it is concluded, wave and particle concepts must be employed in
a complementary manner, depending on the experimental situation. Bohm, in formulat-
ing his hidden-variables theory, accepts the premises of this argument but rejects the
conclusion. While it is true that one object cannot be both a particle and a wave, two
can; the Bohm theory employs particle and wave concepts simultaneously by applying
them to different things.
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Bohm himself was, in his later writings, to emphasize the kinship between what he
came to call the “ontological interpretation” and the Copenhagen interpretation. One of
the most striking features of the Bohm theory is that, although it is assumed that an ideal
position measurement will reveal the actual position of a particle,2 other physical
quantities are contextualized; the result of an experiment is not due to properties of the
measured system alone but depend crucially on the details of the experimental set-up.
Thus, although each particle has a definite, differentiable trajectory, and so a definite
velocity, hence momentum, at all times, this momentum is not, in general, the quantity
that will be obtained via the sorts of procedures usually thought of as momentum
measurements. Similarly, the result of what we usually regard as a spin measurement
depends on the relative positions of the particle and the experimental apparatus, and
cannot be regarded as an intrinsic property of the particle. In their book, Bohm and
Hiley (1993) claim this context-dependence of experimental results to be an illustration
of a central theme in Bohr’s philosophy of quantum mechanics, namely, “the necessity
of considering the whole experimental arrangement, the specification of which is impera-
tive for any well-defined application of the quantum mechanical formalism” (Bohr,
1949, p. 230). Bohm and Hiley remark:

The context dependence of measurements is a further indication of how our
interpretation does not imply a simple return to the basic principles of classical
physics. It also embodies, in a certain sense, Bohr’s notion of the indivisibility
of the combined system of observing apparatus and observed object. Indeed it
may be said that our approach provides a kind of intuitive understanding of
what Bohr was saying. He described a ‘measurement’ as a whole phenomenon
not further analyzable. The description of this phenomenon includes a
specification of the experimental conditions (which are equivalent to the
context that we have been discussing), along with a statement of the results.
From the results and the conditions, one infers the ‘values’ of the ‘measured’
quantities, but as in our approach, it is not implied in Bohr’s treatment that
these values correspond to ‘beables’ that exist independently of the overall
experimental context. (Bohm & Hiley, 1993, pp. 122–123)

3. Three responses: Einstein, Pauli, Heisenberg

Bohm’s theory did not meet with widespread acceptance. Despite the impression given
in recent literature (see, e.g. Cushing, 1994; Peat, 1997; Olwell, 1999) the theory was
not, however, ignored; several prominent physicists publicly expressed their reasons for
not accepting the Bohm theory. In this section, we will discuss the criticisms of the
Bohm theory levelled by Einstein (1953), Pauli (1952), and Heisenberg (1955, 1958).

3.1 Einstein

In an often-quoted letter to Max Born, Einstein remarked, “Have you noticed that
Bohm believes (as de Broglie did, 25 years ago) that he is able to interpret the quantum
theory in deterministic terms? That way seems too cheap to me” (letter of 12 May 1952,
in Born, 1971, p. 192). In his contribution to the Born Festschrift volume (1953),
Einstein expressed his reasons for finding the Bohm theory unsatisfactory. A reply from
Bohm was included in the volume at Einstein’s request.

In his article Einstein considered a simple, standard textbook example: a one-di-
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mensional particle in a box with purely elastic sides, i.e. a potential that is equal to 0 for
�x� � L/2, and is infinite otherwise. The energy eigenfunctions for such systems are equal
to 0 outside the box (�x� � L/2), and inside the box are given by

�n(x, t) ��Ce� iEnt/� cos (knx), n odd
Ce� iEnt/� sin (knx), n even

(4)

where kn � n�/L, En � �2k2
n/2m, and C � 1/�2L. Inside the box, �n is, therefore, an

equally weighted superposition of a plane wave travelling to the right and a plane wave
travelling to the left.

What does the Bohm theory say about a particle in a box, whose wave function is
given by �n? By the distribution postulate, at any given time t the probability density for
the location of such a particle is given by ��n(x, t)�2. Its velocity, however, is zero at all
times, as can easily be verified by comparing expression (2) for the velocity of a Bohmian
particle with the wave functions (4). Einstein finds this feature of the Bohm theory
objectionable.

This objection, already raised against this theoretical attempt by Pauli a quarter
century ago, is particularly serious with regard to our example. The vanishing
of the velocity contradicts the well-founded requirement, that in the case of a
macro-system the motion should agree approximately with the motion follow-
ing from classical mechanics.3 (Einstein, 1953, p. 39)

In his reply to Einstein, Bohm pointed out, first of all, that his theory “is
self-consistent and does not contradict any known experimental facts” (Bohm, 1953,
p. 14). An analysis of the process of measurement leads to the conclusion that a process
of the sort one usually regards as a measurement of momentum will, indeed, lead to one
of the two results predicted by quantum mechanics, � �kn. Einstein’s condition, that for
macroscopic systems the theory yield an approximation, not only to the experimental
predictions of classical mechanics, but also to the classical motions of unobserved
particles, Bohm regards as an unwarranted demand:

In conclusion, the author would like to state that he would admit only two
valid reasons for discarding a theory that explains a wide range of phenomena.
One is that the theory is not internally consistent, and the second is that it
disagrees with experiment. (Bohm, 1953, p. 18)

Although it is not clear whether he is doing so consciously, Bohm is here echoing
Bohr’s response to Einstein’s criticisms of the Copenhagen interpretation:

In my opinion, there could be no other way to deem a logically consistent
mathematical formalism as inadequate than by demonstrating the departure of
its consequences from experience or by proving that its predictions did not
exhaust the possibilities of observation. (Bohr, 1949, p. 228)

Thus, just as Bohr’s insistence on taking the entire experimental arrangement into
account serves Bohm as a justification for contextualizing certain quantities, Bohr’s reply
to Einstein’s arguments serves Bohm’s theory as a defence as well (or, perhaps, as
poorly) as it serves the Copenhagen interpretation.

3.2 Pauli

Einstein regarded his criticism of the Bohm theory to be essentially the same as the
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criticism levelled by Pauli against de Broglie’s pilot wave theory. It is not surprising,
therefore, to find Pauli commenting on Bohm’s theory in a collection of essays dedicated
to de Broglie. In his essay, Pauli gives what he calls

the physical reasons, which have nothing to do with philosophical prejudices
regarding the interpretation and justification of physical theories in general,
that make me judge the interpretation of quantum mechanics based on the idea
of complementarity to be the only admissible one.4 (Pauli, 1952, p. 42)

Pauli’s reasoning is as follows. Either the “hidden” parameters have no observable
consequences, or they lead to empirical predictions that differ from those of the
quantum theory. In the former case, “the artificial asymmetry introduced in the
treatment of the two variables of a canonically conjugate pair characterizes this form of
the theory as artificial metaphysics” (p. 33). If, however, the new parameters are not
“metaphysical” in nature, but give rise to empirically visible effects, these differences
between particles regarded as identical will disrupt the symmetry or antisymmetry,
respectively, of bosons or fermions with the same quantum numbers, and, so Pauli
claims, lead to statistical predictions that, for systems composed of large numbers of
“identical” particles, must differ appreciably from those of quantum statistical mechan-
ics.

As Bohm’s theory reproduces the empirical predictions of quantum mechanics,
without making any new predictions, we will be concerned only with the first horn of
Pauli’s dilemma. Pauli’s objection to the introduction of hidden variables that do not
alter the statistical predictions of quantum mechanics is not a positivistic distrust of
unobservable entities or of unmeasurable quantities. Rather, as he makes clear in his
lectures on wave mechanics (Pauli, 1973) and in the 1956 preface to his Theory of
Relativity (Pauli, 1958), the situation is regarded as analogous to the rejection of the
aether by the special theory of relativity. The aether is to be rejected not merely because
it is unobservable, but because it introduces an asymmetry—a distinguished rest
frame—into the theory that is not present in the phenomena that serve as evidence for
the theory. According to Pauli, Bohm’s theory similarly introduces an “artificial asym-
metry” in its treatment of position and momentum. In the standard formulation of
quantum mechanics these canonically conjugate quantities are treated on a par. As Pauli
points out in his lectures on wave mechanics (1973, p. 12), the basic formulas of the
theory are invariant under the substitutions x ↔ p, i ↔ � i. For this reason, he says, it
not necessary to treat either the position-space or momentum-space wave function as
more fundamental than the other.

In Bohm’s theory, on the other hand, position and momentum are not treated
symmetrically. Although a measurement of position is assumed on Bohm’s theory to
yield the actual position of a particle, the theory eludes the von Neumann no-hidden-
variables-proof by “contextualizing” the momentum: the result of a the sort of exper-
iment usually regarded as a measurement of momentum performed on a system S is
determined, not by the properties of S alone, but also on the properties of the
experimental apparatus, A.

As Bohm points out, the result of this interaction [between system and
experimental apparatus] naturally depends also on the values of the parameters
of A. What has been said here about position and momentum is valid generally
for any pair of canonically conjugate variables: at most the values of one of
these variables can be interpreted as a “property of S.” This strips of its
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physical sense the simple passage via Fourier analysis from a wave function to
a function of the conjugate variable (which leaves us the choice of considering
either one or the other as the “primary” function), or introduces an asymmetry
with regard to the interpretation of canonically conjugate magnitudes for which
one finds reason neither in the system of our experiences nor in the mathemat-
ical formalism of wave mechanics.5 (Pauli, 1952, p. 39)

It is this asymmetry—the fact that the Bohm theory singles out position as the basic
quantity whose statistical distribution is to be recovered, at the price of contextualizing
momentum—rather than a general objection to determinism or to the positing of
unobservable quantities that, in Pauli’s opinion, makes Bohm’s theory into “artificial
metaphysics”.

3.3 Heisenberg

Similar criticisms are found in Heisenberg’s (1955, 1958) discussion of the Bohm
theory. Like Pauli, Heisenberg distinguishes between counterproposals to the Copen-
hagen interpretation that have precisely the same empirical consequences as standard
quantum mechanics, and those that do not. Bohm’s theory lies in the former class;
according to Heisenberg,

[t]he first consequence of this is that Bohm’s interpretation cannot be refuted
by experiment, and this is true of all the counter-proposals in the first group.
From the fundamentally “positivistic” (it would perhaps be better to say
“purely physical”) standpoint, we are thus concerned not with counter-pro-
posals to the Copenhagen interpretation, but with its exact repetition in a
different language. (Heisenberg, 1955, p. 18; cf. 1958, pp. 129–130)

In declaring empirically equivalent theories to be nothing more than alternate formula-
tions of the same theory, Heisenberg introduces an element of positivism absent from
Pauli’s and Einstein’s discussions of the Bohm theory. One might think that Heisenberg
could find little to object to in an “exact repetition” of the Copenhagen interpretation.
His objection has to do with the suitability of the language used. The particle trajectories
appearing in the Bohm theory, for Heisenberg, constitute “ideological superstructure”
devoid of physical significance. As a further criticism, Heisenberg invokes Pauli’s
complaint of asymmetry.

Besides the objection already made that in speaking of particle orbits we are
concerned with a superfluous “ideological superstructure,” it must be particu-
larly mentioned here that Bohm’s language destroys the symmetry between
position and velocity which is implicit in quantum theory; for the measure-
ments of position Bohm accepts the usual interpretation, for the measurements
of velocity or momentum he rejects it. Since the symmetry properties always
constitute the most essential features of a theory, it is difficult to see what
would be gained by omitting them in the corresponding language. Therefore,
one cannot consider Bohm’s counterproposal to the Copenhagen interpret-
ation as an improvement. (Heisenberg, 1958, p. 133)

Heisenberg ends his discussion of criticisms of the Copenhagen interpretation with the
remark,

All these proposals have found themselves compelled to sacrifice the essential
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symmetry properties of quantum theory (for instance, the symmetry between
waves and particles or between position and velocity). Therefore, we may well
suppose that the Copenhagen interpretation cannot be avoided if these symme-
try properties—like the Lorentz invariance in the theory of relativity—are held
to be a genuine feature of nature; and every experiment yet performed supports
this view. (Heisenberg, 1958, pp. 145–146; cf. 1955, p. 28)

Einstein, Pauli, and Heisenberg, therefore, each object to the contextualization of
momentum, Einstein because doing so violates the requirement that the theory pass
over into a suitable classical limit, Pauli and Heisenberg because it violates the
symmetries of quantum theory. Bohm himself took the asymmetry objection seriously.
In his reply to Heisenberg’s Physics and Philosophy, Bohm addressed the criticism by
saying that, in objecting to this feature of the model, Heisenberg

shows that he perhaps did not appreciate that the only purpose of this phase
of the work was to show that an alternative to the Copenhagen interpretation
is at least logically possible. If one such interpretation is possible, then it is very
likely that others will be possible too. Therefore, it should be reasonable to go
on, using the original model as a starting point, with the aim of developing a
formulation that is more plausible physically and elegant mathematically.
(Bohm, 1962a, p. 270)

In another article published in the same year, Bohm re-emphasized the provisional
nature of his proposal:

it should be kept in mind that before this proposal was made there had existed
a widespread impression that no conceptions of hidden variables at all, not
even if they were abstract, hypothetical, and “metaphysical,” could possibly be
consistent with the quantum theory … it was therefore sufficient to propose
any logically consistent theory that explained the quantum mechanics through
hidden variables, no matter how abstract and “metaphysical” it might be.
Thus, the existence of even a single consistent theory of this kind showed that
whatever arguments one might continue to use against hidden variables, one
could no longer use the argument that they are inconceivable. Of course, the
specific theory that was proposed was not satisfactory for general physical
reasons. But if one such theory is possible, then other and better theories may
also be possible. And the natural implication of this argument is “Why not try
to find them?” (Bohm, 1962b, p. 360, 1980, p. 81)

4. Is the asymmetry necessary?

If we take Bohm’s suggestion seriously that his theory is to be regarded as a provisional
one, showing that a “trajectory interpretation”6 is logically possible, then it is worthwhile
to explore alternatives. Pauli remarks that at most one of a pair of canonically conjugate
variables can, in Bohm’s theory, be regarded as a possessed property of the system; the
other must be contextualized. There seems to be a suggestion that this is a necessary
feature of theories like Bohm’s; ascribing a definite value at all times to a dynamical
variable comes only at the price of contextualizing its conjugate. In the spirit of Bohm’s
“Why not try to find them?” we should ask whether it is in fact possible for a theory to
reproduce the statistical predictions of quantum mechanics while ascribing non-contex-
tual values to both position and momentum.
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To get a feel for what such a theory might be like, consider the following special
case. Consider a one-dimensional particle in a harmonic oscillator potential

V(x) � �m�2x2. (5)

As Wigner (1932, p. 752; see also Hillery et al., 1984, p. 137) has shown, for a harmonic
oscillator, if the Wigner distribution

w�(x, p, t) � (1/��) �
	

� 	

dy �*(x � y, t)�(x � y, t)e2ipy/� (6)

is non-negative at some time t0, it remains so for all times, and in fact yields a
distribution corresponding to an ensemble of harmonic oscillators. We have, therefore,
in these special cases ensembles of trajectories such that the ensemble distribution of
both position and momentum matches, at all times, the quantum-mechanical probabil-
ity distributions for these quantities. Unfortunately, the Wigner distribution (or, rather,
quasi-distribution), though always real-valued, can take on negative values, and so
cannot be used as a basis for a comprehensive hidden-variable theory. Can an argument
be given that no hidden-variable theory can ascribe non-contextual values to both
position and momentum?

As Bell (1966) has emphasized, no-go theorems are not to be had for free; it is only
when some conditions are specified that the hidden variables are assumed to satisfy that
one obtains an impossibility result. Pauli’s claim that at most one of position and
momentum can be regarded as “possessed properties” is based on von Neumann’s
no-hidden-variables theorem. This theorem has rightly been criticized for imposing
unreasonable constraints on simultaneously possessed values of observables that are not
commeasurable (Bell, 1966; see Shimony, 1993, p. 89 for a report that Einstein earlier
raised the same criticism). The Bell–Kochen–Specker theorem (Bell, 1966; Kochen &
Specker, 1967) weakens this constraint. The key assumption here is that, if A and B are
observables whose corresponding operators commute, then the product observable AB
possesses a value that is the product of the values of A and B. Hidden-variable theories
satisfying this constraint are often called “non-contextual” hidden-variable theories,
because the value associated with an observable is independent of the choice of which
other commeasurable observables are to be measured. The Bell–Kochen–Specker
theorem, while not ruling out hidden-variable theories tout court, does rule out theories
that are non-contextual in this sense. The theorem leaves it open which subsets of
observables can be ascribed non-contextual values, and in particular leaves it open
whether the partial Boolean algebra generated by position and momentum is such a
subset.

Rob Clifton (2000) has shown that it is possible to construct a Kochen–Specker-
style obstruction involving position and momentum for a system having at least two
continuous degrees of freedom. Clifton adapted Mermin’s (1990, 1993) simplified proof
of the Bell–Kochen–Specker theorem, itself based on work of Peres (1990), to show that
it is not, in fact, possible to assign simultaneous non-contextual values to a pair of
independent coordinates and their conjugate momenta. The following proof is based on
Clifton’s.7

Let q1, q2 be independent coordinates of some system, with conjugate momenta p1,
p2, and let q̂1, q̂2, p̂1, p̂2 be the associated operators on the Hilbert space of the system.
Define the operators
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Â1 � cos (aq̂1/�) Â2 � cos (aq̂2/�)
B̂1 � cos (�p̂1/a) B̂2 � cos (�p̂2/a)

(7)

where a is an arbitrary non-zero constant with dimensions of momentum. From the
canonical commutation relations

[q̂i, q̂j] � [p̂i, p̂j] � 0

[q̂i, p̂j] � i��ijI
(8)

it follows that

[Â1, Â2] � [B̂1, B̂2] � [Â1, B̂2] � [B̂1, Â2] � 0 (9)

and also that

Â1B̂1 � � B̂1Â1

Â2B̂2 � � B̂2Â2 .
(10)

We will assume that the quantities corresponding to q̂1, q̂2, p̂1, p̂2 take on definite
values q1, q2, p1, p2, respectively, and that associated with the operators Â1, Â2, B̂1, B̂2

are the definite values

�(Â1) � cos (aq1/�) �(B̂1) � cos (�p1/a)

�(Â2) � cos (aq2/�) �(B̂1) � cos (�p1/a)
(11)

These will be assumed to be all non-zero. We will also assume, as is usual in
Kochen–Specker-type proofs, that if two operators X̂, Ŷ commute, and if the corre-
sponding quantities take on definite values �(X̂), �(Ŷ), then the product operator X̂Ŷ
takes on a definite value �(X̂Ŷ) � �(X̂)�(Ŷ).

Since Â1 and Â2 commute, the product operator Â1Â2 has definite value

�(Â1Â2) � �(Â1)�(Â2). (12)

Similarly,

�(B̂1B̂2) � �(B̂1)�(B̂2) (13)

�(Â1B̂2) � �(Â1)�(B̂2) (14)

�(Â2B̂1) � �(Â2)�(B̂1). (15)

Furthermore, the operator Â1Â2 commutes with B̂1B̂2, so

�(Â1Â2B̂1B̂2) � �(Â1Â2)�(B̂1B̂2) � �(Â1)�(Â2)�(B̂1)�(B̂2). (16)

Similarly, since Â1B̂2 commutes with Â2B̂1, we have

�(Â1B̂2Â2B̂1) � �(Â1B̂2)�(Â2B̂1) � �(Â1)�(B̂2)�(Â2)�(B̂1) (17)

�(Â1Â2B̂1B̂2) � �(Â1B̂2Â2B̂1). (18)

However, because of the anticommutation relations

Â1Â2B̂1B̂2 � � Â1B̂2Â2B̂1 (19)

and therefore

�(Â1Â2B̂1B̂2) � � �(Â1B̂2Â2B̂1) (20)

and thus we have a contradiction.
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This result shows that it is not possible for each of a pair of coordinates q1, q2

(which may pertain either to the same, or to different, particles) and their associated
conjugate momenta to all have simultaneous non-contextual values. If we make the
reasonable assumption that the issue of whether q1, p1 have non-contextual values is
independent of whether q2, p2 have non-contextual values, and if we accept the
assumption that possessed values of observables represented by commuting operators
should satisfy the product rule, then we have a proof of Pauli’s claim that, for any pair
of canonically conjugate variables, at most the values of one of these variables can be
interpreted as a property of the system. It can also be shown that, given a reasonable
continuity condition on possessed values, the same result can be obtained while only
considering a single degree of freedom—that is, a single coordinate and its conjugate
momentum (Myrvold, 2002).

Clifton’s argument depends on considerations of observables other than position
and momentum; one could still ask whether some trajectory interpretation could yield
ensemble distributions for position and momentum that match the quantum-mechanical
probability distributions, without regard for other observables. Here, again, a no-go
theorem is not to be had for free; one must specify some constraint on the trajectories.
It turns out that there is a condition satisfied by the Bohm theory that cannot be satisfied
by a theory that would seek to attribute definite trajectories to particles while avoiding
the asymmetry of interpretation of which Pauli complains: unlike the Bohm theory, such
a theory could not have dynamics that are local in configuration space.

The well-known non-locality exhibited by the Bohm theory stems from the fact that
the wave function, for systems of N � 1 particles, is not a function on 3-dimensional
space but on 3N-dimensional configuration space. This means that, in general, the
velocity of any one particle is a function of the coordinates of all N particles, even when
these are separated by a great distance. Only when the wave function factorizes is the
motion of one particle independent of the position of the others. Bell (1980, p. 159,
1987, p. 115) has remarked,

That the guiding wave, in the general case, propagates not in ordinary
three-space but in a multidimensional-configuration space is the origin of the
notorious ‘nonlocality’ of quantum mechanics. It is a merit of the de Broglie–
Bohm version to bring this out so explicitly that it cannot be ignored.

The Bohmian dynamics are, however, local in configuration space, and this means
that, when the wave function is factorizable, so that each particle has its own wave
function, the non-locality disappears. This feature, as we shall now show, entails the
contextuality of momentum; a trajectory theory that attempts to attribute “possessed”
values, revealed upon measurement, to both position and momentum cannot be local,
even when only a single particle is involved.

Consider a single particle in one dimension. Let �1 be a wave function that is
non-zero only within a radius r of the origin, and take a �� r. Suppose that a particle has
the wave function

�(x) � (�1(x � a) � �1(x � a))/�2. (21)

The corresponding momentum-space wave function is given by

	(p) � i�2 sin (pa/�)
1(p) (22)

where the function 
1(p) is the Fourier transform of �1(x). Let us choose �1 such that

1 is non-zero and indeed non-negligible at and near p � 0.
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If we are to assign non-contextual values to both position and momentum for the
particle whose wave function is given by (21), then the position of the particle must,
with probability one, be in one of the disjoint regions R� � [a � r, a � r], R� � [ � a � r,
� a � r]. Since 	(0) � 0, it cannot have zero momentum (and, indeed, for arbitrarily
small 
 there will be an interval � containing p � 0 such that the probability that p � �
is less than 
).

Now suppose that a particle-detection experiment is performed in R� , with null
result. We conclude that the particle is in R� . But the probability density for a
subsequent momentum “measurement” is �
1(p)�2, which, by hypothesis, is non-negli-
gible for p � 0. Therefore, if we are to regard the momentum “measurements” as
revealing pre-existing values of momentum, we must conclude that the particle-detec-
tion experiment performed in R� must, at least some of the time, affect the momentum
of the particle, even if the particle is located in R� . Such a theory cannot, therefore, be
local in configuration space, even when applied to a single particle.

5. Should the criticism be taken seriously?

Symmetry considerations are often regarded as extra-empirical, even aesthetic consider-
ations. On such an attitude, the criticisms raised by Einstein, Pauli, and Heisenberg
would count as extraordinarily weak, amounting, perhaps, to little more than an
expression of distaste for Bohm’s theory. This view, however, derives from an exces-
sively narrow construal of evidential support, which locates the whole of the empirical
support of a theory in its ability to save the phenomena. On this construal of the relation
of empirical evidence to theories, any two predictively equivalent theories must be
equally well supported by the evidence.

If, however, it is acknowledged that two theories having the same empirical
consequences can be differentially supported by the evidence, a plausible principle is:
ceteris paribus, a theory that posits asymmetries not present in the phenomena that serve
as evidence for the theory is less well supported by the evidence than a theory whose
symmetries match those of the phenomena. For example, if one postulates a preferred
aether frame, which is nevertheless rendered undetectable by contraction of moving
objects and slowing of physical processes in objects moving with respect to the aether,
this precise cancellation of what would otherwise be observable effects appears as a
remarkable coincidence. If one postulates however, the absence of an aether—or, at
least, the absence of an aether with sufficient structure to permit it to pick out a
preferred rest frame—together with the principle of relativity, the null result of experi-
ments attempting to detect the motion of the earth with respect to the aether becomes
inevitable. For these reasons, the invariance of experimental results with respect to
choice of inertial reference frame lends support to Einstein’s theory of relativity, and
casts doubt on theories that posit that some inertial reference frame has a privileged
status.

Can we advance a similar argument that the Bohm’s theory’s violation of q/p
symmetry detracts, not only from the elegance and beauty of the theory, but from its
evidential support?

To begin addressing this question, let us first consider the role played by conjugate
coordinate/momentum pairs in classical mechanics. In the Newtonian formulation of
classical mechanics, the relation between position and momentum is a kinematical
relation:



18 W. C. MYRVOLD

pi � mq̇i. (23)

Newton’s second law then gives the rate of change of the momenta:8

ṗi � � �V/�qi. (24)

In the Hamiltonian formulation of classical mechanics, position and momentum (or any
other pair of canonically conjugate variables) are treated as if they are kinematically
independent variables; the relation between position and momentum becomes one of
Hamilton’s equations of motion, into which (up to a change of sign) p and q enter
symmetrically:

q̇i � �H/�pi ṗi � � �H/�qi. (25)

Because of this symmetric treatment of coordinates and their conjugate momenta, it is
possible to make a canonical transformation that (again, up to a change in sign)
interchanges the coordinates and momenta:

Qi � pi Pi � � qi. (26)

What are we to make of the invariance of the Hamiltonian equations of motion under
such a transformation? Does the fact that Hamilton’s equations of motion retain their
form under the canonical transformation (26) indicate a physical symmetry?

The answer, I think, is no. Hamilton’s equations of motion retain their form under
arbitrary canonical transformations, no matter what form the Hamiltonian takes. The
fact that Hamilton’s equations of motion are invariant under the transformation (26),
therefore, yields no information about the symmetries of a system. In this context,
genuine physical symmetries are associated with a special class of canonical transforma-
tions—namely, those that leave the functional form of the Hamiltonian invariant. Such
transformations have associated with them constants of the motion as their generating
functions (see Goldstein, 1980, pp. 408–411 for a discussion).

There is, therefore, a profound disanalogy between the invariance of, say, the
equations of electromagnetism under Lorentz transformations, and the invariance of the
Hamiltonian equations of motion under the canonical transformation (26). One could
say: the former reflects a symmetry of the physical system under consideration, the latter
a symmetry of the phase space. The fact that structure of phase space does not
distinguish between position and momentum should not be taken as an indication that
there is no important physical distinction between position and momentum—and herein
lies the disanalogy, because the fact that the spacetime, Einstein–Minkowski spacetime,
invoked in special relativity is invariant under Lorentz transformations should be taken
as an indication that, if the theory is correct, distinctions not preserved under Lorentz
transformations do not belong to the structure of physical spacetime.

The situation is exactly analogous in quantum mechanics. Any unitary transform-
ation

q̂i → Û†q̂iÛ p̂i → Û†p̂iÛ (27)

leaves the canonical commutation relations, and hence the equations of motion,
invariant. There is, in particular, a unitary transformation that (up to a change of sign
and multiplication by an arbitrary constant) interchanges position and momentum:

q̂i → p̂i/� p̂i → � �q̂i. (28)

(Here � is an arbitrary constant of dimension mass/time).
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What are we to make of the invariance of the fundamental equations of quantum
mechanics under such a transformation? Does this indicate a physical symmetry?

The answer, I think, is no. The canonical commutation relations are preserved
under arbitrary unitary transformations (the analogue, in quantum mechanics, of
classical canonical transformations), no matter what form the Hamiltonian takes. The
fact that the fundamental equations of the theory are invariant under the transformation
(28), therefore, yields no information about the symmetries of a system. In this context,
a genuine physical symmetry is associated with a transformation represented by a
unitary operator that commutes with the Hamiltonian.

The objection, as Heisenberg phrases it, is, therefore, too strong to be sustained. It
is not true that a system subject to a transformation of the type (28), regarded as an
active transformation, is experimentally indistinguishable from the untransformed sys-
tem. Pace Heisenberg, the q/p symmetry of the basic equations of quantum mechanics
cannot be regarded as “a genuine feature of nature”, nor can it be said that experiment
supports this view.

Even if one rejects as excessively strong the assertion that symmetry under q/p
exchange constitutes an empirically observed symmetry comparable to Lorentz invari-
ance, there remains a weaker objection that can be sustained. The fact that momentum
measurements are not regarded as revealing the state of motion of the particle prior to
observation introduces an element of arbitrariness into the Bohm theory. Bohm’s theory
makes a particular choice of possible trajectories of particles, not dictated by the
requirement of recovering the quantum-mechanical predictions for position. Other
choices are possible; among theories that share with Bohm’s the attribution of trajecto-
ries to particles while recovering quantum-mechanical statistics for position are Nelson’s
stochastic theory (Nelson, 1966), the alternatives to the Bohm theory considered by
Ghirardi and Deotto (1998), and Holland’s “new trajectory interpretation” (Holland,
1998). These do not, of course, exhaust the logical possibilities. Although Bohm is
correct that the experimental facts do not refute the contention that (for example) an
electron in the ground state of a hydrogen atom is motionless, we can hardly be said to
have evidence that it is motionless, evidence that would count against a rival trajectory
interpretation that attributed a circulating orbit to such an electron. Any trajectory
interpretation must make some choice regarding trajectories. The requirement that a
trajectory theory recover the statistical predictions of quantum mechanics regarding
position measurements radically underdetermines the trajectories of particles.

6. The non-locality objection

The discussions that followed the introduction of Bohm’s theory are of historical
interest, but they are also, I believe, of interest to present-day discussions regarding the
foundations of quantum mechanics. Bohm’s theory has the decided advantage that it
solves the “measurement problem”—or, rather, in the Bohm theory the measurement
problem does not arise, because there is no need to distinguish measurements from
other interactions. The question arises whether the Bohm theory has disadvantages that
should prompt us to try to find solutions to the measurement problem that lack them.

There is, of course, in addition to the q/p asymmetry discussed above, another
asymmetry exhibited by the Bohm theory. Its brand of non-locality requires a preferred
notion of distant simultaneity. As Bohm and others have pointed out, it is possible for
the theory to do so while maintaining Lorentz invariance at the phenomenal level. The
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objection to such a move is precisely the same as the objection to alternatives to special
relativity that introduce an unobservable aether frame.

It is interesting that Pauli, Einstein, and Heisenberg did not raise the non-locality
objection against Bohm’s theory. Perhaps this is because Bohm’s theory was introduced
as an interpretation of non-relativistic quantum mechanics. Since then, however, this
objection has been raised. There are three forms that a response to the objection can
take. The first is much in the spirit of Bohm’s reply to Einstein: the theory is logically
consistent and makes the correct, Lorentz invariant predictions; in particular, as long as
the distribution postulate is satisfied, it is not possible to gain sufficient knowledge of or
control over initial conditions either to detect the preferred reference frame or to exploit
the theory’s non-locality for superluminal signalling. The second response is a tu quoque
objection; it may be claimed that Bell’s theorem, together with the experimental tests of
the Bell inequalities, shows that any empirically adequate theory must introduce a
distinguished foliation at the fundamental level (this is suggested by Cushing, 1994,
p. 189; see also Maudlin, 1996). The third is that every interpretation of quantum
mechanics must pay the price of abandoning some cherished principle of pre-quantum
physics, and that non-locality is a small price to pay for determinism and a resolution
of the measurement problem.

The reply to the first form of response has already been discussed. Agreement with
experimental results does not constitute the whole of the empirical support of a theory;
ceteris paribus, a theory that does not introduce an asymmetry not present in the
phenomena is better supported by those phenomena than one that does. Such a reply,
of course, requires that the tu quoque response fail. The violation of Bell’s inequalities by
quantum-mechanical predictions for entangled states is seen by some to indicate a
fundamental incompatibility between quantum mechanics and relativity. Others have
argued that the non-locality inherent in quantum mechanics is of a sort that can
“peacefully coexist” with special relativity (see, e.g. Shimony, 1978, 1984, 1986; Jarrett,
1984, 1989; Butterfield, 1989; Redhead, 1989; Teller, 1989). Discussion of this issue
is beyond the scope of the present article; we must content ourselves with the
observation that, while Bohm’s theory clearly does pick out a preferred notion of distant
simultaneity, it is not at all clear that the violation of Einstein separability exhibited by
ordinary quantum mechanics must do so also, and it is not clear that any exact
formulation of quantum mechanics (that is, a formulation that does not invoke vague
notions such as “measurement” or “observer”) must pick out a preferred foliation or
otherwise introduce asymmetries not present in the phenomena.

Here again, we should ask whether the asymmetry—the requirement of a preferred
foliation for the formulation of the theory in spite of the Lorentz invariance of
observable phenomena—is a feature inherent in the programme of constructing a
trajectory interpretation, or merely a feature of Bohm’s particular choice of trajectories.
Berndl et al. (1996) have shown that it is not possible for a trajectory interpretation to
yield a position distribution such that the quantum equilibrium condition � � ���2 holds
with respect to all Lorentz frames. It is, however, possible to construct Lorentz-invariant
Bohmian models by building a distinguished foliation into the model as one of the
“beables” of the theory (Dürr et al., 1999). Although this issue deserves more discussion
than can be given here, it seems that such a move is subject to precisely the same
objection as the objection to alternatives to special relativity that introduce an unobserv-
able aether frame—if the predictions of the theory matches those of quantum mechan-
ics, the distinguished foliation will be unobservable and will introduce into the
theoretical description an asymmetry not present in the phenomena.
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This leads to the third response—that some price must be paid, and that non-local-
ity is a small price to pay for determinism and a satisfactory resolution to the
measurement problem. Although it is not the primary motivation for interest in
Bohmian theories, let us consider the issue of determinism first. If two predictively
equivalent theories are equally well supported by the evidence, then choice between
them—if a choice must be made at all—becomes a matter of personal taste, and those
with a taste for determinism may indeed find non-locality a small price to pay. If,
however, the methodological principle suggested above—that, ceteris paribus, a theory
that does not introduce asymmetries not present in the phenomena is less well
supported by those phenomena—is a reasonable one, then theories that, like the Bohm
theory, introduce a preferred reference frame, are at an evidential disadvantage. We
should ask whether this disadvantage is compensated for by the restoration of determin-
ism. To ask this is to ask whether the evidence for determinism is sufficient to
compensate for the evidential debit incurred by the introduction of a preferred reference
frame. The answer to this question seems clearly to be negative; there is really nothing
that counts as evidence that the world is deterministic at the fundamental level.
Although we are, in many cases, able to predict events reliably, this predictability, as
Schrödinger (1944) pointed out, is, even on a classical view of the world, typically a
matter of order out of disorder—predictability depends on the statistical averaging of a
myriad of microscopic events that are, at least for all practical purposes, effectively
random.

This brings us to the matter of the measurement problem. It is indeed a problem
for quantum mechanics, on the standard interpretation, that it is unable to account for
the occurrence of determinate events at the macroscopic level and hence unable to
account for the very measurement results that are taken as evidence for the theory. It is
this problem that must be faced, if one is to claim a superiority of standard quantum
mechanics over the Bohm theory.
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Notes

1. A variant on Bohm’s theory known as “Bohmian mechanics” takes the law of motion to be given by (2);
its acceleration is then a consequence of this law of motion. The difference between this formulation and
Bohm’s original formulation will be inessential for the discussion that follows.

2. It has been claimed (Englert et al., 1992) that the Bohm theory cannot sustain this assumption—that under
certain circumstances, a particle detector will be “fooled” as to the position of a particle. Barrett (2000)
has convincingly argued that this claim involves assumptions about the trajectory of particles in “free”
space that are unwarranted in this context. A position measurement will always reveal the particle to be
where the Bohm theory says it is, although other considerations might lead to different conclusions about
the location of the particle.

3. Dieser übrigens schon vor einem Viertel-Jahrhundert von Pauli gegen diesen theoretischen Versuch
erhobene Einwand ist im Hinblick auf unser Beispiel besonders schwerwiegend. Das Verschwinden der
Geschwindigkeit widerspricht nämlich der wohlbegründeten Forderung, dass im Falle eines Makro-Sys-
tems die Bewegung mit der aus der klassischen Mechanik folgenden Bewegung angenähert übereinstimmen
soll.

4. Ce sont ces raisons physiques, qui n’ont rien à faire avec des préjugés philosophiques quant à
l’interprétation et à la justification de théories physiques en général, qui me font juger que l’interprétation
de la mécanique quantique basée sur l’idée de la complémentarité est la seule admissible.



22 W. C. MYRVOLD

5. Comme Bohm le fait remarquer, le résultat de cette interaction dépend naturellement aussi des valeurs des
paramètres de A. Ce qui a été dit ici du lieu et de l’impulsion est valable d’une façon générale pour
n’import quelle paire de variables canoniquement conjuguées: tout au plus les values d’une de ces variables
peuvent être interprétées comme «propriété de S». Ceci dépouille de son sens physique le simple passage
par analyse de Fourier d’une fonction d’onde à celle de la variable conjuguée (ce qui nous laisse le choix
de considérer soit l’une soit l’autre comme la fonction «primaire») ou introduit une asymétrie par rapport
à l’interpretation de grandeurs canoniquement conjuguées pour laquelle on ne trouve de raison ni dans le
système de nos expériences ni dans le formalisme mathématique de la mécanique ondulatoire.

6. This apt phrase is Holland’s (1998).
7. The difference between the Kochen–Specker obstruction given here and Clifton’s is that Clifton’s

obstruction is not obtained directly for real-valued observables but via a detour through the complex plane;
this is supplemented by an argument that an obstruction in the complex plane entails one on the real line.

8. In order to simplify the comparison between the Newtonian and Hamiltonian formulations of classical
mechanics, we will restrict our attention to forces that can be derived from a potential—that is, monogenic
forces (see Goldstein, 1980, p. 35).
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SCHRÖDINGER, E. (1944) What is Life? The Physical Aspect of the Living Cell (Cambridge, Cambridge University

Press).
SHIMONY, A. (1978) Metaphysical problems in the foundations of quantum mechanics, International Philosoph-

ical Quarterly, 18, pp. 3–17.
SHIMONY, A. (1984) Controllable and uncontrollable non-locality, in: S. KAMEFUCHI et al. (Eds) Foundations

of Quantum Mechanics in Light of New Technology (Tokyo, The Physical Society of Japan), pp. 225–230.
Reprinted in SHIMONY (1993, pp. 130–138).

SHIMONY, A. (1986) Events and processes in the quantum world, in: R. PENROSE & C. ISHAM (Eds) Quantum
Concepts in Space and Time (Oxford, Oxford University Press), pp. 182–203. Reprinted in SHIMONY

(1993, pp. 140–162).
SHIMONY, A. (1993) Search for a Naturalistic World View, Volume II: Natural Science and Metaphysics

(Cambridge, Cambridge University Press).
TELLER, P. (1989) Relativity, relational holism, and the bell inequalities, in: CUSHING & MCMULLIN (Eds),

pp. 208–223.
WIGNER, E. (1932) On the quantum correction for thermodynamic equilibrium, Physical Review, 40,

pp. 749–759.



24 W. C. MYRVOLD

Note on contributor

Wayne C. Myrvold is Assistant Professor in the Department of Philosophy at the University of Western
Ontario. He is the author of a number of articles on the interpretation of quantum mechanics, including “On
peaceful coexistence: is the collapse postulate compatible with relativity?”, Studies in History and Philosophy of
Modern Physics, 33 (September 2002), pp. 435–466, and “Relativistic quantum becoming”, forthcoming in
The British Journal for the Philosophy of Science. Correspondence: Department of Philosophy, University of
Western Ontario, London, Ontario, Canada N6A 3K7. E-mail: wmyrvold@uwo.ca


