

Investigation of group 8 metallocenes @ TASCA

Christoph E. Düllmann

GSI Helmholizzenirum für Schwerionenforschung GmbH, Darmstadt, Germany

Presented on the 7th workshop on Recoil Separator for Superheavy Element Chemistry *TASCA 08*, October 31, 2008, GSI Darmstadt, Germany

Transactinide Chemistry Preseparation: a New Approach

TransActinide Separator and Chemistry Apparatus

Transactinide Chemistry Preseparation: a New Approach

TransActinide Separator and Chemistry Apparatus

Potential chemical systems

Hassocene - Science

Hassocene - Science

- -Group 8 metallocenes: 18 electrons
- -Ru(Cp)₂ is the most stable metallocene!
- -Metal-ring bond strenght: Fe<Ru<Os

 ΔH_{sub}

sub 73.4±1.1

76-83

73-80

??

Hassocene - Science

- Metallocenes: metal in formal 2+ state (though, ring-metal bonding mainly covalent)
 - → in contrast to past studies, where the metal was in its highest oxidation state
 - → influence of relativistic effects better visible?
- Due to large number of M(Cp)₂: many effects studied systematically across the Periodic Table
 - Highly symmetric systems with moderate number of atoms → fully relativistic 4c-DFT calculations under way

Hassocene - Technical

Cp trivia

Cp is commercially available, cheap, comes

in dimeric form

For synthesis, the monomeric form is needed

→ Cracking (usually: thermal cracking @ T>180°C, or at lower temp. with catalyst)

Once cracked, it dimerizes within hours @ room temperature (Diels-Alder-reaction)

→ On-line cracking+distillation!!

Hassocene - Timeline

Early 2009:

Submit proposal to G-PAC, requesting beamtime for preparation experiments with lighter homologs. Alternative: combined "chem. development" proposal?

(Hopefully...) later in 2009:

Start with several rather short (3-5 shifts) runs as soon as beamtime is available. Initial experiments with γ -decaying isotopes

2010

Optimization, Hs preparatory experiments with a-decaying isotopes

As soon as ready: Hs experiment

Beamtime request

For test experiments:

2009: 9 shifts parasitic beam

2010 6 shifts main + 6 shifts parasitic

For Hs experiment:

Depends on σ and ε_{TASCA} of:

	σ (pb)	ε _{TASCA} (%)
²⁴⁸ Cm(²⁶ Mg,3-5n)	4-8	?
²³⁸ U(³⁶ S,3-5n)	<1 (?)	?
²²⁶ Ra(⁴⁸ Ca,3-5n)	~10 (?)	60

Beamtime request

For test experiments:

2009: 9 shifts parasitic beam

2010 6 shifts main + 6 shifts parasitic

If formation of $Hs(Cp)_2$ is fast, 1-2 weeks for a Hs experiment should be sufficient. Reliable final number only after tests.

Necessary technical developments

For initial studies:

- -On-line cracking + distillaton
 - → Exists on paper, should not take too long

For experiments with α -decaying isotopes:

- -Detection system (ROMA)
- → Fair amount of work (+€?) on DAQ hardware + GO4 implementation needed

Manpower

Could be an ideal PhD or postdoc project

Initial experiments not manpower intensive, but regular presence at GSI necessary

ROMA upgrade!!!

Conclusions

- Hs(Cp)₂ is likely stable, preseparation should make its investigation possible
- Relatively high volatility expected
- 4c-DFT calculations under way
- Interesting science
- Experiments with (Fe)/Ru/Os(Cp)₂
 could start in 2009