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Abstract. This paper presents an Evolutionary Algorithm used to search
for similarities in a music score represented as a graph. We show how the

graph can be searched for similarities of different kinds using interchange-

able similarity measures based on viewpoints. A segmentation algorithm

using the EA for automatically finding structures in a score based on a

specific-to-general ordering of the viewpoints is proposed. As an exam-

ple a fugue by J. S. Bach is analysed, revealing its extensive use of inner

resemblance.

1 Musical similarity

Repetition or parallelism is a fundamental feature of western tonal music. Ock-
elford cites musicologists arguing that music is a self-contained art form [1].
Music can not refer to the phenomenal world as well as other art forms are able
to, so the mind’s longing for reference can only be satisfied through repetition.

This paper addresses the search for parallelism in a symbolic representation
of music. Looking at the music as symbols or events, parallelism can appear as
repetition of phrases, but also as systematic changes in the quantitative infor-
mation of the notes/events (pitch and duration), or through elaborations and
simplifications of phrases (inserting/deleting notes). The artistic compositional
effects can be varied infinitely.

Our approach is an attempt to see how far one can go by analysing west-
ern tonal music based on musical similarities solely calculated from information
present in a score. We will demonstrate this with a fugue by J. S. Bach.

West et al. introduce the term transformation when a musical object (com-
posed of a number of events/notes) can be inferred from another musical object
in a perceptible way, and when it is possible to specify the transforming func-
tion [2]. This function determines the type of their relation and describes in what
way they can be said to be different inflections of the same musical idea. Our
strategy will be to carefully define a set of transformation functions, and then
to use them in searches.

What types of transformation functions could we expect? The problem is
often divided in two. The easiest task is describing similarities involving a one-
to-one correspondence between the notes in the respective phrases — transfor-
mations that do not change the number of notes, but only their parameters. We
will call these simple transformations. This could for example be the transposi-
tion of a phrase. The real challenge is to find phrases that sound similar while



allowing elaboration/simplification (inserting/deleting notes). To detect such a
non-simple parallelism there is not a single strategy, since there are numerous
ways of embellishing the music and consequently many transformation functions.
Although the non-simple transformations are quite important in music, we will
in this paper concentrate on the simpler case of defining (and finding) similarities
between equal-numbered groups of notes. Simple transformation functions are
quite common means of creating parallelisms, and can be thought of as system-
atic changes of the notes like transpositions (of various types) and inversions.
A small set of these transformations are able to account for a great deal of
similarities in western tonal music.

Describing musical similarity and proposing similarity measures is a field
which has already been given much attention, due to its central position in au-
tomatic music analysis (see, e.g., [3-5], to name but a few). Segmentation based
on similarities has also been studied by [6]. We have built our similarity measures
upon the ideas by Conklin et al. [7, 8]. Their method of computing similarities are
defined on sequences of notes solely. We have adopted this sequential approach
to the problem, which turns out to work fine for the fugue analysed here.

2 Data acquisition and representation

To be able to analyse music in the best way, we decided to depend mainly on
a reasonably detailed music source: the MuseData format (www.musedata.org).
This source contains information about enharmonic pitch spelling. We can use
MIDI as input too, but MIDI lacks the diatonic information (relating every note
to a 7 step scale) that is crucial when searching for harmonically related phrases.

Musical events are put into a graph structure — the music graph. Each
note/rest or ‘event’ in the score is represented as a vertex containing the pitch
(spelling, octave, alterations), duration, start time in the score, key, and time
signatures etc. The temporal relations of the notes/rests are present as directed
edges of the graph. Vertices representing events following each other in time (a
note/rest that starts immediately where another ends) are connected by an edge
of type follow. Notes with the same start time are connected by simultaneous
edges. The graph representation does not bias the representation of the music
to be mainly ‘vertical’ (homophonic) or ‘horizontal’ (polyphonic), but any con-
nected subset of the notes — a subgraph — can be considered as an entity of the
music. The features of this graph representation is explained in detail in [9]. For
the experiments explained here, follow edges only exist between vertices belong-
ing to the same voice in the score. The MuseData representation and scores in
general are by nature divided into such voices or parts.

For practical reasons, subgraphs can either be sequential (graphs of vertices
connected by edges of type follow only) or non-sequential. The similarity mea-
sures presented in this paper are defined for sequences of notes and the music
analysed is mainly polyphonic, so in this paper we are searching for similar se-
quential subgraphs. [9] presents a way to extend the similarity measures to the
more general case of comparing any (equal sized) subgraphs. We will from now
on refer to sequential subgraphs as simply subgraphs.



3 The Search Algorithm

The EA maintains a population of Similarity Statements. A similarity statement
(SS) is a guess that two subgraphs of the same size (same number of vertices)
are similar. The population is initialised with SSs each pointing at two random
subgraphs of the ‘mother’ graph. By doing crossover, mutation, and selection in
terms of altering the guesses it is possible to change the SSs to point at increas-
ingly more similar subgraphs, dynamically adjusting their size and position.

A new generation is composed of three parts. A given percentage is chosen
through tournament selection (tournament size of 2), another percentage is cre-
ated by crossover of two selected individuals, and the remaining percentage is
created through mutation of the selected or crossbred individuals. Finally, af-
ter a new population is created, the mutation rate is also used to determine a
number of random mutations that are applied to the new generation. The most
fit similarity statement in each generation always survives to the next (elitism).
(The numbers used in the presented experiment were: selection: 0.45, crossover:
0.05, and mutation 0.5).

Mutation on a similarity statement with sequential subgraphs s; and ss can
take several forms. The different mutation operations add and remove edges and
vertices to/from the subgraphs. It should be noted that subgraphs are imple-
mented as pointers to a subset of the vertices and edges in the ‘mother’ graph.
Mutations on subgraphs do not change the graph structure itself. Common to
all operators is that they must preserve the constraints that make s; and s
sequential (connected and only including edges of type ‘follow’).

— Extension Extend both s; and ss once, either at the ‘beginning’ of the
subgraph (against the follow edge direction) or at the ‘end’ (along the follow
edge direction), chosen at random and independently for each graph. The
size of both subgraphs is increased by 1. (Applied with probability 0.3)

— Shortening Shorten both s; and s;. As with extension, a subgraph can be
shortened at either of the ends chosen at random and independently for each
graph. The size is decreased by 1. (Probability 0.3)

— Slide Slide both subgraphs once along or against the follow edge direction
(s1 and s2 do not need to slide the same way). The size of the subgraphs is
not altered by a slide. (Probability 0.3)

— Substitution Substitute either s; or sy with a new and randomly generated
subgraph of the same size. (Probability 0.1)

The crossover operation takes two SSs and combines them by picking one sub-
graph from each (chosen at random). The two parent statements most often
have different sizes, so the smallest of them is extended at random until the
sizes match. However, the chances that this will improve the fitness are low,
because often the two subgraphs that are chosen are very different. As a result,
the crossover parameter is often set low.

3.1 Evaluation

The fitness function evaluates the degree of similarity of two equal sized sub-
graphs according to an interchangeable similarity measure. The fitness function
has to balance four conflicting goals:
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\ Viewpoint | View |
Absolute MIDI Pitch [48,52,50,53,52,53,55,47,48]
MIDI Pitch Interval [4,-2,3,-1,1,2,-8,1]

Pitch Class 0,4,2,5,4,5,7,11,0]
Diatonic Absolute Pitch (A)|[C3,E3,D3,F3,E3,F3,G3,B2,C3|
Diatonic Pitch Interval (T') [2,-1,2,-1,1,1,-5,1]
Diatonic Interval mod 7 (M) (2,6,2,6,1,1,2,1]
Diatonic Inversion Interval [-2,1,-2,1,-1,-1,5,-1]

Absolute Duration [%,%,%,%,%,%,%,%,1]

Fig. 1. Example of the viewpoints.

Optimise musical similarity

Prefer larger matches to smaller ones

Prefer phrases that conform to grouping structure rules
Forbid overlap between subgraphs in any SS

The size of the graphs in a SS contribute in the fitness calculation to make
the algorithm explore larger matches even if a perfect one is already found. A
decreasing function of the size of the subgraphs is added to the fitness to make
the EA prefer longer matches.

An evaluation of both subgraphs’ agreement with grouping structure (a quick
implementation of some simple rules suggested by [10]) is also included in the
evaluation. The rules essentially propose a computable way of telling how well
the two phrases individually correspond to phrase boundaries in the music. Even
though only a few rules are implemented, the effect is noticeable. There is un-
fortunately no space here to go into details about this.

No overlap between two subgraphs in a similarity statement is permitted. We
want phrases to be non-overlapping so we later can substitute the subgraphs in
an unambiguous way. Overlap result in a bad evaluation.

We have used the notion of viewpoints presented in [7] when calculating the
musical similarities between subgraphs. A viewpoint is a function taken on a
sequence of musical objects, yielding a view of the sequence. The sequence is in
our case a sequential subgraph, and the view is a list of values. Figure 1 shows a
note sequence and examples of viewpoints and corresponding views. As shown,
values from both the pitch and time domains can be included (other information
available could also be used). Viewpoints can either be absolute — using values
from each note — or relative — calculated from the relation between notes. The
list is by no means complete.

To compare if two subgraphs of equal length are equal under a given view-
point, we compare their views. This is simply done by counting the number
of pairwise disagreeing values in the view vectors. When this view difference
evaluates to zero, the sequences are equal under this view.



A motif and its exact repetition have the same view under the absolute
pitch viewpoint A (the identity transformation, ‘Absolute’) and the pitch interval
viewpoint T' (‘Transposition’). A motif and its transposed version will however
have different views under A, but equal under T'. A is said to be more specific
than 7T'. In the segmentation of the fugue presented in Sec. 5, we chose to use
three viewpoints from the pitch domain — the ones denoted as A, T and M in
Fig. 1. They can be ordered by pitch in this way:

DiatonicAbsPitch(A) < DiatonicInt(T) < DiatonicIntMod7(M) (1)

If two patterns are found similar (regarding pitch) under a viewpoint, they will
also be equal under a less specific viewpoint.

The fitness function combines evaluations of the above mentioned parameters
and selected viewpoints into a single value. The global optimal solution is thus
based on a mixture of melodic similarities and the size and boundaries of the
subgraphs. In the measures used for the fugue segmentation we have adjusted
the weighting of these parameters in such a way that pitch is the dominating
factor.

4 The segmentation algorithm

We now perform multiple runs of the EA to discover and categorise different
kinds of similarities inside a piece. Segmenting a performance consists in itera-
tively using the EA to find similar passages in the piece. When an EA terminates,
the most fit SS is evaluated against a threshold, determining if the fitness is ‘good
enough’ for the music to be claimed similar.

The EA is also used to search for more occurrences of a pattern — the oc-
currence search. It works by keeping one subgraph fixed in each SS (the original
pattern) while doing crossover and mutations on the other, never changing the
size of the graphs. The multiple EA searches are done with different similarity
measures in a special order, controlled by the segmentation algorithm. The goal
of the segmentation algorithm is to find patterns and derivations and categorise
motifs with as specific a measure as possible.

When the segmentation algorithm finds a subgraph sufficiently similar to
another, it removes it from the original graph and replaces it with a compound
vertez (CV) now representing the pattern. This CV is labelled with the similarity
measure it was evaluated with (its relation), as well as an identifier representing
its ‘type’. The edges to and from the subgraph that was substituted now connect
the CV. A subsequent EA run on the updated graph now needs to take account
of CVs in the graph and compare these on equal terms with other vertices. CVs
can then be included in other subgraphs making further nesting possible.

A CV can only be similar to another CV if it has the same type (representing
the same motif), and CVs should only be included when they were not found
found with a more general measure than the current. This is necessary to pre-
serve the relation of the measures that the CVs were labelled with. Otherwise
it would, e.g., be possible to allow transposed phrases (labelled T') to be part



of a compound labelled with an absolute measure A, which is wrong since the
phrases are not copies of each other.

SimilaritySegmenter(array of similarityMeasures, MusicGraph) {
i=-1
for (SimMeasure sm_i = 1..k){
//search for new repeated patterns
while(it is possible to find similar patterns with sm_i){
let s_1 and s_2 be the most similar subgraphs of a EA run with sm_i
if ( SimMeasure(s_1,s_2) is within the similarity threshold){
i++
substitute s1 and s2 in the graph with CVs of type i and measure sm_i
for(SimMeasure sm_j = i..k){
while(there are more occurrences of one of s_1 and s_2 to find with sm_j){
let s_n be the graph found in an Occurrence search for s_1 with sm_j
if ( SimMeasure(s_1,s_n) within threshold)
substitute s_i in the graph with a CV of type i and measure sm_j
let s_n be the graph found in an Occurrence search for s_2 with sm_j
if ( SimMeasure(s_2,s_n) within threshold)
substitute s_i in the graph with a CV of type i and measure sm_j
}
}//advance to next SimMeasure in the occurrence search
}//no more patterns to be found with this SimMeasure
}//advance to next SimMeasure

}3

Fig. 2. The segmentation algorithm

The segmentation algorithm resembles the one proposed by [11] in the way
all derivations of a recurring pattern are found before a new pattern is addressed.
The idea is to iteratively find new patterns with as general a measure as possible
(in successively weaker order) and next to find all derivations of it in successively
weaker order. A new pattern is not considered before all derivations are believed
to be found (when the search for more occurrences fails). The algorithm (shown
in Fig. 2) takes as input the graph, and a list of (ordered) similarity measures.
The algorithm iterates through a double for-loop. Both of the loops start EA
searches with the similarity measures in the order given. The outer loop searches
for new patterns and the inner searches for occurrences of these. The similarity
measure sm; advances one step (becomes more general) every time the while-
condition is not fulfilled: when it is not possible to find a pattern with sm;. In the
inner loop sm; advances when it is not possible to find more occurrences with
sm;. The segmentation terminates when the EA fails to find a ‘good’ repeated
pattern with the most general similarity measure.

An alternative to the strict segmentation order would be to calculate all
pitch related viewpoints in every evaluation and grade the fitness according to
similarity in highest pitch specificity. That evaluation approach resembles the
one presented in [12]. A more drastically but less controllable change would be
to always evaluate all implemented viewpoints and see which one that ‘clicks’ and
based on this information calculate a rating or a description of the similarities of
the subgraphs (e.g. “s; is a rhythmically augmented diatonic inversion of s3”).
We plan to do experiments along these lines.



5 Experiments: Segmenting a fugue

We will present a single segmentation by the algorithm: an analysis of J.S. Bach’s
Fugue in C minor, BWV 847 from WTK Book 1. This will illustrate how well
the search algorithm does the job of selecting phrases and finding derivations.

The threshold was set so that only patterns having identical views regarding
pitch (under the given viewpoint) were considered similar. Duration and group-
ing were given less importance. The EA was generously given 800 generations
for finding new patterns and 500 generations for finding occurrences. The popu-
lation size was 120 similarity statements. The segmentation was set to terminate
when the best pattern found was of size 2 or it’s fitness above the threshold. The
segmentation algorithm found 19 patterns (some of them extending others) of
sizes 3-26 notes/rests and made a total of 72 substitutions.
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Fig. 3. A segmentation of J. S. Bach, Fugue in C minor

A graphical representation of the segmentation is shown in Fig. 3, giving an
overview of the musical material found in the piece. The figure shows the entire
three part fugue. Each part is represented as a row of boxes. Every note in the
score is represented by a box. The width of the box shows the relative duration of
the note. Rests are not printed but present as ‘missing boxes’. Every compound
found in the segmentation is labelled with a number and a letter indicating the
measure with which it was found similar to another pattern. The beginning of a
compound is also indicated by a black triangle. Every compound type is given
a unique shade of grey (unfortunately not too clear in the figure). White boxes



are thus notes which have not been found belonging to any pattern. Subpatterns
in a nested compound are shown in the background. Bar numbers are printed
above the vertical bar lines.

The pattern found in the second iteration (iteration 1) is exactly the main
theme, traditionally called duz. It has six occurrences in the fugue, and all were
found (see Fig. 4 — the numbers and letters indexing the patterns refer to voice
(1, 2 or 3) and similarity measure (A, T or M)). The only two occurrences that
are exactly the same in pitch (A) were found first (beginning in bars 1 and 20) —
the rest were found as transpositions (T'). The ending dux (bar 29) differs only
on the ending note, which has been transposed half a tone. The occurrences
starting in bar 7 and 26 are octave transposition of the theme. The dux in bar
11 is a ‘major’ version of the theme, starting on eb in stead of c.

Fig. 4. Dux, iteration 1

A harmonic variant of the theme was found in iteration 13. It differs in one
note (or two jumps) from the dux, and is traditionally called comes. It was
found as an original pattern, since we did not allow a single note difference in
the search. It has two occurrences which were correctly found as transpositions
of each other — they occur in different octaves (Fig. 5).

Fig. 5. Comes, iteration 13

One more important pattern in a fugue is the counterpoint. It is an accom-
panying figure to both dux and comes. It has six occurrences, but not all were
found in their entirety. The pattern found in iteration 3 is a subpart of this figure
and was found in all 6 places. In iteration 15, four counterpoints were found —
extending the 3 pattern (Fig. 6). It could be argued that the note preceding
this pattern musically belongs to the counterpoint figure. All occurrences are
transpositions of each other, starting on eb, g, b and eb again. One was found
with the measure M. This is because of the difference in jump between the 7th
and the 8th note. In three of the cases this is an octave and a third, but in bar
15 it is only a third.



Fig. 6. Counterpoint, iteration 15

The simultaneous occurrences of dux/comes and counterpoint can be seen
from Fig. 3. Also worth noticing is bars 17-19 where the patterns 8 and 4 occur
simultaneously twice in succession in the two lowest voices — switching place.
Furthermore the pattern labelled ‘0’ occurs four times — each time accompanying
itself. This happens in bars 9-11 and 22-24 (voices 1 and 2).

The presented segmentation is quite representative for the behavior of the
algorithm. Running 10 segmentations with the given parameters, 7 of them found
all occurrences of dux in the same iteration. Every time the comes was found.
The counterpoint was in each segmentation recognised in 3-6 occurrences of
varying extension.

6 Conclusion

The best we can do so far to evaluate a segmentation is to make the similarities
visible/audible and compare to a manual analysis of the piece. The previous
section showed that the algorithm did a fairly good job in finding the common
motifs and derivations as well as categorising them correctly. It was not perfect,
but taking into account that it depends on a nondeterministic algorithm which
can been tuned, we can hope that even better results might be possible.

The overall segmentation certainly shows some structural dependencies in
the fugue. A mechanical way of discovering when patterns occur simultaneously
would be possible when allowing motifs to be non-sequential and thus spanning
over notes from more parts. The data structure and search mechanism support
this, but we will need some more effective and efficient similarity measures to be
able to do this in practice.

The strength of the EA is it’s ability to select the similar motifs in the music
of any length. The search for occurrences might however have been more efficient
with a deterministic algorithm in this simple sequential graph.

A crucial factor in the segmentation process seems to be the bounding of
patterns. It is hard to evaluate the effect of the grouping structure rules. We
did not give it much importance in this experiment. More focused experiments
will be needed to study the relationship between musical grouping structure and
meaningful musical patterns.

Also important is the choice of similarity measures. A larger set of transfor-
mation functions would be required to analyse other types of music. For example
the MIDI pitch views might be more relevant when segmenting non-diatonic mu-
sic. The rhythmical aspect should be explored. Fortunately it is easy to integrate
new similarity measures into the evaluation function.



The idea of using the MuseData scores is to take advantage of the diatonic
information. The different nature of the diatonic pitch viewpoints allows for some
variation within the same the view. In our segmentation we only allowed phrases
that had exactly equal views to be similar. A natural extension would be to allow
for example one or more notes to differ while searching for ‘new’ themes. One
could expect motifs to sound similar even when some notes are different (as for
example the dux and comes). Allowing this introduces some uncertainties. We
cannot be sure that what we find in every case also will be perceived as similar
— especially when the note sequences are short. This approach would produce
less ‘correct’ segmentations, but is an unavoidable next step that we have to
examine.
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