

Copyright © 2013 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 1 of 7

ARM Cortex-R Architecture

For Integrated Control and Safety Applications

Simon Craske, Senior Principal Engineer October, 2013

Foreword
The ARM® architecture continuously evolves to support deployment of energy-efficient computation
devices in a growing spectrum of applications that can take advantage of progress in semiconductor
technology.

Recent advances included the Large Physical Address Extensions (LPAE) for the ARMv7-A applications
architecture and the new 32-/64-bit ARMv8-A applications architecture.

This whitepaper discloses, for the first time, preliminary details of ARM’s next step in architecture
development for the ARM Cortex®-R real-time processor series.

These developments will lead to a new generation of Cortex-R processors that will meet the needs of
integrated control and safety systems in applications such as automotive Advanced Driver Assistance
Systems (ADAS), Hybrid Electric Vehicle (HEV) power train control and factory automation.

This paper provides an opportunity for SoC and MCU designers to factor these architectural
developments into their product planning, and for OEMs and ecosystem partners to be informed about
what is driving the Cortex-R processor roadmap forward.

Copyright © 2013 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 2 of 7

Introduction
ARM is known primarily for its range of Cortex-A processors used in significant numbers of consumer
devices such as smartphones and tablets. Each of these processors is based on evolutions of ARM’s
application profile (A profile) architecture, with each generation adding new features for increased
performance and capabilities, while ensuring compatibility with a broad software ecosystem. Some
features -- for example, the addition of 64-bit processing in ARMv8-A -- benefit significantly from being
presented to the ARM ecosystem ahead of products containing this feature becoming available; this
provides an opportunity for discussion and development of associated software, including operating
systems, and system IP collateral, as well as providing guidance on ARM’s intended direction.

In addition to the A profile, the ARM architecture also contains profiles targeting the specific needs of
embedded, real-time processors and microcontrollers, respectively called the Real-time (R profile) and
Microcontroller profiles (M profile). Found in systems ranging from anti-lock-braking to white goods to cell
phone radios, the Cortex-R and Cortex-M series processors, based on these profiles, form the relatively
unknown masses of CPUs that make the everyday world work in a safe and reliable way.

While not announcing any new specific processors, this white paper aims to provide an introduction to the
next evolution in the ARM R architecture profile used by ARM’s Cortex-R series processors, and in doing
so, kick-start changes in the ecosystem to accommodate the benefits this new architecture brings to
integrated control and safety systems.

Today’s Cortex-R Architecture
ARM’s current lineup of embedded, real-time processors is based on the ARMv7-R architecture, and is
formed of three complementary processors: the Cortex-R4, Cortex-R5 and Cortex-R7 processors. In
common with processors based on the ARMv7-A architecture, these processors execute both the ARM
(A32) and Thumb® (T32) instruction sets, but differ by offering a range of features for safety and real-time
applications.

From an architectural point of view, the key difference between the A and R profiles are the memory
system capabilities. As shown in Table 1, the ARMv8-A profile provides full virtual memory support via the
Virtual Memory System Architecture (VMSA). VMSA uses translation tables located in memory and
cached in a Translation Lookaside Buffer (TLB), and is capable of running rich operating systems like
those commonly found on desktop and mobile-phone platforms. The ARMv8-R profile implements
memory protection without translation via the Protected Memory System Architecture (PMSA). The PMSA
scheme uses registers tightly coupled to the processor in a Memory Protection Unit (MPU) to provide
protection of memory without the non-deterministic behavior introduced by potential TLB misses. PMSA
provides support for running Real-Time Operating Systems (RTOS) with the ability to prevent erroneous
execution of tasks corrupting either other tasks or the kernel.

A profile R profile M profile
Application profile:
- 32-bit and 64-bit registers
- A32 (ARM), T32 (Thumb)
 and A64 instruction sets
- Virtual memory support
- Runs rich operating systems
- Virtualization extension

Real-time profile:
- 32-bit register width
- ARM and Thumb instructions
- Protected memory support
- Runs real-time OS

Microcontroller profile:
- 32-bit register width
- Thumb instruction set only
- Protected memory support
- Microcontroller applications

Table 1 - Comparison of profile features

Copyright © 2013 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 3 of 7

Cortex-R4 Cortex-R5 Cortex-R7
Introduced 2005:
- ARMv7-R architecture
- High-performance, real-time,
 deeply embedded processor
- Deterministic event response
- Soft and hard error handling
- Configurable feature set

Introduced 2010:
- ARMv7-R architecture
- Low-latency peripheral port
- Accelerator coherency port
- Dual core in split or lock step
- Bus error management
- Smaller floating-point unit
- Enhanced memory protection

Introduced 2012:
- ARMv7-R architecture
- Large performance increase
- Advanced micro-architecture
- Higher clock frequency
- Symmetric multiprocessing
- Accelerator coherency port
- Quality of service features
- Enhanced error management
- Integrated interrupt controller

Table 2 – ARM Cortex-R portfolio evolution

As shown in Table 2, since the introduction of the Cortex-R4 processor in 2005, the features and
capabilities of ARM’s embedded processors have been driven to provide a portfolio capable of supporting
high-performance computing solutions for embedded systems, where high availability, fault tolerance,
maintainability and real-time responses are required, such as:

Automotive: Airbag, braking, stability, dashboard, engine management
Storage: Hard disk drive controllers, Solid state drive controllers
Mobile handsets: 3G, 4G, LTE, WiMax smartphones and baseband modems
Embedded: Medical, industrial, high-end microcontroller units (MCU)
Enterprise: Networking and printers; Inkjet and multi-function printer
Home: Digital TV, BluRay players and portable media players
Cameras: Digital still camera (DSC) and digital video camera (DVC)

In addition to the requirements of today’s systems, ARM sees four new challenges for real-time
application developers. These can be summarized as:

Desire for consolidation: The aim of providing more capable systems results in a desire to merge
previously multiple discrete systems onto a single processor, bringing new challenges regarding isolation
of these previously independent systems.

Increased safety and integrity: The evolution of safety standards and a requirement for more robust
systems are resulting in demands for improved isolation between tasks along with guaranteed quality of
service for interrupts.

Demand for feature-rich software: The ability to reuse communication stacks, such as Ethernet or WIFI,
along with other libraries and applications from the application world, in a real-time system compatible
way.

New higher-performance applications: New application markets, such as radar processing in
automotive and improved graphics in human machine interfaces (HMI), result in new computational
requirements.

Copyright © 2013 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 4 of 7

ARMv8-R Architecture
The ARMv8-R architecture represents the latest evolution of the ARM real-time architecture profile. While
adopting some features from the ARMv8-A architecture announced in 2011, ARMv8-R remains a 32-bit
architecture using the AArch32 exception model (compatible with that used in ARMv7-R) and executing
the A32 (ARM) and T32 (Thumb) instruction sets. In addition to the real-time features already present in
ARMv7-R, the ARMv8-R architecture adds a number of key architectural capabilities aimed at addressing
the requirements of future integrated control and safety applications.

Consolidation via Virtualization
To address the requirement to be able to consolidate multiple systems onto a single processor, ARMv8-R
architecture brings support for hardware virtualization. In common with ARMv8-A, this results in the
addition of a new exception level of higher priority than any that already exists on current Cortex-R
processors. Figure 1 illustrates the new exception level’s register file entries.

SPSR_svc

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9

R10
R11
R12
SP
LR
PC

APSR CPSR

SP_svc
LR_svc

SPSR_abt

SP_abt
LR_abt

SPSR_und

SP_und
LR_und

SPSR_irq

SP_irq
LR_irq

SPSR_fiq

SP_fiq
LR_fiq

R8_fiq
R9_fiq

R10_fiq
R11_fiq
R12_fiq

SP_hyp

SPSR_hyp

SP_und LR_irq

User SupervisorSystem UndefinedAbort FIQIRQ Hyp

EL0 EL1 EL2

ELR_hyp
Figure 1 - AArch32 register file

The addition of virtualization, when combined with appropriate hypervisor software (also known as a
virtual machine monitor), provides the ability to isolate memory and processing time between numerous
different guest operating systems and their tasks/applications.

As show in Figure 2, a single hypervisor at exception level 2 (EL2) is capable of hosting multiple guest
operating systems, with each guest operating system (OS) still retaining two distinct exception levels,
typically one for the kernel (EL1) and one for its applications/tasks (EL0). Flexibility in the architecture
also permits time critical tasks, such as interrupts and device drivers, to be run directly by the Hypervisor
as its own tasks at EL0.

Copyright © 2013 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 5 of 7

TASK
1

TASK
2

Guest OS – 1

TASK
1

TASK
2

Guest OS – 2

Hypervisor

EL0

EL1

EL2

Multiple consolidated
operating systems and tasks

Dedicated real-time hypervisor
exception level

TASK
1

VMM
task

Figure 2 - Three exception level model

In order to maintain determinism, the stage-2 memory translation scheme of the ARMv8-R architecture
differs from that of a conventional system, such as ARMv8-A. In particular, a conventional scheme would
support translation at stage-2, i.e. every memory address produced by EL1 would traditionally be
translated to a new address by a second stage of translation; whereas the stage-2 scheme in the ARMv8-
R architecture only supports protection. As a result, the intermediate physical address (IPA) generated by
a given guest OS is always the same as the final Physical Address (PA). Like the PMSA Memory
Protection Unit (MPU) of ARMv7-R architecture, the MPU is register-based and tightly coupled to the
processor, providing fast, deterministic responses. This avoids cases, for example, causing failures in
hard real-time systems when an interrupt is not serviced in the required time due to the overhead of page-
table walks required to refill the TLB on a miss.

The stage-2 MPU ensures the integrity of the hypervisor software and isolates each of the guest
operating systems to its own physical address space, controlling whether or not a particular OS can
assess any given peripheral or memory location.

Guest OS – 1

Guest OS – 2

Hypervisor

TASK

TASK

TASK

TASK

MPU ADDRESS SPACE

x

x

Figure 3 - Stage-2 MPU capability

Safety and Integrity via PMSAv8
The ARMv8-R architecture replaces the PMSA of ARMv7-R with a new scheme intended to increase
flexibility and ease-of-use, as well as reduce reprogramming time, and by association, context switch
times.

The PMSA is fundamentally based on the use of an MPU. In the ARMv7-R architecture, the MPU is
specified such that it supports memory regions defined as a power of two in size, where a given region
has to be aligned to a base address equal to an integer multiple of its size. While this scheme yields a
very low logic gate count implementation, it requires effort on the part of software to conform to these
strict usage rules. The new scheme provided by PMSAv8 offers a significant improvement in flexibility for

Copyright © 2013 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 6 of 7

software: the MPU permits a region to start and end at any address equal to an integer multiple of 64
bytes. As Figure 4 illustrates, this permits a single region to describe a given memory region that requires
the concatenation of numerous regions in PMSAv7.

1kB 16kB 1kB256kB

SINGLE 274kB REGION

PMSAv7

PMSAv8

0x40000 0x80000

0x80400

0x3C000

0x3BC00

Figure 4 - PMSAv7 vs PMSAv8 MPU example

The potential to describe the required memory map with fewer regions allows for faster programming of
the MPU, and thus context switching. This is further enhanced by PMSAv8 providing direct access to
each of the MPU region registers which, when compared with the indirect mechanism used by PMSAv7,
reduces the number of system register writes required to program the same number of regions.

The ARMv8-R architecture implements separate PMSAv8 compatible EL1 controlled stage-1 and EL2
controlled stage-2 MPUs. This allows EL1 operating systems to reconfigure their memory protection
without intervention by the hypervisor software. However, the stage-2 MPU always makes the final
decision about whether or not a memory transaction is permitted, ensuring a robust system.

Feature-Rich Software via VMSA
In order to enable use of the broader range of software assets available in the application processor and
rich operating system world, the ARMv8-R architecture includes support for the full Virtual Memory
System Architecture (VMSA) at EL1 and EL0. This permits one of the guest operating systems to be a
rich OS, while retaining real-time responsiveness for the hypervisor and other RTOS guests.

The VMSA guest is compatible with AArch32 of the ARMv8-A architecture, permitting use of operating
systems compatible with ARMv7-A architecture. The VMSA provides full support for both short and long
descriptor types (as introduced with the large physical address space extensions), though the IPA is
always policed by the stage-2 MPU, and is thus limited to 32-bits.

Computation via Advanced SIMD
Although permitted by the ARMv7-R architecture, no Cortex-R processor implementations currently
include support for ARM’s advanced SIMD extensions (also known as NEON™ technology). The option
for inclusion of VMSA support in the ARMv8-R architecture implementations, and the ability to easily
reuse rich OS applications and libraries, provide an opportunity for increased computation capability.

Interrupts and System Errors
Additional new features in the ARMv8-R architecture include system register mapping of the interrupt
control registers and the addition of a System Error Interrupt (SEI). The mapping of interrupt control to
system registers improves interrupt response time by removing the need for memory transactions to be
performed in order to determine which interrupt pin caused the interrupt exception to be taken, while the
addition of a dedicated SEI provides a means of handling critical system errors.

Copyright © 2013 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 7 of 7

Conclusion
The ARMv8-R architecture brings new technology to the world of integrated control and safety
applications. Providing virtualization and new memory protection features, theARMv8-R architecture
offers the ability to consolidate and safely isolate multiple systems. At the same time, the ARMv8-R
architecture offers the addition of VMSA capabilities to real-time systems, allowing the combination of
communication and other software stacks with embedded software for fully featured systems.

This white paper provides an early preview of the architecture and its capabilities ahead of any product
announcement with the intention of facilitating discussion and development of the associated eco-system
collaterals.

References
For further details on ARM’s architecture profiles and Cortex-R processor portfolio, please visit the ARM
website at www.arm.com or the new online ARM Connected Community.

http://www.arm.com/�
https://community.arm.com/welcome�

	ARM Cortex-R Architecture
	For Integrated Control and Safety Applications
	Simon Craske, Senior Principal Engineer October, 2013
	Today’s Cortex-R Architecture
	ARMv8-R Architecture
	Consolidation via Virtualization
	Safety and Integrity via PMSAv8
	Feature-Rich Software via VMSA
	Computation via Advanced SIMD
	Interrupts and System Errors
	Conclusion

