
The European JourThe European Journal for the Infornal for the Informatics Professionalmatics Professional
http://wwwhttp://www.upgrade-cepis.org.upgrade-cepis.org

VVol. Vol. V, No. 5, October 2004, No. 5, October 2004

SPT
Software Process Technology

The European Journal for the Informatics Professional
http://www.upgrade-cepis.org

Vol. V, No. 5, October 2004

<http://www.cepis.org>

CEPIS, Council of European Professional Informatics

Societies, is a non-profit organisation seeking to improve
and promote high standards among informatics

professionals in recognition of the impact that informatics
has on employment, business and society.

CEPIS unites 36 professional informatics societies
over 32 European countries, representing more than

200,000 ICT professionals.

CEPIS promotes

<http://www.eucip.com> <http://www.ecdl.com>

<http://www.upgrade-cepis.org>

1

UP

GRADE is the European Journal for the
Informatics Professional, published bimonthly at
<http://www.upgrade-cepis.org/>

UP

GRADE is the anchor point for

UP

ENET (

UP

GRADE Europe-
an NETwork), the network of CEPIS member societies’ publica-
tions, that currently includes the following ones:
• Mondo Digitale, digital journal from the Italian CEPIS society

AICA
• Novática, journal from the Spanish CEPIS society ATI
• Pliroforiki, journal from the Cyprus CEPIS society CCS
• Pro Dialog, journal from the Polish CEPIS society PTI-PIPS

Publisher
UP

GRADE is published on behalf of CEPIS (Council of
European Professional Informatics Societies,
<http://www.cepis.org/>) by Novática
<http://www.ati.es/novatica/>, journal of the Spanish CEPIS
society ATI (Asociación de Técnicos de Informática
<http://www.ati.es/>).

UP

GRADE is also published in Spanish (full issue printed, some
articles online) by Novática, and in Italian (abstracts and some
articles online) by the Italian CEPIS society ALSI
<http://www.alsi.it> and the Italian IT portal Tecnoteca
<http://www.tecnoteca.it/>.

UP

GRADE was created in October 2000 by CEPIS and was first
published by Novática and INFORMATIK/INFORMATIQUE, bi-
monthly journal of SVI/FSI (Swiss Federation of Professional In-
formatics Societies, <http://www.svifsi.ch/>).

Editorial Team

Chief Editor: Rafael Fernández Calvo, Spain, <rfcalvo@ati.es>
Associate Editors:
• François Louis Nicolet, Switzerland, <nicolet@acm.org>
• Roberto Carniel, Italy, <carniel@dgt.uniud.it>
• Zakaria Maamar, Arab Emirates,
<Zakaria.Maamar@zu.ac.ae>
• Soraya Kouadri Mostéfaoui, Switzerland,
<soraya.kouadrimostefaoui@unifr.ch>

Editorial Board

Prof. Wolffried Stucky, CEPIS Past President
Prof. Nello Scarabottolo, CEPIS Vice President
Fernando Piera Gómez and
Rafael Fernández Calvo, ATI (Spain)
François Louis Nicolet, SI (Switzerland)
Roberto Carniel, ALSI – Tecnoteca (Italy)

UPENET Advisory Board

Franco Filippazzi (Mondo Digitale, Italy)
Rafael Fernández Calvo (Novática, Spain)
Panicos Masouras (Pliroforiki, Cyprus)
Andrzej Marciniak (Pro Dialog, Poland)

English Editors:

 Mike Andersson, Richard Butchart, David
Cash, Arthur Cook, Tracey Darch, Laura Davies, Nick Dunn,
Rodney Fennemore, Hilary Green, Roger Harris, Michael Hird,
Jim Holder, Alasdair MacLeod, Pat Moody, Adam David Moss,
Phil Parkin, Brian Robson.

Cover page

 designed by Antonio Crespo Foix, © ATI 2004

Layout:

 Pascale Schürmann

Editorial correspondence:

 see "Editorial Team" above

Advertising correspondence:

 <novatica@ati.es>

Upgrade Newslist

 available at
<http://www.upgrade-cepis.org/pages/editinfo.html#newslist>

Copyright

© Novática 2004 (for the monograph and the cover page)
© CEPIS 2004 (for the sections MOSAIC and UPENET)
All rights reserved. Abstracting is permitted with credit to the
source. For copying, reprint, or republication permission, contact
the Editorial Team.
The opinions expressed by the authors are their exclusive re-
sponsibility.

ISSN 1684-5285

Vol. V, No. 5, October 2004

Next issue (December 2004):
“Cryptography”
(The full schedule of UPGRADE is available at
our website)

2 Editorial
Four Years of

UP

GRADE

Joint monograph with Novática*

3 Presentation
Software Process Technology: Improving Software Project Management and Product
Quality

– Francisco Ruiz-González and Gerardo Canfora

6 Software Process: Characteristics, Technology and Environments

 – Francisco Ruiz-
González and Gerardo Canfora

11 Key Issues and New Challenges in Software Process Technology

 – Jean-Claude
Derniame and Flavio Oquendo

17 A Taxonomy of Software Engineering Environment Services: The Upcoming ISO/IEC
Standard 15940

 – Dan Hyung Lee and Juan Garbajosa-Sopeña

22 Open Source and Free Software: A New Model for The Software Development Process?

– Alfonso Fuggetta

27 Applying The Basic Principles of Model Engineering to The Field of Process
Engineering

 – Jean Bézivin and Erwan Breton

34 Software Process Modelling Languages Based on UML

 – Pere Botella i López, Xavier
Franch-Gutiérrez, and Josep M. Ribó-Balust

40 Supporting the Software Process in A Process-centred Software Engineering
Environment

 – Hans-Ulrich Kobialka

47 Managing Distributed Projects in GENESIS

 – Lerina Aversano, Andrea De Lucia,
Matteo Gaeta, Pierluigi Ritrovato, and Maria-Luisa Villani

53 Software Process Measurement

 – Félix García-Rubio, Francisco Ruiz-González, and
Mario Piattini-Velthuis

59 Process Diversity and how Practitioners Can Manage It

 – Danilo Caivano and Corrado
Aaron Visaggio

67 Data Architecture
A Disquisition on The Performance Behaviour of Binary Search Tree Data Structures –

Dominique A. Heger

75 News & Events: News from CEPIS and EUCIP; SCI 2005 (Call for Papers)

77 From

Novática

 (Spain):
IT and Disabilities
Braille and The Pleasure of Reading: We Blind People Want to Continue Reading with
Our Fingers

– Carmen Bonet-Borrás

84 From

Pliroforiki

 (Cyprus):
Information Technology in Todays’ Organizations
Is the IT Productivity Paradox Resolved? –

Kyriakos E. Georgiou

* This monograph will be also published in Spanish (full issue printed; summary, abstracts and some articles online) by

Novática

, journal of the Spanish CEPIS society ATI (

Asociación de Técnicos de Informática

) at <http://www.ati.es/
novatica/>, and in Italian (online edition only, containing summary abstracts and some articles) by the Italian CEPIS society
ALSI (

Associazione nazionale Laureati in Scienze dell'informazione e Informatica

) and the Italian IT portal Tecnoteca at
<http://www.tecnoteca.it>.

SPT, Software Process Technology

Guest Editors: Francisco Ruiz-González and Gerardo Canfora

MOSAIC

UP

ENET (

UP

GRADE European NETwork)

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.upgrade-cepis.org
http://www.upgrade-cepis.org
http://www.ati.es/novatica/infonovatica_eng.html

Editorial

2

UP

GRADE

Vol. V, No. 5, October 2004 © Novática

Editorial

Four Years of UPGRADE

Dear Readers,

It was four years ago (October 2000) when

UP

GRADE,
“The European Journal for the Informatics Professional”, was
first launched. An initiative of the Council of European Profes-
sional Informatics Societies (CEPIS), our digital journal was
then published, on its behalf, by INFORMATIK/INFORMA-
TIQUE and NOVÁTICA, the journals of the CEPIS societies
SVI/FSI (Switzerland) and ATI (Spain), respectively.

Bearing in mind that the principal objective of our bimonthly
digital journal

(to provide its readers with high quality con-
tents, ranging from practical business experiences to academic
research)

 is, by definition, a dynamic one, twenty four issues
later we can say that this European undertaking,

UP

GRADE,
has a number of important achievements of which to be proud:
• Since its inception,

UP

GRADE has had a Spanish printed
edition, published by NOVÁTICA, and, since December
2001, an Italian digital edition, promoted jointly by the Ital-
ian CEPIS society ALSI and the Italian IT portal Tecnoteca.

• The readership of our digital journal has increased steadily,
with a current monthly average of 10,000 unique visits and
45,000 PDF downloads from countries all over the world, al-
beit mostly from Europe.

• The

UP

GRADE newsletter, created in 2003, now has 1,118
subscribers.

•

UP

GRADE is ranked number 1 on Google, MSN Search,
Lycos, Yahoo, Hotbot and All the Web, and number 2 on
AOL, if you search for the string

“European informatics
journal”

.
• In 2004

UP

GRADE was admitted to the ACM Guide to
Computing Literature and to ACM Computing Reviews, be-
ing now included in many important ICT journal listings.

• In February 2004 a section named MOSAIC was created in
order to expand the contents of our digital journal from its
original monographic approach to a broader one, including

articles covering any ICT field, always subject to peer re-
view procedures. In order to manage this new section, two
new members joined

UP

GRADE’s Editorial Team.
• In April 2004

UP

ENET (

UP

GRADE European NETwork)
was born.

UP

ENET is the network of CEPIS publications,
whether paper or electronic.

Its current members are

Mondo Digitale

, published by the
Italian CEPIS society AICA; the abovementioned

NOVÁTI-
CA

;

Pliroforiki

, published by the Cyprus CEPIS society CCS;
and

Pro Dialog

, journal co-published in Polish and English by
the Polish CEPIS society PTI-PIPS and the Poznan University
of Technology – Institute of Computing Science. Other jour-
nals belonging to CEPIS societies have expressed a serious in-
terest in joining this network soon.

Although there is still a great deal of room for improvement
and expansion, we can see from all the above that UPGRADE
is now a valuable CEPIS asset and a solid reality in the world-
wide landscape of scientific journals in the ICT field, a reality
we would like to celebrate.

Thanks should be given to all those who make this reality
possible, namely authors, reviewers, members of the Editorial
Team and other personnel in charge of daily operations, CEPIS
societies involved in this initiative (especially ATI), and, last
but not least: you, our readers (ICT professionals, academics
and students in Europe and elsewhere).

Happy birthday,

UP

GRADE!

Jouko Ruissalo

President of CEPIS
<jouko.ruissalo@ttlry.fi>

Ps. At the closing of this issue we have received the good
news that the

OCG Journal

, published in German by the Aus-
trian CEPIS society OCG, has just joined

UP

ENET, as ap-
proved by the Board of this society.

Willkommen!

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

© Novática

UP

GRADE

Vol. V, No. 5, October 2004

3

Presentation

Software Process Technology: Improving Software Project
Management and Product Quality

Francisco Ruiz-González and Gerardo Canfora

Introduction

One of the main lines of work on the enhancement of
software product quality is the study and improvement of the
processes by which software is developed and maintained. This
statement is based on the assumption that there is a direct
correlation between a quality process and product quality. The
area of study in the field of software engineering addressing
this problem is known as “Software Process Technology”
(SPT), or simply “Software Process” (SP).

Research into SPT as a separate discipline began in the 80s

(International Software Process Workshop, European Work-
shop on Software Process Technology, Journal of Software
Process Technology: Improvement and Practice,...)

, but it is
only in the last 5 or 6 years that it has acquired a certain matu-
rity in terms of its real use in software engineering projects. The
first important contribution of SPT was to confirm that the
development and maintenance of software are complex proc-
esses which require a collective and creative effort. Thus the
quality of a software product is heavily dependent on the
people, the organisation and the procedures involved in creat-
ing, delivering and maintaining it.

The Contents of This Monograph

This monograph issue opens with the article

“Software
Process: Characteristics, Technology and Environments”

which the authors of this presentation have written as an intro-
duction to the topic. It deals with three essential aspects: soft-
ware process specific characteristics; the justification of SPT as
a way of providing integrated support to both production and
management processes; and Software Engineering Environ-
ments (SEEs). In the last point, we stress the different dimen-
sions of software tool integration within an SEE and the pro-
posed process orientation for SEEs (Process-centred Software
Engineering Environment, PSEE).

“Key Issues and New Challenges in Software Process Tech-
nology”

 was written by

Jean-Claude Derniame

 and

Flavio
Oquendo

 (both have played major roles in the EWSPT – Euro-
pean Workshop on Software Process Technology – series of
conferences). It is an analysis of the evolution and results of
this field over its twenty years of existence and the key unre-
solved challenges SPT has today: the support of typical agile
processes, open source software, and worldwide software
development (globalization). The first part is an introduction to
SPT – which complements this introductory article – including
a generic process framework and the relationship between SPT
and process maturity.

1 2

The Guest Editors
Francisco Ruiz-González has a PhD in Computer Science from

the Universidad de Castilla-La Mancha (UCLM), Spain, and an
MSc in Chemistry-Physics from the Universidad Complutense de
Madrid, Spain. He is a full time Associate Professor of the Dept. of
Computer Science at UCLM in Ciudad Real, Spain. He was the
Dean of the Faculty of Computer Science between 1993 and 2000.
Previously, he was the Director of Computer Services at the afore-
mentioned university (1985-1989) and he has also worked in private
companies as an analyst-programmer and project manager. He is a
member of the Alarcos Research Group, <http://alarcos.inf-cr.
uclm.es/english/>. His current research interests include software
process technology and modelling, software maintenance, and
methodologies for software projects planning and management. He
has also worked in the fields of GIS (Geographical Information
Systems), educational software systems and deductive databases.
He has written eight books and fourteen chapters on the abovemen-
tioned topics and he has published 90 papers in Spanish and inter-
national journals and conferences. He has sat on nine programme
committees and seven organizing committees and he belongs to
several scientific and professional associations: ACM, IEEE-CS,

ATI, AEC, AENOR, ISO JTC1/SC7, EASST, AENUI and ACTA.
<Francisco.RuizG@uclm.es>

Gerardo Canfora is a full Professor of Computer Science at the
Faculty of Engineering and the Director of the Research Centre on
Software Technology (RCOST) of the Università degli Studi del
Sannio, Benevento, Italy. He served on the programme and organiz-
ing committees of a number of international conferences. He was a
programme co-chair of the 1997 International Workshop on Program
Comprehension, the 2001 International Conference on Software
Maintenance, and the 2004 European Conference on Software Main-
tenance and Reengineering. In 2003 he was the general chair of the
European Conference on Software Maintenance and Reengineering.
His research interests include software maintenance and evolution,
programme comprehension and reverse engineering, software proc-
ess improvement, knowledge management, and service oriented
software engineering. On these topics he has published more than
100 articles in international journals and conferences. He is an asso-
ciate editor of the IEEE Transactions on Software Engineering and
serves on the editorial board of the Journal of Software Maintenance
and Evolution: Research and Practice. <canfora@unisannio.it>

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

4

UP

GRADE

Vol. V, No. 5, October 2004 © Novática

As a demonstration of the industrial maturity that SPT is
reaching,

“A Taxonomy of Software Engineering Environment
Services: The Upcoming ISO/IEC Standard 15940”

, by

Dan
Hyung Lee

 and

Juan Garbajosa-Sopeña

, presents us the
future ISO standard of which they are co-editors. The authors
classify, enumerate and define all the possible services that a
SEE can provide to give automatic support to the various proc-
esses of software life cycle.

The close relationship between business models used by the
software industry and processes that are carried out during soft-
ware development and maintenance makes the reflections,
analyses and explanations put forward by

Alfonso Fugetta

 in

“Open Source and Free Software: A New Model for The Soft-
ware Development Process?”

 highly interesting, useful and
illuminating.

The next two articles refer to SP modelling. In

“Applying The
Basic Principles of Model Engineering to The Field of Process
Engineering”

,

Jean Bézivin

 and

Erwan Breton

 introduce
model-driven system engineering, presenting the MDA (Mod-
el-Driven Architecture) proposed by OMG (Object Manage-
ment Group) whose aim is to separate platform-independent
aspects from the platform-dependent aspects in the design of
software system architecture. As proof of the strength of this
new “model-driven” development paradigm, the authors show
how it can be applied to processes using a non-MDA based
COTS (Commercial Off-The-Shelf) software, MS-Project,
demonstrating that this approach enables us to design and build
more general solutions.

In

“Software Process Modelling Languages Based on
UML”

,

Pere Botella i López, Xavier Franch-Gutiérrez

 and

Josep M. Ribó-Balust

 introduce the reader to Process Model-
ling Languages (PMLs). In particular they analyse the possibil-
ities of UML (Unified Modelling Language) to model the
structural and behavioural aspects of processes, and present
two PMLs, namely SPEM and PROMENADE, that take advan-
tage of this notation to model software processes.

Focusing on another interest point, the next two articles are
devoted to technological aspects of SEEs. In

“Supporting the

Software Process in A Process-centred Software Engineering
Environment”

,

Hans-Ulrich Kobialka

 carries out a systematic
study of the process support requirements a PSEE should satis-
fy, and proposes a list of ingredients (groups of services) to this
end. The author presents the mechanisms available in LMP
ALADYN for process automation (triggers, task patterns,
constraints, etc.) and impact control (permissions).

The article

“Managing Distributed Projects in GENESIS”

was written by

 Lerina Aversano, Andrea De Lucia, Matteo
Gaeta, Pierluigi Ritrovato

, and

Maria-Luisa Villani

. They
propose an approach and an environment to support the
management of distributed software projects allowing the def-
inition and enactment of software process models in a decen-
tralized and autonomous multi-site manner.

In

“Software Process Measurement”

,

Félix García-Rubio,
Francisco Ruiz-González

, and

Mario Piattini-Velthuis

, argue
the importance of measuring SPs to be able to carry out evalu-
ation and improvement. The authors identify the measurable
entities of a SP and, as a use case, they present a set of metrics
that can be used to estimate the maintainability of a process
model.

It is usual for a process to pass through various adaptations
due to the different operational contexts in which the process is
performed. These adaptations involve the creation of distinct
versions from the same generic process which are known as
specialized processes. In

“Process Diversity and how Practi-
cioners Can Manage It”

,

Danilo Caivano

 and

Corrado Aaron
Visaggio

 present a framework based on process patterns to
manage and to maintain all these different process models. The
application of this framework to software system maintenance
is also included as a case study.

We hope this collection of articles (thanks must go the
authors for their valuable contributions) provides an introduc-
tion to and an overview of Software Process Technology. We
believe that, by means of automation and the integration of
various engineering and managerial processes, this field can be
a major help to software engineers in years to come.

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

© Novática

UP

GRADE

Vol. V, No. 5, October 2004

5

Useful References on SPT

These references, additional to the ones included in the
papers this monography consists of, enlarge the field of Soft-
ware Process Technology for readers interested in knowing
more about this matter.

Associations
• ISPA – International Software Process Association.

<http://www.ece.utexas.edu/~perry/prof/ispa/>.

Books
• A. Fuggetta and A. Wolf (eds). Software Process, Vol 4, Trends in

Software. J. Wiley & Sons (USA), 1996.
<http://serl.cs.colorado.edu/~alw/doc/Trends.html>.

• J. C. Derniame, B. A. Kaba, & D. Wastell (eds.). Software Process:
Principles, Methodology and Technology. Springer-Verlag, serie
LNCS nº 1500, 1999.

• B. Westfechtel. Models and Tools for Managing Development
Processes. Springer-Verlag, serie LNCS nº 1646, 1999.

Journals
• Journal of Software Process Improvement and Practice. Quarterly

journal published by Wiley. <http://www.wiley.com/WileyCDA/
WileyTitle/productCd-SPIP.html>.

Conferences & Events
• EWSPT – European Workshop on Software Process Technology.

Scientific biennial workshop whose ninth edition took place in Hel-
sinki, Finland, in September 2003. Proceedings: <http://www2.
springeronline.com/sgw/cda/frontpage/0,11855,5-40109-22-
7063147-0,00.html>.

• ICSPI – International Conference on Software Process Improve-
ment. Its second edition was held in Washington DC, USA, in June
2004. <http://www.icspi.com/>.

• PROFES – International Conference on Product Focused Software
Process Improvement. Its fifth edition was held in Kansai Science
City, Japan, in April 2004. <http://www.vtt.fi/ele/profes2004/>.

Web Sites
• Capability Maturity Models. University of Carnegie Mellon, Soft-

ware Engineering Institute (EE.UU.).
<http://www.sei.cmu.edu/cmm/cmms/cmms.html>.

• Graphical Development Process Assistant. University of Bremen,
Germany. <http://www.informatik.uni-bremen.de/uniform/vm97/>.
Specialized web site that includes over 6,000 pages on this topic,
including concepts and definitions, process models, environments,
standards, methodologies, process elements, SPT modelling classes
and approaches, projects, tools and classified bibliographic about all
the above.

Papers
• V. Ambriola, R. Conradi, and A. Fuggetta. Assessing Process-

centered Software Engineering Environments. ACM Transactions
on Software Engineering and Methodology, 6:3, 1997, pp. 283–328.

• G. Cugola and C. Ghezzi. Software Processes: a Retrospective and
a Path to the Future. Software Process: Improvement and Practice,
4(3), 1998, pp. 101–123.

• B. Curtis, M. I. Kellner, and J. Over. Process Modeling. Communi-
cations of the ACM, 35(2), September 1992, pp. 75–90.

• L. Osterweil. Software Processes are Software Too. Proc. of 9th
International Conference on Software Engineering. Washington DC
(USA). IEEE Comp. Soc. Press, 1987.

Translation by Steve Turpin

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

6 UPGRADE Vol. V, No. 5, October 2004 © Novática

Software Process: Characteristics, Technology and Environments

Francisco Ruiz-González and Gerardo Canfora

In this introductory article we present the concept of Software Process (SP) and the properties that
characterize and distinguish this process from other types of processes (e.g. typical industrial production
processes). We go on to justify the interest in having Software Process Technology (SPT) to enable us to
automate and to integrate production and management processes in order to carry out software projects. We
also present Software Engineering Environments (SEE), collections of integrated tools whose purpose is to
provide support to the abovementioned processes. We conclude by summarising the problem of how to
integrate the tools making up an environment and how to create a process-oriented environment.

Keywords: Software Engineering Environment, Software
Process, Software Process Technology, Process-Orientation,
Tools Integration.

Characteristics of Software Processes
The definition of Software Process (SP) complements the

concept of software life-cycle in the sense that it defines the
skeleton and philosophy for carrying out an SP, but it is not in
itself sufficient to guide and control a development and/or
maintenance project. An SP is a “coherent set of policies,
organizational structures, technologies, procedures and arti-
facts that are needed to conceive, develop, deploy, and main-
tain a software product” [3].

The special nature of SPs can be defined as follows:
a) They are complex.
b) They are not typical production processes, since they are

exception driven, are strongly affected by highly unpre-
dictable circumstances, and each process has peculiarities
that distinguishes it from all others.

c) They are not ‘pure’ engineering processes either, since we
do not know the appropriate abstractions, (there is no
experimental science behind them), they depend too much
on too many people, their design and production are not
clearly differentiated, and their budgets, schedules and
quality cannot be programmed reliably enough.

d) They are not (entirely) creative processes because some
parts can be described in detail while some procedures are
previously enforced.

e) They are finding-based and depend on communication,
coordination and cooperation within predefined frame-
works. Their delivery generates new requirements, the cost
of changing software is not usually recognised, and their
success depends on user involvement and the coordination
of many different roles (sales, technical development,
customer, etc.).

The necessity for creative human participation and the
absence of repetitive actions means that neither the develop-
ment nor the maintenance of the software is a production proc-
ess. However, there are some similarities between the two

1

Francisco Ruiz-González has a PhD in Computer Science from
the Universidad de Castilla-La Mancha (UCLM), Spain, and an
MSc in Chemistry-Physics from the Universidad Complutense de
Madrid, Spain. He is a full time Associate Professor of the Dept.
of Computer Science at UCLM in Ciudad Real, Spain. He was the
Dean of the Faculty of Computer Science between 1993 and
2000. Previously, he was the Director of Computer Services at the
aforementioned university (1985–1989) and he has also worked
in private companies as an analyst-programmer and project man-
ager. He is a member of the Alarcos Research Group, <http://
alarcos.inf-cr.uclm.es/english/>. His current research interests in-
clude software process technology and modelling, software main-
tenance, and methodologies for software projects planning and
management. He has also worked in the fields of GIS (Geograph-
ical Information Systems), educational software systems and
deductive databases. He has written eight books and fourteen
chapters on the abovementioned topics and he has published 90
papers in Spanish and international journals and conferences. He
has sat on nine programme committees and seven organizing
committees and he belongs to several scientific and professional
associations: ACM, IEEE-CS, ATI, AEC, AENOR, ISO
JTC1/SC7, EASST, AENUI and ACTA.
<Francisco.RuizG@uclm.es>

Gerardo Canfora is a full Professor of Computer Science at the
Faculty of Engineering and the Director of the Research Centre
on Software Technology (RCOST) of the Università degli Studi
del Sannio, Benevento, Italy. He served on the programme and or-
ganizing committees of a number of international conferences.
He was a programme co-chair of the 1997 International Workshop
on Program Comprehension, the 2001 International Conference
on Software Maintenance, and the 2004 European Conference on
Software Maintenance and Reengineering. In 2003 he was the
general chair of the European Conference on Software Mainte-
nance and Reengineering. His research interests include software
maintenance and evolution, programme comprehension and
reverse engineering, software process improvement, knowledge
management, and service oriented software engineering. On these
topics he has published more than 100 articles in international
journals and conferences. He is an associate editor of the IEEE
Transactions on Software Engineering and serves on the editorial
board of the Journal of Software Maintenance and Evolution:
Research and Practice. <canfora@unisannio.it>

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

© Novática UPGRADE Vol. V, No. 5, October 2004 7

kinds of processes which are useful for understanding software
processes in a broader perspective. Like production processes,
software processes consist of two inter-related sub-processes;
the production process and the management process [5]. The
production process relates to the actual production and mainte-
nance of the product, while the management process provides
the necessary resources for the production process, and
controls it. This control is possible when the production proc-
ess feeds back information about its situation to the manage-
ment process. These relationships are represented in Figure 1,
as are the relationships between processes and the external
environment. The request for a product comes from outside
(the external world); in other words, the external environment
justifies the production process’s existence. Management also
has to conform to the current standards of the external environ-
ment; in other words, the external environment also has an
indirect influence on the production process. In short, produc-
tion and management processes make use of technologies orig-
inating from the external environment.

Software Process Technology
The essence of SPT is that it allows the integration of

production and management technologies in a new work envi-
ronment, known as Process-centred Software Engineering
Environment (PSEE), which provides support to management
and production processes in an integrated manner. Figure 2
shows the impact of this new technology and how PSEE imple-
ments, controls and improves the flow of information by which
the management process controls the production process. The
main objective of SPT is to control the inherent complexity of
the SP via an in depth understanding of the process itself, and
by means of the automated support provided by a PSEE. An
essential factor in achieving this objective is computerized
support; in other words, having a process model and the proper
means of defining, modifying, analysing and enacting it [1].

Following on from the previous definition, SPT makes use of
a wide range of areas and concepts:
1. Software development and maintenance technologies

which provide the necessary tools and infrastructure to
make it possible and economically feasible to create and
maintain complex software products that meet present and
future needs.

2. Methods and techniques for software development and
maintenance which provide the essential methodological
support required to make efficient use of the abovemen-
tioned technologies and successfully perform development
and maintenance activities.

3. Organizational behaviour, in other words, the science of
organizations and people, is useful because software
projects are generally carried out by groups that need to be
coordinated and directed within an effective organizational
structure.

4. Marketing and economy, since software development
and maintenance projects are not executed in isolation,
and, as is the case with any other product, software must be
oriented towards the needs of real customers and users.

To sum up, when developing and maintaining software it is
necessary to pay attention to the complex relationships that
arise between the various organizational, cultural, technologi-
cal and economical factors.

Software Engineering Environments
Although the use of tools in helping developers to

produce software has existed in one way or another since the
early days of computing, the concept of Software Engineering
Environment (SEE), is a relatively recent development. SEE is
defined as “a set of tools providing full or partial automated
support to software engineering activities”. Normally these
activities are carried out within the framework of a software
project and refer to aspects such as specification, development,
reengineering and maintenance of software systems. SEE has

2

3

Management Process Production Process

Controls

Feeds back

Management Technology Production Technology

External world

Exploits Exploits

Provides
Provides

Standardises Justifies

Figure 1: Production Process vs Management Process.

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

8 UPGRADE Vol. V, No. 5, October 2004 © Novática

also been known by other names: IPSE (Integrated Project
Support Environment), ISEE (Integrated Software Engineering
Environment), CASE tools coalition, Federated CASE tools, or
ISF (Integrated Software Factory).

The term SEE can be applied to a wide range of systems:
from a set of a few tools running on the same system, to a
completely integrated environment able to manage and control
all data, processes and activities of a software product life-
cycle. Thanks to the automation of activities (partial or total),
SEE can produce significant benefits for an organization:
reduction in costs (high productivity), improved management
and improved quality of the end product. For example, the
automation of repetitive activities, such as the performance of
test cases, not only improves productivity but also helps to
ensure the completeness and consistency of testing activities.

SEE normally deals with information related to:
a) Software under development or maintenance (specifica-

tions, design information, source code, tests data, project
plans...)

b) Project resources (costs, computing resources, personnel,
responsibilities and duties...)

c) Organizational aspects (organizational policies, standards
and methods used...)

SEE gives support to human activities by means of a set of
services that describe the environment’s capabilities. These
services provide the correspondence between a chosen set of
software life-cycle related processes and their automation by
the use of tools. In most cases a tool’s functionality is related to
one or more services.

Interest was first aroused in SEE in the early 90s when the
first reference models were proposed and the first taxonomy of
the services to be included was produced [8]. But it was not
until the beginning of the 21st century that environments were
developed which actually tried to meet the ambitious objectives
that the definition of SEEs entails [6].

3.1 Integration
The concept that most differentiates an SEE from a simple

set of tools working on a computer under the same operating
system, is the degree of integration that it provides. The
concept of integration applied to an SEE can mean many relat-
ed but different things:
• The degree to which different tools can communicate effec-

tively between one another within the framework of an SEE.
• A measure of the relationships between SEE components.
• The simplicity, interoperability, portability, scalability, pro-

ductivity, etc., produced by the seamless interaction of SEE
components.

Sharing the same object management system (repository
manager) instead of having a separate file system for each tool
is an important feature of integration, but not the only one.
SEEs must have a series of interfaces enabling cooperation
between tools from different manufacturers. Integration can be
said to involve the three following aspects:
• A set of services. Most of the services described later are

applicable to integration. For example, using a common
object management system with common schemes enables
the tools to share objects; using global presentation charac-

Management Process Production Process

Management
Technology

Production
Technology

External world

Exploits Integrates

Provides Provides

Standardises Justifies

Process
Technology

Provides

PSEE

Integrates

Supports

Figure 2: Impact of Software Process Technology.

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

© Novática UPGRADE Vol. V, No. 5, October 2004 9

teristics in the user interface enables all tools to have a sim-
ilar “visual aspect”; and management process and commu-
nication services are necessary for the tools to communicate
with each other.

• A new dimension for each service. Having common serv-
ices permits integration but does not make it obligatory (tool
developers are not obliged to use them). This new dimension
indicates the degree to which a service can help to increase
integration.

• A policy. It is also necessary to implement policies so that
developers of tools, frameworks and platforms can use inte-
gration services efficiently. An example of this are the “style
guides” intended for tool constructors.

According to [7], the need for integration in an EIS involves
several different dimensions (see Figure 3):
• Data. Data integration is the ability to share information in

the SEE. The degree of data integration can be high (tools
use a common database with a common scheme), medium
(common data formats) or low (uses transformation mecha-

nisms). Another characteristic that data integration can
include is composition.

• Control. Control integration is the ability to flexibly
combine the functionalities provided in an environment.
These combinations may correspond to project preferences
and be driven by the underlying software processes.

• Presentation. Presentation integration is the ability to inter-
act with environment functionalities with similar screen
appearance and similar modes of interaction.

• Processes. Process integration is the ability to access envi-
ronment functionalities using a pre-defined SP enacted with
automated support.

3.2 Process Orientation
We have already mentioned the importance which process-

oriented SEEs (or PSEE)s have in SPT. In fact, the principal
role of an SEE is to provide support to order to enact the SP
effectively. This point of view is gaining ground as software
development and maintenance processes have become intellec-
tual activities of an ever more complex and laborious nature,

Tool

Interoperability
How much work must be done for a tool

to manipulate data produced by
another?

Nonredundancy
How much data managed by a tool is

duplicated in or can be derived from the
data managed by the other?

Data Consistency
How well do two tools cooperate to

maintain the semantic constraints on
the data they manipulate?

Data Exchange
How much work must be done to make

the nonpersistent data generated by
one tool usable by the other?

Synchronization
How well does a tool communicate
changes it makes to the values of

nonpersistent, common data?

DATA

PROCESS

Process Step
How well do relevant tools combine to
support the performance of a process

step?

Event
How well do relevant tools agree on the
events required to support a process?

Constraint
How well do relevant tools cooperate to

enforce a constraint?

PRESENTATION

Appearance and Behaviour
To what extent do two tools use similar

screen appearance and interaction
behaviour?

Interaction Paradigm
To what extent do two tools use similar

metaphors and mental models?

CONTROL

Provision
To what extent are a tool's services

used by other tool in the environment?

Use
To what extent does a tool use the

services provided by other tools in the
environment?

Figure 3: Properties of Tool Integration in SEE.

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

10 UPGRADE Vol. V, No. 5, October 2004 © Novática

with a great potential for improvement to quality and produc-
tivity, based on discipline, management, and the help of PSEEs
and other computing technologies. Many organizations have
problems defining and performing the steps which transform
user requirements into a software product in such a way that
they are replicable, measurable in terms of quality objectives,
and adaptable or improvable, so the use of an SEE to imple-
ment a defined process during the performance of a software
project can provide considerable short term benefits.

In a PSEE, process management services contribute to the
effective support of SPs, providing end-user oriented facilities
in order to define and use processes that can replace the undis-
ciplined, difficult to control, and tedious invocation of individ-
ual tools. Garg and Jazayeri [4] believe that process support in
PSEE is based on the following functionalities:
• Process definition. A process engineer use the PSEE to

define a process to be followed by one or more projects.
• Process analysis. A process model within a PSEE can be

analysed to verify its consistency, completeness, and
correctness.

• Process presentation. A PSEE includes support for the
graphical display of SPs (activity flows) and products (struc-
tured diagrams).

• Process simulation. The PSEE supports the use of simula-
tions to be able to evaluate the suitability of a process before
committing full resources to it.

• Process automation. Once a process has been defined, activ-
ities which do not require human intervention can be identi-
fied and automated by the PSEE.

• Process monitoring. The PSEE monitors the execution of a
process and records the history of the activities carried out.
This process history can be used later for future process
developments and improvements.

• Process change support. The PSEE allows an organization
to change its process definitions without interrupting its
work.

• Openness. The PSEE provides tools to exchange data and
metadata with other non-integrated tools or with other
PSEEs.

• Multi-User support. Typically, software engineering
projects are worked on by teams of people with different
roles. The PSEE must therefore provide services to all the
people working together on a process.

• Process guidance. Software engineers use the PSEE to carry
out various process steps. The PSEE must provide help in
choosing among possible next steps based on the modelled
process and the current state.

• Task-specific user interface. Based on the modelled process,
the PSEE can scope the user interface to the needs of each
task, thereby preventing an excess of information from
being presented to the user.

It is becoming ever more common for software product
development and maintenance to be carried out with the collab-
oration of various companies or organisations. As a result, in
recent years there has been increasing interest in the study of

the problems that can arise when several separate and distinct
PSEEs are required to collaborate with one another, and, more
specifically, in the need for interoperability between the proc-
esses supported by those PSEEs. Among the various proposals
made to address this problem, perhaps the most interesting is
that put forward by a number of authors who, using the meta-
phor of international alliances, support the idea of forming
federations of PSEEs, whereby each organization would
manage its own processes (just as each country has its own
laws), and inter-organizational processes would act in a similar
way to international treaties between countries. In the relevant
bibliography, two types of conceptual architectures have been
proposed for PSEE federations: control based, favouring
centralization given the existence of common process models;
and state based in which there is a workspace in which the
common state is stored [2].

Conclusions
In this article we have presented the key aspects of Soft-

ware Process Technology: the object of interest (software proc-
ess and their characteristics); the interest in and justification for
giving automatic support to these processes; and the require-
ments, functionality and characteristics of integration and proc-
ess-orientation that the collection of tools need to have to
achieve these goals.

References
[1]

J. C. Derniame, B. A. Kaba, and D. Wastell, D. (eds.). Software
Process: Principles, Methodology and Technology. LNCS 1500,
Springer-Verlag, 1999.

[2]
J. Estublier, P. Y. Cunin, and N. Belkhatir. Architectures for Proc-
ess Support System Interoperability. Proceedings of the Fifth
International Conference on the Software Process (ICSP’98),
15–17 Junio, Chicago (Estados Unidos), pp. 137–147, 1998.

[3]
A. Fuggetta. Software Process: A Roadmap. 22nd International
Conference on Software Engineering (ICSE’2000), Future of
Software Engineering Track, June 4–11, Limerick (Irlanda),
ACM, 2000.

[4]
P. K. Garg and M. Jazayeri. Process-centred Software Engineer-
ing Environments: A Grand Tour. In Fuggetta, A. y Wolf, A.
(eds.); Software Process. John Wiley & Sons, 1996.

[5]
R. McLeod Jr. Management Information Systems. McMillan
Publishing, New York, 1990.

[6]
H. Ossher, W. Harrison, and P. Tarr. Software Engineering Tools
and Environments: a Roadmap. International Conference on
Software Engineering (ICSE) – Future of SE Track. Limerick
(Irlanda), pp. 261–277, 2000.

[7]
I. Thomas and B.A. Nejmeh. Definitions of Tool Integration for
Environments. IEEE Software, 9(2), pp. 29–35, 1992.

[8]
M. V. Zelkowitz. Software Engineering Environment Capabili-
ties. Journal of Systems and Software. Elsevier Science, 35(1),
pp. 3–14, 1996.

4

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

© Novática UPGRADE Vol. V, No. 5, October 2004 11

Key Issues and New Challenges in Software Process Technology

Jean-Claude Derniame and Flavio Oquendo

In the last two decades we have seen a tremendous development in software process research. During that
time there has been considerable progress in developing the technological base for supporting software
engineering processes. However, the changing face of technology and methodology (in particular agile
methods), the ever increasing complexity of software systems, and the revolutionary development in the
Internet have led to many interesting challenges and opportunities for new developments in Software
Process Technology. This paper examines some of the important trends of software process in research and
practice, and speculates on the important emerging challenges.

Keywords: Process Enactment, Process Modelling, Research
Directions, Software Process Technology.

Introduction
The software process of developing and maintaining a

product or a service plays a crucial role in determining the qual-
ity level of the product or service but also the cost of develop-
ing, supporting and maintaining it.

Process has been recognized important for decades in manu-
facturing, but it became, more lately, a priority in software
production and high-tech service provisioning. In fact, soft-
ware producers and telecommunications service providers,
from small vendors to giants like Microsoft and AT&T, have
started to model, analyse, and re-engineer or improve the proc-
esses used to produce, support and maintain their products and
services. Process improvement has finally been identified as a
major area in the high-tech industry.

The main stream of effort in industry, standardization bodies
and institutions has been devoted to process analysis and
assessment, which is fundamental when exchanging products.
Main stream of effort in research has been on defining languag-
es and building process-centred software engineering environ-
ments. From 1990 up to now a lot of them has been prototyped,
[6] and some of them industrialized.

Software engineering researchers have studied the software
production process quite thoroughly for many years now [4].
They have set two research goals: (1) developing a process
modelling, analysis and improvement methodology and (2)
improving process support technology.

The first goal motivated the development of numerous proc-
ess life cycle models, such as the waterfall model and the spiral
model [2], and methodological approaches to structuring,
organizing, documenting and formally describing processes in
order to evaluating or improving them, such as the Capability
Maturity Model (CMM) [14], Bootstrap [9], and the SPICE
ISO/IEC 15504 Standard.

The second goal motivated the development of Process-
centred Software Engineering Environments (PSEE), which
are software systems that assist in the modelling and automa-

1 Jean-Claude Derniame is currently teaching at Institut
Polytechnique de Lorraine at Nancy, France. He holds a Research
Direction Habilitation in Computer Science from the University
of Nancy, France. He has been a Full Professor in Computer
Science at the University of Nancy since 1979. Prof. Derniame
has published more than 150 refereed papers in a range of soft-
ware engineering areas (especially programming environments,
software architecture, software process and computer-assisted
environments, but also in Graph theory, social impact of new
technologies, new technologies and developing Countries). He
has advised 70 theses. He had active participation and responsi-
bilities in several projects such as PCTE (ESPRIT), PCTE+
(IEPG-TA13), ALF (ESPRIT), PCIS (NATO), PCIS II (US-DOD
French MOD), Wise Dev (World Bank), SIMES (European
PCRD). He was animator of the European research groups on
software process PROMOTER I and II (ESPRIT BRA-WG), and
chaired the steering committee of the EWSPT series.
<derniame@loria.fr>

Flavio Oquendo holds a PhD and a Research Direction Habil-
itation in Computer Science from the University of Grenoble,
France. He has been a Full Professor in Computer Science at the
University of Savoie since 1995. Prof. Oquendo has a high level
of expertise and experience in the field of Software Engineering,
including active participation in 10 European R&D Projects,
including ALICE (MAP), PCTE (ESPRIT), PCTE+ (IEPG-
TA13), PACT (ESPRIT), ALF (ESPRIT), SCALE (ESPRIT),
PROMOTER I/II (ESPRIT BRA-WG), PIE (ESPRIT LTR), and
ARCHWARE (IST). Prof. Oquendo has published well over 100
refereed papers in a range of software engineering areas (espe-
cially in software architecture, software process and computer-
assisted environments). He has served on programme committees
of 18 international conferences and workshops (last year he has
served as Programme Chair of the 9th European Workshop on
Software Process Technology – EWSPT 2003, Springer-Verlag
LNCS 2786). He has also act as referee for many international
journals. His current research interests include formal description
and development techniques for software architecture and proc-
ess specification, refinement, implementation, monitoring, and
evolution. <flavio.oquendo@univ-savoie.fr>

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

12 UPGRADE Vol. V, No. 5, October 2004 © Novática

tion through enactment of software development processes.
Results of this research and development work have been
presented in several major international conferences and work-
shops: EWSPT (European Workshop on Software Process
Technology) series published since 1992 as LNCS (Lecture
Notes in Computer Science) by Springer Verlag, ISPW (Inter-
national Software Process Workshop) published by IEEE, and
ICSP (International Conference on the Software Process)
series published by ICSA (The International Software Process
Association), ACM Press. Promising approaches, technologi-
cal advances, and experiences in applying the process technol-
ogy have been published in proceedings and journals. Some
books also propose synthesis of the domain [8][4][15].

Since 1984 there has been considerable progress in develop-
ing the technological base for supporting software processes,
including Process Modelling Languages (PML) and Environ-
ments (see [1] for a comparative review of the state of the art).
However, the changing face of technology and methodology
(in particular agile methods), the ever increasing complexity of
software systems, and the revolutionary development in the
Internet have led to many interesting challenges and opportuni-
ties for new developments in Software Process Technology.
This paper examines some of the important trends and chal-
lenges of software process in research and practice.

The remainder of this paper is organised as follows. Section
2 introduces a conceptual and terminological framework in
order to structure software process concerns. Section 3 intro-
duces the CMM levels of software process maturity. Section 4
summarizes where we are today in Software Process Technol-
ogy. Section 5 speculates on the important emerging challenges
of Software Process Technology. Finally, Section 6 concludes
the paper.

Process Framework
We will use a conceptual and terminological framework

[5] in order to present key issues and future directions in Soft-
ware Process Technology. This conceptual framework,
sketched in Figure 1, introduces three software process
domains:
• Process model domain,
• Process enactment domain,
• Process performance domain.

The process model domain contains characterizations of
processes or fragments of processes, expressed in some nota-
tion, i.e. a software process modelling language, in terms of
how they could or should be enacted/performed. A software
process model is a software process abstraction described with
a formal or semi-formal software process modelling language.

2

Process model domain Process performance domain (P)

Process enactment domain (E)

Process models

E>P

P>E

Legend
E>P
P>E

assistance and support for performance
performance feedback

Figure 1: Software Process Domains.

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

© Novática UPGRADE Vol. V, No. 5, October 2004 13

A meta-process model represents the set of (meta-)activities to
model, to analyse software processes and to support their
evolution.

The process enactment domain encompasses what takes
place in a process-sensitive software engineering environment
to support process performance governed by process models.
Enactment comprises customization and instantiation. A
customized process model is said to be instantiated when its
artefacts are linked with concrete products and project resourc-
es. A customized process model is the result of the refinement
and adaptation of a generic process model to a specific project.
A Process-centred Software Engineering Environment encom-
passes the set of mechanisms that provides a variety of support
(assistance, guidance, monitoring, automation, etc.) to soft-
ware process performers by enacting an explicit representation
(i.e. model) of this process.

The process performance domain encompasses the actual
tasks and activities that are performed by the process agents
(human or not) in the course of a software process. A software
process is defined by the set of technical and managerial activ-
ities carried out in the production and the maintenance of soft-
ware. It is a partially ordered set of activities each of them is
associated with its related artefacts, human and computerizes
resources, constraints, policies, etc. In the process performance
domain, one may discern between the performer who may be a
project manager, a programmer, a system analyst, a quality
auditor, a tester, or the end-user who is the user of the product
that is developed.

Process Maturity
Software process maturity is the extent to which a specif-

ic process is explicitly defined, managed, measured, controlled,
and effective. As stated in [13], maturity implies a potential for
growth in capability and indicates both the richness of an
organization’s software process and the consistency with which
it is applied in projects throughout the organization. The soft-
ware process is well-understood throughout a mature organiza-
tion, usually through documentation and training, and the proc-
ess is continually being monitored and improved by its users.
The capability of a mature software process is known. Software
process maturity implies that the productivity and quality re-
sulting from an organization’s software process can be im-
proved over time through consistent gains in the discipline
achieved by using its software process. Process maturity levels
proposed by CMM are sketched in Figure 2.

These five levels of software process maturity can be charac-
terized as follows:
1) Initial. The software process is characterized as ad hoc,

and occasionally even chaotic. Few processes are defined,
and success depends on individual effort.

2) Repeatable. Basic project management processes are
established to track cost, schedule, and functionality. The
necessary process discipline is in place to repeat earlier
successes on projects with similar applications.

3) Defined. The software process for both management and
engineering activities is documented, standardized, and
integrated into a standard software process for the organi-

zation. All projects use an approved, tailored version of the
organization’s standard software process for developing
and maintaining software.

4) Managed. Detailed measures of the software process and
product quality are collected. Both the software process
and products are quantitatively understood and controlled.

5) Optimizing. Continuous process improvement is enabled
by quantitative feedback from the process and from pilot-
ing innovative ideas and technologies.

Maturity levels 2 through 5 can be characterized through the
activities performed by the organization to establish or improve
the software process. But why Software Process Technology is
relevant to practitioners wanting to move to higher process
maturity levels? Because they cannot get to CMM levels 3, 4,
and 5 without Software Process Technology. Indeed, Software
Process Technology can provide support for definition, meas-
urement, analysis, monitoring, guidance, and automation.

Yesterday and Today
On the one hand, software process modelling and

improvement are key aspects to practitioners to move to higher
process maturity levels, thereby mastering the process of devel-
oping and maintaining software. On the other hand Software
Process Technology provides a fundamental support for getting
to higher process maturity levels. How much progress have we
made during these two decades?

Yesterday
In the distant past of twenty years ago, software process was

largely an ad hoc affair. Definitions relied on informal dia-
grams, which were rarely followed by software engineers in or-
ganizations. The notion of software process was ill-understood.

3

4

Initial
(1)

Repeatable
(2)

Defined
(3)

Optimizing
(5)

Managed
(4)

Continuously
improving
process

Predictable
process

Standard,
consistent
process

Disciplined
process

Figure 2: The Five Levels of Software Process Maturity.

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

14 UPGRADE Vol. V, No. 5, October 2004 © Novática

Today
Much has changed in the past two decades. Although there is

wide variation in the state of the practice, generally speaking,
software process is much more visible as an important and
explicit support activity in software development. Job titles
now reflect the role of software process engineers and compa-
nies recognize the importance of software process maturity and
invest in order to reach higher process maturity levels.

In addition, the technological basis for software process has
improved dramatically. Important advancements have been the
development of process modelling languages and process-
centred software engineering environments as summarized
hereafter.

4.1 Process Modelling Languages
A lot of PML proposals has been done relying on different

paradigms such as logic-based, procedural, rule-based, multi-
agents, active-databases, Petri nets, object oriented languages.
Process-centred environments have been built for them. Very
few have transformed to become product but a lot of ideas have
been used in current products. The main objective for an indus-
trial company, using PML, is probably to capitalize on the
employees experience to enhance the products quality. Capital-
izing on experience means to be able to reuse some parts of
process models, to share them, to distribute them, to adapt
them, to assembly components, to make components working
together. All this is a plea to have modular PMLs and to stand-
ardise them. Standards exists, e.g. ISO/IEC 12207 and OMG’s
SPEM (Software Process Engineering Metamodel).

The proposed PMLs enable an unambiguous description of
the process (level 2). Most of them focus on performance sup-
port, and they permit, as well as standards, to reach the level 3
in CMM classification. Some of them address the process mod-
el improvement problem. An unambiguous representation of
the process may also provide to the project management team
the mean to monitor the project under development with
respect to the plan, the mean to react to the deviations and to
trace the ongoing process. Progress in this direction is obvious-
ly desirable to reach level 4 and 5.

Describing and modelling software processes can be done for
many different purposes from understanding, towards perform-
ance, passing through evaluation, performance, guidance,
improvement, etc. each purpose can be addressed with different
strategies. Hoping to make a unique PML largely adopted is
certainly utopian. As a consequence, we need several PMLs or,
preferably, several facets, issued from a common PML archi-
tecture, acting in the same environment, and supporting these
different purposes,

Maybe, these languages are not yet at the adequate level of
abstraction to reach this objective. Reaching the good level of
abstract should be based on a more experimental approach.

4.2 Process-centred Software Engineering Environments
This multi-purpose dimension is peculiarly important if the

PSEE must support process performance, which means provid-
ing a variety of supports (assistance, guidance, monitoring,
automation, etc) to software process performers. In this case,

requirements concern at one and the same time PML and
PSEE. Between them, some address real challenges [1].
• The PSEE should support dynamic ordering of activities: If

ordering of activities can be dynamically built and modified,
the PSEE enactment engine will be able to continue to sup-
port and assist process performance. Humans interacting
with the PSEE, distributing and managing the “control”
between them is a key issue: with a balance to offer in terms
of discipline vs. initiative, modelling and controlling facts
vs. intentions, etc. The fundamental discussion about “Soft-
ware Processes are software too” raised by [12] and [10] is
obviously not finished. In order to progress towards level 4,
the PML, and the PSEE as PML support, should support
flexibility to be usable within the strategy adopted by a com-
pany, which can go from a strict disciplined “plan-driven”
process towards a fully free process where “deviation is a
standard”.

• The PSEE should support software process distribution,
which encompasses process modularity, heterogeneity,
interoperability, composability, process fragments federa-
tion. It implies also that the PSEE must be able to support
communication, coordination, cooperation and negotiation
between user performers with their different roles. The
PSEE process representation formalism must provide the
means of representing performers’ social interaction in the
process enactment state and to keep this state updated about
what happens in the performance domain. Performers’
communication and negotiation may result in unexpected
changes and decisions about the software process. In order
to maintain consistency between enactment and perform-
ance states, these changes and the social interaction that
leads to them needs to be represented in the enactment state.

• The PSEE should support software process evolution: off-
line evolution and on-line evolution. In this case, conse-
quences on on-going current processes and processes having
yet passed beyond the point of change in the model must be
considered. Most of the PSEEs proposed by researchers
explore solution for a shared evolution but not when
conflicts occur with process fragments already performed
being in conflict with the changed model. PSEEs must also
support private evolution: change will be local to the process
model instance that is currently enacted, without impacting
nor the enacted model, nor the model itself: process devia-
tions against the model must be supported, negotiable, and
their impact must be managed.

Tomorrow
What about the future? Although software process is on a

much more solid footing than two decades ago, it is not yet
established as a discipline that is taught and practised univer-
sally across the software industry. One reason for this is simply
that it takes time for new approaches and perceptions to propa-
gate. Another reason is that the technological basis for software
process is still immature. In both of these areas we can expect
that a natural evolution of the field will lead to steady advances.

However, the world of software engineering and the ways in
which software is being developed are changing in significant

5

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

© Novática UPGRADE Vol. V, No. 5, October 2004 15

ways. These changes promise to have a major impact on how
software process is practised. In the remainder of this section
we consider three of the more prominent trends and their impli-
cations for the field of software process.

5.1 Agile Software Development
In the past few years there has been a rapidly growing interest

in agile (aka “lightweight”) software development methodolo-
gies. Similarly, plan-driven methodologies1 have been
described as rigorous, disciplined, bureaucratic, heavyweight,
and industrial-strength.

Several methodologies fit under this agile banner, including
[7]:
• XP (Extreme Programming): XP builds an evolutionary

design process that relies on refactoring a simple base
system with each iteration. All design is centred around the
current iteration with no design done for anticipated future
needs. The result is a design process that is disciplined, yet
startling, combining discipline with adaptivity in a way that
arguably makes it the most well developed of all the adap-
tive methodologies.

• Crystals: The Crystals share a human orientation with XP,
but this people-centredness is done in a different way. It
explores a least disciplined methodology that could still suc-
ceed, consciously trading off productivity for ease of execu-
tion. It also puts a lot of weight in end of iteration reviews,
thus encouraging the process to be self-improving. His
assertion is that iterative development is there to find prob-
lems early, and then to enable people to correct them. This
places more emphasis on people monitoring their process
and tuning it as they develop.

• ASD (Adaptive Software Development): At the heart of
ASD are three non-linear, overlapping phases: speculation,
collaboration, and learning. It views planning as a paradox
in an adaptive environment, since outcomes are naturally
unpredictable. In traditional planning, deviations from plans
are mistakes that should be corrected. In an adaptive envi-
ronment, however, deviations guide us towards the correct
solution.

• Scrum: Scrum focuses on the fact that defined and repeata-
ble processes only work for tackling defined and repeatable
problems with defined and repeatable people in defined and
repeatable environments. Scrum divides a project into itera-
tions (which they call sprints) of 30 days. Before you begin
a sprint you define the functionality required for that sprint
and then leave the team to deliver it. The point is to stabilize
the requirements during the sprint. However management
does not disengage during the sprint. Every day the team
holds a short (fifteen minute) meeting, called a scrum, where
the team runs through what it will do in the next day.

• FDD (Feature Driven Development): FDD like other adap-
tive methodologies focuses on short iterations that deliver
tangible functionality. In FDD’s case the iterations are two
weeks long. FDD has five processes. The first three are done

at the beginning of the project: Develop an Overall Model,
Build a Features List, and Plan by Feature. The last two are
done within each iteration: Design by Feature and Build by
Feature. Each process is broken down into tasks and is given
verification criteria.

Agile methodologies imply disciplined processes, even if the
implementations differ in extreme ways from traditional soft-
ware engineering and management practices [13]. The chal-
lenge here for Software Process Technology is how to support
agile methodologies, even though agile methodologies appear
to be incompatible in principle with the discipline of “plan-
driven” software process modelling and enactment. In addition,
the implementation of those methodologies must be aligned
with the spirit of the agile philosophy and with the needs and
interests of the customer and other stakeholders. Perhaps the
biggest challenge in providing process languages and process-
centred environments for effectively addressing both agile and
plan-driven methodologies is dealing with extremists in terms
of process deviation.

5.2 Open Source Software Development
There is a definite way of doing things in the open source

community, and much of their approach is as applicable to
closed source projects as it is to open source. In particular their
process is geared to physically distributed teams, which is
important because most adaptive processes stress co-located
teams.

Open source software development is distributed by nature.
Most open source projects have one or more maintainers. A
maintainer is the only person who is allowed to commit a
change into the source code repository. Different projects
handle the maintainer role in different ways. Some have one
maintainer for the whole project, some divide into modules and
have a maintainer per module, some rotate the maintainer,
some have multiple maintainers on the same code, others have
a combination of these ideas. Even if the coordination process
is devised, the software process for open-source is not well
written up.

The challenge here for Software Process Technology is how
to support the freedom of Open Source Software Development
while enforcing personal and coordination processes.

5.3 Global Software Development
Global software development is increasingly becoming

common practice in the software industry, as the ability to
develop software at remote sites in projects such as develop-
ment outsourcing allows organizations to ignore the geograph-
ical distance and benefit from access to a qualified resource
pool and a reduction in development costs.

Indeed, the increased globalization of software development
creates software process challenges due to the impact of tem-
poral, geographical and cultural differences, and requires
development of models to address these issues. Besides
addressing these issues, the challenge here for Software Proc-
ess Technology is how to support distributed, heterogeneous,
dynamically created and managed software processes while
maintaining and improving the “global view”.

1. Plan-driven was coined by Barry Boehm [3] to characterize the
opposite end of the planning spectrum from agile methodologies.

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

16 UPGRADE Vol. V, No. 5, October 2004 © Novática

Concluding Remarks
In this paper we have attempted to provide a high-level

overview of key issues and new challenges in software process
technology by presenting where we have come over the past
years and speculating about needs for the coming years.
Indeed, the field of software process is one that has experienced
considerable growth over the past two decades. As software
engineering matures into an engineering discipline, there are a
number of process-related challenges that will need to be ad-
dressed. Many of the solutions to these challenges are likely to
arise as a natural consequence of maturation of software proc-
ess practices and technology that we know about today. New
challenges arise because of the shifting landscape of software
engineering methods and the needs of process support for agile
and Internet-enabled software development. Other challenges
will come from new paradigms for engineering software such
as the product line approach to software development and
model-driven engineering.

References
[1]

S. Arbaoui, J.-C. Derniame, F. Oquendo, H. Verjus. “A Compar-
ative Review of Process-Centered Software Engineering Envi-
ronments", Int. Journal: Annals of Software Engineering, Special
Issue on Process-Based Software Engineering, Vol. 14, No. 1–4,
December 2002.

[2]
B. W. Boehm. “A Spiral Model of Software Development and
Enhancement”, ACM SIGSOFT Software Engineering Notes,
Vol. 11, No 4, 1986.

[3]
B. W. Boehm. “Get Ready for Agile Methods, With Care”, IEEE
Computer, January 2002.

[4]
J. C. Derniame, D. Wastell, A. Kaba (eds). Software Process:
Principles, Methodology and Technology, LNCS N°1500,
Springer Verlag, January 1999.

[5]
M. Dowson. “Consistency Maintenance in Process Sensitive
Environments”, Proceedings of the Workshop on Process Sensi-
tive SEE Architectures, Boulder, VA, USA, 1992.

[6]
A. Finkelstein, J,Kramer, B.J, Nuseibeh (eds). Software Process
Modeling and Technology, Wiley& Sons, London, 1994.

[7]
M. Fowler. The New Methodology,
<http://www.martinfowler.com/articles/newMethodology.html>,
April 2003.

[8]
A. Fuggetta, A. Wolf (eds). Software Process, Vol. 4, Trends in
Software, J. Wiley & Sons, New York, 1996.

[9]
P. Kuvaja. “Software Process Assessment and Improvement: The
Bootstrap Approach", Blackwell, Oxford, UK, 1994.

[10]
M. M. Lehman. “Process Models, Process Programming,
Programming Support”, Proceedings of the 9th International
Conference on Software Engineering, Monterey,1987 (Response
to an ICSE’9 Keynote Address by Leon Osterweil).

[11]
F. Oquendo (Ed). Proceedings of the 9th European Workshop on
Software Process Technology (EWSPT 2003), Springer-Verlag,
LNCS 2786, Helsinki, Finland, 2003.

[12]
L. J. Osterweil. “Software Processes are Software too”, Proceed-
ings of the 9th International Conference on Software Engineer-
ing, Monterey,1987

[13]
M. C. Paulk. “Extreme Programming From a CMM Perspective”,
IEEE Software 34-11, 2001.

[14]
M. C. Paulk, C.V. Weber, S.M. Garcia, M.B. Chrissis, M. Bush.
Key Practices of the Capability Maturity Model, Version 1.1,
Technical Report, CMU/SEI-93-TR-025, ESC-TR-93-178, Pitts-
burgh, PA, USA, 1993.

[15]
B. Westfechtel. “Models and Tools for Managing Development
Processes”, LNCS 1646, Springer Verlag, Berlin, Germany,
1999.

6

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

© Novática UPGRADE Vol. V, No. 5, October 2004 17

A Taxonomy of Software Engineering Environment Services: The
Upcoming ISO/IEC Standard 15940

Dan Hyung Lee and Juan Garbajosa-Sopeña

This paper introduces the upcoming ISO/IEC software engineering standard 15940 – Software Engineering
Environment Services – and describes its motivation, background and basic guidelines. This standard
presents the set of services to be provided to the different kinds of users in software engineering environments
from the point of view of software lifecycle processes.

Keywords: Assisted Software Process, CASE tools,
ISO/IEC 12207, ISO/IEC 14102, Software Development Envi-
ronment, Software Lifecycle Processes, Software Process
Automation

Introduction
The automation of software engineering lifecycle proc-

esses is still an open issue for the software engineering commu-
nity. For many years the main obstacle to achieving automation
was seen as a basically technical problem, focused mainly on
tool integration. That was the case in the early 90s when
platforms such as PCTE (Portable Common Tool Environ-
ment) [1] were seen as part of the solution to the problem, the
goal of which was to achieve integrated environments via ref-
erence models. A number of opinions refuting these commonly
accepted approaches can be found in [2]. A reference model
published jointly by the European Computer Manufacturers
Association (ECMA, <http://www.ecma-international.org/>)
and the US National Institute for Standards and Technology
(NIST, <http://www.nist.gov>) was released in 1993 [3]. While
this report is well structured and comprehensive, the services
included are mainly of a technical nature and do not address
many of the end-user services, reflecting the extent to which
technical requirements were considered as the main concern.
Later, end user services were addressed in [4].

Meanwhile further progress was being made in the definition
of lifecycle processes, with ISO/IEC 12207 [5] being published
in 1995. Reference [5] describes a comprehensive set of proc-
esses, activities and tasks to be performed when acquiring or
developing software. While it does not address their implemen-
tation or automation it has in all probability been one of the
standards which has had the greatest impact on the software
community, with the exception of the ISO 9000 series. It covers
areas such as the specification, development, re-engineering,
acquisition, supply, or maintenance of software based systems.
During the 90s, lifecycle processes gained an ever greater
importance within the community, while process maturity and
improvement were also considered.

Software Engineering Environments (SEE) are intended to
provided at least partially automated support to software lifecy-
cle processes. But the term SEE is used to denote a wide range

of entities: from a juxtaposition of tools running under the same
operating system to a fully integrated environment, able to con-
trol all data, processes and activities in the software lifecycle.

For a user interested in a specific process, there is no clear
vision of what services an SEE might provide, what the rela-
tionships between those services might be, or how an SEE
relates to the software engineering life cycle as a whole. For
this reason, it is difficult to make a proper assessment of prod-
ucts that claim to be an SEE. It is frequently difficult to under-
stand the role a software engineering tool might play in an SEE
without an overall view of what an SEE is. It is difficult for an
organization to achieve the proper level of automation in its
process improvement efforts without a well-defined set of soft-
ware engineering environment services. This problem can be
resolved by generating a comprehensive, objective description

1

Dan H. Lee is currently the Director of the Software Technol-
ogy Institute and a Professor at the Information and Communica-
tions University, Seoul, Korea. He is a WG4 tools and environ-
ment convenor for the ISO/IEC JTC1 SC7 Software and Systems
Engineering Subcommittee. Before joining the Information and
Communications University, Seoul, he was president and CEO of
the Korea IT Industry Promotion Agency, Sr. Executive Vice
President and Chief Technology Officer at LG-EDS Systems, and
Executive Vice President at Systems Engineering Research Insti-
tute. <danlee@icu.ac.kr>

Juan Garbajosa-Sopeña is a Lecturer at Universidad Politéc-
nica de Madrid (UPM), Spain, where he teaches courses in soft-
ware engineering and database administration, and system inte-
gration and validation. On the ISO/IEC JTC1 SC7 Software and
Systems Engineering Subcommittee he is co-editor of project
15940 Software Engineering Environment Services and of a
number of other projects related to tool standardisation, and he is
a convenor of the WG20 Software Engineering Body of Knowl-
edge. Before joining UPM he spent more than 15 years in indus-
try. He is affiliated to IEEE, ACM, ATI, and Ada-Spain. His
current research interests are in tools and environments support-
ing complex systems development and operation, including
systems and process modelling and tool design and construction.
He is also extremely interested in system testing and validation
processes. <jgs@eui.upm.es>

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

18 UPGRADE Vol. V, No. 5, October 2004 © Novática

of the services that make up an SEE. In the light of all the
above, a study period led to the production of a draft standard,
NP 15940, Software Engineering – Software Engineering
Environment Services, prior to producing a definitive standard
that would include all those services required by a software
lifecycle process. Reference [3] was used as a key input, given
the widespread support it enjoyed.

Our paper is organised as follows. Following this first
section, the introduction, comes Section 2, dedicated to the
concepts underlying the standard, i.e. the future ISO/IEC
15940. Next, in Section 3, we provide an introduction to
current reference model categories for SEE services as they are
today. And, finally, we present a series of conclusions.

Concepts Underlying The Standard
SEEs refer to a collection of services, partially or fully

automated by tools, that are used to support software engineer-
ing activities. An SEE provides automated services for the
engineering of software systems and the management of soft-
ware processes. It includes the platform, system software, util-
ities, and installed CASE (Computer-Aided Software Engi-
neering) tools. A service is an abstract description of support
for activities and tasks for the improvement of issues such as
productivity, quality, or performance. A service may be assisted
by CASE tools.

A service is self-contained, coherent, discrete, and may be
composed of other services. A CASE tool is a software product
that can assist software engineers by providing automated
support for software life-cycle activities as defined in [5].
Finally, an automated process is a software process that is
enacted with either full or partial support of CASE tools.

The term SEE may cover several situations: from the mere
juxtaposition of a few tools running on the same operating
system, up to a fully integrated environment able to handle,
monitor, and even control all the data, processes, and activities
in a software life cycle. An SEE provides support to human
activities through a series of services that describe the capabil-
ities of the environment. The software process supported by an
SEE becomes an assisted or automated software process. This
standard describes SEE services and relates them to [5] in a
manner applicable to a range of organisations. When defining a
lifecycle process an organisation needs to find the appropriate
level of automation. This may result in establishing a new SEE
or improving an existing one. As an SEE’s capabilities are
expressed by means of services, this emphasises the fact that an
individual performs activities with the help of the SEE. Servic-
es provide a link between a set of chosen software life cycle
processes and their automation by means of tools. In most cas-
es, a tool’s functionality can be related to one or more services.

Through the partial or full automation of activities an SEE
provides benefits to an organisation in the form of lower costs
(higher productivity), improved management, and the higher
product quality that can be produced. For example, the automa-
tion of repetitive activities such as the execution of test cases
provides not only productivity gains but can also help to ensure
completeness and consistency in testing activities.

Specific criteria or the process used in the selection of one or
more CASE tools, or recommendations to adopt CASE tools
within an organization are outside the scope of project 15950.
These criteria and detailed CASE tool characteristics can be
found in [6] and [7], currently under revision by ISO/IEC JTC1
SC7 Software and Systems Engineering Sub-Committee.

Reference Model: Categories for SEE Services
The upcoming ISO/IEC 15940 will provide a reference

model for SEE services. As a reference model, ISO/IEC 15940
will make use of a set of conceptual descriptions to describe
each service used in a project support environment. “Concep-
tual description” means that description is performed from a
reference viewpoint, and does not deal with any specific imple-
mentation. The description is therefore general and does not as-
sume any specific application domain, life cycle model, or tool
in a project. In this way ISO/IEC 15940 will be applicable to
any defined organisational environment.

An actual environment is realized from a reference model
containing conceptual descriptions. Therefore, an actual
description of a specific environment would reflect a particular
activity with its tools and standards. In the current draft CD
ISO/IEC 15940, services are grouped into six categories that
reflect broad functional activities within a typical software
engineering organisation. The six categories of services are:
• Technical engineering: Technical Engineering Services

support activities related to the specification, design, imple-
mentation, testing, and maintenance of software.

• Technical management: The services in this section fall into
a category that considers both technical engineering and
project management. These services pertain to activities that
are often shared by engineers and managers.

• Project management: The services in this section support the
activities related to planning and executing a project.
Following project initiation, it will be necessary to carry out
detailed planning of the project activities, together with
ongoing monitoring and re-planning of the project to ensure
its continued progress.

• Process management: The services in this section support
projects with a view to achieving discipline, control, and
clear understanding in their life-cycle development process-
es as understood in IS 12207 and in the individual process
steps.

• Support: Support services include services that the rest of
the services will require to become operational. They gener-
ally include the services associated with processing, format-
ting, and disseminating human-readable data.

• Framework: These services comprise the infrastructure of an
SEE and will be required to support an SEE once it is actu-
ally implemented.

For each service it is possible to enumerate Basic Services
Operations (BSO) and a number of service tasks that can be
automated, known as Automated Operations (AO). An example
for each is provided in the next section.

2

3

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

© Novática UPGRADE Vol. V, No. 5, October 2004 19

General Breakdown of SEE Services
The following section takes a more in-depth look at some

SEE services to give the reader a better understanding of the
structure of SEE services.

4.1 Technical Engineering Services
• Software Requirements. Provides the ability to capture,

represent, analyse, and refine the system requirements that
are allocated to software components. Examples: for BSO,
to elicit and capture software requirements; for AO, require-
ments traceability.

• Software Design. Provides the ability to capture, represent,
create, analyse, and refine the design attributes of the soft-
ware components of a system or subsystem. Examples: for
BSO, to translate requirements into design elements; for
AO, traceability and consistency checking from software
requirements specification to design elements.

• Software Simulation and Modelling. Provides the ability
to simulate and model in order to determine the effective-
ness of alternative designs with regard to such attributes as
user interface characteristics or execution flow. Examples:
for BSO, to build a model (graphical, logical, mathematical,
etc.) from requirements; for AO, assistance for graphical
operations.

• Software Verification. Provides the ability to confirm by
examination and provision of evidence that the specified
requirements have been fulfilled. Examples: for BSO, to
analyse specifications for consistency; for AO, inconsisten-
cy identification.

• Component Based Software Generation. Provides the
ability to automatically and semiautomatically generate
software components using existing components or compo-
nent templates. Examples: for BSO, to generate a parser
from a syntactic language description; for AO, traceability
from the components to the design specifications.

• Source Code Generation. Provides the ability to generate
modules from design specifications. Examples: for BSO, to
generate modules from design specifications; for AO,
module generation from design specifications

• Compilation. Provides the ability to support for the transla-
tion and linking of software components written in various
programming languages. Examples: for BSO, to find code
and inheritance dependencies among a set of software
components; for AO, to provide a compilation error list and
a description indicating module names and line numbers.

• Software Static Analysis. Provides the ability to provide
static analysis or source code analysis of software compo-
nents in order to determine structure within the component.
Examples: for BSO, to collect raw statistics from compo-
nent; for AO, the estimation of a computational metric of the
complexity of a component.

• Debugging. Provides the ability to locate and repair source
code errors in individual software components by controlled
or monitored execution of the code, and by tracking down
errors and replacing code. Examples: for BSO, the execution
of programs incrementally; for AO, execution output moni-
toring and saving.

• Software Testing. Provides the ability to test software
systems at individual software component level (unit test-
ing), and to test collections of software components (inte-
gration testing), and complete software systems (system
testing). Examples: for BSO, to generate test cases; for AO,
to record and store test cases.

• Component integration. Provides the ability to support the
development of software components that are uniquely
defined and combine these into a larger system or product
version that can be managed as a whole. Examples: for BSO,
to prepare software components for use; for AO, component
interface management

• Software Reverse Engineering. Provides the ability to
capture design information from source or object code, and
to produce structure charts, call graphs, and other design
documentation to provide new functionality or support a
new environment. Examples: for BSO, generate design from
source code; for AO, to design generation.

• Software Reengineering. Provides the ability to take a new
or modified set of software requirements and the existing
design as input and produce a new or modified design.
Examples: for BSO, to perform impact analysis of new
design on existing software components; for AO, modelling
support.

• Software Traceability. Provides the ability to record the
relationships between items of the development process.
Examples: for BSO, to create, update, and destroy relation-
ships between two items; for AO, to analyse results presen-
tation for traceability analysis.

• Software Prototyping. Provides the ability to produce a
software system that reproduces the user interface and emu-
lates the functionality and behaviour of the final system to be
built. Examples: for BSO, to build a model from require-
ments; for AO, model build from requirements.

• Documentation. Provides the ability to support the devel-
opment, integration, configuration management and tracea-
bility analysis of online and paper documentation. Exam-
ples: for BSO, building online documentation into a delivery
package; this can also be provided as automated support.

4.2 Technical management services
• Configuration Management. Supports the identification,

documentation, and control of the functional and physical
characteristics of configuration items to ensure traceability.
Examples: for BSO, to create a baseline definition; for AO,
to uniquely identify all configuration items and all changes
to configuration items.

• Change Management. Supports the creation of change
requests, change orders, and an audit trail of changes to
product components. Examples: for BSO, to create a change
request in response to a reported error, omission, or required
update; for AO, provision of a historical record of a change
request item.

• SEE Repository Management. Provides the ability to
create, access, and modify information objects (i.e. require-
ments specifications, test cases, simulation cases, E-R –
Entity-Relationship-diagrams, etc) in SEE repository man-

4

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

20 UPGRADE Vol. V, No. 5, October 2004 © Novática

agement and to record the relationships between them.
Examples: for BSO, to create, access, and modify groups of
information objects; for AO, any of the basic services.

• Reuse. Supports the storage, inspection, and reuse of assets
related to the engineering processes. Examples: for BSO, to
catalogue, register, and classify the asset; for AO, to provide
asset registration and cataloguing.

• Metrics Collection and Analysis. Provides facilities for the
collection and organisation of primitive data into meaning-
ful information to the end-users of the SEE. Examples: for
BSO, to compare a data set against a predicted model; for
AO, primitive data collection.

• Quality Assurance. Supports the definition, tracking, and
performance of quality assurance activities and the analysis
of their results. Examples: for BSO, to establish and main-
tain records of quality assurance activities; for AO, impact
analysis of quality assurance failure on a specific process
assurance item.

• Audit. Supports the planning and performance of audits and
the analysis and reporting of their results. Examples: for
BSO, to maintain a set of audit checklists; for AO, an audit
checklist linked to requirements.

4.3 Project Management Services
• Planning. Provides operations that permit data handling

according to a set of project objectives relevant to a project's
constraints. Examples: for BSO, to compute event lead
times; for AO, time graphing of key project events.

• Estimation. Supports the quantification, analysis, and
prediction of project costs and resource needs. Examples:
for BSO, to create and modify cost, size, and resource esti-
mates; for AO, to estimate changes linked to requirement
changes where appropriate.

• Risk Analysis. Supports the planning and assessment activ-
ities that consider elements related to the success or failure
of a project. Examples: for BSO, to perform tradeoff analy-
ses based on differing parameters for resource allocation and
scheduling data; for AO, cost and schedule measuring.

• Tracking. Supports the tracking of project progress includ-
ing the cost, schedule, and user requirements. Examples: for
BSO, gathering metrics related to the current status of a
project and its constituent work activities; for AO, trend
analysis for cost deviation, and size.

• Evaluation. Supports the analysis, evaluation, and decision
making associated with service tracking, data collection
metrics, and user acceptance criteria. Examples: for BSO, to
elicit user acceptance for each requirement of the project
product; for AO, to assess project/product outcomes against
user acceptance criteria.

4.4 Process Management Services
• Process Definition. Provides for the establishment of the

organisational processes covering the software life cycle via
the adaptation and tailoring of a set of higher order reference
processes. Examples: for BSO, to analyse process require-

ments, including domainspecific analysis and application-
specific analysis; for AO, any of the basic operations.

• Process Library. Supports reuse capabilities for processes,
including the creation, update, deletion, certification, meas-
urement, and management of process assets (activities,
tasks, etc.). Examples: for BSO, to create, update, and delete
process assets; for AO, process assets storage and version-
ing.

• Process Initiation. Supports the assignment of a life cycle
model, a set of processes and an SEE to meet the require-
ments and constraints for a particular project. Examples: for
BSO, to review project criteria and constraints, and select a
life cycle model; for AO, relationship definition, and tailor-
ing of processes and activities.

• Project Process Usage. These services include capabilities
for user selection and guidance, selection and control of
process steps, navigational and help facilities for users to
query the installed process for information on successful
actions. Examples: for BSO, the specification, collection,
and reporting of project process metrics; for AO, process
utilisation and status querying and reporting.

• Process Monitoring. Supports the observation, detection,
logging, and tracking of process activities (within projects).
Examples: for BSO, to set up monitoring conditions and
criteria; for AO, detection and log monitoring.

• Process Improvement. Supports the assessment, measure-
ment and modifications of the organisational and project
specific processes, and project life cycles. Examples: for
BSO, define effectiveness goals; for AO, measurement data
collection.

• Process Documentation. Supports those services related to
process documentation. Examples: for BSO, to identify the
documentation requirements; for AO, documentation
design, production, and editing.

4.5 Support Services
Support services include services that the rest of the services

will require in order to become operational. They generally
include services associated with processing, formatting, and
disseminating human-readable data. This section describes the
following services:
• Common Support.
• Publishing.
• Team Support.
• User Communication Support.
• SEE Administration.
• Policy Enforcement.

4.6 Framework Services
These services make up the infrastructure of an SEE and will

be required to support an SEE once it is actually implemented.
This section describes the following services:
• SEE Infrastructure Management.
• Communication.
• Object Management.

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

© Novática UPGRADE Vol. V, No. 5, October 2004 21

Mapping Services onto Processes
Since SEE services are understood to be closely linked to

software lifecycle processes, it is possible to map [5] activities
onto SEE services. Examples of this are, activity 5.3.4 from [5],
software requirements analysis, onto software requirements
engineering, software prototyping and user communication.
Another example from [5], 5.3.8, software integration, onto
software testing, component integration and metrics collection
and analysis. This is not only a consistency issue. This is also a
way of establishing a path from processes to services, and then
on to the tools that help processes to be performed, as described
in Figure 1.

Conclusions
This paper has described the main guidelines and con-

cepts underlying the upcoming ISO/IEC 15940 Software Engi-
neering – Software Engineering Environment Services stand-
ard. At present this project is at committee draft stage at
ISO/IEC JTC1 SC7 Software and Systems Engineering. A
baseline for SEE services in the context of the widely adopted
[5] has been set, while some issues may change during the
standard drafting process.

References
[1]

ISO/IEC 13719-1:1995 Information technology – Portable Com-
mon Tool Environment (PCTE) – Part 1: Abstract specification
(ECMA-149). < http://www.ecma-international.org/publications/
standards/Ecma-149.htm>.

[2]
Learning From IPSE's Mistakes. Alan W. Brown, John A. McDer-
mid. IEEE Software, March/April 1992 (Vol. 9, No. 2) pp. 23–28.
< http://csdl.computer.org/comp/mags/so/1992/02/
s2023abs.htm>.

[3]
Reference Model for Frameworks of Software Engineering Envi-
ronments, 3rd Edition (NIST Special Publication 500-211/Tech-
nical Report ECMA TR/55). 1993.

[4]
Reference Model for Project Support Environments. 2nd edition.
(ECMA Technical Report TR/69 NIST special publication 500-
213) 1994. <http://www.ecma-international.org/
publications/files/ECMA-TR/TR-069.pdf>.

[5]
ISO/IEC 12207:1995, Information Technology – Software Life
Cycle Processes. <http://www.software.org/quagmire/
descriptions/iso-iec12207.asp>.

[6]
ISO/IEC 14102:1995, Information technology- Guideline for the
evaluation and selection of CASE tools (under revision by
ISO/IEC JTC1 SC7).

[7]
ISO/IEC TR 14471:1999, Guidelines for the adoption of CASE
tools.

5

6

IS 12207:1995
SOFTWARE
LIFECYCLE
PROCESS

(draft) IS 15940
SEE SERVICES TOOLS ASSISTED

PROCESS

Figure 1: Path from Processes to Assisted Software Processes.

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

22 UPGRADE Vol. V, No. 5, October 2004 © Novática

Open Source and Free Software: A New Model for The Software
Development Process?

Alfonso Fuggetta
© Alfonso Fuggetta, 2004

Open source software is having a significant impact on the ICT market. Unfortunately, many claims
associated with open source software are either misleading or simply false. This makes it difficult to really
appreciate and exploit the potential of open source software. This paper proposes some considerations and
reflections that aim at critically revising some assumptions about open source software. The ultimate goal is
not to deny the role of open source software; rather, the paper aims at identifying the really novel and
original characteristics of open source software with respect to more traditional approaches.

Keywords: Business Model for Software, Open Source,
Software Development Processes.

Introduction
Open Source Software (OSS) is certainly one of the most

important and relevant phenomena of this decade. The success
of Linux and Apache is pushing practitioners and researchers to
reconsider some of the classic assumptions about software
development. Even software giants such as Microsoft [5], Sun,
and IBM have been changing or adapting their strategy to take
into account this unconventional approach.

1.1 The Reasons of A Success
The supporters of OSS claim that open source is able to

address and solve a number of issues. In particular, it is sup-
posed to be a more effective and efficient way of developing
high quality software. Moreover, it makes it possible to dissem-
inate innovation and technology more easily and effectively. It
is also an extremely attractive approach to lower the costs of IT
investments. In Europe, many observers consider open source
an effective strategy to counterbalance the American domi-
nance in software technology and, consequently, to revamp the
European software and computer industry, which was dramati-
cally weakened in the 90’ by the collapse of BISON (i.e., Bull,
ICL, Siemens, Olivetti, and Nixdorf).

Beside these technical and economic issues, open source
software is also – and for many supporters, primarily – an
ethical and cultural issue. In particular, free software advocates,
such as Richard Stallman, claim that software must be ‘free’ (as
in “free speech”) because proprietary/close software violates
five basic users’ rights:
• The freedom to use the software.
• The freedom to study the source code.
• The freedom to modify it.
• The freedom to copy it.
• The freedom to redistribute it.

Indeed, free software and open source are often considered
equivalent concepts. However, even if most practical conse-
quences are basically the same, the two approaches have differ-
ent backgrounds and motivations. For the sake of simplicity, in
the remainder of the paper I will use the term OSS to identify
the whole world of open/free software. When needed or
convenient, the distinction between these two notions will be
made explicit.

1.2 Some Basic Concepts
Software products can be classified in two main categories:

packages and custom (or bespoke) software.1

• Packages are software products developed to address gener-
al needs for a number of different users. Moreover, they are
distributed through licenses that define customers’ rights
and obligations. The license defines a package as proprietary
or open source (or some intermediate variant). Typical
examples are Windows, Linux, Office, and StarOffice.

• Custom software is developed for specific needs of a
customer, who pays the cost of software development. Usu-

1

1. Of course, there are also intermediate situations where a software
product is a combination of packages and custom software.

Alfonso Fuggetta is a Full Professor at Politecnico di Milano
(Italy), Dipartimento di Elettronica e Informazione. He is also
Director of CEFRIEL, the ICT “Centre of Excellence for
Research, Innovation, Education, and Industrial Labs” partner-
ship established in 1988 by Politecnico di Milano, the Regional
Council of Lombardy, and the most important ICT companies op-
erating in Italy. Fuggetta is a Faculty Associate of the Institute for
Software Research of the University of California, Irvine, since
2002. He is also Chairman of the Scientific Committee for New
Economy, Innovation, and Scientific Research of Lombardy, and
of several committees of the Italian Government including the
Government Committee on Open Source Software in the Public
Administration. <alfonso.fuggetta@cefriel.it>

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

© Novática UPGRADE Vol. V, No. 5, October 2004 23

ally, this is accomplished by signing a service contract
between the customer and a software house or system inte-
grator. Such contract can and should always guarantee to the
customer the full ownership of the software (possibly non-
exclusively), as it pays the entire cost of development. In
particular, full ownership means unrestricted access to the
source code, i.e., even more than what is granted by open
source licenses such as the GPL: a customer might even
decide to put under public domain the custom software it
purchased! A typical example of custom software is the soft-
ware used to manage a specific procedure in a Public Ad-
ministration.

From the above observations it can be argued that the notion
of open source apply primarily to packages, as discussed in
detail in the remainder of the paper.

1.3 Open Source, Open Standards, and Open Format
OSS is often associated with open standards and open

format. Indeed, these concepts are orthogonal.
An open standard is a set of requirements that are not control-

led by a single company. An open standard is useful to guaran-
tee that any product adhering to the standard provides compat-
ible and coherent features and operations. This is crucial to
provide interoperability and the possibility to replace a product
with a compatible one.

An open standard may be adopted by both OSS and proprie-
tary software. Actually, Internet defines a set of “open stand-
ard” protocols such TCP (Transmission Control Protocol),
which are available both in proprietary and open source operat-
ing systems (e.g., Linux and Windows).

Certainly, proprietary software must interact with the “rest of
world” using open standards and open formats. Again, this is
not the same as requiring that software must be open source in
order to be open standard.

1.4 Misleading Beliefs, Unjustified Expectations
The notion of “open source” is associated with three different

concepts:
1. A set of licenses, such as the well-known General Public

License (GPL).
2. A range of software development practices, which exploit

the notion of open source to facilitate cooperation, quality
assurance, and innovation.

3. Products that are developed and distributed using an open
source license and open source development practices.

In turn, these three factors are supposed to induce a whole
new way of conceiving and running the software business. In
practice, software developers and producers are supposed to
make money from selling services (distributions, training,
documentation, consulting, …) rather than from license fees.

In general, there is a growing trend towards considering OSS
as ‘the’ strategy for the future of the software industry. Unfor-
tunately, most of the beliefs and claims about OSS are fascinat-
ing on the surface, but false or misleading when studied in more
detail: very often, they are either unjustified or simply inde-
pendent of the nature of software (i.e., they equally apply to
open and proprietary software). The effect of this situation is

the growth, especially in Europe, of unjustified expectations
that might turn out to overlook the real problems, ignore key
issues, and devaluate the real impact and significance of OSS
itself [4].

1.5 Goal of This Paper
This paper presents some considerations about the many

claims and expectations associated with OSS. The goal is not
to deny the role and opportunities associated with OSS. Rather,
it aims at identifying the real and novel characteristics of OSS
in order to effectively exploit them. For this reasons, the
following sections will discuss some main questions related to
technical, economic, and social aspects of OSS. The last
section will provide some concluding remarks and suggestions
for future work.

Is OSS A New Development Process?
OSS supporters claim that the openness of software and

the cooperation styles supposedly used in many OS projects
define a new and extremely effective software development
process. Such process is based on the notions of decentralized
development, distributed testing, and effective exploitation of
distributed expertise and knowledge. The originator of this
position is Raymond, whose seminal work on “The cathedral
and the bazaar” has been followed by many other studies and
contributions trying to define the “open source development
process”.

Indeed, there is no such process. There are two main motiva-
tions that support this claim [4]:
• Most software development initiatives are carried out by a

limited (often just one) number of developers. This observa-
tion has been corroborated by several studies of open source
repositories such as Sourceforge.net [6]. Large open source
projects such as Linux and Apache do have a very well struc-
tured and organized process, which resembles those of other
proprietary products [8].

• The features and characteristics of the “open source devel-
opment process” can be applied and observed also in propri-
etary software. For instance, Microsoft exploits daily builds
and feature orientation as a way to make software develop-
ment flexible [3]. Approaches such the Spiral model and
Extreme Programming (XP) have stressed the notion of
incremental and evolutionary development, which is sup-
posed to be a main characteristic of OSS. Actually, those
approaches can be equally applied to proprietary and open
source software.

In general, from a technical viewpoint it is hard to consider
open source as a totally new development paradigm. Certainly,
the vision behind OSS represents a strong motivation factor
that has been able to involve and influence a very large number
of developers and users. This is one of the real novel aspects of
OSS: its fascinating ability to motivate people.

Actually, even if not directly related to the hypothetical open
source development process, some ideas and suggestions relat-
ed to open source do have a role to play in specific situations.
The most relevant one is the sharing and joint development of
custom software in a community, e.g., the Public Administra-

2

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

24 UPGRADE Vol. V, No. 5, October 2004 © Novática

tion sector. There are hundreds (even thousands) different Pub-
lic Administrations that share the same problems and require-
ments. For example, town councils have the same needs and,
therefore, can share the same software. This can be achieved by
either using the same package or reusing the same custom soft-
ware. Custom software, which should be in the full ownership
of the purchasing administration, can and should be shared
with other administrations using some form of open source
licensing (probably, something similar to community sourc-
ing). This is another aspects of OSS that should be much more
deeply considered, even if it is not directly related to classical
packages such as Windows and Linux.

Is OSS The Only Way to Protect Customers’ Rights?
OSS advocates claim that open source is the only way to

protect customers’ right. This is at least misleading. As for
custom software, the customer should always own it and, there-
fore, the problem does not exist by definition. Indeed, the prob-
lem does exist for packages.

A first problem is to access the source code in order to check
what the software really does. This is useful to guarantee that a
software package does not accomplish undesired or illegal
operations or, also, to support testing of custom software devel-
oped using package features (e.g., a custom software using
Oracle DB, Windows, and .Net). In order to solve this problem,
it is sufficient to make the source code of a package ‘accessible’
to the user (i.e., the user can see and modify it, but it cannot
redistribute or copy it illegally). This requirement is much
weaker than making it open source. Still, it is sufficient to solve
the problem and is probably acceptable to most producers of
proprietary software.

A second problem concern the inability of proprietary pack-
ages’ users to change the company in charge of maintaining the
software, or to take control of the software whenever the devel-
oper is unable or unwilling to continue maintaining the pack-
age. This is a critical problem that can be at least partially
solved by introducing specific norms to protect customers. For
instance, if software is sold with a license that does not have
time limitation, the producer should not be allowed to drop
support and maintenance services once a new version of the
package is released, unless the source code of the older version
is made open. Similarly, a company that is patently unable to
provide support and maintenance (for instance because it has
deep financial problems) should be forced to release the source
code.

Is OSS An Effective Way to Disseminate Knowledge?
OSS is supposed to be the means to solve a number of

problems related to dissemination of knowledge, international
cooperation, and the digital divide. Again, this is misleading.

First, knowledge about software cannot be distributed by
simply looking at the source code. As a provoking statement, I
argue that the larger (and significant) is the code, the smaller is
the amount of information that can be disseminated by simply
looking at that code. Indeed, software engineering research and
practice have demonstrated that developers need high-level
requirement and architectural documents that are able to

describe a software system. In the past years, an entirely new
discipline has been started (reverse engineering), whose goal is
to extract meaningful information from source code.

Second, even assuming that looking at the source code does
transfer knowledge, it would be sufficient to make the code
‘accessible’ (as mentioned above). It is not necessary to make
it open source, i.e., to grant the customer also the right to copy
and redistribute the software.

Is OSS Cheaper?
Stallman strongly argue that OSS does not mean ‘free’ as

in “free beer”. OSS can be commercially distributed, as
companies such as Red Hat do (see later on). Also, software
needs to be maintained and supported. OSS advocates say that
open source developers make money by selling services.
Therefore, OSS does cost, as any other software.

As a consequence, any conclusion about OSS being cheaper
than proprietary software should be based on a detailed analy-
sis of all the costs related to owning and operating a specific
software solution. This is called Total Cost of Ownership
(TCO). Someone argues that TCO has been invented to support
the claims of proprietary software producers. Indeed, this
notion is widely used to decide any sort of purchase (e.g., a car
or computer hardware) and therefore it is difficult to understand
why it should not be valid and applicable also in the case of
software.

Is OSS An Effective Business Model?
OSS is considered a viable and even unique way to build

a convincing and enduring business model. People will be less
inclined to pay for software licenses and will rather prefer to
pay for specific services associated with using the software.
This appears as an additional motivation for opening the code
of software packages.

The argument is once again ill conceived. First, software
costs and it is not clear if companies can survive and make prof-
its by simply selling services. In his latest book [2], Michael
Cusumano has accomplished an analysis of existing compa-
nies, their profits and strategies, and their success stories. He
argues that in the future most software companies (including
Microsoft, IBM, and other producers of proprietary software)
will increasingly rely on a model where revenues will be a mix
of product licenses and services.

It is useful to assess Cusumano’s comments by considering
in more detail the real business models where OSS is supposed
to play a role. There are five basic models to consider:
1. Development and distribution of ‘pure’ open source pack-

ages (and related services). A typical example is Red Hat,
who makes money distributing and supporting Linux.

2. Development and distribution of open source packages
(and related services) developed for open source and
proprietary platforms. This is the case of companies such
as Zope, which has created an open source development
platform for both Windows and Linux.

3. Development of proprietary packages (and related servic-
es) for open source and proprietary platforms. This is the
case of StarOffice (not OpenOffice!), developed by Sun for

3

4

5

6

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

© Novática UPGRADE Vol. V, No. 5, October 2004 25

Linux and Windows. Similarly, IBM sells a number of
proprietary packages for the Linux platform.

4. Development of open source packages (and related servic-
es) that make a product line more attractive. This is once
again the strategy of IBM and Sun, which promote the dif-
fusion of Linux and other open source packages (in partic-
ular, Apache) on their hardware products to increase their
competitiveness with respect to the Wintel platform.

5. Development of custom software (and related services) us-
ing open source platforms. This is the case of many soft-
ware houses and system integrators who base their devel-
oping activities on Linux, Zope, Tomcat, and JBoss rather
than on Windows (and related technologies).

There are also companies that are exploiting hybrid ap-
proaches. For instance, MySQL uses a dual-license approach
that integrates open source and proprietary concepts.

In general, the above models appear to cover all the possible
basic ‘bricks’ of a hypothetical business model based on open
source. However, only the first two strategies are really and tru-
ly exploiting open source. The third and fourth alternatives are
commercial strategies of companies who want to promote their
proprietary software and proprietary hardware platforms. As
for the fifth one, indeed the business model of a system integra-
tor does not change that much. A system integrator (i.e. a de-
veloper of custom software) has always been used to consider
alternative platforms. In some cases, this is caused by specific
requirements of the customer. In other situations, where such
requirements are missing or weaker, a system integrator is used
to look for the most convenient platform for its development.
Certainly, open source packages such as Linux, Apache, and
Tomcat make it possible to build software systems with lower
costs for licenses. In general, a system integrator will consider
the TCO of each different alternative and select the most con-
venient one. This already happened in the past. For instance,
the change from large mainframes to minicomputers and, later
on, to PC networks was motivated by the relatively much lower
entrance costs of the newer technology. Summing up, for sys-
tem integrators there is nothing really and dramatically new.

In conclusion, will these models be the future of the software
industry? Hard to say. First, only two of them are really a sig-
nificant departure from traditional models. Second, the number
of companies who are really succeeding using those approach-
es is still relatively small. Even Red Hat, perhaps the most suc-
cessful and large open source player, is still in search of the
right strategy to be market profitable.

Is OSS A Strategy to Strengthen The Software Indus-
try?

A final important claim of many OSS supporters is that open
source can be an important means to strengthen the software in-
dustry, especially outside the US. Even if I totally share the
concerns of those that correctly require a stronger non-US soft-
ware industry, I am very skeptical that open source alone might
have a significant impact. Europe, for instance, misses a clear

and committed industrial strategy for software. Mobile phone
producers are a typical example. Microsoft (and PalmOS) is
promoting a standard platform for mobile phones. This stand-
ard can repeat the success of the personal computer: there are
many hardware producers, but one standard software. Europe-
an producers, conversely, have multiple and incompatible plat-
forms that make it difficult for developers to invest in develop-
ing applications. If an application is developed for Windows
Smartphone or Pocket PC, a developer is sure that it can run on
any device compatible with those systems. Conversely, can an
application developed for the Symbian-based Ericsson P900
run also on the Symbian-based Nokia Communicator? The an-
swer is no. So, an application developer will hardly consider
Symbian an attractive platform, while he/she will be certainly
inclined to invest in Pocket PC or PalmOS development. Even-
tually, the end user will make his/her choice on the basis of the
applications available on each platform.

This is the real problem. Europe misses an industrial strategy.
“Supporting open source” is not a strategy. At best, it is a re-
quest to fund open source projects with public money. This is
not what we need. We should consider lessons such as Airbus.
By creating an aircraft company able to compete with Boeing,
Europe has become the main player in the market. This was ac-
complished using public money, but there was a clear industrial
strategy aiming at creating innovative products. Software is not
innovative just because it is open source. Europeans are start-
ing from the tail (a dissemination strategy such as open source)
rather than from the head (the identification of the innovative
products to develop).

A General Remark
Indeed, the more I consider the literature on OSS, the

more I am convinced that in many situations the really impor-
tant thing for many customers is that open source is ‘free’ as in
“free beer”. This is a huge risk. Software is not ‘free’; it does
cost. The issue is then who is going to pay this cost. Imagining
that software can be created at no or low cost is a major threat
to innovation. Indeed, how many open source projects are real-
ly innovative? Why most of them are just replicas of existing
software? Customers should not be led to believe that software
could be acquired “for free”.

Conclusions
This paper has summarized some of the main issues and

discussions about OSS. The paper does not assume an a-priori
position in favour or against open source. Rather, it tries to
critically discuss and assess many claims made on OSS. Unfor-
tunately, many of them are ill conceived, misleading, or patent-
ly false. This is dangerous to OSS itself in the first place.

Certainly, it is important to deepen the discussion on the real
novel aspects of open source. Even more important, we need to
find effective and convincing solutions to the problems that our
society and the software industry have to address in the next
years. This papers wants to be a contribution in this direction.

7

8

9

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

26 UPGRADE Vol. V, No. 5, October 2004 © Novática

References
[1]

R. Conradi, A. Fuggetta. Improving software process improve-
ment. IEEE Software, July 2002.

[2]
M. Cusumano. The Business of Software. Free Press, 2004.

[3] M. A. Cusumano and R.W. Selby. Microsoft secrets. The Free
Press, 1995.

[4]
A. Fuggetta. Open source software: an evaluation. Journal of
Systems and Software, April 2003.

[5]
J. Greene. Microsoft’s Midlife Crisis. Business Week, April 19,
2004.

[6]
K. Healy, A. Schussman. The ecology of open source software
development. Technical report, University of Arizona. Available
at <http://opensource.mit.edu/online_papers.php>.

[7]
D. G. Messerschmitt, C. Szyperski. Software Ecosystem. The
MIT Press, 2003.

[8]
A. Mockus, R. T. Fielding, J. Herbsleb. Two case studies of open
source development: Apache and Mozilla. ACM TOSEM, Vol.
11, Issue 3, July 2002.

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

© Novática UPGRADE Vol. V, No. 5, October 2004 27

Applying The Basic Principles of Model Engineering to The Field of
Process Engineering

Jean Bézivin and Erwan Breton

A new information system landscape is emerging that will probably be more model-centred than object-
oriented, characterized by many models of low granularity and high abstraction. These models may describe
various aspects of a system such as software product properties, static and dynamic business organization,
non-functional requirements, middleware platforms, software processes, and many more. Each model
represents some particular point of view of a given system, existing or in construction, and this model
conforms to a precise metamodel or DSL (Domain Specific Language). In this paper we present some
advantages of using the unification framework of model engineering to deal with the various facets of
process engineering. As the view of the software life-cycle is progressively shifting from a simple definition
and composition of objects to a sequence of model transformations, the need to characterize this by a precise
process is becoming urgent. Description of software artifacts, processes and transformations may all be
uniformly captured by different forms of models. This approach provides a regular framework where
business and software production process models are going to play an increasingly important role. In this
paper we illustrate some possibilities of model-based process engineering.

Keywords: Domain Specific Languages, MDA, Model-
Based Process Engineering, MS-Project, SPEM.

Introduction
As stated in the seminal work of Osterweil [10], “Soft-

ware processes are software too”. Therefore, the same technol-
ogies may be used for supporting both software artifacts and
software processes. Among these technologies, Model Driven
Engineering (MDE) has recently taken an important place. One
of the best known families of MDE is the Model Driven Archi-
tecture (MDA™ organization) proposed by OMG (Object
Management Group) in November 2000 [11]. As a conse-
quence we can today envisage a new situation where software
products are models and software processes are models too. At
a lower level of abstraction, object technology tried twenty
years ago to unify the field of software engineering by consid-
ering objects as first-class entities. The new trend of model
engineering considers instead models as first-class entities. A
model is a representation of a given system and is written in the
language of its metamodel (it conforms to its metamodel).
These relations of representation and conformance are charac-
teristics of new model engineering techniques [2].

MDA gives a central role to models and metamodels. Taking
account of the various aspects of information system engineer-
ing can only be achieved through the well-organized manage-
ment of a complex lattice of related metamodels. The emerging
tendency is to separate business knowledge expression from
implementation as two separate aspects captured by specific
models. The invariants of a business domain may be held apart
from the execution code, preserving them from technology

obsolescence. The information of a complex enterprise system
originates from various sources (system engineers, managers,
software engineers, quality engineers, etc). All the correspond-
ing domains may be expressed using their own specific
languages.

This paper discusses process engineering using MDA-based
techniques. We present in Section 2 a brief overview of MDA
principles. In Section 3, we focus on software process-related
standards. Building on this, we show the practical interest and

1

Jean Bézivin is Professor of Computer Science at the Universi-
ty of Nantes, France, member of the newly created ATLAS
research group in Nantes (INRIA & CNRS/LINA). He has been
very active in Europe in the Object-Oriented community, starting
the ECOOP series of conference (with P. Cointe), the TOOLS
series of conferences (with B. Meyer), and more recently the
<<UML>> series of conferences (with P.-A. Muller). His present
research interests include legacy reverse engineering, general
model engineering (MDE/MDA™) and more especially model-
transformation languages and frameworks. He is currently
involved in the Modelware and Interop european projects.
<Jean.Bezivin@lina.univ-nantes.fr>

Erwan Breton is a Consultant in the Sodifrance/SoftMaint
company in Nantes, France, working on the subjects of process
modelling and workflow. He is presently in charge of the R&D
strategy for the company. After obtaining a Master degree from
the University of Lille 1, France, he got a PhD in Computer
Science from the University of Nantes. He has published several
papers in the area of model-based process engineering.
<ebreton@sodifrance.fr>

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

28 UPGRADE Vol. V, No. 5, October 2004 © Novática

the industrial applicability of this vision in Section 4, based on
a simple example. General considerations on present capabili-
ties and limits of the approach are summarized in the conclu-
sion together with some current perspectives on model-driven
platforms.

Model Driven Engineering and The OMG/MDA
Organization

In the IBM manifesto [4], the principles of model engineer-
ing are presented as the three vertices of a triangle:
• Direct representation, meaning that for each aspect of a

system under construction or maintenance, there is a domain
specific language (DSL) dedicated to handling this aspect;

• Automation, meaning for example that a mapping from DSL
programs to executable frameworks may be automatically
handled, mainly by model transformation procedures;

• Open standards, on which these DSLs and transformations
will be based to allow the cooperation of various tools for
capturing and operating on models.

Each DSL corresponds to a given metamodel. In the OMG
MDA stack, all metamodels conform to a unique meta-meta-
model named the MOF (Meta-Object Facility). The MOF is a
language to write metamodels. Furthermore the MOF has a
number of common facilities to deal with metamodels and their
models. Some of them are related to establishing bridges to
other technical spaces. MDA is one such technical space that
could be called modelware but middleware, grammarware,
executable programming languages, XML (eXtensible Markup
Language) document management, data bases, Semantic Web
and ontology engineering are other examples of technical
spaces. There is a standard mapping between MDA and
CORBA/IDL middleware (CMI, Corba Model Interchange [7])
but there are also other mappings to XML document manage-
ment (XMI, XML Model Interchange) and to the Java technical
space (JMI, Java Model Interchange).

The so-called OMG MDA stack is thus composed of the
three following layers:
• At level M3, the MOF defines a representation system based

on constrained graphs. These graphs are similar to UML
(Unified Modelling Language) class diagrams. In addition
to several facilities mentioned above, an assertion/naviga-
tion language named OCL is also provided at this level. The
main idea is that level M3 contains all that is domain inde-
pendent.

• Level M2 corresponds to the domain-dependent definitions.
It is composed of a set of DSLs, each defined by its meta-
model. This collection of metamodels is rapidly growing
and may serve many purposes. Among the most known
elements at this level, we may list the UML, SPEM (Soft-
ware Process Engineering Metamodel), CWM (Common
Warehouse metamodel), EDOC (Enterprise Distributed
Object Computing metamodel).

• At level M1 various extensional definitions corresponding to
intentional definitions of level M2 may be found. This is the
level of models, each model conforming to a given M2 level
metamodel.

The issue of tooling is important in this MDA engineering
evolution. Developing an industrial tool is costly and takes
time. Since there was no available tool and a very narrow
market at level M3, the trick has been to consider temporarily
an alternate way for a MOF editing tool. Instead of defining
DSLs as full fledged MOF metamodels, it was made possible
to define them as ‘specializations’ of UML, as so-called pro-
files. Two parallel competing techniques could then be used for
defining the DSLs from scratch or as extensions of UML. The
industrial success of UML allowed many industrial or open-
source tools to become widely available in a short time, giving
an easy path to defining DSLs as UML profiles. Some stand-
ards like the SPEM were even jointly defined as a full-fledged
MOF metamodel and as UML profile at the same time. Many
bridges were also provided to convert between UML profiles
and MOF metamodels. Today both techniques are still used, the
direct MOF metamodelling way being more widely used to
define small well focused and precisely defined DSLs.

Looking backwards, the main turn was taken at OMG when
the Analysis and Design Task Force (ADTF) decided to give up
the quest for a Unified Method (i.e. a unique object-oriented
software development method). This goal was considered as
too ambitious and instead the OMG concentrated on defining a
DSL for describing object-oriented software artifacts. This
DSL was rapidly named UML. Its acceptance was followed
later by the definition of another DSL for describing related
software processes. Initially known as UPM (for Unified Proc-
ess Model) it was later renamed as SPEM. Having two related
languages, one (UML) for defining the basic software artifacts
and one (SPEM) for defining the process for using or producing
these artifacts could be considered, as an afterthought, as one
of the major achievements of the ADTF definition group. Not
all problems of relations between these two independent but
related metamodels are yet solved, nor even clearly understood,
but the original idea of separating the DSL for software prod-
ucts and the DSL for software processes was clearly an impor-
tant step that later lead to the foundation of the MDA proposal.
This is still a central motivating example and source of inspira-
tion for studying aspect separation and weaving in the context
of MDE.

The MDA is often presented as the separation from the plat-
form-independent and platform dependent aspects of software
systems. As a matter of fact this corresponds to the definition of
DSLs for enterprise description (e.g. EDOC) and DSLs for
platform descriptions (e.g. CCM: CORBA Component Mod-
els). But programs in these DSLs are intended to be interwoven
in order to produce so-called PSMs (Platform Specific Models)
from PIMs (Platform Independent Models). The real scope of
MDA is indeed larger and encompasses aspect separation
issues other than only business and platform aspects. One of
them is for example the product/process aspect separation and
weaving, either at the level of business (i.e. weaving models of
business objects, rules and processes) and at the level of soft-
ware production (i.e. UML and SPEM as mentioned earlier).

The generation of PSMs from PIMs should be made as auto-
matic and generic as possible. This means that the target plat-
form could be easily changed. This also means that we need

2

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

© Novática UPGRADE Vol. V, No. 5, October 2004 29

some transformation language – yet another DSL – to translate
between any pairs of source and target DSLs. In order to
provide this generic technology, the OMG has launched the
MOF/QVT request for proposal (Queries/View/Transforma-
tion). The MIA [9] and the ATL [1] languages and systems may
be viewed as QVT-compliant transformation systems.

Process Modelling
There are several specifications of the OMG that address

the issue of process definition. UML introduces the concept of
the activity graph. EDOC defines a process as a component
with an internal choreography. SPEM is more specifically
dedicated to software process description. Other recommenda-
tions deal with various forms of business processes.

SPEM defines a generic software process DSL (see Figure
1). A process is described as a set of work items (Work Defini-

tion). These work items are performed by process roles. The
results of work definition are work products. A work product
may be typed by another product DSL or part of, like UML or
UML use cases or collaboration diagrams. For the time being
the explicit references between SPEM models and software
product models are sometimes left implicit.

Beyond these various OMG DSLs, other technical spaces
also have their own DSLs in the field of process management,
the most active being the XML document space with such
proposals as ebXML (Electronic Business XML Initiative) or
BPEL4WS (Business Process Execution Language for Web
Services) for example. One example is BPMN (Business Proc-
ess Modelling Notation) [12], but we may also mention IDEF,
Activity-Decision Flow (ADF) diagrams, RosettaNet, LOVeM,
Event-Process Chains (EPCs), ABC (Activity-Based Costing),
REA (Resource/Event/Action), etc.

3

ActivityParameter

hasWorkPerArtifact

Information
Element

ProcessRole

BehavioralFeature

Step Activity

0..n 1

+steps

0..n 1

Package

ProcessComponent

Discipline

Constraint

body

Iteration Phase

Process

Lifecycle

0..n

0..1

+governedProcess

0..n

+governingLifecycle

0..1

GeneralizableElement

Parameter

kind

0..n

0..1

+parameter
0..n

{ordered}
+behavioralFeature

0..1

Feature

Classifier

1

0..n
+type

1

+typedParameter

0..n

WorkProduct

isDeliverable

impacts

Namespace

ModelElement

0..n

0..1

+ownedElement

0..n

+namespace0..1

Guidance

1

0..n

+annotatedElement

1

+guidance0..n

GoalPrecondition

WorkDefinition

0..1

1

0..1

1

0..1

1

0..1

1

precedes

0..n

0..n

+subWork
0..n

+parentWork
0..n

ProcessPerformer

0..n 1+feature 0..n
{ordered}

+owner

1

Figure 1: Fragment of SPEM Meta-model.

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

30 UPGRADE Vol. V, No. 5, October 2004 © Novática

Studying all these notations for process definitions, we came
to several conclusions in [5], and in particular:
• that a common description of all these notations with a

unique framework, based for example on the MOF, could be
useful to compare them. We expressed several of these for-
malisms as explicit MOF metamodels;

• that this homogeneous description of different process DSLs
with the same metamodelling language could suggest using
a common kernel (similar to the PIF, Process Interchange
Format, or to the PSL, Process Specification Language) on
top of which several extensions could be built;

• that similar concepts were often expressed in different ways
in various technical spaces;

• that a clear expression with a precise metamodelling nota-
tion like the MOF could lead to well controlled modularity

and extensibility. To give an example of this, the SPEM
intended to define forward-based software process could be
extended to take into account backward-based process deal-
ing for example with legacy recovery and software modern-
ization. The MDA approach is currently applied to both
approaches, taking into account not only the platforms of the
present and the platforms of the future but also the platforms
of the past (COBOL, RPG, PL/1, etc.). Transforming a leg-
acy PSM into a PIM is however probably harder than trans-
forming a PIM into a PSM for EJBs, DotNet or the Grid;

• that process management encompasses different needs
(process definition, project planning and enactment) that
may be addressed with different tools (modeler, planning
tools, workflow systems), which may be integrated using
model transformation.

MSPAvailability
from : Date
to : Date
units : Double

MSPHumanResource
email : String

0..n

0..1

+availability0..n

+resource0..1

MSPMachine
materialLabel : String

MSPResourceRate
stdRate : Double
ovtRate : Double
costPerUse : Double
fromDate : Date
toDate : Date

MSPAssignment

startDate : Date
finishDate : Date
actStart : Date
actFinish : Date
cost : Double
actCost : Double MSPLink

type : MSPLinkType

MSPTask

isMilestone : Boolean
isCritical : Boolean
constraintDate : Date
startDate : Date
finishDate : Date
actStart : Date
actFinish : Date
cost : Double
actCost : Double
pctComp : Integer

0..n

1

+assignment 0..n

+task

1

0..n1

+outLink

0..n

+pred

1

0..n1
+inLink

0..n
+succ

1

+superTask

+subTask 0..n

0..1

0..n

0..1

MSPProject
author : String
company : String
category : String
creationDate : Date
finishDate : Date
manager : String
startDate : Date

0..n

1

+links 0..n

+project

1

0..n

1

+task0..n

+project
1

MSPBaseCalendar

0..n

1

+calendar0..n

+project1

MSPCalendar

name : String

1+base 1

MSPCalendarDay

dayNumber : Integer

MSPCalendarException
fromDate : Date
toDate : Date

MSPResource

isOverallocated : Boolean
group : String

0..n

1

+assignment
0..n

+resource1

0..n
1

+resource
0..n

+project

1

0..n

0..1

+rate 0..n

+resource0..1

MSPResourceCalendar

+resource

+calendar 0..1

0..1

0..1

0..1

MSPCalendarData

working : Boolean
0..n1

+data

0..n

+calendar

1

MSPWorkPeriod
fromTime : Date
toTime : Date

+workPeriod 0..n0..n

Figure 2: Fragment of MS-Project Meta-model.

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

© Novática UPGRADE Vol. V, No. 5, October 2004 31

It became also obvious that the expression of processes was
often a matter of implementation platforms. Mapping abstract
processes, expressed in DSLs based on a common metamodel-
ling language like the MOF, onto these platforms could be of
great interest. In other words we applied the MDA principle of
PIM and PSM to the process themselves. The example pro-
posed in the next section is an illustration of this possibility.
Many other examples could have been provided like translating
BPMN to executable BPEL4WS.

Another advantage of having a homogeneous and precise
representation for processes is that we can deal much more
easily with the execution side. The usual situation is that we
have a process description on one side, expressed in a given
DSL and an execution engine on the other side. To deal with
this situation we must usually first elicit the implicit DSL on
which the execution engine is based and make it explicit within
the same metamodelling framework. Then the two DSLs are
compared and a mapping may be defined like the one suggested
above between BPMN and BPEL4WS. If later a choice differ-
ent from BPEL4WS is made, only the mapping has to be
changed. Moreover, part of this mapping could be reused if the
transformation language has suitable properties.

Model-based Process Engineering
Moving from ‘contemplative’ to ‘productive’ model

management means that most of the steps in the software
production and maintenance chain may be considered as pre-
cisely defined operations on model artifacts.

A model-based workbench may be viewed as a software bus
on which a number of multiple service tools may be plugged

with standard interfaces and protocols. The new idea in this
organization is that exchanged artifacts are models, now
considered as first-class elements.

As an illustration of the possibilities of such an organization,
we provide the following example which shows how metamod-
elling and model transformation may be used for integrating
different tools, and particularly legacy tools which do not
belong to the MDA technological space.

Microsoft-Project is a widespread planning tool. It is not
based on an explicit meta-model. However, its underlying
formalism may be extracted and formulated through the meta-
model shown in Figure 2.

MS-Project meta-model is based on the concept of project. A
project is described as a set of tasks. Tasks are ordered using
links. These are assigned to resources.

Creating a project planning from a process model may then
be envisioned as a model transformation between SPEM and
MS-Project metamodels. A mapping has been established
between concepts from both sides (SPEM process and MS-
Project project, SPEM work definition and MS-Project task,
etc.). Some more complex algorithms have also been designed
for reproducing ordering dependencies. Figure 3 illustrates the
net result of part of this project as it appears to the end user.

Actually, the transformation was not so straightforward, as
the SPEM process is usually not expressed using a SPEM tool,
but with a UML modeler extended using a SPEM UML profile
(i.e. a lightweight extension of UML as discussed earlier). A
transformation from UML to SPEM had first to be applied. The
resulting SPEM model could then be used for producing the
MS-Project model.

4

Figure 3: Transformation from SPEM to MS-Project.

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

32 UPGRADE Vol. V, No. 5, October 2004 © Novática

Using SPEM as a basis allows the reuse of transformations
with different scenarios. A natural way to produce a SPEM
process is to use a UML modeler with a SPEM profile. Howev-
er, there may be some tools producing native (MOF-based)
SPEM models. Moreover, we can imagine CAPE (Computer-
Assisted Process Engineering) tools with a proprietary formal-
ism. These tools may either propose a SPEM export or a trans-
formation from their proprietary formalism to SPEM has to be
provided.

Such an approach has already been used for application man-
agement processes in previous projects. From a process model
(expressed using a proprietary metamodel because SPEM did
not exist at that time), an execution environment was complete-
ly generated, including graphical user interface, workflow
model and documentation [5].

An important benefit of this approach is that it allows inte-
grating many different points of view through process lifecycle,
each point of view being described by a particular meta-model,
each transition from one point of view to another by a transfor-
mation. Various tools may be integrated since they expose their
interface through a meta-model.

Conclusion
We have proposed a global method that suggests using

model-engineering principles to deal with process definitions.
There are several such process DSLs, but they may be related
and mapped. Sometimes two process DSLs are similar or one
is an extension of another one. In many cases model transfor-
mation among model-based process representations has proved
to be an interesting idea.

As part of many undergoing projects, the idea of defining a
common, open-source MDE platform for various tools is
becoming popular. This idea is not new and one may recall
projects of the 80’s like AD/Cycle (Application Develop-
ment/Cycle) or PCTE (Portable Common Tool Environment)
with similar software buses. However the basic principle that
these tools will exchange compatible models, i.e. models
conforming to metamodels conforming themselves to common
meta-metamodels has proven to be quite powerful in practice.
We can envisage a URI-like (Universal Resource Identifier)
naming scheme for models like “model:MMM/MM/M” where
the metamodel MM of model M is clearly defined as well as the
metametamodel MMM of MM. All the metamodels could be
identified in global or local registries called ‘megamodels’ [3].
A megamodel is a model that contains elements and metadata
on the various models, metamodels, services like transforma-
tions, tools, etc. For example an explicit semantic relation
between the UML and the SPEM metamodel could be
expressed in a megamodel. Also the megamodel may contain
various metadata on metamodels, models, services, tools, etc.
A workflow engine could be registered as a tool for example,
referencing its standard model. If we need to execute a process
model, we may interrogate the megamodel for a compliant
execution engine or we may apply a transformation upon this

model. The transformation itself could be applied by another
tool linked to the same model-based platform and also
described in the megamodel together with its model.

Such scenarios as described in the previous paragraph are be-
coming realistic in the scope of the present technology. Notice
that we do not need to stick to a unique common meta-meta-
model as long as the correspondences between the various
meta-metamodels are precisely defined. However OMG/MOF
and Eclipse/EMF are the two currently aligned industrial dom-
inant standards.

The benefits of such approaches are important. Since every-
thing is a model in this MDE platform, we may include a lot of
common facilities like storage and retrieval in model repositor-
ies at level M1 and metamodel repositories at level M2, version
management, transactional access, etc. Software product and
software process models and metamodels will be similarly
edited, browsed, stored, retrieved, etc., allowing many econo-
mies in tool development cost but also in other areas like user
training. We have seen first generation MDE tools (mainly
UML tools) with “variable model” capabilities. We are now
witnessing the arrival of much powerful tools with “variable
metamodel and metametamodel” capabilities. These tools will
offer process-engineering or requirement engineering capabil-
ities among others. But what is interesting is that it will be also
possible to link to the MDE platform not only MDE tools with
extended capabilities, but also legacy tools which were not
originally intended to be used in this environment. To integrate
such a legacy tool (like MS-Project for example), we have first
to define a DSL for the tool, in the form of a standard metamod-
el like the one of Figure 2, for extraction and injection of
proprietary data. From this metamodel, precise guidelines will
allow the generation of the injectors/extractors that will enable
this tool to be connected to the common MDE platform. From
any pair of source/target metamodels we can define syntactic
and semantic bridges to convert from one formalism to a simi-
lar one or map a process model edited with various kind of
editing tool (textual or graphical) onto a given execution engine
with a suitable implicit or explicit metamodel.

Model-based process engineering is presently much more
than a vision. Based on the three MDE principles (Direct
Representation, Automation and Open Standards) and making
use of the two basic MDE relations (representation and
conformance), it is being deployed in several ongoing industri-
al projects. However, even if practical problems of product and
process model weaving have found ad hoc solutions, more
research effort is still needed for a deep understanding of these
issues. The development of ambitious open source MDE plat-
form projects hosting simultaneously industrial tools and re-
search prototypes may help to explore still unsolved concrete
problems and to improve the state of the art in this field.

Acknowledgements
The work of one of the authors (J. Bézivin) has been supported by

a grant from Microsoft.

5

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

© Novática UPGRADE Vol. V, No. 5, October 2004 33

References
[1]

ATL, ATLAS Transformation Language reference site.
<http://www.sciences.univ-nantes.fr/lina/atl/>.

[2]
J. Bézivin. In search of a Basic Principle for Model Driven Engi-
neering, Novatica/Upgrade, Vol. V, N°2, (April 2004), pp. 21–24.
<http://www.upgrade-cepis.org/issues/2004/2/upgrade-
vol-V-2.html>.

[3]
J. Bézivin, S. Gérard, P. A. Muller, L. Rioux. MDA Components:
Challenges and Opportunities, Metamodelling for MDA, First In-
ternational Workshop, York, UK, (November 2003).,
<http://www.cs.york.ac.uk/metamodel4mda/onlineProceedings
Final.pdf>.

[4]
G. Booch, A. Brown, S. Iyengar, J. Rumbaugh, B. Selic. The IBM
MDA Manifesto The MDA Journal, May 2004. <http://www.
bptrends.com/publicationfiles/05-04%20COL%20IBM%20
Manifesto%20-%20Frankel%20-3.pdf>.

[5]
E. Breton. Contribution à la representation de processus par des
techniques de méta-modélisation, PhD thesis of the University of
Nantes, (June 2002).

[6]
S. Cook. Domain-Specific Modelling and Model Driven Archi-
tecture, The MDA Journal, (January 2004. <http://www.bptrends.

com/publicationfiles/01-04%20COL%20Dom%20Spec%20
Modeling%20Frankel-Cook.pdf>.

[7]
D. S. Frankell, P. Hayes, E. F. Kendall, D. McGuiness. A Model-
Driven Semantic Web Reinforcing Complementary Stengths, The
MDA Journal, (July 2004). <http://www.bptrends.com/
publicationfiles/07%2D04%20COL%20Semantic%20Webs
%20%2D%20Frankel%20%2D%20et%20al%2Epdf>.

[8]
J. Greenfield, K. Short. Software factories Assembling Applica-
tions with Patterns, Models, Frameworks and Tools.
OOPSLA'03, Anaheim, Ca. <http://www.softmetaware.com/
oopsla2003/mda-workshop.html>.

[9]
MIA-Software MIA-Transformation Tutorial.
<http://www.model-in-action.fr/download/transformation/
3.2.0/tutorial_en.pdf>.

[10]
L. Osterweil. Software processes are software too. ICSE’87,
Monterey, Ca.

[11]
R. Soley & the OMG staff MDA, Model-Driven Architecture,
(November 2000).
<http://www.omg.org/mda/presentations.htm>.

[12]
S. A. White. Introduction to BPMN BPTrends, (July 2004).
<http://www.bptrends.com/>.

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

34 UPGRADE Vol. V, No. 5, October 2004 © Novática

Software Process Modelling Languages Based on UML

Pere Botella i López, Xavier Franch-Gutiérrez, and Josep M. Ribó-Balust

A Software Process Model (SPM) is a description of the structural and behavioural aspects of a process in
the field of software development using some Process Modelling Language (PML) as description formalism.
In the last 15 years, process modelling and, particularly, software process modelling, has gained a growing
importance as a mechanism which allows, on the one hand, a better understanding of the process, which
facilitates its assessment and improvement; and, on the other hand, the ability to automate to a certain extent
its enactment, as it is usual in other engineering fields. A fundamental challenge concerning SPMs is how to
find a standard PML to describe them. For this reason, in the last few years, an important research effort has
been made in order to adapt UML (Unified Modelling Language) to the specific requirements of SPMs and,
as a result, some UML profiles and metamodels (like SPEM or PROMENADE), which propose software
process modelling formalisms based on UML, have emerged. In this article we outline the state of the art in
the subject of software process modelling, we present its challenges and we focus specially in the use of UML
as PML.

Keywords: Process Modelling Language, Software Process
Model, UML, UML Extension.

Introduction: The Issue of Standardization in SPM
Software Process Technology has emerged in the late

eighties, but in two fronts. One of them, starting from the
seminal work of Leo Osterweil (Software processes are soft-
ware too) [7] has been named Software Process Modelling
(SPM), and has been very active from the research point of
view, with a lot of contributions in general or specialised
conferences and magazines, but with a relative small impact in
the industrial world. The main goal of SPM has been the design
of Process Modelling Languages (PML) able to describe
software processes in a formal way. The other front refers to
Software Process Assessment (SPA) and Software Process
Improvement (SPI). It comes from the pioneering works by
Watts Humphrey [4] developed at the SEI (Software Engineer-
ing Institute) and which has led to the definition of the CMM
(Capability Maturity Model).

With a strong impact in the industry, this front has evolved
with new models, as the CMMi (Capability Maturity Model
integration) family, the ISO standard SPICE and other models.
It has become an established industrial practice. Theoretically
speaking, SPM is a good basis for SPA and SPI, since a formal-
ly described process will be easier to assess and, then, to
improve. But in real life, all the SPA&SPI models do not need
a formal description as a starting point. This fact, together with
the proliferation of languages and notations that have emerged
to describe software processes [2][1], are probably the reasons
for the low impact of the SPM research. Probably, the first step
to be taken so that the software industry may benefit from the
SPM research is to standardize PMLs.

1

Pere Botella i López is Full Professor at the UPC (Universitat
Politècnica de Catalunya), Barcelona, Spain. He has been active
in the software engineering field from more than 25 years. Has
been Dean of the Faculty of Informatics (1992-1998) and Vice-
rector of the UPC (1982-1986, 1998-2002). From 1989 to now,
Director of the Master program on Software Engineering at the
UPC. Author of more than 40 publications. Program committee
member of several international conferences, including ESEC,
ICSE, RE, etc., being executive chair and co-editor of ESEC’95.
Member of the Steering Committees for ESEC and JISBD (the
spanish main event on software engineering). He has been coor-
dinator in Spain for RENOIR (European Network of Excellence
in Requirements Engineering. <botella @lsi.upc.es>

Xavier Franch-Gutiérrez is Associate Professor in the Soft-
ware Department (LSI) at the UPC (Universitat Politècnica de
Catalunya), Barcelona, Spain. He received his BSc and PhD in
Software from the UPC. He is and has been a principal and co-
investigator of several funded research projects. He is currently
leading the research group in Software Engineering for Informa-
tion Systems (GESSI) at the LSI, <http://www.lsi.upc.es/~gessi/>,
compound of more than 10 full-time researchers. His current lines
of research include requirements engineering, selection of COTS
components, quality model construction and software process
modelling. He has over 40 refereed publications in conferences,
journals and books. <franch@lsi.upc.es>

Josep M. Ribó-Balust holds a BSc degree (1990) and a PhD
(2002) in Computer Science, both from UPC (Universitat
Politècnica de Catalunya), Barcelona, Spain. His thesis work de-
fined PROMENADE as a UML-based software process model-
ling language. Since 1997 he is a member of the research group
in Software Engineering for Information Systems (GESSI) at the
UPC. He also works as a Lecturer at the Computer Science Dept.
of the Universitat de Lleida, Spain. Currently, his research inter-
ests address the design of methodologies for the correct definition
and extension of metamodels. <josepma@eps.udl.es>

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

© Novática UPGRADE Vol. V, No. 5, October 2004 35

One of the main requirements for a PML regarding standard-
ization is that it should rely on a notation and semantics which
are standard in the software industry, so that the chosen PML
can be used without the burden of having to learn yet another
notation and another software tool and also with the possibility
to make it easily understandable to other software engineers.

UML (Unified Modeling Language) seems to be a natural
candidate for such a standard process modelling formalism
since it has become a standard de facto in the modelling of
object-oriented systems and an important trend among the
researchers of the field is to consider a software process itself
as a piece of software [7].

The question that arises at this point is whether UML is able
to deal with the specific requirements of SPM. The research on
this topic began in the late nineties, in which several research
groups tested the capabilities of UML as a modelling formal-
ism in the related fields of software and workflow processes. A
preliminary result of this research is that, although UML seems
to be powerful enough to address the structural aspects of a
process, it lacks some degree of expressiveness and flexibility
in order to model its behavioural part (specially in the case of
software processes in which the flexibility requirements are
usually more important).

Therefore, UML should be adapted somehow in order to
model software processes: not only should we add new
constructs to deal with some behavioural issues but we should
also introduce in the language the vocabulary of the field
(activities, artifacts, agents, tools, roles, etc.) and its specific
features. This language adaptation is usually referred to as
UML extension.

In this article we introduce which mechanisms are provided
by UML in order to extend the language and how an extended
UML may be used in order to model the structural and behav-
ioural aspects of a software process. Finally, we will outline
some examples of proposals for using UML as a PML for soft-
ware processes.

UML Extension Mechanisms
We have already introduced the necessity to extend the

UML language in order to model software processes. There are
two different ways in which we may do this:

2.1 By Means of An Explicit Extension of The UML Meta-
model (Heavyweight Extension)

The UML metamodel [11] contains the definition of the
elements that are used in a UML model (e.g., class, associa-
tion, dependency, generalization, etc.). For instance, Figure 1
shows two UML classes (Company and Employee) and an
association (works-for) between them. The precise definition of
what a class and an association are is stated in the UML meta-
model. In particular, the definition of the concept of class is
given by means of the element of the UML metamodel called
Class, whereas the notion of association is described by means
of the element Association of the metamodel. The elements of
the metamodel are called metaelements (e.g., metaclasses and
metaassociations). Any UML model is an instance of the UML
metamodel, which means that any element that comes up in a

UML model is an instance of some metalement (e.g., Company
is an instance of Class and works-for is an instance of Associa-
tion).

The ability of UML to model software processes may be
enhanced by adding to the UML metamodel new metaclasses
and metaassociations between them. For instance, if we need
the concept of Activity in order to model specific tasks to be
carried out during software development, we may add to the
UML metamodel a metaclass for that purpose. In the same way,
we may add other metaclasses to model the notions of Role (a
specific responsibility within the process, e.g., test engineer)
and Document (a product which is developed in an activity and
which may be used in other ones) and some metaassociations
to describe the relationships between these metaclasses (e.g.,
an activity generates a document; a role is responsible for an
activity and also for a document). Figure 2 shows a fragment of
this UML metamodel extension.

As a result, a software process model may be created with
elements which are instances of the metaclasses Document,
Activity and Role.

The main advantage of this alternative is that it constitutes a
very elegant and powerful extension approach. A SPM built in
this way is a proper instance of a well-formed UML extended
metamodel. However, this approach does not result in UML-
compliant models (i.e., they are not instances of the UML
metamodel, but of an extended metamodel). This issue chal-
lenges standardization. For instance, how do we represent in a
SPM instances of the new metaclasses in a UML-compliant
way? How do we represent in the model the new features intro-
duced by the metamodel (e.g., the role which is responsible for
a specific activity)?

2.2 By Means of UML Profiles (Lightweight Extension)
A UML profile is an adaptation of the existing UML meta-

classes by means of the built-in extension mechanism of UML
so that they can fit in a specific domain (such as SPM). It is
important to notice that UML profiles do not provide a first-
class extension mechanism in the sense that they do not modify

2

Employee Company

**
works-for

Figure 1: A Simple UML Model.

Class (UML)

Document Activity Rolegenerates responsible-for

responsible-for 1
1

Figure 2: A Fragment of An Extension of The UML Metamodel.

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

36 UPGRADE Vol. V, No. 5, October 2004 © Novática

the UML metamodel. This specific extension mechanism
provided by UML is based on the notion of stereotype. A ster-
eotype defines how an existing metaclass may be adapted/
extended. This extension may involve some of the following: a
new name for that extended metaclass, new properties for that
metaclass and/or new constraints.

UML supplies a notation to depict the extension provided by
stereotypes in a model. For instance, Figure 3 shows the defini-
tion of the stereotypes Document and Role which extend the
metaclass Class (the notation introduced by UML 2.0 has been
used). The stereotype Document adds the property responsible
of kind Role. As a result, it is possible to define in a specific
SPM a class SpecDoc, with stereotype Document (which
means that SpecDocument is a kind of Document) which has
SpecEngineer as value of the property responsible (which
means that the role class that is responsible for the documents
of class SpecDocument is SpecEngineer). Figure 4 shows how
this situation can be represented in a UML class diagram.

Since UML profiles do not modify the UML metamodel and
follow the UML built-in extension mechanisms, they provide a
full UML compliance. However, stereotypes do not have the
same semantics as actual metaclasses and their expressiveness
is poorer. Finally, this approach does not supply a representa-
tion for the extension at the metamodel level, which
impairs the comprehensibility of the resulting model
and of the profile itself. The notation introduced by
UML 2.0 to define profiles contributes to reduce this
comprehension problem but it does not eliminate it.

As suggested in the UML 2.0 infrastructure docu-
ment, it is an ongoing matter of discussion whether to
use the heavyweight or the lightweight approaches in
order to extend the UML metamodel to fit it in a
specific domain.

Modelling The Structural Part of A SPM
UML is a language intended to model object-

oriented systems. The expressiveness of the object-
oriented paradigm has proven appropriate to model
the structural aspects of software processes [5,
RF99]. Hence, the constructs offered by UML to
model structural aspects of systems are globally
suitable for this purpose. In particular, UML class
diagrams may be used for modelling both software
process elements and also relationships of different
kinds among them.

Software process elements may be defined as stereotyped
classes. A different stereotype may be defined for each kind of
software process element (documents, activities, roles, etc.). If
necessary, some constraints and class properties may also be
added to the stereotypes. Indeed, a complete UML profile can
be defined. Figures 3 and 4 above show examples of the defini-
tion of some stereotypes that could take part in a profile intend-
ed to model software processes and also the use of one of those
stereotypes in order to define a couple of classes of a specific
SPM.

UML associations, generalizations and dependencies may be
used to model the required relationships among classes. For the
sake of an example, we mention here one specific structural re-
quirement of software processes: composition of documents
and activities.

Activities (also documents) may be atomic or composite.
Composite activities are constituted of smaller (less complex)
subactivities. In order to complete a composite activity, its sub-
activities should be carried out in a specific manner (which is
stated in the behavioural description of the process; see Section
4). In their turn, these subactivities may be further decomposed
in even smaller ones. This decomposition process can take
place as many times as necessary. This can be modelled in
UML by means of (possibly stereotyped) composite aggrega-

3

«metaclass»
Class

«stereotype»
Document

«stereotype»
Role

+responsible:Role

Figure 3: Stereotype Definition.

«role»
SpecEngineer

«document»
SpecDoc «document»

responsible=SpecEnineer

Figure 4: A UML Model That Uses Stereotypes.

«Activity»
BuildSoftwComponent

«Activity»
SpecifySoftwComp

«Activity»
TestSoftwComp

«Activity»
ImplementSoftwComp

«Activity»
FSpecifyComp

«Activity»
GenerateTestPlans

«Activity»
NFSpecifyComp

«Activity»
ValidateSpec

♦♦♦♦

♦♦♦♦

Figure 5: Activity Composition.

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

© Novática UPGRADE Vol. V, No. 5, October 2004 37

tions. Figure 5 shows how to model the process in which an
activity class BuildSoftwComponent may be decomposed into
the subtasks of ImplementSoftwComp, SpecifySoftwComp,
GenerateTestPlans and TestSoftwComp. In its turn, Specify-
SoftwComp is further decomposed.

Another interesting relationship between documents or activ-
ities is refinement, which can be modelled in UML through
inheritance. Other relationships between software process
classes may be modelled by stereotyping the general-purpose
dependency UML relationship.

Modelling The Behavioural Part of A SPM
A SPM should describe, in addition to the software proc-

ess structural aspects, the behaviour of such a process. This
behaviour may be described using two different paradigms,
namely proactive control and reactive control. Proactive
control states the enactment of process activities according to a
pre-established plan. Reactive control, in its turn, is based on
describing the enactment of some actions as a response to
events due to the occurrence of some condition.

PMLs should be expressive enough to offer both types of
behaviour description. Let us show how UML may deal with
both controls.

4.1 Proactive Control
There exist different approaches that a PML may follow in

order to support proactive control. Probably, the most popular
one consists in providing imperative descriptions of which
activity is to be enacted after the end of a specific one. This
approach can be modelled in UML by means of activity dia-
grams, in which a transition from activity a to activity b is
triggered whenever activity a finishes its enactment. This
transition grants the permission to start b.

Although this approach is possible, it often leads to a control
flow description in terms of a set of activities which are enacted
either following a strict sequence (possibly with conditions and
loops, which have been incorporated to UML 2.0) or in a
concurrent way (no other policy in between is allowed).

Usually, modelling software processes requires more flexible
and expressive constructs: software developers tend to perform
several activities at the same time and move from one to anoth-
er depending on their interactions with the rest of the team or
on some specific requirements (for instance, a deadline).

This reflection leads to other approaches to model the proac-
tive behaviour of a software process. A popular one is the
representation of different forms of precedence requirements
between activities [8, 9]. For instance, instead of modelling
something of the sort: the implementation of a component will
start once its specification has finished, it seems better to over-
lap both activities to a certain extent: the implementation of a
component should begin some time after the starting point of its
specification and should finish after the end of its specification.

The second form of modelling uses precedence relation-
ships, instead of pure transitions in order to describe behaviour-
al relationships between tasks. A precedence relationship is
stated between a set of source activities and another set of
target ones and establishes in a declarative way which require-

ments concerning the state of the source activities are needed
in order to start/finish the enactment of the target ones. Usually,
the second modelling approach (using precedence relation-
ships) provides not only a higher degree of freedom when
enacting it, but also a more expressive, realistic, and less strict
model.

The problem with precedence relationships is that UML does
not support them in a direct way. Hence, a UML extension is
necessary if such relationships are to be incorporated into the
PML. A precedence relationship may be modelled in UML as
a special kind of dependency between activities (see Figure 6).

4.2 Reactive Control
An expressive model for a software process should describe,

not only the proactive plan that the process is supposed to
follow during its enactment, but also its reaction to certain
events that may occur during such enactment (e.g., a notifica-
tion is received from the supervisor to abort the process or to
start at once a specific activity).

The reactive control of a PML is responsible for expressing
the behaviour of activities as a response to events. UML offers
several powerful reactive elements that may be used for this
purpose (i.e., state machines, events, signals, actions, etc.).
However, it is quite usual that current PMLs in the field of soft-
ware processes use some elements to model reactive control
which are not explicitly defined in UML. This is the case of
Event-condition-action (ECA) rules, which have become very
popular in the context of PMLs in order to model reactive
behaviour [2]. These rules establish the execution of an action
as a response to an event in the case that a certain condition
holds. ECA rules may be associated to model entities (e.g.,
activities). The introduction of ECA rules in a UML-based
PML, or other reactive elements, may lead to an extension of

4

«Activity»
TestSoftwComp

«Activity»
ImplementSoftwComp

«end-start»

TestSoftwComp depends on
ImplementSoftwComp.
The former may start only if
the latter has finished previously

Figure 6: A Precedence As A Dependency.

BehaviouralFeature (UML) Transition (UML)

ECARule

Figure 7: Definition of ECA-rules in PROMENADE
(Fragment).

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

38 UPGRADE Vol. V, No. 5, October 2004 © Novática

the UML metamodel. For instance, a UML-based PML called
PROMENADE (see Section 5 for an outline of it) provides a
definition of ECA rule both as a (UML) behavioural feature (so
that it can be associated to an entity as one of its features) and
as a (UML) transition (hence, it inherits the reactive behaviour
modelled by transitions); see Figure 7.

Some Proposals To Model Software Processes with
UML

Although most of the PMLs in the field of SPM that can be
found in the literature are not based on UML, in the late nine-
ties some approaches investigated the use of UML as a model-
ling formalism in the related fields of software and workflow
processes. These approaches did not made an entire proposal of
a PML but just focused on some of its elements. They shown
some drawbacks of activity diagrams and proposed some alter-
natives to describe process behaviour. Some of them were quite
unnatural (e.g., by means of class diagrams with stereotyped
associations for showing the control and data flow [5]).

The next step was to propose an extension of UML to
describe software processes. As we have seen, this can be
achieved either by defining a UML profile or by means of a
heavyweight extension.

The approach of defining a UML profile has been followed
in the own UML definition (in versions prior to 2.0 [11]), which
define a profile for software development processes. However,
this profile is quite basic, since it only defines some stereo-
types, no properties and almost no additional constraints. On
the other hand, the defined stereotypes do not seem to be suffi-
cient to deal with the terminology introduced by SPMs. Even
more, no behavioural aspects are mentioned in this definition.

In the last few years, two new UML-based proposals (name-
ly, SPEM [10] and PROMENADE [8, FR03]) have come up
sharing virtually the same innovative definition approach: they
are defined as heavyweight extensions of the UML metamodel
but they overcome the limitations suffered by these kinds of
extensions (namely, not full UML-compliance and, thus, no
standard languages) by offering a transformation of the extend-
ed metamodel into a UML profile. This seems to be a good
solution to keep the best of both worlds: while the heavyweight
extension ensures a proper language definition at the metamod-
el level, its transformation to UML profile guarantees conform-
ance with UML. Apart from this coincidence in the metamod-
elling approach, both proposals turn out to be quite different.

SPEM is an adopted specification of the OMG done by
several companies with the purpose of modelling a family of
software development processes (namely, RUP, SI Method,
OPEN, etc.). A process in SPEM is defined by means of itera-
tions, phases, activities and steps. Activities are not normally
decomposed beyond steps, which are atomic (therefore, only
two-levels of activity-subactivity decomposition are normally
considered). Control-flow in SPEM is based on dependencies
between activities (however, only finish-start and finish-finish
dependencies have been defined). SPEM does not define reac-
tive control-flow constructs. As a consequence of these
features, SPEM does not seem to be designed to describe
detailed processes.

When the extended metamodel is transformed into an UML
profile, some stereotypes like Step, Guidance, Activity, etc. do
come up. Each of these stereotypes are given a suggested nota-
tion and may be used within usual UML diagrams in order to
model the various aspects of a process. For example, Figure 8
shows an activity diagram to describe the behaviour of a proc-
ess fragment.

PROMENADE is a PML which has been defined with the
objectives of improving expressiveness, flexibility, standardi-
zation and modularity in SPM construction. Remarkably, it
allows the modelling of complex and/or detailed software
processes in an expressive way by providing both proactive and
reactive ways to express model behaviour. Proactive control
relies on the notion of precedence relationship, which has been
defined in the framework of UML as a special kind of depend-
ency. Different families of such precedence relationships have
been defined. Furthermore, the modeller may define his/her
own new kinds of precedence relationships. In its turn, reactive
control is based on ECA rules. Figure 6, above, shows a very
simple example of a UML-compliant representation of a
PROMENADE precedence relationship between two activi-
ties.

Conclusion
One important challenge for the software process model-

ling research community is the development of standard nota-
tions to describe software processes. In all probability, such
standardization will contribute both to disseminate the research
results in software process technology all over the software
engineering community (including, software industry) and to
incorporate the formalization of software processes into the

5

6

Functional Analyst

Define Requirements

Design Process Model
User Requirements

User Work Processes

Draft User Interface

User Interface {draft}

Define Tech. Requirements

Refine User Interface

User Interface {refined}

Build Application

Interface Designer Technical Designer

Figure 8: Use of Activity Diagrams in SPEM.

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

© Novática UPGRADE Vol. V, No. 5, October 2004 39

SPA&SPI initiatives. UML seems a good choice for such a
standard notation since it has become a standard de facto in the
modelling of object-oriented systems. While UML offers
enough expressiveness to model structural aspects of software
processes, some authors argue that more constructs should be
added to the language in order to model behavioural ones (e.g.,
proactive and reactive aspects). For this reason (and also to
define properly the specific concepts of software processes in
this language) UML-based PMLs should extend UML. Two
possibilities do exist to do that: the lightweight and the heavy-
weight extensions. The former defines a UML profile and the
latter, performs an explicit extension of the UML metamodel.

Several proposals have been defined in the last three or four
years in this sense: from quite basic UML profiles to more
sophisticated approaches like SPEM or PROMENADE.

It is worth mentioning that the use of UML as the basis to
construct PMLs will lead to standardization in the sense that
the defined PML will rely on a well-known syntax and seman-
tics, and it will be possible to use widespread UML-based tools
in order to model software processes. However, it is also true
that different PMLs may use UML in different ways (e.g., they
may use different constructs or the same constructs to model
different aspects). In any case, the use of UML will constitute
a qualitative improvement regarding SPM standardization.

References
[1]

J. - C. Derniame, B. A. Kaba, D. Wastell (eds.). Software
Process: Principles, Methodology and Technology. Lecture Notes
in Computer Science, Vol. 1500. Springer-Verlag, Berlin Heidel-
berg New York, 1999.

[2]
A. Finkelstein, J. Kramer, B. Nuseibeh. Software Process Model-
ling and Technology. Advanced Software Development Series,
Vol. 3. John Wiley & Sons Inc., New York Chichester Toronto
Brisbane Singapore, 1994.

[3]
X. Franch, J. M. Ribó. Using UML for Modelling the Static Part
of a Software Process. In Proceedings of UML ’99, Forth Collins
CO (USA). Lecture Notes in Computer Science (LNCS), Vol.
1723, pp. 292–307. Springer-Verlag, 1999.

[4]
W. S. Humphrey. Managing the Software Process. SEI Series in
Software Engineering. Addison Wesley, 1989

[5]
D. Jäger, A. Schleicher, B. Westfechtel. Object-Oriented Soft-
ware Process Modelling. Proceedings of the 7th European Soft-
ware Engineering Conference (ESEC), LNCS 1687 Toulouse
(France), September 1999.

[6]
X. Franch, J. M. Ribó. A UML-based Approach to Enhance
Reuse within Process Technology 9th International Workshop,
EWSPT 2003, Helsinki, Finland. Lecture Notes in Computer
Science (LNCS), Vol.2786. Springer-Verlag, 2003.

[7]
L. Osterweil. Software Processes are Software Too. In Procs. of
the Intl. Conf. on Software Engineering (ICSE-9), 1987.

[8]
J. M. Ribó, X. Franch. A Precedence-based Approach for Proac-
tive Control in Software Process Modelling. In Proceedings of the
SEKE-2002 conference (Software Engineering and Knowledge
Engineering). ACM Press. Ischia (Italy). September, 2002.

[9]
C. Schlenoff, M. Gruninger et al. The Process Specification
Language (PSL) Overview and Version 1.0 Specification. NIST
Internal Report (NISTIR) 6459, 1999.

[10]
Software Process Engineering Metamodel, version 1.0. Adopted
specification formal/2002-11-14 of the OMG (accessible at <ht-
tp://www.omg.org>).

[11]
Unified Modelling Language, version 1.5. Adopted specification
formal/03-03-01 of the OMG (accessible at <http:www.omg.
org>). Also, UML2 Infrastructure Final Adopted Specification
and UML 2 Superstructure Final Adopted Specification (accessi-
ble at <http:www.omg.org>).

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

40 UPGRADE Vol. V, No. 5, October 2004 © Novática

Supporting the Software Process in A Process-centred Software
Engineering Environment

Hans-Ulrich Kobialka

In software projects there exist tools, working schemes, and collaboration. Turning such an environment into
a Process-centred Software Engineering Environment (PSEE), involves: 1) Augmenting the process with an
additional flow of information and a dedicated user interface. 2) Supporting wanted process steps. 3)
Disabling unwanted process steps. The reason for this is that it is not practical to claim that all activities in
software projects have to be completely defined and supported by a PSEE. Instead, process support has to
be introduced incrementally. This paper illustrates how this can be achieved.

Keywords: ALADYN, Process Modelling Language (PML),
Process-centred Software Engineering Environment (PSEE),
Software Process Enactment, Software Process Support.

Introduction
A software process encompasses a significant number of

steps performed by many people. Several years ago it was
stated that software processes should be described in a formal
way by using Process Modelling Languages (PMLs), and that
models written in a PML can be enacted in Process Centred
Software Engineering Environments (PSEEs) [13].

Current PMLs/PSEEs cause difficulties when used during
process enactment. This is because many PMLs/PSEEs have
adopted approaches from specification and programming lan-
guages which were not designed to adapt to change during
execution. Process programs often turn out to be quite complex
which users have found difficult to both understand and apply
changes to correctly.

Section 2 introduces the requirements which have to be
fulfilled for effective process enactment. The concepts of
current PMLs/PSEEs are discussed in Section 3. We then
propose a number of ingredients which enable successful proc-
ess support (Section 4). While this is done on a rather general
level, in Section 5 we give a more technical view on Event-
Condition-Action (ECA) rules and impact control.

Requirements of Process Support
Process support raises several challenges which have to

be met by a PML, and its runtime environment the PSEE. Here
we make some statements and identify the corresponding
requirements.

a) Process support will never cover the entire process.
We suspect that support for a non-trivial process will never

be complete in the sense that each possible sequence of actions
is considered. This may be due to incomplete knowledge about

the process, but also because process designers do not want to
specify too much detail if there is no equivalent pay back in
productivity. Therefore, only parts of the process which need
support are specified in the PML – unsupported process steps
are enabled but not explicitly written down on the level of proc-
ess implementation (although they may be contained in hand-
books or high-level process specifications).

Requirement 1) The PSEE should empower the user to work
with incomplete process support.

It should be possible to perform working steps currently not
specified or supported. In the extreme case, users should be
able to work without writing any process program in advance.
They should be able to build up working environments manu-
ally and to pass around results. This requires a number of serv-
ices to be provided by the PSEE, e.g. communication services.

b) Process change during enactment is the normal case, not
the exception.

Process support is likely to change during a process. It is
usually impossible to define the entire software process support
from the very beginning. In most processes only the principal
aspects (e.g. some data & control flows) are known, but their
volume or frequency cannot be determined in advance.

Software processes “run” for a long time. During this time
things may change which again might force the process to be
adapted or even changed completely.

1

2

Hans-Ulrich Kobialka got his MSc in Computer Science in
1985 at TH (Technische Universität Darmstadt), Germany, and
his PhD in 1998 at TUB (Technischen Universität Berlin) Cott-
bus, Germany. Since 1985 he worked as a scientist at GMD and
since 2001 at Fraunhofer AIS. His research interests include robot
control architectures, real time computer vision, and software
process support. <hans-ulrich.kobialka@ais.fraunhofer.de>

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

© Novática UPGRADE Vol. V, No. 5, October 2004 41

Requirement 2) The change of a process program has to be a
simple and save operation.

Installing a change should be possible at runtime by the push
of a button without the risk of any hazardous effects. There
should be a means of defining and controlling permissions for
process change.

In case a change has not achieved the expected benefits, it
should be possible to undo that change easily.

c) Process programs cannot be assumed to be totally
correct.

Process programs are difficult to test, because they operate
on large databases, interact with many users, and are written by
different authors. The impact of changes to process programs
are difficult to predict. Thus, when a process program is recog-
nized to be incorrect, the state of enactment (i.e. the states of all
current processes) has to be updated as well:

Requirement 3) The user should be able to complement or
compensate for the effects of process programs.

The interactive user should be able to perform every action
that can possibly be performed by a process program. The serv-
ice interface of the PSEE has to cater for basic constraints of
consistency.

d) The probability of misunderstandings and errors is a key
factor.

Although errors should be tolerable, they should be avoided
as much as possible. Manual repair actions are time-intensive
and can create further errors, especially when carried out by
different authors. A certain frequency of errors can reveal a
PSEE to be totally unusable in an industrial context.

Requirement 4) The effect of process programs should be easily
understood by users.

The impact of a statement should be obvious to the reader. In
particular, the side effects on other statements should be limited
as much as possible. The size of the process support to be
written should permit parts to be located easily and understand-
ing of the support to be total. The PML should support abstrac-
tions of the software process domain. Appropriate abstractions
may also reduce the size and complexity of process programs.

e) Process support will be more effective if it can be
customized for each task.

The characteristics of tasks, and the skills of teams, can differ
substantially. Much productivity (and acceptance of process
technology) can be gained if a process can be adapted in such
a way that these characteristics and skills can be exploited.
Although projects interact with each other, they require some
autonomy in adapting their processes.

Requirement 5) Process support should be adaptable to
specific (sub)projects.

The effects of a process support, which has been installed for
a particular task, has to be limited to this part of the project.

Related Work
PMLs are often classified into net-based, object-oriented

or rule (or event-trigger) based approaches. Most PSEEs offer
a hybrid PML with multiple paradigms (or multiple PMLs
respectively), see Table 1. Due to space limitations, in this
paper we discuss the above approaches rather than each indi-
vidual system.

3.1 Net-based PMLs
Net-based PMLs (Process Weaver [8], Slang/SPADE-1 [1],

LEU [9], Endeavors [2], APEL (the PML of the Adele PSEE)
[6], Little-JIL [4]) have several advantages: they can be used to
describe a process in an intuitive way, they can be analysed and
simulated, and in most cases the impact of their elements
(states, transitions) can be easily understood.

Net-based PMLs permit a transition to execute some code
which may access any database and communicate with concur-
rent transitions or remote services. In these cases, the models
are no longer genuine Petri-nets, because the latter requires the
firing of a transition to depend solely on its inputs. Thus, simu-
lation and impact analysis can become difficult as databases
and communication are used in a concrete net.

The main drawback of net-based PMLs is that users tend to
specify only the main workflows. Unexpected situations are
difficult to handle if a net state has to change during execution.
Some PSEEs (e.g. SPADE-1) permit changes at runtime, but
this puts the user in the position of editing a net, i.e. still having
to plan steps before executing them. If tasks have to be created
and connected dynamically, net-based models offer no appro-
priate execution model.

3.2 Object-oriented Approaches
Object-oriented PMLs (EPOS [5], Adele) offer more flexibil-

ity, as they allow users to create and connect tasks (activities)
dynamically (incremental evolution of task networks). Dynam-
ic instantiation is also used in non object-oriented approaches,
e.g. DYNAMITE, ClearGuide [12].

Many object-orientated approaches (e.g. EPOS, Adele,
Endeavors, SPADE-1) make intensive use of the definition of
object-oriented class hierarchies. We argue that this is not the
right approach to implement and change process support
during enactment because the units of change are schemas
(type hierarchies) which tend to become quite large and contain
complex dependencies. Therefore, schema updates can be
difficult (especially if existing objects can be invalidated), and
the transfer of improvements from one schema to a similar one
is not trivial.

3.3 Rule-based PMLs
Rule-based and event-trigger based approaches are very

powerful. However process descriptions tend to become
complex, especially if rule chaining (e.g. in Marvel/Oz [3]), or
other kinds of side effects between rules/triggers are used.
APEL and ClearGuide do not encourage the user to use rule
chaining. Usually side effects occur between rules.

Multiple processes. Different process instances can coexist
and cooperate within most PSEEs. If rules of different process-

3

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

42 UPGRADE Vol. V, No. 5, October 2004 © Novática

es (possibly written by several authors) interfere or conflict,
most PSEEs do not consider who has installed the conflicting
rules. Only ClearGuide knows during execution of a rule, for
which task this rule has been defined.

Control of Permissions. Context information (the current
user, the task he is currently performing, and in the case of a
rule the task/process for which it is defined) can be used for
conflict resolution and access control. As PSEEs offer only
limited context information, their ability to control permissions
is also limited.

Ingredients for Process Support
Here we propose a number of ingredients for the design/

architecture of PMLs and PSEEs in order to enable effective
process support.

4.1 PML = Service Interface
As process steps should be carried out concurrently by proc-

ess programs there has to be some service which is accessed by
multiple processes and which coordinates their activities. If this
service interface is also accessible via a command interface, or
a graphical user interface (GUI), and if this interface offers an
appropriate abstraction level, it fulfils requirement 1: the user
can perform process steps even if a process programs is incom-
plete or does not exist. This also meets requirement 3: in case
of an incorrect/incomplete process program, the user can
manually repair the state of enactment.

The interface of process service defines the PML. The proc-
ess server acts as an interpreter of this PML. The remainder of
Section 4 considers the question “What are the right services
for process support?”.

4.2 Inter-related Process Objects
The PML services should provide basic concepts of process-

es, tasks, users and communication. It should be possible to
dynamically create/connect/delete instances of these objects
thereby managing networks of interrelated objects.

Process support should offer some notion of task (also called
activity) and relationships between tasks. A special relationship

is the task-subtask relationship: a task is divided in several
subtasks; the manager of a task also heads (is the managers of)
the subtasks. Users are assigned to tasks, thereby fulfilling
special roles (e.g. manager). There should be some communi-
cation infrastructure e.g. one which permits a message to be
sent to the manager of task X rather than to a specific user.

A task may produce documents as results. These documents
may again be associated as inputs to other tasks. Documents are
typically stored in some configuration management system
(e.g. CVS, ClearCase, Adele).

4.3 Process Definition on the Instance Level
In a network of interrelated objects, additional process

knowledge has to be added e.g. process procedures and
constraints. Also the process can be parameterized using proc-
ess variables, similar to environment variables e.g. a process
variable may simply denote which editor should be invoked by
default.

We propose that process variables, procedures and con-
straints should be contained in process programs which are
associated with task objects.

Note that there is no need for type hierarchies, or other kinds
of dependencies on the type level, which make change difficult.
Processes are defined on the instance level: tasks are instantiat-
ed and specific process knowledge is added to these instances
by assigning process programs to them.

4.4 Process Permissions
The creation of tasks, subtasks, and relationships to other

objects is a privileged operation. The same holds for associat-
ing a process program to a task. Such operations need special
permission.

We propose that such operations can only be performed by
users who play a certain role (“manager”) in a task. Of course,
a manager can only perform privileged operations on his task
and its subtasks. Because process procedures and constraints
are associated to a task by its manager, they are performed with
the same permissions (as if these actions were performed by the
manager manually).

4

Complexity &
Impact Control

Task-specific
customization

Flexible Datat and
Control Flow

Change
Effort

net-based PMLs + +1 – – + –2

object-oriented PMLs – – + –

rule-based PMLs – – + +

Little-JIL

SPADE-1

Endeavours

Adele

Epos

Oz

ClearGuide

1. Task-specific support could be possible, if the PSEE allows to use different variants of a
(sub)net within different tasks. Not all net-based PMLs allow this.

2. The effort can be reasonable if several instances of the net are currently existing. Each
instance has to be stopped and investigated whether the placement or contents of the
tokens conflict with the change of the net.

Table 1: The Strengths and Weaknesses of Different PML Paradigms.

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

© Novática UPGRADE Vol. V, No. 5, October 2004 43

4.5 Process Automation
Active mechanisms, like the Model-View-Controller pattern,

Event-Condition-Action (ECA) rules, triggers, or similar
mechanisms e.g. in ClearGuide or APEL, have many advan-
tages
 • They are very powerful and flexible. E.g. it is very time-

consuming to document all possible action sequences which
may be caused by a few ECA rules.

 • They decouple the event source from the action. There is no
need to modify the event source if an ECA rule is added,
modified or removed.

 • They are quite robust with respect to side-effects from other
components, if they are written carefully. ECA rules do not
know when they will be executed. Other rules associated
with the same event may be executed before, possibly mod-
ifying/deleting objects. An ECA rule has to check all its
assumptions first before performing any action. In contrast
to this, the ‘sequential programming’ paradigm is more
sensitive to change. For example in the sequence “A; B; C;”
(or “A→B→C”), statement C usually contains assumptions
about the previous statements. So when changing statement
A, all subsequent statements are possibly affected.

Constraints
Elaborated process services and active mechanisms offer a

very powerful framework. But not every possible sequence of
actions is desirable. Manual detection and repair of unwanted
states is not feasible in an automated environment. So if a user
issues a command which violates consistency constraints, this
has to be aborted on the database level as if it was never execut-
ed.

The principle behind this is that there is some model defined
which initially offers a great deal of freedom. As more knowl-
edge about the process is obtained over time, that freedom can
be restricted to exclude unwanted actions. According to Peter
Wegner: “Constraints are more powerful because they are
applicable to non-compositional behaviours. Michaelangelo’s
sculptures realized by chipping marble slab could not have
been realized by gluing together small bits of marble.”.

Process Automation with ALADYN
The above proposed ingredients for process support are

described on a rather general level. In order to give a more
concrete impression of how process support may look like, we
describe the process automation and impact control in a
concrete system. Here we refer to a PSEE named ADDD,
which offers a PML called ALADYN [10].

Besides the organization of work, the task hierarchy is used
to organize process descriptions, called policies. Multiple
aspects are grouped and treated together in a policy: parame-
ters and procedures used for customization, and triggers used
for process monitoring, notification, automation and consisten-
cy control.

A policy can be instantiated for several tasks (Figure 1).
Instantiation of a policy means instantiation of all its parame-
ters, procedures, and triggers for the denoted task i.e. the con-
tents of the policy file is parsed, and objects are created and

inserted into system tables. A policy, which is instantiated for a
particular task, influences the execution of this task and its
subtasks.

For a task at most one policy can be instantiated. The instan-
tiation of a policy for this task implies that the parameters, pro-
cedures, and triggers of a former instantiated policy are
removed from the system.

5.1 Triggers and Constraints
Instantiated triggers are Event-Condition-Action (ECA)

rules as used in active database systems. They are used to
implement reactive behaviour.

In the trigger syntax, the concerned tasks are specified by a
task pattern.

Task Patterns
A task has a pathname which is generated from its name and

the names of its parent tasks in the task hierarchy. Task
pathnames are similar to those of files in a file system, e.g.
/projectA/Test/test_release.2.5. Task patterns may contain wildcards
e.g. as known from the Unix shell. For example, the pattern
test may be used to match all test tasks in the system.

However, general pattern matching is not selective enough.
Usually a trigger should be applied to tasks located in the
context of the task for which the policy is instantiated.

Therefore, a pattern can contain one of the keywords SELF,
PARENT, or PROJECT at the beginning. These keywords refer to
the task for which the policy is instantiated (SELF), its parent
task (PARENT), or the top-level task containing it (PROJECT).
Each time an event is matched against the trigger, the keyword
is replaced by the pathname of the denoted task. For example,
if a policy is instantiated for the task /projectA/ Test and one of
the policy’s triggers has the task pattern SELF*, the pattern is
expanded to /projectA/Test* (i.e. the pattern matches /projectA/Test
and all its subtasks). Similarly, a trigger containing PARENT*
looks at the task /projectA and all its subtasks.

“Happened on” versus “Caused by”
During command execution a task can be in two positions.

First, it can be the active task on behalf of which the user issues
a command and implicitly causes events. Second, a task can be
a passive object which is modified by a command and on which
events are happening.

ALADYN distinguishes between (1) triggers which wait for
events happening on a particular task (i.e. the task is modified),
and (2) triggers observing events caused by a particular task
(i.e. the current execution context refers to this task).
trigger_on_task EV_NEW_RESULT <task pattern> route_result_to_review
This trigger defines that the action route_result_to_review is

executed each time when the event EV_NEW_RESULT happens on
a task matching the task pattern, i.e. when a result of this task
is published. This trigger fires regardless of which task has
caused the event. Such types of trigger are denoted by the suffix
_on_task.

trigger EV_NEW_CR <task pattern> handleChangeRequest
This trigger says that each time a change request has been

created (i.e. is caused by) the tasks matching the task pattern,

5

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

44 UPGRADE Vol. V, No. 5, October 2004 © Novática

an action (handleChangeRequest) should be executed automatical-
ly.

Optionally, the execution of triggers can be controlled by
conditions, i.e. the action is only executed if the condition is
fulfilled. Conditions and actions of triggers are procedures.
When a trigger is defined in a policy file, its condition and
action procedures should be written into the same file.

Constraints
In some cases, process support has to restrict certain actions

in order to preserve consistency constraints. Usually it is very
difficult to undo violations after they have occurred and other
users have seen them or triggers have reacted on them. In
ALADYN, constraint triggers can be used to abort modifica-
tions on the database level (including all triggered procedures).
This resets the system to the state before the offending
command was issued (i.e. as if it had never been executed).

The constraint and constraint_on_task trigger declarations are
similar to trigger and trigger_on_task, except that the triggered
action is implicitly “abort”. For instance, the following trigger
prevents the tasks matching the task pattern from assigning any
policy file to a task:

constraint EV_NEW_POLICY_FILE <task pattern>

5.2 Controlling Impact of Process Programs
We illustrate how the impact of triggers, parameters, and

procedures is limited to the task for which they are instantiated.
This impact can be further restricted by permissions and
constraints.

5.2.1 Impact of Process Parameters and Procedures
Process parameters and procedures defined in the policy of a

task are inherited by its subtasks. For instance in Figure 1 the
project policy is instantiated for task “projectXY” and defines
that the emacs editor should be used. This parameter is inherit-
ed recursively by all subtasks of projectXY, i.e. everyone work-
ing in this project will use emacs.

On the other hand, parameters and procedures can be rede-
fined in the policies of subtasks. This means that within the
execution context of the subtask, the redefined value/imple-
mentation is retrieved for a parameter/procedure, while

commands executed on behalf of the parent task still retrieve
the value defined in its policy. In Figure 1 the procedure ICON
is redefined by team policy B. This leads to (some) items being
displayed with different icons for people working on B than are
displayed for people working on the rest of the project.

5.2.2 Permissions and Constraints
If a process procedure is invoked, it is performed within the

execution context of the command, i.e. the procedure is execut-
ed with the same permissions as the invoking command.

A user can be assigned to a task either as a manager or a
developer. A manager of a task has certain permissions to
configure the task and its subtasks (creating subtasks, instanti-
ating policies, assigning people, passing input to a task, etc.),
but the manager is not allowed to do this for tasks located else-
where in the task hierarchy. Thus the permissions of managers
are limited.

Developers have no management permissions and work with
the configuration management service (e.g. checkin/checkout
of versions and configurations).

The permissions of managers and developers can further be
restricted in a task-specific way by constraints if these
constraints are defined by one of their managers, as explained
below.

5.2.3 Impact of Triggers
In contrast to parameters and procedures, a trigger which is

instantiated for a task cannot be inherited, redefined or disabled
by a subtask. For example, in Figure 1 the project policy
defines that the team members of project XY should be notified
whenever one of its subtasks produces any results. This trigger
is not implicitly instantiated for subtasks, i.e. task “develop-
ment of component B” is not notified if one of its subtasks
produces a result.

The impact of a trigger can be determined first of all by its
task pattern. This defines the tasks which are viewed or control-
led. Other parts (the event, the condition and the action proce-
dures) also restrict the impact, but the task pattern is usually the
most selective part of a trigger i.e. it filters most of the events
occurring in the system.

project XY project policy

set EDITOR {emacs $file}
proc ICON {name} {...}
notify EV_NEW_RESULT SELF/ *

development of
component B

team policy B

proc ICON {name} {...}
trigger_on_task EV_NEW_RESULT SELF ...

Figure 1: Example of Policies Defined on Different Levels in The Task Hierarchy.

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

© Novática UPGRADE Vol. V, No. 5, October 2004 45

Permissions of triggered procedures:
A command can raise several events which may cause

triggers to be fired i.e. procedures are executed. For each
triggered procedure the context is switched i.e. the procedure is
executed in the context of the trigger’s task (Figure 2).

A policy can only be instantiated for a task by a manager.
Therefore the triggers are authorized by this manager and
accordingly have the same permissions. For example, a trig-
gered procedure can only abort a command of userZ@taskA if
the constraint is declared in a policy of taskA or one of its
parent tasks.

5.3 Abstractions appropriate for the Process Domain
A clear understanding of the impact of each statement is an

important factor in understanding the whole program. In addi-
tion, the size and the complexity of the program are also signif-
icant factors.

Beside general ECA rules, ALADYN offers the definition of
specialized triggers. For example, the following trigger defines
that a notification should be sent to the managers of the policy’s
task each time one of its subtasks produces a result.

notify EV_NEW_RESULT SELF/* MANAGER
Such events can also be logged in a file:

log EV_NEW_RESULT SELF/* $TEMP/taskIO.log
Specialized triggers offer abstractions which are appropriate

for the process domain. While ECA rules stem from active
databases, concepts like notification, logging, and configura-
tion management belong to the process domain. Such abstrac-
tions free the domain expert from writing domain-specific
solutions in terms (and many lines) of a general-purpose
language.

We have implemented support for the ISPW9 scenario [14]
in ALADYN [10]. The solution contains 9 triggers which
invoke procedures, and 19 “trivial” triggers which do not. Only
one trigger causes another “non-trivial” trigger to fire, so
programming required some care in this case. This solution has
moderate size and complexity, although we have aimed for a
comfortable level and not minimal support.

Conclusions
Effective process support depends on several ingredients

such as high level services, user interfaces to these services,

process definition on the instance level, active support for auto-
mation and consistency control, clearly defined impact, and
control of permissions.

In this paper we discuss a number of requirements, and some
problems existing PMLs have in meeting these requirements.
We then propose a set of ingredients which we regard as help-
ful, or even mandatory, to remedy the problems. Because this
is done on a general level we then illustrate some aspects by
describing process automation using the ALADYN PML.

The ALADYN PML contains no mechanisms to enforce
control flow explicitly as can be done with net-based PMLs.
Instead ALADYN supports the flow of results and automatic
notification, and lets the user decide what to do next. Control
flow enforcement requires the programming of ALADYN
constraints. An interesting approach is to define control & data
flow in a net-based language and then generate PML code for
the PSEE to be used. In [7], process descriptions defined in
UML were used to generate code for the OPSS PSEE. Such an
approach can be used to generate support for the specified proc-
ess without prohibiting non-specified processes. This combines
the benefits of precise specifications with the flexibility of an
interpreted PML.

Because of space restrictions, this paper does not discuss
how process support can be improved by process-specific user
interfaces. For this important point we refer to [11].

References
[1]

Sergio Bandinelli, Elisabetta Di Nitto, and Alfonso Fuggetta.
“Supporting cooperation in the SPADE-1 environment.” IEEE
Transactions on Software Engineering, 22(12):841–865, Decem-
ber 1996.

[2]
Gregory Bolcer and Richard Taylor. “Endeavors: a process
system integration infrastructure.” In Proceedings of the 4th
International Conference on the Software Process, pages 76 – 89.
IEEE Computer Society Press, 1996.

[3]
Israel Ben-Shaul and Gail Kaiser. A Paradigm for Decentralized
Process Modeling. Kluwer, 1995.

[4]
Aaron G. Cass, Barbara Staudt Lerner, Eric K. McCall, Leon J.
Osterweil, Stanley M. Sutton, Jr., and Alexander Wise, “Little-
JIL/Juliette: A Process Definition Language and Interpreter”, In

6

command

event

userZ@taskA

triggered
procedure

event

task B

triggered
procedure

task C execution contexts

Figure 2: The Execution Context Is Switched for Each Triggered Procedure (the arrows denote the flow of control.)

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

46 UPGRADE Vol. V, No. 5, October 2004 © Novática

Proceedings of the 22nd International Conference on Software
Engineering, pp. 754–757, June 2000.

[5]
R. Conradi, M. Hagaseth, J. O. Larsen, M. N. Nguyen, B. P.
Munch, P. H. Westby, W. Zhu, M. L. Jaccheri, and C. Liu. “EPOS:
Object-oriented cooperative process modeling.” In B. Nuseibeh,
A. Finkelstein, and J. Kramer, editors, Software Process Model-
ling and Technology, pages 33–70. John Wiley and Sons, 1994.

[6]
Samir Dami, Jacky Estublier, and Mahfoud Amiour. “APEL: A
graphical yet executable formalism for process modeling.” Auto-
mated Software Engineering, 5(1):61–96, January 1998.

[7]
Elisabetta Di Nitto, Luigi Lavazza, Marco Schiavoni, Emma
Tracanella, and Michele Trombetta: “Deriving executable proc-
ess descriptions from UML”, In Proceedings of the 24th Inter-
national Conference on Software Engineering, pages 155–165.
ACM Press, May 2002.

[8]
Christer Fernström. “Process WEAVER: Adding process support
to UNIX.” In Proceedings of the Second International Confer-
ence on the Software Process, pages 12–26. IEEE Computer
Society Press, February 1993.

[9]
Volker Gruhn and Stefan Wolf. “Software process improvement
by business process orientation.” Software Process–Improvement
and Practice, Pilot Issue:49–56, August 1995.

[10]
Hans-Ulrich Kobialka. “Implementing support for software proc-
esses in a process-centered software engineering environment.”
Ph.D. Thesis. GMD Research Series 15/1998. <http://www.ais.
fraunhofer.de/~kobi/img/SupportForSoftwareProcesses.pdf>.

[11]
Hans-Ulrich Kobialka and Claus Lewerentz. “User interfaces
supporting the software process.” In Proceedings of the 6th
European Workshop on Software Process Technology, Lecture
Notes in Computer Science, September 1998.
<http://www.ais.fraunhofer.de/~kobi/img/ewspt6.3.pdf>.

[12]
David B. Leblang. “Managing the software development process
with ClearGuide.” In Software configuration management: ICSE
97 SCM-7 Workshop, pages 66–80. Lecture Notes in Computer
Science 1235, Springer, May 1997.

[13]
Leon J. Osterweil. “Software processes are software too, revisit-
ed.” In Proceedings of the 19th International Conference on
Software Engineering, pages 540–548. ACM Press, May 1997.

[14]
Maria H. Penedo. “Life-cycle (sub) process scenario.” In C.
Ghezzi, editor, Proceedings of the 9th International Software
Process Workshop, pages 141–143. IEEE Computer Society
Press, October 1994.

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

© Novática UPGRADE Vol. V, No. 5, October 2004 47

Managing Distributed Projects in GENESIS

Lerina Aversano, Andrea De Lucia, Matteo Gaeta, Pierluigi Ritrovato, and Maria-Luisa Villani

The success of large software projects conducted by different organization sites may be determined by the
inter-site coordination and cooperation of the working teams, thus automated support to distributed project
management can be useful. In this context we present the GENESIS (Generalized ENvironment for procESs
management in cooperatIve Software engineering) approach to distributed process modelling and
enactment, realized through an event dispatching architecture whose distinctive feature is a decentralized
and autonomous definition of the multi-site software processes.

Keywords: Coordination and Cooperation, Distributed
Process, Large Software Projects, Multi-Site Software
Projects, Project Management, Process Modelling, Software
Processes, Workflow Management.

Introduction
Software projects are generally complex and may be

distributed across sites, so they require the coordination and co-
operation of teams of software engineers from different geo-
graphical locations and possibly belonging to different organi-
zations. This scenario is now becoming commonplace as a
result of globalization and therefore automated tools for the

management and execution of these projects are highly desira-
ble [15][4][10]. In fact, the support for distributed project man-
agement is a relevant problem for two reasons.
• projects may involve a big number of concurrent activities,

which impose an adequate coordination support to keep
them on track and under control;

• when a project spans multiple sites that generally work in a
largely autonomous manner, these sites will not necessarily
be following the same process models, nor they will be all
employing the same methods and tools. Hence, it may be
required that, whenever it is possible, parts of the project
should be under the responsibility of local project managers,

1

Lerina Aversano received a BSc in Computer Engineering from
the Università degli Studi del Sannio, Benevento, Italy, in 2000, and
a PhD in Computer Engineering from the same university, in 2003.
She is currently an assistant researcher at the RCOST (Research
Centre on Software Technology) of the mentioned university. Her
research interests include process and information system model-
ling, workflow management, document management, business
process reengineering, software reengineering and migration.
<aversano@unisannio.it>

Andrea De Lucia received a PhD in Electronic Engineering and
Computer Science from the Università degli Studi di Napoli, Na-
ples, Italy, in 1996. He is an Associate Professor of Software Engi-
neering at the Department of Mathematics and Informatics of the
Università degli Studi di Salerno, Italy. His research interests
include software maintenance, reverse engineering, visual languag-
es, workflow management, and document management. He is the
program co-chair of the 11th IEEE Working Conference on Reverse
Engineering (WCRE 2004) and of the 3rd Workshop on Coopera-
tive Supports for Distributed Software Engineering Processes
(CSSE2004). Prof. De Lucia is a member of the IEEE and the IEEE
Computer Society. <a.delucia@unisa.it>

Matteo Gaeta is Researcher for Systems of Information Process-
ing and University Teacher of Information Fundaments at the Fac-
ulty of Engineering of the Università degli Studi di Salerno, Italy.
He is Director and Member of Board of Directors of CRMPA (Cen-
tre of Research in Pure and Applied Mathematics), a no-profit Con-
sortium between industrial enterprises and the university; he is also
Deputy Director of the Centre of Excellence on Learning and

knowledge of the same university. He is a member of the Technical
Committee by the Italian Minister of Productive Activities. He is a
member of the Steering Committee of the Italian Ministry of Agri-
cultural and Forest Policies for the consultancy and the scientific,
organisational support to research, development and innovation.
<gaeta@crmpa.unisa.it>

Pierluigi Ritrovato is Research and Technology Director of
CRMPA (Centre of Research in Pure and Applied Mathematics),
Università degli Studi di Salerno, Italy. He has participated in, or co-
ordinated, several Research and Development projects either Italian
or European on themes relative to: distributed systems and architec-
ture, <http://www.elegi.org>; GRID technologies and architectures,
<http://www.eu-grasp.net>; Distributed Software Engineering,
<hhtp://www.genesis-ist.org>; application interoperability and co-
operation; CSCW, and Internet Technologies.
<ritrovatog@crmpa.unisa.it>

Maria-Luisa Villani is a Research Assistant at RCOST (Research
Centre on Software Technology) of Università degli Studi del San-
nio, Benevento, Italy. She graduated (cum laude) in Mathematics at
the University of Napoli in 1994. From September 1995 to Septem-
ber 1999 she was at the University of Warwick – England, where she
obtained a MSc degree (1996) and a PhD (1999) in Matematics. In
September 2001 she got a Master degree in Software Technology at
the Università degli Studi del Sannio and joined RCOST. Her cur-
rent research interests are service-centric software engineering,
software process technology and modelling, model checking tech-
niques for program verification. <villani@unisannio.it>

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

48 UPGRADE Vol. V, No. 5, October 2004 © Novática

who can better organize the local activities (i.e., processes
and sub-processes) and resources involved.

In particular, the latter issue poses problems concerned with
decentralized and autonomous modelling of multi-site software
processes. Most works on distributed process management
focus on developing paradigms and architectures for the enact-
ment of these processes but they scarcely address decentralized
modelling [16][14][13][9][4][10][7][8]. In most cases process
modelling is a centralized activity and the enactment of
portions of the process is distributed among different workflow
engines. In some cases, the central process model is collabora-
tively edited with the contribution of people from different sites
[10] and each site has visibility of the overall process model. A
different approach is used in OzWeb [4] where process models
are autonomously defined on the different sites and cooperate
through specifically designed interfaces.

In this paper we present the GENESIS (Generalized ENvi-
ronment for procESs management in cooperatIve Software
engineering) approach to distributed process modelling. The
GENESIS platform is an outcome of a research project aimed
at designing and developing a non-invasive and open source
system to support software engineering processes in a highly
distributed environment. In GENESIS, the global view of the
project is modelled and enacted at the coordinator site (that is
the technical leader of the distributed software project [14]),
while sub-processes can be autonomously modelled and exe-
cuted on different organizational sites. The global process
model can be collaboratively edited by the project managers of
the different sites.

The paper is organized as follows. Section 2 discusses related
work. Section 3 presents an overview of GENESIS, with
particular reference to the flexible approach adopted for distrib-
uted process modelling and enactment. Section 4 details an
asynchronous communication protocol for distributed project
definition and management, while Section 5 concludes.

Related Work
In global and virtual enterprises, software processes

consist of multiple sub-processes that may span over organiza-
tional boundaries. The current commercial workflow technolo-
gy does not provide the necessary functionality to model, enact,
and manage distributed processes due to its mostly centralized
server architecture. Numerous are coordination functionalities
that cannot be fulfilled by traditional workflow systems [14][5],
such as the support for distributed execution of a workflow;
shared access to data and the use of groupware tools.

Modern workflow management systems exploit the web as a
mean to enable distributed access to the facilities provided by
the workflow engine [1][12][5][15]. However, most of these
systems are still based on a client-server architecture and the
problem of designing architectures for distributed process
modelling and enactment of the process is still a research issue
[16][14][13][9][4][10][7][8][17]. PROSYT is an artifact based
PSEE [7]. Each artifact produced during the process is an
instance of some artifact type, which describes its internal
structure and behaviour. All the routing in this model is based
on the artifact and the operations on them. PROSYT also

allows for distributed enactment facilitated by an event-based
middleware [8].

In [9] the authors propose an approach for the distributed
execution that exploits an event notification service, named
READY. Workflow participants, both workflow engines and
agents, can subscribe to events that trigger the start of workflow
activities and processes, and events that describe state changes
in the workflow processes they are interested in. Therefore, the
configuration of the participants in a workflow can be dynami-
cally changed without requiring any modifications to the exist-
ing architecture.

The Endevors project [13] proposes an approach to provide a
coordination mechanism for distributed process execution and
tool integration by using the Hypertext Transfer Protocol
(HTTP). The system uses a layered object model to provide for
the object-oriented definition and specification of process
artifacts, activities, and resources. The intent for distribution is
to support a wide range of configurations with varying degrees
and kinds of distribution: stand-alone with a base system
configuration without distributed components, multi-user with
a single remote data-store, multi-user with a single remote
data-store are the configuration experimented for distribution.

Kötting and Maurer [14] propose an extension of MILOS
[14] which focuses on the process support for virtual corpora-
tions. They propose three different approaches for distributed
process enactment: replicated workflow engines; central coor-
dinator site, and a peer-to-peer architecture for data exchange.
The authors do not address the problem of decentralized
process modelling.

Grundy et al. [10] focus on distribution problems in process
modelling. The proposed system provides mechanisms for
collaboratively editing process models both in a synchronous
and an asynchronous way, together with version management
support. The architecture is based on a central site maintaining
the process model and distributed sites enacting portions of that
model.

In the Ozweb environment the peer-to-peer paradigm for
distribution is adopted [4]. Here a decentralized system
consists of independent sub systems spread among multiple
sites. In particular, the authors focus on the process autonomy
of each sub system that should be self contained and operation-
ally independent. To this aim they introduce the concept of
‘treats’ to guarantee compliance of the artifacts exchanged
between sub-processes.

Our approach mixes both these features: we have the notion
of a coordinator site where a global process can be defined in a
collaborative way by the project managers of the different
cooperating sites of a virtual organization. Sub-processes exe-
cuted on different sites are autonomously defined and only
have to respect the interfaces defined at global level. Moreover,
the depth of the global process model is not limited to just two
levels, as it is possible for a partner of the virtual corporation to
have further sub-contractors.

Distributed Process Management in GENESIS
Traditional workflow management systems do not

provide adequate support for the evolution of software organi-

2

3

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

© Novática UPGRADE Vol. V, No. 5, October 2004 49

zations towards distributed virtual models. The main open
problem remains the systematic definition of distributed proc-
ess models and their enactment across multiple sites using
appropriate abstractions and mechanisms. The GENESIS envi-
ronment has been developed with the aim to provide solutions
to these problems; to this end the environment provides a
special support for a distributed scenario, from the modelling
of a distributed process to its enactment.

Distributed projects in GENESIS require a project coordina-
tor site, managing the overall project and a number of local
sites, managing specific project workpackages. The coordina-
tor is in charge of modelling and executing the global process
for the project, while the local sites are in charge of defining
and executing sub-processes of that model, and concerning
their own workpackages (see Figure 1).

The architecture of each GENESIS site includes different
components as depicted in Figure 2:
• a workflow management system to model and enact soft-

ware processes;
• an artifact management system to store and retrieve the

artifacts produced within a process;
• a resource management system to allocate resources, in

particular human resources, to a project;
• an event engine and communication system to collect and

dispatch events raised during process management, such as
the termination of an activity or the production of an artifact;

• a metric engine in charge of collecting metrics and present-
ing synthetic reports about the project status.

3.1 Process Modelling in GENESIS
In order for companies to use, to a certain extent, their exist-

ing practices and to ensure the quality of the overall process,

support is given both for the top-down and bottom-up defini-
tion of processes. These may be achieved through a multi-level
process definition, where an activity at one level (i.e. a super-
activity) may correspond to a sub-process at lower level: the
activity may be assigned to a different site, where it is inde-
pendently modelled in a decentralized manner, and executed.
In fact, the only requirement is that the sub-process interface
(in terms of input / output artifacts) is conform to that of the
super-activity (see Figure 1). This process componentization
also enables integration of (sub)process models in a bottom-up
fashion.

Besides super-activities, a process model can also contain
global activities, i.e. activities that can be collaboratively
performed by workers from different sites. The project manag-
er of each site who participate in a global activity is in charge
of providing the needed human resources for the activity.

In GENESIS the process modelling language is the same
both at global level, to model the global software process with
the coordination of the composing sub-processes, and at local
level, to model the sub-processes at the single GENESIS sites.
In order for the system to be the least invasive, a coarse grained
definition of the process elements (activities and artifacts) has
been decided. Activities are essentially described by the arti-
facts they will produce, and freedom is left to the worker(s) to
decide how to actually perform them, in accordance with the
organization standards.

GENESIS provides two process modelling stages. A process
designer may create abstract process models, through the proc-
ess definition tool, according to standards of the specific organ-
ization. Abstract process models include description of activi-
ties (including roles of people performing an activity and types
of input and output artifacts) and enactment rules (or transi-
tions) that basically describe control and data (artifact) flow
between activities and are expressed through the Event-Condi-
tion-Action (ECA) paradigm. Abstract process models have to
be customized for each project by specifying project data, such
as the actual people performing activities and the actual arti-
facts. Project managers can use the abstract process definitions
as templates to create concrete process models, through the
project management tool as discussed in Section 4. These mod-
els can then be executed by the workflow enactment service,
and different process instances may be enacted from the same
concrete process model. Further details concerning the process
modelling language are described in [3].

3.2 Distributed Process Enactment in GENESIS
The need to avoid a big bang approach to process modelling

has been a guideline for the design of the GENESIS environ-
ment. As underlined by the industrial partners of the project,
the usability of the environment could be significantly impact-
ed by a rigid approach to process modelling and enactment. In-
deed, an incremental approach at both activity and process def-
inition level is required for the management of real projects.
Often the start up of a project precedes a complete definition of
the process models to be used for supporting and controlling it.
In fact, for some scenarios, it may happen that the big picture
of the process cannot be completed at design time because

Figure 1: Hierarchical Process Decomposition.

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

50 UPGRADE Vol. V, No. 5, October 2004 © Novática

there is not enough information for that. Thus, it is realistic to
assume that the process models to be followed should be incre-
mentally defined: starting from a simple model and ‘complicat-
ing’ it on the basis of the arising needs. In this respect, the
GENESIS workflow engine is able to enact rough defined proc-
esses and facilities are offered to the project manager by the
project management tool to refine the process definition at run-
time.

Indeed, the model concretization process may be incremental
as the process can start as soon as the needed resources have
been assigned to the initial activity, and independently of the
rest. In fact, checks are made during enactment to make sure
that each activity has its resources allocated when it needs to be
started. The project manager will be notified to staff the activity
in order for the process to proceed. Most importantly, process
may be dynamically modified. In fact, facilities are provided by
the platform to both:
• change properties of the process instance, without changing

the process model definition (i.e. the process map does not
change). For example, a change of an activity assignment
property;

• restructure the process map at run-time (e.g. adding/deleting
activities), in order for the process instance to better match
the real process.

These facilities are especially useful to handle unforeseen
exceptions. In this respect, it should be noted that the distribu-
tion and decentralization of the process model through super-
activities allows to restrict the scope of exceptions within the
local sites, as long as they do not impact the border with the
upper level process.

An Asynchronous Protocol for Distributed Project
Definition

In GENESIS an asynchronous protocol has been defined for
the communication between the global coordinator level and
the local coordinated sites during the instantiation of a distrib-
uted software project. We distinguish three main phases: the
creation of the project both at the coordinator site and the local
sites, where the resource managers associate people to the
project and select the project managers; the definition of the
global process involving project managers of the different sites;
and the definition of the local processes, independently defined
by the different local project managers.

4.1 Project Creation
At the start of a new project the resource manager of the

global site creates a project using the resource management
tool of the platform. This means that s/he selects the human
resources allocated on the global site and the local sites partic-
ipating to the project. The allocated resources of the global site
and in particular the global project manager are notified
through the event engine and communication system.

A “Global Project Creation” event is also sent to the involved
sites. Each resource management system of a local site auto-
matically stores the received event and notifies the local
resource manager. At this point, the local resource manager
decides the allocations of the human resources and the local
project manager who are notified about. The event “Local
Project Creation” is sent to the resource management tool of
the coordinator site, to store the needed information at global
level and notify the global project managers.

4

Figure 2: GENESIS Site Architecture.

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

© Novática UPGRADE Vol. V, No. 5, October 2004 51

4.2 Global Process Definition
Once the global project manager has received the notification

concerning the “Global Project Creation”, s/he can start defin-
ing the needed concrete process models for the project, starting
from available abstract process models (if a suitable abstract
process model is not available, it has to be created first). The
global process model includes super-activities to be assigned to
local sites and global activities, carried out by groups of people
distributed among different sites. Local project managers can
collaborate with the global project manager for the definition of
the global process, as soon as they are selected by the local
resource managers.

Each super-activity has to be assigned by the project manager
to a site participating in the project. In this case a “Super Activ-
ity Creation” event is sent to the local site together with infor-
mation concerning the super-activity (start and end date, arti-
fact types, etc.). The project management tool of the local site
automatically stores and associates this information to the
corresponding project. The event is also notified to the project
manager of the local site, as soon as s/he is appointed.

For each global activity, the global project manager selects
the sites that have to provide human resources to collaborative-
ly work on the activity (examples of such activities are project
reviews to be conducted by the global and local project manag-
ers). A “Global Activity Creation” event is sent to each site
involved in the global activity together with the role and
number of required people.

It is worth noting that a concrete global process can start
independently of the local process definition status (see next
sub-section).

4.3 Local Process Definition
For each super-activity assigned to a local site, the project

manager creates the corresponding concrete local process
model (again, starting from an available abstract process
model). As soon as the enactment of the concrete local process
can start, a “Local Process Model Creation” event is sent to the
project management tool of the coordinator site, which stores
this information and associates it to the corresponding super-
activity. The event is also notified to the global project manager.

The project manager of a local site involved in a global activ-
ity must select the human resources that will participate in that
activity. When this is done, a “Global User Assigned” event is
sent to the project management tool of the global site, to store
this information at global level. The event is also notified to the
global project manager.

Conclusion
In this paper we have presented the GENESIS approach

to distributed project management. The definition of the
GENESIS platform requirements for distribution, especially
for the process modelling facilities, followed a strict interaction
with the pilot users (the industrial partners) of the GENESIS
project. The project started on September 2001 and ended on
November 2003. The total effort was of 294 man-months and
about 104,000 lines of code have been produced. Each GENE-
SIS site is realized as a web application: the user interface and

the coordination layer are realized using JSP (JavaServer
Pages) and servlets (Tomcat being the web server), while the
other components have been developed using the Java 2
Platform Standard Edition. The communication between the
coordination layer and the different subsystems composing a
GENESIS site is based on Java RMI, while the communication
among the different sites is based on SOAP. The supporting
database is based on MySQL Server.

The GENESIS platform has been evaluated by both the
industrial and academic partners of the GENESIS consortium
in different pilot projects. The code of the system has been
delivered as open source software and can be downloaded from
the SourceForge web site, <http://sourceforge.net>.

Acknowledgments
This work has been supported by the European Commission under

Contract No. IST-2000-29380, Project GENESIS (Generalized EN-
vironment for procESs management in cooperatIve Software engi-
neering, <http://www.ist-genesis.org>).

References
[1]

C. K. Ames, S. C. Burleigh, and S. J. Mitchell. “WWWorkflow:
World Wide Web based workflow”, Proceedings of the 13th Inter-
national Conference on System Sciences, pp. 397–404, 1997.

 [2]
V. Ambriola, R. Conradi, and A. Fuggetta. “Assessing Process-
Centered Software Engineering Environments”, ACM Transac-
tion on Software Engineering and Methodology, vol. 6, no. 3, pp.
283–328, 1998.

[3]
L. Aversano, A. Cimitile, A. De Lucia, S. Stefanucci, M. L.
Villani. “GENESIS Workflow: Managing Distributed Software
Processes”, in Cimitile A., De Lucia A, and Gall H. (editors),
Cooperative Methods and Tools for Distributed Software Proc-
esses, Franco Angeli, Italy, pp. 87–108, 2003.

[4]
I. Z. Ben-Shaul and G. E. Kaiser. “Federating Process-Centered
Environments: the Oz Experience”, International Journal of
Automated Software Engineering, 1997.

[5]
Gregory Alan Bolcer and Richard N. Taylor. “Advanced work-
flow management technologies”, Software Process Improvement
and Practice, vol 4 n. 3, pp 125–171, 1998.

[6]
D. Chan, and K.R.P.H. Leung. “A workflow Vista of the software
Process”, IEEE 8th International Workshop on Database and
Expert Systems Applications (DEXA '97), 1997.

[7]
G. Cugola. “Tolerating Deviations in Process Support Systems
via Flexible Enactment of Process Models”, IEEE Transactions
on Software Engineering, vol. 24 no. 11, pp. 982–1001, 1998.

[8]
G. Cugola, E. Di Nitto, and A. Fuggetta. “The JEDI Event-Based
Infrastructure and Its Application to the Development of the
OPSS WFMS”, IEEE Transactions on Software Engineering, vol.
27, no. 9, pp. 827–850, 2001.

[9]
J. Eder, E. Panagos. “Towards Distributed Workflow Process
Management”, AT&T Research Labs, 1999.

[10]
J. C. Grundy, M. D. Apperley, J. G. Hosking and W. B. Mugridge.
“A decentralized architecture for software process modelling and
enactment”, In IEEE Internet Computing, v 2 no 5, pp. 53–62,
1998.

5

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

52 UPGRADE Vol. V, No. 5, October 2004 © Novática

[11]
D. Georgakopoulos, H. Hornick, and A. Sheth. “An Overview of
Workflow Management: from Process Modelling to Workflow
Automation Infrastructure” Distributed and Parallel Databases,
vol. 3, no. 2, pp.119–153, 1995.

[12]
G. Q. Huang, J. Huang, and K. L. Mak. “Agent-based workflow
management in collaborative product development on the inter-
net”, International Journal of Computer Aided Design, vol. 32,
no. 2, pp. 133–114, 2000.

[13]
A. S. Hitomi, P. J. Kammer, G. A. Bolcer, R. N. Taylor. “Distrib-
uted Workflow using HTTP: Example using Software Pre-
requirements”, Proceedings of the International Conference on
Software Engineering ICSE’98, 1998.

[14]
B. Kötting, F. Maurer. “Approaching Software Support for Virtual
Software Corporations”, Proceedings of the International Confer-

ence on Software Engineering ICSE ‘99, Los Angeles, Califor-
nia, 1999.

[15]
F. Maurer, B. Dellen, F. Bendeck, S. Goldmann, H. Holz, B.
Kötting, and M. Schaaf. “Merging Project Planning and Web-
Enabled Dynamic Workflow for Software Development”, IEEE
Internet Computing, vol. 4 no.3, pp. 65–74, 2000.

[16]
F. Ranno and S. K. Shrivastava. “A Review of Distributed Work-
flow Management Systems”, Proceedings of the international
joint conference on Work activities coordination and collabora-
tion, San Francisco, California, United States, 1999.

[17]
Workflow Management Coalition. “Workflow Management
Coalition Interface 1: Process Definition Interchange Process
Model”, Document no. WFMC-TC-1016-P, 1999. Available at
<http://www.aiim.org/wfmc/standards/docs/if19910v11.pdf>.

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

© Novática UPGRADE Vol. V, No. 5, October 2004 53

Software Process Measurement

Félix García-Rubio, Francisco Ruiz-González, and Mario Piattini-Velthuis

The measurement of software processes plays a vital role in their improvement as it provides the necessary
quantitative basis for the identification of aspects on which to focus improvement programmes. However, the
measurement of software processes is no easy task due to the great diversity of factors and elements involved.
Thus, in order to be able to measure processes effectively and to facilitate improvement focused decision-
taking, we need to identify which entity types we want to measure. We also need to carry out measurement
programmes that, in addition to measuring the relevant entities in isolation, enable the information obtained
from the measurement process to be integrated and related. This article provides a general overview of the
software process measurement, highlighting its importance in improvement focused process management.
The relevant entities that can be measured in relation to the process are also identified and an example is
given of how to measure one of these entity types: process models.

Keywords: Process Measurement, Software Metrics, Soft-
ware Process, Software Process Improvement, Software Proc-
ess Model.

Introduction
The improvement of software processes has become one

of the main aims of companies dedicated to the development
and maintenance of computing systems. The need to improve
processes stems from the fact that the quality of a process is
closely related to the quality of the product, which means that

to in order to get better products you need to have better proc-
esses. If software processes are to meet quality requirements,
they need to deliver the expected results, be correctly defined,
and be improved as required by business needs, which in com-
petitive companies can be highly changeable. These are the ob-
jectives of “Software Process Management” (SPM) [5] which,
in order to be applied effectively, should address four key
responsibilities: to define, measure, control and improve the
process. These responsibilities and the way they relate to one
another are set out in Figure 1.

1

Félix García-Rubio has an MSc in Computer Science from the
Universidad de Castilla-La Mancha, Spain. He is currently his PhD
studies at UCLM. He is an Assistant Professor in the Department of
Computer Science at UCLM, in Ciudad Real, Spain. He has
authored several papers and book chapters on software processes
management, from the point of view of their modelling, measure-
ment and technology. He is a member of the Alarcos Research
Group, <http://alarcos.inf-cr.uclm.es/english/>, specialized in in-
formation system quality. His research interests are software proc-
esses and software measurement. <Felix.Garcia@uclm.es>

Francisco Ruiz-González has a PhD in Computer Science from
the Universidad de Castilla-La Mancha (UCLM), Spain, and an
MSc in Chemistry-Physics from the Universidad Complutense de
Madrid, Spain. He is a full time Associate Professor of the Depart-
ment of Computer Science at UCLM in Ciudad Real, Spain. He was
the Dean of the Faculty of Computer Science between 1993 and
2000. Previously, he was the director of computer services at the
aforementioned university (1985–1989) and he has also worked in
private companies as an analyst-programmer and project manager.
He is a member of the Alarcos Research Group, <http://alarcos.inf-
cr.uclm.es/english/>. His current research interests include software
process technology and modelling, software maintenance, and
methodologies for software projects planning and management. He
has also worked in the fields of GIS (Geographical Information
Systems), educational software systems and deductive databases.

He has written eight books and fourteen chapters on the abovemen-
tioned topics and he has published 90 papers in Spanish and inter-
national journals and conferences. He has sat on nine programme
committees and seven organizing committees and he belongs to
several scientific and professional associations: ACM, IEEE-CS,
ATI, AEC, AENOR, ISO JTC1/SC7, EASST, AENUI and ACTA.
<Francisco.RuizG@uclm.es>

Mario Piattini-Velthuis has an MSc and a PhD in Computer
Science from the Universidad Politécnica de Madrid, Spain, and is
a Certified Information System Auditor Manager by ISACA (Infor-
mation System Audit and Control Association). He is a full profes-
sor in the Department of Computer Science at the Universidad de
Castilla-La Mancha, Ciudad Real, Spain. He has authored several
books and papers on databases, software engineering and informa-
tion systems, and leads the ALARCOS research group of the
Department of Computer Science at the same university. His
research interests are: advanced database design, database quality,
software metrics, and software maintenance and security in infor-
mation systems. He has co-edited several books: “Advanced Data-
bases: Technology and Design”, 2000. Artech House. UK; “Audit-
ing Information Systems” Idea Group Publishing, 2000, USA;
“Information and database quality”, 2002, Kluwer Academic Pub-
lishers, USA, etc. and “Metrics for Software Conceptual Models”,
2004, Imperial College Press, UK. He is co-editor of the Database
section of Novática. <mario.piattini@uclm.es>

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

54 UPGRADE Vol. V, No. 5, October 2004 © Novática

According to these responsibilities (which are fundamental
to the successful management of software processes) in order
to improve a process efficiently it is necessary to bear in mind
the following aspects:
• Process definition. This is the first key responsibility that

must be addressed in order to provide effective management
orientated towards process improvement. To do this it is
necessary to model the processes; that is, to represent the
elements of interest involved in those processes. Given the
diversity of elements that need to be taken into account
when considering a software process, the definition of soft-
ware processes is by no means a simple task. Various mod-
elling languages and formalisms, known as “Process Mod-
elling Languages” (PML), can be found in literature on the
subject. The aim of these languages is to represent the vari-
ous interrelated elements in a precise and unambiguous way.
In a software process it is usually possible to identify the
following elements or general concepts (albeit using differ-
ent notations and terms) in the different PMLs [3]: Activity,
Product, Resource, Organization and Role. In order to
provide a common reference for the representation of soft-
ware processes, the OMG consortium (Object Management
Group) has for several years been working on the develop-
ment of the metamodel SPEM (Software Process Engineer-
ing Metamodel) [14], which is a generic language extending
UML (Unified Modelling Language) for the descriptive
modelling of software processes without including aspects
related to their enactment. Currently, SPEM is a specifica-
tion which is expected to produce a process modelling
standard which may be as important and universally accept-
ed by industry as the UML standard is today.

• Process Execution and Control. A company’s software
projects should be carried out in accordance with defined
process models. It is important to be able to be in permanent
control of the execution of these projects (and consequently
in control of the corresponding processes) in order to ensure
that the expected results are achieved.

• Measurement and Improvement. There is a significant
correlation between the measurement and the improvement
of software processes. Prior to improving a process, it is
necessary to carry out an assessment process to identify
which aspects of the process can be improved. To do this we
need to establish an effective framework to help us identify
the most important entities to measure. The results of meas-
uring processes provide non-subjective information ena-
bling the necessary actions for improvement to be planned,
identified and carried out in an efficient manner.

In this article we aim to look at improvement focused soft-
ware process measurement. The following section describes
the most important entities related to software processes from
a measurement point of view. Section 3 presents a representa-
tive set of metrics for evaluating the structural complexity of
software process models. The final section outlines some
conclusions and looks at some issues yet to be resolved.

Software Process Measurement Entities
One of the main reasons for the growing interest in soft-

ware metrics has been the increasing awareness that metrics are
necessary for process improvement [4]. Before it is possible to
apply improvement plans in an organization we need a quanti-
tative basis enabling us to make an objective determination of
the strengths and weaknesses of its processes. Software metrics
provide the base which enables us to carry out the assessment
process and the subsequent improvements to the processes
evaluated. Consequently, measurement is given considerable
importance in assessment models such as ISO/IEC 15504 [10],
which defines a measurement process, or CMMI (Capability
Maturity Model Integration) [16], which includes a key process
area at maturity level two called “Measurement and Analysis”.
With regard to support for the measurement process, there are
several interesting frameworks, such as GQM (Goal Question
Metric) [1][15] or PSM (Practical Software Measurement)
[12], plus some standards, the most important of which are ISO
15939 [12] and IEEE Std 1061-1992 [9]. The objective of these

2

Improve the

Process

Control the

Process

Define the

Process

Measure the

Process

Execute

the

Process

Figure 1: Key Responsibilities of Software Process Management.

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

© Novática UPGRADE Vol. V, No. 5, October 2004 55

standards and frameworks is to provide the necessary reference
to carry out the measurement process effectively and systemat-
ically, based on the premise that measurement must always be
carried out in pursuit of a series of goals. The different concepts
and terms involved in software process measurement can be
found in “Software Measurement Ontology” [8].

According to the assessment and improvement models ISO
15504, CMM (Capability Maturity Model) and CMMI, when
increasing the maturity level of an organization it is necessary
to establish a quantitative base which, in ascending order of
maturity, should be focused on the process, the projects and the
products (Figure 2).

Software processes form the base from which the work of an
organization is carried out. In practice these processes are
applied in the form of projects. Products are obtained as the
result of the performance of specific projects. Therefore, in
order to establish a measurement framework within an organi-
zation, the following three dimensions must be taken into
account:
• Process Measurement is based on the study and control of

the capacity of the processes and on the change management
in these processes. Process metrics are extracted by measur-
ing the characteristics of specific software engineering tasks
in order to obtain metrics on faults detected before the deliv-
ery of the software, defects detected and reported by end
users, human effort and time consumed, adjustments made

to the planning, etc. When measuring the process, indicators
referring to the process model itself should also be estab-
lished, as the complexity and quality of the model may affect
the execution, and therefore the quality, of the end product.
However, literature referring to studies performed on proc-
ess metrics have up to now concentrated on the measure-
ment of projects and products. In an attempt to make up for
this omission, the following section describes how to meas-
ure a software process at a conceptual level, while present-
ing a set of software process model metrics, and highlighting
the aspects of the process that can be assessed using these
metrics.

• Measurement of the Project is based on project manage-
ment, which has been a mature research field for several
years now.

• Product Measurement. The main reason for measuring
software products is to evaluate the quality of deliverables.
Much has been written regarding this subject, including
studies, proposals and metrics, some of which are as well
known and established, such as source code lines, function
points, or McCabe’s cyclomatic complexity.

Process Measurement at A Conceptual Level
Since the study of process assessment has focused on the

gathering of data from the project in order to obtain measure-
ments relating to performance, productivity, efficiency etc.,

3

Project
Metrics

Project
M etrics

Process Metrics

Product
Metrics

Product
Metrics

Product
Metrics

Product
M etrics

Figure 2: Process, Project and Product Metrics.

Structural
Properties Understandability

Cognitive
Complexity

affects

indicates

affects

afecta

External Quality Attributes

Maintainability Usability

PortabilityEfficience

Functionality Reliability
affects

Figure 3: Structural Complexity Model [2].

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

56 UPGRADE Vol. V, No. 5, October 2004 © Novática

specific metrics for process models have not been defined. The
definition and validation of metrics for process models will
enable us to study the influence of the structural complexity of
these process models on their maintainability (ease of mainte-
nance or change), bearing in mind that a highly complex proc-
ess model will be more difficult to alter and therefore the ease
with which it can be maintained will be significantly reduced.
This will also influence process improvement which may, in
turn, affect the projects (making them more costly in terms of
resources and time) and the quality of the end products. Briand
et al. [2] set out the principal theoretical basis for the develop-
ment of quantitative models, which relates the attributes of
structural complexity to those of the external quality of soft-
ware artefacts, as shown in Figure 3.

As proposed in Figure 3, maintainability can be estimated
through a set of metrics that measures the structural properties
of the models in question (size, coupling, etc.). The mainte-
nance of software process models involves modifying them
with the aim of improving them, correcting any errors they may
have, adapting them to new necessities, or improving some of
their properties (such as quality). For example, it may be
necessary to correct a process model in which there are activi-
ties that do not receive input or that do not generate output, or
alternatively it may be necessary to improve a model by elimi-
nating unnecessary dependencies among activities. Software
process models that are difficult to maintain may have a nega-
tive effect on the execution of the projects and on the quality of
the end products.

In conclusion, in order to evaluate the maintainability of soft-
ware process models, it is necessary to: 1) define a set of
metrics enabling us to evaluate structural complexity; 2) prove
the usefulness of those metrics by carrying out empirical
studies to ensure that they can be used as indicators of main-
tainability of the models. The following subsections present a
set of metrics for process models and an example of how they
are calculated.

3.1 Metrics for Software Process Models
The following metrics have been defined using SPEM termi-

nology [14], but they can be applied directly with other model-
ling languages since practically the only differences are termi-
nological. The conceptual model of SPEM is based on the idea
that a software development process consists of a collaboration
between abstract and active entities, known as “process roles”,
that carry out operations called “activities” on tangible entities
called “work products”. When process model metrics are estab-
lished two levels of impact are considered:
• Model Level. These metrics are applied to measure the

structural complexity of the process model as a whole. They
are represented in Table 1.

• Fundamental Model Element Level (Activity, Process
Role and Work Product). These metrics are described in
other publications [6].

Figure 4 shows an example of a simplified process model
belonging to the Rational Unified Process (RUP). SPEM does
not have its own graphic notation, but as it is defined as a UML
profile, UML diagrams (class, package, activity, use case, and

sequence) can be used to represent the different views of the
process. The stereotypes used by SPEM (the icons in the figure)
must be added to the UML diagrams.

As can be seen in Figure 4, a software process view can be
represented using UML activity diagrams. This view includes
the different activities, their precedence relationships, the used
or produced work products and the responsible roles. The
values obtained from the metrics defined at process model level
(presented in Table 1) can be consulted in Table 2.

In order to demonstrate the practical usefulness of a metric,
some empirical validation by means of experiments is required.
It has thus been possible to demonstrate the correlation be-
tween the metrics NA, NPT, NDPTin, NDPTout, NDPT,
NDPA, and NCA and the maintainability of the software
processes [7].

Metric Definition

NA(PM) Number of Activities of the software process model

NWP(PM) Number of Work Products of the software process
model

NPR(PM) Number of Roles which participate in the process

NDWPIn(PM) Number of input dependencies of Work Products with
the Activities in the process

NDWPOut(PM) Number of output dependencies of Work Products
with the Activities in the process

NDWP(PM) Number of dependencies between Work Products
and Activities

NDA(PM) Number of precedence dependencies between
Activities

NCA(PM) Activity Coupling in the process model.

RDWPIn(PM) Ratio between input dependencies of Work Products
with Activities and total number of dependencies of
Work Products with Activities

RDWPOut(PM) Ratio between output dependencies of Work
Products with Activities and total number of
dependencies of Work Products with Activities

RWPA(PM) Ratio of Work Products and Activities. Average of
the work products and the activities of the process
model.

RRPA(PM) Ratio between Process Roles and Activities

NDWP (PM) NDWPIn (MP) NDWPOut (MP)+=

NCA(PM) NA(PM)
NDA(PM)
---------------------=

RDWPIn (PM) NDWPIn (PM)
NDWP(PM)

-------------------------------=

RDWPOut (PM) NDWPOut (PM)
NDWP (PM)

-----------------------------------=

RWPA (PM) NWP (PM)
NA (PM)

-----------------------=

RRPA (PM) NPR (PM)
NA (PM)

----------------------=

Table 1: Software Process Model Metrics.

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

© Novática UPGRADE Vol. V, No. 5, October 2004 57

Conclusions and Challenges for The Future
This article presents a general overview of the measure-

ment of software processes, a basic view of the management of
these processes which can be used to establish the quantitative
base required for their improvement.

Traditionally, software process measurement has focused on
the measurement of projects and products, but as a result of the
increasing interest shown by software companies in the institu-
tionalizing, modelling and improvement of their processes,
software process models have become an important entity to be
taken into consideration. In this article we present a represent-
ative set of metrics for the evaluation of the maintainability of
software process models. These metrics are useful for predict-
ing the maintainability of process models and provide useful
indicators for companies implementing process improvement
programmes. An important future line of research in this area
is the development of empirical studies to establish relation-
ships between the maintainability of process models and the

results obtained from their enactment in the form of software
projects. Finally, by means of the integrated measurement of
software process related entities, we can obtain the required
quantitative basis from which the correlation existing between
process and product can be objectively evaluated.

These software process modelling and measurement issues
will be dealt with more efficiently in the years to come thanks
to the convergence of software process technology with two
recent technologies: “Workflows” and “Web Services”.

“Workflow Management Systems” [17] provide support to
modelling, enactment and management of business processes.
Therefore, as some authors have suggested [13] they can be a
useful tool for software engineers to manage and implement
their development and maintenance processes. In this regard,
the new standards for representing processes by means of
workflows are very interesting. The best example of these is the
“Workflow Process Definition Interface – XML Process Defi-
nition Language (XPDL)” [18].

4

Find Actors

and Use Cases

 Prioritize
 Use Cases

 Structure the
 Use Case

Model

Description
of the

Architecture

Glossary

Use Case
Detailed

Architect

Additional
Requirements

System
Analyst

Domain Model

List of
Characteristics

 Detail a
Use Case

 Prototype
User

Interface

Use Case Model

User Interface
Designer

Use Case
Specifier

User Interface
Prototype

Figure 4: Example of A Software Process Model.

NA NWP NPR NDWPIn NDWPOut NDWP NDA NCA RDWPIn RDWPOut RWPA RRPA

5 8 4 13 6 19 4 1,25 0,68 0,32 1,6 0,8

Table 2: Values of Metrics for The Example in Figure 4.

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

58 UPGRADE Vol. V, No. 5, October 2004 © Novática

The issue of process modelling in the area of Web Services
technology has also been the subject of some study. It would be
true to say that the design of an application based on invoking
a collection of web services is very similar to the design of the
business process model that the application supports. As a
result, the web services community has also developed stand-
ards and languages for process modelling: “Business Process
Modelling Language” (BPML), “Business Process Specifica-
tion Schema” (BPSS), “Business Process Execution Language
for Web Services” (BPEL4WS), and “Web Service Choreogra-
phy Interface” (WSCI) are some of the most important. In this
regard, readers may find of interest the October 2003 issues of
Communications of ACM (dedicated to services oriented
computing) and IEEE Computer (dedicated to software as a
service).

The convergence and integration of these technologies will
provide new ways for the software engineers to perform their
work, particularly regarding aspects related to process manage-
ment and improvement. We should therefore expect software
process models used for the development and maintenance of
software to be designed and managed via a Workflow Manage-
ment System, which in order to carry out certain automatic and
semi automatic activities, will call on Web services that will act
as both CASE tools (for example, a compilation service or
unitary tests) and as support for management and organization-
al activities. All this foreseeable development in future years
will mean that software engineers will not only have to pay
special attention to what they produce (the product) but also to
how they make it (the process). And, good engineers as they
are, they will have to measure both the product and the process.

References
[1]

V. Basili and D. Weiss. A Methodology for Collecting Valid Soft-
ware Engineering Data. IEEE Transactions on Software Engi-
neering, 10, pp. 728–738, 1984.

[2]
L. Briand, S. Arisholm, F. Counsell, F. Houdek, and P. Thévenod-
Fosse. Empirical Studies of Object-Oriented Artifacts, Methods,
and Processes: State of the Art and Future Directions. Empirical
Software Engineering, 4(4), pp. 387–404, 1999.

[3]
J.C. Derniame, B.A. Kaba, and D. Wastell. Software Process:
Principles, Methodology and Technology (Vol. LNCS 1500).
Springer-Verlag, 1999.

[4]
N. Fenton. Metrics for Software Process Improvement. In M.
Haug, E. W. Olsen & L. Bergman (Eds.), Software Process
Improvement: Metrics, Measurement and Process Modelling (pp.
34–55). Springer, 2001.

[5]
W. A. Florac and A. D. Carleton. Measuring the Software Proc-
ess. Statistical Process Control for Software Process Improve-
ment. Addison Wesley, 1999.

[6]
F. García, F. Ruiz, J. A. Cruz, and M. Piattini. Integrated Meas-
urement for the Evaluation and Improvement of Software Proc-
esses. 9th European Workshop on Software Process Technology
(EWSPT'9), Helsinki (Finland), pp. 94–111, 2003.

[7]
F. García, F. Ruiz, and M. Piattini. Definition and Empirical
Validation of Metrics for Software Process Models. 5th Interna-
tional Conference Product Focused Software Process Improve-
ment (PROFES'2004), Kansai Science City (Japan), pp.
146–158, 2004.

[8]
F. García, F. Ruiz, M. F. Bertoa, C. Calero, M. Genero, L.A. Olsi-
na, M. A. Martín, C. Quer, N. Tondori, S. Abrahao, A. Vallecillo,
and M. Piattini. Una Ontología de la Medición del Software.
Technical Report, Depto. de Informática, Universidad de Castil-
la-La Mancha. Available, in Spanish, at
<http://www.info-ab.uclm.es/trep.php?&codtrep=DIAB-04-02-2>,
2004.

[9]
IEEE. IEEE Std 1061-1992, “IEEE Standard for a Software
Quality Metrics Methodology”, 1992.

[10]
ISO/IEC. ISO IEC 15504 TR2:1998, Software Process Assess-
ment – Part 4: Guide to conducting assessment. International
Organization for Standardization, 1998.

[11]
ISO/IEC. ISO 15939: Software Engineering – Software Measure-
ment Process, 2002.

[12]
J. McGarry, D. Card, C. Jones, B. Layman, E. Clark, J. Dean, and
F. Hall. Practical Software Measurement. Objective Information
for Decision Makers. Addison-Wesley, 2002.

[13]
C. Ocampo, and P. Botella. Some Reflections on Applying Work-
flow Technology to Software Processes. Universitat Politécnica
de Catalunya, Dep. de Lenguajes y Sistemas Informáticos, tech-
nical report TR-LSI-98-5-R, Barcelona, 1998.

[14]
OMG. Software Process Engineering Metamodel Specification;
adopted specification. Object Management Group, 2002.

[15]
H.D. Rombach. Design measurement: some lessons learned.
IEEE Software, 7(3), pp. 17–25, 1990.

[16]
SEI. Capability Madurity Model Integration (CMMISM), version
1.1. Software Engineering Institute, 2002.

[17]
WfMC. TC00-1003 1.1: The Workflow Reference Model. Work-
flow Management Coalition, January-1995.

[18]
WfMC. TC-1025 final draft 1.0: Workflow Process Definition
Interface – XML Process Definition Language (XPDL). Work-
flow Management Coalition, October-2002.

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

© Novática UPGRADE Vol. V, No. 5, October 2004 59

Process Diversity and how Practitioners Can Manage It

Danilo Caivano and Corrado Aaron Visaggio

Since IT projects are unique regarding their combination of specific goals, technologies in use, and
characteristics, providing ‘general’ processes it is not an effective solution. Instead effective and efficient
processes custom tailored to a project and based on experience collected during past projects execution are
required. This is in contrast with the industry practices where reuse-oriented process descriptions and goal-
oriented planning are often missing. Usually a process can undergo a certain numbers of modifications, due
to the different operative contexts in which it is executed. The modifications generate many different versions
of the process, named specialized processes. Each one of these must be managed properly in order to govern
a just evolution consistently with all the others. Considered the dimension of the actual scenarios,
maintaining all the processes and their specialized versions is not a trivial task. We have defined a process
pattern based framework to accomplish this purpose. In this paper we present the framework, that we are
realizing with an Italian enterprise, and an explanatory case study we are developing within the Research
Centre on Software Technology in Bari, Italy.

Keywords: Empirical Software Engineering, Software Engi-
neering, Software Process Management, Statistical Process
Control.

Introduction
The literature proposes many kinds of processes ranging

from business processes to software development and mainte-
nance process.

These definitions describe processes at a coarse grain: they
formalize a paradigm, as a general solution to a problem. These
directives must be properly developed by designing processes
aiming at fulfilling specific constraints and business goals. This
operation is usually named specialization or customization of
Software Process. When dealing with process specialization,
three kinds of concerns should be addressed.

The first one regards the culture of the organization. With
culture we mean the way activities are usually performed in the
Organizations, due to: Quality System, methodology adopted,
technologies used, coding standards, kinds of documentation
produced.

These factors can affect the design of one process much in
depth, up to significantly change definition and sequence of
activities also if well and precisely codified. E.g., the unit test
can be performed in many different ways if considering differ-
ent testing tools, different artifacts for reporting test beds and
results, procedures to calculate the paths to be tested and guide-
lines in use. Consequently, the same task (e.g., unit test) can be
reached with different sub-processes.

Another common concern should be taken into account: the
re-use of sub-processes. Large enterprises usually exploit
hundreds of processes. A typical situation is that many depart-
ments execute the same sub process without sharing any infor-
mation about it, such as: the process model, results of monitor-

ing, improvement initiatives. As an effect, the evolution of the
same sub process follows different directions in the same
organization, with a clear disadvantage. The solution for this
problem is a formal sharing of the process knowledge, so that
each department can benefit from the experiences realized in
the other departments.

1

Danilo Caivano received his BSc in Computer Science and his
PhD degree in Software Engineering from the Università degli
Studi di Bari, Italy. He is affiliated to the Software Engineering
Research Laboratory, <http://serlab.di.uniba.i>, and Research
Centre On Software Technology – BARI. He is Assistant Profes-
sor at the Department of Informatics, University of Bari. He has
also been consultant for many small to medium companies, where
he has carried out both empirical investigations for validating
research results in industrial contexts, and technological transfer
through pilot projects. His research interests fall in the area of
software process management and improvement within co-locat-
ed and distributed contexts, software estimation, and empirical
software engineering. At the moment he is involved in a research
project for evaluating the efficacy of Statistical Process Control as
a means for monitoring geographically distributed software
processes. <caivano@di.uniba.it>

Corrado Aaron Visaggio obtained his BSc in Electronic Engi-
neering at the Politecnico of Bari, Italy, in 2001. He developed his
Master Thesis at the Fraunhofer IESE, Germany. In 2002 he start-
ed attending PhD courses in Software Engineering at Università
degli Studi del Sannio, in Benevento, Italy. Currently he is work-
ing as researcher at the Research Centre of Software Technology
(RCOST), in Benevento. His main topics of research are: software
process modelling and management, agile methodologies for
developing software, and knowledge management in Software
Engineering. <visaggio@unisannio.it>

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

60 UPGRADE Vol. V, No. 5, October 2004 © Novática

A third concern regards the technology used for managing
the process. Process management is supported by different
kinds of technologies targeted to validate, simulate, and acti-
vate the related workflow. In the same organization on the same
process different technologies can be used for the same func-
tionality. E.g., different workflow engines, different modelling
tools, different simulators.

The three concerns are related to Process Diversity [1][17].
As pointed out in [2][18], many factors, from here on called
“diversity factors”, are essential components in forming proc-
ess diversity, and affect process management: business envi-
ronment, technology, industrial standard, quality program,
vision, budget, size, structure and culture of organization. By
coupling each diversity factor with the appropriate values, the
actual context can be rigorously defined. This can be referred
as the “profile of an operative context” (from here on referred
to as context profile for conciseness).

Theoretically, each context profile requires a custom tailored
process, but this implies an understanding of process variations
and knowledge about when to use which process variants. In
fact, according to [18]:
• each process alternative needs to be elicited and explicitly

described;
• process alternatives need to be characterized and con-

strains/rules on their use need to be formulated;
• a characterization of the context is needed in order to able to

select a process variant.
A framework for managing process models in highly varia-

ble context profiles and for accomplishing reuse of experience
acquired in previous process modelling cases is needed as a
means to make changes in a safe and economic way.

In order to address these needs we have developed ProMisE.
The key ideas are:
1. to use a framework based on process patterns (a tuple prob-

lem-solutions) to manage process diversity and thus to face
process customization in an effective way. Given a prob-
lem, that is a product or a service to be delivered, the
pattern allows process engineer to associate a family of
processes, each of them corresponding to a process variant
of the root-process, as its solution. The root-process
describes the more generic solution. On the other hand,
each variant represents a specialization of the root-process
with respect to a specific context profile; the overall set of
variants encloses those ones that have been experimented
till the current moment.

2. to define a package of functions for managing the reposi-
tory of the defined patterns. The package contains the func-
tions mainly corresponding to the phases of the process
pattern management process and spans its entire lifecycle.

The framework was presented in [3] and now the authors are
driving the realization of its technological support within a
company operating in the field of Enterprise Resource
Planning. In this paper we will present the framework together
with an explanatory case study we are developing within
Research Centre on Software Technology, Bari, Italy. We will
also discuss the problems we are coping with during its produc-
tion. The paper proceeds as follows: Section 2 presents some

related work, Section 3 introduces the framework, Section 4
discusses an exemplar application of the framework, and, final-
ly, Section 5 draws conclusions.

Related Work
Some researchers have been focusing their attention on

the “pattern concept”, trying to define a complete description
[4][5]. In [6] the authors give a definition for a software pattern:
it “identifies a recurring problem and a solution, describing
them in a particular context to help developers understand how
to create an appropriate solution. Patterns aim to capture and
explicitly state abstract problem-solving knowledge that is
usually implicit and gained only through experience.”

In [7] the authors propose an approach to structure and store
experience in order to enable effective reuse: “The main idea
of this approach is a rearrangement and reprocessing of
captured experience into quality patterns which are based on a
problem-solution strategy.”

As shown in [8][9][10], mostly patterns are applied for
supporting software development lifecycle.

This paper refers to the same well known concept of pattern
and applies it to processes instead of products.

As shown in the following, other authors have studied how
diversity factors affect process designing and management,
highlighting the need for properly customizing the software
models rather than designing new ones as context profile
changes.

In [11] Sutton states “The ability of repeating a process can
critically affect a start-up’s success”. The author refers to a
start-up company producing a family of products that the
company treats more or less similarly. Repeatable processes
span over the life cycle, including development, quality assur-
ance, documentation, and training. “In such case specializing
readily processes and test plans is more useful than customiz-
ing processes and plans for each product-family member. You
can apply some technologies in various ways in many contexts
and reuse them as the organization and its processes evolve.”
Sutton doesn’t recommend adopting procedures, technologies,
and protocols for one product or life cycle phase unless special
needs exist or they can be reused for other products or phases.

In [12] how process diversity affects the field of software
reuse is explained. The authors have focused on the reuse proc-
esses applied to four companies; during this work they have
identified the reuse process characteristics for each company:
reuse approach, reuse technology, reuse processes and roles,
which develop assets, when assets are developed, reuse proc-
esses added, non-reuse processes modified. All these parame-
ters can be used to tailor a reuse process to the particular organ-
ization according to its specific characteristics.

In [17] several articles are presented that show how process
diversity affects software maintenance and the need for
customizing maintenance process to context characteristics.

Finally in [18], the author presents a tool-based technique for
customize a process model to project constrains.

All these works motivate researchers and practitioners to
further investigate this area of interest.

2

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

© Novática UPGRADE Vol. V, No. 5, October 2004 61

ProMisE Framework
The PromIsE framework can be summarized as follows:

given a process PMx, from here on called root-process, a
specialized process SPxj is defined as SPxj = f(PMx,CPj); where
f() is the mechanism, CPj is the context profile dictating
specialization needs and the consequent specialization actions.
Each specialized process is a variant of the correspondent proc-
ess model. This was necessary in order to adapt the latter to a
specific context profile. A context profile is a set of instantiated
diversity factors DFi. The generic DFi where i=1…n is a diver-
sity factor having a definition domain [DFi]={FI i1, FIi2, FIi3,…
FIik}. FI ih where h=1…k is a factor instance of [DFi]. Let’s de-
fine a generic characterization of CP, indicating CPj={[DF 1]j,
[DF2]j, [DF3]j,… [DFn]j} where [DFi]j is a factor instance FIih
∈ [DFi] with n= number of diversity factors included in CPj.
After that, the concept of a context profile can be generalized as
CP={CP1,CP2,CP3,…,CPN} where ∀ i,j ∈ [1,N] : CPi≠CPj.

This characterization allows to explicit and formalize the
diversity among the processes that usually result as implicit
information within the same processes.

3.1 The Framework
The framework consists mainly of a collection of process

patterns (association between a problem and a family of solu-
tions) and a package of functions to manipulate the process
patterns.

It provides the process engineer with a mechanism that,
given a starting problem, allows to:
1. choose the candidate root-process model solving the prob-

lem when present in the dedicate database;
2. identify all the process model’s variables allowing the

process model be specialized, if necessary, to diverse
context profiles;

3. guide the process engineer in choosing the suitable variant
(of the root-process) for the context profile mirroring the
real world environment, by using a decision model that
points out the changes carried out on the beginning proc-
ess.

A process model describes a set of methods, practices, skills,
tools and the relationships among them to define a product or a
service with a certain degree of quality.

The activity of tailoring a process model consists in special-
izing a process model to the context profile of interest. Formal-
ly speaking, given a process model PMx, it is necessary to
define the context profile in which the process PMx can be
executed. By establishing the proper values FIih of each diver-
sity factor [DFi]j, the correspondent context profiles may be
obtained: CP1, CP2, CP3, …, CPn. As a consequence the PMx
is modified in order to reflect the differences among the diverse
context profiles. For this reason, a reviewed version of the orig-
inal process model can be associated to each context profile,
determining the specialized processes SPx1, SPx2, SPx3, …,
SPxn. In Figure 1 this concept has been depicted.

3.2 Process Patterns
Starting from the problem to solve, a process pattern should

show an initial solution, represented by PMx and the path of
actions (mainly process fragments) to be applied in order to
obtain the correct SPxj according to a specific CPj. In this way,
the ProMisE Process Pattern expresses the pair problem-solu-
tions for defining a family of solutions (the variants SPxj of the
PMx) related to a problem. It should present the following
elements:
Name: identifier of the pattern.
Problem: description of the problem supported by the pattern.
Process Model (PMx): the root-process model for which the
specialized ones are created.
Decision Model: the decision model defines the path of actions
for specializing the PMx according to a predefined CPj.
Solutions: the specialized processes SPxj.
Relationships: they consist of other process patterns (PPi) that
specialize the current one. These patterns refer to sub processes
that detail an SPxj phase.
Experiences: experiences reported in using the pattern.

Each specialized process (SPxj) contained in a pattern can
also have relationships with many other patterns. This can
occur when a SPxj’s phase is detailed by a sub-process associ-
ated to a pattern.

Every time a pattern refers to other patterns, the last one
details the first one. If a given pattern doesn’t refer to other
ones, then it is either at its highest level of detail or it lacks a
detail pattern.

The Decision Model can be represented by using a variant of
a decision table that emphasizes which actions must be accom-
plished on the process model for specializing it to a context
profile:
1. the conditions represent the diversity factors (DF), i.e. the

features of the context profile in which the process will be
carried out;

2. the actions represent the “specialization action” to be
accomplished in order to obtain a specialized process SPxj
of the PMx;

3. the rules (represented by the columns) merge a combina-
tion of factor instances FIih (expressing the context profile
CPj) with the specialization action to perform, in order to
obtain the appropriate SPxj for the context profile CPj;

Continuous reuse of a pattern will most likely provide the
organization with three fundamental advantages.

3

PMx

CP

CP1

CP2

CP3

CPn

Figure 1: Specializing the Process Model.

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

62 UPGRADE Vol. V, No. 5, October 2004 © Novática

First of all, like all other patterns, it is easily traceable within
the repository because it is characterized according to the prob-
lem it refers to, and at the same time it probably corresponds to
the problem the process engineer is trying to solve.

Second, pattern reuse may highlight variants that haven’t
been forecasted in the context profile that the decision model is
based on; in this case the model itself is extended with the
unexpected context model. Therefore, the pattern with reuse
extends the number of variants it refers to and consequently
becomes more complete.

Third, it may point out that a variant can be formalized in a
more appropriate way within the context it refers to. This
increases the pattern’s efficacy and extend the process knowl-
edge.

According to what has been previously mentioned, a pattern
is a collector of knowledge generated by various sources and
transferable independently from who generated it in first
person. In other words it is an experience package. For this
reason, ProMisE framework can be considered itself as an
experience base [13].

3.3 Functions
We have defined the main functional requirements that the

technological support of the framework should own. In this
section an overview is provided. The functions related to the
management and use of the pattern in the experience base are
listed below.

Pattern Creation. This function must be used when a new
problem arises. All the components of the pattern must be
defined. Particular attention must be paid in defining the rela-
tionships that may exist between the pattern just created and the
other ones already stored inside the experience base. When
necessary, the process engineer must update or create the deci-
sion model from scratch and describe how the new pattern is
linked to the context profiles involved.

Update Pattern. This function modifies a pattern already
present in the repository. A modification can consist in adding
a context profile; adding or deleting a factor instance in a diver-
sity factor included in the pattern; modifying the specialization
actions or the rules of the decision model; adding new relation-
ships etc.

Select Pattern. It selects the pattern corresponding to the
problem that the user needs to solve.

Generate Process Model. After having selected a pattern we
have identified a process model (PM) and its variants; from
here on referred to as root pattern. By assigning values to the
diversity factors, the changes that must be carried out on PM
are identified. This allows to produce a more specific process
model (SPxj) for the operative context CPj. Also, with refer to
the combination of values of the diversity factors, the decision
model may identify one or more patterns (PPi) the process is
related to. Each of these patterns PPi corresponds to a family of
variants of a process detailing an SPxj component (for example,
an SPxj phase). Thus throughout the relationships, the root
pattern is specialized in further levels of detail leading to the
specification of another process SPxj1 detailing SPxj. This
mechanism goes on throughout the relationships chain, pattern

after pattern, until having explored all of them. The result is a
specialized process within the operative context having the
highest possible level of detail according to the knowledge
stored in the experience base.

Case Study
The framework presented in the previous sections has

been applied, through a case study, to formalize the experience
matured by industrial projects with the aim of clarifying how
the framework can be used in practice. In particular, acquired
knowledge in previous years within the Software Engineering
Research Laboratory (SERLAB) projects is related to extraor-
dinary maintenance of software systems. For further details see
[14][15][16].

Legacy system rejuvenation is straightforward according to
various factors: goals, budget, resources, economical value and
quality of the legacy, and so on. When rejuvenating an aging
system, one or more types of renewal processes are used. For
instance: reverse engineering analyses a subject system to
identify its components with their inter-relationships, and to
create a representation of the system in another form or at a
higher level of abstraction; restructuring improves the structure
of a program automatically, without taking the program pur-
pose into account; restoration improves the structure of pro-
grams, and of data according to their meaning in the programs;
reengineering examines and alters a subject system to reconsti-
tute it in a new form with improved quality. This may include
modifications with respect to new requirements not met by the
original system; rehosting refers to migration of the system to
a different architecture; migration involves changing the soft-
ware environment the legacy system runs on Chifosky (1990).

Before deciding the most appropriate combination of renew-
al processes to use, some preliminary activities must be carried
out:
• Portfolio analysis: consists of the analysis of system’s

capabilities to be taken into account for the maintenance
process.

• Quality Assessment: this activity identifies the quality level
of the existing system and that of the modified one.

• Economy Evaluation: this assessment helps understand the
cost and return of modifications.

• Risks Assessment: this assessment is headed to identify and
mitigate risks.

These activities are necessary for deciding the renewal proc-
ess to adopt according to the improvement goals of the process
and of the constraints of the project.

The project goals considered within the case study are
described as follows:

Diminishing the cost of application administration. There
is a vast variety of cost sources in maintenance process; it is not
possible to consider all of them, because some are specific to
the Organization; others are hidden or difficult to identify, such
as: transfer of knowledge, distance between the supplier of
management services of the software system and the organiza-
tion using the system.

Part of the cost taken into account are: Cost price of the soft-
ware System; Cost of maintenance and operation of the system:

4

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

© Novática UPGRADE Vol. V, No. 5, October 2004 63

this includes also the costs for human resources and the relative
logistics involved in the activity; Cost of assistance, basically
refers to the cost of the experts; Cost of diffusion of knowledge
of the package to maintainers, managers, assistants and users;
Cost of the hardware and software platforms necessary for
using, managing and maintaining the software system; Cost of
coping with bad or incomplete functioning of the software
system.

Relying on experiments developed in industrial settings it
results that each cost of those listed before can be reduced by
activating specific maintenance activities (re-engineering,
rehosting, reverse engineering, restructuring).

Improve engineering features of application. When ana-
lysing a system it is possible to consider different detail levels.
The two main ones are the code’s structure and the engineering
features. The latter refers to the general organization of the
system, including the division in modules, the relationships
between them, the data access and updating. The former
regards more directly the intrinsic quality’s aspects of the code.
This goal often requires the legacy to be reengineered. Note
that reengineering may also include some types of reverse
engineering followed by restoration or restructuring in order to
make the system more evolvable in future.

Change the application deployment. A maintenance proc-
ess can require new capabilities of the development environ-
ment, in order to be executed properly and successfully. Such
improvements can refer to, e.g., configuration management,
development or maintenance environment, hardware settings,
print management, and others. This often requires rehosting.

Change the middleware in use. Sometimes, in order to
rejuvenate the legacy system (for example to be able to adapt to
new technologies, peripherals, services, …), the modification
of the middleware of software system is required and thus
migration is needed.

Improve code’s structure. This activity aims at improving
the quality factors of the code itself, such as coupling, cohe-
sion, pollution, lexicon, and modularization. This goal is often
reached by using restructuring.

Improve readability and understandability. In order to
achieve a high quality maintenance task, programmers must be
able to understand the code directly from the listing. Consider
that the programmer works basically on it, also if he could use

further project documentation. In order to reach this objective
a restoration process is used.

Update system’s documentation. When modifications are
brought on the code, the system documentation must be prop-
erly modified, in order to keep it aligned with the code. We
mean all the documentation: requirements specification, analy-
sis and design documentation, user manuals, test beds. In this
case reverse engineering is needed.

Finally, when the legacy has a poor documentation, a low
quality level, a low economic value and the previous improve-
ments are all required, it is probably more convenient to Write
the system from scratch. When Rehosting, Migration, Restruc-
turing, Restore, Reengineering or Write from Scratch are
executed, the Equivalence test is required in order to assure the
equivalence between the legacy system capabilities and
renewed system capabilities.

In Figure 4 the process pattern of extraordinary maintenance,
is illustrated. In the following a brief description is given:
• Name: Renewal of legacy system
• Process Model (PMx): it describes the core activities of a

renewal process and the artifacts exchanged between proc-
ess activities. There is also an activity named “renewal” that
is further refined by using decision model. The root process
is depicted in Figure 2.

• Problem: evaluate degradation and rejuvenate an aging
system.

• Decision Model: the decision model defines the path of
actions for specializing the PMx according to a predefined
CPj. The decision model is structured as follows: in the gray
part there are 7 diversity factors DFi that represent the
possible goals of the Extraordinary Maintenance (Diminish-
ing the cost of application administration; Improve engi-
neering features of application; Change the application
deployment; Change the middleware in use; Improve code’s
structure; Improve readability and understandability;
Update system’s documentation). The factor instances FIik
correspond to the possible values that a DFi can assume. In
this case they consist in “Y” or “N” that indicate the need to
reach the correspondent maintenance goal. In the white part
there are the 12 sub-processes that can be selected for prop-
erly specializing the “renewal” activity of the root process.
The symbol “x” indicates that the extraordinary mainte-
nance process must include the correspondent sub process

Legacy
Software
System

Portfolio
Analysis Useful

Software
System

Quality Factors

Quality
Assessment

Economic
Assessment

Economic Factors

System
Quality

System
Value

Risks
Evaluation

Useful
Software
System

Evaluated
Software
System

Renewed
System

Renewal

Figure 2: Root Process.

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

64 UPGRADE Vol. V, No. 5, October 2004 © Novática

Pr
ob

le
m

: t
o

Ev
al

ua
te

 d
eg

ra
da

tio
n

an
d

re
ju

ve
na

te
 a

n
ag

in
g

sy
st

em
D

EC
IS

IO
N

 M
O

D
EL

D
iv

er
si

ty
 F

ac
to

rs
Fa

ct
or

 In
st

an
ce

1.
 D

im
is

hi
ng

 th
e

co
st

 o
f a

pp
lic

at
io

n
ad

m
in

is
tra

tio
n

Y
…

…
N

2.
 C

ha
ng

e
th

e
ap

pl
ic

at
io

n
de

pl
oy

m
en

t
 Y

…
…

N

3.
 C

ha
ng

e
m

id
dl

ew
ar

e
in

 u
se

Y
N

…
…

N

4.
 Im

pr
ov

e
co

de
's

 s
tru

ct
ur

e
Y

N
Y

…
…

N

5.
 Im

pr
ov

e
re

ad
ab

ilit
y

an
d

un
de

rs
ta

nd
ab

ilit
y

Y
N

Y
N

Y
N

…
…

6.
 U

pd
at

e
sy

st
em

's
 d

oc
um

en
ta

tio
n

 Y
N

Y
N

Y
N

Y
N

Y
N

Y
N

…
…

N
Y

N

7.
 Im

pr
ov

e
en

gi
ne

er
in

g
fe

at
ur

es
 o

f a
pp

lic
at

io
n

Y
N

Y
N

Y
N

Y
N

Y
N

Y
N

Y
N

Y
N

Y
N

Y
N

Y
N

Y
N

…
…

Y
N

Y
N

Y
N

1.
 P

or
tfo

lio
 A

na
ly

si
s

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

…
…

x
x

x
x

x
x

2.
 Q

ua
lit

y
As

se
ss

m
en

t
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
…

…
x

x
x

x
x

x

3.
 E

co
no

m
ic

 A
ss

es
sm

en
t

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

…
…

x
x

x
x

x
x

4.
 R

eh
os

tin
g

.
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

.
x

x
x

x
x

x
x

…
…

.
.

.
.

.
.

5.
 M

ig
ra

tio
n

.
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

.
.

.
.

.
.

.
.

…
…

.
.

.
.

.
.

6.
 R

es
tru

ct
ur

in
g

.
x

x
x

x
x

x
x

.
.

.
.

.
.

.
.

.
x

x
x

x
x

x
x

…
…

.
.

.
.

.
.

7.
 R

es
to

re
.

x
x

x
.

.
.

.
x

x
x

x
.

.
.

.
.

x
x

x
.

.
.

.
…

…
x

x
.

.
.

.

8.
 R

ev
er

se
 E

ng
in

ee
rin

g
.

x
.

.
x

x
.

.
x

x
.

.
x

x
.

.
.

x
.

.
x

x
.

.
…

…
.

.
x

x
.

.

9.
 R

ee
ni

gn
ee

rin
g

–
–

x
–

x
–

x
–

x
–

x
–

x
–

x
–

–
–

x
–

x
–

x
–

…
…

x
.

x
.

x
.

10
. E

qu
iv

al
en

ce
 T

es
t

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

…
…

x
x

x
.

x
.

11
. R

is
k

Ev
al

ua
tio

n
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
…

…
x

x
x

x
x

x

12
. W

rit
e

fro
m

 s
cr

at
ch

x
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

x
.

.
.

.
.

.
.

…
…

.
.

.
.

.
.

So
lu

tio
ns

SP
1

SP
2

SP
3

SP
4

SP
5

SP
6

SP
7

SP
8

SP
9

SP
10

SP
11

SP
12

SP
13

SP
14

SP
15

SP
16

SP
17

SP
18

SP
19

SP
20

SP
21

SP
22

SP
23

SP
24

…
…

SP
12

3
SP

12
4

SP
12

5
SP

12
6

SP
12

7
SP

12
8

R
EL

A
TI

O
N

SH
IP

S
Q

ua
lit

y
As

se
ss

m
en

t
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

X
x

x
x

x
x

x
x

x
x

x
x

x

Ec
on

om
ic

 E
va

lu
at

io
n

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
X

x
x

x
x

x
x

x
x

x
x

x
x

R
es

tru
ct

ur
in

g
.

x
x

x
x

x
x

x
.

.
.

.
.

.
.

.
.

X
x

x
x

x
x

x
.

.
.

.
.

.

R
es

to
re

.
x

x
x

.
.

.
.

x
x

x
x

.
.

.
.

.
X

x
x

.
.

.
.

x
x

.
.

.
.

R
ev

er
se

 E
ng

in
ee

rin
g

.
x

.
.

x
x

.
.

x
x

.
.

x
x

.
.

.
X

.
.

x
x

.
.

.
.

x
x

.
.

R
ee

ni
gn

ee
rin

g
–

–
x

–
x

–
x

–
x

–
x

–
x

–
x

–
–

–
x

–
x

–
x

–
x

–
x

–
x

–

R
is

k
Ev

al
ua

tio
n

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
X

x
x

x
x

x
x

x
x

x
x

x
x

EX
PE

R
IE

N
C

ES
: T

hi
s

pa
tte

rn
 is

 th
e

re
su

lt
of

 th
e

ex
pe

rie
nc

e
co

lle
ct

ed
 d

ur
in

g
se

ve
ra

l r
en

ew
al

 p
ro

je
ct

s.
 M

or
e

de
ta

ils
 a

re
 p

re
se

nt
ed

 in
 [1

4]
[1

5]
[1

6]

F
ig

u
re

 4
:

E
xt

ra
or

di
na

ry
 M

ai
nt

en
an

ce
 P

ro
ce

ss
 P

at
te

rn
. (

b)

Pr
oc

es
s

Pa
tte

rn
N

am
e:

 R
en

ew
al

 o
f l

eg
ac

y
sy

st
em

Pr
oc

es
s

M
od

el
: E

xt
ra

or
di

na
ry

 M
ai

nt
en

an
ce

Le
ga

cy
So

ftw
ar

e
Sy

st
em

Po
rtf

ol
io

An
al

ys
is

U
se

fu
l

So
ftw

ar
e

Sy
st

em

Q
ua

lit
y

Fa
ct

or
s Q

ua
lit

y
As

se
ss

m
en

t

Ec
on

om
ic

As
se

ss
m

en
t

Ec
on

om
ic

 F
ac

to
rs

Sy
st

em
Q

ua
lit

y

Sy
st

em
Va

lu
e

R
is

ks
Ev

al
ua

tio
n

U
se

fu
l

So
ftw

ar
e

Sy
st

emEv
al

ua
te

d
So

ftw
ar

e
Sy

st
em

R
en

ew
ed

Sy
st

emR
en

ew
al

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

© Novática UPGRADE Vol. V, No. 5, October 2004 65

reported on the same row. Thus, each column contains the
specialization rules to obtain a specialized version SPxj of
the PMx on the CPj. In Figure 3, only a part of the decision
model is presented. It includes a total of 27=128 rows that
correspond to the different CPs considered.

• Solutions: The decision model individuates 128 different
SPxj of the root process PMx. As an example, let’s consider
the case of the column 24: the context profile is
CP24={Y,Y,N,Y,N,N,N}, i.e. the goals of the correspondent
specialized process are:
• Diminishing the cost of application administration,
• change the application deployment,
• Improve code's structure
The rule on the column 24 dictates that the SP24 must
include the following activities:
• Portfolio Analysis,
• Quality Assessment,
• Economic Evaluation,
• Rehosting,
• Restructuring,
• Equivalence Test,
• Risk Evaluation.
The resulting specialized process SP24 is showed in Figure
3. The rational for specialization was elicited from [14][15]
[16].

• Relationships: this section specifies other process patterns
(PPi) that specialize the current one. These patterns refer to
sub processes that detail an SPxj phase In the case of the
SP24 of the pattern in Figure 4, in order to obtain a fully spe-
cialized process the following PP need to be further consid-
ered:
• Quality Assessment,
• Economic Evaluation,
• Restructuring,
• Risk Evaluation.

• Experiences: indicates the source of experiences used to
define the pattern or projects executed by using the pattern
considered. For what concerns pattern in Figure 4, the

source of experience is represented by the references
[14][15][16] included in the bibliography.

Discussion and Conclusion
The innovative part of ProMisE consists in keeping an

experience base updated by recording the continuous changes
in the real world. The major advantages in using ProMisE can
be synthesized in the next two points:
1. To improve the comprehension of the characterization.

Over the time, the Organization implementing the process
can better detail the set of operative contexts, by adding (or
deleting) some DF or by adding or deleting some FI. It is
easy to imagine which sort of chain effects this has on the
experience base: all the patterns and the decision models
involved must be appropriately changed.

2. To improve the comprehension of the relationship between
the characterization and the specialization. Some evolu-
tions in the actual operative context can lead to choosing
another specialized process segment for the context profile
CP rather than the current one recorded in the experience
base.

Processes are adopted in frequently changing environments;
this condition leads to expensive and complicated process
tailoring, deploying money and consuming time to ensure
stability and avoiding lacks of capability.

Given a problem and a first solution for it, thanks to the
concept of patterns, ProMisE allows to specialize the initial
solution according to the context in which it will be used.
Furthermore, it points out all the changes made throughout the
specialization process. In this way it addresses for reusing
experience.

ProMisE aims to extend the well known concept of pattern
and more precisely it wishes:
1. To create a family of solutions for a family of problems just

starting from specific pairs problem-solution. This allows
the process engineer to apply the work and the knowledge
developed in specific experiences to many other different
ones, but placed in the same family of process-solution
pair.

5

Legacy
Software
System

Portfolio
Analysis Useful

Software
System

Quality Factors

Economic Factors

Quality
Assessment

Economic
Assessment

System
Quality

System
Value

Risks
Evaluation

Useful
Software
System

Evaluated
Software
System

Rehosting

Restructuring

Rehosted
System

Restructured
System

Test Cases

Equivalence
test

Renewed
System

Figure 3: Specialized Process SP24.

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

SPT, Software Process Technology

66 UPGRADE Vol. V, No. 5, October 2004 © Novática

2. To continuously enrich the experience base by properly
modifying the decision models and the process patterns as
real world evolutions occur and consequently to make the
organization more capable to face process diversity
problems.

We are realizing the system in collaboration with a company
operating in the field of Enterprise Resource management.

Some problems have been highlighted and are discussed in
the following.

First of all the management of experience is a central
concern. The knowledge base of the system grows as the
captured experience increases. The experience needs to be
elicited in the appropriate way by the field. This is not a trivial
issue, if considered scalability and competence of the process
engineer. The competence of the process engineer regards
basically the experience to be stored (too much can create
pollution in the base, and if it is not enough it can make useful-
ness the effort of maintaining the system).

Scalability is another problem to be faced; as matter of fact,
decision models can grow very fast. An excessive growth can
affect usability of the system (navigation between the decision
tables, comprehension of the content of decision table) and the
maintainability of the system (validate consistence of the data
and identify the impact of the changes).

Finally, packages of integration should be properly defined in
order to create an appropriate process by the combination of the
single components. Parameters to be used in the packages must
be identified properly, values must be defined and the couples
parameter-value have to be updated when needed. From the
realization of the system we aim at elaborating solutions for
these problems and validating them by their application.

References
[1]

M. Lindvall and I. Rus, “Process Diversity in software Develop-
ment”, IEEE Software Vol.17 N°.4, IEEE Computer Society, Los
Alamitos, July/August 2000, pp. 14–18.

[2]
K. M.Dymond. A guide to the CMM-understanding the Capabil-
ity Maturity Model for Software, Press Inc.

[3]
M. T. Baldassarre, D. Caivano, C. A. Visaggio, and G. Visaggio,
“promise: a framework for Process Models customization to the
operative context”, proc. of IEEE International Symposium on
Empirical Software Engineering, 2002, IEEE Computer Society,
pp. 103–111.

[4]
D. C.Schmidt, M. Fayad, and R.E. Johnson, “Software pattern”,
Communications of the ACM Vol.39, No.10, ACM, New York,
October 1996, pp. 37–39.

[5]
B. Appleton, “Patterns and software: Essential concepts and ter-
minology”, 2000. <http://www.enteract.com/~bradapp/docs/pat-
terns-intro.html>.

[6]
T. Winn, P. Calder, “Is this a pattern?”, IEEE Software Vol.19,
N°1, IEEE Computer Society, Los Alamitos, January/February
2002, pp. 59–66.

[7
F. Houdek and H. Kempter, “Quality Patterns – An approach to
packaging software engineering experience”, Proceedings of the
1997 Symposium on Software Reusability, ACM Software Engi-
neering Notes Vol. 22, Num. 3, ACM, New York, Mai 1997, pp.
81–88.

[8]
P. W. Fach, “Design Reuse through Frameworks and patterns”,
IEEE Software Vol.18, N°.5, IEEE Computer Society, Los Alam-
itos, September/October 2001, pp. 71–76.

[9]
L. Rising, “Patterns in postmortems”,Twenty-Third Annual Inter-
national Computer Software and Applications Conference, IEEE
Computer Society, Phoenix, Arizona, October 1999, pp.
314–315.

[10]
M. Fredj and O. Roudies, “A pattern based approach for require-
ments engineering”, 10th International Workshop on database &
Expert Systems Applications,. IEEE Computer Society, Florence,
Italy, September 1999, pp. 310–314.

[11]
S. M. Sutton, Jr., “The role of process in a Software Start-up”
IEEE Software Vol.17 N°.4, IEEE Computer Society, Los Alam-
itos, July/August 2000, pp. 33–39.

[12]
M. Morisio, C. Tully, and M. Ezran, “Diversity in Reuse Process-
es”, IEEE Software Vol.17 N°.4, IEEE Computer Society, Los
Alamitos July/August 2000, pp. 56–63.

[13]
V. R. Basili, G. Caldiera, and D. Rombach, “The Experience Fac-
tory”, Encyclopedia of Sofwtare Engineering – 2 Volume
Set,1994, pp. 469–476.

[14]
G. Visaggio, “Value-based decision model for renewal processes
in software maintenance”, Annals of Software Engineering, 9
(2000), Kluwer Academic Publishers, pp. 215–233.

[15]
G. Visaggio, “Ageing of a data –intensive Legacy System: symp-
toms and remedies”, Journal of Software Maintenance and Evo-
lution: Research and Practice 13 (2001), John Wiley, pp.
281–308.

[16]
A. Bianchi, D. Caivano, G. Visaggio. “Quality Models Reuse:
Experimentation on Field”, Proceedings of the International
Computer Software and Applications Conference (COMPSAC) –
IEEE Computer Society, Oxford, England, August 2002.

[17]
I. Rus, C. Seaman, M. Lindvall, “Process Diversity”, Journal of
Software Maintenance and Evolution: Research and Practice,
15(2003) John Wiley, pp. 1–8.

[18]
J. Munch, “Transformation-based Creation of Custom-tailored
Software Process Models”, Proceedings of the 5th International
Workshop on Software Process Simulation and Modelling 2004,
ProSim 2004 May 2004

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.ati.es/novatica/infonovatica_eng.html

Mosaic

© CEPIS UPGRADE Vol. V, No. 5, October 2004 67

Data Architecture

A Disquisition on The Performance Behaviour of Binary Search Tree Data Structures

Dominique A. Heger

From a performance perspective, applica-
tions and operating systems are faced with the
challenge to store data items in structures that
allow processing fundamental operations
such as insert, search, or remove constructs
as efficiently as possible. Over the years, a
variety of structures have been proposed,
focusing on the efficient representation of
data items. Some of the structures include
direct addressing schemes such as hash
tables, while others incorporate comparison
schemes such as binary search trees. This
study briefly elaborates on the internal char-
acteristics of 5 tree-based data structures and
focuses on their performance behaviour
under various workload conditions. The con-
ducted empirical studies revolve around
expected run-time performance, as well as
key-comparison and rotational behaviour.
The goal was to identify the most efficient data
structure under different workload scenarios.
The 5 data structures chosen for this study
represent 2 balanced (AA and red-black) and
3 unbalanced (treap, skip list, and radix)
binary search tree implementations, respec-
tively.

 Keywords: Data Structures, Performance,
Binary Tree

1 Introduction
Binary search trees are the most basic (non-

linear) data structures utilized in the realm of
application and operating system develop-
ment. Their wide range of applicability can be
explained by their fundamentally hierarchical
nature, a property induced by their recursive
definition. A binary tree structure can be
defined as a finite set of nodes that are either
empty or consist of a root and the elements of
two disjoint binary trees, referred to as the left
and right subtrees of the root. Binary tree

structures support 2 primary application cate-
gories. First, they may represent hierarchical
structures and second, they may be utilized to
implement efficient data storage and retrieval
mechanisms. In a generic setup, the individual
tree components consist of 3 fields. First, a
data field that holds the key. Second, a pointer
to the root-node of the left subtree and third, a
pointer to the root-node of the right subtree. In
such a tree representation, NULL-pointers
indicate empty subtrees, and the argument can
be made that this representation is not space-
efficient, as most of the pointers are referenc-
ing NULL. An alternative to such a design is
known as a threaded binary tree structure, a
tree construct that utilizes the space more ef-
fectively [12]. Instead of pointing to NULL,
the leaf node pointers are linked to expedite
lookup and tree traversal operations. In gener-
al, the challenge faced is to differentiate
among the high-level tree features and opera-
tions, as well as the representation model, in
an effective way that does not break the algo-
rithms. Another venerable issue is that the tree
balancing mechanisms (the maintenance
operations per se) are from a performance
perspective rather expensive, as well as com-
plex to implement. The goal of this study was
threefold. First, to quantify the performance
behaviour of the red-black, the AA, the treap,
the skip-list, and the radix tree data structures
under varying workload conditions [5][17]
[20][21]. The focus was on implementation
complexity, expected time complexity, key
comparison, as well as on the restructuring
operations (in the case of the 2 balanced bina-
ry search tree implementations). Second, to
analyse the impact that some rather simple
code-changes in the treap implementation
have on the key comparison behaviour. Third,
to quantify the performance delta of the tree
traversal operation in a threaded and a non-

threaded red-black tree environment. Of the
discussed data structures, the AA and the red-
black tree represent balanced structures,
where all the individual operations (insert,
remove, search) are bounded by an asymptot-
ic upper bound of O(log n). In the case of the
treap, the radix, and the skip-list implementa-
tion, the underlying unbalanced binary search
tree structures result in performing the indi-
vidual operations in an expected time com-
plexity of O(log n) as well. With theses 3 data
structures though, an ergodicity of O(n)
exists. Some other tree constructs such as
AVL trees [5] or hash-based solutions were
not incorporated into this study. The reader is
referred to [27] for a comprehensive discus-
sion on dynamic hashing.

2 Red-Black Trees
Binary search trees perform best when they

are either balanced, or the path length from
the root to any leaf node is within some
bounds. The red-black tree algorithm repre-
sents a method for balancing trees [5]. Red-
black trees are a variation of the classic binary

Dominique Heger has been with IBM
for over 9 years. Prior to his work at IBM,
he spent 5 years with Hewlett-Packard.
His focus is on operating systems per-
formance, performance modelling, algo-
rithms and data structures, and I/O scala-
bility. He has been part of several research
projects that focused on UNIX scalability,
and has published many systems per-
formance and modelling related papers.
He holds a PhD from NSU (Nova South-
eastern University), Florida, USA, in
Information Systems.
<dheger@us.ibm.com>

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.upgrade-cepis.org

Mosaic

68 UPGRADE Vol. V, No. 5, October 2004 © CEPIS

search trees (BST) that utilize a rather effi-
cient mechanism for keeping the tree in
balance. The name derives from the fact that
each node is coloured red or black, and that
the colour of the node is instrumental in deter-
mining the balance of the tree. During insert
and delete operations, nodes may be rotated to
maintain the tree balance. In general, both
average and worst-case search time complex-
ity equals to O(log n). More specifically, the
red-black tree design incorporates the follow-
ing properties:
1 Every node is coloured red or black
2. The root node has to be black
3. Every leaf is a NIL node, and is coloured

black
4. If a node is red, then both its children are

black
5. Every simple path from a node to a de-

scendant leaf contains the same number of
black nodes
The number of black nodes on a path from

the root to a leaf is known as the black-height
of a tree. The properties mentioned above
guarantee that any path from the root to a leaf
is no more than twice as long as any other. All
operations on the tree must maintain the prop-
erties listed above. In particular, operations
that insert or delete items must abide within
these very specific rules [5]. The amount of
memory required to store a red-black node
should be kept to a minimum. This is especial-
ly true if many small nodes are being allocat-
ed. In most cases, each red-black tree node
has a left, a right, and parent pointer. In addi-
tion, the colour of each node has to be record-
ed. Although this requires only one bit, more
space may be allocated to ensure that the size
of the structure is properly aligned. To reiter-
ate, on a static red-black tree implementation,
the operations minimum, maximum, search,
successor, predecessor can be executed in
O(log n) time. Tree maintenance operations
such as insert or delete require dynamic
changes to the tree structure, and therefore
require rather sophisticated implementations
to meet the O(log n) time criteria. It has to be
pointed out that a simple rotation is being
executed in O(1) time. A threaded (red-black)
search tree represents a data structure where
the un-utilized child pointers are used to point
to either the successor (right child pointer) or
the predecessor (left child pointer) nodes,
respectively. From an implementation per-
spective, the pointers have to be flagged to
disclose if they represent a normal or a thread-
ing scenario [5]. One of the benefits of thread-
ing a tree structure is that it is feasible to proc-
ess an in-order traversal in constant space, as
it is not necessary to remember the entire path
from the root to the current position. There-
fore, a threaded tree structure represents a

stack free solution that is beneficial if lookup
(find) and tree traversal operations dominate
the workload.

3 AA-Tree Data Structure
Andersson [1] introduced the AA-Tree

design in 1993, as basically a quest to present
new maintenance algorithms for balanced tree
structures. Additional work by Weiss (1996)
resulted into a much broader dissemination of
the AA-Tree design [21]. The AA-Tree is
considered as a simpler to code variant of the
red-black tree and satisfies the following
properties:
1. Every node is coloured red or black
2. The root node has to be black
3. Every leaf is a NIL node, and is coloured

black
4. If a node is red, then both its children are

black
5. Every simple path from a node to a

descendant leaf contains the same number
of black nodes

6. Left children may not be red.
The advantages of an AA-Tree design

(compared to red-black trees) are that half the
restructuring cases are eliminated, and that
the delete operation is substantially simpli-
fied. In other words, if an internal node has
only one child, that child has to be a red right
child. Further, it is always possible to replace
a node with the smallest child in the right
subtree, as it either will represent a leaf node
or it will have a red child. In the AA design,
the balancing information is stored in each
node as the level. The actual level is defined
by the rules that (1) if a node is a leaf, its level
is set to 1. (2) If a node is red, its level equals
to the level of its parent. (3) If a node is black,
its level equals to 1 less than the level of its
parents. The level represents the number of
left links to a NULL (or NIL) reference. The
AA design further introduces the term hori-
zontal link, in the sense that a horizontal link
represents a connection between a node and a
child with equal levels. In other words, hori-
zontal links can be referred to as right refer-
ences.

Based on the AA design, (1) it is not possi-
ble to have 2 consecutive horizontal links in
the tree. (2) Nodes at level 2 or higher have to
have 2 children, and (3) that if a node has 0
right horizontal links, its 2 children have to be
at the same level. Compared to the red-black
tree implementation, the vast number of
rebalancing cases is simplified in the AA
design by utilizing two rather simple mainte-
nance operations labelled as skew and split.
The skew operation removes left horizontal
links, whereas the split operation addresses
the issue of removing consecutive horizontal
links (that are by design not allowed). Both

operations are part of the AA insert and delete
maintenance set. All the unbalanced situa-
tions that are imaginable in an AA-Tree based
scenario can be eliminated by a sequence of at
most 3 skew and 2 split operations, respec-
tively. This statement holds true based on the
fact that the maintenance work may affect a
higher level, and therefore has to be propagat-
ed upward in a recursive manner. The fact that
the left children may not be red greatly simpli-
fies the delete operation (compared to the red-
black paradigm), and therefore an AA-Tree
solution should be considered if delete opera-
tions represent a significant portion of the
actual workload profile.

4 Treap Data Structure
A treap is the basic data structure underly-

ing randomized search trees. The name itself
refers to synthesizing a tree and a heap struc-
ture [5], [19]. More specifically, assuming
that x represents a set of items where each
item is associated with a key and a priority. A
treap for a set x represents a special case of a
binary search tree, in which the node set is

Operation Time Complexity

Find/Search/Access O(log n)

Insert O(log n)

Delete O(log n)

Rotations per update 2

Update – rot. subtree s
= O(s)

O(log n)

Update – rot. subtree s
= O(s log^k s)

O(log^k+1*n)

Joining 2 trees (sizes m
& n)

O(log max{m,n})

Splitting a tree (into
size m & n)

O(log max{m,n})

Table 1: Treap Performance
Characteristics – Generic Operations.

Operation Time Complexity

Insert with handle O(l)

Delete with handle O(1)

Finger search over
distance d

O(log d)

Note: handle, finger, split, and join operations
require additional pointers.

Table 2: Treap Performance –
Advanced Operations.

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.upgrade-cepis.org

Mosaic

© CEPIS UPGRADE Vol. V, No. 5, October 2004 69

arranged in order (in respect to the keys) as
well as in heap fashion (in regards to the
priority). Further, assuming that t represents
the treap structure storing a set of items x.
Given the scenario where the key of an item is
known, the location in t can easily be deter-
mined via a simple search tree algorithm. In a
treap, the access or search time is proportional
to the depth of an element in the tree. An
insert of a new item z into t basically consists
of a 2-step process. The first step consists of
utilizing the item’s key to attach to t at the
appropriate leaf position and second, to use
the priority of z to rotate the new entry up in
the structure until the item locates the parent
node that has a larger priority. The process of
deleting an item z from a treap structure t rep-
resents the reversed scenario. The first step
consists of locating the item, and second to
rotate the item down in the tree structure until
it becomes a leaf, where the item can be
removed.

In some implementations, treap split and
join operations may be necessary. A split
operation is used to separate a set of items x
into 2 sets (x1 and x2). The separation utilizes
a heuristic where items are being placed in the
2 sets based on the item’s key values in com-
parison to the key of a reference element a. To
accomplish the split, the operation inserts an
item with key a that is affiliated with an infi-
nite priority. Based on the heap-order proper-
ty, the new item has to represent the root of the
heap. Based on the in-order property, the left
subtree represents the treap x1, whereas the
right subtree represents the treap x2. In a sim-
ilar fashion, the join operation is utilized to
combine the two sets x1 and x2 into a single
construct. The assumption made is that the

keys in x1 are smaller than the keys
in x2. The implementation of the
join operation creates a dummy
root item, where the left subtree
consists of x1 and the right subtree
represents x2. In a second step, the
join operation performs a delete on
the dummy root item, finalizing
the combined treap structure. In
some circumstances, handles or
fingers are being used to expedite
some of the maintenance
operations. To illustrate, in the
case that a handle is referring to a
specific node x, deleting the node x
can be accomplished by only
rotating it down into a leaf position
and freeing the item, circumvent-
ing the otherwise necessary search
operation. In a similar fashion, to
insert a new item x where a handle
to either the successor or the pred-
ecessor y of node x is available, the

search for the location for x can start at the ref-
erence point y (instead of at the root item).
The term finger search for a node y in a treap
refers to following the unique path between x
and y, where node x incorporates a handle that
points to it. Another aspect of treap imple-
mentations is that split and joint operations
can be processed more efficiently if handles
are available to the min and max key items, re-
spectively. A randomized search tree that
stores n items reveals the expected asymptotic
upper bound time complexity (see Table 1 and
Table 2).

The time complexity for a successful
search operation in a treap environment is
proportional to the number of
ancestors of x, and can be ex-
pressed as O(log n). An unsuc-
cessful search for a key that
falls between the keys of suc-
cessive items (x– & x+) takes on
an expected time complexity of
O(log n) as well [14]. In order to
insert an item into a treap, the
first step is to locate its leaf po-
sition (based on its key value),
and in second step to rotate the
item up in the tree structure
based on its priority. The
number of rotations can at most
be equal to the search path,
hence the time to insert an item
is proportional to the time
required to complete an un-
successful search, which as al-
ready discussed (in expectation)
equals to O(log n). In the case of
a delete operation, the insert
operation is being inverted,

therefore the conclusion that the time com-
plexity equals to O(log n). The number of
downward rotations during a delete operation
equals to the sum of the length of the right
spine of the left subtree of x, and the left spine
of the right subtree of x, respectively. A
scenario that (in expectation) is < 2 for a
randomized binary search tree.

5 Skip List Data Structure
A skip list represents an ordered linked list,

in which every node contains a variable
number of links to other nodes in the structure
[13][16]. To illustrate, the nth link of a given
node points to subsequent nodes in the list,
and by design, skips over some number of
intermediary nodes. Therefore, these skipped
nodes have fewer than n links associated. As
most nodes have a variable number of links, a
skip list can be referred to as a collection of
linked lists of different levels. In order to
quickly traverse the structure, seeking for
some target key, the search operation seeks on
the upper level list until either the target data
is encountered, or the operation locates a node
with a key that is smaller than the target. At
this point, that particular node links to a sub-
sequent node. In this case, the search contin-
ues by repeating the same procedure (now
starting at the node that incorporates the
smaller value than the target) and by continu-
ing on the skip list. Skip lists can be consid-
ered as a probabilistic alternative to balanced
trees.

Skip lists have balance properties that are
similar to the search trees that are built via
random insertions. Balancing a data structure
probabilistically is easier than explicitly

Figure 1: Insert Operations.

Figure 2: Search Operations.

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.upgrade-cepis.org

Mosaic

70 UPGRADE Vol. V, No. 5, October 2004 © CEPIS

maintaining the balance. For many applica-
tions, skip lists represent a more natural
layout than tree structures, and therefore are
generally leading towards simpler algorithms.
The ramification is that the simplicity of skip
list algorithms allows easier implementations,
and provides in some cases a (constant factor)
speed improvement compared to the balanced
and self-adjusting tree algorithms. Skip lists
are rather space efficient. They can easily be
configured to hold (on average) 1 1/3 pointers
per element, and do not require balance or
priority information to be stored within each
node. The varying size of the nodes may be
regarded as a disadvantage of skip lists. As a s
skip list is balanced in a probabilistic fashion
(by using a random number generator), the
average search, insert, and delete operations
are processed in an expected time complexity
of O(log n). The probability of encountering
significantly worse performance is rather
slim, but nevertheless exists. In other words,
as the balance criteria is chosen randomly, the
chance of encountering the O(n) worst case
scenario is very small, as any input sequence
into a skip list will not consistently produce
the worst case performance scenario.

6 Radix Tree Data Structure
A standard radix search tree design is simi-

lar to a digital search tree [2][5][21]. Howev-
er, in a radix search tree, all data items are
stored as leave objects, and therefore the
internal nodes of the radix tree do not have
any key values associated with them. An inter-
nal node's child represents either another
internal node or an actual data item. During a
search operation, the individual bits in the

search key are examined, and ei-
ther the left or the right pointer
to a child node is being activated
according to the specific bit val-
ue. Therefore, unlike the digital
search tree, the radix search tree
does not have to encounter any
key comparison overhead per se
at each node that is being tra-
versed. Instead, the traverse op-
eration continues until the corre-
sponding bit in a child node’s
link filed is zero. The child link
entity refers to a two-bit field en-
try, where bits 0 and 1 specify
the child pointers. In either case,
if the bit value equals to zero, the
pointer references either NULL
or points to a data item. Other-
wise, if the bit is 1, the pointer
references another node in the
radix tree. In other words, if the
child link field equals to 0, either
a NULL pointer or a data item

has been located. Further, the root node
always remains in the radix search tree, even
in the case when there are no items in the tree.
From a performance perspective, the number
of nodes, as well as the length of the key value
govern the efficiency of a radix tree. In gener-
al, large key values have a rather detrimental
impact on performance.

Along these lines, the radix sort is a rather
good illustration of how lists and deques can
be combined with other container’s [5]. In the
case of a radix sort, a vector of deques is
manipulated, similar to a hash table. In a radix
sort, the values are successively
ordered on a per digit position
basis, normally from right to left
(straight radix sort). This is ac-
complished by copying the val-
ues into buckets, where the in-
dex for the bucket is determined
based on the position of the digit
being sorted. The straight radix
sort algorithm operates in O(nk)
time, where n represents the
number of items, and k refers to
the average key length. The
greatest disadvantage of a radix
sort algorithm is that the imple-
mentation can not be construct-
ed to execute in place. There-
fore, O(n) additional memory
space is required. Furthermore, a
radix sort implementation re-
quires 1 pass for each symbol of
the key, and therefore is rather
inefficient if long key values are
processed. The reader is encour-
aged to consult [26] for a com-

prehensive discussion on radix trees, extendi-
ble hashing, B-Trees, and performance.

7 Benchmark Results
To conduct the performance comparison,

all the data structures were implemented in
ANSI C. The implementation of the data struc-
tures were based on work conducted in
[5][12][16][17][21]. Where applicable, the
same random number generator and the same
seed were used throughout the study. All the
data structures were exposed to the same
workload scenarios. The analysis was decom-
posed in 3 sections. Section 1 focused on the
individual insert, search, and remove per-
formance. The operations were benchmarked
either in an ascending, descending, or random
order while scaling the number of nodes from
5,000 to 100,000. Next to the response time
comparison, the study introduced the term
aggregate structure performance factor,
describing the mean performance of a data
structure as quantified over the set of invoca-
tion scenarios used in this study. To illustrate,
the insert performance was quantified based
on ascending, descending, and random data
distributions. Therefore, the overall consist-
ency factor for the insert operation incorpo-
rates the 3 invocation scenarios. Section 1
further discusses the performance behaviour
based on a mixed workload profile, consisting
of a chain of insert, search, and remove oper-
ations, respectively. Section 2 quantified the
data structure performance focusing on the
number of key comparisons and (where appli-
cable) the number of rotate operations. For the
treap data structure, code changes surround-

Figure 3: Remove Operations.

Figure 4: Mixed Workload.

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.upgrade-cepis.org

Mosaic

© CEPIS UPGRADE Vol. V, No. 5, October 2004 71

ing the placement of the equality, the less
than, and the greater than operations are pro-
posed and analysed. Section 3 discusses the
performance of the tree traversal operation,
comparing a standard red-black tree and a
threaded red-black tree implementation.

The test environments for the benchmarks
in Section 1 and 2 consisted of a single CPU,
256MB memory, Linux 2.6 system that was
equipped with a single disk configured with
the XFS file system. For the benchmarks
described in Section 3, a 4-way, 1GB memory
system, configured with a 5-disk RAID-5 I/O
subsystem that utilized the Linux 2.6 and the
JFS file system was used. All the benchmarks
were executed 100 times. The performance
numbers reported in this study reflect the
mean over all the test runs.

7.1 Insert, Search, and Remove
Operations

The basic data structure benchmarks were
conducted on the single CPU system. In the
case where the nodes were inserted in
descending order, the treap outperformed the
other data structures by a rather significant
margin (Figure 1). As discussed, the treap
reflects a light-way data structure compared to
either a red-black or the AA implementation,
respectively. Therefor, the insert operations
are completed more efficiently, as the expen-
sive maintenance functions embedded in the
balanced data structures are much more
relaxed in a treap implementation. The delta
between the fastest (the treap) and the slowest
(the AA tree) structure equalled to 430 milli-
seconds (at the 100,000-node level). At the
10,000-node level, all 5 data structures report-
ed mean response time values within 10
milliseconds. In the case the nodes were
either inserted in an ascending or random
order, the radix tree proved to be the most
efficient solution (Appendix A).

From a structure performance factor per-
spective, at the 100,000-node level, the radix
tree’s insert operations outperformed the oth-
er data structures. Further analysing the fluc-
tuation among the different insert scenarios
(ascending, descending, and random) re-
vealed that the red-black tree performed most
consistently. At the 100,000-node level, the
fluctuation among the ascending, the de-
scending, and the random insert operations
was approximately 40 milliseconds. This can
be compared to a delta of 440 and 130 milli-
seconds for the treap and the radix tree,
respectively. The insert benchmarks disclosed
that the skip list and the AA tree experienced
scalability issues, especially in the random
insert scenario.

The benchmarks conduced revolving the
search operations in a descending order
revealed a similar picture (Figure 2). From a
mean response time perspective, the treap
data structure outperformed the skip list, as
well as the radix tree, whereas the latter two
data structures were able to outperform the
more complex red-black and AA tree struc-
tures. At the 100,000-node level, the delta
between the fastest (the treap) and the slowest
(the red-black tree) data structure was 960
milliseconds. At the 10,000-node level, the
difference between the most (the treap) and
the least (AA and skip list) efficient imple-
mentations equalled to 40 milliseconds. The
search benchmarks conducted in ascending
order disclosed a similar behaviour as experi-
enced for the insert operations (see Appendix
A). The radix tree outperformed the treap,
which outperformed the other 3 implementa-
tions. At the 100,000-node level, quantifying
the aggregate structure performance factor
showed the radix tree and the treap in a dead
heat. At the same time, the other 3 data struc-

tures trailed by 530 milliseconds, 725 milli-
seconds, and 790 milliseconds for the skip
list, the AA, and the red-black tree structures,
respectively.

From a consistency perspective (smallest
delta between the search scenarios), the radix
tree outperformed the red-black and the AA
tree, which outperformed the treap and the
skip list. At the 100,000-node level, the delta
between the ascending and the descending
search operations was 10 milliseconds for the
radix tree, 150 milliseconds for the red-black
tree, and 380 milliseconds for the treap,
respectively. Benchmarking the remove oper-
ations in descending order revealed that the
treap was once again capable of outperform-
ing the other 4 data structures (Figure 3). The
mean delta between the treap and the slowest
structure (red-black tree) at the 100,000-node
level equalled to 1,430 milliseconds. At the
10,000-node level, the difference between the
treap and the least efficient implementation
(skip list) equalled to 90 milliseconds. Ana-
lysing the remove performance in ascending

Nodes Operation Treap Radix Skip

Insert 98,771 299,953 247,439

10,000 Search 169,977 320,032 251,764

Remove 108,758 309,974 184,254

Insert 555,109 1,499,955 1,420,190

50,000 Search 1,007,434 1,600,032 1,489,230

Remove 605,099 1,549,975 1,512,343

Insert 1,219,770 2,999,956 2,932,223

100,000 Search 2,070,369 3,200,032 2,969,512

Remove 1,319,758 3,099,975 2,865,642

Table 3: Key Comparisons – Unbalanced Data Structures.

Nodes Operation AA Red-Black

Insert 168,244 211,383

10,000 Search 114,707 128,853

Remove 114,037 103,671

Insert 1,016,999 1,286,225

50,000 Search 685,766 754,794

Remove 697,229 639,197

Insert 2,183,976 2,772,389

100,000 Search 1,471,511 1,609,564

Remove 1,494,441 1,378,359

Table 4: Key Comparisons – Balanced Structures.

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.upgrade-cepis.org

Mosaic

72 UPGRADE Vol. V, No. 5, October 2004 © CEPIS

order disclosed the treap as the most efficient
implementation (Appendix A). As the mathe-
matical and structural analysis of the red-
black and the AA tree design suggested, the
AA tree outperformed the red-black imple-
mentation in every remove scenario that was
benchmarked in this study. Analysing the
aggregate structure performance factor at the
100,000-node level showed the treap with the
lowest mean response time, followed by the
radix, the skip list, the AA, and the red-black
tree.

From a consistency perspective (smallest
delta between the remove scenarios), the
radix and the red-black tree outperformed the
other 3 implementations, underlying the
robustness of these data structures under
different operation patterns. To further quanti-
fy the performance behaviour of these data
structures, the study utilized a mixed work-
load profile. The profile triggered a chain of
insert (100% of the nodes in ascending order),
search (randomly for 10% of the nodes),
remove (randomly for 50% of the nodes), and
search (randomly for 10% of the nodes) oper-
ations. The conduced benchmark runs showed
that at every node level, the treap outper-
formed the other 4 data structures (Figure 4).
At the 100,000-node mark, the treap outper-
formed the slowest data structure (radix tree)
by 820 milliseconds. Decomposing the con-
ducted test runs into a small (5,000 to 50,000
nodes) and a large (greater than 50,000 up to
100,000 nodes) category, and conducting the
analysis accordingly did not change the
performance picture in any significant way. In
the small mixed workload category, the treap
represents the most efficient implementation,
whereas the radix tree encounters a rather
steep increase in response time at the 20,000
and the 50,000-node levels, respectively. The
same behaviour is reflected in the large mixed
workload category.

Overall, the red-black tree performed well
at every node level, as the data structure was
capable of outperforming the more light-way
implementations of the radix tree and the skip
list at every measured data point.

7.2 Key Comparisons and Rotations
The next few experiments in this study

focused on the number of key comparisons
performed by the data structures while
processing a certain workload. The results in
Table 3 and 4 outline key comparisons for a
descending permutation, attempting to model
a realistic situation where the inserted ele-
ments are in a nearly sorted order. Evaluating
the mean number of key comparisons (across
the 3 operations) showed the treap as the most
efficient implementation at all the bench-
marked node levels. The radix tree represents
the structure that processes the most key
(actual bit) comparisons. Despite processing
more key comparisons, the simplified AA
remove function outperforms the red-black
tree implementation from a response time
perspective. As the design suggests, the 2
balanced tree structures disclose the lowest
number of key comparisons for the search
operation. The number of key comparisons
processed by the 2 balanced structures (while
operating on remove scenarios) are in line
with the most efficient (treap) unbalanced
data structure, and clearly outperform the
other 2 (radix and skip list) solutions. The re-
balancing operations necessary in these 2 data
structures though squander that advantage,
which is reflected in the response time behav-
iour (Figure 3). Evaluating the key compari-
son behaviour on random data sets revealed
that the 2 balanced data structures outper-
formed the 3 unbalanced solutions. The anal-
ysis showed that the red-black tree slightly
edged the AA implementation at all the
benchmarked node levels (see Table 3 and
Table 4).

In order to further investigate the key com-
parison behaviour, and the impact on response
time, the study varied (in the treap solution)
the order in which the equality, the less than,
and the greater than operations were proc-
essed. The following pseudo code documents
the 2 experiments conducted for the treap
search operation.
Option 1:
1 f key_searched = key_current then found
2 else if key_searched < key_current go to left child
3 else go right

Option 2:
1 f key_searched = key_current then found
2 else if key_searched > key_current go to right
child
3 else go left

The benchmarks conduced for the treap
search operation (at various node levels and
random input sets) revealed that option 2 out-
performed option 1 (response time wise) by
approximately 4%. The study further showed
that moving the comparison in line 1 further
down and executing the greater than operation
first, results in fewer key comparisons but a
higher overall response time.

For the red-black and the AA structures,
Table 5 discusses the height and the number
of rotations executed at different node levels
with a descending input set. Both structures
revealed almost identical numbers of rota-
tions while inserting the data items. While
processing remove operations, the red-black
tree executed approximately 25% less rota-
tions than the AA implementation. In all the
benchmarks utilizing ordered data sets, the
AA tree presented a significantly flatter tree
hierarchy than the red-black implementation.
As outlined in Table 5, a height delta of 6, 8,
and 9 at the 10,000, the 50,000, and the
100,000 node-levels was reported. Studies
conducted on a random data set revealed that
the red-black tree executed on the insert as
well as the remove operations fewer rotations
than the AA tree. Further, with a random
sample set, the height of the tree structures
only varied by 2, 3, and 3 at the 10,000, the
50,000, and the 100,000-node levels, respec-
tively (see Table 5).

The benchmarks revealed that the compiler,
the systems architecture, and the time com-
plexity of the key comparisons significantly
impacts the response time behaviour. The
search operations for all the tree-based struc-
tures were essentially identical. Despite the
similar search solutions, methods that execut-
ed fewer key comparison operations not
always revealed the most efficient response
time behaviour. Processing 50,000 search
operations in ascending order resulted in
1,600,032 and 1,067,079 key comparisons for

Nodes Operation AA Red-Black

Insert 9,982 9,976

10,000 Height 18 24

Remove 3,340 2,489

Insert 49,976 49,971

50,000 Height 21 29

Remove 16,676 12,468

Insert 99,987 99,969

100,000 Height 22 31

Remove 33,339 24,985

Table 5: Height and Rotations – Balanced Structures.

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.upgrade-cepis.org

Mosaic

© CEPIS UPGRADE Vol. V, No. 5, October 2004 73

the radix tree and the treap data structures,
respectively. From a response time perspec-
tive, the radix tree outperformed the treap for
this data point by 110 milliseconds. Similar
tests conduced on an larger SMP system (run-
ning a commercial UNIX flavour) revealed
that based on the different compiler architec-
ture, instruction pipelining features, and
cache replacement polices, a slightly different
execution behaviour of some of the data struc-
ture operations. The results presented in this
Section for the treap, the skip list, and the red-
black tree data structures are comparable to
the performance data reported in studies con-
ducted by Sahni [24] and Papadakis [25].

7.3 Threaded Red-Black Tree Performance
The final experiment conducted in this

study focused on quantifying the performance
behaviour of the tree traversal operation
utilizing a regular and a threaded red-black
tree solution. The benchmark was conducted
on the SMP system discussed in Section 6.0.
The benchmark results depicted in Figure 5
reveal the improved traversal behaviour of the
threaded red-black solution. Additional tests
conducted on random and ascending data sets
disclosed the same pattern, as in all the exper-
iments, the threaded implementation outper-
formed the generic red-black data structure by
an average of 12% (Appendix A). Analysing
the insert performance of the 2 data structures
showed the complexity increase of maintain-
ing the additional pointers in the threaded
solution though, as the regular red-black tree
implementation outperformed the threaded
data structure by an average of 5%.

8 Summary and Conclusion
The empirical analysis conducted for this

study supports the mathematical abstractions

for the tree data structures. In
other words, the theoretical
study of the tree structures and
the resulting performance
claims were highlighted
through the conducted bench-
marks. To illustrate, the AA
implementation was capable
of outperforming the red-
black tree structure in all the
remove cases. To summarize,
in the mixed workload envi-
ronment, the treap data struc-
ture outperformed the other 4
implementations by a rather
significant margin. In the in-
sert scenarios, the radix and
the treap structure outper-
formed the more complex AA
and red-black data structures.

A similar picture was drawn by the search op-
eration based benchmarks. It is interesting to
point out that in the case of random insert op-
erations, the red-black tree outperformed the
treap in the case that 20,000+ nodes were pop-
ulated into the data structure. The study re-
vealed that based on the mixed workload pro-
file, the treap represents the most efficient
implementation whereas overall, the red-
black data structure excelled from a consist-
ency perspective. In other words, the red-
black tree provided a rather consistent
response time behaviour under varying work-
load patterns. The more light-way data struc-
tures (such as the treap or the skip list) on the
other hand were rather fluctuation prone (a
statement made based on the ascending,
descending, and random operations executed
at the same node level). Based on the mathe-
matical and empirical study, the ramification
is that the implementation of a red-black tree
data structure in operating systems is consid-
ered as an effective and (to a lesser extent)
efficient solution. The consistency factor
reported in this study more than justifies the
usage of a red-black tree implementation. To
address the efficiency issue, one approach
may be to explore the possibility of convert-
ing a standard red-black tree data structure
into a threaded implementation, a design
change that would allow expediting the search
and traversal operations. As a search opera-
tion is part of any remove scenario (the node
has to be located first), the remove operation
benefits from the enhancement as well. The
actual tradeoff revolves around faster lookup
operations and increased pointer mainte-
nance. Further, the treap has to be considered
as a valuable alternative to any data structure.
To illustrate, despite all 3 unbalanced solu-
tions representing rather simple data struc-

tures, the treap outperformed the radix tree
and the skip list in the mixed workload
scenarios, whereas the radix tree represented
the least efficient solution of all the bench-
marked data structures. This study further
discussed the performance gain that is possi-
ble by re-ordering the logical operations used
in the data structures, and addressed the
impact of compiler, systems architecture, and
time complexity on the response time behav-
iour.

References
[1]

A. Andersson. “Balanced Search Trees
Made Simple”, WADS, 1993.

[2]
A. Andersson, S. Nielsson. “A New Effi-
cient Radix Sort”, FOCS, 1994.

[3]
S. Baase. “Computer Algorithms, Intro-
duction to Design and Analysis”, 3rd ed.,
Addison-Wesley, 2000.

[4] M. Black. "Skip Lists vs. B-Trees”, CSI
Essex, 2001.

[5]
T. Cormen. “Algorithms”, Second Edi-
tion, MIT Press, 2001.

[6]
M. Garey, D. Johnson. “Computers and
Intractability: A Guide to the Theory of
NP-Completeness”, Freeman, 1979.

[7]
G. Gonnet, R. Baeza-Yates. “Handbook
of Algorithms and Data Structures”, 2nd.
ed., Addison-Wesley, 1991.

[8]
R. Graham, D. Knuth, O. Patashnik.
“Concrete Mathematics”, Addison-Wes-
ley, 1989.

[9]
T. Hagerup, C. Rueb. “A Guided Tour of
Chernoff Bounds”, 1990.

[10]
D. Hochbaum. “Approximation Algo-
rithms for NP-Complete Problems”,
PWS, 1997.

[11]
E. Horowitz and S. Sahni, Fundamentals
of Computer Algorithms, Computer Sci-
ence Press, 1978.

[12]
D. Knuth. “The Art of Computer Pro-
gramming”, Volumes 1 and 3, Addison-
Wesley, 1997 and 1998.

[13]
P. Messeguer. "Skip Trees, an Alternative
Data Structure to Skip Lists in a Concur-
rent Approach", 1997.

[14]
R. Motwani, P. Raghavan. “Randomized
Algorithms”, Cambridge Univ. Press,
1995.

[15]
C. Papadimitriou. “Computational Com-
plexity”, Addison-Wesley, 1994.

Figure 5: Tree Traversal.

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.upgrade-cepis.org

Mosaic

74 UPGRADE Vol. V, No. 5, October 2004 © CEPIS

Appendix A: Additional Benchmark Charts

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.upgrade-cepis.org

Mosaic

© CEPIS UPGRADE Vol. V, No. 5, October 2004 75

[16]
W. Pugh. “Skip Lists – A Probabilistic
Alternative to Balanced Trees”, ACM,
1990.

[17]
R. Sedgewick. “Algorithms” 2nd ed.,
Addison-Wesley, 1988.

[18]
R. Sedgewick, F. Lajolet. “An Introduc-
tion to the Analysis of Algorithms”,
Addison Wesley, 1996.

[19]
R. Seidel, C. Aragon. “Randomized
Search Trees”, Algorithmica 16, 1996.

[20]
C. Van Wyk. “Data Structures and C
Programs” Addison-Wesley, 1988.

[21]
M. Weiss. “Data Structures and C
Programs” Addison-Wesley, 1997.

[22]
N. Wirth. “Algorithms + Data Structures
= Programs”, Prentice Hall, 1978.

[23]
A. Harrison. “VLSI Layout Compaction
using Radix Priority Search Trees”,
1991.

[24]
S. Sahni, S. Cho. “A New Weight Bal-
anced Binary Search Tree”, University of
Florida, TR 96-001, 1996.

[25]
T. Papadakis. “Skip Lists and Probabilis-
tic Analysis of Algorithms”, Ph.D.
Dissertation, U. of Waterloo, 1993.

[26]
R. Fagin, J. Nievergelt, N. Pippenger, H.
Strong. “Extendible Hashing – A Fast
Access Method for Dynamic Files”,
ACM Transactions on Database Sys-
tems, 1979.

[27]
R. Enbody, H. Du. “Dynamic Hashing
Schemes”, ACM Computing, 1998.

News & Events

CEPIS Present in the European e-Skills 2004 Conference
Long Term Strategies for E-Skills Development in Europe (Press Release)

The European Union should adopt a
comprehensive strategy for improving ICT
skills and training across all sectors, at all
levels and for all citizens. This was one of the
main messages of the European e-Skills 2004
Conference which ended Tuesday, 21 Septem-
ber at Cedefop in Thessaloniki, Greece. More
than 150 experts took part in this major event,
two years after the European e-Skills Summit
organised by the Commission and the Danish
Presidency in Copenhagen in 2002.

Among the participants, there were several
representatives of EU Member States and
acceding countries, of five Directorates
General of the European Commission (Enter-
prise and Industry, Education and Culture,
Employment and Social Affairs, Information
Society and Eurostat) as well as the European
Investment Bank, senior executives from
leading ICT companies such as Microsoft,
Nokia, Cisco Systems, IBM, Certiport,
CompTIA etc. and researchers, academic and
training world, representatives of European
and international professional ICT associa-
tions (Council of European of Professional
Informatics Professionals), consortia (Career
Space, e-Skills Certification Consortium, e-
Learning Industry Group, Project Manage-
ment Institute) and delegations of the social

partners (EICTA, Uni Europa and European
Metal Workers Federation).

The Synthesis Report of the European e-
Skills Forum “E-Skills in Europe: Towards
2010 and beyond” which constituted the basis
for the discussions during this event pinpoint-
ed the threats of moving European ICT jobs to
low-cost countries such as India and China
(offshore or international outsourcing). For
example, it is expected that by 2010 about
272.000 jobs will be lost in the UK alone due
to international outsourcing. There is a ten-
dency for companies to outsource services
such as call centres, commercial handling and
accounting, to countries with low labour
costs. Central and Eastern European Coun-
tries and the new Member states, notably the
Czech Republic, are increasingly attracting
foreign direct investments from ICT compa-
nies because of their comparatively lower
level of salaries and relative high skill level of
their labour force. Highly skilled people are
also being recruited in Europe, however, at
lower speed.

This creates a serious dilemma for the EU
Member States. On the one hand, their firms
can lower labour costs by moving (in part or
entirely) to low-cost countries, and thus
improve competitiveness internationally. But
at the same time, losing jobs in the ICT sector
threatens social cohesion: ICT has been the

main source of new employment in a time
when more traditional sectors have been shed-
ding employment opportunities. Mismatches
and skill gaps persist however as many ICT
jobs remain vacant due to the lack of qualified
personnel. The number of current ICT
specialists in Europe is 3.7 million and is
estimated to reach 5.1 million by 2010.

Among priority actions discussed for 2005,
the European e-Skills 2004 Conference also
concluded that the European Commission
should support alongside Cedefop and indus-
try partners a “European level ICT skills
meta- or reference framework” for better
planning of investments in training and skills
and must also further develop common princi-
ples for quality standards and for certification,
whether public or private, profit or non-profit
oriented. For these purposes it was proposed
to create a European network of e-skills
experts and a policy advisory group to devel-
op foresight scenarios and further promote e-
skills policies at the European level. The con-
ference also proposed the creation of a Euro-
pean ICT career portal and of a central link
between all educational institutions working
in ICT, whether public or private.

More information at
<http://www.eskills2004.org/>.

September 24, 2004

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.upgrade-cepis.org

Mosaic

76 UPGRADE Vol. V, No. 5, October 2004 © CEPIS

EUCIP News

Norway: EUCIP1 and Abelia – Measuring Life Long Learning
Abelia (the Association of Norwegian ICT

and Knowledge-based enterprises) was host
to the conference “Measuring Life Long
Learning” held on 14 September in Oslo in
conjunction with partners Mintra AS, Norsk

Test, EUCIP Norway, NITH and Energibed-
riftenes Landsforening (EBL).

The schedule contained sessions on net-
based and interactive testing and a presenta-
tion about EUCIP by Renny Bakke Amund-

sen, in conjunction with one of Norway’s
largest learning providers NITH who are
accredited to run the EUCIP programme in
Norway.

13th September 2004

The 9th World Multi-Conference on Systemics, Cybernetics and Informatics: Call for Papers

This conference will take place in Orlando,
Florida, USA, from July 10–13, 2005.

SCI 2005 is an international forum for
scientists and engineers, researchers and,
consultants, theoreticians and practitioners in
the fields of Systemics, Cybernetics and
Informatics. It is a forum for focusing into
specific disciplinary research, as well as for
multi, inter and trans-disciplinary studies and
projects. One of its aims is to relate disci-
plines fostering analogical thinking and,
hence, producing input to the logical thinking.

The conference´s Call for papers can be
found at <http://www.iiisci.org/sci2005/
website/callforpapers.asp>.

The best 10% of the papers will be pub-
lished in Volume 3 of SCI Journal, <http:/
/www.iiisci.org/Journal/SCI/Home.asp>. 12
issues of the volumes 1 and 2 of the Journal
have been sent to about 200 university and
research libraries. Free subscriptions, for 2
years, are being considered for the organiza-
tions of the Journals’ authors.

We are emphasizing the area of Wire-
less/Mobile computing.

You can find information about the suggest-
ed steps to organize an invited session in the
Call for Papers and in the conference web
page: <http://www.iiisci.org/sci2005>.

If by any reasons you are not able to access
the page mentioned above, please, try the
following pages:
<http://www.iiis.org/sci2005>.

More information at
<http://www.iiisci.org/sci2005>.

 1. EUCIP (European Certification of Infor-
mation professionals, <http://www.eucip.
com>) is a new pan-European qualifica-
tion scheme, promoted by CEPIS, for
people entering the IT profession and for
IT professionals wishing to continue their

professional development. EUCIP has
been developed as an independent, glo-
bally recognised scheme for IT profes-
sionals in a similar fashion to the ECDL
(European Computer Driving Licence)
which is aimed at the IT User. The quali-

fication will enable existing IT profes-
sionals to document their competencies
and skill sets for employers or prospec-
tive employers and in addition, increase
their market value.

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.upgrade-cepis.org

UPENET

© CEPIS UPGRADE Vol. V, No. 5, October 2004 77

IT and Disabilities

Braille and The Pleasure of Reading: We Blind People Want to Continue Reading with Our Fingers

Carmen Bonet-Borrás

© Novática 2004
This paper was first published, in its original Spanish version, under the title “El Braille y el placer de la lectura: los ciegos queremos seguir
leyendo con los dedos”, by Novática (issue no. 169, May–June 2004, pp. 67–72). Novática, <http://www.ati.es/novatica>, a founding member
of UPENET, and publisher of UPGRADE on behalf of CEPIS, is the bimonthly journal and magazine of the Spanish CEPIS society ATI
(Asociación de Técnicos de Informática, <http://www.ati.es>.)

In this article the author describes her long
experience as a user of Braille, the language
for the blind, and of other technological aids
for the blind. The author expresses her love of
Braille and her conviction that, in spite of all
the major technological advances there have
been in this field, Braille will continue to be
an essential tool for the human and intellectu-
al development of people who suffer from
visual impairment, and a gateway to enjoy-
ment and culture.

Keywords: Braille, Blindness, Personal
Experience, Digital Technologies Aiding the
Visual Impairment, Visually Impaired People.

1. Presentation
This article is based on my personal experi-

ence over many years as an IT professional
and a user of special tools for the visually
impaired due to my having been totally blind
since the age of six (see photo of the author in

Figure 1). I am, therefore, an experienced
user, though I am not an expert in disabilities
and new technologies.

2 What Is the Braille System?
When in the first half of the 19th century,

while he was barely an adolescent, the
Frenchman Louis Braille laid the foundations
for the system of reading and writing named
after him, the Braille system, a code in which
letters are represented by raised dots (Figure
2), he could not have suspected that nearly
two centuries later it would still be a suffi-
ciently interesting and topical subject to be
worthy of your attention in this journal.
During the intervening time, blind people all
over the world have been using the Braille
method to read and write, and no other sys-
tem has ever threatened to replace it. And, in
my opinion, this is no accident; the fact is, the
system is hard to improve on. For those of us
without sight, what could be better than to
read with our hands and, our fingers being the
way they are, we are not equipped to use

smaller or thinner letters, or use characters of
a more complicated design.

I remember the Optacon (Optical-to-
Tactile Converter), which was probably the
first device to put electronic technology at the
service of blind people. It was, and in fact still
is (I still use mine) a machine developed in
1963 at Stanford University, California, by
Prof. John Linvill, which worked by scanning
printed paper and making hundreds of little

Carmen Bonet-Borrás has a BSc in
Mathematics from the Universidad Com-
plutense de Madrid, Spain. She is Sys-
tems Engineer at IBM España, member
of ONCE (Organización Nacional de
Ciegos de España – Spanish National
Organisation for the Blind), and member
of the Working Group on Informatics and
Disabilities of the Spanish CEPIS society
ATI (Asociación de Técnicos de Infor-
mática.) <carmen.bonet@is.ibm.com>

Figure 1: Photo of The Author at Age 6,
for Her ONCE (Spanish National
Organization for the Blind) Card.

Figure 2: The Alphabet Braille – Spanish Version (Source: The Caragol Foundation).

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.upgrade-cepis.org

UPENET

78 UPGRADE Vol. V, No. 5, October 2004 © CEPIS

pins in the shape of the letters vibrate on a pad
under the user’s index fingertip (Figure 3).

However, this device had a very short life;
it came on the market in the late 70s and was
useful to some of us for a while. It was the tool
with which I started out on my career as an IT
professional, although, in spite of its great in-
trinsic value as a tool enabling blind people to
read printed texts directly, it did not really
catch on, mainly due to its poor performance.
Because of the complex shape of letters and
the variables created by varying print quality,
different types of paper, etc., the reading
speed attained by most users was not high
enough to meet their everyday needs. And
over time, new developments offering access
to reading materials have taken its place.

Meanwhile, Braille lives on.
And not only does it live on, but it has been

given new life, has been renewed and is grow-
ing under the influence of the new technolo-
gies. The arrival of computers gave rise to the
idea of computerized Braille and whole new
horizons opened up. The number of different
characters which can be represented by 6 dots
is 64. For literature, by using the trick of
sometimes doubling up characters, this was
enough, but for computer use it is simply not
sufficient. For a start, doubling up characters
is not viable because it causes an imbalance
between the original text and the Braille
representation (screen, Braille display),
which could create problems, and there are
also far more characters to represent. The
solution was to switch to an 8 dot Braille
system, giving 256 characters, which is anoth-
er kettle of fish altogether.

But there is an unresolved issue concerning
Braille: each country has drawn up its own
character correspondence table and there is an
urgent need for these tables to be standardised
and for the differences between one country
and another to be ironed out as soon as possi-
ble. I recently heard that the ONCE (Organ-

ización Nacional de Ciegos de España –
Spanish National Organisation for the Blind,
<http://www.once.es>) is addressing this
problem, so I expect some progress to be
made in this area soon.

Innovative new ways of producing the
raised dots used in the Braille system are also
being tried out. The normal method up until
now has been to perforate the paper, but there
has been a constant search for alternative
methods which, little by little, is bearing fruit.
The application of new serigraphic tech-
niques, whereby tiny drops of very special
plastic substances are stuck to the paper in
order to achieve an equally legible relief print-
ing effect, is particularly interesting. This
technique is being used for visiting cards, for
example, and it may be a good alternative for
certain situations such as labelling on card-
board, or for other cases where the text is
short and repetitive.

2.1 Who Uses Braille?
Braille is a reading and writing system for

all visually impaired people whose residual
vision is not sufficient to make use of the
methods available to people with unimpaired
sight. We should also include in that group
visually impaired people who, while still able
to manage a pen, have been diagnosed as hav-
ing a certain risk of their residual vision being
reduced or lost altogether.

It is true that there is a certain relation
between age and the difficulty of learning
Braille due to physiological reasons, since the
sense of touch of an adult’s finger does not
develop in the same way as that of a child.
This may give rise to a degree of resistance in
some adults with acquired blindness, to the
extent that the sense of touch of a person who
goes blind very late in life may not even
develop enough to cope with Braille at all.
But, in any event, everyone should try to learn
it, since everyone, whether blind or sighted,
should be able to read and write. We should do
everything in our power to prevent adults who
lose their sight from becoming what we have
come to call functional illiterates; in other
words, people who know how to read and
write but are unable to make use of that skill.
We should therefore make a special effort to
break down the resistance to learning of
sufferers of late onset blindness, and involve
and commit them to learning Braille by
making every possible resource available to
them.

There is another group of people for whom
the use of Braille is even more vital. These are
the deaf and blind, for whom listening as a
substitute for reading in order to access the
written word is not an option.

Another group of blind people who would
find life very difficult without Braille are
musicians and music students. Musical nota-
tion is complex enough to begin with, but
when it comes to converting all the informa-
tion contained in a five-line staff into dots, I
cannot even begin to imagine what it would be
like ‘listening’ to an entire score.

2.2 Braille and Daily Life
But is Braille so important? Braille is by

turns convenient, necessary or indispensable,
from first thing in the morning to the last thing
at night. If, as I believe we should, we intend
to give blind people the greatest degree of self
sufficiency in their everyday life (as in any
other facet of life), such self sufficiency will
be all the more viable and real the more
knowledge they have of their environment
and the less they have to depend on the help of
a sighted person.

So, if the first thing we do after getting up
is to get under the shower, what better way to
start the day than by being able to identify the
shower gel or hair conditioner by its name,
printed on the containers in Braille by the
manufacturers? If I have two similar pairs of
trousers and I don’t want to put the wrong pair
on by mistake, the one which doesn’t go with
the coloured sweater I’ve picked out to wear,
wouldn’t it be good if easily confused clothes
could be labelled in Braille with their colours?
If I want to choose between full fat and semi-
skimmed milk, or pick out the CD I want to
listen to, I have no option but to label them, in
Braille of course, because I can think of no
other way round the problem. And so on,
throughout the whole day.

Packaged foods, canned and bottled foods,
soft drinks... should all reach the shops appro-
priately labelled in Braille, especially medi-
cines due to the particularly dangerous conse-
quences of a mix up.

With perseverance and effort, and by using
our memory to the full, trying to be very
ordered and systematic, and inculcating the
people with whom we live with the same
attitudes, we can alleviate the problem of not
being able to read. But there can be no doubt
that the correct identification of the things
around us would be a major contribution to
our quality of life.

This idea is far from being a fantasy. Prod-
ucts from brands such as Pescanova (frozen
foods) or Doña Jimena (confectionery and
biscuits), Sanex (soap) or some models of
Newpol washing machines, plus a number of
medicines, have turned this idea into a reality.
We need to keep up the pressure so this
becomes the rule rather than the exception. A
good example to follow is that of lifts: there is
a regulation regarding safety measures,

Figure 3: The Optacon Device (1978
Version).

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.upgrade-cepis.org

UPENET

© CEPIS UPGRADE Vol. V, No. 5, October 2004 79

dimensions, the control panel... and it is nice
to be able to go to a building and reach the
door you want without it having to be on the
ground floor.

It is up to blind people to be skilled in
Braille and benefit from this effort. That way
we can avoid having to change the menu at the
last minute because that can of tomato sauce
we opened for spaghetti turned out to be green
beans. Reading, as a gateway to culture, study
and as a leisure activity in general, plays an
important role in everyday life, and if you can
read in Braille, so much the better.

2.3 Reading by Listening
Isn’t listening to a talking book reading? If

we look up the Spanish words leer (read), oír
(hear), and escuchar (listen) in the Spanish
Royal Academy dictionary, 2001 edition, we
find the following definitions:

Leer (From the Latin legere).
1. Vb tr. To look at something written or

printed while understanding the meaning of
the characters used.

2. Vb tr. To understand the sense of any
kind of graphic representation. To read the
time, a musical score, a plan.

3. Vb tr. To understand or interpret a text in
a certain way.

Oír (From the Latin audire).
1. Vb tr. To perceive sounds with the ear.
Escuchar (From the vulgar Latin ascultare,

Latin auscultare).
1. Vb tr. To pay attention to what is heard.
We can see that according to the first two

definitions of the word leer (read), the answer
to the above question would be no, but
according to the third definition the answer
would be yes. Far from being contradictory,
the two answers are in fact complementary. It
is a matter of addition, not confrontation. The
most important thing, over and above any oth-
er consideration, is to access information, and
if we are discovering the literal content of a
book, there can be no objection to calling that
reading, whatever the method used to access a
book. Nevertheless, since everything is rela-
tive, I would choose listening as better than
nothing, but I would go for reading over
listening every time.

Ideally each user would be able to choose,
something which doesn’t happen very often.
After many years’ experience of doing both
things, I am in no doubt about my priorities
and I have to admit that, although there may
be occasions when I decide to read by listen-
ing, these are few and far between, because
you can get into a book more by using your
hands than using your ears.

Human beings are characterised by our
ability to think and express ourselves through
language. Reading and writing, together with

speaking and listening, are the ways we
express ourselves through language, ways
which we should not and cannot give up.
Reading with our fingers makes it possible for
us to read at our own pace, with our own into-
nation, and allows us to appreciate the style
and content of what we are reading, thereby
creating that dual link with the written word
that cannot be achieved by any other method.
When we read with our ears, firstly we are
deprived of knowing how something is writ-
ten, and secondly, we lose a certain amount of
the content, since the text has already been
partly ‘interpreted’ by the person reading it
out loud. And worse still if it’s a machine
reading the text (a technology already in an
advanced stage of development); then we will
have all the functionality we need, but as for
pleasure...

In my case at least, if what I have to read is
even slightly complicated, includes a large
number of figures or requires a certain degree
of analysis, memorisation or study, reading it
in Braille allows me to perform at a much
higher level than if I have to listen to it; listen-
ing only works for me when it’s an easy and
superficial text, because I find it very hard to
avoid distractions, and if I’m just a little tired,
I drop off into a delicious snooze, especially if
the reader has a pleasant voice. I’ve asked a
great many of my colleagues about this
matter, and all of them who are at least mini-
mally fluent in Braille agree with me.

And by the way, reading with your ears can
come in handy when you have a big pile of
ironing to do; there’s a time and a place for
everything!

3 Technology at The Service of The Visually
Impaired Readers

3.1 How Can Technology Help Me when
I’m Reading?

To a greater or lesser extent, technology is
already present in the day to day life of every
citizen, including those with impaired vision,
and has an influence, not always, and not
necessarily a positive one, but a considerable
influence nonetheless, on everything we do. I
will leave it to the sociologists to assess and
analyse this general influence: in this article I
will limit myself to analysing where we are
and where we want to go with regard to texts
and access to texts. And the first thing we need
to understand is that this issue cannot be dealt
with in isolation from the general context.

These days we make use of technology for
all reading associated activities:
• In order to produce reading material
• In order to produce alternative reading

mechanisms to replace paper or audio cas-
settes

• In order to make a radical change to the way
we read: browsing, querying...
Bibliographical production, whether in

Braille or in print, is inextricably linked to
technology, and blind users wishing to make
use of the material produced by this technolo-
gy will also need to evolve and adapt to new
ways of reading. In addition to the normal
methods involving paper or cassettes they will
need to use standalone devices or, better still,
PCs, even if this involves making an extra
effort to acquire general computer skills and
learn how to handle adaptations for blind
people or visually impaired users (at user
level, naturally, not at expert level; we’ll leave
that for the producers). Given that all
published material is stored on a digital medi-
um, if this medium were available to blind
people then logically we would have potential
access to everything that is ever published.
But the issue is not so simple.

3.2 What Medium Should A Publication Be
Stored On So That A Visually Impaired
Reader Can Access It?

An analysis of the great variety of digital
media around these days – text format, graph-
ics format, Internet file (basically HTML),
preprint layout... – is far beyond the scope of
this article. The choice of medium is up to the
producer of the material, since there are all
kinds of manipulation tools capable of
converting any input source –keyboard,
scanner, voice – into the desired format,
depending on various criteria, not the least of
which is personal preference.

Let’s leave that part of the problem to be
solved by the tools which serve as an interface
between the computer and the visually
impaired person, and let us focus on the range
of products that those interfaces allow us to
use, bearing in mind that our choice of solu-
tion is also conditioned by which interface
tool we use, which in turn is dependent on our
operating system, while even the computer
itself (type, make) can have an influence. In
other words, we need be careful not to make
sweeping generalisations but rather speak in
terms of probabilities. At the moment, and I
stress ‘at the moment’, because of the break-
neck speed of development of software and
even the very operating systems themselves,
we can access information in Microsoft Word,
Wordpad, Notepad, PDF, TFL, Daisy, HTML
and others.

3.3 What Aids Does A Visually Impaired
Person Have Access To?

Depending on a number of factors, such as
residual vision, degree of computer literacy,
disposable income, training, personal prefer-
ences, users will try to read in whatever way

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.upgrade-cepis.org

UPENET

80 UPGRADE Vol. V, No. 5, October 2004 © CEPIS

they find easiest or most pleasurable, and
there are a number of different kinds of inter-
faces to choose from:
• Computer installed screen magnifier.
• Computer installed voice synthesized

screen reader.
• Computer connected Braille display.
• Braille printer for producing paper books.
• Standalone voice device.
• Standalone Braille device.
• Computer installed voice operated Internet

browser.
Each type of interface has its pros and cons

which I will not be going into either exhaus-
tively or systematically. I will, however, be
mentioning them all briefly with a relevant
example, keeping the focus always on reading
as my main purpose.

At the risk of stating the obvious, let me say
that no one interface is better than another;
each reader should be able to use whichever
interface is best suited to his or her particular
circumstances.

Nowadays the range of available products
covers every possible facet of the problem.
However, it is clear from the outset that
Braille is losing the battle to voice. While
users of voice screen readers can, in the main,
make use ordinary technology applied to that
purpose, any solution using Braille requires at
least some specialized technology, which
inevitably pushes up the final cost. Since all,
or nearly all, Braille users can also hear, voice
based solutions tend to come out on top. If we
look just at standalone devices for blind peo-
ple, voice solutions far outstrip Braille based
ones, both in quantity and in price. And there
are a hundred talking Braille devices in circu-
lation for every device with a Braille output.
However, neither the number of users nor the
cost should be the priority factor with regard
to the research and marketing of these kinds
of aids, or the transcription of books into
Braille. Instead we need to create mecha-
nisms, funded by state subsidies, or subsidies
from other suitable organisations, such as the
ONCE (Spanish National Organisation for the
Blind), to counteract this trend and thereby
prevent the use of Braille from being limited
to those who are both visually impaired and
wealthy, circumstances which do not neces-
sarily go hand in hand.

3.4 What Braille Displays Or Printers Are
on The Market Nowadays?

Braille displays are devices which can be
connected to a computer to enable users to
read the text which appears on the screen in
Braille. Their size will depend on the number
of characters they can represent at any one
time (20, 40, 70, 80). Their weight has been
steadily coming down and they are not as

weighty nowadays as when they first came
out.

They do not normally have batteries,
although there are some on the market which
come equipped with them. 70 or 80 character
devices could be said to be transportable,
though not really portable. Each cell is a
separate element within the display. They are
built using highly resistant ceramic compo-
nents which are mainly what makes these
devices so expensive.

20 character displays tend to be used on
standalone devices such as notebooks, organ-
isers. For computer use the larger models are
recommended; these currently tend to have 70
characters rather than 80, because that 12.5%
reduction enables manufacturers to bring
down the price, weight and size, and for the
Windows environment it is considered to be
sufficient. In Spain, the supplier of Braille
displays is ONCE, which assembles and
distributes them exclusively for the Spanish
market. The model they are currently supply-
ing is the 80 character Eco Plus shown here in
Figure 4 (smaller models were ruled out due
to their poor price/quality ratio). They are
shortly to bring out the 70 character Satellite
display, selling for around 4,500 euros.

The first Braille displays to come on the
market were connected to the computer by
hardware (i.e. by a card). Nowadays the
design has changed and they are now
managed by software, and are under the
control of the screen reader; in other words,
it’s the screen reader that controls the device.
This means that in order to use Braille you
have to begin by operating a screen reader
which provides voice options, with the result
that the step of ‘adding’ Braille will often be
skipped. It also requires the existence of a
driver to enable the screen reader to recognise
the display; in other words, users will be lim-
ited in their choice of Braille displays to those
that their chosen screen reader can recognise.

The ONCE has already distributed among
its members, either for purchase (the least
common option), or as a workstation adapta-
tion, or as a study station adaptation, some

1,500 screen readers with Jaws software from
the company Freedom Scientific <http://
www. freedomscientific.com>. Some 1,100
Braille displays are supported by this chosen
screen reader package.

With regard to printers, ONCE supplies a
personal model, the PortaThiel, which prints
‘interpoint’ (doublesided) Braille at 14 char-
acters per second, at a cost of around 1,500 to
2,000 euros, depending on the customer (in
this case not exclusively in the Spanish
market). Plus a couple of professional
models: the Impacto Texto, which can print
250 characters per second (i.e. 800 pages an
hour) without a graphics connector, and the
Impacto 600 which is made to order and is
somewhat slower but does have a graphics
connector. For either device the price ranges
from between 13,000 and 14,000 euros. There
is currently nothing available in the mid-price
range, although older models of Thiel printers
cover this need.

Something which never ceases to amaze is
that, after all the years Windows has dominat-
ed the market, drivers for printers under
Windows have only become available rela-
tively recently. ONCE’s bibliographic pro-
duction centres are still working under MS-
DOS, although they are now finally planning
a switch to Windows.

3.5 How Do The New Forms of Reading
Benefit A Visually Impaired Person?

Braille books have been, are, and will
always be big and beautiful, and so it contin-
ues to be a practical impossibility to keep a
library of Braille books at home. However, if
the storage medium is a CD, how many books
could we keep? A whole shedload, if you’ll
pardon the expression. And if we can read that
CD by using device X which will also provide
us with a Braille version, we will have discov-
ered the first huge advantage. If, on top of
that, some of those CDs contain a dictionary
or an encyclopaedia, we will have another in-
credible advantage: that of putting reference
books within the reach of most blind people.
This is a substantial change which will benefit
a great many groups of people, especially
students.

Another fundamental improvement is the
possibility of accessing the content of a book
wherever you want – at a particular chapter or
at the index – and, in general, move around
the book with an ease which is simply not
possible with an audio cassette or a printed
book. In short, thanks to technology we will
be able to, and in fact we already can, read
more and better. And any effort we need to
make to adapt to a more complicated way of
managing reading material will be more than
repaid.

Figure 4: Ecoplus 80 Braille Display.

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.upgrade-cepis.org

UPENET

© CEPIS UPGRADE Vol. V, No. 5, October 2004 81

4 Digital Libraries

4.1 Where Can Digitalized Books Be Found
(Including on the Internet)?

I am sure there is no topic in the world
about which there is no information or docu-
mentation available on the Internet, so I am
equally sure that there are books on the Inter-
net. And there are. There are several web
pages where books are to be found, respond-
ing to different criteria, in different formats,
etc. etc., but books nonetheless, and a fair
number of them at that. But not only on the
Internet. They are to be found in other forms
too.

I will tell what I know as a user interested
in reading and technology, but before I begin,
I would like to make a plea for an exhaustive
and organised study of what there is, so we
can all benefit from the efforts being made by
various groups in several different directions
with the aim of creating digital libraries, pub-
licizing there existence, and making a wide
ranging and comprehensive bibliographic
collection available to blind people every-
where.

I view positively all the efforts made by the
ONCE and other institutions who are address-
ing this task so that we blind people can read,
but it is no secret that there is an overwhelm-
ing disproportion between the number of
books published and the number that are
available to blind people, and that there is
normally a long wait between wanting to read
a book and actually managing to read it, espe-
cially if the book has only just been published.
Or that there is an enormous lack of dictionar-
ies and encyclopaedias or reference books in
general.

4.1.1 A Few References of Spanish Literary
Works Available Online
• The Cervantes Virtual Centre (Cervantes

Institute) includes the following works in its
collection "Clásicos hispánicos",
<http://cvc.cervantes.es/obref/clasicos/>:

• Anon: Historia de Enrique, fi de Oliva.
Critical edition by José Manuel Fradejas
Rueda. Text and edition based on the first
edition of 1498.

• Gustavo Adolfo Bécquer: Rimas. Annotated
critical edition by Luis Caparrós Esperante.

• Miguel de Cervantes: Don Quijote de la
Mancha. Critical edition with commentary
by Francisco Rico, published by the
Cervantes Institute.

• Lope de Vega: El perro del hortelano. Edit-
ed by Rosa Navarro Durán.

• John Minsheu: Diálogos. Published by the
Cervantes Institute under the direction of
Jesús Antonio Gil. A bilingual book, origi-
nally, which was used to teach Spanish in

Tudor England. The first edition was in
1599.
The Cervantes Virtual Centre has also

published online an anthology of texts as
recommended reading intended for students
of Spanish as a foreign language. The section
is called Lecturas paso a paso and can be
found at <http://cvc. cervantes.es/aula/
readings/>.

There are other digital libraries in Spanish
on the Web, the best known of which is the
Miguel de Cervantes Virtual Library, <http://
www.cervantesvirtual.com/>, with its infant
and youth section, <http://www. cervantesvir-
tual.com/portal/platero/>. We should also
mention Libros en Red, <http://librosenred.
com>, and El Alpeh.com, <http://www.
elaleph.com/>.

4.2 Will I Be Able To Read, Legally,
Everything I Want to?

An important issue we still need to resolve,
at least here in Spain, is the matter of copy-
right. First we need to set up the necessary
legal channels and, at the same time, reach
agreements with the publishing houses, and
with the authors themselves if need be, to find
a solution so that whenever a book is
published, it is transmitted by the agreed
channel to a digital library accessible to blind
people, where the appropriate conversions or
adaptations can be made, in order to guaran-
tee both its protection and its accessibility. As
I understand it, this is absolutely viable today
with the technological resources we already
have, although it may not necessarily be a
simple task.

4.3 Are There Already Digital Libraries
For Visually Impaired People?

Although the degree of implementation
varies from country to country, the answer to
the question is yes. In 1996, in response to a
clear need, the DAISY Consortium <http://
www.daisy.org> was set up with a very spe-
cific purpose: to define an international stand-
ard for the production, exchange and use of
the new generation of digital talking books.

As a result, the standard known as DAISY,
an acronym of Digital Audio based Informa-
tion System, was created. This standard
complies with specifications for textual infor-
mation and its structure set out in the stand-
ards published by the World Wide Web
Consortium, <http//www.w3c.org>. The con-
sortium is a non-profit organization working
with third party companies, which over the
years has been developing the tools required
for the production and distribution of digital
talking books, from workstations and tools for
converting old analogical talking books, to the

new playing systems that will be needed in the
future.

Within the consortium there are two kinds
of members, full members (like ONCE), and
associate members. The difference between
the two types of members lies basically in the
rights to use the software developed through
the consortium. For full members there is no
limit to the number of licences they can use.

Alongside this software, some countries
have also developed related programmes,
which, as is the case of the Swedish state
library TPB (Library of Talking Books and
Braille, <http://www.tpb.se/english/index.
htm>) or the Japonese JSRPD (Japanese Soci-
ety for Rehabilitation of Persons with Disabil-
ities, <http://www.jsrpd.jp/index_e. html>),
are distributed to consortium members at no
cost. These include programmes for playing
digital talking books on a computer, such as
the Player 2000 from TPB, or for the produc-
tion of talking books, like the Japanese
Sigtuna.

Other countries are developing tools to
cover all aspects of talking book production,
such as the special editor created by the
Danish Library for the Blind, DBB (Dan-
marks Blindebibliotek, <http://www.dbb.dk/
English/>). In some cases these tools are free
and in others you have to pay – it varies from
country to country – though it should be noted
that the abovementioned programmes are
usually in the original language and in some
cases in English. One important aspect of this
project is the possibility of using voice syn-
thesisers to ‘record’ the books, which is a
great technological aid to reducing production
costs.

Based on this format, the library Book-
share, in the United States <http://www.
bookshare.org/web/Welcome.html>, is
already up and running and providing a free
service for US citizens, while, the Japanese
and the Swedes are also already in full
production.

In Spain, the ONCE already has more than
2,500 titles prepared. Currently all their
recordings are created in this format and be-
fore too long we can expect the trial period to
be deemed completed, whereupon this type of
talking book should be made available to all
the organisation’s members.

There are several types of talking book
players on the market, such as those produced
by the Canadian company Visuaide, <http://
www.visuaide.com/>, or the Japanese
Plextor. The Víctor, from Visuaide, is a desk-
top reading device which is very user friendly,
with large and well separated keys making for
easy operation – I see it as the modern version
of the traditional cassette player.

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.upgrade-cepis.org

UPENET

82 UPGRADE Vol. V, No. 5, October 2004 © CEPIS

Plextalk, from Plextor, <http://www.
plextalk.com/europe/>, is a reader-recorder
which can be used both as a player and as a
creator of DAISY books (figure 5). It has been
equipped with more functionalities and it is
rather more complicated than the previous
one if you want to make use of all its capabil-
ities. It can be connected to and operated via a
computer. Braille, however, is the great absen-
tee in this device. We will have to wait.

4.4 Are There Any More Libraries for The
Blind?

Our Argentinean colleagues have set up an
interesting experiment, which, to the battle
cry of “let’s scan and read, we are all broth-
ers” have created a library called Tiflolibros
which has just turned four years old and
already has more than 9,000 titles. This
library can be found at <http://www.
tiflolibros.com.ar> (Figure 6). They are doing
a magnificent job since, as well as sharing
experiences and pooling the expertise of a
large number of people, they have created
some proprietary software for the protection
of books which should not be accessible to
everyone. These books are created in a format
known as.TFL and require special software to
read them. This software is provided free of
charge to the library’s readers, and to register
as a reader you have to provide documentary
proof of your disability, thereby guarding
against copyright infringements by unauthor-
ised users. They have already successfully
signed an agreement with at least one publish-
ing house. And their effort is all the more
laudable given the fact that they are working
on a volunteer basis. The books in this library
are generated in various formats: Word, MS-
DOS, HTML, Braille, Adobe PDF, as well as
the special format we mentioned earlier,.TFL.
They can only be read via a computer so the
way they are read will depend on the interface
the user has, i.e. Braille, voice, or character
enlargement. They currently have 900 readers

spread all over the Spanish speaking world as
well as in countries where there are students
of Spanish.

Last November, in Colombia, ahead of 140
other projects, Tiflolibros won the Betinho
Communications Prize recognising people-
centred technology initiatives in Latin Amer-
ica and the Caribbean, awarded by the Asso-
ciation for Progressive Communications.

4.5 Are Only We Blind People Interested in
Digital Books?

By no means. If that were the case, there
wouldn’t already be so much bibliographic
material on the Web. However, I would say
that this is a culture which is changing, albeit
very slowly. While bibliophiles continue to
prefer printed books, with their characteristic
smell and feel, the use of digital formats for
dictionaries, encyclopaedias and reference
books in general is becoming ever more
commonplace.

At this point in time, the only digital book-
sellers that I have ever heard of has unfortu-
nately had to close down. The publishing
house RD Textos was created with the dual
purpose of creating a virtual bookshop, i.e. as
a business, and providing a service to blind or
visually impaired people by selling books at
modest prices in both HTML and in Braille.
This publishing house, set up with every legal
angle covered, including copyright, failed due
to a lack of turnover. The bibliographic
collections that they had prepared, which are
no longer under copyright, have been donated
to the Manuel Caragol Foundation, <http://
www.funcaragol.org/>, which has published
them on the Web, from where they can now be
downloaded free of charge. I am really sorry

that they failed because I believe they were
doing a good job.

4.6 Are There Any New Projects Underway
(‘Hybrid’ Books)?

Some time ago now, a new idea emerged
from Hungary which is now being developed
by various projects. The idea is to implement
a system using what we might call ‘hybrid’ or
mixed technology in such a way that any book
created by that technology could be read
either by voice or by Braille. If this project
comes to fruition, we would no longer have to
choose between voice and Braille when
adapting a book for blind readers.

These initiatives originally received fund-
ing from the European Copernicus project.
Later, in various stages, the country itself
financed the development of a special player
and the production of several books. Later
still, from France, the project Culture 2000
funded the development of a tactile compo-
nent, the 3T-book, <http://www.Braillenet.
org/Tbook/traduc.htm>. Now, once again
with local funding, they are currently working
on adapting the browser to an electronic
organizer type device. Among the benefits
expected from this hybrid technology are:
• The user can make searches for sequences

recorded in human voice.
• The user can read texts recorded in human

voice on a Braille display.
• It is already prepared for use with various

browsers.
• Tools are already available for creating

books in this format in Hungarian, French
and Italian.

• Blind people can use digital book creation
tools in this format.

Figure 5: Plextalk Reader-Recorder,
from Plextor.

Figure 6: Argentinean Portal Tiflolibros, <http://www.tiflolibros.com.ar>.

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.upgrade-cepis.org

UPENET

© CEPIS UPGRADE Vol. V, No. 5, October 2004 83

There is already a prototype of the reader
with a Braille keyboard, CD-ROM, and sever-
al CDs in the three available languages
(French, Italian and Hungarian). In my opin-
ion this is a very interesting project, because
being able to decide on the fly how you want
to read will make it possible to get the best out
of both worlds. Why force a decision if it can
be avoided?

5 Conclusion: Braille as Pleasure And Cul-
ture

Can Braille be a source of enjoyment? I
think the answer is clear throughout this
article, but before I close, let me repeat that I
wholeheartedly support Braille as provider of
pleasure, leisure and enjoyment; reading is
one of the treasures which I would not give up
for the world. To touch a book, feel it under
my fingers, caress it and immerse myself in all
the wonderful literature that has been written.

We blind people also deserve to savour the
pleasure of reading José Hierro or José
Saramago but, without Braille, it would be
like looking at faded, discoloured painting.
Now, with the aid of technology, the aim of
reading any book right away should become
true for blind people.

In the pursuit of standardisation, for the
sake of the blind, let’s read.

Translation by Steve Turpin

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.upgrade-cepis.org

UPENET

84 UPGRADE Vol. V, No. 5, October 2004 © CEPIS

Information Technology in Todays’ Organizations

Is The IT Productivity Paradox Resolved?

Kyriakos E. Georgiou

© Pliroforiki 2004
This paper was first published, in English, by Pliroforiki (9th issue, September 2004, pp. 23-28). Pliroforiki , (“Informatics” in Greek), a found-
ing member of UPENET (Upgrade European Network), is a journal published, in Greek or English, by the Cyprus CEPIS society CCS (Cyprus
Computer Society, <http://www.ccs.org.cy/about/>)

This article addresses the issue of the Infor-
mation Technology (IT) Productivity Paradox.
The paradox was formed as a result of the
apparent failure of substantial investments in
IT to produce the desired results. The main
school of thought in the USA uses economet-
ric studies to measure the effect of IT on the
performance of firms, sectors of the economy
and the economy as a whole. This line of work
comes under criticism from the European
(read British) school of thought that consider
it as too simplistic and one dimensional. Most
recent research work suggest a highly positive
relationship between investment in IT and or-
ganizational performance. The main empha-
sis of the research these days is to determine
the business value of IT.

Keywords: Business Value of IT, Econom-
ics, Information Technology, Information
Technology Paradox, Productivity, Produc-
tion Functions.

Introduction
The issue of the effects, if any, that Infor-

mation Technology (IT) has on the productiv-
ity of organisations has been one of the most
critical issues in the IT field [Blake, 1994],
[Brancheau. et. al, 1996]. The topic has ex-
tended beyond the boundaries of academia
and it has captured the attention of the press
[Bowen, W. 1986, Magnet 1994], Business
Week 1993], the mass electronic media as
well as the policy makers all over the globe.
The term “information technology paradox”
has entered the lexicons and everyday conver-
sations. Organisations, researchers, policy
makers and the press have begun to question
the benefits for organisations from their sub-
stantial investments in IT.

Productivity
Productivity is a measure of performance

and the only measure of competitiveness. It
can be defined as the relationship between the
inputs applied and the outputs that result, that
is to say, the ratio of outputs to inputs. Outputs
can be any combination of goods, products, or

services whilst inputs can be human or mate-
rial resources transformed in the process. Pro-
ductivity is directly related to efficiency and
effectiveness.

Efficiency refers to the optimal utilization
of existing resources. In economics efficiency
is the ratio of what an organization actually
produces and what it could optimally produce
with its existing resources, knowledge, and
ability. Effectiveness refers at a minimum
with the achievement of the goals of the
Organization. A more proper definition attrib-
uted to Peter F. Drucker (1995) is the ability to
expand the limits of the organization in terms
of the opportunities to produce revenues, to
create markets and to change the economic
characteristics of existing products and mar-
kets. In the long term effectiveness is much
more important for sustained productivity.

Traditional measures of productivity which
has its roots in industrial engineering and
agriculture do not address properly intangible
factors such as product and service quality,
variety and reliability and customer satisfac-
tion. These intangible factors are key ele-
ments of competitive success in the strategy
and marketing literature.

The Theoretical Background
Virtually all the studies before the late

1980’s do not show a significant positive
impact of IT on the productivity of organisa-
tions. This phenomenon led Dr. Robert Solow
of MIT back in 1987 to comment that com-
puters can be seen “everywhere except in the
productivity statistics” (Solow). More recent-
ly there was a shift in this thinking since most
recent studies show a positive relationship
between investment in IT and the productivi-
ty of the firm.

Researchers in the field among others,
include Erik Brynjolfsoon of MIT and his as-
sociates at the MIT Centre of e-Business
(<http://ebusiness.mit.edu/>) and Lorin Hitt
of the University of Pennsylvania, Wharton
School of Business, associated with the MIT
team. In New York Yanis Bakos of the Univer-
sity of New York Stern School of Business

and Frank Lichtenberg of Columbia Universi-
ty. In California Kenneth L. Kraemer, Vijay
Gurbaxani, Nigel Melville and Ronald V.
Ramirez associated with the Centre for
Research on Information Technology and
Organizations (CRITO) at the University of
California at Irvine, <http://www.crito.uci.
edu/2>. These researchers have conducted
extensive research, utilizing econometric
analysis of multifactor productivity, in the
USA. This type of work, though, has come
under some criticism from other researchers
in the field most of them in the UK [Dan
Remenyi & Frank Bannister, 1999], [L. P.
Willcocks and S. Lester, 1996, 1997] and
[Jean Noel Ezingeard 1998].

Recent research has shown that longitudi-
nal three-to-five year firm level studies
demonstrate better results than single year
studies, or macroeconomic studies of sectors
of the economy or the whole economy [Hitt,
1996], [Mooney 1996], [Shu 1998], [Bryn-
jolfsson, E. and Hitt, L.M.1995a], [Brynjolfs-
son, E. and Hitt, L.M.,1995b], [Brynjolfsson,
E. and Hitt, L.M.,1996]. It appears that there
are at least four reasons for the positive results
of more recent studies:
(a) The sophistication of the research has

evolved substantially;
(b)IT has matured and is now a much more

powerful and useful set of tools;

Kyriakos E. Georgiou is one of the
editors of Pliroforiki , the journal of the
Cyprus Computer Society (CCS). He is a
Senior Manager for Professional Servic-
es for NetU Consultants. He occasionally
teaches management courses in local
colleges. He has a Bachelors degree in
Mechanical Engineering and a MBA,
both from the University of Houston,
Houston, Texas, USA. The efficient and
effective use of IT in organizations is one
of his main professional and academic
interests. <Kyriakosg@netu.com.cy>

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.upgrade-cepis.org

UPENET

© CEPIS UPGRADE Vol. V, No. 5, October 2004 85

(c) Organisations as a whole have been more
successful in using IT in the context of
achieving business objectives; and

(d)In most cases successful IT implementa-
tion is coupled with organizational change.
Organizational change programs include
employee participation programs, Total
Quality Programs and Process Reengi-
neering.

The first studies on IT productivity origi-
nated back in the 1970’s. However there is a
general agreement among the research com-
munity that those early years are not really
representative. In the 1980’s and early 1990’s
when the term the “IT productivity paradox”
was coined by Baily and Gordon (1988) most
of the studies showed negative correlation
between capital expenditures on IT and meas-
ured productivity gains. Over the years since
then, the balance has shifted towards more
positive results.

Most researchers, though, it seems that they
have a more or less ideological position on
either side of the argument and most of their
work is in support of this a priori ‘ideological’
position. As Bakos (1995), states “(we) put to
rest once and for all the old idea that comput-
ers are not productive”. Quinn and Baily
(1994) add the point that “(if) managers did
not think IT improved performance, they
would not have continued to invest so heavi-
ly” .

It is fair to say that the empirical results that
most academic researchers, in the USA, reach
these days show positive returns on IT invest-
ment. The work of Bryjolfsson and Hitt
(1993; 1994; 1996) and Lichtenberg (1995)
among others are along these lines. On the
other hand the work of Paul Strassman (1985;
1990; 1997) and Stephen Roach (1989a;
1889b; 1996) point in the opposite direction.

There are two fundamental research ques-
tions:
1. Does IT offer the potential to enhance pro-

ductivity and firm performance?
2. If IT provides potential benefits how do

organizations manage and use IT to
enhance productivity and create value?

In general the field is influenced by
research carried out in the USA and not
enough attention is paid to research carried
out in the United Kingdom. Established prac-
titioners in the field there include Professors
Arthur Money, Dan Remenyi and Twite, A.
[Remenyi et al. 1993], Jean Noel Ezingeard
(1998) associated with Henley College but
also L.P. Willcocks and S. Lester (1996, 1997)
associated with Oxford just to name a few.

Most British researchers are critical of the
economic approach that American research-
ers prefer. Brynjolfsson (1993) for instance in
order to reinforce the point that the economic

production theory provides an excellent meth-
od for measuring the efficient application he
writes “the bottom line of any technology is
not how it changes work, but whether it
increases productivity.” Remenyi and Bannis-
ter (1999) on the other hand quoting a similar
point from the same article suggest that “This
narrow perspective is (perhaps deliberately)
limited in its understanding of the nature of IT
value”. Along the same lines Ezingeard
(1998) suggests that there is now a recogni-
tion that evaluation should be concerned with
more than simple ‘efficiency’ metrics. Aca-
demic techniques and constructs have yet to
be widely adopted by practitioners. The
emphasis in research should be placed on the
impact that IT has on the entire organisation.

In any case the following statements are
practically universally accepted:
1. The findings of IT productivity impacts

research are inconclusive. This is a major
theme of all the research in the field and it
is precisely the issue that gave rise to the
term “Productivity Paradox”.

2. Firm level research offers more meaningful
results in terms of accuracy and reliability
as opposed to economy, industry and
sector levels research. The reason for this
is that beyond the firm level the data
becomes difficult to use because it con-
tains items that cancel each other out.

3. Longitudinal designs are more appropriate
rather than single year or cross- sectional
ones. Longitudinal designs are more in
line with the process nature of the IT
implementation.

4. More recent research is more probable to
show a positive correlation between in-
vestment in IT and business performance.

The Econometric Model
The development of reliable, consistent and

meaningful techniques for assessing the rela-
tionship between investments in Information
Technology (IT) and firm performance is a
very crucial issue since it lies in the centre of
the research in this field. The emphasis of the
literature review is on ex post measurement of
the impacts of IT investments on firm
performance rather than ex ante evaluation of
the potential impact of proposed IT systems.

The role of firms in the economy is to
produce goods and services called in generic
terms “outputs of production”, utilising a
number of inputs that can be grouped into five
groups namely capital (K), labour (L), energy
(E), materials (M) and purchased services (S).
Using different quantities of each production
input that best suit its needs a firm tries to
compete in the market and produce the most
optimum product mix. In this presentation
one form of production input can be replaced

by another. The most common substitution is
capital and outsourcing services for Labour.
In a more formal presentation as a production
function (F) these relations can be presented
as:

Y = F (K, L, E, M, S) (1)
In studies of the productivity of IT the two

most important independent variables are
Capital (K) and Labour (L) that have two
components each. One component is associat-
ed with the use of IT identified by (1) and the
other refers to non IT related forms of capital
or labour identified by (0).

I believe that an extension of the theory
would be to examine how purchased services
(outsourced services) affect the productivity
of firms. This is important since outsourcing
has become an integral part of the application
of IT. Jablonski (1995) uses a production
function that includes capital, labour and
intermediate purchases to measure multifac-
tor productivity in the U.S. textiles sector.
Also Brynjolfsson and Hitt (2000) in a MIT
Working Paper are extending their previous
work and include Research and Development
(R&D) as the third independent variable. On
the other hand energy (E) and Materials (M)
are of lesser significance especially when it
comes to firms in the service sector of the
economy. In this case the production function
should include purchased services (S) and it
should look like this:

Y = F (K0, K1, L0, L1,S0,S1) (2)
The Cobb–Douglas model is used nearly

exclusively in previous IT Business Value
research at the firm level [Bryjolfsson and Hitt
1996], [Gurbaxani, et al. 1998], [Lichtenberg
1995]. Empirical research has proved that this
model is a reasonable model for estimating
the returns to IT investment. A basic Cobb-
Douglas production function has the follow-
ing form:
Y = A K0β1 K1β2 L0β3 L1β4 S0β5 S1β6 (3)

The term A is the technical efficiency of a
or Multifactor Productivity (MFP). MFP
signifies contribution to output that is not
accounted for by inputs to production. By
taking logs the Cobb-Douglas model would
take the form:
Log(Y) = α + β1logK0 + β2logK1 + β3logL0

+ β4LogL1 + β5logS0 + β6logS1 (4)
In more complete form equation (4) has

three control variables that account for time
(t), industry (j) and the specific firm (i). By
introducing these variables the production
function takes the form:
Log(Ytij) = αtij + β1log K0tij + β2logK1tij +

β3logL0tij + β4LogL1tij + β5logS0tij +
β6logS1tij (5)

The coefficients (βi) represent the output
elasticity of input i and their estimation repre-

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.upgrade-cepis.org

UPENET

86 UPGRADE Vol. V, No. 5, October 2004 © CEPIS

sents the contribution of IT investment to firm
output.

The Cobb-Douglas production functions
has two general assumptions:
1. The elasticity of substitution is assumed to

be constant and unitary. This implies that
an n percent change in the marginal rate of
technical substitution will yield a n percent
change in input mix.

2. It exhibits constant returns to scale that is
if all inputs increase by a factor n then out-
put increases by factor n.
And β1+ β2 + β3 + β4 + β5+ β6 = 1 =>

∑ βi = 1 (6)
Reading through the literature review a

reader can truly appreciate the methodologi-
cal and theoretical issues that form the core of
the research. This type of research is carried
out using essentially secondary data and the
researcher has to make a lot of assumptions in
order to fit the data into the model. These
assumptions and the way they operationalise
their variables at the end of the day can have a
significant effect on the result of the research.
Also the sample size can be problematic as
many of the studies are based on a limited
sample size of even less than 50 observations.
I believe that primary data from a respectable
sample size of at least 100 organisations over
a three to five year period interval within the
context of a given economy will probably
provide a better set of data for running this
type of analysis.

Both Brynjolfsson-Hitt and Lichtenberg in
their respective work are using sales revenues
as their output variable of the production
function. Other researchers such as Stewart
(1991), Drucker (1995) and Strassmann
(1997) and Ramirez (2003) suggest that EVA
(Economic Value Added) is a more appropri-
ate and objective measure of an organisation’s
productivity and performance and they also
suggest that it is used as the output or depend-
ed variable. EVA is defined as the return on
capital minus the Weighted Average Cost of
Capital (WACC) multiplied by the capital
outstanding at the beginning of the year
(Steward, 1991).

The Hypotheses
The core research question is the relation-

ship between investments is IT and firm level
productivity. Based on the model developed
in the previous section a number of hypothe-
ses can be formulated to provide the desired
answers. The hypotheses evolve around the
marginal products, or the related parameter of
the output elasticity of the independent varia-
bles.

By taking derivatives of equation (5) the
output elasticity of input X becomes

Bi = d log (Y) / d log X =
(dY / dX) (X/Y) = MP (X/Y)

Where MP is the marginal product of vari-
able X.

There are a number of hypotheses that one
can draw based on these formulations but for
the purpose of this exercise we concentrate on
those that have proven more powerful and
interesting [Money, 1996], [Lichtenberg
1995], [Bryjolfsson and Hitt, 1993]

Hypothesis 1. The marginal product of IT
capital (K1) is positive.

More formally we test the hypothesis
H0 : β2 ≤ 0

Against the alternative hypothesis
H1 : β2 > 0

Hypothesis 2. The marginal product of IT
capital (K1) is significantly higher than the
marginal product of non-IT capital (K 0)
relative to their rental price.

MP1 / MP0 ≤ R1/R0
More formally we test the hypothesis

H0 : β2 – (R1 K1 / R0 K0) β1 ≤ 0
Against the alternative hypothesis

H1 : β2 – (R1 K1 / R0 K0) β1 > 0

Hypothesis 3. The marginal product of IT
labour (L 1) is positive.

More formally we test the hypothesis
H0 : β4 ≤ 0

Against the alternative hypothesis
H1 : β4 > 0

Hypothesis 4. The marginal product of IT
Labour (L 1) is significantly higher than the
marginal product of non-IT labour (L 0)
relative to their respective wage rates.

More formally we test the hypothesis
H0 : β4 – (W1 L1 / W0 L0) β3 ≤ 0

Against the alternative hypothesis
H1 : β4 – (W1 L1 / W0 L0) β3 > 0

Hypothesis 5. The marginal product of IT
Services (S1) is positive.

More formally we test the hypothesis
H0 : β6 ≤ 0

Against the alternative hypothesis
H1 : β6 > 0

Hypothesis 6. The marginal product of IT
Services (S1) is significantly higher than the
marginal product of non-IT Services (S0)
relative to their rental price.

More formally we test the hypothesis
H0 : β6 – (R1 S1 / R0 S0) β5 ≤ 0

Against the alternative hypothesis
H1 : β6 – (R1 S1 / R0 S0) β5 > 0

Conclusion
Like in any research the application of pro-

duction theory to firm level studies has certain
strengths and potential short comings, mainly
the linearity of the function. Although the
method is quite robust, reliable and estab-
lished the search for the perfect productivity
measure is still an elusive target, especially in
a relatively new field such as IT. Intangible
attributes such as service and product quality
are hard to quantify and measure and there is
always the argument that, unlike work in a
production environment, measuring produc-
tivity in a knowledge work environment is not
appropriate. All these factors add to the
complexity of the issue but do not subtract
from its importance.

The econometric approach is one of a
“black box” where the researcher knows very
little of what actually goes on within the
“black box”, that is, the firms in question. In
the next instalment of the article we are going
to explore some of the issues, strategic and
behavioural, that take place within the “black
box” and explore the business value of IT.

References
[M. N. Baily and R. J. Gordon, 1988]

“The Productivity Slowdown, Measure-
ment Issues and the Explosion of Com-
puter Power”, The Brookings Institution,
Brookings Papers on Economic Activity:
pp 347–431.

[J. Y. Bakos,1995]
“Are Computers Boosting Computers”,
Computerworld, March 27:128–130.

[Ives Blake, 1994]
“Editors Comments: Probing the Produc-
tivity Paradox”, MIS Quarterly 18(2).

[W. Bowen, 1986]
“The Puny Payoff From Office Comput-
ers”, Fortune, May 26.

[J. C. Brancheau, B. D. Janz, J. C. Wetherbe,
1996]
“Key Issues Information Systems
Management: 1994–95 SIM Delphi
Results”, MIS Quarterly, June: 225–242.

[E. Brynjolfsson and L. M. Hitt, 1995]
“Productivity without Profit: three Meas-
ures of Information Technology’s Val-
ue”, 15th International Conference on
Information Systems.

[E. Brynjolfsson and L. M. Hitt, 1995]
“Information Technology as a Factor of
Production: The Role Differences among
Firms”, Economics of Innovation and
New Technology 3(4): 183–200.

[E. Brynjolfsson and L. M. Hitt, 1996]
“Paradox Lost? Firm Level Evidence on
the Returns to Information Technology
Spending”, Management Science 42(4):
541–558.

[E. Brynjolfsson and L. M. Hitt, 2000]
“Computing Productivity: Firm-Level
Evidence”, MIT Working Paper.

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.upgrade-cepis.org

UPENET

© CEPIS UPGRADE Vol. V, No. 5, October 2004 87

[Business Week 1993]
“The Technology Payoff: special report”,
Business Week, June 14 1993: 56–79.

[Peter F. Drucker, 1995]
“The Information Executives Truly
Need”, Harvard Business Review 73(5):
54–62.

[J. N. Ezingeard, 1998]
“Towards Performance Measurement
Processes for Manufacturing Informa-
tion Systems”, 5th European Conference
on the evaluation of Information Tech-
nology, Reading U.K.

[Lorin M. Hitt, 1996]
“Economic Analysis of Information
Technology and Organization”, Disserta-
tion, Massachusetts Institute of Technol-
ogy.

[V. Gurbaxani, N. Melville, and K. Kraemer
1998]
“Disaggregating the Return on Invest-
ment to IT Capital”, ICIS Proceedings
1998.

[M. Jablonski 1995]
“Multifactor productivity: cotton and
synthetic broadwoven fabrics”, Monthly
Labour Review, July 1995: 29– 38.

[F. R. Lichtemberg, 1995]
“The Output Contributions of Computer
Equipment and Personal: A Firm- Level
Analysis”, Economics of Innovation and
New Technology, 3 201–217.

[Myron Magnet, 1994]
“The Productivity Payoff Arrives”, For-
tune, June 27: 79–84

[John G. Mooney, 1996]
“The Productivity and Business Value of
Information Technology Economic and
Organizational Analysis”, Dissertation,
University of California, Irvine.

[J. B. Quinn and M. N. Baily, 1994]
“Information Technology Increasing
Productivity In Services”, Academy of
Management Executive, 8,3: 28–48

[Ronald Vincent Ramirez, 2003]
“The Influence of Information Technolo-
gy and Organizational Improvement Ef-
forts of the Performance of Firms”, PhD
Dissertation, University of California at
Irvine.

[Dan Remenyi, Frank Bannister, 1999]
“In Defence of Instinct: Value and IT
Investment Decisions”, Henley Working
Paper HWP 9914.

[D, S. J. Remenyi, A. Money, and A. Twite,
1993]
A Guide to Measuring and Managing IT
Benefits, 2nd Edition, NCC Blackwell
Oxford England.

[Dan Remenyi, Michael Sherwood-Smith,
and Terry White, 1997]
Achieving Maximum Value from Infor-
mation Systems: A Process Approach,
John Wiley and Sons Ltd. West Sussex
England.

[Stephen S. Roach, 1989a]
“Pitfall of the ‘New’ Assembly Line: Can
Services Learn From Manufacturing?”,
Morgan Stanley Special Economic
Study, New York.

[Stephen S. Roach, 1989b]
“America’s White Collar Productivity
Dilemma”, Manufacturing Engineering,
(August): 104.

[Stephen S. Roach, 1996]
“The Hollow Ring Of The Productivity
Revival”, Harvard Business Review
74(6): 81– 89.

[Wesley Szu-Way Shu, 1998]
“From Different Angles to Solve the
Puzzle: Macro-Economic and Micro-
Economic Analyses of Information
Technology Productivity”, Dissertation,
The University of Arizona.

[Robert Solow, 1987]
“We’d Better Watch Out” New York
Times Book Review, 36.

[Ill Stewart, G. Bennett 1991]
The Quest for Value, Harper Collins
Publisher. New York

[Paul A. Strassmann, 1985]
Information Payoff: The Transformation
of Work in the Electronic Age. Free
Press, New York, NY.

[P. A. Strassmann, 1990]
The Business Value of Computers. The
Information Economics Press, New
Canaan, Connecticut.

[P. A. Strassmann, 1997]
The Squandered Computer: Evaluating
the Business Alignment of Information
Technologies, Information Economics
Press, New Canaan, Connecticut.

[P. A. Strassmann, 2004]
“Defining and Measuring Information
Productivity” Information Economics
Press, New Canaan, Connecticut.

[L. P. Willcocks and S. Lester 1996]
“Beyond the IT Productivity Paradox”,
European Management Journal 14(3):
279–290.

[L. P. Willcocks and S. Lester 1997]
“In search of Information Technology
productivity: Assessment issues”, Jour-
nal of The Operational Research Society
48(11): 1082–1094.

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.upgrade-cepis.org

