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Abstract 
 

Assigning nursing staff to specific duties according to their contract, qualifications, skills, 
etc. within a working environment characterised by multi-disciplinarity and statutory 
regulations is problematic. Factors involved in making effective assignments include 
individual and corporate procedures, guidelines and constraints. Manual rostering 
commonly proceeds through a process of reasoning in which a number of consecutive 
stages occur to progressively refine and repair the work schedule. This paper discusses an 
approach to nurse rostering, using a strategy of distributing the computational effort 
required in the scheduling process. The technique involves a hybrid approach that 
devolves responsibility for different aspects of the problem to a heuristic component and a 
constraint solver. In the pre-processing stage, the staff to be rostered are treated as semi-
autonomous agents, each with individual responsibility for their initial assignment, and 
communicating with a global constraint satisfaction agent. This has proved to be intuitive 
to build and effective in use. 

 
 

Introduction 
 
The generation of work allocation schedules can generally be summarised as the assignment of staff to 
particular time slots in order to satisfy given criteria. Time slots may be specified shifts, or they could 
be temporal intervals with dynamic start and end times. The criteria can be simple or complex, 
sometimes involving legal, corporate and safety issues in addition to heuristics that govern individuals 
and ever-changing institutional rules. The rostering of nurses is widely accepted as an important and 
challenging intellectual problem that belongs to the class NP-complete. Many studies have been 
undertaken in the area, using techniques such as mathematical programming (Miller, et. al. 1976), 
heuristic methods (Isken & Hancock 1991) and constraint satisfaction techniques (Abdennadher & 
Sclenker 1999), (Cheng et. al., 1997), (Weigal et. al. 1996), (Scott & Simpson 1998). There are even 
commercially available systems, whose authors claim that their products are capable of wide 
application (Shibutzit 2001). In all these cases, the authors are in agreement that the combinatorial 
search problem is the most difficult to solve. Heuristic methods such as that proposed by Isken & 
Hancock (1991) attempt to circumvent the search problem by identifying specific rules that could be 
applied to progressively fill in a roster. However, although such methods are efficient in initial search 
space pruning, i.e. pre-processing, they are generally not complete. Mathematical programming 
continues to be used for this class of problem and does provide completeness, but with the always-
present overhead of an enormous search space. Constraint logic programming (CLP) has been widely 
used in recent times, but almost always within a hybrid architecture that commonly includes a high 
degree of user interaction and heuristic pre-processing (Abdennadher & Sclenker 1999). CLP offers 
what appears to be an ideal vehicle for the solution of scheduling problems such as nurse rostering. The 
high-level nature of logic programming is augmented by the seamless integration of one or more 
constraint solvers, thus allowing the programmer the comfort of modelling the problem and its 
constraints declaratively. With this approach, the programming steps are, in outline: model the 
problem, declare the constraints, and apply a specific search algorithm to find a satisfactory or 
optimised dolution. Modelling includes the definition of variables, data and data structures, domains of 
variables, etc. Declaring constraints on the problem variables is catered for by the syntax rules of the 
constraint solver and can be unary, binary or n-ary. Search is the final step and is always necessary 



G. Winstanley 2 of 12 

with problems of realistic scale. It proceeds by systematically instantiating variables from their 
domains and testing all constraints on that variable and any variable related to it via constraints (Kumar 
1992), (Jaffar & Maher 1994).  
 
Unfortunately, CLP, or in fact any of the above-mentioned techniques alone, is not capable of solving 
the nurse scheduling problem, even when esoteric methods such as double-modelling are employed 
(Cheng et. al. 1997). In our study there were a total of 18 nurses and 11 possible working shifts. For a 
one month scheduling period this amounts to a search space of 11(18*28) = 11504, however this is reduced 
slightly by reducing the domain size. Most successful systems appear to be based on the application of 
several methods of representation and reasoning, and this is the approach adopted in our work. Another 
unfortunate fact is that no two nurse rostering situations appear to be identical. This means that one 
solution, based commonly on the identification of symmetries and applicable heuristics becomes so 
specific to that particular situation, that its generality is lost. Commercial systems allow the user to 
predefine the ‘business rules’ in a kind of ‘system tuning’ process, but this places the emphasis very 
much on the knowledge and skill of the person(s) assigned to optimise the system for each application. 
Our approach has been to partition the problem into its identifiable components and perform a solution 
in a number of phases. These phases are specifically: define ‘preferred’ shifts for each staff, evaluate 
and assign ‘requests’ for each staff, produce an ‘initial roster’ for each staff based on constraints 
represented as heuristics, and finally to collate each individual roster and produce a ward roster using 
CLP and constraints defined at the highest level, i.e. corporate constraints. These latter constraints 
include legal and institutional policies.  
 
Results from the use of the system on an acute medical ward within the UK NHS have been successful. 
Additionally, the application of the Staff Work Allocation Tool (SWAT) on the ward has proved to be 
an invaluable vehicle for gaining a better understanding of the interplay of constraints at various levels, 
i.e. from individual to institutional, and national levels.  
 
 

Distributing the problem 
 
Initial research into the process of rostering identified the naturally distributed nature of the problem. In 
many ways it resembled industrial domains characterised by team working, and particularly 
interdisciplinary collaboration. Complexity in such domains has been shown to be solvable using a 
multi-agent approach in which individuals are represented by semi-autonomous software agents that 
are able to solve problems local to themselves, but also to co-operate together to achieve predefined 
global goal(s) (Nunez, et. al. 1998). In producing a nurse roster, one person is usually given the 
(unenviable) task of allocating staff to shifts, i.e. time slots, for each day in a scheduling window of 
commonly one month. In doing that job, he/ she must be aware of the skill and/ or qualification profile 
of the staff, and be fully cognisant of all requirements and constraints which control how the finished 
roster should look. In some large hospitals, such rosters may be produced centrally, but experiences 
have shown that most commonly the task is performed by a staff member on the ward that is being 
rostered, and in our case that process was characterised by a great deal of local negotiation. Each staff 
member knew their qualifications and nursing grade. Each one had some preference for working 
patterns and each individual had the opportunity to request certain shifts on certain days or weeks. Over 
a period of several months, patterns seemed to evolve that serve to make the scheduler’s job 
(apparently) easy. However, in many cases, partly due to requests that ‘upset’ the preset patterns, 
annual leave, sickness, etc., the task becomes very difficult indeed, compounded by the fact that 
staffing levels may be bordering on the dangerously low anyway. 
 
The agent-based metaphor adopted in our work assumes the following: Each staff member could be 
given a copy of the blank ward roster. Individual rosters could then be produced, based on peoples’ 
knowledge of their own situation as it relates to the roster. Relationships may exist between individuals 
that result in constraints between them, e.g. A must work with B, but essentially negotiation would be 
assumed to have taken place before individual schedules are produced, i.e. the definition of preferred 
patterns of work would be accomplished prior to scheduling. The staff member assigned to the task of 
ward scheduling would then collate individual schedules into a ward roster. Given the unlikely 
situation that no deviations from the agreed preferred shift patterns had taken place, through requests 
say, the resulting ward roster should be, by definition, satisfactory without further effort. In the far 
more usual case, the roster production task would involve minor ‘shuffles’ of shifts. An optimal 
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solution to this would be to minimise such perturbations. An approach to dealing with this method of 
final ward rostering is discussed later in this paper. 
 
The problem has the following characteristics: 
 
1. Staffing comprises ‘trained’ staff and ‘untrained’ staff. Trained staff are professionally qualified 

and registered. Untrained staff are commonly referred to as auxiliary, or nurse assistants. To cater 
for the inevitable and frequent case of no roster being possible given the staff establishment (i.e. an 
over-constrained case), the hospital has the benefit of a ‘nursing bank’ comprising people able and 
willing to be scheduled at relatively short notice to ‘fill a gap.’ On the ward on which our study 
was based, there were a total of 9 trained and 7 untrained on the establishment. Two bank staff 
were also theoretically available. 

2. Requests are generally honoured. The Ward Manager is responsible for approval, but once this has 
been given, requests are treated as hard constraints. This applies to shift requests (including day 
off), annual leave, study leave, meetings or other approved events outside the ward. 

3. On each and every day, there should be at least two trained and untrained in the morning and 
afternoon. 

4. Shifts are standardised as: 
 
 

 Early full  late-full  early-half  late-half  long-day 
trained 7.5 hours 7.5 hours 6.25 hours 6.25 hours 12.5 hours 
untrained 7.5 hours 7.5 hours 5.0 hours 5.0 hours 12.5 hours 

 
 
5. There should be no 3 consecutive long days. If a staff member has worked two long days already, 

the next shift must be a day off. 
6. If at all possible, early shifts should precede a day off, and a late shift should follow a day off. In 

our approach, days off are used generically for any day not spent on the ward, i.e. including annual 
leave, sickness, study leave, etc. in order to reduce the number of shifts and therefore the search 
space (Freuder 1991). 

7. Bank staff should be employed only when necessary. In practice, established staff members are 
commonly asked to work extra shifts. This poses some interesting problems in automating the 
process, but our solution has focused on the incorporation of bank shifts to address the over-
constrained case. 

 
Agents are defined in our system for each member of nursing staff, with a common architecture. 
Information pertinent to each agent is stored, and specific pre-processing is carried out at the individual 
agent level before the roster management phase. 
 
The various phases involved in the process are shown diagrammatically in Figure 1. In this figure, the 
initial phase is to actually build software agents to represent each staff member. This would only be 
required once, but thereafter they are available for editing. The figure also indicates those 
responsibilities at the individual agent level and those of the Roster Manager Agent. 
 
With reference to Figure 1, our solution to the rostering problem involves a number of phases, based on 
the following assumptions: 
 
• Each agent should be capable of ‘filling in’ their own part of a ward schedule and taking part in a 

collective and possibly negotiated agreement. 
• Preferred working patterns represent a ‘starting point’ for scheduling. In an ideal situation, these 

shift patterns, when collated together, would provide a working solution for the ward 
establishment for the day/ week / month. In practice, changes would almost always be required. 
However, minimal changes should be made, i.e. a roster ‘repair strategy’ is called for once a self-
schedule is produced for each agent. 

• Requests for specific duties, leave, etc. are evaluated at the local, i.e. individual agent, level. Once 
these requests are accepted, they must be honoured. 
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• Production of the final ward roster is the responsibility of the Roster Manager Agent. This agent is 
controlled by a number of higher-level constraints pertinent to the ward, the institution and 
beyond. 

 

 
 

Figure 1. Sequential phases involved in producing a ward staff roster 
 
 

Architectural issues 
 
The architecture of the SWAT System is based on the object-oriented knowledge system Kappa-PC, 
loosely coupled with the ECLiPSe  Constraint Logic Programming System. Each staff member is 
represented as an agent with the following components: 
 
• A ‘core’ profile component. This component holds data on staff name, grade, qualifications, 

contracted hours of work, status and preferred working shift patterns. 
• A request component that doubles up to contain the initial individual schedule as well. The 

decision to make this component exist in two guises was taken in recognition of the similarity of 
the two phases in the process, and the data itself. This component holds data on any requests that 
have been processed and agreed by the Request Manager Agent.  

• A personal constraint component that holds specific types of constraint. At present we only hold 
the constraints ‘must work with X’ or ‘must not work with X.’ The data in this component is 
accessed when defining new preferred work patterns and when processing requests. 

• A communications component which currently this relays object messages. There is no specific 
agent communication language or protocol at work. 
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An object called ‘Nurse’ is defined, with subclasses ‘Trained’, ‘Untrained’ and ‘Bank’, and three 
methods: ‘BuildAgent’, ‘RemoveSelf’ and ‘SelfSchedule.’ BuildAgent takes data obtained from the 
user interface and creates and appropriately names the above agent components. Figure 2 shows the 
agent architecture as an object hierarchy for 2 nurses in each of the 3 categories. In this figure, solid 
lines signify class/ subclass relationships, and dotted lines signify instance relationships. 
 

 
Figure 2. The object hierarchy for the nurse agent 

 
In addition to the nurse agents, there are also three manager agents defined: ‘RequestManager’, 
‘RotaManager’ and ‘InterfaceManager’, which are equipped with methods to deal with individual 
requests for days off, shifts, etc., invoking the initial scheduling system and controlling the interface to 
the user and the Roster Manager Agent, which exists and operates outside the object-oriented 
environment described in this section.  
 
Figure 3 shows the main interface to the system. Using this interface, it is possible to view, add, delete 
and modify staff details, view requests and initial rosters for each staff member. It has facilities to 
view, add, delete or modify requests, and it is from here that initial and final ward scheduling is 
invoked. 
 
With reference to Figure 3, and Figure 1, in the process of producing individual rotas for each agent, 
the following stages have taken place: 
 
1. Requests are made for days selected from the (main) month displayed on the interface. Using this 

facility, the user selects the relevant request, which is then validated by a backward-chaining 
inference process. This takes into account whether the request already exists, and that it is a 
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request that can be honoured. Rules exist to validate requests and ensure that, once accepted, they 
persist through subsequent reasoning phases. 

2. A forward-chaining inference process invokes ‘self-scheduling.’  For each agent defined within the 
system and labelled as ‘active’, the process involves four phases: 

 
Phase 1: Scans the month on a day-to-day basis and assigns requests with a numerical value to 

signify a hard constraint. Requests are processed first and are always honoured after 
being accepted by the backward-chaining inference process.  

Phase 2: Scans the month on a day-to-day basis and checks for requests being in conflict with 
preferred assignments. If such conflicts are detected, this phase records the details. 

Phase 3: This phase takes the data recorded in Phase 2 and re-allocates shifts that were 
preferred, but have now changed due to requests. Modifications to the shift pattern 
for the week in question are minimised.  

Phase 4: This is only active when preferred shifts are de-selected. This phase involves a large 
and complex rule set that effectively labels each day with a shift according to 
predefined soft constraints, e.g. that a day off should be preceded by an early shift 
and succeeded by a late; there should be a weekend off every two weeks, and so on. 
Personal constraints are dealt with in this phase in order to arrive at an initial 
schedule, but experiences have shown that preferred shifts are always used as the 
basis for individual work scheduling. Rule-based processing of requests have many 
advantages, but without preferred shifts, an approach using CLP would, in our 
opinion, be a better approach. 

 

 
Figure 3. The system’s main interface 

 
 

Figure 3 shows that the staff member ‘mf1’ had requested the day off on Tuesday 10 July 2001, and 
that the ‘normal’ preferred shifts for that week had been slightly modified. Clicking on the ‘Ward 
Schedule’ button results in the agent schedules being stored as ASCII files, and the Roster Manager 
Agent is subsequently invoked on that data.  The first file contains data on the (short) names for each 
agent, their contracted time and their possible shifts. Figure 4 shows such a file for the 6 nurses 
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displayed in Figure 2 as Prolog facts. The values in the argument list of  hours_work are expressed in 
minutes, i.e. integer values. The bank staff hours (minutes) are initially set to zero. 
 
 

 
 
people([cw1,kd1,ab1,jf1,bb1, gh1]). 

 
hours_work(cw1,2250). 
hours_work(kd1,2250). 
hours_work(ab1,1650). 
hours_work(jf1,2250). 
hours_work(bb1,0). 
hours_work(gh1,0). 

 
poss_shifts(cw1,([eft,ldt,lft,dof])). 
poss_shifts(kd1,([ldt,dof])). 
poss_shifts(ab1,([eha,lda,lfa,dof])). 
poss_shifts(jf1,([efa,eha,lda,lfa,dof])). 
poss_shifts(bb1,([eft,lft,dof])). 
poss_shifts(gh1,([efa,lfa,dof])). 
 

 
Figure 4 agent data 

 
 
The second data file hold the actual initial schedules in the Prolog-style format shown below: 
 

data([(2 ,jul ,2001 ,eft ,6 ,cw1), 
(3 ,jul ,2001 ,dof ,9 ,cw1), 
(4 ,jul ,2001 ,eft ,6 ,cw1), 
: 
: 
(4 ,aug ,2001 ,eft ,6 ,cw1), 
(5 ,aug ,2001 ,lft ,6 ,cw1)  
 ]). 

 
This indicates that the staff member ‘cw1’ has an early full trained shift on July 2, 2001, and it comes 
about as a preferred shift. This agent has requested a day off on the following day.  
 

The Roster Manager Agent 
 
Corporate constraints are crucial in any ward roster. They govern the number of staff at various levels, 
they dictate the patterns of work, and they control staff working hours. Every hospital ward has a staff 
establishment, i.e. the number and spread of personnel for each day in order to comply with legal 
standards and the guidelines developed and agreed at the corporate level. In the SWAT System, these 
constraints are modelled and applied at the ward level, compiling individual agents’ rosters and 
applying its constraints to each day and to all staff. These constraints include: 
 
1. Number of trained and untrained staff per day. At least 2 trained and 2 untrained in the morning 

and in the afternoon. The constraints have a lower and upper limit, i.e. it should not be possible for 
more than 3 of any staff type to be scheduled for any part of the day. 

2. Staff should not be scheduled for a work pattern that leads to their contracted hours of work being 
exceeded. This is quite a powerful constraint since the hours of work ‘value’ can be manipulated to 
cater for overtime in a controlled way. It is also possible to facilitate the inclusion of bank staff 
during the many occasions when a roster is simply impossible with the available staff (holidays, 
sickness, etc.). 
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3. Certain staff working patterns are ‘preferred.’ For example, there should be a mixture of early and 
late shifts, with the ‘ideal’ pattern being “early – late – early”, and so-on. Other sensible 
constraints include “late shift after day off”, and for very long shifts, “not more than two 
consecutive long days.”  

 
The roster manager is responsible for collating individual rosters for one month, and applying specific 
constraints. Its task is to create viable rosters according to constraints propagated from the individual 
agent phase, and to corporate constraints at the ward level. However, minimal changes should be made 
to the initial roster because this represents the ‘ideal’ situation according to the wishes and preferences 
of individual staff. In other words, repairs should be made when absolutely necessary, and those repairs 
should cause minimal disruption to the initial roster.  
 
The ECLiPSe Constraint Logic Programming platform (Wallace, et. al. 1997) was used in the 
production of the final roster subsequent to the agent self-scheduling and roster compilation phases. 
This platform facilitates the conceptual modelling of the nurse rostering problem in Prolog style, and 
readily provides a mapping between that model and the program required to solve the problem, i.e. the 
design model. It has the great advantage of being a constraint solver at a high level, closely integrated 
with the Prolog programming language, and it is equipped with a number of constraint solving methods 
within its libraries. The SWAT System uses the Finite Domain Library within ECLiPSe. The facility to 
define a high-level specification of the problem at the conceptual level and to similarly define 
constraints at the design level, leads to the ability to rapidly produce such models and to experiment 
with them. In combinatorial problem domains, this method of design-by-experimentation is tractable. 
 
Modelling in ECLiPSe  follows closely the principles adopted in the agent-based component of the 
SWAT System. Each agent produces and communicates a matrix of shifts, with data filled in for each 
day of a one-month staffing period. This data is in the form of a list with the following structure: 
 

{day, month, year, shift_type, constraint_hardness, staff} 
 
Other data is communicated, such as the range of possible shifts for each agent, i.e. the domain for each 
agent. Status information is also available, such as trained or untrained. 
 
This is incorporated into the system as a number of supporting structures, and two key arrays are 
defined: 
 
1. A two-dimensional array with axes for days (1-28) and staff (1-18). Each cell of this array is 

constrained to be instantiated by values from the domain of values for the relevant agent. The cells 
are then filled in from data provided by the agent-based component of the SWAT System, and 
become ‘tentative values’ for later constraint solving. This array is named ‘Init_shift_array.’ 

2. An identical array, but this time having only (initially) uninstantiated variables. This array 
provides the structure for the variables and the constraint solving process. As constraint-solving 
proceeds, values are chosen and evaluated according to the constraints on them and between other 
values. This array is named in the system as ‘Shift_array.’ 

 
In this structure, there are i staff and j days. Each cell of the array is a variable Vi,j that must be 
instantiated to a shift type, including non-shifts, i.e. days off, n total staff and t total days to schedule. 
 
The first, and most important constraint at the ward level relates to the staff establishment on the ward 
for each day. This constraint, in ECLiPSe syntax is defined as: 
 
shift_occurrences(et,Day_list,N1), N1#>=2, N1#<=3  % for et=early trained 
shift_occurrences(eut,Day_list,N2), N2#>=2, N1#<=3 % for eut=early untrained 
shift_occurrences(lt,Day_list,N3), N3#>=2, N1#<=3  % for lt=late trained 
shift_occurrences(lut,Day_list,N4), N4#>=2, N1#<=3  % for lut=late untrained 
 
Where the ‘shift_occurrences’ constraint is based on the built-in ECLiPSe ‘occurrences’ constraint. The 
‘et’ argument signifies early trained, etc., Day_list is a list of variables made available for each day, i.e. 
{Vi,j} for n ≥ i ≥ 1 and for j = the day in question. The SWAT System loops through all t ≥ j ≥ 1, 
applying these constraints, which generally say that “for each day, there should be at least 2 trained on 
an early and late shift, but at most 3, and there should be at least 2 untrained on an early and late shift, 
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but at most 3.” The specific shift types that correspond to these abstract shift types are defined within 
the shift_occurrences constraint itself. These constraints are also equipped with annotation that controls 
propagation and specifies the ECLiPSe repair library, but this has been ommitted for reasons of clarity. 
 
It is important to constrain the system to give staff only those combinations of shift types that sum to 
their contracted hours. This constraint is quite easy to model in ECLiPSe, as shown below: 
 

add_them(Z31,Z32,Z33,Z34,Z35,Z36,Z37,Z22):- 
   (Z31 + Z32 + Z33 + Z34 + Z35 + Z36 + Z37) #=Z22. 
 
where Z31 to Z33 are variables that hold the time value for each shift assigned, and Z22 is the 
contracted hours value for the staff in question. It declares that the summation of assigned shifts is 
constrained to be equal to the contracted work time. The system loops through n ≥ i ≥ 1 and for each 
week within the one-month period. 
 
The assignment of shifts according to constraints on their patterns is catered for in the system as below. 
For each staff i, and for t ≥ j ≥ 1, R=the hardness value of Vi,j. A value of 9 signifies that the shift 
should be assigned exactly as it appears in the equivalent cell in the tentative value array 
(Init_shift_array). A value of 6 means that the value can be changed, so long as the new value 
∈{domain of i}. P is Vi,j and P2 is the tentative value of Vi,j. 
 
 
   (R == 9) -> (P = P2) % if a hard constraint, then impose the tentative value 
 
The constraint ‘no more than two consecutive long days’ is defined as: 
 
  Q is Shift_array[I,J-1],    % Q is yesterday’s shift 
  Q2 is Shift_array[I,J-2],    % Q2 is the day before’s 
   ((Q#=ldt) #/\ (Q2#=ldt)) #=> (P#=dof), % #/\ is the ‘and’ constraint 
   ((Q#=lda) #/\ (Q2#=lda)) #=> (P#=dof) % #=> is the ‘then’ constraint 
 
which says that ‘if the last two days were long days, for trained and untrained, then the next day must 
be a day off. Other constraints have been experimented with to cater for informal patterns, such as early 
shifts before days off and late shifts after days off. However, in practice these were seen to frequently 
over-constrain the problem and are commonly violated in practice. These constraints have a similar 
structure to the one shown above and remain in the system as optional features. 
 
The algorithm controlling the Roster Manager is, in outline: 
 
Read in data for each individual agent into a number of non-logical variable structures 
Create arrays for initial shift values, final shift values, hardness, status, staff domains, staff work hours 
Apply domains to initial and final shift arrays 
Until a consistent set of value assignments has emerged, i.e. one that satisfies all constraints 

For each week in the one-month scheduling period 
  Set the initial shift array to its tentative values (from the individual agent phase) 
  Apply constraints: staff numbers and patterns, hours worked 
  Search: The systematic search for values consistent with the applied constraints 
 If no set of value assignments can be made then 

If there are bank staff hours left then 
   Increase bank staff hours by one shift 
   Restart search 
  Else 
   Terminate with failure 
 Else 
  Terminate with a satisfactory roster 
  
This strategy is designed to reduce the search complexity by addressing the problem in four one-week 
chunks. Complexity and tractability issues are also important in the algorithm chosen for search itself. 
To deal with the common problem of no roster being possible with staff numbers available, the above 
algorithm first tries for a solution with all available staff. If no roster is possible, a bank shift is added 
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and search begins again. This continues until all possible bank hours have been utilised, and if no roster 
can be found under these circumstances, the system terminates, reporting a failure. 
 

The Roster Manager search strategy 
 
The strategy that underpins the SWAT System assumes an initial tentative assignment of all staff to 
shifts according to their preferences and personal constraints. Therefore, a constructive labelling 
approach that iteratively searches for values would be unnecessarily complex. Our methodology 
involves the ‘repair’ of tentative values in an effort to satisfy the constraints defined at the roster 
manager level. At one extreme, the tentative values satisfy all constraints, and are accepted as given. At 
the other extreme, all tentative values may have to be changed and search complexity is at its 
theoretical maximum for the nature and scale of the problem at hand. In the case of manual nurse 
rostering, this repair strategy is common, and in practice has never been seen to reach the worst case. 
Various move-based strategies have been proposed to deal with this type of problem, notably (Minton, 
et. al. 1992), (Yokoo 1994). We have chosen to use the iterative improvement/ backtracking hybrid 
algorithm proposed by Yokoo (1994), which has been termed ‘weak-commitment search.’ 
 
In weak-commitment search, constraints are defined on variables and the tentative values of variables. 
In the case of constraint violations occurring, search for variable assignments is guided by a heuristic 
that chooses to instantiate a variable with a value from its domain that minimises constraint violations 
with the tentative values of unlabelled variables. This heuristic is due to Minton (1992) and is called 
‘min-conflict.’ When a situation arises where no value can be found that satisfies all of these 
constraints, this combination of assignments is remembered as a ‘no-good’ constraint and the 
combination will not be tried again. Search is then restarted with the current value assignments as the 
new tentative values. This approach to search has important implications for automation of the current 
nurse rostering problem. It assumes (requires) a tentative solution, which is tested against all 
constraints. In the case of a failure at this stage, a value is chosen from the domain of a variable that 
causes the minimum conflict with the tentative values of the as yet unlabelled variables. A partial 
solution is therefore built in a sensible way by ‘repairing’ only those tentative assignments that are seen 
to be problematic. If no consistent value assignment can be made for any variable, then instead of 
backtracking to the last variable assignment, weak-commitment search abandons the whole path, 
recognising and storing the fact that this was a ‘no-good’ assignment set, and therefore should not be 
tried again. It is this weak commitment to the current branch in the search space that gives the 
algorithm its name. Once a dead end has been reached, the algorithm stores the bad assignment set as a 
no-good constraint, and starts the whole process again from scratch. However, the current value 
assignment set becomes the new set of tentative values. The assumption here is that this represents a 
‘better’ solution than the previous one and does not throw away the manipulative work of the previous 
stage of the search. 

Experiences with the system  
 
The SWAT System has been tested on an acute medical ward as detailed in this paper and has 
performed at least as well as manual scheduling according to reports from those responsible for 
rostering on that ward. Experience indicates that there are many aspects to the production of a workable 
roster that includes: the ability to negotiate ‘on the fly’ with staff immediately before roster publication, 
and commonly afterwards. Although the removal of this kind of ‘bartering’ is generally considered a 
good thing by those involved in the rostering process, the automated schedules were regularly criticised 
for being too rigid. However, this appears to have cultural roots, since once the system had produced a 
sequence of such rosters, criticisms became less frequent. The fact that the final rosters reflected the 
initially chosen preferred shifts allowed the Ward Manager to refine these patterns over time in such a 
way that harsh changes were mostly minimised. The problem persisted during the Summer holiday 
season though. 
 
Evaluation of the system occurred in two ways. The first measure of success involved user satisfaction, 
from the point of view of the scheduler and of the staff being rostered. The second involved the time 
taken to produce a roster. On average, using preferred shifts, the initial heuristic phase was completed 
in 3 to 4 minutes. The final rosters were created as a secondary phase in a similar time. Using weak-
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commitment search, the number of restarts (equivalent to backtracks in backtracking search) was 
commonly restricted to one or two. 
 
The ward currently uses a paper diary to record requests, and this became the primary source of data 
entry for phase one. However, considerable simplification and standardisation of requests and request 
types were required. Free form and informal notes that are intended in some way to give the scheduler 
an impression of what might be nice caused some problems. Future versions will constrain requests to 
specific types. Initial individual rosters are accessed in the Phase 1 system (based on Kappa-PC), and 
the final ward roster is output as an ASCII file for publication in a spreadsheet format. At present there 
is no feedback from Phase 2 to Phase 1 other than the ability to manually criticise the two roster types 
and make changes to preferred shift patterns. This mixed initiative approach has many advantages, non 
the least in staff appreciation, but there is obvious scope for automation and adaptation. 
 

Conclusions 
 
The system has been in use for several months and has been successful in producing timely and 
accurate ward staff rosters. The hybrid and mixed initiative approach taken in the development of the 
SWAT System, along with the agent-based architecture, has proven to be natural and intuitive for this 
class of problem. Devolving initial scheduling to software agents representing individual staff was a 
core development decision and has proved to be an effective solution to the problem. Agents can be 
dynamically created, activated, modified in and deleted from the system, and each active agent reasons 
locally, but provides sufficient information to the roster manager agent to facilitate the creation of ward 
rosters based on CLP techniques.  The ECLiPSe system allowed us to model the problem and facilitate 
the dynamic nature of information passed from Phase 1. Constraints were relatively easy to define and 
test in this system, and the search strategy used resulted in a reduced search space. It should be noted 
that combinatorial space and time complexity remains and can cause severe problems in the worst case, 
but experience has indicated that this is unlikely, especially with the incorporation of ‘bank staff’ to 
cater for the over constrained situations. 
 
There remains much research to undertake. Our heuristic Phase 1 could easily be replaced by a 
distributed CLP system, but at the moment some degree of flexibility would be lost at the pre-
processing stage where information can be acquired, stored, manipulated and generally reasoned with 
quite efficiently at the heuristic level. A partial constraint satisfaction solution, in which a range of ‘soft 
constraints could be defined and allowed to be violated in a controlled way in the quest for a ‘good’ 
solution would also be useful. However, our experiences and experiments with such approaches has led 
us to believe that, in the case of nurse rostering, these extra overheads have a marginal effect on the 
final product. 
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