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Abstract. We determine the covolumes of all hyperbolic Coxeter simplex reflection groups.
These groups exist up to dimension 9. The volume computations involve several different
methods according to the parity of dimension, subgroup relations and arithmeticity properties.

Introduction

Let X™ = S™, E™ or H™ denote either spherical, Euclidean, or hyperbolic n-space.
A Cozeter simplezr is a n-dimensional simplex in X", all of whose dihedral angles are
submultiples of 7 or zero. We allow a simplex in H” to be unbounded with ideal vertices
on the sphere at infinity 0H". A Cozeter simplex reflection group is a group generated
by the reflections in the sides of a Coxeter simplex in X™. A Coxeter simplex reflection
group is a discrete group of isometries of X™, with fundamental domain its defining Co-
xeter simplex. Spherical Coxeter simplex reflection groups are finite, whereas Euclidean
and hyperbolic Coxeter simplex reflection groups are infinite. Coxeter simplex reflection
groups arise naturally in geometry as groups of symmetries of regular tessellations of
X". The spherical and Euclidean Coxeter simplices were classified by H. S. M. Coxeter
[C1]. The hyperbolic Coxeter simplices were classified by H. S. M. Coxeter and G. J.
Whitrow [CW], F. Lannér [L], J.-L. Koszul [K], and M. Chein [C]. For each dimension
n > 3, there are only finitely many hyperbolic Coxeter simplices, and such simplices
exist only in dimensions n = 2,3,...,9.

By the size of a non-Euclidean Coxeter simplex, we mean its n-dimensional volume
in X™. For a spherical Coxeter simplex, this is just the volume of S”,
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divided by the order of the corresponding Coxeter group. For a hyperbolic Coxeter
simplex, there is no such general formula, and a variety of methods must be employed
to calculate the size of an individual simplex. We are interested in calculating the sizes
of hyperbolic Coxeter simplices because they are the most elementary building blocks for
hyperbolic manifolds (see [R, Example 1, p. 505; Example 2, p. 509]), and the volume
of a hyperbolic manifold of finite volume 1s its most important topological invariant.

Extending some of our own separate and joint investigations ([K1], [K2], [K3], [K5],
and [RT]), in the present paper, we determine the size of every hyperbolic Coxeter
simplex of dimension n > 3. Exact expressions and accurate numerical values for the
volumes of these simplices are presented here for the first time. See the volume tables
at the end of the paper for the size of every hyperbolic Coxeter simplex of dimension
n > 3.

2. Dissecting simplices into orthoschemes

Let <, > denote either the standard bilinear form on Euclidean n-space E™ or Lorentzi-
an (n+ 1)-space E™'. We consider S™ to be the unit n-sphere in E"*! and H" to be
the upper hemisphere of unit imaginary radius in E™!, that is,

H" = {er”’l:m%+~~~+ri—xi+1:—l and z,41 > 0}.

Then the standard bilinear forms on E"t! and E™! may be applied to tangent vectors
of S™ and H™, respectively.

Let P C X" denote a convex polyhedron bounded by finitely many hyperplanes
H; with unit normal vectors e;, i € I. If H;,H;(i,j € I, # j) bound adjacent
sides of P, then the dihedral angle o;; = Z(H;, H;) between these sides is given by
cosa;; = — < €;,¢; >. If P has many right dihedral angles, then P can be described
more conveniently by its weighted graph or scheme X(P): The nodes i correspond to
the bounding hyperplanes H; of P. If H;, H; (i,j € I,1 # j) are not perpendicular,
their nodes are joined by an edge; in this case, a positive weight is put on the edge
which equals — < ¢;,¢; >. If P is a simplex, then all the sides of P are adjacent and
we will usually label the edges of X(P) by the corresponding dihedral angles of P. An
unlabeled edge will denote an angle of 7/3.

For Coxeter simplices in X” (all the dihedral angles are of the form 7/k, k > 2), two
nodes related by the weight cos(w/k) are connected by a simple line for £k =3, or by a
line marked & for k£ > 4. Such a graph is termed a Cozeter diagram. A diagram is called
spherical, Fuclidean, or hyperbolic according whether 1t describes a spherical, Euclidean,
or hyperbolic simplex, respectively. A Coxeter reflection group can also be characterized
by its Witt symbol or its Cozxeter symbol. The Witt symbol for a hyperbolic Coxeter
diagram is an extension of the notation for spherical and Euclidean diagrams proposed
by Witt [W] (see the volume table at the end of the paper). The Coxeter symbol is a
bracketed expression encoding the form of the Coxeter diagram. For example, [p, ¢, 7]
is associated to a linear Coxeter diagram with 3 edges of consecutive markings p,q,r.
The Coxeter symbol [3%7%] denotes a group with a Y-shaped Coxeter diagram with
strings of 7, j, and k edges emanating from a common node. The symbol [3["] belongs
to a cyclic Coxeter diagram with n edges.

The most elementary class of convex polytopes in X” consists of orthoschemes. An
orthoscheme R C X™ is an n-simplex bounded by hyperplanes Hg, ..., H, subject to
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the orthogonality conditions H; L H; for |1 — j| > 1. An orthoscheme R C X” has at
most n non-right dihedral angles o; = Z(H;_1, H;) with 1 < i < n. In a hyperbolic
orthoscheme, one has a; < 7/2. Moreover, R can be described by a linear scheme

aq Qn

Y(R) : o o——- .- o .

If p; denotes the vertex of R opposite to the hyperplane H;, the edge path pgps, ...,
Pn—1Pn 1s totally orthogonal, that is, p;—1p; L pipig1 for 1 <i<n—1. For RC H",
this implies that at most pg,p, may be points at infinity in which cases R is called
stmply or doubly asymptotic.

An arbitrary convex polytope P C X" can be represented by a finite number of
orthoschemes by means of dissection and complemention, and therefore, orthoschemes
generate the polytope groups P(X™) in scissors congruence theory. More precisely, let
P(H™) be the group for bounded polytopes in H", and let P(H") be the group for
possibly unbounded polytopes in H"”. One has the following results (cf. [Sa, Prop. 3.7,
p. 195], [D, Prop. 6.4, p. 142]):

Proposition. (i) The image of P(H") in P(H") is generated by the simply asymptotic
orthoschemes for all n > 2.

(ii) The group P(H?**+1) is generated by the doubly asymptotic orthoschemes for all
n>1.

Examples. (1) Every compact orthoscheme R C H™ can be represented by n + 1
simply asymptotic orthoschemes @;,7=20,...,n, according to

R=Qo— Qi+ +(~1)"Qn. (1)

To see this, denote by po,...,pn, the vertices of R. Let p;p§ be the ray through the
edge p;po starting at p;. Denote by qo € H" the intersection point of pypg with the
boundary of H™ at infinity, and set ¢, := pg. Choose points ¢, 4; (indices modulo n+1)
on P;pg, such that the plane spanned by qq,. .., ¢n—1 is orthogonal to the line through
Gn—19n 10 qn_1. Then, it is easy to check that the simplices Q; := g0 - - ¢ipiy1 - Pn,
with 0 < i < n, are simply asymptotic orthoschemes and yield Equation (1).

(2) Every simply asymptotic orthoscheme @ C H™ can be represented by finitely
many doubly asymptotic orthoschemes.

To show this, let Q = pg - - - p, with p, € OH™. Denote by q¢ the intersection point
of the ray popt starting at py with 9H"™. Again, choose points g,4; (indices modulo
n+1) on pop}, such that the hyperplane generated by qq, . . ., g,_1 is orthogonal to pops
at ¢n—1, and put g, := pg. Then, the simplices T} :=qo---¢ipiy1 - pn, 0 <7< n, are
asymptotic orthoschemes. In fact, apart from 7}, = qq - - - ¢, which is simply asymptotic,
To, ..., Th—1 are doubly asymptotic. Moreover, there is the following relation (cf. [D,

m n
Theorem 2.6, (i), p.127)) Q = = >. T+ >, Ti, where m = m(Q),0<m<n-1,
i=0 i=m+1
depends on the dihedral angles of @. For exe:—mple, m = 0 if the double of the dihedral
angle of @, visible as the planar angle of @) at ps in the triangle popips, is still acute.

Now, combining this with the cutting and pasting relation (1), we obtain, for a simply

n m n

asymptotic orthoscheme @, the relation 2Q = > (-1)!Q;: = >. i+ >. T; (0<m<
=0 =0 i=m+1

n—1).
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On the right hand side, @, and 7T, are the only simply asymptotic orthoschemes.
Furthermore, @Q, @, and T, share the same (spherical) vertex figure at pg = ¢,. This
implies that X(7},) = £(Qx), and that @, and T,, are isometric.

Hence, for n odd, we obtain the relation
n—1 ) m n—1
2= (-)Q-> T+ Y T (0<m<n-—1), (2
7=0 =0 i=m+1

where all the summands on the right hand side are doubly asymptotic orthoschemes.
In particular, the volume of a simply asymptotic n-orthoscheme @) is given by

n—1 n—1

1 : e
vol, (Q) = 2 <Z (=1)" vol, (@) — Z vol, (T;) + Z VOln(ﬂ)),
+=0 =0 i=m+1
where 0 <m<n-—1.
(3) A simplex S C H™, n > 2, with cyclic diagram
A
012/ Q,_q

L(s) - < , 0<ay < m/2,

O‘N Qn

O
Qg

can be dissected into 271 orthoschemes. To see this, denote by Hg, ..., H, the hyper-
planes bounding S and forming the angles o; = Z(H;, H;4+1) (indices modulo n + 1).
Let p; be the vertex of S opposite to H;. Now, put hyperplanes h; through pg, for
example, such that h; is orthogonal to the edge l; := pipiy1 for i=1,...,n—1. Con-
necting the footpoints h; NS ¢ {; with the vertices pg,...,pn of S yields the desired
dissection (look at the dissections induced in the vertex figures and use [D, Theorem
2.1, p. 125] for orthoschemes). Observe that, for pg € 9H", all dissecting orthoschemes
are (at least) simply asymptotic.
As an illustration, consider the simplex S C H? with diagram

&%}
z(9) : ay as

Qg
By the above construction, S is dissected into 4 orthoschemes

S=Ri+Rs+ Rs+ R4 (3)

as follows:
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For the dissecting orthoschemes, we obtain the following:

Qg aq 52

E(Rl) . O—0 o o,
S(Ry) : oo oM,
4
N(Rs) : oMo tho g W
Y(R4) : B as as
where v4 := I — 45, and tanvy; = cosag/cosas. As for the remaining angles, let

w e (0,7/2) be the auxiliary angle defined by

COS (ry COS (xy — COS (¥ COS (3

COsSw =

Vcos? ag + cos? as

Then, fs + 793 = w, f1 + 71 = ™ — w. Finally, for

v/cos? aq + cos? ag — cos? w

h:

sin w

one finds coty; = (cosag/cosag) - h, cotys = (cos ag/ cosag) - h.

For example, the Coxeter simplex ﬁ/g has a square diagram with ag = 7/3, a1 =
/3, as = 7/6, and a3 = w/3. By the above construction, Z‘\/g is dissected into 4
orthoschemes Z‘\/g =1[3,3,6]+[3,4,4]+ [4,4,3] +[3,6, 3].

3. Volume formulae

There are different methods to deal with non-Euclidean simplicial volumes. We make use
of Schlafli’s volume differential formula. Let 87 , n > 2, denote the set of n-dimensional
simplices of curvature x = £1. For S € &7, denote by S; the sides of S forming the
dihedral angles aj; = Z(S;, Sk) sitting at the apecies S;x = S; NSk (0<j <k <n).
Then, Schlafli’s formula says that (cf. for example [G, p. 118-120])

dvol,(S) = —— 3" volu_a(Sj) dayi , volo({pt}) = 1. (5)
T 0<j<k<n

By (5), the volume of a non-Euclidean simplex is given by simple integrals. However, the
integrands involved are very complicated analytical expressions in terms of the dihedral
angles. For instance, for a 3-dimensional hyperbolic orthoscheme R with dihedral angles
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a1, a9, az, the associated edge lengths 1,15, 13, figuring as coefficients in (5), are given
by

. _ | oas, for k = 2;
with ap = {g_ak’ for k=13,

where the additional angle is given by

1
lk = Elog

cos(f — @)
cos(f + @)

\/cos2 s — sin? a1 sin? ag

f# = arctan

€ [0,7/2].

COS (v COS (3

Secondly, formula (5) indicates that volume computations can be treated for even and
odd dimensions separately.

In the remaining part of this section, we collect the most important results about
volumes of hyperbolic simplices of odd dimensions n > 3. For the even-dimensional
volume problem, we refer to Section 4. In the special and important case of orthoschemes
(see §2, Proposition), the integration of (5) could be performed for n = 3 and n = 5,
while, for n > 7, there are no closed formulae available up to now.

For an orthoscheme R C H3, the volume is given by (cf. [Lo] and [K1, Thm. II, p.
562])

volz(R) = %{.]I(ozl +0) = (a1 —0) + (5 4+ az —0) + JI(F —az — 0)+
M(as +0) — J(az —0) + 2J1(5 — 0)},

(6)

where # is defined as above and JI is the Lobachevsky function JI; defined in the ap-
pendix.

For example, for the orthoscheme HV3 = [5,3, 6], we have § = 7/6 and Formula (6)
yields the formula volz(HV3) = %JI(%#) + %JI(%#) — %JI(%TF). The Coxeter simplex
‘HP3 can be subdivided into two copies of HV3, and so the volume of HPj is twice
the volume of HV3 given by the above formula. Using Formula (6), R. Meyerhoff [M]
computed numerical values of the volumes of all the hyperbolic Coxeter tetrahedra.

According to Coxeter [C2], the volume of an orthoscheme R C H? can also be
expressed in terms of the Schléafli function S(«, #,7) by the formula volz(R) = %S(% —
ay, g, 5 — ag). The Schlafli function is defined by the formula

ﬂvzz

2

cosZna —cos2nf + cos2ny — 1) — a? 4+ p% —

where 7 = (sin asiny — d)/(sinasiny 4+ d) and d = y/cos a cos?y — cos? 3.
For a doubly asymptotic orthoscheme R C H® with scheme

aq ay a3 Q4 as

Y(R) : o o o o o,

put
det S(R) |'/2
A=tan® = [det 2(R) | , 0<0 < m/2,

COS (¥1 COS (3 COS Qg




THE SIZE OF A HYPERBOLIC COXETER SIMPLEX 335

where det 3(R) = det ((< €i,€; >)ij) denotes the determinant of the Gram matrix of
R. Furthermore, let ag € [0, 7/2] be the angle such that tan ag = cot © -tan az. Then,
(cf. [Kb, Theorem 3])

1 1 1
vols(R) = — 3 {I()\_l, 0; 1) + 5[(/\,0;a2) —I(AH0;0p) + 3 I(A, 0; aq)
7)
1 (
+I(A71,0505) } + 3_2{Ialt()\a ay;az) + T (A, as; as)},
where

I(a,b;z) := / JI(y) darctan(atan(b+ y)), a,b€R fixed,
/2
with I(1,6;2) = —ﬂg(I)—%C(?}), and I,;(a, b; z) is defined by I (a, b; z) := Is(a, b; z)+
Is(a, —b; x) with I5(a,b; ) := I(a, =5 —b; T+b+x)—I(a, =5 —b; T+b+7). Weremark
that the integral I(a,b;z) is expressible in terms of (several dozens of) polylogarithms
Lig(z), k <3 (cf. [K5]). See the Appendix for the definitions of polylogarithms Lix(z)
and Lobachevsky functions JIj(z).
Especially, for a doubly asymptotic orthoscheme R C H® given by the diagram

aq ay a3 aq Qg

Y(R) : o o o o o,

which means that cos? a; 4 cos? as +cos? az = 1, one deduces the comparatively simple

result (cf. [K3, §3.1, Theorem])

vols (B) = § {Ty(on) + M(02) = J1a(5 — )} — 12 {Ma(§ + a0 + ) .
(5 — o +9)} 4 o (3).

For example, the doubly asymptotic Coxeter orthoscheme X5 C H® given by
4

e, 0

has the size vols(Xs) = 7¢(3)/9216. By Equations (6) and (7), the problem of com-
puting 3- and 5-dimensional polyhedral volume is solved by the Proposition of Section
2 by means of cutting into and pasting of orthoschemes. For example, for a simplex
S C H? with at least one vertex at infinity where the dihedral angles 3;, 32, #3 add up
to m, and whose remaining angles are a1, as,as according to

po € OH3
B3 B2
51
asg
I 4! P3 )
aq Qg

P2
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the volume is given by (cf. for example [G, (26), p. 130])

3

Volg(S) = %Z {Jl(ﬁl) =+ ﬂ(%(ﬁ+ai+ai+1—ﬂi)) + JI(%(?F-}-C!Z'—QZ'_H —ﬂi))+ (9)

N(3(m—aitaipr+8)) +I(3 (i + g1 +5;—)) }
However, by using the dissection method and the results (6) and (7) to compute volume,
it can be quite troublesome to determine the explicit shape of the cutting orthoschemes.

For some combinatorially-metrically simple cases, the integration of (5) can directly be
achieved. For instance, for a totally asymptotic simplex @ C H® with cyclic diagram

Qq o
Qg / aq
o 2 2 2
aq

Q) : \ ,  cos?ag + cos? a1 + cos

one obtains (cf. [K4, 3.4, Theorem 3])

g = 1,
Q3

(o]
Qg

vols(Q) :%{‘H?’(ao) + J3(a1) + Jz(az) — J3(5 — ao)

a5 — an) = Ta(§ — )} + 5C(3).

Hence, for the Coxeter simplex @ = ﬁf\%g, with diagram
4

O,

S(URs) \ .

one obtains Vol5(ﬁ5) = 7((3)/288.

Or, one contents oneself by representing volume as a single integral and by appro-
ximating it numerically. We demonstrate this in two examples. Consider the simply
asymptotic simplex T'(a) C H® with diagram

I(T(a)) -

For o € [n/3,7/2), the simplex T'(a) is hyperbolic. In the limiting case o = 7/2,
the simplex T'(7/2) degenerates to a point-shaped simplex with volume equal to zero.
By looking more closely to its shape, the face F(a) := T(a) N Ho N H; associated to
the angle a 1s of the form
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po(a)

with dihedral angles given by the functions g(z) = 2arctan /(1 — cot? z)/2 and
¢1(z) = arctan v/2 — cot? z. The simplex F(a) can be cut into four orthoschemes ac-
cording to (3) and (4) of Section 2. This yields, together with the formulae (5) and (6),
the integral expression (for brevity, we discard the integration argument )

vols(T(a)) = — % / vols(F(t))dt

/2

1 o
==3 / {VOIg(O—OM) + VO]3(O—OMO) +

/2

71 ’Yé $1

volz(o——o0—2-0—"--0) + vols (oﬁoﬂoﬁo) }dt.

By numerical evaluation, the volume of the Coxeter simplex T'(7/3) = P is vols (Fs) ~
0.00207405196. One should compare this numerical value of the volume of Ps with the
exact expression for the volume of P5 obtained by number-theoretical methods (see §5):
vols(Ps) = 5%/2L(3, 5)/4608.

Analogously, we proceed in case of a doubly asymptotic simplex Q(a, 3,7; ) in H®
with scheme

SO O,
g / a
E(Q(aaﬁa’ﬁ%@)) : R > , cos2oz+coszﬂ—|—cos2~y:1.
a\ 15
Y

For ¢ = v, we are in the situation of (10). The apex simplex F(y) associated to
the dihedral angle ¢ looks like

z3(p)

E(F(p)) - z1(p) z3(p)

with dihedral angles

V/sin? Bsin” y — cos? a

cos Bsiny

z1(y) = arctan ,
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V/sin? asin? 3 — cos?y

=arct t
za(y) = arctan ( cosarcos an y),
Vsin?asin?y — cos? 3
z3(y) = arctan - )
cos asin y

Therefore, we can write (see (10))

vols (Q(a,B8,7; ¢)) = —

1 [ vola(F®)de+ S {a(a) + Ma(3) + Ma() -

— J3(5 — ) = J3(F — ) —Js(5 —7)} + 312C(3)

From this, the volume of the Coxeter simplex Q(5, 5,5 5) = @5 can be estimated
as voh(@s) ~ 0.007573474422. The Coxeter group corresponding to @5 1s nonarith-
metic, and so there is probably no simple, number-theoretical, exact expression for the

volume of @ 5.

4. Volumes of even-dimensional Coxeter simplices

There 1s a qualitative difference between volume computations in even and in odd di-
mensions. Indeed, Schlafli’s volume differential formula (see (5)) yields an inductive
principle to derive non-Euclidean simplex volumes within the same parity of dimen-
sion. For even dimensions, the induction is based on the well-known area formula
k- voly(S) = a1 + @z + ag — 7 for a non-Euclidean triangle S = S(a1, a2, a3) with
angles ai,as,a3 € [0,7/2] and curvature x = 1. Its simple, linear structure al-
lows one to integrate the differential dvol; along a suitable path in the space S of
4-dimensional simplices of curvature . This process can be continued to higher even
dimensions. Tt was L. Schlafli [S, No. 24] who observed a particular pattern how
to build even-dimensional simplex volume up from certain lower- (and odd-) dimen-
sional volumes. In this way, he could determine the content of all spherical Coxeter
orthoschemes (see Remark (c) below). To describe Schlafli’s reduction law, we make
use of the normalized volume functions

on 8V, fai=cavoly, fo:=1;
on 8, : F,:=i"c,vol,, Fy:=1,
where
2n+l A n+1
Cp = = — F( )
voa(s7) — 27 '\ T3

Therefore, f, = 1 precisely for a spherical simplex all of whose dihedral angles equal
m/2. Moreover, for a linear spherical scheme X of order n + 1 consisting of r disjoint
components o1,...,0, oforders n1+1,...,n,+1> 1, the function f, is multiplicative
in the following sense (cf. [S, No. 23, p. 238)): fo(2) = fa,(o1) - - fa, (0r).

We reproduce the volume reduction law for the case of even-dimensional and even-
tually asymptotic hyperbolic simplices. For the proof we refer to [K2, §3] as it follows
the same lines as the verification of the analoguous result for hyperbolic orthoschemes.
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Theorem (Reduction formula for hyperbolic simplices). Denote by S C 8*% ,n > 1,
a (2n)-dimensional hyperbolic simplex with scheme X. Then,

Fon(X) = Z(—l)kak Zon—(2k+1)(0)7 Zf—l =1,
k=0 I
where o runs through all spherical subschemes of order 2(n — k), and where the coeffi-

cients ay are the tangent numbers given by
o0

tanz = aikx% +
kZ:% (2k + 1)!
Remarks. (a) The spherical subschemes ¢ of order 2(n — k), 0 < k < n, of ¥ represent
iterated odd-dimensional vertex figures of S.
(b) The tangent numbers ai are integers which are expressible in terms of the
Bernoulli numbers By by
22k+2 -1

k+1
Here we use consecutive index notation for By so that By = 1/6,By = 1/30, B3 =
1/42,. ...

(c) Based on the corresponding theorem for spherical orthoschemes (cf. [S, No. 26]),
Schlafli obtained the following results (cf. [S, No. 28-30]):

ap = 22841 Bry1=1,2,16,16- 17,256 -31,512-691, ... .

2
flag):fl(op—o):;, p>2;

fz(Hg) = f2(o—o5—o) = !

E;
f3(H4) = f3(o—o—oo—o) = ﬁ’
4 1
f3(F4) = f3(o—o—o—o) = ﬁ;
2n+1
fa(Ant1) =fa(o—o0—o0— —o0—0) = m+2)l " > 0;
1

ulBugr) =l oo o) = L >

(d) The volumes of all hyperbolic Coxeter orthoschemes are listed in [K2, p. 206].
Examples. (1) Consider the Coxeter simplex ZF4 C H* with scheme

JE——

E(AF4) :
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The scheme E(Zl\%) contains only spherical subschemes, and so describes a compact

hyperbolic 4-simplex. More precisely, it contains the following list of subschemes with
respective multiplicities:

order subscheme multiplicity
4 o—o—o0——o0 2
4
o—o0o—o0—o0 2
4
o—o0—o0—o0 1
2 o—o 4
4
o—o 1
o o )

Therefore, by the above theorem, F4(E(ZF4)) =Y fs—2> fi+16=11/360, that
is, vols(AF4) = 1172 /4320 ~ 0.02513093713.
(2) The Coxeter simplex P C HS with scheme

E(Pg) :

is simply asymptotic since its scheme contains the Euclidean cycle 25 of order 6. All
other subschemes are spherical. Among these, the even order ones are tabulated in the
following list:

order subscheme multiplicity
6 o o o o 2
o—o—o—I—o 2
o o o
4 o—o0o—0—o0 8
O—I—O 1
o—0—0 o 13
o—o0 o—o0 5
o—o0 o o 7
o o o ) 1
2 o—o0 7
o o 14
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The spherical Coxeter simplices with diagrams

Dpir o—o—J—o

of order n+ 1 > 4 have volumes fp(Dypt1) = 2« fo(Bnt1) = 2/(n + 1)!. This reflects
actually a dissection property which can easily be seen by means of induction. Therefore,
we obtain Fs(X(Ps)) = f5—2>. f3+16>_ f1 —272 = —13/11340, whence volg(Pg) =
1373 /1360800 ~ 0.00029620929.

5. Volumes of arithmetic Coxeter simplices

A Coxeter simplex is said to be arithmetic if the corresponding Coxeter reflection group
is arithmetic (cf. [G, p. 217 ff]). There are exactly 72 hyperbolic Coxeter simplices
of dimension three and above. According to Vinberg [V], all but eight of them are
arithmetic. The nonarithmetic simplices are Effg, HV3, HPs, Z‘\/g, E‘\/g, 5?%3, ﬁ‘\/g,,
and @5. See the volume tables at the end of the paper for Coxeter diagrams of
all the hyperbolic Coxeter simplices of dimension three and above. The volumes of
the arithmetic hyperbolic Coxeter simplices can be computed using number-theoretical
techniques. In this section, we shall describe the computation of the volumes of all the
odd-dimensional arithmetic hyperbolic Coxeter simplices using number theory.

There are nine compact hyperbolic Coxeter tetrahedra. All except El?fg are arith-
metic. The volumes of the eight compact arithmetic tetrahedra were computed by
Maclachlan and Reid [MR] in terms of zeta functions evaluated at 2, of certain number
fields, using number-theoretical calculations of Borel [Bo] for the volumes of fundamen-
tal domains of arithmetic 3-dimensional hyperbolic groups. See Maclachlan and Reid
[MR] for details.

There are 23 noncompact hyperbolic Coxeter tetrahedra. All but six of them are
arithmetic. The arithmetic groups are commensurable with either the Picard group
PSL(2, Z[i]) or the Bianchi group PSL(2, Z[(1+ +/—3)/2]). In particular, the Coxeter
group [3,4, 4] contains PSL(2, Z[i]) as a subgroup of index four and the Coxeter group
[3,3,6] contains PSL(2,Z[(1 + +/=3)/2]) as a subgroup of index four. See §12-13 of

Bianchi [B]. Commensurability diagrams are given below.

[4,4,4] (3,411
[ [(3%,47)
[

Cozeter tetrahedral groups commensurable with the Picard group

The numbers between groups are the indices. All the index two subgroup relations are
due to a plane of symmetry in the Coxeter simplex of the subgroup according to Coxeter
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and Whitrow [CW, p. 431]. For a discussion of the remaining subgroup relations, see

Johnson and Weiss [JW].
/[4 3, 6] \ / 3,3, 6]\\
[4,3[3]]\ /6 3L / 3,6,3] (6,3, 6] 3,30

(3

e

[3x(] [6, 303]

2

EER)

Cozeter tetrahedral groups commensurable with the Bianchi group

All the hyperbolic Coxeter simplices in dimensions above three are arithmetic except
for the 5-simplex @5. There are 12 hyperbolic Coxeter 5-simplices. Ten of them are
commensurable. The commensurability relationships were worked out by Johnson and
Kellerhals (cf. [K3], for example). A commensurability diagram for the ten commensu-

rable hyperbolic Coxeter 5-simplices follows. The numbers between the groups are the
indices.

(3,3,3,4,3]
3 5 10
[4,3,3%1] [3,3,4,3,3] [3,4,3,3,4]
4
2 6 2
3
(32111 {4’3’ 274] (3,4,3,301]
2 8
3
[4,3,3001] [(3%,4)1)
2
[31,1,1,1,1]

Commensurable, hyperbolic, Cozeter 5-simplex reflection groups

All the hyperbolic Coxeter simplices in dimensions five and above are noncompact.
The volumes of all the noncompact arithmetic Coxeter simplices can be computed using
Siegel’s analytic theory of quadratic forms [Sil], [Si2].

Let f be a quadratic form in n+ 1 variables with integer coefficients that is equivalent
over R to the Lorentzian quadratic form i+ -+ a2 —a2 ;. Let S be the matrix of the
quadratic form f. The group of units of the form f is the group of all (n+1) x (n+ 1)
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matrices A, with integral entries, such that A'!SA = S. A unit of f is said to be
posttive or negative according as A leaves invariant each of the two connected components
of {x € R"*! : 2SSz < 0} or interchanges them. The group of positive units of f
corresponds to a discrete group I' of isometries of hyperbolic n-space

H" = {;ceE"‘H:x%—|—~~~+mi—xi+1:—1 and z,41 > 0}

under the equivalence of f with the Lorentzian quadratic form. Let ¢ be a positive
integer and let Z, = Z/qZ. Let E4(S) be the order of the group of units of f modulo g,
that is,

Ey(S) = [{A€GL(n+1,Z,) : A'SA=S mod q}|.

By Formula 82 in Siegel’s paper [Si2], we have that

n42 - k 2w(q)qn 1,L2+1
voly (/1) = 4ldet §|5" [T w=21(5) - lim ——=r—
q

k=1

where w(q) is the number of distinct prime divisors of q.

We first consider the special case that f is the Lorentzian quadratic form. According
to Vinberg [V], the orbit space H"/T is a hyperbolic Coxeter simplex A" for n =
2,3,...,9. Ratcliffe and Tschantz [RT] evaluated the above limit and determined the
volume of H" /T explicitly as follows. Let By be the kth Bernoulli number with even
index notation so that By = 1/6, By = —1/30, Bs = 1/42, ... . Let ((s) denote the
Riemann zeta function and consider the Dirichlet L-function (cf. Appendix)

Theorem [RT, Thm 6, p. 66]. The volume of H"/T is given by

ondl onol %|sz| R
2% -nEe=T £)]] T if n=1mod 4,
k=1
vol, (H" /T') = (2% +1) H | Bak| - 7”' if n is even,
P n!
T|BZI€| nt1l - _
kl_[_l 2% - L(2E) if n = 3 mod 4,

with the plus sign if n = 0,1,2 mod 8 and the minus sign if n = 4,5, 6 mod 8.

The table below lists Coxeter diagrams and volumes of the simplices A" for n =

2,3,...,9.

We now assume that n is odd and d = |det S| is an odd prime number such that

(=1)(n=1/2d = 1 mod 4.
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A2:§2 O_O—'—O4 > %

A*=Ry, oot ot %221

A*=5, [@ e ® e ““‘““‘““04 %
O

AS=S; e 4 O 17%22)
O

A®=T5¢ O 4 O #200
O

A"=S, o 4 O 3§2§80
O

A®=35, O 4 O ﬁggooo
O

A®=5, o 4 O #&giloo
O

Coxeter diagrams and volumes of the Coxeter simplices A"

Consider the Dirichlet L-function

L(s,d) = i (%) n=°

n=1
where (n/d) is a Legendre symbol. Using the same arguments as in [RT], Ratcliffe
and Tschantz have proved that Siegel’s formula for the volume of H”/T yields that
vol,(H™"/T) is a rational multiple of \/EL(”Qi, d) which can be explicitly computed
when S = diag(1,1,...,1,—d) or S = diag(l,...,1,d,—1). Let I, or I'} denote the
group of positive units of the above diagonal forms, respectively.
In dimension three, we found that

volg(T3 5) = 5v/3 L(2,3)/64,
volg(T3 ) = 73/2[,(2,7) /64.
The group T35 is the Coxeter group of BV3 = [4,3,6]. The group I'3, contains a

subgroup of index 2 which is contained in the Coxeter group of BBj3 as a subgroup of
index 3. Thus we have

vols(BV'3) = 5V/3 L(2,3) /64,
vols(BB3) = T3/*L(2,7)/96.
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Hyperbolic volumes in dimension three are often expressed in terms of the Lobachevsky
function. The volumes of BV3 and Rs, given above, agree with the volumes given in
the volume tables, since JI(37) = v/3 L(2,3)/4 and JI(3r) = L(2)/2.

The 5- and 7-dimensional hyperbolic Coxeter simplices Ps, T7, and Py have the
property that twice their Gram matrix (—cos(m/m;;)) has integral entries. Now each
of the corresponding Coxeter groups is a subgroup of finite index of the group of units
of the quadratic form corresponding to twice its Gram matrix. See §4.1 of Chap.V of
Bourbaki [Bou] for a discussion. The determinants of twice their Gram matrices are
—5,—3, and —7, respectively. Consequently, the volumes of Ps, T7, and Py are ratio-
nal multiples of v/5 L(3,5), v/3 L(4,3), and /7 L(4,7), respectively. By performing an
accurate numerical integration of the volumes of Ps, T'7, and Py, using a Monte-Carlo
method, and then performing a best rational fit, Ratcliffe and Tschantz determined,
with a high degree of probability, that

vols (P5) = 5%/2L(3, 5) /4608,
voly(T'7) = 3'/2L(4, 3) /860160,
volz(Pr) = T°/2L(4,7)/3317760.

We then searched for commensurability relationships between the Coxeter groups of Ps,
T7, and P7 and the unit groups I'® , Fg, and F7_7, respectively. We first found that

vols(H®/T% ) = 3-5%/2L(3,5)/2048,
volz(H”/T3) = 17 - 3Y/2L(4,3) /491520,
volz(H”/T7 ;) = 7°/2L,(4,7)/98304.
The ratio of Volg,(IiE‘/Fg) with 5%/2L(3,5)/4608 is 27/4. We verified that we had the

correct volume of P5 by showing that its Coxeter group has a subgroup of index 27,
which is a subgroup of I'® 5 of index 4. The ratio of vol;(H7/T}) with 3'/2L(4,3)/860160
is 119/4 and the ratio of volz (H7/T7 ;) with 75/2L(4,7) /3317760 equals 135/4. Similarly
to the above, we checked that we had the correct volumes of 77 and P7 by showing that
the corresponding Coxeter group has a subgroup of index 119 and 135, respectively,
which is a subgroup of I'} of index 4 and a subgroup of I'" ; of index 4, respectively.
Details will appear in a forthcoming paper of Ratcliffe and Tschantz.

There are only four 7-dimensional hyperbolic Coxeter simplices, 77, S7, @, and Ps.
We have already determined the volumes of all these simplices except for Q. It is
obvious from the Coxeter diagrams of S7 and @; that @Q; can be subdivided into two
copies of S7. Therefore the volume of @, is twice the volume of S7.

There are only three 9-dimensional hyperbolic Coxeter simplices, T, So, Qy. We
have already determined the volume of Sg. Again, it is easy to see that @4 can be
subdivided into two copies of Sy. In order to find the volume of Ty, Ratcliffe and
Tschantz first performed an accurate numerical integration for the volume of Ty. We
then observed that the ratio of the volumes of Q4 and T'g is approximately 527. We next
positioned the smaller simplex T in one corner of the larger simplex Q,. By reflecting
the smaller simplex around inside @Qg, we observed that 527 copies of Ty subdivide Qq.
Therefore the volume of Ty is the volume of Qg divided by 527, and so

vols(Ts) = ¢(5)/22295347200.
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Appendix. Polylogarithms and volume tables

The classical polylogarithms (cf. [L])

n

o0 ZT
Lin(2) :Z —, z€C n>1,

=

r=1

arise quite naturally as non-Euclidean volume functions, at least for lower orders n.
Heuristically, this can be explained by their inductive behaviour

Lii(z) = —log(l —2), Tia(2) :/Lin—fl(t)dt’

0

which should be compared with the volume differential formula in Section 3.
The polylogarithms Li,(z) are closely related to certain Dirichlet L-series. For ex-
ample,

— 1
Lin(1) =((n) = Z o (Riemann’s zeta function)

,,
Il
=

ImLin(ei%):L(n):iX(r) :1_.L_|_i_i_|__...

where x denotes the Dirichlet character modulo 4.

The Lobachevsky functions are derived from polylogarithms as

1 . io 1 > sin(2ra)
T (a) = 22m—_1IH1Ll2m(62 ) = 92m—1 Z r2m

r=1

1 cos(2ra)
JIzm_H(a) = 2 ReL12m+1 sz E T2m+1 .

The functions JIg («) are m-periodic, even (odd) for k£ odd (even), and they satisfy the
distribution law



THE SIZE OF A HYPERBOLIC COXETER SIMPLEX 347

Coxeter Witt Volume
Diagram Notation | Symbol Formula Value
4, 5 [4,3,5] BH; | £S(im im 27) 0.0358850633
—Be . 13,53 T3 iS(Lr Lr, lx) 0.0390502856
=< [5,3%1] | DH3 | iS(im L 37) 0.0717701267
e [(3%,4)] | ABs See §2-3. 0.0857701820
5, 5 [5,3,5] Ks £S(Sm, tn, 2m)  0.0933255395

s [(3%,5)] | AHs See §2-3. 0.2052887885

o~

41:14 [(3,4)2] | BBs 7321(2,7)/96  0.2222287320

41:15 [(3,4,3,5)] | BHs See §2-3. 0.3586534401
51:15 [(3,5)] | TIHs See §2-3. 0.5021308905
—t.  [3,3.6] Vs Lo (i) 0.0422892336
—dt, (3,4, 4] Rs Lo1(in) 0.0763304662
.—4 (3, 3630] P3 1(4m) 0.0845784672
S8, [4.3,6] BV3 5 (i) 0.1057230840
.—i< [3,457] [ L J1(5m) 0.1526609324
—ele . [3,6,3] Y3 Lot 0.1691569344
5, .6 5,3, 6] HV; See §3 0.1715016613

0.2114461680

k k|
=
L
=)
3
e}
w
oot
=
G
2

[6,351] DV; 2 J1(5m) 0.2114461680
4,44 [4,4,4] N3 T I(4m) 0.2289913985
6, .6 (6,3, 6] Z3 3 J1(5m) 0.2537354016
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Coxeter Witt Volume
Diagram  Notation | Symbol | Formula Value

]t (324 BRs | 2J(ir) 0.3053218647
= [5, 3030] P, | See§3.  0.3430033226
e [(33,6)] AVs | See §2-3.  0.3641071004
<> [30%01] DP; | 2JI(im) 0.4228923360
.4_i< [4111) Ms | JI(im)  0.4579827971
.24 [6, 36 VPs; | 3J1(ir) 0.5074708032
a[Je [(3,4,3,6)]| BVs |See§2-3. 05258402692
a[4]a [(3,4%)] | CRs |See§2-3. 0.5562821156
s Jo  [(3,5,3,6)] | HVs |See§2-3. 06729858045
eI:Ie [(3,6)3] | VVy | 3u1(in) 0.8457846720

[414]] RRz | 2JI(4m) 0.9159655942

4
44
A [313:3]] PPy | 3J1(ix)  1.014916064
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COXETER SIMPLEX

Coxeter Witt Volume

Diagram Notation | Symbol | Formula Value
5 [3,3,3,5] H,y 72/10800  0.00091385226
4 5 [4,3,3,5] | BH4 | 177%/21600 0.00776774420
.i._< [5,3,3%1 | DHy | 1772/10800 0.01553548841
5 5 [5,3,3,5] K, 1372/5400  0.02376015874
&1 [(3%,4)] AF, | 1172/4320 0.02513093713
._._4< [4,3%1] S4 72/1440  0.00685389195
4, 4 [3,4,3,4] R4 72/864  0.01142315324
.—Q (3, 304]] Py 72720 0.01370778389
._.i< [3,4,351] 0, 72/432  0.02284630648
.i._4< [4, 34] N, 72/288  0.03426945973
>4< [4,3517] M, 72/144  0.06853891945
.iQ. 4, 3(4]) BP, 72/144  0.06853891945
o\ [(32,4,3,4)] | FRy4 72/108  0.09138522594
<> [3B1x0]) DP, w2 /72 0.13707783890

349
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Coxeter Witt Volume
Diagram Notation | Symbol Formula Value
4 [3,3,3,4,3] | TUs 7¢(3)/46080  0.0001826041
4, 1 [4,3,3%1] Ss 7¢(3)/15360  0.0005478123
4 [3,3,4,3,3] | Xs 7¢(3)/9216  0.0009130206
._._I_. [32117] Qs 7¢(3)/7680  0.0010956247
4 4, [3,4,3,3,4]| Rs 7¢(3)/4608  0.0018260413
.—G [3,30]] Ps | 5%/%L(3,5)/4608 0.0020740519
._.i._< [3,4,3,3V7] | Os 7¢(3)/2304  0.0036520826
a1 4 [4,3,54] Ns 7¢(3)/1536  0.0054781239
@ [(35,4)] AUs See §3. 0.0075726186
.i._l_. [4,3,3501] | Ms 7¢(3)/768 0.0109562478
* [3LLLLY Ls 7¢(3)/384 0.0219124956
d> [(32,4)2) | URs 7¢(3)/288 0.0292166608
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THE SIZE OF A HYPERBOLIC COXETER SIMPLEX
Coxeter Witt Volume
Diagram Notation Symbol Formula Value
3
4,32 321 Se il 0.3987432701 x 104
._._I_._.i. [4,3%, ] o 777600 x
[31:1, 3,32 Q. l 0.7974865401 x 104
S S T 6 388800
R — 1373
3, 3l6] P — 2.9620928633 x 10~*
— > 13,371 ’ 1360800 *
= V3L(4,3)
33,22 T A S 1892871372 x 10~5
._._._<: [33:2:2] 7 260160 0.1892871372 x 10
_ L(4)
4 33 321 2725266071 x 105
4 1 4,33, 321] S, 262880 0.2725266071 x 10
= L(4)
1,1 92 92,1 ‘ -5
1.1 (31132 3211 | Q, 1440 0.5450532141 x 10
. - 75/20(4,7)
3,37 P — ) 41106779054 x 10~
— [3, 3% 7 3317760 %
? [343.1] Ts o 0.0213042335 x 10~6
4572288000
_ 1774
4 4,34 321 S — _ 0.1810859845 x 106
! [ ] 8 | 9144576000 %
— 1774
311 33 321 — 0.3621719690 x 10~6
Lo B Qs | messono %
— 1774
3, 3181 P —————  5.7947515032 x 10~6
- 3, 318]] s SeTeso0g 07947515032 x 10
] _ 5) .
36,2,1 T ) 0.0004650871 x 10~
! [3%%] | 22295347200 o
_ 527¢(5) .
4,35 321 S — 2 (.1225504411 x 1077
! [4,3%, 3% ] | 44590694400 ? x
_ 527¢(5
1 1 [31:1,3%321] | Q, <(5) 0.2451008823 x 107
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