
Sino French Laboratory of Informatics, Automation and Applied Mathematics

Full System Simulation
of Embedded Systems

Vania JOLOBOFF
INRIA

FORMES Project at Tsinghua
University Beijing, CHINA

Xi'An NWPU Presentation 2

Embedded Systems

Industrial Objectives

Improve reliability and safety of embedded
systems (HW + SW)
Lower time to market with shorter validation
cycle

Full System Simulation 3

Model Driven Engineering Chain

Validation/Verification is one step in the model
driven engineering chain, but a critical one for
products validation and certification

Full System Simulation 4

Others
Model

Use Case
Model

HW Functional
Model

UML, AADL, B, etc

Software manually
handcoded or tool
generated

Hardware manually
designed or
generated

Simulation
Verification

ProductSW Model

MathLab,
Simulink,
MAPLE, etc

Different types of Simulation

Mathematical / Physical Model Simulation
Extremely valuable in the design/exploration phase to
experiment new methods and algorithms

MathLab, Simulink

Hardware / Software Simulation
Different types of simulation according to the goals

Verify the hardware design (VHDL) : simulate the
hardware at clock/gate and pin level
Verify the architecture and the software : simulate the
hardware behavior with accuracy with respect to
software, which does not mean simulate every
hardware detail

5Full System Simulation

HW+SW Full System Simulation

Run the entire embedded application
software over simulated hardware

CHALLENGE : With identical behavior and
performance, at low cost

Analogy flight simulator

Full System Simulation 6

Application
Software

running on
Hardware
Simulation

Flight
SimulatorInput Control

Advantage of Full System Simulation

Software development can take place before the
hardware is ready, therefore validation is faster
Validation is less costly and faster because many
engineers can run validation tests on a PC instead of
sharing a few HW prototypes.
Some things can be done with simulation that can
hardly be done with hardware

Verifying correct hardware initialization, simulating defective
hardware, internal observations, etc.

Simulation tools can be connected with formal
methods tools

Full System Simulation 7

Simulation Speed

Example SPEC INT 2000 Test Suite
6 trillions instructions
On a 3 GHz PC: 2000 seconds ~ 33 minutes
On a 3 Mips simulator 2,000,000 seconds ~ 70 days

Other examples
A program running in 1 second on a 3 GHz host runs
in 50 minutes if simulated at 1 Mips.
Simulating at 300+ Mips on a 3 GHz host means each
target machine instruction is simulated with less than
10 instructions in the simulator host engine.

8Full System Simulation

Simulation Hardware Abstraction Level

Programmers’ View Untimed (Bit Accurate):
The simulator implements the HW specification

as given to the SW developer. No timing is
provided

Programmers’ View Timed : Same as
untimed, but in addition provided estimated

timing for operations

Clock Cycle Accurate: the simulation is 100%
accurate at signal level for each clock tick.

Register Transfer Level : emulation of the real
hardware bit/pin level

Larger and
slower

Smaller
and faster

Unable to achieve
> 10 Mips

Only way to achieve
>100 Mips

9Full System Simulation

Full System Simulation 10

Full System Simulation : What is the good
model ?

From the software point of view
Simulation must be fast enough to run the programs
in a few minutes, possibly hours for very long
sessions but not days…
Simulation must be complete, must not validate one
piece of software independently from the others

Because the problems come from integration…
From the hardware point of view

Simulation must be as accurate as possible
Calibration of hardware throughput is important
Integration of third party models must be possible

Full System Simulation 11

Simulation accuracy and speed

Ideal: to obtain 100%
accuracy with real-time
simulation speed.
Embedded system real
time 300 – 500 Mips

Cycle accurate HW
models (VHDL) are
much too slow for
software validation…

Need higher level of
abstraction

你是要快还是要准确?

Simulation requires standards

It is hard to build a complete system simulator
from scratch

Many components, some of them very complex
Necessity to re-use existing models

From corporate databases and libraries
From Third-Parties

This can only be achieved if there are standard
interfaces between the components

Full System Simulation 12

Simulation
Engine
Simulation
Engine

Components
from Party B
Components
from Party B

New
components
New
components

Components
from Party A
Components
from Party A

Two standards for interoperability

SystemC : Simulate a set of hardware
components
TLM : Communication between components

Full System Simulation 13

SystemC in one lesson

Hardware components are elements working
simultaneously (parallel) communicating through
some wiring

SystemC (IEEE standard 1666) provides for
simulation of parallel hardware components

ProcessorProcessor MemoryMemory Ethernet
Controller
Ethernet

Controller
Graphics
Controller
Graphics
Controller

USB
Controller

USB
Controller

BusBus

14Full System Simulation

SystemC in one lesson (2)

SystemC fundamental concepts
Representation

MODULE to implement a component (which may
contain other MODULEs / components
PORT to implement a communication point

Control
SC_THREAD to simulate parallel processes
sc_start() to start the simulation after all modules
have been constructed
sc_wait() to wait for something (time, event,…)
sc_notify() to signal an event
A scheduler to schedule threads according to an
algorithm described in the standard

15Full System Simulation

SystemC threads and scheduler

Processor

SC_THREAD
do {
Exec_instr()
sc_wait(flag1);
}

Processor

SC_THREAD
do {
Exec_instr()
sc_wait(flag1);
}

Ethernet Controller

SC_THREAD
do {
Process_network_
packet();
Notify_packet_ar
rived();
sc_wait(flag2);
}

Ethernet Controller

SC_THREAD
do {
Process_network_
packet();
Notify_packet_ar
rived();
sc_wait(flag2);
}

Graphics Controller

SC_THREAD
do {
Process_graphics_
request();
sc_wait(flag3);
}

Graphics Controller

SC_THREAD
do {
Process_graphics_
request();
sc_wait(flag3);
}

SystemC schedulerSystemC scheduler

16Full System Simulation

SystemC Use Cases

SystemC can be used for
Bit accurate simulation
Cycle accurate simulation
Cycle accurate simulation with hardware
synthesis

using a specific subset

Full System Simulation 17

SystemC scheduling

Algorithm steps through so called Delta-cycles that execute in no
time

1. Initialization Phase
2. Evaluate Phase: From the set of processes that are ready to run, select a
process and resume its execution. The order in which processes are
selected for execution from the set of processes that are ready to run is
unspecified. The execution of a process may cause immediate event
notifications to occur, possibly resulting in additional processes becoming
ready to run in the same evaluate phase.
3. Repeat step 2 for any other processes that are ready to run.
4. Update Phase: Execute any pending calls to update() from calls to the
request update() function executed in the evaluate phase.
5. If there are pending delta-delay notifications, determine which processes
are ready to run and go to step 2.
6. If there are no more timed event notifications, the simulation is finished.
7. Else, advance the current simulation time to the time of the earliest (next)
pending timed event notification.
8. Determine which processes become ready to run due to the events that
have pending notifications at the current time. Go to tep 2.

Or the simulation stops by calling stop function.
Full System Simulation 18

Communication Interface

Java Style Example

class Drawable { … getResolution() … }

interface Printable {
… print (Drawable d) …

}

class Rectangle implements Printable {
print(d) { print a rectangle on drawable d}

class Circle implements Printable {}
print(d) { print a circle on drawable d}

Require
Provide

19Full System Simulation

Full System Simulation 20

TLM: Transaction Level Modeling

TLM provides standard interfaces for communication between
simulation models
The communication between an initiator and a target is abstracted

transactions are routed from initiators to targets through sockets
defining interfaces for the communications.

TLM is now a standard supported by Intel, ARM, NXP, Texas
Instruments, Infineon, ST Microelectronics, Forte, Mentor Graphics,
CoWare, Synopsis, Canon, Nokia, etc.

Initiator Module Target Module

Process

Transaction Level Modeling

The initiator and targets have sockets that
provide/require an interface, e.g. a set of functions
that perform the transaction
The initiator does not need to be fully aware of the
destination details, it just need to know the
interface provided by the socket and the address of
the target
Possibility of several intermediate steps in
communication

21Full System Simulation

Transaction Level Modeling (1)

MODULE A
Socket S1

THREAD {
While (cond) {

S1.transaction(read, payload,
response)

Wait(something)
}

MODULE A
Socket S1

THREAD {
While (cond) {

S1.transaction(read, payload,
response)

Wait(something)
}

MODULE B

Socket S2 accepts transaction
read (payload, response) {
response = …
}

MODULE B

Socket S2 accepts transaction
read (payload, response) {
response = …
}

Initiator Target

22Full System Simulation

TLM transactions

Full System Simulation 23

InitiatorInitiator
Interconnect
component
0, 1 or many

Interconnect
component
0, 1 or many

TargetTarget

Initiator
socket

Target
socket

Initiator
socket

Target
socket

Forward
path

Backward
path

Forward
path

Backward
path

Transaction
object

Transaction
object

TLM Connectivity

Full System Simulation 24

Target/
Initiator
Target/
Initiator

Target/
Initiator
Target/
InitiatorInitiatorInitiator TargetTarget

InterconnectInterconnect TargetTargetInterconnectInterconnectInitiatorInitiator

TargetTargetInterconnectInterconnect

InitiatorInitiator

InitiatorInitiator

TLM Blocking vs Non-blocking
Transport

Blocking transport interface
Includes timing annotation
Typically used with loosely-timed coding style
Forward path only

Non-blocking transport interface
Includes timing annotation and transaction phases
Typically used with approximately-timed coding style
Called on forward and backward paths

Share the same transaction type for interoperability

Unified interface and sockets – can be mixed

25

TLM 2.0 Blocking Transport

26

template < typename TRANS = tlm_generic_payload >

class tlm_blocking_transport_if : public virtual sc_core::sc_interface {
public:

virtual void b_transport (TRANS& trans , sc_core::sc_time& t) = 0;
};

Timing annotationTransaction object

Transaction type

TLM 2.0 Blocking Transport

27

Initiator Target

b_transport(t, 0ns)Call

Simulation time = 100ns

Simulation time = 140ns wait(40ns)

Initiator is blocked until return from b_transport

Returnb_transport(t, 0ns)

b_transport(t, 0ns)Call

Returnb_transport(t, 0ns)

TLM 2.0 Non-blocking Transport

28

enum tlm_sync_enum { TLM_ACCEPTED, TLM_UPDATED, TLM_COMPLETED };

template < typename TRANS = tlm_generic_payload,
typename PHASE = tlm_phase>

class tlm_fw_nonblocking_transport_if : public virtual sc_core::sc_interface {
public:

virtual tlm_sync_enum nb_transport(TRANS& trans,
PHASE& phase,
sc_core::sc_time& t) = 0;

};

Trans, phase and time arguments set by caller and modified by callee

TLM 2.0 Non Blocking Transport

29

Initiator TargetPhase

BEGIN_REQ

-, BEGIN_REQ, 0nsCall

Simulation time = 100ns

TLM_COMPLETED, END_RESP, 5ns Return

-, BEGIN_RESP, 0ns

BEGIN_RESP

Call

Simulation time = 150ns

TLM_UPDATED, END_REQ, 10nsReturn

END_REQ Simulation time = 110ns

Callee annotates delay to next transition, caller waits

END_RESP Simulation time = 155ns

Timing Annotation

30

Initiator
Target

Phase

-, BEGIN_REQ, 10nsCall

TLM_ACCEPTED, -, - Return

Simulation time = 100ns

Simulation time = 110nsBEGIN_REQ

-, END_REQ, 10ns Call

Simulation time = 125ns

TLM_ACCEPTED, -, -Return

END_REQ Simulation time = 135ns

TLM 2.0 Direct Memory Interface

Memory access in TLM 1.0
socket.transaction(read, address, ret_value)

Goes through the interface forwarding process
Slow !!!

Direct Memory Access in TLM 2.0
Special initial transaction :

status = get_direct_mem_ptr(transaction, dmi_data
);

Returns table [range]
Then use value = table[address] (within the
range)

31Full System Simulation

Full System Simulation Level of
Abstraction

Abstract the hardware to “Bit Accurate
Programmer’s view”, that is, the simulation
model behaves exactly like the real hardware
from the software programmer’s view point

The software developers can run the software with
the same behavior (but slower)
The hardware developers validate that the hardware
is functionally correct
They can obtain valuable information about the
software requirements

Bus transfers, FIFO sizes, etc.

32Full System Simulation

Full System Simulation 33

FORMES Simulator Goal

Build a full simulation environment simulating the
platform as a bit-accurate simulator
Provide base simulation engine and off-the-shelf
simulators for commercial off-the-shelf CPUs

ARM, MIPS (Loongson), PowerPC
Use SystemC and TLM as the foundation model to
standardize interfaces
Make the simulation environment, portable to run on
multiple simulations hosts, open to multiple
architectures
Associate formal methods tools to the simulation
framework to prove properties of the simulated models,
speed-up the simulation process, and provide better
test validation

Computer Architecture Reminder

Processors execute instructions
Arithmetic / Logic instructions on integers or floating point
Condition and Branch instructions
Memory access instructions
Peripheral commands instructions (viewed as memory)

A processor may be interrupted by external devices
An interrupt stops the current program and executes
another program : the interrupt service routine
After interrupt is handled it returns to normal execution
On virtually all processors, an instruction is atomic, it
cannot be interrupted in the middle.

interrupts are checked before each instruction

Full System Simulation 34

Full System Simulation 35

Instruction Set Simulation (ISS)

Early simulation: Interpreted Simulation
Simulate the instruction fetch/decode/execute of the target processor
Code does essentially

do {
instruction = Fetch (current_pc);
Decode (instruction);
Execute (instruction);

} until End Of Program

Inefficiency due to decode multiple times the same instructions : speed < 10 Mips

Simulated
Memory Binary

instructions
Data

FetchFetch DecodeDecode ExecuteExecute

How to do better ?

Translation:
Translate in some way the executable code into
another representation run on the simulation host
Eliminate most of the decode time, speed up the
execute time
Cache the translated code for re-use

36Full System Simulation

Static Translation

Static translation compiles the target program into a
host program

Fast but not flexible
Does not handle all cases, for example dynamically loaded
libraries, or self modifying code
Bad throughput in development mode (cycle compile +
simulation)

Full System Simulation 37

Target
Executable
Binary

Binary
Translatiion

Host
Executable

Using Binary Translation

Translation
Analyzer and
Generator

Host C
Compiler

New C
code

Using C Intermediate code

Host
Executable

Dynamic (Cached) Translation

Translation:
Eliminate most of the decode time, speed up the execute time
Entire compilation step included into simulation run-time.
Cache the translated code for re-use

Advantage
Handles all cases, including self modifying code or code generating
applications
No additional step required before running simulation
No problem to mix with other TLM modules
Much faster simulation

Inconvenient
The translation time is added to the simulation time
However possibilities to decrease translation time with some pre-compile
steps…

Dynamic TranslationDynamic Translation Simulation time = translation time + execution time Simulation time = translation time + execution time

38Full System Simulation

CacheCache

Dynamic (Cached) Translation (2)

Translation can be done on segment or page
basis
Speed increases significantly > 10 Mips

Simulated
Memory
Simulated
Memory

Binary
instructions

Binary
instructions

Executable
Intermediate

Representation

DataData

FetchFetch DecodeDecode

decoded?decoded?

ExecuteExecute

yes
no

39Full System Simulation

Translat
e
Translat
e

Full System Simulation 40

FORMES Simulator: SimSoC

SimSoC develops a simulation framework based on SystemC and
TLM with ISS’es for the most common commercial processors

ARM (done), PowerPC (half-done), MIPS (started)

SimSoC simulation platformSimSoC simulation platform

HW TLM modelsHW TLM models

Embedded Application SoftwareEmbedded Application Software

TLM busTLM bus

Parallell Simulation : SystemC KernelParallell Simulation : SystemC Kernel

Processor Model

Dynamic
Translation
Dynamic
Translation

MMUMMU MemoryMemoryDMI

Translation CacheTranslation Cache

SimSoC ISS

SimSoC implements several types of Instruction
Set Simulator in order to make comparison and
also to have different degrees of accuracy:

P0 mode. Interpreted mode. Interrupts are checked
after every instruction (like on the real hardware)
P1 mode. Simple dynamic translation with no partial
evaluation.
P2 mode. Dynamic translation with partial evaluation
and possibility to check for interrupts at specified
intervals.
P3 mode. Code generation under research

41Full System Simulation

Partial Evaluation
Invented in the 70’s

Yoshihiko Futamura (1971). "Partial Evaluation of Computation Process – An
Approach to a Compiler-Compiler". Systems, Computers, Controls 2 (5).
Reprinted in Higher-Order and Symbolic Computation 12 (4): 381–391, 1999
A program P is usually made to operate on any data. A computer program, prog,
is a mapping of input data into output data:

prog : Istatic X Idynamic → O
The static data Istatic is the part of the input data known at compile time. Partial

evaluation transforms prog into prog* : Idynamic → O at compile time.
prog * is called the "residual program" and should run more efficiently than the

original program.

Full System Simulation 42

proc(pointer ptr, int v) {
if (ptr == NULL)

return (error);
if (v < 100)

small_number(ptr->f, v)
else

big_number(ptr->g, v)
}

p = malloc(size);
if (p == NULL)

error(“out of memory”);
else proc(p, 50);

Dynamic translation with partial evaluation

At instruction decoding time, you know which
operation on which data
Hence possible to use partial evaluation compilation
techniques to translate
Uses more memory, but memory is cheap and
caches are larger and larger

Full System Simulation 43

Partial Evaluation in Translation

Partial Evaluation Technique
can be used in binary
translation
Many instructions to reach the
internal switch case on
example
But this information is known
at decoding time…

Possible to use partial
evaluation

Can be specialized into
multiple specialized functions
with arguments evaluated at
compile time
Each function uses many less
instructions

significant performance
enhancement

Example
Operation(op, operand1, operand2)
switch(op){

case ADD:
switch(operand1){

case A:…
case B: switch (operand2) {

case X: ..
case Y:…

}
}

break;
case SUB:

substract code
case MUL:

multiplye code
...}

Multiple “specialized” functions
ADD_operandA_operandX() {}
ADD_operandA_operandY() {}
ADD_operandB_operandX() {}
SUB_operandA_operandB() {}
… etc …

Full System Simulation 44

SimSoC partial evaluation

Translate each machine instructions into a
pseudo-instruction that contains a pointer to the
partial evaluation residual function f, called the
semantic function, with the dynamic input as
argument.

Full System Simulation 45

Instruction 1
Instruction 2
Instruction 3
….
Instruction N

Instruction 1
Instruction 2
Instruction 3
….
Instruction N

f1(args1)
f2(args2)
f3(args3)
….
fN(argsN)

f1(args1)
f2(args2)
f3(args3)
….
fN(argsN)

Machine
code

Pseudo
Instructions

Generating Semantic Functions

The number of such semantics function is
potentially very large (232 for 32 bits instructions)
but finite, and in fact manageable corresponding
to computer architecture
Example ARM

15 condition modes, 2 post-operation mode, 11
operand modes, 3 addressing mode, 4 operations
(and, or, eor, not)
4*3*11*2*15 = 3960 functions for boolean instructions

Therefore semantic functions can be generated
and compiled before simulation and loaded at
run time. Full System Simulation 46

Full System Simulation 47

Partially Evaluated Pre-compiled Code

Processor.c

f1(){ Instruction behavior}

f2() {…}

f3() {…}

Processor.o

I1

I2

I3

I1

I2

I3

ISSISS
Build tables to map
instructions to
corresponding code

Target binary

Semantic functions can be generated
!
Semantic functions can be generated
!

Use C compiler maximum optimization
!
Use C compiler maximum optimization
!

MMU Simulation

Simulation of MMU Memory Management Unit
MMU verifies that memory access is permitted

Full System Simulation 48

Processor ISS
Dynamic
Translatio
n

Dynamic
Translatio
n

MMUMMU
MemoryMemoryDMI

Virt. Addr. Phys. Addr. Permission

a1 p1 R, W, X

a2 p2 R

a3 p3 W

… …

TLB
Translation
Look-aside
Buffer

Page
Tables
Page
Tables

Memory
overwrite ?

Memory
overwrite ?

Memory management

The program may be deleted or modified. The
cache must remain coherent. Necessary to keep
track of memory access and possibly invalidate
cache.

Full System Simulation 4949Full System Simulation

no yes

CacheCacheSimulated
Memory
Simulated
Memory

Binary
instructions

Binary
instructions

Executable
Intermediate

Representation

DataData

FetchFetch DecodeDecode

decoded?decoded?

ExecuteExecute

yesno

Translat
e
Translat
e

InvalidateInvalidate

MMU Simulation (2)

Because MMU associative hardware search is
simulated with software table lookup, it is slow.
Speed up solution:

Use a very large table
Example : for 32 bits virtual memory with pages of
size 4K bytes (12 bits) use a 220 elements table to
cache every page. Search done in one memory
access.

Checking memory overwrite is slow if one test
for every memory access instruction

Use host system memory protection
Full System Simulation 50

Simulation Speed Results

Interpreted Simple
Dynamic

Translation

Dynamic
Translation

with
specialization

ARM32 no
optimization

6.62 Mips 15.6 Mips 59.9 Mips

ARM32 max
optimization

6.84 Mips 15.3 Mips 82.3 Mips

THUMB no
optimization

5.01 Mips 17.3 Mips 65.4 Mips

THUMB max
optimization

5.40 Mips 17.8 Mips 60.7 Mips

51
Full System Simulation

Influence of Direct Memory Access

No dynamic translation Dynamic translation

no DMI with DMI no DMI with DMI

ARM32 no
optimization

7.2 Mips 11.8 Mips 32 Mips 123 Mips

ARM32 max
optimization

7.8 Mips 11.1 Mips 75 Mips 140 Mips

THUMB no
optimization

5.9 Mips 10.8 Mips 61 Mips 123 Mips

THUMB max
optimization

5.9 Mips 10 Mips 75 Mips 110 Mips

52Full System Simulation

FORMES Simulator status as of
2009/01

Simulation Framework developed for
– ARM architecture (Arm Version 5)
– PowerPC under development (2009)
– MIPS targeted for 2010
– Compliant with standard IEEE 1666 and TLM

Full System Simulation 53

60.7 Mips17.8 Mips5.40 MipsTHUMB –O3

65.4 Mips17.3 Mips5.01 MipsTHUMB –O0

82.3 Mips15.3 Mips6.84 Mips ARM32 –O3

59.9 Mips15.6 Mips6.62 Mips ARM32 –O0

Optimized
Translation

Simple
Translation

Interpreted

Over-specialization decreases
performance…

Specialized Over-specialized

ARM32 no opt. 59.9 Mips 58.6 Mips

ARM32 max optimization 82.3 Mips 78.3 Mips

Reason: over-specialization creates tens of
thousands of functions, each of them rarely used.

They do not all fit in the host cache….
Cache thrashing on the host deteriorates performance.

Conclusion: specialize until the cache is full...

Full System Simulation 54

Research Directions

Support multi-cores / many-cores platforms
Improve simulation speed
Develop tools for ease of use
Simulate defective hardware

Full System Simulation 55

Simulating Multi/Many Cores

Parallelize simulation for the next generation of
many-cores circuits (> 32 processors)

Full System Simulation 56

// simulation// simulation

simulation with co-routine schedulersimulation with co-routine scheduler

Component AComponent A Component BComponent B Component CComponent C
SystemC

IEEE 1666 today

SystemC

IEEE 1666 today

Research ActionResearch Action

Simulation time

Component AComponent A

Component BComponent B

Component CComponent C

High Speed Simulation

Dramatically improve simulation speed using most recent
compiling technologies

Dynamically translate simulated binary code into optimized host
code to obtain an order of magnitude speed up
Goal : simulate a 300 MHz chip at real speed on a 3 GHz PC.
Use sophisticated compiler techniques.

Decompile the machine code into an abstract control flow
graph CFG as close as possible to original source code

– Undecidable problem, but heuristics works 80% of time…
Recompile this CFG into host code with maximum optimization

Issue : Accuracy
Use of this technique much less effective if interrupts are checked
after each instruction

Full System Simulation 57

Code Generation

The machine code is first decompiled into a Control Flow Graph
then recompiled into host machine code and executed under
control of execution engine
Two existing such simulators : Boston University, Edinburgh
University
Intermediate solution : QEMU builds the CFG and generates a
sequence of macro instructions

Full System Simulation 58

CacheCacheSimulated
Memory
Simulated
Memory Binary

instructions
CFGData

FetchFetch Decode
Decompil
e

Decode
Decompil
e

decoded
?
decoded
?

Execution engine
yesno

invalidateOver
Write ?

no
yes

Native Host
Code

Run
Native

compile

Full System Simulation 59

Research : Parallelize Translation

On multi-processors simulation hosts, it is possible to
translate not just-in-time (when necessary to
execute an instruction) but in parallel ahead-of-time
The translation time does not hurt performance when
the process is parallel to the execution process

Since it does not hurt performance, the compilation can be
made more complex with more optimizations

Research
Simulation time // Simulation time //

translation time translation time

+ execution time + execution time Today simulation time == translation
time

translation
time

execution time execution time

Ease of Use

Currently, simulators are build by manually
assembling components using SystemC
interfaces:

Time consuming, errors, little flexibility…
Research:

Generate the simulator(s) from a library of existing
industry components models using a higher level tool,
generating SystemC code, with some kind of type
checking control to detect errors

Full System Simulation 60

Conclusion

Full System Simulation has achieved significant
results but we are still far from simulating many-
cores circuits at real speed. We have work to do …

Full System Simulation
61

谢谢

FORMES:
A joint project between INRIA and Tsinghua and Beihang University

