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Embedded Systems

Industrial Objectives

Improve reliability and safety of embedded 
systems (HW + SW) 
Lower time to market with shorter validation 
cycle
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Model Driven Engineering Chain

Validation/Verification is one step in the model 
driven engineering chain, but a critical one for 
products validation and certification
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Others 
Model

Use Case 
Model

HW Functional 
Model

UML, AADL, B, etc

Software manually 
handcoded or tool 
generated

Hardware manually 
designed or 
generated

Simulation 
Verification

ProductSW Model

MathLab, 
Simulink, 
MAPLE, etc

Different types of Simulation

Mathematical / Physical Model Simulation
Extremely valuable in the design/exploration phase to 
experiment new methods and algorithms

MathLab, Simulink

Hardware / Software Simulation
Different types of simulation according to the  goals

Verify the hardware design (VHDL ) : simulate the 
hardware at clock/gate and pin level
Verify the architecture and the software : simulate the 
hardware behavior with accuracy with respect to 
software, which does not mean simulate every 
hardware detail
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HW+SW Full System Simulation

Run the entire embedded application 
software over simulated hardware

CHALLENGE : With identical behavior and 
performance, at low cost

Analogy flight simulator
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Application 
Software 

running on 
Hardware 
Simulation

Flight 
SimulatorInput Control



Advantage of Full System Simulation

Software development can take place before the 
hardware is ready, therefore validation is faster
Validation is less costly and faster because many 
engineers can run validation tests on a PC instead of 
sharing a few HW prototypes.
Some things can be done with simulation that can 
hardly be done with hardware

Verifying correct hardware initialization, simulating defective 
hardware, internal observations, etc.

Simulation tools can be connected with formal 
methods tools
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Simulation Speed

Example SPEC INT 2000 Test Suite
6 trillions instructions
On a 3 GHz PC: 2000 seconds ~ 33 minutes
On a 3 Mips simulator 2,000,000 seconds ~ 70 days

Other examples
A program running in 1 second on a 3 GHz host runs 
in 50 minutes if simulated at 1 Mips.
Simulating at 300+ Mips on a 3 GHz host means each 
target machine instruction is simulated with less than 
10 instructions in the simulator host engine.
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Simulation Hardware Abstraction Level

Programmers’ View Untimed (Bit Accurate): 
The simulator implements the HW specification 

as given to the SW developer. No timing is 
provided

Programmers’ View Timed : Same as 
untimed, but in addition provided estimated 

timing for operations

Clock Cycle Accurate: the simulation is 100% 
accurate at signal level for each clock tick.

Register Transfer Level : emulation of the real 
hardware bit/pin level

Larger and 
slower

Smaller 
and faster

Unable to achieve 
> 10 Mips

Only way to achieve 
>100 Mips
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Full System Simulation : What is the good 
model ?

From the software point of view
Simulation must be fast enough to run the programs 
in a few minutes, possibly hours for very long 
sessions but not days…
Simulation must be complete, must not validate one 
piece of software independently from the others

Because the problems come from integration…
From the hardware point of view

Simulation must be as accurate as possible
Calibration of hardware throughput is important
Integration of third party models must be possible
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Simulation accuracy and speed

Ideal: to obtain 100% 
accuracy with real-time 
simulation speed. 
Embedded system real 
time 300 – 500 Mips

Cycle accurate HW 
models (VHDL) are 
much too slow for 
software validation…

Need higher level of 
abstraction

你是要快还是要准确?

Simulation requires standards

It is hard to build a complete system simulator 
from scratch

Many components, some of them very complex
Necessity to re-use existing models

From corporate databases and libraries
From Third-Parties

This can only be achieved if there are standard 
interfaces between the components
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Simulation 
Engine
Simulation 
Engine

Components 
from Party B
Components 
from Party B

New 
components
New 
components

Components 
from Party A
Components 
from Party A



Two standards for interoperability

SystemC : Simulate a set of hardware 
components
TLM : Communication between components
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SystemC in one lesson

Hardware components are elements working 
simultaneously (parallel) communicating through 
some wiring

SystemC (IEEE standard 1666) provides for 
simulation of parallel hardware components

ProcessorProcessor MemoryMemory Ethernet 
Controller
Ethernet 

Controller
Graphics 
Controller
Graphics 
Controller

USB 
Controller

USB 
Controller

BusBus
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SystemC in one lesson (2)

SystemC fundamental concepts
Representation

MODULE to implement a component (which may 
contain other MODULEs / components
PORT to implement a communication point 

Control
SC_THREAD to simulate parallel processes
sc_start() to start the simulation after all modules 
have been constructed
sc_wait() to wait for something (time, event,…)
sc_notify() to signal an event
A scheduler to schedule threads according to an 
algorithm described in the standard
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SystemC threads and scheduler

Processor

SC_THREAD 
do {
Exec_instr()
sc_wait(flag1);
}

Processor

SC_THREAD 
do {
Exec_instr()
sc_wait(flag1);
}

Ethernet Controller

SC_THREAD
do {
Process_network_
packet();
Notify_packet_ar
rived();
sc_wait(flag2);
}

Ethernet Controller

SC_THREAD
do {
Process_network_
packet();
Notify_packet_ar
rived();
sc_wait(flag2);
}

Graphics Controller

SC_THREAD
do {
Process_graphics_
request();
sc_wait(flag3);
}

Graphics Controller

SC_THREAD
do {
Process_graphics_
request();
sc_wait(flag3);
}

SystemC schedulerSystemC scheduler
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SystemC Use Cases

SystemC can be used for 
Bit accurate simulation
Cycle accurate simulation
Cycle accurate simulation with hardware 
synthesis

using a specific subset
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SystemC scheduling

Algorithm steps  through so called Delta-cycles that execute in no 
time

1. Initialization Phase
2. Evaluate Phase: From the set of processes that are ready to run, select a 
process and resume its execution. The order in which processes are 
selected for execution from the set of processes that are ready to run is 
unspecified. The execution of a process may cause immediate event 
notifications to occur, possibly resulting in additional processes becoming 
ready to run in the same evaluate phase.
3. Repeat step 2 for any other processes that are ready to run.
4. Update Phase: Execute any pending calls to update() from calls to the 
request update() function executed in the evaluate phase.
5. If there are pending delta-delay notifications, determine which processes 
are ready to run and go to step 2.
6. If there are no more timed event notifications, the simulation is finished.
7. Else, advance the current simulation time to the time of the earliest (next) 
pending timed event notification.
8. Determine which processes become ready to run due to the events that 
have pending notifications at the current time. Go to tep 2.

Or the simulation stops by calling stop function.
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Communication Interface

Java Style Example 

class Drawable {  … getResolution() … }

interface Printable { 
… print (Drawable d) …

}

class Rectangle implements Printable {
print(d) { print a rectangle on drawable d} 

class Circle implements Printable {}
print(d) { print a circle on drawable d} 

Require
Provide
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TLM: Transaction Level Modeling

TLM provides standard interfaces for communication between 
simulation models
The communication between an initiator and a target is abstracted

transactions are routed from initiators to targets through sockets
defining interfaces for the communications.

TLM is now a standard supported by Intel, ARM, NXP, Texas 
Instruments, Infineon, ST Microelectronics, Forte, Mentor Graphics, 
CoWare, Synopsis, Canon, Nokia, etc.

Initiator Module Target Module

Process

Transaction Level Modeling

The initiator and targets have sockets that 
provide/require an interface, e.g. a set of functions 
that perform the transaction
The initiator does not need to be fully aware of the 
destination details, it just need to know the 
interface provided by the socket and the address of 
the target
Possibility of several intermediate steps in 
communication
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Transaction Level Modeling (1)

MODULE A 
Socket S1

THREAD  {
While (cond) {

S1.transaction(read, payload, 
response)

Wait(something)
}

MODULE A 
Socket S1

THREAD  {
While (cond) {

S1.transaction(read, payload, 
response)

Wait(something)
}

MODULE B

Socket S2 accepts transaction 
read (payload, response) { 
response = …
} 

MODULE B

Socket S2 accepts transaction 
read (payload, response) { 
response = …
} 

Initiator Target
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TLM transactions
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InitiatorInitiator
Interconnect 
component
0, 1 or many

Interconnect 
component
0, 1 or many

TargetTarget

Initiator 
socket

Target 
socket

Initiator 
socket

Target 
socket

Forward 
path

Backward 
path

Forward 
path

Backward 
path

Transaction 
object

Transaction 
object

TLM Connectivity
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Target/ 
Initiator
Target/ 
Initiator

Target/ 
Initiator
Target/ 
InitiatorInitiatorInitiator TargetTarget

InterconnectInterconnect TargetTargetInterconnectInterconnectInitiatorInitiator

TargetTargetInterconnectInterconnect

InitiatorInitiator

InitiatorInitiator



TLM Blocking vs Non-blocking 
Transport

Blocking transport interface
Includes timing annotation
Typically used with loosely-timed coding style
Forward path only

Non-blocking transport interface
Includes timing annotation and transaction phases
Typically used with approximately-timed coding style
Called on forward and backward paths

Share the same transaction type for interoperability

Unified interface and sockets – can be mixed
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TLM 2.0 Blocking Transport
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template < typename  TRANS  =  tlm_generic_payload >

class tlm_blocking_transport_if : public virtual sc_core::sc_interface {
public:

virtual   void   b_transport ( TRANS& trans , sc_core::sc_time& t )  =  0;
};

Timing annotationTransaction object

Transaction type

TLM 2.0 Blocking Transport
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Initiator Target

b_transport(t, 0ns)Call

Simulation time = 100ns

Simulation time = 140ns wait(40ns)

Initiator is blocked until return from b_transport

Returnb_transport(t, 0ns)

b_transport(t, 0ns)Call

Returnb_transport(t, 0ns)



TLM 2.0 Non-blocking Transport
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enum  tlm_sync_enum {  TLM_ACCEPTED,  TLM_UPDATED,  TLM_COMPLETED  };

template <   typename  TRANS  =  tlm_generic_payload,
typename  PHASE  =  tlm_phase>

class  tlm_fw_nonblocking_transport_if : public  virtual  sc_core::sc_interface  {
public:

virtual   tlm_sync_enum   nb_transport( TRANS&  trans,
PHASE&  phase,
sc_core::sc_time&  t )  =  0;

};

Trans, phase and time arguments set by caller and modified by callee

TLM 2.0 Non Blocking Transport
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Initiator TargetPhase

BEGIN_REQ

-, BEGIN_REQ, 0nsCall

Simulation time = 100ns

TLM_COMPLETED, END_RESP, 5ns Return

-, BEGIN_RESP, 0ns

BEGIN_RESP

Call

Simulation time = 150ns

TLM_UPDATED, END_REQ, 10nsReturn

END_REQ Simulation time = 110ns

Callee annotates delay to next transition, caller waits

END_RESP Simulation time = 155ns

Timing Annotation
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Initiator
Target

Phase

-, BEGIN_REQ, 10nsCall

TLM_ACCEPTED, -, - Return

Simulation time = 100ns

Simulation time = 110nsBEGIN_REQ

-, END_REQ, 10ns Call

Simulation time = 125ns

TLM_ACCEPTED, -, -Return

END_REQ Simulation time = 135ns



TLM 2.0 Direct Memory Interface

Memory access in TLM 1.0
socket.transaction(read, address, ret_value)

Goes through the interface forwarding process
Slow !!!

Direct Memory Access in TLM 2.0
Special initial transaction :

status = get_direct_mem_ptr( transaction, dmi_data 
); 

Returns table [range]
Then use value = table[address] (within the 
range)
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Full System Simulation Level of 
Abstraction

Abstract the hardware to “Bit Accurate 
Programmer’s view”, that is, the simulation 
model behaves exactly like the real hardware 
from the software programmer’s view point

The software developers can run the software with 
the same behavior (but slower)
The hardware developers validate that the hardware 
is functionally correct
They can obtain valuable information about the 
software requirements

Bus transfers, FIFO sizes, etc.
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FORMES Simulator Goal

Build a full simulation environment simulating the 
platform as a bit-accurate simulator
Provide base simulation engine and off-the-shelf 
simulators for commercial off-the-shelf CPUs

ARM, MIPS (Loongson), PowerPC 
Use SystemC and TLM as the foundation model to 
standardize interfaces
Make the simulation environment, portable to run on 
multiple simulations hosts, open to multiple 
architectures 
Associate formal methods tools to the simulation 
framework to prove properties of the simulated models, 
speed-up the simulation process, and provide better 
test validation



Computer Architecture Reminder

Processors execute instructions
Arithmetic / Logic instructions on integers or floating point
Condition and Branch instructions
Memory access instructions
Peripheral commands instructions (viewed as memory)

A processor may be interrupted by external devices
An interrupt stops the current program and executes 
another program : the interrupt service routine
After interrupt is handled it returns to normal execution
On virtually all processors, an instruction is atomic, it 
cannot be interrupted in the middle.

interrupts are checked before each instruction
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Instruction Set Simulation (ISS)

Early simulation: Interpreted Simulation
Simulate the instruction fetch/decode/execute of the target processor
Code does essentially

do {
instruction = Fetch (current_pc);
Decode (instruction);
Execute (instruction);

} until End Of Program

Inefficiency due to decode multiple times the same instructions : speed < 10 Mips

Simulated 
Memory Binary 

instructions
Data

FetchFetch DecodeDecode ExecuteExecute

How to do better ?

Translation:
Translate in some way the executable code into 
another representation run on the simulation host
Eliminate most of the decode time, speed up the 
execute time
Cache the translated code for re-use
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Static Translation

Static translation compiles the target program into a 
host program

Fast but not flexible
Does not handle all cases, for example dynamically loaded 
libraries, or self modifying code
Bad throughput in development mode (cycle compile + 
simulation) 
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Target 
Executable 
Binary

Binary 
Translatiion

Host 
Executable

Using Binary Translation

Translation 
Analyzer and  
Generator

Host C 
Compiler

New C 
code

Using C Intermediate code

Host 
Executable

Dynamic (Cached) Translation

Translation:
Eliminate most of the decode time, speed up the execute time
Entire compilation step included into simulation run-time.
Cache the translated code for re-use

Advantage
Handles all cases, including self modifying code or code generating 
applications
No additional step required before running simulation
No problem to mix with other TLM modules
Much faster simulation

Inconvenient
The translation time is added to the simulation time
However possibilities to decrease translation time with some pre-compile 
steps…

Dynamic TranslationDynamic Translation Simulation time = translation time + execution time Simulation time = translation time + execution time 
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CacheCache

Dynamic (Cached) Translation (2)

Translation can be done on segment or page 
basis
Speed increases significantly    > 10 Mips

Simulated 
Memory
Simulated 
Memory

Binary 
instructions

Binary 
instructions

Executable 
Intermediate 

Representation

DataData

FetchFetch DecodeDecode

decoded?decoded?

ExecuteExecute

yes
no
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FORMES Simulator: SimSoC

SimSoC develops a simulation framework based on SystemC and 
TLM with ISS’es for the most common commercial processors

ARM (done), PowerPC (half-done), MIPS (started)

SimSoC simulation platformSimSoC simulation platform

HW  TLM modelsHW  TLM models

Embedded Application SoftwareEmbedded Application Software

TLM busTLM bus

Parallell Simulation : SystemC KernelParallell Simulation : SystemC Kernel

Processor Model

Dynamic 
Translation
Dynamic 
Translation

MMUMMU MemoryMemoryDMI

Translation CacheTranslation Cache

SimSoC ISS

SimSoC implements several types of Instruction 
Set Simulator in order to make comparison and 
also to have different degrees of accuracy:

P0 mode. Interpreted mode. Interrupts are checked 
after every instruction (like on the real hardware)
P1 mode. Simple dynamic translation with no partial 
evaluation. 
P2 mode. Dynamic translation with partial evaluation 
and possibility to check for interrupts at specified 
intervals.
P3 mode. Code generation under research
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Partial Evaluation
Invented in the 70’s 

Yoshihiko Futamura (1971). "Partial Evaluation of Computation Process – An 
Approach to a Compiler-Compiler". Systems, Computers, Controls 2 (5).  
Reprinted in Higher-Order and Symbolic Computation 12 (4): 381–391, 1999
A program P is usually made to operate on any data. A computer program, prog, 
is a mapping of input data into output data: 

prog :     Istatic    X    Idynamic → O 
The static data Istatic is the part of the input data known at compile time. Partial 

evaluation transforms  prog into    prog* : Idynamic → O     at compile time.
prog * is called the "residual program" and should run more efficiently than the 

original program. 
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proc(pointer ptr, int v) {
if (ptr == NULL) 

return (error);
if ( v < 100)

small_number(ptr->f, v)
else

big_number(ptr->g, v)
}

p = malloc(size);
if (p == NULL)

error(“out of memory”);
else proc(p, 50);



Dynamic translation with partial evaluation

At instruction decoding time, you know which 
operation on which data
Hence possible to use partial evaluation compilation 
techniques to translate
Uses more memory, but memory is cheap and 
caches are larger and larger
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Partial Evaluation in Translation

Partial Evaluation Technique 
can be used in binary 
translation
Many instructions to reach the 
internal switch case on 
example 
But this information is known 
at decoding time…

Possible to use partial 
evaluation

Can be specialized into 
multiple specialized functions 
with arguments evaluated at 
compile time
Each function uses many less 
instructions

significant performance 
enhancement

Example
Operation(op, operand1,  operand2)
switch(op){

case ADD: 
switch(operand1){

case A:…
case B: switch (operand2) {

case X: ..
case Y:…

}
}

break;
case SUB:

substract code
case MUL: 

multiplye code
...}

Multiple “specialized” functions
ADD_operandA_operandX() {}
ADD_operandA_operandY() {}
ADD_operandB_operandX() {}
SUB_operandA_operandB() {}
… etc …
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SimSoC partial evaluation

Translate each machine instructions into a 
pseudo-instruction that contains a pointer to the 
partial evaluation residual function f, called the 
semantic function, with the dynamic input as 
argument.
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Instruction 1
Instruction 2
Instruction 3
….
Instruction N

Instruction 1
Instruction 2
Instruction 3
….
Instruction N

f1(args1)
f2(args2)
f3(args3)
….
fN(argsN)

f1(args1)
f2(args2)
f3(args3)
….
fN(argsN)

Machine 
code

Pseudo 
Instructions



Generating Semantic Functions

The number of such semantics function is 
potentially very large (232 for 32 bits instructions) 
but finite, and in fact manageable corresponding 
to computer architecture
Example ARM

15 condition modes, 2 post-operation mode, 11 
operand modes, 3 addressing mode, 4 operations 
(and, or, eor, not)
4*3*11*2*15 = 3960 functions for boolean instructions

Therefore semantic functions can be generated 
and compiled before simulation and loaded at 
run time. Full System Simulation 46
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Partially Evaluated Pre-compiled Code

Processor.c

f1(){ Instruction behavior}

f2() {…}

f3() {…}

Processor.o

I1

I2

I3

I1

I2

I3

ISSISS
Build tables to map 
instructions to 
corresponding code

Target binary

Semantic functions can be generated 
!
Semantic functions can be generated 
!

Use C compiler maximum optimization 
!
Use C compiler maximum optimization 
!

MMU Simulation

Simulation of MMU Memory Management Unit
MMU verifies that memory access is permitted

Full System Simulation 48

Processor  ISS
Dynamic 
Translatio
n

Dynamic 
Translatio
n

MMUMMU
MemoryMemoryDMI

Virt. Addr. Phys. Addr. Permission

a1 p1 R, W, X

a2 p2 R

a3 p3 W

… …

TLB 
Translation 
Look-aside 
Buffer

Page 
Tables
Page 
Tables



Memory 
overwrite ?

Memory 
overwrite ?

Memory management

The program may be deleted or modified. The 
cache must remain coherent. Necessary to keep 
track of memory access and possibly invalidate 
cache.
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no yes

CacheCacheSimulated 
Memory
Simulated 
Memory

Binary 
instructions

Binary 
instructions

Executable 
Intermediate 

Representation

DataData

FetchFetch DecodeDecode

decoded?decoded?

ExecuteExecute

yesno

Translat
e
Translat
e

InvalidateInvalidate

MMU Simulation (2)

Because MMU associative hardware search is 
simulated with software table lookup, it is slow.
Speed up solution:

Use a very large table
Example : for 32 bits virtual memory with pages of 
size 4K bytes (12 bits) use a 220 elements table to 
cache every page. Search done in one memory 
access.

Checking memory overwrite is slow if one test 
for every memory access instruction

Use host system memory protection
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Simulation Speed Results

Interpreted Simple 
Dynamic 

Translation

Dynamic 
Translation 

with 
specialization

ARM32 no 
optimization

6.62 Mips 15.6 Mips 59.9 Mips

ARM32 max 
optimization

6.84 Mips 15.3 Mips 82.3 Mips

THUMB no 
optimization

5.01 Mips 17.3 Mips 65.4 Mips

THUMB max 
optimization

5.40 Mips 17.8 Mips 60.7 Mips
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Influence of Direct Memory Access

No dynamic translation Dynamic translation

no DMI with DMI no DMI with DMI

ARM32 no 
optimization

7.2 Mips 11.8 Mips 32 Mips 123 Mips

ARM32 max 
optimization

7.8 Mips 11.1 Mips 75 Mips 140 Mips

THUMB no 
optimization

5.9 Mips 10.8 Mips 61 Mips 123 Mips

THUMB max 
optimization

5.9 Mips 10 Mips 75 Mips 110 Mips
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FORMES Simulator status as of 
2009/01 

Simulation Framework developed for
– ARM architecture (Arm Version 5) 
– PowerPC under development (2009) 
– MIPS  targeted for 2010
– Compliant with standard IEEE 1666 and TLM

Full System Simulation 53

60.7 Mips17.8 Mips5.40 MipsTHUMB –O3

65.4 Mips17.3 Mips5.01 MipsTHUMB –O0

82.3 Mips15.3 Mips6.84 Mips ARM32 –O3

59.9 Mips15.6 Mips6.62 Mips ARM32 –O0

Optimized 
Translation

Simple 
Translation

Interpreted

Over-specialization decreases 
performance…

Specialized Over-specialized

ARM32 no opt. 59.9 Mips 58.6 Mips

ARM32 max optimization 82.3 Mips 78.3 Mips

Reason: over-specialization creates tens of 
thousands of functions, each of them rarely used.

They do not all fit in the host cache….
Cache thrashing on the host deteriorates performance.

Conclusion: specialize until the cache is full...
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Research Directions

Support multi-cores / many-cores platforms
Improve simulation speed
Develop tools for ease of use
Simulate defective hardware
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Simulating Multi/Many Cores

Parallelize simulation for the next generation of 
many-cores circuits ( > 32 processors)
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// simulation// simulation

simulation with co-routine schedulersimulation with co-routine scheduler

Component AComponent A Component BComponent B Component CComponent C
SystemC 

IEEE 1666 today

SystemC 

IEEE 1666 today

Research ActionResearch Action

Simulation time

Component AComponent A

Component BComponent B

Component CComponent C

High Speed Simulation

Dramatically improve simulation speed using most recent 
compiling technologies

Dynamically translate simulated binary code into optimized host 
code to obtain an order of magnitude speed up
Goal : simulate a 300 MHz chip at real speed on a 3 GHz PC.
Use sophisticated compiler techniques.

Decompile the machine code into an abstract control flow 
graph CFG as close as possible to original source code

– Undecidable problem, but heuristics works 80% of time…
Recompile this CFG into host code with maximum optimization

Issue : Accuracy
Use of this technique much less effective if interrupts are checked 
after each instruction 
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Code Generation

The machine code is first decompiled into a Control Flow Graph
then recompiled into host machine code and executed under 
control of execution engine
Two existing such simulators : Boston University, Edinburgh 
University
Intermediate solution : QEMU builds the CFG and generates a 
sequence of macro instructions
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CacheCacheSimulated 
Memory
Simulated 
Memory Binary 

instructions
CFGData

FetchFetch Decode 
Decompil
e

Decode 
Decompil
e

decoded
?
decoded
?

Execution engine
yesno

invalidateOver 
Write ?

no
yes

Native Host 
Code

Run 
Native

compile
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Research : Parallelize Translation

On multi-processors simulation hosts, it is possible to 
translate not just-in-time (when necessary to 
execute an instruction) but in parallel ahead-of-time
The translation time does not hurt performance when 
the process is parallel to the execution process

Since it does not hurt performance, the compilation can be 
made more complex with more optimizations

Research
Simulation time // Simulation time // 

translation time translation time 

+ execution time + execution time Today simulation time  == translation 
time

translation 
time

execution time execution time 

Ease of Use

Currently, simulators are build by manually 
assembling components using SystemC 
interfaces:

Time consuming, errors, little flexibility…
Research:

Generate the simulator(s) from a library of existing 
industry components models using a higher level tool, 
generating SystemC code, with some kind of type 
checking control to detect errors
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Conclusion

Full System Simulation has achieved significant 
results but we are still far from simulating many-
cores circuits at real speed. We have work to do …

Full System Simulation
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