

 Metareasoning

 Metareasoning

 Thinking about Thinking

 edited by Michael T. Cox and Anita Raja

 foreword by Eric Horvitz

 The MIT Press

 Cambridge, Massachusetts

 London, England

 © 2011 Massachusetts Institute of Technology

 All rights reserved. No part of this book may be reproduced in any form by any electronic or

mechanical means (including photocopying, recording, or information storage and retrieval)

without permission in writing from the publisher.

 For information about special quantity discounts, please email special_sales@mitpress.mit.edu

 This book was set in Stone Sans and Stone Serif by Toppan Best-set Premedia Limited. Printed

and bound in the United States of America.

 Library of Congress Cataloging-in-Publication Data

 Metareasoning: thinking about thinking / edited by Michael T. Cox and Anita Raja ; foreword

by Eric Horvitz.

 p. cm.

 Inculdes bibliographical references and index.

 ISBN 978-0-262-01480-9 (hardcover : alk. paper)

 1. Artifi cial intelligence. 2. Reasoning (Psychology). 3. Intellect. I. Cox, Michael T., 1955 – .

II. Raja, Anita, 1975 – .

 Q335.M3987 2011

 006.3 — dc22

 2010015787

 10 9 8 7 6 5 4 3 2 1

 Contents

 Foreword by Eric Horvitz vii

 I Basic Themes 1

 1 Metareasoning: An Introduction 3
 Michael T. Cox and Anita Raja

 2 There ’ s No “ Me ” in “ Meta ” — Or Is There? 15
 Don Perlis

 3 Metareasoning and Bounded Rationality 27
 Shlomo Zilberstein

 II Metalevel Control 41

 4 Learning Expertise with Bounded Rationality and Self-Awareness 43
 Susan L. Epstein and Smiljana Petrovic

 5 Controlling Deliberation in Coordinators 59
 George Alexander, Anita Raja, and David Musliner

 6 Goal-Directed Metacontrol for Integrated Procedure Learning 77
 Jihie Kim, Karen Myers, Melinda Gervasio, and Yolanda Gil

 7 Metareasoning for Multispectral Satellite Image Interpretation 101
 Paul Robertson and Robert Laddaga

 8 Metareasoning as a Formal Computational Problem 119
 Vincent Conitzer

 III Introspective Monitoring 129

 9 Metareasoning, Monitoring, and Self-Explanation 131
 Michael T. Cox

vi Contents

 10 Metareasoning for Self-Adaptation in Intelligent Agents 151
 Ashok K. Goel and Joshua Jones

 11 Using Introspective Reasoning to Improve CBR System Performance 167
 Josep Llu í s Arcos, O ğ uz M ü l â yim, and David B. Leake

 12 The Metacognitive Loop and Reasoning about Anomalies 183
 Matthew D. Schmill, Michael L. Anderson, Scott Fults, Darsana Josyula, Tim Oates,
Don Perlis, Hamid Shahri, Shomir Wilson, and Dean Wright

 IV Distributed Metareasoning 199

 13 Coordinating Agents ’ Metalevel Control 201
 Anita Raja, George Alexander, Victor R. Lesser, and Michael Krainin

 14 The Role of Metareasoning in Achieving Effective Multiagent Coordination 217
 Zachary B. Rubinstein, Stephen F. Smith, and Terry L. Zimmerman

 15 Distributed Metamanagement for Self-Protection and Self-Explanation 233
 Catriona M. Kennedy

 16 Weighted Prediction Divergence for Metareasoning 249
 Brett J. Borghetti and Maria Gini

 V Models of Self 265

 17 Metareasoning as an Integral Part of Commonsense and Autocognitive
Reasoning 267
 Fabrizio Morbini and Lenhart Schubert

 18 Robotic Models of Self 283
 Justin Hart and Brian Scassellati

 19 Anthropomorphic Self-Models for Metareasoning Agents 295
 Andrew S. Gordon, Jerry R. Hobbs, and Michael T. Cox

 20 Varieties of Metacognition in Natural and Artifi cial Systems 307
 Aaron Sloman

 Contributors 323

 Index 335

 Foreword

 By its very nature, the evolving fi eld of artifi cial intelligence is fundamentally a disci-
pline of reasoning about reasoning, or metareasoning . The passionate pursuit of insights
about the computational mechanisms underlying thought and intelligent behavior
starts with a spark of curiosity about the nature of reasoning processes — when the
future AI scientist fi rst turns the spotlight of his or her attention on reasoning as the
 object of analysis. For a great deal of the history of refl ection about the nature of intel-
ligence, AI scientists have played the role of metareasoner. However, in several waves
of effort, extending back to the earliest days of AI research, scientists have explored
opportunities for endowing computational systems with an autonomous ability to
refl ect about and to guide their processes of perception, inference, and action. Research
on metareasoning has led to new insights about principles of intelligence — and has
yielded concrete machinery that limited agents can employ to enhance their perfor-
mance amid the varying and uncertain challenges they face in the open world.

 This interesting collection of essays captures a spectrum of approaches to metarea-
soning, stemming from reports by researchers who gathered at a workshop entitled
 “ Metareasoning: Thinking about Thinking, ” held in Chicago in July 2008. Readers will
fi nd in the collection a tapestry of intriguing ideas that includes diverse perspectives
on metareasoning that draw from the rich intellectual traditions of philosophy, cogni-
tive psychology, and computer science. The chapters communicate the depth and
promise of research on imbuing computational systems with an ability to refl ect about
themselves, and about the worlds in which they are immersed.

 Eric Horvitz
 October 2009

 I Basic Themes

 1 Metareasoning: An Introduction

 Michael T. Cox and Anita Raja

 Philosophers and cognitive scientists of many persuasions have long wondered what
is unique to human intelligence. Although many ideas have been proposed, a common
differentiator appears to be a pervasive capacity for thinking about ourselves in terms
of who we are, how others see us, and in terms of where we have been and where we
want to go. As humans, we continually think about ourselves and our strengths and
weaknesses in order to manage both the private and public worlds within which we
exist. But the artifi cial intelligence (AI) community has not only wondered about these
phenomena; it has attempted to implement actual machines that mimic, simulate,
and perhaps even replicate this same type of reasoning called metareasoning .

 The term is an overloaded one, and no consensus exists as to its defi nition. Some
have described metareasoning computationally in terms of specifi c programs and
algorithms, whereas others have analyzed metacognition and focused on data from
human experience and behavior. Indeed, Ann Brown (1987) described research into
metacognition as a “ many-headed monster of obscure parentage. ” Many of the techni-
cal terms used in research on metareasoning and related areas are quite confusing.
Often, authors use different terms for the same concept (e.g., introspection and refl ec-
tion), and sometimes the same terms are used in different ways (e.g., metareasoning
has been cast as both process and object). The literature contains many related topics
such as metaknowledge, metamemory, self-adaptation, and self-awareness. The index
in the back of this book demonstrates the complexity of the subject by its length. So
the main goal of this book is to assemble some measure of consistency and soundness
in the topic.

 To attempt to achieve progress toward this goal we have written a very brief
summary of some existing research and put forth a simple, abstract model of metar-
easoning. We then asked numerous scientifi c researchers on the subject to address our
 “ manifesto ” by describing the relationship between their research and this model. The
task is to compare and contrast separate theories and implementations to this sketch
of what lies at the core of metareasoning. This model certainly has some weaknesses.
The method of abstraction leaves out various details that may prove critical to a more

4 M. T. Cox and A. Raja

in-depth understanding of the mechanisms behind the process. We also recognize that
metareasoning is a much larger umbrella under which many related topics such as
metaknowledge lie. Yet by going through this exercise, we hope that the reader and
the researcher will both gain a deeper insight into the knowledge structures and com-
putation involved.

 Metareasoning: A Manifesto

 The twenty-fi rst century is experiencing a renewed interest in an old idea within arti-
fi cial intelligence that goes to the heart of what it means to be both human and
intelligent. This idea is that much can be gained by thinking about one ’ s own think-
ing. Traditionally within cognitive science and artifi cial intelligence, thinking or rea-
soning has been cast as a decision cycle within an action-perception loop similar to
that shown in fi gure 1.1. An intelligent agent perceives some stimuli from the envi-
ronment and behaves rationally to achieve its goals by selecting some action from its
set of competencies. The result of these actions at the ground level is subsequently
perceived at the object level, and the cycle continues. Metareasoning is the process of
reasoning about this reasoning cycle. It consists of both the metalevel control of
computational activities and the introspective monitoring of reasoning (see fi gure 1.2).
This cyclical arrangement represents a higher-level refl ection of the standard action-
perception cycle, and as such, it represents the perception of reasoning and its control.

 Figure 1.1
 The action-perception cycle.

Object

Level

Ground

Level

ReasoningDoing

Action
Selection

Perception

Object

Level

Meta-

level

Ground

Level

Reasoning MetareasoningDoing

Action
Selection Control

Perception Monitoring

 Figure 1.2
 Duality in reasoning and acting.

Metareasoning: An Introduction 5

 The goal of metalevel control is to improve the quality of its decisions by spending
some effort to decide what and how much reasoning to do as opposed to what actions
to do. It balances resources between object-level actions (computations) and ground-
level actions (behaviors). But while metalevel control allows agents to dynamically
adapt their object-level computation, it could interfere with ground-level performance.
Thus identifying the decision points that require metalevel control is of importance
to the performance of agents operating in resource-bounded environments.

 Introspective monitoring is necessary to gather suffi cient information with which to
make effective metalevel control decisions. Monitoring may involve the gathering of
computational performance data so as to build a profi le of various decision algorithms.
It could involve generating explanations for object-level choices and their effect on
ground-level performance. When reasoning fails at some task, it may involve the
explanation of the causal contributions of failure and the diagnosis of the object-level
reasoning process.

 Under the banner of distributed metareasoning , signifi cant research questions also
exist concerning the extent to which metalevel control and monitoring affects multia-
gent activity. In multiagent systems, where the quality of joint decisions affects indi-
vidual outcomes, the value obtained by an agent exploring some portion of its decision
space can be dependent on the degree to which other agents are exploring comple-
mentary parts of their spaces. The problem of coordinated metalevel control refers to
this question of how agents should coordinate their strategies to maximize the value
of their joint actions.

 Finally, any complete cognitive system that reasons about itself and its actions in
the world will necessarily combine many aspects of metareasoning. A truly intelligent
agent will have some conception of self that controls its reasoning choices, represents
the products of monitoring, and coordinates the self in social contexts. Hence, a
comprehensive approach will include models of self in support of metareasoning and
integrated cognition.

 Metalevel Control
 A signifi cant research history exists with respect to metareasoning (Anderson & Oates,
2007 ; Cox, 2005), and much of it is driven by the problems of limited rationality.
That is because given the size of the problem space, the limitations on resources, and
the amount of uncertainty in the environment, fi nite agents can often obtain only
approximate solutions. So, for example, with an anytime algorithm that incrementally
refi nes plans, an agent must choose between executing the current plan or further
deliberation with the hope of improving the plan. When making this choice, the agent
is reasoning about its own reasoning (i.e., planning) as well as its potential actions in
the world (i.e., the plan). As such this represents the problem of explicit control of
reasoning.

6 M. T. Cox and A. Raja

 Figure 1.2, along its upper portion, illustrates the control side of reasoning. Reason-
ing controls action at the ground level in the environment; whereas metareasoning
controls the reasoning at the object level. For an anytime controller, metareasoning
decides when reasoning is suffi cient and thus action can proceed. Although other
themes exist within the metareasoning tradition (e.g., Leake, 1996), this characteriza-
tion is a common one (e.g., Raja & Lesser, 2007 ; Hansen & Zilberstein, 2001 ; Russell
 & Wefald, 1991).

 Now consider fi gure 1.3. The most basic decision in classical metareasoning is
whether an agent should act or continue to reason. For example, the anytime planner
always has a current best plan produced by the object-level reasoning. Given that the
passage of time itself has a cost, the metareasoner must decide whether the expected
benefi t gained by planning further outweighs the cost of doing nothing. If so, it pro-
duces another plan; otherwise, it executes the actions in the plan it already has. Note
that this simple decision can be performed without reference to any perception of the
ground level. Of course, many more sophisticated metalevel control policies exist that
include feedback.

 Introspective Monitoring
 The complementary side of metareasoning is less well studied. The introspective
monitoring of reasoning about performance requires an agent to maintain some kind
of internal feedback in addition to perception, so that it can perform effectively and
can evaluate the results of metareasoning. For instance, Zilberstein (Zilberstein &
Russell, 1996) maintains statistical profi les of past metareasoning choices and the
associated performance and uses them to mediate the subsequent control and dynamic
composition of reasoning processes.

 But introspective monitoring can be even more explicit. If the reasoning that is
performed at the object level (and not just its results) is represented in a declarative
knowledge structure that captures the mental states and decision-making sequence,
then these knowledge structures can themselves be passed to the metalevel for moni-
toring. For example, the Meta-AQUA system (Cox & Ram, 1999) keeps a trace of its

Object

Level

Meta-

level

Ground

Level

Planning MetareasoningDoing

Plan
Execution Continue?

Plan

 Figure 1.3
 Classical metareasoning (from Russell & Wefald, 1991).

Metareasoning: An Introduction 7

story understanding decisions in structures called a trace meta-explanation pattern
(TMXP). Here the object-level story understanding task is to explain anomalous or
unusual events in a ground-level story perceived by the system (see fi gure 1.4). 1 Then,
if this explanation process fails, Meta-AQUA passes the TMXP and the current story
representation to a learning subsystem. The learner performs an introspection of the
trace to obtain an explanation of the explanation failure called an introspective meta-
explanation pattern (IMXP). The IMXPs are used to generate a set of learning goals that
are passed back to control the object-level learning and hence improve subsequent
understanding. TMXPs explain how reasoning occurs; IMXPs explain why reasoning
fails.

 Note that the object-level process described above is a story-understanding task that
makes no reference to the execution of personal actions at the ground level. The
emphasis here is on the perception and monitoring side of the model; that is, the
understanding or comprehension processes in the model are equally as important as
the action and control processes were in fi gure 1.3, and indeed they can be treated
independently. However, most systems, especially agent-based systems, combine both
in various fashions.

 Distributed Metareasoning
 In a multiagent context, if two or more agents need to coordinate their actions, the
agents ’ metacontrol components must be on the same page. The agents must reason
about the same problem and may need to be at the same stage of the problem-solving
process. For example, suppose one agent decides to devote little time to communica-
tion/negotiation (Alexander et al., 2007) before moving to other deliberative decisions,
while another agent sets aside a large portion of deliberation time for negotiation; the
latter agent would waste time trying to negotiate with an unwilling partner.

 We defi ne an agent ’ s problem-solving context as the information required for
deliberative-level decision making, including the agent ’ s current goals, action choices,

 Figure 1.4
 Introspective monitoring in Meta-AQUA.

Object

Level

Meta-

level

Ground

Level

Understanding MetareasoningDoing

Learning
Goal

TraceEvents

1. Meta-AQUA performs no action at the ground level. Rather, it perceives events representing

characters in the story performing actions.

8 M. T. Cox and A. Raja

Object

Level

Meta-

level

Ground

Level

Control
Action
Selection

MonitoringPerception

Object

Level

Meta-

level

Ground

Level

Control
Action
Selection

MonitoringPerception

Object

Level

Meta-

level

Ground

Level

Reasoning

Metalevel
Agent
Interaction

MetareasoningDoing

Control
Action
Selection

MonitoringPerception

 Figure 1.5
 Metalevel reasoning among multiple agents.

its past and current performance, resource usage, dependence on other agents, and so
on. Suppose the agent ’ s context when it is in the midst of execution is called the
 current context , and a pending context is one where an agent deliberates about various
 “ what-if ” scenarios related to coordination with other agents. Distributed metareason-
ing can also be viewed as a coordination of problem-solving contexts. One metalevel
control issue would be to decide when to complete deliberation in a pending context
and when to replace the current context with the pending context. Thus, if an agent
changes the problem-solving context on which it is focused, it must notify other
agents with which it may interact. This suggests that the metacontrol component of
each agent should have a multiagent policy where the content and timing of delibera-
tions are choreographed carefully and include branches to account for what could
happen as deliberation (and execution) plays out. Figure 1.5 describes the interaction
among the metalevel control components of multiple agents.

 Another metacontrol question when there are multiple pending contexts is to
determine which pending context should be allocated resources for deliberation. In
all of these examples, the metareasoning issues are a superset of single agent cases.

 Models of Self
 For a cognitive agent to behave intelligently in a physical and social environment
with complex, dynamic interactions, many if not all of the features necessary for an
integrated human-level model of intelligence are required. For it to succeed in such

Metareasoning: An Introduction 9

Object

Level

Meta-

level

Ground

Level

Multistrategy
Reasoning

MetareasoningDoing

Strategy
Selection

Action
Selection

MonitoringPerception

 Figure 1.6
 An integrated model of self.

an environment, an agent must perceive and interpret events in the world, including
actions of other agents, and it must perform complex actions and interact in a social
context. These constitute the minimal object-level requirements. At the metalevel, an
agent must have a model of itself to represent the products of experience and to
mediate the choices effectively at the object level. Facing novel situations, the suc-
cessful agent must learn from experience and create new strategies based on its self-
perceived strengths and weaknesses. Consider fi gure 1.6.

 Monitoring at the metalevel can determine the kinds of mental actions at which
the agent excels and those at which it fails. Using such introspective information
allows the agent to choose reasoning strategies that best fi t future intellectual demands,
like the agent that selects actions based on past task performance. In more complicated
approaches, the agent may actually construct a complex reasoning strategy rather than
simply choose an atomic one. In either case, the basis for such metareasoning comes
from a picture of itself, its capacities (both physical and mental), and its relationships
to other agents with which it must interact to recognize and solve problems.

 Many theorists have speculated as to the interactions between levels of representa-
tion and process (i.e., the architecture), but few researchers have attempted to imple-
ment the full spectrum of computation implied in a comprehensive model of self (see
 Singh, 2005 , for one such attempt). We challenge the AI community to consider
seriously the problems of metareasoning in this larger context. How would an agent
best understand itself and use such insight to construct a deliberate knowledge-level
reasoning policy? Can an agent know enough about itself and its colleagues ’ self-
knowledge to communicate its metalevel needs for coordination? Can it estimate the
time it might take to negotiate a coordination policy with its fellow agents and hence
negotiate the time and length of a negotiation session? Finally, could an intelligent
soccer agent decide that it is good at planning but getting weak at passing, and so
aspire to becoming a coach? We claim that the model of acting, reasoning, and meta-
reasoning put forth in this chapter can help maintain clarity if this challenge is to be
embraced and questions like these pursued.

10 M. T. Cox and A. Raja

 Discussion
 This manifesto has tried to present in plain language and simple diagrams a brief
description of a model of metareasoning that mirrors the action-selection and percep-
tion cycle in fi rst-order reasoning. Many theories and implementations are covered by
this model, including those concerning metalevel control, introspective monitoring,
distributed metareasoning, and models of self. We claim that it is fl exible enough to
include all of these metacognitive activities, yet simple enough to be quite parsimoni-
ous. Figures 1.3 through 1.6 and their accompanying examples suggest some variations
on the potential implementations rather than dictate an agenda. We offer the model
as a framework to which the community can compare and contrast individual theo-
ries, but most of all, we hope that this model can clarify our thinking about thinking
about thinking.

 Overview

 Each chapter considers this model at some level of detail. Starting with this chapter,
Part I sets the stage by providing some of the fundamental themes within this book.
Don Perlis (chapter 2) notes the ubiquity of self-reference within the metareasoning
literature (e.g., the previous sentence) and argues that reference in general has at its
core a concept that is at the heart of what it means for an object to refer to itself.
Shlomo Zilberstein (chapter 3) examines several approaches to building rational agents
and the extent to which they rely on metareasoning. He demonstrates the application
of an optimal metareasoning approach using anytime algorithms and discusses its
relationships with other approaches to bounded rationality. The rest of the book
follows the structure of the manifesto and is divided into four parts: Part II is on meta-
level control; Part III is on introspective monitoring; Part IV is on distributed metar-
easoning; and Part V is on models of self.

 In examining metalevel control in Part II, Susan L. Epstein and Smiljana Petrovic
(chapter 4) employ metareasoning to manage large bodies of heuristics and to learn
to make decisions more effectively. Their approach gauges the program ’ s skill within
a class of problems and determines when learning for a class is complete and whether
it has to be restarted. George Alexander, Anita Raja, and David Musliner (chapter 5)
discuss their efforts to add metalevel control to a Markov decision process – based
deliberative agent. The agent uses heuristic guidance to incrementally expand its
considered state space and solve the resulting MDP. Jihie Kim, Karen Meyers, Melinda
Gervasio, and Yolanda Gil (chapter 6) describe a metalevel framework for coordinating
different agents using explicit learning goals. By supporting both top-down and
bottom-up control strategies, the framework enables fl exible interaction among learn-
ers and is shown to be effective for coordinating learning agents to acquire complex
process knowledge for a medical logistics domain. Paul Robertson and Robert Laddaga

Metareasoning: An Introduction 11

(chapter 7) discuss metareasoning in an image-interpretation architecture called
GRAVA where the goal is to produce good image interpretations under a wide range
of environmental conditions. The section concludes with Vincent Conitzer ’ s (chapter
8) discussion on how to formulate variants of the metareasoning problem as formal
computational problems. He also presents the implications of the computational
complexity of these problems.

 In exploring introspective monitoring in Part III, Michael T. Cox (chapter 9) exam-
ines the role of self-modifying code, self-knowledge, self-understanding, and self-
explanation as aspects of self from a computational stance. Ashok K. Goel and Joshua
Jones (chapter 10) describe the use of metaknowledge for structural credit assignment
in a classifi cation hierarchy when the classifi er makes an incorrect prediction. They
present a scheme in which the semantics of the intermediate abstractions in the clas-
sifi cation hierarchy are grounded in percepts in the world and show that this scheme
enables self-diagnosis and self-repair of knowledge content at intermediate nodes in
the hierarchy. Josep Llu í s Arcos, O ğ uz M ü l â yim, and David B. Leake (chapter 11)
present an introspective model for autonomously improving the performance of CBR
systems. To achieve this goal, the model reasons about problem-solving failures by
monitoring the reasoning process, determining the causes of the failures, and perform-
ing actions that will improve future reasoning processes. Matthew D. Schmill and
colleagues (chapter 12) describe the metacognitive loop (MCL), a human-inspired
metacognitive approach to dealing with failures in automated systems behavior. MCL
attempts to improve robustness in cognitive systems in a domain-general way by
offering a plug-in reasoning component that will help decrease the brittleness of AI
systems.

 In Part IV on distributed metareasoning, Anita Raja and colleagues (chapter 13)
present a generalized metalevel control framework for multiagent systems and discuss
the issues involved in extending single-agent metalevel control to a team of coopera-
tive agents requiring coordination. They present a methodology for constructing a
class of MDPs that can model the interactions necessary for coordinating metalevel
control among multiple agents. Zachary Rubinstein, Stephen S. Smith, and Terry Zim-
merman (chapter 14) consider the role of metareasoning in achieving effective coor-
dination among multiple agents that maintain and execute joint plans in an uncertain
environment. They identify several degrees of freedom in confi guring the agent ’ s core
computational components, each of which affects the proportion of computational
cycles given to local scheduling and interagent coordination processes. They also
motivate the need for online reasoning by considering how aspects of the current
control state affect the utility of different confi gurations. Catriona M. Kennedy (chapter
15) presents a distributed metareasoning architecture for a single cognitive agent
where the metalevel and object-level components form a nonhierarchical network
in which the metalevels mutually monitor and protect each other. She argues that

12 M. T. Cox and A. Raja

coordination among metalevels can also allow the agent to explain itself in a coherent
way. Brett J. Borghetti and Maria Gini (chapter 16) present a metareasoning system
that relies on a prediction performance measurement and propose a novel model
performance measurement called weighted prediction divergence that fulfi lls this
need.

 In Part V, several approaches to building models of self are presented. Fabrizio
Morbini and Lenhart Schubert (chapter 17) highlight the importance of metareason-
ing for self-aware agents and discuss some key requirements of human-like self-
awareness including using a highly expressive representation language for the
formalization of metalevel axioms. Justin Hart and Brian Scassellati (chapter 18)
discuss an approach to building rich models of the sensory and kinematic structure
of robots and examine tasks to which such models may be applied. Here the task is
for a robot to recognize itself in a mirror. Andrew S. Gordon, Jerry R. Hobbs, and
Michael T. Cox (chapter 19) describe anthropomorphic self-models as an alternative
approach to current approaches. They argue that developing integrated, broad-
coverage, reusable self-models for metareasoning can be achieved by formalizing
the commonsense theories that people have about their own human psychology.

 In the concluding chapter, Aaron Sloman (chapter 20) surveys varieties of meta-
cognition and draws our attention to some types that appear to play a role in intel-
ligent biological individuals (e.g., humans) and which could also help with practical
engineering goals.

 Conclusion

 As with many collections on technical subjects, this book raises as many questions as
it answers. We have avoided an overly restrictive defi nition of metareasoning and have
left it open to some variation in interpretation, as many of the chapters have done.
Some generalities can be stated, however. In a sense, the metareasoning task is easier
than that of object-level perception, because theoretically, no hidden state exists. In
practice, many of the case studies described in this volume abstract the mental states
and processes represented at the object level to make metareasoning tractable, and
thus it is not possible to inspect all details at the object level. In fact, in some cases
metareasoning can be modeled using the same techniques as object-level reasoning,
but it is at a higher level of abstraction and has a nonmyopic view. In another sense,
reasoning at the metalevel is more diffi cult than reasoning at the object level. This is
because metareasoning is never performed in the absence of object-level reasoning.
Consequently, metareasoning adds to the computational overhead of the object-level
task, making the search space larger and the computational burden greater. Identifying
the characteristics of problem domains where metareasoning is easier than object-level
reasoning and vice versa is an area yet to be explored.

Metareasoning: An Introduction 13

 Another open issue is the relationship between metareasoning and learning.
Although many of the chapters discuss learning, it is not clear how to formally map
one to the other or even whether learning belongs to the object level or the metalevel.
The AI literature describes many learning systems without reference to metareasoning;
yet a number of chapters link learning strongly to a metareasoning framework (see
chapters 4, 6, 10, and 11, for example). If one considers learning to be a change in
the agent that improves its overall performance, then an agent ’ s reasoning about itself
should lead toward that goal. 2 But in much of the current machine learning research,
the algorithmic focus is on data disembodied from any agent, or, at best, is on the
agent ’ s actions at the ground level.

 The goal of this book is to present a comprehensive narrative that incorporates an
integrated set of chapters on various themes pertaining to metareasoning from both
artifi cial intelligence and cognitive science perspectives. It includes concepts from
research on multiagent systems, planning and scheduling technology, learning, case-
based reasoning, control theory, logic programming, autonomic computing, self-
adaptive systems, and cognitive psychology. We hope the reader will fi nd that the
model described in the manifesto operates as a central theme that supports a larger
narrative. The manifesto is intended to be a shared organizational framework to which
each author compares and contrasts his or her theory, results, and implementational
details. For the most part, the authors have found this to be a useful abstraction. We
hope that the reader will as well.

 Acknowledgments

 The views, opinions, and fi ndings contained in this essay are those of the authors and
should not be interpreted as representing the offi cial views or policies, either expressed
or implied, of the Defense Advanced Research Projects Agency or the Department of
Defense. This document has been approved for public release by DARPA for unlimited
distribution.

 References

 Alexander , G. , Raja , A. , Durfee , E. , & Musliner , D. (2007). Design paradigms for meta-control in

multi-agent systems. In A. Raja & M. T. Cox (Eds.), Proceedings of the First International Workshop

on Metareasoning in Agent-based Systems (pp. 92 – 103).

2. In some respects this is the implied perspective of Russell & Norvig, 2003, given the way they

cast a learning agent (see Russell & Norvig, 2003, p. 53, fi g. 2.15). The learning element (at the

metalevel) receives knowledge from and makes changes to the performance element (at the object

level).

14 M. T. Cox and A. Raja

 Anderson , M. L. , & Oates , T. (2007). A review of recent research in metareasoning and metalearn-

ing. AI M agazine , 28 (1), 7 – 16 .

 Brown , A. (1987). Metacognition, executive control, self-regulation, and other more mysterious

mechanisms . In F. E. Weinert & R. H. Kluwe (Eds.), Metacognition, motivation, and understanding

(pp. 65 – 116). Hillsdale, NJ : Lawrence Erlbaum .

 Cox , M. T. (2005). Metacognition in computation: A selected research review. Artifi cial Intelligence ,

 169 (2), 104 – 141 .

 Cox , M. T. , & Ram , A. (1999). Introspective multistrategy learning: On the construction of learn-

ing strategies. Artifi cial Intelligence , 112 , 1 – 55 .

 Hansen , E. , & Zilberstein , S. (2001). Monitoring and control of anytime algorithms: A dynamic

programming approach. Artifi cial Intelligence , 126 (1 – 2), 139 – 157 .

 Leake , D. B. (1996). Experience, introspection, and expertise: Learning to refi ne the case-based

reasoning process. Journal of Experimental & Theoretical Artifi cial Intelligence , 8 (3), 319 – 339 .

 Raja , A. , & Lesser , V. (2007). A framework for meta-level control in multi-agent systems. Autono-

mous Agents and Multi-Agent Systems , 15 (2), 147 – 196 .

 Russell , S. J. , & Norvig , P. (2003). Artifi cial intelligence: A modern approach (2nd ed.). Upper Saddle

River, NJ : Prentice Hall .

 Russell , S. J. , & Wefald , E. (1991). Principles of metareasoning. Artifi cial Intelligence , 49 , 361 –

395 .

 Singh , P. (2005). EM-ONE: An architecture for refl ective commonsense thinking . Unpublished doctoral

dissertation, Massachusetts Institute of Technology, Department of Electrical Engineering and

Computer Science, Cambridge, Massachusetts.

 Zilberstein , S. , & Russell , S. J. (1996). Optimal composition of real-time systems. Artifi cial Intel-

ligence , 82 (1 – 2), 181 – 213 .

 2 There ’ s No “ Me ” in “ Meta ” — Or Is There?

 Don Perlis

 Metareasoning is one of the many notions of the form meta- X . In this chapter I fi rst
explore meta- X in general, and observe that the role of metareasoning in common-
sense reasoning is a kind of self-reference fundamental to most of these notions. From
there I take up the theme of reference in general, informal and formal, and suggest
that a suitable, but as yet foggy, notion of self appears poised to play a major role in
future work in commonsense reasoning.

 Meta-this or meta-that carry the sense of an X (a this or a that) which is being
examined from a vantage point that allows X to be taken in as a whole — or at least
in large chunks that can be used in characterizing general properties of X .

 • Metalanguage is the mode of expression used in examination of a mode of expression,
that is, of (possibly another) language, for example, in asking questions such as: What
does that word mean? What language are they speaking? Is that a valid expression?
How is that spelled? Can you repeat that?
 • Metamathematics is an examination of mathematics (or a portion thereof). It con-
fronts questions such as: Is it consistent? What rules govern it? and so on.
 • Metacognition is the examining of (one ’ s own) cognition. One comes to characterize
some of one ’ s mental processes: My memory failed me; I am no good at arithmetic; I
easily remember faces; I have a good sense of direction.

 Several themes percolate through these examples, just below the surface. One is that
meta- X involves a person — a reasoner — who is doing the examining of X . Another is
that X itself is a kind of reasoning people do: we do math, we cognize, we use language.
Yet another is that in doing meta- X , we are examining something about ourselves,
namely, our doing of X . And a fourth is that one takes a step back from performing
 X in order to examine X , that is, to perform meta- X . 1

1. Metaphysics does not quite fi t this description; instead of being an examination of the practice

of fi nding laws of nature, it examines (among other things) why there are laws of nature at all,

what are “ reality ” and “ existence. ” But for that reason, metaphysics is not a case of meta- X at

all. In fact, the term seems to have originated in reference to the topic in Aristotle ’ s writings that

came after his writings on physics, thus effectively eliminating metaphysics from our concern

here. My thanks to Aaron Sloman for calling this to my attention.

16 D. Perlis

 So it would appear that in performing meta- X we are stepping back from our
 X -performance in order to examine it; we stop doing X so we can look at it. This reso-
nates with the familiar dictum: we cannot catch ourselves in the act — but only in the
aftermath of ceasing that act.

 To quote William James (1892) at some length, both for context and for the pure
joy of Jamesian prose:

 When we take a general view of the wonderful stream of our consciousness, what strikes us fi rst

is the different pace of its parts. Like a bird ’ s life, it seems to be an alternation of fl ights and

perchings. The rhythm of language expresses this, where every thought is expressed in a sentence,

and every sentence closed by a period. The resting-places are usually occupied by sensorial imagi-

nations of some sort, whose peculiarity is that they can be held before the mind for an indefi nite

time, and contemplated without changing; the places of fl ight are fi lled with thoughts of rela-

tions, static or dynamic, that for the most part obtain between the matters contemplated in the

periods of comparative rest.

 Let us call the resting-places the ‘ substantive parts, ’ and the places of fl ight the ‘ transitive

parts, ’ of the stream of thought. . . . And we may say that the main use of the transitive parts is

to lead us from one substantive conclusion to another.

 Now it is very diffi cult, introspectively, to see the transitive parts for what they really are. If

they are but fl ights to a conclusion, stopping them to look at them before the conclusion is

reached is really annihilating them. Whilst if we wait till the conclusion be reached, it so exceeds

them in vigor and stability that it quite eclipses and swallows them up in its glare. Let anyone

try to cut a thought across in the middle and get a look at its section, and he will see how dif-

fi cult the introspective observation of the transitive tracts is. The rush of the thought is so

headlong that it almost always brings us up at the conclusion before we can rest it.

 Yet in metamathematics it turns out that (for example via G ö del numbering) a good
deal of the meta- X (X being mathematics) is itself part of X . To be sure, the concerns
or aims of meta- X are not quite the same as those of X ; but there is a large overlap of
the two, at least in this case. And the typical metalanguage for a natural language —
 say, English — is English itself.

 So, here is the theme/poser of this essay: when we examine our performance of a
cognitive activity X , must that examining (itself an activity) effectively halt our
 X -performance, or at least so change it that it no longer is what we were attempting
to examine? And if so, can it then be examined in pristine form only from without,
by a highly distinct process? Or can one perform a mental activity that continues
full-blast (“ in a headlong rush, ” to borrow from James) even while being looked
at from within — perhaps even an activity that is that very looking at its own perfor-
mance of itself? Answers tend to involve one of two notions, which we may refer to
as hierarchical (looker is separate from lookee) or loopy (looker and lookee can be inter-
twined and even one and the same). These terms will be further explained as we
proceed.

There’s No “Me” in “Meta”—Or Is There? 17

 However, it seems clear that the notion of a self, or a me, is near and dear to the
theme at hand. And now I hope the meaning of the title is somewhat clearer as well.

 Consideration of our theme will lead us to a number of traditionally far-fl ung
topics: informal (natural-language based) self-reference; formal self-reference in math-
ematical logic; the problem of reference in general; consciousness; commonsense
reasoning; and mistakes. We will now take these up in turn.

 Informal Self-Reference

 Perhaps the most famous example of a self-referential utterance is the so-called Liar :

 L: This sentence is false.

 The Liar, or L for short, has two curious features: (i) it appears to refer to itself, and
(ii) it appears to contradict itself. The latter feature is the one that has received most
attention, but we will focus instead on the former. At this early stage let us simply
note that there is an issue as to what, if anything, can guarantee that the word “ This ”
in L succeeds in referring to L itself, as opposed (say) to some other sentence that may
have recently been uttered or pointed to. Presumably it is our agreement that it so
refer; but then there is personal agency involved.

 Consider these two sentences that directly speak to personal agency:

 I am using the letter “ L ” to refer to the sentence to the right of that letter.

 The above sentence calls attention specifi cally to how an expression is to be taken as
referring, according to the agent-speaker.

 Here I am speaking in English in Chicago as I scratch my head, wondering how I will
complete this sentence that I will complete . . . now.

 In this sentence there is no explicit mention of reference or meaning, but words such
as “ Here ” and “ I ” must be understood as referring to the present time and to the
speaker. Moreover, surely this sentence is true — or was true when it was uttered — and
surely in uttering it I referred to myself and to that very sentence-uttering process as
it was occurring. The process refers to itself, wearing, so to speak, its meaning on its
sleeve, and it achieves that in virtue of my decision to make it do that and of your
understanding that this is what I am doing.

 Perhaps more precisely, I am referring to my uttering activity as it occurs, and that
referring action is simply that very uttering activity itself. The uttering activity is a
self-referring process. Not the sentence, but the activity. What activity? Not mere
production of words. Uttering in this context is supposed to mean something
like: attempting to convey something to someone, and the self-referential uttering
activity is one that is (or involves) an attempt to convey itself — that is, its own self-
conveyingness — to someone.

18 D. Perlis

 But this then rests on a clear reference for “ I, ” presumably once again an agent
with referential intentions, a matter seemingly far removed from the usual concerns
in discussions of the Liar.

 This is pretty weird stuff. Self-referring entities tend to be suspect; yet instead of
being accidental oddities that creep in because the expressive power of our languages
(formal or otherwise) is too lax, they are essential. In fact, the very possibility of refer-
ence of any kind supervenes on a special kind of self-reference, which I have called
 strong self-reference (Perlis, 1997).

 Indeed, as Grice (1957) has urged, every utterance is implicitly of this sort, a self-
commenting or self-meta-self, as if it were of the form:

 With this utterance I am attempting to convey the meaning of this utterance to you.

 Well, that might not work; it is not clear it has a lot of meaning. But the Chicago
utterance-process above has a clear meaning. It is also clear that it is an attempt to
convey something, and that that something is that very process itself.

 One natural-enough reaction to the above circumstances is to suppose that some
sentences (such as the Liar) are, after all, neither true nor false, indeed neither true
nor not true. This may seem to play fast and loose with the word “ not ” ; after all, “ not ”
simply asserts the failure of what follows it. But perhaps there is something hidden
here. In order to be a candidate for failure in the matter of its truth, any sentence
must fi rst have a potential truth that can fail, that is, it must have a clear enough
meaning that can be measured against some criterion of truth. How does a sentence
acquire a meaning? This is the subject of much dispute, and we will return to it a bit
later on.

 Formal Self-Reference

 The examples we have considered so far are informal, based largely on commonsense
notions. However, it is not hard to capture similar behaviors in more formal dress. A
key component of the formalization is the Diagonal Lemma , which asserts that in any
reasonably expressive formal theory F , for each unary well-formed formula (wff) P (x)
there is a sentence p such that in F it is provable that p ⇔ ¬ P (‘ p ’) where ‘ p ’ names
(rather than asserts) the sentence p . Given the Diagonal Lemma, various formal results
along the lines of the Liar follow.

 With more work (G ö del ’ s famous Incompleteness Theorem) one can devise a wff
Thm(x) of F such that, for all sentences s , Thm(‘ s ’) is provable in F if and only if s is
provable in F ; that is, Thm is a provability-predicate for F .

 Now from the Diagonal Lemma, there is a sentence g (a so-called G ö del sentence)
such that in F it is provable that g ⇔ ¬ Thm(‘ g ’), that is, that g is equivalent to its own

There’s No “Me” in “Meta”—Or Is There? 19

unprovability in F . It follows that if g is provable, then so is ¬ Thm(‘ g ’), and hence we
get G ö del ’ s Theorem: either g is unprovable in F and thus true, in the sense that what
it “ asserts ” (its own unprovability) holds, or F is inconsistent (since if g is provable
then so are both Thm(‘ g ’) and ¬ Thm(‘ g ’).

 But such formal results are purely syntactic, and reference (let alone self-reference)
plays no real role. For example, that L refers to anything is irrelevant to the proof that
the formal version of the Liar is inconsistent. And the G ö del sentence g does not really
refer to anything at all, let alone to its own unprovability.

 And who cares? Isn ’ t self-reference just a curiosity, an accident arising as a side
effect of an overexpressive language, with surprisingly useful but equally accidental
application in formal logic, and of no deep signifi cance in itself? Can we not then
simply ignore the bad (contradictory) cases and welcome the good? As it turns out,
we cannot: self-reference, far from being an unimportant side effect, is central to refer-
ence, hence to meaning, and arguably to meta- X as well. This leads us to set out two
highly dissimilar approaches to meaning assignment.

 Hierarchical or Loopy?

 Since the above formal results are just that, formal (syntactic) and not dependent
on semantics, it might be possible to keep the advantages of certain “ seeming ” self-
reference (as in G ö del ’ s Theorem) without the disadvantages of the Liar (such as
inconsistency). Tarski (1983) showed how to do this by means of a restriction on how
languages refer. He posited a hierarchy of languages L 1 , L 2 , . . . where each L j +1 has
expressions that refer only to objects in a previously defi ned language L j . There is then
no expression that can refer to itself. This approach simply banishes self-reference
from expression altogether, while leaving intact the syntactic vestiges needed for the
Diagonal Lemma (and useful formal results).

 On the other hand, this hierarchal approach seems to banish too much. There are
perfectly innocuous but semantically based cases of self-reference, such as:

 This sentence has fi ve words.

 Yet this is not expressible in the Tarski Hierarchy. Nor is the following pair of straight-
forward sentences, each referring to the other (one happens to be false):

 The sentence below has seven words.

 The sentence above has six words.

 Yet if these are clear enough, if a sentence can clearly refer to another specifi c sentence,
above or below itself, then why not to itself, as in:

 The sentence right at this spot is in English.

20 D. Perlis

 For that matter, in referring to something above itself, a sentence implicitly refers to
its own position to give meaning to “ above ” or “ below. ” Since the meanings of some
sentences are not captured hierarchically, we will borrow a phrase of Hofstadter ’ s
(2007) , and say they have loopy semantics : their meanings do not (entirely) lie outside
the sentences but rather turn back to the sentences themselves.

 How does meta- X bear on hierarchical or loopy semantics? The hierarchical case is
simple enough: each language L j +1 is a metalanguage for the previous one; it takes a
step back, provides the vantage point, for commenting on other sentences. There is
no “ me ” in these sentences, since they always refer to another domain, never to the
one where they sit.

 Loopy semantics, on the other hand, is precisely that of sentences that self-refer,
whether directly, or indirectly, via (a loop through) other sentences such as in the pair
above. But is this then not also simple, straightforward? Yes and no; here is where we
start to see some complexities in the concept of meaning.

 The problem, at its core, is that the hierarchical semantics does not really address
reference at all. In postulating that language L j+1 is “ about ” objects (e.g., sentences) in
 L j , one is simply making a stipulation, not explicating what it is for a sentence to mean
anything, or refer. It is only by means of an agreement among whichever logicians
happen to be participating in the discussion that an expression refers to anything
at all.

 The deictic “ this ” of natural language (as in “ This sentence is false ”) has been
bypassed altogether in formal treatments. Indeed, reference (or semantics) of any kind
is traditionally placed outside a formal language, as a function defi ned on expressions
in the language, mapping to an external domain. The language in question does not
typically have an expression that stands in for this function; and even if it did, what
would determine that standing-in relation? It is as if meaning, or truth, is always one
step removed, leaning on some agreement lying outside whatever language is used.

 So, as far as the hierarchical approach goes, a map between symbols and referents
is arbitrary, relying on a decision to use that map, and not some other, by an agent
who intends to use that map. Contrary to what Putnam (1975) has claimed, meaning
is (at least partly, and very signifi cantly) in the head (of the agent using that meaning).
Only when this issue is faced head on do we encounter genuine cases of reference and
the possibility of genuinely self-referring expressions. And these turn out to be pre-
cisely the loopy cases.

 General Reference

 A lesson we draw is that self-reference proper has largely been left untouched by the
very large literature purportedly on that subject. This is because reference has largely
been left untouched, or rather pushed to the sidelines, via G ö del numbering or a

There’s No “Me” in “Meta”—Or Is There? 21

similar artifi cial mechanism that relies on external agreements to bring reference in
at all. Attention has focused, rather, on formal counterparts of self-reference that do,
to be sure, carry with them a substantial potential for contradictoriness, in close
analogy to their informal — but more genuinely self-referential — sources. But while this
attention has produced much of great importance, it has left much out as well. First
and foremost is this problem: Can there be representation (meaning, reference)
without an agent who chooses to so represent? And secondarily, what is the relation
between reference in general and self-reference? Third, what can be said about
 “ genuine ” informal self-referential expressions, in light of answers to the former
questions? Space does not permit a detailed discussion, but my answers are: No
representation without intentional stipulative agency; reference supervenes on self-
reference; and genuine or “ strong ” self-reference is a special “ loopy ” agency bordering
on consciousness.

 Consciousness

 Wait a minute! Consciousness? Aren ’ t we aimed at understanding meta- X here?
 Well, a “ me, ” a self, arguably is the essence of consciousness (however, this is

incredibly controversial). But if so, and if a me or a self is part of meta, then meta
involves consciousness. But we have seen two versions of meta: hierarchical and loopy.
The former is little more than a sequence; the latter is mysterious. Hierarchical meta- X
presumably is akin to a Tarskian pair of levels, the object-level X and the monitoring-
level meta- X . There seems little more to be said about it, except that someone sets up
a map by which the expressions at the meta- X level refer to items at the X level. But
then whoever sets up this map is really the determiner of meanings, without whom
there is no particular designated map, and X and supposed meta- X have no particular
relationship. And meaning determiners, as far as we know, are always people, or at
least agents with intentions.

 We are faced, then, once again with agents: agents that perform activities and also
refer to those activities (some of which are self-referring).

 Consider again that English is its own metalanguage. We typically talk about
English in English, and for the most part do not need a special set of meta-English
terms to do this, beyond ones such as “ word ” and “ means ” and “ spell ” and “ sentence. ”
But even here, such terms refer to bits of English only because at least one human has
taken them to so refer.

 What is it, then, for an agent to “ take ” one thing to “ refer ” to another? Consider
a primitive case: coining an expression, explicitly linking a symbol s to a referent r .
This would seem to be no more nor less than an intention to use s as a stand-in for
 r in certain contexts. Following this trail, we now ask what it is to intend something,
and we are smack-dab in the middle of both philosophy of language and philosophy

22 D. Perlis

of mind. And to reinvoke Grice, every utterance is a case not merely of intending, but
also of intending listeners to understand that the utterer intends that intending. Can
all this happen in the absence of a fairly sophisticated (and quite possibly conscious)
cognitive engine? Moreover, the natural languages that we use for expression of inten-
tions are — as noted — their own metalanguages, allowing loopy self-reference made
possible by our intentions to so refer: We speak of ourselves, not just past or future,
but our immediate present self and present activity including the activity of noting
that activity.

 So, once again, does meta have a me? If meta involves reference, and if reference
involves agency with intentions, including intentional self-referring activity, and if
that in turn is at least a hint of a self, then yes.

 Thus a bare-bones agent self-reference may be the most basic kind of reference.
What is bare-bones self-reference like? Imagine yourself stripped little by little of this
sensation, that thought, until all that is left is your own grasp of being there, a bare
loopiness without — for the moment — any further trappings: no personal history, no
connections with or knowledge of entities in the world other than the one thing:
you-as-bare-awareness.

 Such a minimal subjective state — if there is such a thing — I have dubbed the “ ur-
quale ” : the most primitive sensation or feeling possible, namely, that of simply being
a being, an entity whose one activity is self-monitoringness (Perlis, 1997 , 2000). 2

 Let us step back a little from such tenuous speculations to more of an engineering
perspective, following an idea of John Perry (1979) . He describes pushing his shopping
cart along in an attempt to fi nd the shopper whose cart is leaving a trail of sugar on
the fl oor, only later to realize that he is that shopper. But what is it that he learns?
Perry explores this question at some length, for although on the one hand it seems
obvious, on the other it is devilishly hard to say what it is. Still, it seems to matter,
and not only for egocentric reasons. Our everyday actions seem tied to it.

 Commonsense Reasoning

 We can ask a related question about robot design. Consider a robot that can decide
that it is the robot who is leaking oil, upon hearing that robot 17 is leaking oil. What
is it for robot 17 to know that it, itself, is that robot? How does this affect its behavior?
Presumably it is quite important to have such a capability, for example, for survival.
See Anderson and Perlis (2005) for more elaborate discussion of this idea.

2. I should point out that there has been a tremendous amount of work done on paradoxes of

self-reference, formal and informal. For example, Gilmore (1974) and Kripke (1975) in particular

have formulated two closely related approaches that not only defuse the paradoxical (contradic-

tory) aspects but also retain (much of) the self-referential aspects. The focus of such work in general

has been on clarifying the notion of truth, which is slightly tangential to our concerns here.

There’s No “Me” in “Meta”—Or Is There? 23

 It is worth stopping to ask what good such a thing might be (whether full-blast or
loopy). One answer seems easy to come by: the self-examining that consciousness
appears to provide has survival value. And in fact, much of recent work in AI has been
aimed at providing useful self-examining capacities to automated systems, including
commonsense reasoners. Indeed, that is presumably what this book is about. I turn
then to an approach central to my own work, which not only seems to promise some
usefulness for AI systems, but also bears a bit on some of the other issues we have
been exploring. Namely, I will briefl y discuss active logic.

 Active logic is a type of “ commonsense formal inference engine ” ; that is, it consists
of a language and rules of inference, but with a twist: the rules are sensitive to the
actual physical passage of time. Thus the inference of Q from P and P ⇔ Q is sanctioned
only if that inference occurs at a time t +1 when both P and P ⇔ Q had been inferred
at time t . In effect, time values are part of the language; but that in itself is no news:
temporal logics have such as well. Active logic, however, ties time values to actual
physical time-passage, by keeping track of the evolving current time. The active logic
sentence ‘ Now(t) ’ has the obvious meaning. But what is striking is the so-called clock
rule : from ‘ Now(t) ’ infer ‘ Now(t +1) ’ . So we have a sentence that, if believed, leads to
its own disbelief. The reason, of course, is that such a belief is time sensitive, and as
time passes the belief becomes outdated. But it has major consequences for what active
logic can do. For just one example, it facilitates a smooth handling of contradictions.
On the other hand, semantics becomes much more complex; see Anderson et al.
(2008).

 I bring this up because active logic also provides a useful way to talk about differ-
ences, or the lack of differences, between metareasoning and object reasoning since
the two are not distinguished at all in active logic. Each inference step involves looking
back at the previous step to see what was inferred then, and on that basis drawing
inferences at the new current step. Whether such an inference is modus ponens, based
on the presence of P and P ⇔ Q at the previous step, or instead is based on the presence
of P and ¬ P and yields Contradiction(t) (recording the fact that there was a direct
contradiction at the previous step), makes no difference at all to the machinery. It is
only to us that these inferences seem to exist at different levels, and then only if we
are sensitized to X versus meta- X as a hierarchical distinction from a young age in a
formal logic class.

 There is much more to be said, but we shall leave it and turn instead to the practi-
cal matter of mistakes.

 Meta and Mistakes

 As a technical branch of AI, commonsense reasoning is the subject of a great deal of
study. Yet (as with many such things) there is no general agreement as to what it is,
at least in sharp defi nitional terms.

24 D. Perlis

 Here is my own defi nition, offered as a kind of hypothesis:

 Commonsense reasoning (CSR) is the form of metareasoning that monitors an
activity for mistakes and then deals with them, sparing the main activity the
embarrassment of making a fool of (or destroying) itself.

 More specifi cally:

 1. CSR consists of a module that notes mismatches between observation and expecta-
tion in a system ’ s performance, assesses any such, and guides a response into place.
 2. This is the essence of human common sense. We have expectations, note deviations
from them, and decide on a response. 3
 3. Such a CSR module need not know much at all about the system in question,
other than having access to at least some of the system ’ s pre- and postconditions
(expectations) for its actions and at least some of its observations (e.g., sensor
readings).
 4. This module can be fairly simple, based on a core set of general kinds of things
that can go wrong and general kinds of fi xes for them. For instance: Noise can interfere
with sensor readings, in which case one can use another sensor or take repeated read-
ings, or replace the sensor; data can be contradictory, and one can distrust one or
more of the contradictands, seek corroborating evidence for them, change one ’ s expec-
tations, give up and work on another problem, ask for help, and so on.
 5. The actual carrying out of such a response is not the CSR module ’ s job; it merely
recommends, and the system must then be equipped for the repair.
 6. One particularly interesting case is that of a failure due to lack of some skill, so
that training is needed. Training then can be recommended by the CSR module,
and if training commences, the module monitors that, assesses its progress, and rec-
ommends when to stop training (whether due to its not working, or to its having
succeeded).
 7. If such a module were to be built and put to use with a given AI system, that system
would become far less brittle, and vastly better at dealing with anomalies, than any
AI systems at present.
 8. Such a module could be general purpose, not built for any specifi c system or
domain. This is because humans are not specifi c in that sense. We manage to muddle
through in a wide variety of unanticipated changes within, and even to, arenas of
action.

3. A reviewer points out that expectation-driven reasoning and learning from failed expectations

is present in other work, such as that by Schank and Owens (1987) and Cox and Ram (1991) .

What is new here is the idea that a modest core set of such tools may be suffi cient for not only

a very general form of metareasoning but also for much of commonsense reasoning overall.

There’s No “Me” in “Meta”—Or Is There? 25

 We are in fact hard at work designing just such a module — as an outgrowth of active
logic — which we call the metacognitive loop ; see Anderson et al. (2006). This module
resides at the metalevel, monitoring and guiding the system of which it is a part.

 Conclusion

 What then can we say about our poser: Is there or is there not a me in meta? Well, to
the extent that common, garden-variety so-called self-monitoring systems are “ meta, ”
with one distinct level monitoring another, the answer seems to be no. If one part of
a system monitors another without any self-reference at all, the two parts are in effect
distinct systems, passing information between them. On the other hand, if that infor-
mation includes aspects bearing on both levels, we may see a kind of loopiness embed-
ded within a traditional hierarchical form of meta.

 In the case of active logic ’ s form of meta- X , for example, there is (so far) no sharp
notion of me or self. Still, an active logic sentence might refer to itself by invoking a
description of itself (e.g., the fi rst sentence inferred at time t). And there can be loops,
with one sentence referring to a later one yet to come, which in turn may refer back
to it.

 But note that reasoning about a past or future or even present, does not in itself
constitute an activity that reasons about its very self. And even in the case of the
sentence italicized above, the self-description is akin to Perry ’ s describing himself in
a third-person manner as “ the person who . . . ” without having the special form of
self-knowledge indicated by use of the pronoun “ me. ”

 Also, the metacognitive loop (MCL) in the form presented above does not appear
to embrace anything close to self-reference. On the other hand, if MCL itself were to
make mistakes and need to catch them, things might get more self-referentially inter-
esting, especially if the mistake-noting were in some sense part of the mistake. That
might nudge MCL (or active logic) toward more explicit (strong) self-reference.

 How can such a thing be, and what could it possibly mean? Consider this:

 This activity is taking too long; it must be stopped, including this very reasoning about it,
so that other things get done.

 We have not yet managed (or even tried very hard) to produce an automated version
of such behavior. But it does seem that there is a computational advantage to it: Such
a system would be able not only to peer in on other processes and reason about and
control them; it would also be able to do so regarding the very same peering process
that it is performing at the moment, so that it can get out of its own way, so to speak,
deciding to stop what it is doing — including that very deciding — and move on to
something else.

 It is time to move on — and so with this sentence I end my chapter.

26 D. Perlis

 Acknowledgments

 This essay was originally given as a talk at AAAI-08, the annual conference of the
Association for Advancement of Artifi cial Intelligence, Chicago 2008, as part of the
Workshop on Metareasoning; work supported by AFOSR, NSF, ONR.

 References

 Anderson , M. , Gomaa , W. , Grant , J. , & Perlis , D. (2008). Active logic semantics for a single agent

in a static world. Artifi cial Intelligence , 172 , 1045 – 1063 .

 Anderson , M. , Oates , T. , Chong , W. , & Perlis , D. (2006). The metacognitive loop I: Enhancing

reinforcement learning with metacognitive monitoring and control for improved perturbation

tolerance. Journal of Experimental & Theoretical Artifi cial Intelligence , 18 (3), 387 – 411 .

 Anderson , M. , & Perlis , D. (2005). The roots of self-awareness. Phenomenology and the Cognitive

Sciences , 4 (3), 297 – 333 .

 Cox , M. , & Ram , A. (1991). Using introspective reasoning to select learning strategies . In R. S.

 Michalski & G. Tecuci (Eds.), Proceedings of the First International Workshop on Multistrategy Learning

(pp. 217 – 230). Washington, D.C. : George Mason University, Center for Artifi cial Intelligence .

 Gilmore , P. (1974). The consistency of partial set theory without extensionality . In T. Jech (Ed.),

 Axiomatic set theory (pp. 147 – 153). Providence, RI : American Mathematical Society .

 Grice , P. (1957). Meaning. Philosophical Review , 66 , 377 – 388 .

 Hofstadter , D. (2007). I am a strange loop . New York : Basic Books .

 James , W. (1892). The stream of consciousness . In Psychology (chap. XI). New York : World

Publishing .

 Kripke , S. (1975). Outline of a theory of truth. Journal of Philosophy , 72 , 690 – 716 .

 Perlis , D. (1997). Consciousness as self-function. Journal of Consciousness Studies , 4 , 509 – 525 .

 (Reprinted in Gallagher & Shear [Eds.], Models of the self , Imprint Academic, 1999.)

 Perlis , D. (2000). What does it take to refer? Journal of Consciousness Studies , 7 (5), 67 – 69 .

 Perry , J. (1979). The problem of the essential indexical. No û s , 13 , 3 – 21 .

 Putnam , H. (1975). The meaning of “ meaning. ” In Mind, language, and reality (pp. 215 – 271). New

York : Cambridge University Press .

 Schank , R. C. , & Owens , C. C. (1987). Understanding by explaining expectation failures . In R.

G. Reilly (Ed.), Communication failure in dialogue and discourse . New York : Elsevier Science .

 Tarski , A. (1983). The concept of truth in formalized languages. (English translation of original

1936 paper in German.) In J. Corcoran (Ed.), Logic, semantics, metamathematics, papers from 1923

to 1938 . Indianapolis : Hackett .

 3 Metareasoning and Bounded Rationality

 Shlomo Zilberstein

 This chapter explores the relationship between computational models of rational
behavior and metareasoning. Metareasoning is generally considered a crucial compo-
nent of human intelligence, but its role in computational models of intelligence is
less prominent. We describe several approaches to building rational agents and
examine the extent to which they rely on metareasoning. While metareasoning is a
central component of some approaches, it is not required in others. Despite these
differences, we point out an interesting way to reinterpret and unify two of the
approaches.

 In the pursuit of building decision-making machines or agents, artifi cial intelligence
(AI) researchers often turn to theories of “ rationality ” in philosophy, decision theory,
and economics. According to these theories, an agent is rational when it chooses
actions that maximize its performance, given what it currently knows. Rationality is
a desired property of intelligent agents since it provides well-defi ned normative evalu-
ation criteria and since it establishes formal frameworks to analyze agents (Doyle,
1990 ; Russell & Wefald, 1991).

 An agent is said to be perfectly rational if it chooses optimal actions that maximize
its expected performance. Perfect rationality defi nes the actions that should be taken,
but it tells nothing about the reasoning process that leads to selecting these actions.
The reasoning process can be as simple as a table lookup that specifi es which action
should be taken in every situation, or it may involve a complex analysis of the situa-
tion and planning. In that sense, perfect rationality does not explicitly require metar-
easoning. In fact, it may require no reasoning at all.

 Ignoring the reasoning process used to select actions — and its associated costs — is
a signifi cant drawback of perfect rationality. As early as 1947, Herbert Simon observed
that optimal decision making mandated by perfect rationality is impractical in complex
domains since it requires one to perform intractable computations within a limited
amount of time (Simon, 1947 , 1982). Moreover, the vast computational resources
required to select optimal actions often reduce the utility of the result. Simon con-
cludes that “ a theory of rationality that does not give an account of problem solving

28 S. Zilberstein

in the face of complexity is sadly incomplete. It is worse than incomplete; it can be
seriously misleading by providing ‘ solutions ’ that are without operational signifi -
cance. ” Simon suggests that some criterion must be used to determine that an ade-
quate, or satisfactory, decision has been found. He uses the Scottish word “ satisfi cing, ”
which means satisfying, to denote decision making that searches until an alternative
is found that is satisfactory by the agent ’ s aspiration-level criterion.

 Simon ’ s notion of satisfi cing has inspired much work within the social sciences
and within AI in the areas of problem solving, planning, and search. In the social
sciences, much of the work has focused on developing descriptive theories of human
decision making (Gigerenzer, 2000). These theories attempt to explain how people
make decisions in the real world, coping with complex situations, uncertainty, and
limited amounts of time. The answer is often based on a variety of heuristic methods
that are used by people to operate effectively in these situations (Gigerenzer et al.,
1999). Work within the AI community has produced a variety of computational
models that can take into account the computational cost of decision making (Dean
 & Boddy, 1988 ; Horvitz, 1987 ; Russell, Subramanian, & Parr, 1993 ; Wellman, 1990 ;
 Zilberstein, 1993). The idea that the cost of decision making must be taken into
account was introduced by Simon and later by the statistician Irving Good who used
the term type II rationality to describe it (Good, 1971). Good says, “ when the expected
time and effort taken to think and do calculations is allowed for in the costs, then
one is using the principle of rationality of type II. ” But neither Simon nor Good pres-
ents any effective computational framework to implement “ satisfi cing ” or “ type II
rationality. ”

 It is by now widely accepted that in most cases the ideal decision-theoretic notion
of perfect rationality is beyond our reach. However, the concept of satisfi cing offers
only a vague design principle that needs a good deal of formalization before it can be
used in practice. In particular, one must defi ne the required properties of a satisfi cing
criterion and the quality of behavior that is expected when these properties are
achieved. AI researchers have introduced over the years a variety of computational
models that can be seen as forms of bounded rationality. We examine these models,
divide them into four broad classes, and identify the role of metareasoning in each
class.

 Computational Approaches to Bounded Rationality

 There has been a vast amount of work on bounded rationality in the social sciences,
decision theory, and AI. This chapter focuses on computational approaches developed
by the AI community. What is common to all these approaches is that they perform
some form of approximate reasoning. They differ in the way the approximate solution
is produced and evaluated.

Metareasoning and Bounded Rationality 29

 Regardless of the form of approximation, approximate reasoning techniques can
be complemented by some form of explicit or implicit metareasoning. Metareasoning
in this context is a mechanism to make certain runtime decisions by reasoning about
the problem solving – or object-level – reasoning process. This can be done either explic-
itly, by introducing another level of reasoning as shown in fi gure 1.2 in Cox and Raja ’ s
introduction, or implicitly, by precompiling metareasoning decisions into the object-
level reasoning process at design time. For example, metareasoning has been used to
develop search control strategies — both explicitly and implicitly. Thus, metareasoning
could play a useful role in certain forms of approximate reasoning, but it is not by
defi nition a required component. In the rest of this section, we examine several
approaches to bounded rationality and divide them into four broad classes: heuristic
search, approximate modeling, optimal metareasoning, and bounded optimality. We
start by describing these classes and the role of metareasoning in each.

 Heuristic Search
 One of the early computational approaches to bounded rationality has been based on
heuristic search. In fact, Simon had initially identifi ed satisfi cing with a particular form
of heuristic search. In this context, heuristic search represents a form of approximate
reasoning. It uses some domain knowledge to guide the search process, which contin-
ues until a satisfactory solution is found. This should be distinguished from optimal
search algorithms that use admissible heuristic techniques such as A*. Search processes
that terminate only when they fi nd an optimal solution are an important part of AI,
but they have little to do with bounded rationality. When the search process focuses
on optimal, rather than satisfying, solutions the role of heuristics is simply to acceler-
ate the search process by pruning certain parts of the search space from consideration.
Simon refers to another type of heuristic function in which heuristics are used to select
 “ adequate ” solutions. Such heuristic functions are rarely admissible, and the corre-
sponding search processes are not optimal in any formal sense. Systems based on
nonadmissible heuristic functions are often harder to evaluate, especially when
optimal decisions are not available. Formal analysis is hard since nonadmissible heu-
ristics do not always have well-defi ned properties.

 Approximate reasoning using heuristic search is a general paradigm, not a specifi c
framework for problem solving. Therefore, it is hard to pinpoint the role of metarea-
soning. What is clear is that some instances of this paradigm rely on some forms of
metareasoning, for example, in order to select the appropriate heuristic for the situa-
tion, decide whether the heuristic solution found so far is of suffi cient quality, or
fi ne-tune search parameters to try to maximize solution quality within some deadline
(Hansen, Zilberstein, & Danilchenko, 1997). Other instances of this general paradigm
do not rely on metareasoning. Overall, metareasoning is not an essential component
of every heuristic search approach.

30 S. Zilberstein

 Approximate Modeling
 When it is not feasible to fully model a problem and solve it optimally, an important
aspect of the approximation process is embedded in the creation of a suitable model.
The challenge is to create a model that retains the main features of the original
problem, but is computationally tractable. The hope is that an exact or approximate
solution to the simplifi ed problem would still be of similar quality when applied to
the original domain. The process of reasoning about the representation of the given
problem and choosing a suitable model is a form of metareasoning. Although there
has been signifi cant interest in automating this process, it is often handled by the
designer of the system using forms of metareasoning that are not yet well understood.
One example of such a process is when deterministic action models are used in plan-
ning, ignoring the uncertainty about action failures. Combined with suitable run-time
execution monitoring, such an approach could be benefi cial. In fact, the winner of
the International Probabilistic Planning Competition in 2004 was a planner (FF-
rePlan) based on these principles. Consequently, the general approach has gained
signifi cant attention, and some researchers have been tempted to conclude that proba-
bilistic planning is just too complex. But the important principle that was demon-
strated is the benefi t of changing models — not specifi cally eliminating uncertainty. In
fact, in other contexts it might be equally benefi cial to introduce uncertainty in order
to create a compact model of an otherwise very large deterministic problem.

 Treating problem reformulation as a formal reasoning process was started long ago
(Amarel, 1968). More recently, there have been some successful examples of treating
it effi ciently as a metareasoning process, particularly when the space of models being
searched is restricted. For example, it has been shown that intelligent reformulation
or restructuring of a belief network can greatly increase the effi ciency of inference. A
metareasoning process can be used to optimize the trade-off between the time dedi-
cated to reformulating the network and the time applied to the implementation of a
solution (Breese & Horvitz, 1990).

 Approximate modeling is therefore an important component of bounded rational-
ity, but the ability to formalize and automate this process is still quite limited. The
forms of metareasoning that can be used in approximate modeling are very rich, but
they are not yet effi ciently encodable in algorithmic forms.

 Optimal Metareasoning
 If one adopts the view that metareasoning is a process that monitors and controls the
object-level reasoning process — as shown in Cox and Raja ’ s fi gure 1.2 — one could pose
the question of whether the metareasoning process itself is optimal. Optimality here
is with respect to the overall agent performance, given its fi xed object-level delibera-
tion capabilities. This is a well-defi ned question that sometimes has a simple answer.
For example, metareasoning may focus on the single question of when to stop delib-

Metareasoning and Bounded Rationality 31

eration and take action. Depending on how the base-level component is structured,
the answer may or may not be straightforward. Optimal metareasoning has been also
referred to as rational metareasoning (Horvitz, 1989) and metalevel rationality (Russell,
1995) to distinguish it from perfect rationality. This offers one precise form of bounded
rationality that is relatively easy to achieve. We will further examine this approach in
the following sections. Besides being well defi ned and, in some cases, easily imple-
mentable, this approach to bounded rationality has some methodological benefi ts. It
helps decompose the overall problem of bounded rationality into two orthogonal
questions: how to design good problem-solving components and how to manage the
operation of these components. Improving object-level competence can be a long-
term objective, but at any given time it makes sense for agents to try to use their
existing capabilities optimally.

 It should be noted, however, that optimal metareasoning can result in arbitrarily
poor agent performance. This is true because we do not impose up front any con-
straints on the object-level deliberation process in terms of its effi ciency or correctness.
Nevertheless, we will see that this presents an attractive framework for bounded ratio-
nality and that performance guarantees can be established once additional constraints
are imposed on the overall architecture.

 Bounded Optimality
 Bounded optimality techniques seek to restore a stronger notion of optimality in deci-
sion making in the face of computational complexity and limited resources. That is,
instead of building systems that can fi nd “ suffi ciently good ” answers, the goal is to
fi nd a maximally successful program that can compute these answers. Optimality is
defi ned with respect to a particular space of possible implementations of these pro-
grams (Russell, 1995 ; Russell & Wefald, 1991).

 Russell and Wefald (1991) say that an agent exhibits bounded optimality “ if its
program is a solution to the constraint optimization problem presented by its archi-
tecture. ” This approach marks a shift from optimization over actions to optimization
over programs. The program is bounded optimal for a given computational device for
a given environment, if the expected utility of the program running on the device in
the environment is at least as high as that of all other programs for the device. When
the space of programs is fi nite, one can certainly argue that a bounded optimal solu-
tion exists. Finding it, however, could be very hard.

 Russell, Subramanian, and Parr (1993) give an effi cient construction algorithm that
generates a bounded optimal program for a particular restricted class of agent archi-
tectures, in which a program consists of a sequence of decision procedures. The deci-
sion procedures are represented using condition-action rules. The authors admit that
bounded optimality as defi ned above may be hard to achieve for most problems. Thus
they propose a weaker notion of asymptotic bounded optimality as a more practical

32 S. Zilberstein

alternative. The latter case requires that the program perform as well as the best pos-
sible program on any problem instance, provided that its computational device is
faster by a constant factor.

 To establish bounded optimality, the designer of the system — not the agent itself —
 is responsible to identify the agent ’ s reasoning architecture and to prove that the
program satisfi es the optimality conditions. In that sense, metareasoning does not
play any signifi cant role in this framework. Certainly there is no requirement that the
agent itself be engaged in any form of metareasoning. As long as the agent ’ s program
is shown to satisfy the optimality conditions, the agent is deemed bounded optimal.

 One criticism of bounded optimality is that although the bounded rationality cri-
terion is well defi ned, it is very diffi cult to achieve in practice. In fact, there are very
few examples in the literature of bounded optimal agents. Bounded optimality may
well be the most precise formal approach to bounded rationality, but without further
refi nement, it is hard to use in practice.

 Bounded Rationality as Optimal Metareasoning

 We have considered four basic approaches to achieve bounded rationality: heuristic
search, approximate modeling, optimal metareasoning, and bounded optimality. The
latter two approaches represent specifi c, well-defi ned solutions, whereas the former
two represent general principles that fall under the broad category of approximate
reasoning. From a formal perspective, the fi rst approach is underconstrained, essen-
tially allowing any form of approximate reasoning to count as a solution. The second
approach is yet to be fully formalized and effectively automated. The last approach
appears to be overconstrained, being diffi cult to achieve in practice. This leaves
us with optimal metareasoning as the most promising approach for further
examination.

 According to this approach, metareasoning is a process that manages the object-
level reasoning process. We consider an agent to be bounded rational when its metar-
easoning component is optimal. That is, given a particular object-level deliberation
model, we look for the best possible way to control it so as to optimize the expected
ground-level performance of the agent. The metareasoning task can take many differ-
ent forms and can present decisions of various complexities. We identify below the
key questions that affect the form and complexity of the metareasoning problem.

 1. What object-level decision-making architecture is employed? Is it complete? Is it
sound? What trade-offs does it offer between computational resources and quality of
results?
 2. How does the metareasoning component model the object-level reasoning process?
What kind of prior knowledge is available about the effi ciency and correctness of the
object-level component?

Metareasoning and Bounded Rationality 33

 3. What run-time information about the state of the object-level reasoning process is
being monitored? What is known about the external environment?
 4. What control decisions are being made by the metalevel reasoning process? How
do these decisions affect the object-level component?
 5. When and how does execution switch between the object level and the metalevel?
 6. How much time is consumed by the metalevel reasoning process? How much of
the metareasoning strategy is precomputed off-line? What is the online overhead?
 7. Is metareasoning optimal? What assumptions are needed to establish optimality?
 8. What can be said about the overall performance of the agent? Can a bound be
established on how close it is to an ideal perfectly rational agent?

 Since the 1980s, several decision-making frameworks have been developed that match
this form of bounded rationality. In the next section, we describe some of the frame-
works and examine the answers to the above questions in these particular contexts.
We then mention briefl y a number of additional examples of this general paradigm.

 Example: Optimal Metareasoning with Anytime Algorithms

 One general approach to bounded rationality is based on composition and monitoring
of anytime algorithms. Methodologically, problem solving with anytime algorithms
is based on dividing the overall problem into four key subproblems: elementary algo-
rithm construction, performance measurement and prediction, composability, and
metalevel control of computation.

 Elementary algorithm construction covers the problem of introducing useful trade-
offs between computational resources and output quality in decision making. This
fundamental problem has been studied by the AI community, resulting in a variety
of “ anytime algorithms ” (Dean & Boddy, 1988) or “ fl exible computation ” methods
(Horvitz, 1987) whose quality of results improves gradually as computation time
increases. The same problem has been studied within the systems community in the
area of “ imprecise computation ” (Liu et al., 1991). Although iterative refi nement
techniques have been widely used in computer science, the construction of “ well-
behaved ” anytime algorithms is not obvious. To serve as useful components of a
resource-bounded reasoning system, such algorithms should have certain properties:
measurable objective output quality, monotonicity and consistency of quality improve-
ment, and marginal decrease in the rate of quality improvement over time. Construct-
ing good, reusable anytime algorithms is an important, active research area. There are
now many existing anytime algorithms for standard heuristic search and planning
and reasoning tasks.

 Performance measurement and prediction covers the problem of capturing the
trade-off offered by each system component using a “ performance profi le. ” A good

34 S. Zilberstein

performance profi le is a compact probabilistic description of the behavior of the com-
ponent. A typical representation is a mapping from run time to expected output
quality. It has been shown that conditioning performance profi les on input quality
and other observable features of the algorithm can improve the precision of run-time
quality prediction.

 Composability covers the problem of building modular resource-bounded reason-
ing systems with anytime algorithms as their components. The fundamental issue is
that composition destroys interruptibility — the basic property that defi nes anytime
algorithms. A two-step solution to this problem has been developed that makes a
distinction between “ interruptible ” and “ contract ” algorithms (Zilberstein, 1993).
Contract algorithms offer a trade-off between output quality and computation time,
provided that the amount of computation time is determined prior to their activation.
The idea is to fi rst compose the best possible contract algorithm and then make it
interruptible with only a small, constant penalty (Zilberstein & Russell, 1996).

 Finally, metalevel control covers the problem of run-time allocation of computa-
tional resources (sometimes referred to as “ deliberation scheduling ” Dean & Boddy,
1988) so as to maximize the overall performance of the system. In general, metalevel
control involves modeling both the internal problem-solving process and the external
environment and managing computational resources accordingly. In domains char-
acterized by high predictability of utility change over time, the monitoring problem
can be solved effi ciently using contract algorithms and a variety of strategies for con-
tract adjustment. In domains characterized by rapid change and a high level of uncer-
tainty, monitoring must be based on the use of interruptible algorithms. An early
approach to monitoring anytime algorithms has been based on estimating the mar-
ginal “ value of computation ” (Russell & Wefald, 1991). A more recent monitoring
approach is sensitive to both the cost of monitoring and to how well the quality of
the currently available solution can be estimated by the run-time monitor. The tech-
nique is based on modeling anytime algorithms as Markov processes and constructing
an off-line monitoring policy based on a stochastic model of quality improvement
(Hansen & Zilberstein, 1996). We use the basic form of this approach as an example
and discuss the details below.

 1. What object-level decision-making architecture is employed?

 The basic assumption about the object level is that it is an anytime algorithm, nor-
mally an interruptible one. Some anytime algorithms, such as anytime A* (Hansen,
Zilberstein, and Danilchenko, 1997), guarantee convergence on the optimal solution,
but this is not generally required. If the anytime algorithm produces a result of quality
 q at time t , the value of that result is described by a time-dependent utility function,
 U (q , t).

 2. How does the metareasoning component model the object-level reasoning process?

Metareasoning and Bounded Rationality 35

 Some form of a performance profi le is normally used as prior knowledge. It character-
izes the trade-off between run time and quality of results. Both deterministic and
probabilistic models have been developed. A deterministic performance profi le speci-
fi es a fi xed solution quality per time allocation. A probabilistic performance profi le,
Pr(q j | t), specifi es the probability of getting solution quality q j by running the algorithm
for t time units. A more informative modeling tool is the dynamic performance profi le,
Pr(q j | q i , Δ t), which specifi es the probability of getting a solution of quality q j by con-
tinuing the algorithm for time interval Δ t when the currently available solution has
quality q i . This latter model revises the prediction of future quality based on the prog-
ress in problem solving made so far.

 3. What run-time information about the state of the object-level reasoning process is
being monitored?

 One approach is to assume that the anytime algorithm used as the object-level reason-
ing process is a “ black box ” that does not provide any run-time indications of solution
quality. When the quality of the current solution is available, that information together
with running time can be used by the metareasoning process. In some cases, the
quality of the current solution can only be estimated using certain features of the
solution. In that case, the metareasoning component must estimate the quality of
the solution using the available features (Hansen & Zilberstein, 2001). In our example,
we assume that solution quality is observable and that a dynamic performance profi le
is available.

 4. What control decisions are being made by the metalevel reasoning process?

 The most basic metareasoning decision is when to stop the anytime algorithm and
return the current solution.

 One approach is based on the myopic estimate of the expected value of continuing
the computation for a period Δ t , which is defi ned as follows:

 MEVC() Pr(| ,) (,) (,)Δ Δ Δt q q t U q t t U q tj
j

i j i= + −∑

 where q i is the current quality and t the current time. The myopic monitoring approach
is to continue the computation as long as MEVC(Δ t) > 0.

 A more general stopping policy can be found by optimizing the following value
function (Hansen & Zilberstein, 2001):

V q t

U q t
i

d

i
(,) max

(,)
=

 if =stop

 if =continue

d

q q t V q t t dj i jj
Pr(| ,) (,)Δ Δ+∑

⎧⎧
⎨
⎪

⎩⎪

 to determine the following policy,

 π(,) arg max
(,)

q t
U q t

i
d

i
=

 if =stop

 if =continu

d

q q t V q t t dj i jPr(| ,) (,)Δ Δ+ ee
j∑

⎧
⎨
⎪

⎩⎪

36 S. Zilberstein

 where Δ t represents a single time step and d is a binary variable that represents the
decision to either stop or continue the algorithm.

 When each activation of the metareasoning component takes a nonnegligible
amount of computation time that slows down the object-level reasoning process, the
decision could also include the frequency of monitoring (Hansen & Zilberstein, 2001).
An even more complex situation could arise when the metareasoning component uses
a variety of features that characterize the state of the environment and the state of
the computation. Some of these features could be more costly to compute than others.
In that case, the metareasoning decision is what to monitor, at what frequency, and
when to stop the entire process.

 5. When and how does execution switch between the object level and the meta-
level?

 In most cases, monitoring of anytime algorithms is done periodically at fi xed intervals,
say, every Δ t time units. When we assume that monitoring itself incurs negligible
overhead, the frequency of monitoring can be high with no negative consequences.

 6. How much time is consumed by the metalevel reasoning process?

 Work on anytime algorithms often relies on precomputed control strategies that are
generated off-line using the performance profi le of the algorithm and the overall time-
dependent utility function. For example, the above value function and associated
control policy can be computed off-line, resulting in a very fast reactive metareasoning
component. Simple control strategies, such as the above myopic approach, that stop
the computation when the marginal value of computation becomes negative can be
computed online with little overhead. When solution quality or the state of the envi-
ronment must be estimated at run time using nontrivial computations, this could
introduce a signifi cant overhead. However, extending the above monitoring technique
to factor in this overhead is relatively straightforward (Hansen & Zilberstein, 2001).

 7. Is metareasoning optimal?

 Optimal metareasoning has been introduced for a wide range of scenarios involving
anytime algorithms using certain assumptions about the performance profi le and the
utility function. One common assumption is that metareasoning incurs negligible
overhead. The myopic stopping criteria can be shown to be optimal when the expected
marginal increase in the intrinsic value of a solution is a nonincreasing function of
quality and the marginal cost of time is a nondecreasing function of time. The moni-
toring policy computed by optimizing the above value function is optimal and does
not require the latter assumptions. A range of situations in which optimal metareason-
ing can be established is described by Hansen and Zilberstein (2001) and Zilberstein
(1996) .

Metareasoning and Bounded Rationality 37

 8. What can be said about the overall performance of the agent?

 Even when metareasoning is optimal — and satisfi es our defi nition of bounded opti-
mality — not much can be said about the overall performance of the agents and how
close it may be to a perfectly rational agent in the same situation. Generally, no per-
formance bound exists because the anytime algorithm being monitored is not subject
to any constraints in terms of its effi ciency or correctness. But when the quality
measure of the anytime algorithm provides an error bound on how close the result is
to the optimal answer, a worst-case bound with respect to a perfectly rational agent
can be established.

 To summarize, there are many instances of optimal metareasoning involving
anytime algorithms as an object-level deliberation method. There are also examples
of optimal metareasoning with respect to other object-level components such as algo-
rithm portfolios (Petrik & Zilberstein, 2006) and contract algorithms (Zilberstein,
Charpillet, & Chassaing, 2003). These examples illustrate that this well-defi ned model
of bounded rationality can be implemented in many domains.

 Discussion and Conclusion

 We examined several different computational approaches to bounded rationality. One
approach — based on optimal metareasoning — seems particularly attractive because it
is both relatively easy to implement and provides some formal guarantees about the
behavior of the agent. We examined several instantiations of this approach using
anytime algorithms and provided a characterization of the relationship between the
object-level and metareasoning components. These examples show that metareason-
ing plays an important role in this particular approach to bounded rationality.

 Although bounded optimality seems to be a very different approach, under some
assumptions it can be unifi ed with optimal metareasoning. If the architecture of the
bounded-optimal agent specifi es the object-level computations of Cox and Raja ’ s
fi gure 1.2, then the metareasoning problem can be seen as fi nding the best way to
compose the object-level computations and create the most effective agent. In that
case, the bounded-optimal program is a solution of the optimal metareasoning
problem. One example is the problem of sequencing contract algorithms in order to
produce the best possible interruptible anytime algorithm. Contract algorithms offer
a trade-off between computation time and solution quality, but the run time must be
determined when they are activated. Once activated, no solution is available before
the end of the contract. Some reasoning and search methods produce useful contract
algorithms. To use such algorithms when the available time is not known in advance,
one could run them as a sequence of increasing contracts until the deadline. It has
been shown that the best possible way to create such a sequence (in terms of the

38 S. Zilberstein

resulting performance profi le) is to use a geometric series of contracts, doubling execu-
tion time in each step (Zilberstein & Russell, 1996 ; Zilberstein, Charpillet, and Chas-
saing, 2003). If the task of the metareasoning component is to determine the run time
of each contract, then the optimal sequence provides a solution to the optimal metar-
easoning problem. At the same time, if we consider an architecture in which programs
are composed of sequences of contracts, then the optimal sequence is also a solution
of the bounded optimality problem. Hence, under certain assumptions the two
approaches can be unifi ed, yielding the same solution.

 One interesting research challenge is to establish mechanisms to bound the perfor-
mance difference between the more practical approach based on optimal metareason-
ing with a given object-level component and a bounded-optimal agent, using the same
architecture. Creating a bounded-optimal agent is hard, but bounding the perfor-
mance gap might be possible.

 Another challenge is to develop models of bounded rationality suitable for multiple
decision makers in either cooperative or competitive settings. When agents operate
independently and cannot be controlled in a centralized manner, their metareasoning
components need to coordinate as well. A simple example is a collaborative setting
in which one agent decides to stop thinking and take action, but the other may see
a need to continue deliberation. There has been little work so far on coordination
between the metareasoning components of collaborative agents. The situation is even
more complicated in competitive settings when agents need to monitor or reason
about the deliberation processes of other agents, about which they may have little
information or prior knowledge.

 Acknowledgments

 This work was supported in part by the National Science Foundation under Grants
no. IIS-0535061 and IIS-0812149 and by the Air Force Offi ce of Scientifi c Research
under Grant no. FA9550-08-1-0181.

 References

 Amarel , S. (1968). On representations of problems of reasoning about actions. Machine Intelligence ,

 3 , 131 – 171 .

 Breese , J. , & Horvitz , E. (1990). Ideal reformulation of belief networks . In Proceedings of Sixth

Conference on Uncertainty in Artifi cial Intelligence (pp. 64 – 72). Boston : Morgan Kaufmann .

 Dean , T. , & Boddy , M. (1988). An analysis of time-dependent planning . In Proceedings of the

Seventh National Conference on Artifi cial Intelligence (pp. 49 – 54). Cambridge, MA : MIT Press .

Metareasoning and Bounded Rationality 39

 Doyle , J. (1990). Rationality and its roles in reasoning . In Proceedings of the Eighth National Confer-

ence on Artifi cial Intelligence (pp. 1093 – 1100). Cambridge, MA : MIT Press .

 Gigerenzer , G. (2000). Adaptive thinking: Rationality in the real world . Oxford : Oxford University

Press .

 Gigerenzer , G. , Todd , P. M. , & ABC Research Group . (1999). Simple heuristics that make us smart .

 Oxford : Oxford University Press .

 Good , I. J. (1971). Twenty-seven principles of rationality . In V. P. Godambe & D. A. Sprott (Eds.),

 Foundations of statistical inference (pp. 108 – 141). Toronto : Holt, Rinehart, Winston .

 Hansen , E. A. , & Zilberstein , S. (1996). Monitoring the progress of anytime problem solving . In

 Proceedings of the Thirteenth National Conference on Artifi cial Intelligence (pp. 1229 – 1234). Menlo

Park, CA : AAAI Press .

 Hansen , E. A. , & Zilberstein , S. (2001). Monitoring and control of anytime algorithms: A dynamic

programming approach. Artifi cial Intelligence , 126 (1 – 2), 139 – 157 .

 Hansen , E. A. , Zilberstein , S. , & Danilchenko , V. A. (1997). Anytime heuristic search: First results .

Technical Report 97-50, Computer Science Department, University of Massachusetts, Amherst.

 Horvitz , E. J. (1987). Reasoning about beliefs and actions under computational resource con-

straints . In Proceedings of the 1987 Workshop on Uncertainty in Artifi cial Intelligence . New York:

Elsevier.

 Horvitz , E. J. (1989). Rational metareasoning and compilation for optimizing decisions under

bounded resources . In Proceedings of the International Symposium on Computational Intelligence (pp.

 205 – 216). New York: North Holland.

 Liu , J. W. S. , Lin , K. J. , Shih , W. K. , Yu , A. C. , Chung , J. Y. , & Zhao , W. (1991). Algorithms for

scheduling imprecise computations. IEEE Computer , 24 , 58 – 68 .

 Petrik , M. , & Zilberstein , S. (2006). Learning parallel portfolios of algorithms. Annals of Mathemat-

ics and Artifi cial Intelligence , 48 (1 – 2), 85 – 106 .

 Russell , S. J. (1995). Rationality and intelligence . In Proceedings of the Fourteenth International Joint

Conference on Artifi cial Intelligence (pp. 950 – 957). Menlo Park, CA : International Joint Conferences

on Artifi cial Intelligence .

 Russell , S. J. , Subramanian , D. , & Parr , R. (1993). Provably bounded optimal agents . In Proceedings

of the Thirteenth International Joint Conference on Artifi cial Intelligence (pp. 338 – 344). Menlo Park,

CA : International Joint Conferences on Artifi cial Intelligence .

 Russell , S. J. , & Wefald , E. H. (1991). Do the right thing: Studies in limited rationality . Cambridge,

MA : MIT Press .

 Simon , H. A. (1947). Administrative behavior . New York : Macmillan .

 Simon , H. A. (1982). Models of bounded rationality (vol. 2). Cambridge, MA : MIT Press .

40 S. Zilberstein

 Wellman , M. P. (1990). Formulation of tradeoffs in planning under uncertainty . London : Pitman .

 Zilberstein , S. (1993). Operational rationality through compilation of anytime algorithms . Ph.D. dis-

sertation, Computer Science Division, University of California, Berkeley.

 Zilberstein , S. (1996). The use of anytime algorithms in intelligent systems. AI Magazine , 17 (3),

 73 – 83 .

 Zilberstein , S. , Charpillet , F. , & Chassaing , P. (2003). Optimal sequencing of contract algorithms.

 Annals of Mathematics and Artifi cial Intelligence , 39 (1 – 2), 1 – 18 .

 Zilberstein , S. , & Russell , S. J. (1996). Optimal composition of real-time systems. Artifi cial Intel-

ligence , 82 , 181 – 213 .

 II Metalevel Control

 4 Learning Expertise with Bounded Rationality and Self-Awareness

 Susan L. Epstein and Smiljana Petrovic

 When people provide only rudimentary knowledge about a problem domain, a self-
adaptive system must learn its own expertise, that is, become better and faster at its
task than the rest of us (D ’ Andrade, 1991). Essential to that development are bounded
rationality (imposed resource limitations) and self-awareness , the ability to monitor
one ’ s own problem-solving behavior and reasoning. From this perspective, metareason-
ing examines and refl ects upon the components of decision making and how they are
controlled, rather than merely upon the decisions themselves. Learning with metarea-
soning occurs when the system seeks to improve its performance by the application of
metareasoning to modify its behavior. A system with this capacity could, for example,
decide to ignore some of its experience, to prefer some procedures to others, or even
to stop learning because it is satisfi ed with what it has accomplished. Under the aegis
of an architecture that supports learning with metareasoning, the three ambitious
programs described here develop considerable expertise from experience with rela-
tively few problems.

 Despite the computational diffi culties discussed by Conitzer (this vol., chap. 8),
metareasoning often successfully enhances object-level reasoning. For example, Arcos,
M ü l â yim, and Leake (this vol., chap. 11) describe how introspective reasoning can
improve a case-based system, and Alexander, Raja, and Musliner (this vol., chap. 5)
describe how metalevel reasoning can successfully limit the resources for scheduling
based on a Markov decision process. Zilberstein (this vol., chap. 3) examines the rela-
tionship between optimal metareasoning and bounded rationality on the object level.
This chapter describes how an architecture enhanced by metareasoning assesses exper-
tise, manages large bodies of heuristics, and learns to think more effectively.

 The Architecture and the Problems

 FORR (FOr the Right Reasons) is a learning and problem-solving architecture that
models the development of expertise with bounded rationality and self-awareness
(Epstein, 1994a). Figure 4.1 describes FORR as an elaboration on the fundamental

44 S. L. Epstein and S. Petrovic

metareasoning diagram in fi gure 1.2 of chapter 1 of this volume. At the domain-
dependent ground level, FORR describes each world state as it appears during search
for a solution, and executes actions to move from one state to the next. At the object
level, FORR re-represents the current state and reasons about it to select the next action
in a sequence of decisions that addresses a single task. Here, decision makers are reac-
tive procedures, opportunistic planners, or heuristics. After each task, the object-
level forwards to the metareasoning level the history and outcome of the task, the
computational resources consumed, and the contribution of each heuristic to each
decision.

 FORR addresses a problem class (a set of similar problems). Metareasoning assesses
the program ’ s skill within that class and the effectiveness of each procedure there.
Metareasoning also determines whether to continue learning about the class, to stop,
or to restart the entire learning process. Most dramatically, for a given class, metarea-
soning can reformulate the object level to eliminate ineffective procedures and favor
superior ones. This chapter draws on three very different challenges addressed by
FORR-based programs, each of which can be solved with a sequence of actions: game
playing, path fi nding, and constraint satisfaction.

 Hoyle learns to play 19 two-person, perfect-information, fi nite-board games (Epstein,
2001). Here a problem class is a game (e.g., tic-tac-toe), and a problem is a single
contest whose actions are legal moves. A solution is a move sequence that achieves

 Figure 4.1
 FORR in the context of chapter 1.

Perform action
Ground Level

Metareasoning

Tier 1 Advisors: Apply
correct, rapid reaction

Tier 2 Advisors: Store
and monitor situation-
based action sequence

Tier 3 Advisors: Resolve
multiple heuristics to
generate a single action

Metareasoning

Doing Reasoning

Self-awareness

Time
Space
Skill
Procedural effectiveness

Control learning

Stop learning
Learn again
Balance learning against time

Reformulate decision making

Reject poor heuristics
Favor superior heuristics
Prioritize reliable heuristics

Task history

Task outcome

Task resources

Procedure output

Current state

Next action

Strategy

Object Level

Learning Expertise with Bounded Rationality 45

an ideal outcome (a win or a tie, as defi ned by the game tree). Given the rules, Hoyle
plays against itself or an external opponent. Some games in Hoyle ’ s repertoire have
game trees of several billion nodes. The expert programs crafted as opponents required
considerable game-specifi c knowledge and skill.

 Ariadne learns to fi nd paths in a two-dimensional grid maze (Epstein, 1998). Here
a problem class is a maze, and a problem is a trip from an initial location to a goal.
(The initial location and the goal vary from one problem to the next.) Ariadne has
no map, only the coordinates of the robot and the goal, plus a view restricted to
the grid positions between the robot and the nearest obstruction in four orthogonal
directions. An action moves the robot in a straight line to a currently visible
location. A solution is an action sequence that reaches the goal. Represented as a
(cyclic) graph, a moderately challenging 20 × 20 maze would have 280 nodes and
about 1,485 edges.

 ACE (the Adaptive Constraint Engine) learns to solve constraint satisfaction prob-
lems (CSP s) (Epstein, Freuder, & Wallace, 2005). Here, a problem is a (binary) CSP: a
set of variables, each with an associated set of values (domain), and a set of constraints
that restrict how pairs of variables can be bound to values simultaneously. A CSP can
be represented as a constraint graph with a vertex for each variable and an edge for
each constraint. A problem class is a set of CSPs with the same descriptive character-
ization (e.g., number of variables and maximum domain size). Each action in ACE
either selects a variable or assigns a value to a selected variable from its associated
domain. After each assignment, propagation infers the impact on the domains of the
as-yet-unassigned variables. If any variable then has no values consistent with the
current assignments (wipeout), the most recent assignments are retracted chronologi-
cally until every variable has some possible value. A solution is an assignment sequence
that satisfi es all constraints and assigns every variable a value. (Although traditionally
a CSP solution is merely an acceptable assignment to all the variables, some assign-
ment sequences are more effi cient than others, in terms of the inference they require.
Expertise here values effi ciency as well as the ability to fi nd a valid assignment.) CSPs
model many of the NP-hard problems addressed by AI systems, including graph color-
ing, propositional satisfi ability, and scheduling.

 Structured CSPs are more similar to real-world problems than simple random ones.
Structured problems ’ pockets of densely connected variables with very tight con-
straints often present particular challenges for traditional solvers. Indeed, the oppo-
sites of traditional heuristics often fare better on them than the originals. We report
here on a composed class (Aardal et al., 2003) with 30 variables and domain size 6
(7 30 search nodes) and a geometric class (Johnson et al., 1989) with 50 variables and
domain size 10 (11 50 nodes). Problems from both classes often stumped the best solvers
at a recent competition.

46 S. L. Epstein and S. Petrovic

 Foundation Assumptions

 The following premises dictate FORR ’ s general structure and behavior:

 • Good reasons underlie intelligent actions. A good reason is a justifi cation for a deci-
sion. Domain-specifi c good reasons are called Advisors. Input to any Advisor is the
current problem state and the available legal actions. Output from any Advisor is advice
about some number of actions. For example, Material advises Hoyle to capture an
opponent ’ s piece.
 • A domain has many such good reasons . Human experts typically rely on a host of
domain-specifi c Advisors. ACE, for example, has more than 100 Advisors drawn from
the constraint literature.
 • Some good reasons are always correct . These tier-1 Advisors take priority during deci-
sion making. Their fast, accurate guidance mandates an action or eliminates it from
further consideration. For example, Ariadne ’ s Victory always moves directly to a visible
goal.
 • Some good decisions include several actions . These tier-2 Advisors identify and address
a subproblem with a plan , a (possibly ordered) set of actions. For example, Ariadne ’ s
 Roundabout circumnavigates an obstruction that lies directly between the robot and
the goal. At most one plan is active at a time. The tier-1 Advisor Enforcer appropriately
supports the execution of an active plan or terminates it.
 • Most good reasons are fallible heuristics . These tier-3 Advisors express preferences for
choices numerically, as strengths . For example, Ariadne ’ s Giant Step assigns greater
strengths to longer steps. The object level in fi gure 4.1 coordinates all three tiers of
Advisors to make a decision. It progresses to the next tier only if the current one does
not produce a decision.
 • Good reasons make different contributions on different problem classes . FORR evaluates
each tier-3 Advisor on each new problem class. The more constructive are class-
appropriate ; the others are class-inappropriate. ACE ’ s heuristics, for example, are pro-
vided in dual pairs (one to maximize and the other to minimize the same metric); ACE
sorts out whether either is appropriate. Lines 1 and 2 in table 4.1 show that duals may
perform differently on different problem classes.
 • A combination of good reasons offers substantial benefi ts . There is evidence for this
both in people ’ s reliance on multiple heuristics (Biswas et al., 1995 ; Crowley & Siegler,
1993 ; Ratterman & Epstein, 1995 ; Schraagen, 1993) and in programs that integrate
multiple rationales to their advantage (Keim et al., 1999). Table 4.1 (lines 3 – 5) shows
how a pair of heuristics, one for variable selection and the other for value selection,
may outperform individual heuristics (lines 1 – 2).
 • Good combinations of reasons vary with the problem class . Table 4.1 (lines 3 and 5)
shows that pairs of Advisors successful on one problem class may do less well on
another.

Learning Expertise with Bounded Rationality 47

 • A program can learn to become an expert . In the learning phase , FORR addresses a
sequence of problems, and all of fi gure 4.1 is active. Metareasoning examines the data
from the object level after each learning-phase problem, and may reformulate its
strategy. Then, in the testing phase , FORR turns learning off and evaluates its perfor-
mance on a second set of problems. No further directives from the metareasoning
module occur during testing. Because decisions may be nondeterministic, FORR evalu-
ates performance over a set of such runs (an experiment). Relatively few learning prob-
lems should suffi ce. For example, ACE learns to solve each problem class well after
learning on only 30 problems. Table 4.1 (line 6) shows how the mixture of heuristics
that ACE learned for each of them outperformed both individual heuristics and pairs
of them.
 • Multiple representations enhance reasoning . Each Advisor has access to every represen-
tation of events and states from the ground level and the object level. These represen-
tations are shared and computed at the object level only on demand. For example,
ACE has dozens of CSP descriptions, including many that identify different kinds of
subproblems and relationships among variables.

 Other systems that rely on a mixture of heuristics combine them in a variety of ways.
More complex heuristics may be reserved for the harder problems (Borrett, Tsang, &
Walsh, 1996). Heuristics from a portfolio may be selected to compete in parallel until
one solves the problem, or may be used in turn on the same problem (Gagliolo &
Schmidhuber, 2006 ; Gomes & Selman, 2001 ; Streeter, Golovin, & Smith, 2007). A
system may also label its heuristics individually for their appropriateness with learned
 weights . Heuristics can be ranked by weight and consulted one at a time (Minton

 Table 4.1
 A heuristic ’ s appropriateness varies with the problem class, and multiple heuristics outperform

individual ones in CSP search. Variable-ordering metric ddd is the ratio of a variable ’ s dynamic

domain size to the number of its unassigned neighbors in the constraint graph. v 1 and v 2 are

value-ordering heuristics. After propagation, v 1 prefers values that produce the smallest domain

size, and v 2 prefers values that produce the largest product of domain sizes. Space is nodes

searched; elapsed time is in CPU seconds. Fifty problems were tested in each class.

 Geometric Composed

 Heuristics Space Time Solved Space Time Solved

 1 Min ddd 258.1 3.1 98% 996.7 2.0 82%

 2 Max ddd 4722.7 32.3 6% 529.9 1.0 90%

 3 Min ddd + v 1 199.7 3.6 98% 924.2 3.0 84%

 4 Min ddd + v 2 171.6 3.3 98% 431.1 1.5 92%

 5 Max ddd + v 2 3826.8 53.7 30% 430.6 1.4 92%

 6 ACE mixture 146.8 5.1 100% 31.4 0.6 100%

48 S. L. Epstein and S. Petrovic

et al., 1995 ; Nareyek, 2003) or they can vote , combining advice from each of them on
every decision (Fukunaga, 2002). In FORR, tier-1 and tier-2 Advisors are consulted in
some prespecifi ed, class-independent order; in tier 3, Advisors vote.

 Learning with Bounded Rationality

 Despite a fi xed characterization, a random problem generator may not create a uni-
formly diffi cult problem class. For example, the diffi culty a fi xed algorithm experiences
within a class of putatively similar, randomly generated CSPs may decrease according
to a power law (Gomes et al., 2000). As a result, there are many far more diffi cult
problems within the same class.

 Bounded rationality sets an arbitrary performance standard. One might, for example,
learn only from solutions achieved within bounded resources. This presumes that a
fast solution or one that visits fewer search states is better. Setting such bounds is
problematic, however. Under bounds too low for typical problems in the class, only
the easiest are solved, solutions are fewer, and the learned behavior is untrustworthy
because it arose from problems where most any decision would do. If bounds are set
too high, however, long but successful searches provide traces of not-so-expert behav-
ior. For example, fi gure 4.2 shows the impact on ACE of a limit on search nodes (partial
assignments) while it learns to solve the geometric problems. A run was successful if
it solved at least 80 percent of its 50 testing problems within the node limit. Observe
how higher node limits during learning produced fewer successful runs and incurred
a higher search cost than did lower limits.

 Metareasoning can monitor overall skill and use it to control the learner. A coarse
but signifi cant measure of success is the frequency of solved problems during learning.
FORR introduces full restart , the ability to reinitialize all heuristics ’ weights to some
small value and begin again, on different problems from the same class (Petrovic &
Epstein, 2006a). (This is different from restart on a problem, which tries to diversify
search for its solution [Gomes & Sellman, 2004]). When problems frequently go
unsolved during a learning phase, full restart begins the entire phase again. This
abandons a run on an unusually diffi cult sample of problems, or one where solutions
to very easy problems introduce misinformation. The resource limit is crucial here,
as fi gure 4.2 indicates. As one would expect, higher resource bounds incur a higher
learning cost, but under a high node limit, full restart considerably modulates that
effect.

 Modeling Expertise

 Modeling expertise requires some standard: an oracle, perhaps, or an expert opponent.
Such guidance, although important, may not offer enough variety to develop a robust

Learning Expertise with Bounded Rationality 49

Without full restart
With full restart

Without full restart
With full restart

0

1

2

3

4

5

6

7

8

9

10

11

12

13

5 10 50 100

Node limit (in thousands)

Successful runs

S
u

c
c
e
s
s
fu

l
ru

n
s

5 10 50 100

Node limit (in thousands)

Learning cost

a)

b)

N
o

d
e
s
 p

e
r

ru
n

 (
in

 t
h

o
u

s
a
n

d
s
)

–

200

400

600

800

1,000

1,200

 Figure 4.2
 The impact of resource bounds on 10 runs for the geometric problems. (a) More runs in an

experiment are successful with full restart (darker bars) and (b) fewer nodes are expanded.

50 S. L. Epstein and S. Petrovic

 Table 4.2
 Skill after learning against different playing expertise (Epstein, 1995). For competition against

opponents of different strengths at this draw game, lesson and practice training was better prepa-

ration than training against a perfect player. Hoyle played 100 testing contests against each of

4 opponents: one moved perfectly, the others had some percentage of random moves among

otherwise perfect play: 10 percent random (expert), 70 percent random (novice), and 100 percent

(random).

 Percentage of contests played correctly

 Outcomes

 After learning against

a perfect player

 After lesson and

practice training

 Wins against an expert 12% 18%

 Wins against a novice 59% 63%

 Wins against random play 80% 85%

 Wins or draws against perfect play 100% 100%

 Wins or draws against an expert 93% 98%

 Wins or draws against a novice 80% 97%

 Wins or draws against random play 88% 100%

learner. Experiments with Hoyle in table 4.2, for example, found competition against
a perfect player (a program that makes only optimal moves) too narrow (Epstein,
1994b). An expert player should succeed against opponents of any strength. After
training against a perfect player, Hoyle lost testing contests to opponents with far less
prowess — it was repeatedly fl ummoxed by their errors. Although some percentage of
random decisions in an otherwise fl awless opponent drives the learner ’ s experience
outside perfect play, such moves lack good rationales and are therefore often of poor
quality — not the kind of decisions Hoyle should learn to make. If Hoyle learned only
against itself, it did not always develop suffi ciently strong expertise either. The most
effective approach, lesson and practice training , had Hoyle alternately play two contests
against a perfect player and then practice in seven contests against itself.

 Without an external standard of expertise, a system can take traces of its own suc-
cesses as a model. Neither Ariadne nor ACE has an external model; each learns alone
and can only judge the correctness of its actions from its ability to solve problems.
When the robot fi nds the goal, metareasoning excises any closed loops from a trace
of the robot ’ s path, and takes the remainder as a model. Similarly, when ACE solves
a problem, metareasoning excises any decisions that have no alternative or are subse-
quently retracted and takes the remaining ones as a model. Nonetheless, neither a
loop-free path nor a retraction-free search is likely to be ideal — there may have been
a better way to solve the problem.

Learning Expertise with Bounded Rationality 51

 Learning about Advisors

 Metareasoning permits a system to assess the performance of its individual compo-
nents. Because most Advisors lie in tier 3, class-appropriateness, represented as a
weight for each tier-3 Advisor, is an obvious learning target. FORR learns such weights
and then uses them in tier 3 ’ s voting. Support for choice c is based on both the strength
 s (A j , c , C) that each Advisor A j expresses for that choice among available choices C and
the weight w j of the Advisor. The choice with the highest support is selected:

 arg max , ,
c

j
A Advisors

jw s A c C
j∈ ∈
∑ ()

C

 FORR ’ s metareasoning extracts training instances from the (likely imperfect) trace of
each solved problem during learning. A training instance is a problem state, the avail-
able choices there, and the decision made by the model of expertise. A positive training
instance selects a correct action; a negative training instance does not. Weight learning
judges the performance of Advisors on training instances.

 Of course, training instances are not all equally important. They may be drawn
from problems of inherently different diffi culty, or be of different kinds. For example,
in CSP search, a decision selects either a variable to consider or a value to assign it.
Clever variable selection makes propagation particularly effective, and therefore makes
value selection both easier and less signifi cant.

 To judge the correctness of advice labeled with numerical strengths, FORR has two
options: top-rated strategies and relative support strategies. Under top-rated , an Advisor
is considered correct on a positive training instance only if it gives the decision a
strength at least as high (for negative training instances, as low) as any other it
assigned there. Alternatively, the relative support rs (A , c , C) of Advisor A for choice c
in available choices C is the normalized difference between the strength A assigned
to c and the average of the strengths A assigned across all of C :

rs A c C

s A c C avg A C
avg A C

avg A C
s A e C

, ,
, , ,

,
,

, ,
() = () − ()

()
() =

(
 where

))
∈
∑
e C

C

 Under relative support, which attends more carefully to the nuances of variation in
an Advisor ’ s output, A is considered correct on decision c ∈ C if and only if rs (A , c , C)
is positive.

 FORR reinforces an Advisor ’ s weight with a reward (increment) or a penalty (decre-
ment) based on its correctness on each training instance. FORR tracks the number of
training instances on which each tier-3 Advisor gives the correct advice. A tally is not
enough because some Advisors (e.g., Hoyle ’ s fork detector) produce crucial advice, but
rarely. The fraction of times that an Advisor ’ s advice has been correct is a somewhat
better measure. ACE, however, has required the considerably more sophisticated

52 S. L. Epstein and S. Petrovic

metareasoning of DWL (Digression-based Weight Learning) and RSWL (Relative
Support Weight Learning).

 DWL judges correctness with top-rated. It calculates reinforcements in proportion
to problem diffi culty, as gauged by the resources consumed to solve it, relative to those
required to solve problems earlier in the same learning phase (Epstein, Freuder, &
Wallace, 2005). On training instances from shorter solutions, DWL assigns variable-
selection Advisors larger rewards but assigns value-selection Advisors smaller rewards.
DWL also reinforces behavior on a negative training instance in proportion to the size
of the digression (eventually abandoned search tree) it began.

 RSWL judges correctness with relative support (Petrovic & Epstein, 2006b). Under
RSWL, reinforcements are directly proportional to relative support, but penalties are
also inversely proportional to the number of choices. Two variations on RSWL modify
rewards and penalties based on different estimates of training instance diffi culty.
RSWL- κ uses constrainedness (a measure of a CSP class diffi culty (Gent, Prosser, &
Walsh, 1996) to estimate the diffi culty of each search state dynamically. RSWL-d is
computationally less expensive; it uses search tree depth and assumes that decisions
are more diffi cult at the top of the search tree. RSWL-d is based on the premise that,
with respect to a given algorithm, every CSP has a backdoor , a set of variables after
whose consistent assignment with the constraints search becomes extremely easy
(Williams, Gomes, & Selman, 2003).

 Learning on a sequence of problems applies knowledge from one successful search
to subsequent searches. The fi rst success increases the weights of those Advisors that
contributed to its decisions. It may, however, be quite expensive to solve any fi rst
problem at all, particularly when the problems are hard, there are many Advisors, and
they disagree with one another. On occasion a run fails because the learner has solved
no problems at all, and therefore changed no weights. Otherwise, only the easiest
problems in a class may be solved, which produces relatively few training instances,
all from relatively easy situations. FORR ’ s metareasoning therefore includes the ability
to work with random subsets of Advisors (Petrovic & Epstein, 2008). For each problem
in the learning phase, this method chooses a fresh subset of tier-3 Advisors to consult;
if search solves that problem, FORR learns weights from it only for that subset. The
expectation is that eventually the subset chosen for some problem will be dominated
by class-appropriate heuristics, the problem will be solved, the class-appropriate
weights in the subset will increase, and whenever any of those Advisors appears in a
subsequent subset it will be more likely to infl uence search, making further successes
more likely. Subset size is crucial, however: it must be large enough to select Advisors
frequently, yet small enough to speed processing and to give an otherwise minority
voice the opportunity to dominate decisions. Table 4.3 shows how performance
improves using random subsets: It reduces the number of problems addressed during
learning and speeds computation time on each decision. It even functions well when

Learning Expertise with Bounded Rationality 53

 Table 4.3
 Random subsets of 30 percent improve ACE ’ s learning performance on the geometric problems

with full restart under a 5,000-node limit, with no statistically signifi cant change in testing per-

formance. An early failure is an unsolved problem before any solved one.

 Learning

 Without random subsets With random subsets

 Number of learning problems 44.8 36.1

 Number of learning failures 13.7 6.4

 Number of early (learning) failures 7.1 0.9

 Number of successful runs (of 10) 10 10

 Seconds per learning decision 0.0161 0.0106

 Seconds per learning run 1651.6 593.6

 Average number of nodes in testing 192.7 195.9

 Percentage of solved testing problems 98.6% 96.4%

we deliberately skew the initial Advisor pool with many more class-inappropriate than
class-appropriate Advisors.

 Finally, a self-aware system can monitor the rate at which its performance improves
and stop learning once it is no longer learning anything new. FORR ’ s metareasoning
includes such learning to stability (Epstein, Freuder, & Wallace, 2005). Under this
option, FORR monitors its Advisors ’ weights across a recent time window (e.g., the
last 20 problems) and terminates a learning phase when the standard deviation of
changes in the Advisors ’ weights across the window are less than ε . Learning to stabil-
ity assumes that stable weights will remain stable; our experience over far longer
learning phases confi rms this. Making a learner more responsive to its own learning
experience this way has proved successful in all three domains: there is no change in
performance, only a reduction in the resources that would have been devoted to learn-
ing after the system found no way to improve its weights further. For example, Hoyle
recognizes that it has learned all it can on simple games after 12 contests; more dif-
fi cult games require as many as 120.

 Learning to Reason Less

 Metareasoning can monitor the traces from individual problems to reduce computa-
tion in a variety of ways, thereby restructuring the reasoning process itself. Unless
errors can prove fatal, more thinking is not always better. Of course, such economy
should be evaluated against the risks error presents and the cost required to recover
from it.

54 S. L. Epstein and S. Petrovic

 Ideally, decision making uses only the best Advisors and emphasizes those that
offer better advice. The metalevel can instruct the object level to omit from computa-
tion any Advisors that produce no advice during learning (e.g., Material in tic-tac-toe).
Moreover, once weights are learned, FORR uses benchmark Advisors , which produce
random advice, to identify class-appropriate Advisors. A benchmark Advisor does not
vote, but it does receive a learned weight. After the learning phase, metareasoning
eliminates from participation any Advisor whose weight is lower than its benchmark ’ s.
Moreover, any representation referenced only by eliminated Advisors will no longer
be computed. Filtering the Advisors in these ways speeds decisions after learning,
without decreasing performance. In ACE, for example, the average testing decision is
accelerated by about 30 percent.

 Although a tier-3 Advisor with a particularly high weight could be promoted to
tier 1, our experience in all three domains has found this a dangerous practice. Instead,
FORR partitions tier-3 Advisors retained after weight learning into groups of uneven
size, based on their weights. Under this prioritization , tier-3 Advisors with the highest
weights vote fi rst; only under a tie do subsequent groups of Advisors have an oppor-
tunity to comment on the best tied actions. Fewer resources are consumed this way,
since ties are relatively rare after the fi rst group or two. With too many groups, priori-
tization effectively produces a ranked list. (Ranking underperforms a weighted mixture
in all three of our domains, for every problem class we have investigated.) Partitions
of three to seven subsets produce the best results, but the number of subsets depends
on the problem class. We have rarely experienced more than a 10 percent speedup
with prioritization. Although fewer Advisors make more mistakes, most representa-
tions are still computed, particularly the computationally intensive ones on which
class-appropriate Advisors often rely.

 Metareasoning can identify portions of the solution process where different behav-
ior is warranted. In some domains, the last part of problem solving is more formulaic.
Game players, for example, may have an endgame library and play there by lookup.
ACE estimates the last part of CSP search as that after the maximum search depth at
which it has experienced a wipeout within the problem class. Below this depth and
only during testing, ACE ’ s tier-1 Advisor Pusher consults the single highest-weighted
tier-3 variable-selection Advisor as if it were in tier 1, bypassing tiers 2 and tier 3
entirely (Epstein, Freuder, & Wallace, 2005). Pushing generally reduces computation
time by about 8 percent. ACE does not, however, push value selection. Experiments
indicate that one can think less about where to search after the backdoor but not
about the values to assign there.

 Fast and frugal reasoning is a form of human metareasoning that favors recognized
choices and then breaks ties among a random pair of them with one heuristic (Giger-
enzer, Todd, & Group, 1999). For ACE, a recognized choice is one made earlier in
search (and subsequently retracted) on the same problem. On problems where retrac-

Learning Expertise with Bounded Rationality 55

tions are common, reusing prior decisions with the highest weighted Advisor to break
ties accelerated decision time, despite increased errors (Epstein & Ligorio, 2004).

 Conclusions

 On diffi cult problems, errors in a model of expertise may be inevitable, and training
instances from the same model may vary in their quality and signifi cance. Nonethe-
less, a self-aware system can recognize its own prowess or lack thereof, and respond
accordingly. Moreover, as we have shown here, a self-aware system can evaluate and
reorganize its components to improve its performance.

 Constraint solving is a paradigm for many kinds of AI problems. ACE learns to
solve problems in many diffi cult classes, where problems stymie off-the-shelf solvers
that cannot monitor and modify their own behavior. Hoyle and Ariadne each learn
how to search a single space, a game tree or a maze, from which all the problems in
a class are drawn. ACE learns about how to search a set of spaces, all of which are
supposedly alike, a considerably more diffi cult task.

 Metareasoning is essential in FORR ’ s ability to learn to solve problems within a
given class. As it learns to manage heuristics, FORR uses metareasoning to decide when
to abandon an unpromising learning attempt, when to stop learning, how to select
heuristics during learning, and how to prioritize heuristics. FORR also reasons about
its performance on previous problems, its previous decisions, and the relative discrimi-
natory power of its heuristics. Thinking about thinking makes FORR-based applica-
tions more incisive and more successful.

 Acknowledgments

 This work was supported in part by the National Science Foundation under IIS-
0811437 and IIS-0739122. ACE is an ongoing joint project with Eugene Freuder and
Richard Wallace of The Cork Constraint Computation Centre.

 References

 Aardal , K. I. , van Hoesel , S. P. M. , Koster , A. M. C. A. , Mannino , C. , & and Sassano , A. (2003).

 Models and solution techniques for frequency assignment problems . 4OR: A Quarterly Journal of

Operations Research , 1 (4), 261 – 317 .

 Biswas , G. , Goldman , S. , Fisher , D. , Bhuva , B. , & Glewwe , G. (1995). Assessing design activity in

complex CMOS circuit design . In P. Nichols , S. Chipman , & R. Brennan (Eds.), Cognitively diag-

nostic assessment (pp. 167 – 188). Hillsdale, NJ : Lawrence Erlbaum .

 Borrett , J. E. , Tsang , E. P. K. , & and Walsh , N. R. (1996). Adaptive constraint satisfaction: The

quickest fi rst principle . In W. Wahlster (Ed.), Proceedings of the 12th European Conference on Arti-

fi cial Intelligence (pp. 160 – 164). Chichester : Wiley .

56 S. L. Epstein and S. Petrovic

 Crowley , K. , & Siegler , R. S. (1993). Flexible strategy use in young children ’ s tic-tac-toe. Cognitive

Science , 17 (4), 531 – 561 .

 D ’ Andrade , R. G. (1991). Culturally based reasoning . In A. Gellatly & D. Rogers (Eds.), Cognition

and social worlds (pp. 795 – 830). Oxford : Clarendon .

 Epstein , S. L. (1994a). For the right reasons: The FORR architecture for learning in a skill domain.

 Cognitive Science , 18 (3), 479 – 511 .

 Epstein , S. L. (1994b). Toward an ideal trainer. Machine Learning , 15 (3), 251 – 277 .

 Epstein , S. L. (1995). Learning in the right places. Journal of the Learning Sciences , 4 (3), 281 – 319 .

 Epstein , S. L. (1998). Pragmatic navigation: Reactivity, heuristics, and search. Artifi cial Intelligence ,

 100 (1 – 2), 275 – 322 .

 Epstein , S. L. (2001). Learning to play expertly: A tutorial on Hoyle . In J. F ü rnkranz & M. Kubat

(Eds.), Machines that learn to play games (pp. 153 – 178). Huntington, NY : Nova Science .

 Epstein , S. L. , Freuder , E. C. , & Wallace , R. J. (2005). Learning to support constraint programmers.

 Computational Intelligence , 21 (4), 337 – 371 .

 Epstein , S. L. , & Ligorio , T. (2004). Fast and frugal reasoning enhances a solver for really hard

problems . In K. Forbus , D. Gentner & T. Regier (Eds.), Proceedings of the 26th Annual Conference

of the Cognitive Science Society (pp. 351 – 356). Mahwah, NJ : Lawrence Erlbaum .

 Fukunaga , A. S. (2002). Automated discovery of composite SAT variable-selection heuristics . In

 Proceedings of the Eighteenth National Conference on Artifi cial Intelligence (pp. 641 – 648). Menlo Park,

CA : AAAI Press .

 Gagliolo , M. , & Schmidhuber , J. (2006). Dynamic algorithm portfolios . In Proceedings of the Ninth

International Symposium on Artifi cial Intelligence and Mathematics . Fort Lauderdale, FL. Available at

 http://anytime.cs.umass.edu/aimath06 .

 Gent, I. P. , Prosser , P. , Walsh , T . (1996). The constrainedness of search. AAAI/IAAI, 1 , 246 – 252.

 Gigerenzer , G. , Todd , P. M. , & Group , A. R. (1999). Simple heuristics that make us smart . New York :

 Oxford University Press .

 Gomes , C. P. , & Sellman , M. (2004). Streamlined constraint reasoning . In M. Wallace (Ed.),

 Principles and practice of constraint programming CP-2004 (vol. LNCS 3258, pp. 274 – 287). Berlin :

 Springer Verlag .

 Gomes , C. P. , & Selman , B. (2001). Algorithm portfolios. Artifi cial Intelligence , 126 (1 – 2), 43 – 62 .

 Gomes , C. P. , Selman , B. , Crato , N. , & Kautz , H. (2000). Heavy-tailed phenomena in satisfi ability

and constraint satisfaction problems. Journal of Automated Reasoning , 24 , 67 – 100 .

 Johnson , D. S. , Aragon , C. R. , McGeoch , L. A. , & Schevon , C. (1989). Optimization by simulated

annealing: An experimental evaluation; Part I, Graph Partitioning. Operations Research , 37 ,

 865 – 892 .

Learning Expertise with Bounded Rationality 57

 Keim , G. A. , Shazeer , N. M. , Littman , M. L. , Agarwal , S. , Cheves , C. M. , Fitzgerald , J. , et al. (1999).

 PROVERB: The probabilistic cruciverbalist . In Proceedings of the Sixteenth National Conference on

Artifi cial Intelligence (pp. 710 – 717). Menlo Park, CA : AAAI Press .

 Minton , S. , Allen , J. A. , Wolfe , S. , & Philpot , A. (1994). An overview of learning in the Multi-TAC

system. In M. L. Ginsberg (Ed.), Proceedings of the First International Joint Workshop on Artifi cial

Intelligence and Operations Research . Technical report AFOSR-96-0394.

 Nareyek , A. (2003). Choosing search heuristics by non-stationary reinforcement learning . In

 M. G. C. Resende & J. P. deSousa (Eds.), Metaheuristics: Computer Decision-Making (pp. 523 – 544).

 Boston : Kluwer .

 Petrovic , S. , & Epstein , S. L. (2006a). Full restart speeds learning . In Proceedings of the 19th Inter-

national FLAIRS Conference (FLAIRS-06) (pp. 104 – 109). Menlo Park, CA : AAAI Press .

 Petrovic , S. , & Epstein , S. L. (2006b). Relative support weight learning for constraint solving . In

 W. Ruml & F. Hutter (Eds.), Proceedings of the Workshop on Learning for Search at AAAI-06 (pp.

 115 – 122). Menlo Park, CA : AAAI Press .

 Petrovic , S. , & Epstein , S. L. (2008). Random subsets support learning a mixture of heuristics.

 International Journal of Artifi cial Intelligence Tools , 17 (3), 501 – 520 .

 Ratterman , M. J. , & Epstein , S. L. (1995). Skilled like a person: A comparison of human and

computer game playing . In J. D. Moore & J. F. Lehman (Eds.), Proceedings of the Seventeenth Annual

Conference of the Cognitive Science Society (pp. 709 – 714). Hillsdale, NJ : Lawrence Erlbaum .

 Schraagen , J. M. (1993). How experts solve a novel problem in experimental design. Cognitive

Science , 17 (2), 285 – 309 .

 Streeter , M. , Golovin , D. , & Smith , S. F. (2007). Combining multiple heuristics online . In Proceed-

ings of the Twenty-Second Conference on Artifi cial Intelligence (AAAI-07) (pp. 1197 – 1203). Menlo

Park, CA : AAAI Press .

 Williams , R. , Gomes , C. , & Selman , B. (2003). On the connections between backdoors, restarts,

and heavy-tails in combinatorial search. Paper presented at the Sixth International Conference

on Theory and Applications of Satisfi ability Testing (SAT03).

 5 Controlling Deliberation in Coordinators

 George Alexander, Anita Raja, and David Musliner

 Intelligent agents often must make effective use of limited resources (such as time,
computational power, or physical resources) in order to achieve their goals. Delibera-
tive activities such as planning, scheduling, and negotiating are used to manage these
resources. However, an agent may have limited time to devote to deliberation and
may not be able to reach globally optimal decisions in the time available. Thus it
becomes important to maximize the effective use of limited deliberative resources.
Metalevel control is the process of reasoning about and controlling the agent ’ s delib-
erative actions (fi gure 1.2, this vol., ch. 1). Examples of metalevel control questions
are how to divide available deliberation time among the different deliberative actions
available to the agent and what algorithms, parameters, and protocols the agent should
use for deliberation if multiple options are available. This chapter describes efforts to
add metalevel control capabilities to the Informed Unroller agent (IU-agent) (Musliner
et al., 2007), a scheduling agent based on the Markov decision process (MDP) formal-
ism designed to operate in a cooperative multiagent environment. Although the IU-
agent can perform deliberative actions and domain actions simultaneously, the agent ’ s
tasks involve temporal constraints that necessitate intelligent management of delibera-
tion. The goals of the research are to implement a metalevel control scheme to maxi-
mize the effectiveness of the IU-agent ’ s deliberations and to identify characteristics of
domains in which metalevel control of the IU-agent proves advantageous. For the
IU-agent, the metalevel controller primarily determines when the agent should update
its MDP policy, trying to ensure that the agent stays “ on policy ” (in the explored
regions of the dynamically expanding MDP) for as long as possible.

 The rest of the chapter is laid out as follows: We fi rst discuss related work in meta-
level control, especially in the area of performance profi ling. We then discuss back-
ground information on Markov decision processes and the TAEMS modeling language
(a derivative of which was used to represent the IU-agent ’ s tasks) along with a descrip-
tion of the IU-agent. This is followed with a description of the implemented metalevel
control approach and experimental results indicating its advantages for the IU-agent.
The chapter concludes with a discussion of lessons learned over the course of imple-

60 G. Alexander, A. Raja, and D. Musliner

menting metalevel control for the IU-agent and a discussion of open issues for future
work in metalevel control.

 Related Work

 There has been important previous work in metalevel control (Cox, 2005). For example,
 Russell and Wefald (1989) describe an expected utility-based approach to decide
whether to continue deliberation or to stop it and choose the current best external
action. They introduce myopic schemes such as metagreedy algorithms, single-step,
and other adaptive assumptions to bound the analysis of computations. Raja and
Lesser (2007) present a decision-theoretic approach that leverages an abstract repre-
sentation of the agent ’ s state to bound the cost of metalevel decision making in a
complex multiagent environment. Dean and Boddy (1988) describe a decision-
theoretic approach to scheduling deliberative actions implemented by anytime algo-
rithms. These algorithms are guaranteed to return a result at any time they are
interrupted, and it is assumed that their solution quality increases as they are given
more computational time. Their approach uses performance profi les, which provide
a measure of how the solution quality changes over time. Hansen and Zilberstein
(2001) present a formal approach to metalevel control of anytime algorithms that
reasons explicitly about monitoring costs. More recently, Larson and Sandholm (2004)
have studied performance profi le trees that stochastically model the path the solution
takes. Online metalevel control of an adaptive real-time agent is investigated by
 Musliner, Goldman, and Krebsbach (2005). The metalevel control scheme described
in this chapter uses the simplifi ed representation of a performance profi le as a curve
and adds a multilevel decision-making strategy. The performance profi les are not
assumed a priori, but are induced experimentally and maintained through periodic
updates. The CMU agent (see chapter 14 of this volume) also views metalevel control
as dynamic management of control parameters; that research identifi es parameters
that are most effective in boosting quality by balancing between local scheduling and
explicit coordination with other agents.

 Background

 Markov Decision Processes
 A Markov decision process (MDP) is a probabilistic model of a sequential decision
problem, where states can be perceived exactly, and the current state and action
selected determine a probability distribution on future states (Sutton & Barto, 1998).
Specifi cally, the outcome of applying an action to a state depends only on the current
action and state (and not on preceding actions or states). Formally, an MDP is defi ned
via the 4-tuple < S, A, P, R > : a state set S , an action set A , a transition probability func-

Controlling Deliberation in Coordinators 61

tion P : S × A × S → [0, 1], and a reward function R : S × A × S → ℜ . On executing action
 a in state s , the probability of transitioning to state s ′ is denoted P a ss ′ and the expected
reward associated with that transition is denoted R a ss ′ . A rule for choosing actions is
called a policy . Formally, it is a mapping Π : S × A → [0, 1] (if the policy is deterministic,
we may simplify this as Π : S → A). If an agent follows a fi xed policy, then over many
trials, it will receive an average total reward known as the value of the policy. In addi-
tion to computing the value of a policy averaged over all trials, we can also compute
the value of a policy when it is executed starting in a particular state s . This is denoted
 V Π (s) and it is the expected cumulative reward of executing policy Π starting in state
 s . This can be written as

 V s E s st t t
^

^() = + + =⎡⎣ ⎤⎦+ +γ γ1 2 … ,

 where r t is the reward received at time t , s t is the state at time t , and the expectation
is taken over the stochastic results of the agent ’ s actions.

 For any MDP, there exists a set of one or more optimal policies, which we will
denote by Π *, that maximize the expected value of the policy. All of these policies
share the same optimal value function, written as V*. The optimal value function satis-
fi es the Bellman equations (Bertsekas & Tsitsiklis, 1996).

 TAEMS Modeling Language
 TAEMS models (Horling et al., 1999) are hierarchical abstractions of multiagent
problem-solving processes that describe alternative ways of accomplishing a desired
goal; they represent major problems, decision points, and interactions between prob-
lems. Nonleaf nodes in the hierarchy are called tasks (tasks may have one or more
subtasks), while nodes at the lowest level are called methods and represent the domain-
level actions available to an agent. Methods are characterized by discrete probability
distributions along three dimensions: quality, duration, and cost. Quality accumula-
tion functions (QAFs) defi ne how quality propagates from a child node to its parent.
Example QAFs are q_sum , indicating the parent is assigned the sum of qualities from
its children, q_max , indicating the parent is assigned the maximum quality of any of
its children, and q_min , indicating the parent is assigned the minimum quality of any
of its children. In addition, temporal constraints may be represented by assigning
earliest start times and deadlines to nodes; these constraints limit the time period
available to achieve quality for the node. Temporal constraints propagate downward
through the hierarchy. Finally, task interrelationships may be represented by linking
nodes using nonlocal effects (NLEs). Example NLEs include hard constraints, such as
 enables (the enabled tasks cannot accrue quality until the enabling task has achieved
nonzero quality), as well as soft constraints, such as facilitates (the facilitated task will
accrue more quality if it is executed after the facilitating task has achieved nonzero
quality). An example TAEMS structure is given in fi gure 5.1.

62 G. Alexander, A. Raja, and D. Musliner

EST
40

EST
30

DL
50

DL
65

enables

facilitates

Perform A
QAF: max

Perform B
QAF: max

Window2
QAF: sum

Method A2
Q:80% 15, 20% 0
D:75% 20, 25% 15

Method B2
Q:80% 15, 20% 0
D:75% 20, 25% 15

Setup
QAF: max

Plan Ahead
QAF: max

Window1
QAF: sum

Method A1
Q:100% 5

D:80% 10, 20% 15

Method B1
Q:60% 10, 40% 8

D:100% 15

SampleScenario
QAF: sum

Problem1
QAF: sum

 Figure 5.1
 An example TAEMS structure.

Controlling Deliberation in Coordinators 63

 A TAEMS model can be converted into an equivalent MDP and solved to obtain an
optimal policy (Wu & Durfee, 2007). In fact, due to the deadline constraints in
the TAEMS model, the conversion will produce a fi nite-horizon MDP. Starting from
the initial state, successor states are generated based on all the actions available to the
agent in a state and all possible outcomes of those actions. For example, if the agent
could choose between two actions and these actions had no uncertainty in quality,
cost, or duration, then two successor states would be generated. In general, if n actions
are available in a given state, each having q possible quality values, c possible costs,
and d possible duration values, then n * q * c * d immediate successor states would be
generated. In practice, even for fairly small TAEMS models, if there is a lot of fl exibility
in action choices and many possible outcomes of each action, the MDP may be too
large for the agent to completely enumerate. The IU-agent thus performs this conver-
sion incrementally and continually, alongside domain-level task execution. Although
the IU-agent derives its MDP from a TAEMS model, our metalevel control approach
does not depend on TAEMS per se, just the incremental unrolling process.

 IU-agent
 The IU-agent (Musliner et al., 2007 ; Wu & Durfee, 2007) translates its task model into
an MDP beginning with the earliest states and expanding toward the problem horizon.
This unrolling process must be periodically paused in order to derive a partial policy
based on the currently expanded states. The unrolling process continues until the
entire MDP is unrolled, the scenario deadline is reached, or the agent arrives in an
unknown state and cannot remain on policy. States that have not yet been expanded
are maintained in a queue called the open list .

 If unrolling proceeds naively in a breadth-fi rst manner, then the agent may only
be able to expand states representing the near future and will consequently perform
poorly. If the agent cannot unroll enough of the state space, or more specifi cally, an
adequately far-sighted view of the state space, the resulting policy may be suboptimal.
As more states are unrolled and the (partial) MDP becomes more forward-looking, the
agent ’ s partial policy approaches the optimal policy for the complete MDP. Thus it is
natural to try to discover heuristics that guide the unrolling process in a way that
maximizes the expected quality of the agent ’ s policy given limited computational
time.

 The process of unrolling the metalevel control without such heuristic guidance is
called uninformed unrolling . In contrast, the IU-agent uses a method called informed
unrolling , from which it derives its name. Informed unrolling is based on the principle
that the agent should not spend much time unrolling states that will probably never
be reached; thus the IU-agent prioritizes unexpanded states in the open list according
to the probability of reaching those states when following an optimal policy. Policy
execution occurs alongside unrolling; hence as the actual outcome of actions becomes

64 G. Alexander, A. Raja, and D. Musliner

known, the probability of reaching a state changes and some states become unreach-
able. Therefore the IU-agent periodically removes or prunes unreachable states from
the MDP and the open list. 1 Pruning may be triggered by the agent making an action
choice (eliminating the states representing the action[s] not chosen) or by the comple-
tion of a method (eliminating the states representing those possible outcomes that
did not in fact occur). In addition, the open list is periodically sorted so that states
with the highest probability of being reached are placed toward the front of the queue.
After sorting the open list, the IU-agent solves the current MDP to obtain a new partial
policy. Meanwhile, the unrolling process remains paused until the sorting/policy
derivation is complete. Policy derivation is not computationally cheap (in fact, it is
polynomial); thus metalevel control is needed to balance the time spent unrolling
versus the time spent sorting the open list and deriving a policy. The metalevel con-
troller initiates the process by instructing the agent to perform an open list sort, which
in turn triggers the policy derivation function. Since this sequence is opaque to the
metalevel controller, we will refer to the entire procedure as a deliberative action that
is triggered by an open list sort. Also, if a possible prune is detected while the agent
is in the middle of the sorting process, the sort will be aborted and the prune processed,
and then a new sort is begun using the pruned open list. Obviously, interrupting many
sorts over the course of the agent ’ s execution becomes expensive, wasting the com-
putational time already spent before the sorts are aborted. Therefore, the agent requires
adaptive control to schedule open list sorts at the most appropriate times. Since the
unrolling process occurs alongside execution of domain actions, the agent may enter
an unknown state or a state not considered in the agent ’ s current partial policy. In
this event, the agent abandons its MDP-based reasoning for a myopic greedy action
selection method that is based on one-step lookahead.

 Metalevel Control Approach

 The metalevel control component for the IU-agent is designed with a number of goals
in mind. The most basic motivation is the trade-off between keeping the agent ’ s MDP
policy current (by taking frequent deliberative actions) and maintaining a more
forward-looking MDP (by unrolling more states). In addition to this consideration, it
is desirable to reduce the amount of deliberation time wasted by the agent on sorts
that are interrupted by prunes before completion, since these sorts-in-progress are
thrown out and the wasted time could have been spent unrolling more MDP states.
The third goal is to ensure that the agent stays on policy for as long as possible, rather
than falling back on a greedy myopic deliberation method.

1. Only states that are intrinsically unreachable are removed (e.g., states corresponding to an

earlier time period. States that could not be reached by the current policy are retained, since the

policy may change as more of the state space is explored.

Controlling Deliberation in Coordinators 65

 The agent can fall off policy in two different ways: off the end or off the side. When
the agent reaches an area of the state space that has not yet been unrolled, the agent
has fallen off the end of its policy. If the agent reaches a state that has been unrolled
but not yet incorporated into its policy (that is, no action has been chosen for the
state), it has fallen off the side of the policy. Falling off the end of the policy can be
avoided by maximizing the number of MDP states unrolled, for example, by reducing
aborted sorts and limiting the amount of time spent in deliberation. On the other
hand, falling off the side of the policy can be avoided by maintaining an up-to-date
policy, that is, by increasing the frequency of deliberative actions. Thus the metalevel
component has to balance competing goals.

 The metalevel control approach consists of building performance profi les for the
agent ’ s deliberative action and using a number of heuristics to determine whether to
initiate a sort (triggering deliberation) or continue unrolling.

 Performance Profi les
 Initial data confi rmed that the time required to reorder the open list as well as the
time required for policy derivation (collectively, the deliberation time) scales with the
number of reachable states in the agent ’ s MDP; thus we collected from the agent ’ s
logs the deliberation time and reachable state count for all the deliberative actions
taken across a number of domains and used these data with Gnuplot ’ s built-in curve-
fi tting feature based on the Marquardt – Levenburg algorithm (Marquardt, 1963) to
create a deliberation time estimator function. For this research, the correlation between
reachable states and deliberation time was treated as domain independent (in other
words, the performance of open list sorting and policy derivation depends just on the
number of reachable states and not the particular topology of the MDP). Example
deliberation time data are shown in fi gure 5.2 with the estimation function overlaid.
Notice that the data follow a roughly linear trend until about 60,000 reachable states,
when the sort times sharply increase. To account for this, the data are fi tted with the
following piece-wise function:

f x

a x a x

b x b x b x b x
() =

+ <
+ + + ≥

⎧
⎨
⎩

1 0

2
2

1 0

60000

60000

,

,a
a

 Investigations suggested that the sharp increase in deliberation times was caused
by garbage collection issues. After some memory optimizations were performed on the
IU-agent ’ s unrolling algorithm, the data followed a smoother curve. Timing data col-
lected after these modifi cations were made is shown in fi gure 5.3 along with a retuned
estimation function. The curve-fi tting procedure had to be periodically rerun using
the latest data as other changes were made to the agent; however, the overall trend
of the data remained the same. These events hint at the possible interactions even at
the coding level between metalevel control and deliberative control.

66 G. Alexander, A. Raja, and D. Musliner

Actual deliberation times
Curve for <60K states
Curve for >=60K states

1

10

100

1000

10000

100000

0 20000 40000 60000 80000 100000 120000

D
e

li
b

e
ra

ti
o

n
 T

im
e

 (
m

s
)

Reachable States

 Figure 5.2
 Deliberation time data before memory optimizations.

Actual deliberation times
Curve for <60K states
Curve for >=60K states

1

10

100

1000

10000

0 20000 40000 60000 80000 100000 120000 140000 160000

D
e
li

b
e
ra

ti
o

n
 T

im
e
 (

m
s
)

Reachable States

 Figure 5.3
 After memory optimizations, the trend in deliberation time data is much smoother.

Controlling Deliberation in Coordinators 67

 Note that the true number of reachable states is unknown to the agent until after
policy derivation is completed. For input to the deliberation time function, this
number was estimated by the sum of the previous reachable state count, the number
of states added to the open list, and the number of true terminal states added to the
MDP. 2

 The general algorithm is summarized in Procedure 5.1. Each time a state is expanded
from the open list, the IU-agent makes a decision about whether to pause unrolling,
resort the open list, and derive a new partial policy, or just to continue unrolling. A
single primary heuristic is tested fi rst. If the primary heuristic does not return true ,
then one or more secondary heuristics are tested sequentially. If none of the heuristics
returns true , then the IU-agent continues unrolling the MDP.

 Procedure 5.1 Metalevel Control Loop
 1: loop
 2: expand a state from the open list
 3: if primaryHeuristic then
 4: call openList sort and derive policy
 5: else if secondaryHeuristic 1 then
 6: call openList sort and derive policy
 7:
 …
 8: else if secondaryHeuristic N then
 9: call openList sort and derive policy
 10: end if
 11: end loop

 Time-to-Sort Heuristics
 The estimated deliberation time was used as input to several heuristic functions that
determine whether the agent should stop unrolling and trigger an open list sort at a
given point in time. These heuristics are divided into two categories: primary heuristics
and secondary heuristics. Primary heuristics represent rules for when to initiate a sort
under normal conditions. They are responsible for the periodic policy derivation that
is necessary without any special considerations. Secondary heuristics represent rules
for sorting in certain special cases; they allow the agent to react opportunistically when
deriving an updated MDP policy is particularly desirable.

 Primary Heuristics
 The IU-agent uses a single primary heuristic that does not change over the course of
a scenario. We considered a number of possible heuristics:

2. True terminal states are actual terminal states of the complete MDP, as distinguished from

states that are merely at the edge of the partially unrolled MDP.

68 G. Alexander, A. Raja, and D. Musliner

 n-pops-and-growth This rule triggers an open list sort with associated policy derivation
to be performed whenever N states have been popped off the open list and expanded
and the MDP has grown by M states. Formally:

 popped ← number of states popped off open list
 growth ← number of states added to MDP
 if (popped > N) ̂ (growth > M) then
 return true
 else return false

 One of the challenges in effectively applying this rule is deciding on appropriate values
of N and M such that sorting occurs regularly but not too frequently.

 process-openlist-n-percent This rule is invoked whenever N percent of the states from
the open list have been expanded. Intuitively, the rule causes more frequent sorting
(thus a more focused MDP explored depth-fi rst along the choices made by the policy
so far) during the beginning of a scenario with less frequent sorting (thus more
breadth-fi rst exploration) after the MDP becomes larger. Formally:

 prevSize ← number of open list states after last sort
 popped ← number of states popped off open list
 if popped > N/ 100 * prevSize then
 return true
 else return false

 sort-budget This rule times sorts so that roughly a certain fraction of the agent ’ s time
is spent on deliberative actions versus unrolling. Let b be the budget amount (i.e., the
fraction of the time relative to unrolling time that we wish to spend deliberating),
then formally:

 unrollTime ← time since last sort
 delibDuration ← estimated deliberation time
 deliberationRatio ← delibDuration/unrollTime
 if deliberationRatio ≤ b then
 return true
 else return false

 To prevent time lost to aborted sorts, these primary heuristics are constrained by an
additional condition (given in Procedure 5.2) that the triggered deliberative action
will not run over a method start time or possible method completion time (which
would cause some states to be marked unreachable, hence aborting the sort-in-progress
when these states are subsequently pruned from the MDP). A sort is triggered by the
primary heuristic returning true only if Procedure 5.2 returns true as well.

Controlling Deliberation in Coordinators 69

 Procedure 5.2 Not-too-close-to-next-possible-prune
 delibDuration ← estimated deliberation time
 nextEST ← next earliest start of a method
 nextFinish ← next possible completion time of the currently executing method
 nextPossPrune ← min (nextEST, nextFinish)
 if currentTime + delibDuration ≤ nextPossPrune then
 return true
 else return false

 Our experiments suggested that the sort-budget rule performed best in the domains of
interest. We hypothesized that the best choice of primary heuristic may depend on
characteristics of the domain, but no clear trends in this regard were discovered over
the course of the experiments.

 Secondary Heuristics
 In addition to the primary heuristic used to determine when to perform routine open
list sorting/policy derivation, the IU-agent uses multiple secondary heuristics to decide
whether to take an opportunistic deliberative action should certain conditions occur.

 perfect-time-to-sort This condition is triggered when the next deliberation is estimated
to complete within a small time window before the IU-agent ’ s next action-choice time.
The purpose of this rule is to try to ensure that the MDP policy is always as up-to-date
as possible whenever a domain-level decision is made. Formally:

 Δ ← the size of the desired time window
 delibDuration ← estimated deliberation time
 timeAvail ← time left until next earliest start of a method
 if 0 ≤ timeAvail − delibDuration ≤ Δ then
 return true
 else return false

 need-actions-for-near-term-states This heuristic examines the reachable nonedge MDP
states that correspond to times within a small window of the agent ’ s current time. If
any of these states do not have actions associated with them in the MDP policy, the
rule triggers an open list sort. The reasoning behind this rule is that if the agent enters
a state for which the policy has no associated action, then the agent will fall off the
policy and use a myopic deliberative method for the duration of the scenario. Let Π
be the agent ’ s MDP policy, with Π (s) denoting the action associated with state s , and
let time s denote the time of state s . Furthermore, let Δ be the size of our desired time
window, and let NearTerm = { s ∈ ReachableStates: time s ≤ currentTime + Δ }. Then this
rule is given formally as:

70 G. Alexander, A. Raja, and D. Musliner

 for all s ∈ NearTerm do
 if s ∉ EdgeStates ̂ Π (s) == NULL then
 return true
 end for
 return false

 These secondary heuristics may trigger a sort at a time when it would normally be
interrupted by a prune; however, since in the IU-agent ’ s domain of interest the special
conditions represented by these rules are considered more important than the benefi ts
of processing prunes, sorts triggered by secondary heuristics are programmatically
defi ned to be uninterruptible.

 Experimental Results

 The IU-agent was tested with and without metalevel control on a total of 169 domains,
divided among eight groups. In the tests with metalevel control disabled, the agent
used only the n-pops-and-growth rule with no secondary heuristics. The domains in
Groups 1 – 3 and 7 – 8 were designed by external teams. Unfortunately, because of the
size and complexity of the TAEMS models, it is diffi cult to give a succinct general
description of these domains without knowledge of the motivations behind their
design. However, the domains in Groups 4 – 6 were designed specifi cally to capitalize
on the strengths of the metalevel control approach, focusing on two of the main
intended benefi ts to the agent: increased number of unrolled states to avoid falling
off the end of the policy and monitoring to prevent falling off the side of the policy.
These domains are summarized as follows:

 • Group 4 An assortment of domains, mostly consisting of small chains of enabling
NLEs along with scattered single NLEs. The design strategy is to give the agent many
action choices and to require the agent to reason nonmyopically.
 • Group 5 Small domains consisting of long chains of enabling NLEs. Quality in
these domains is essentially binary. If the agent cannot unroll the complete state space
in time, then it will achieve 0 quality; otherwise, the agent gets a small amount of
quality.
 • Group 6 Domains containing sets of low-quality actions that enable high-quality
actions, with a single very high-quality action. The agent has to maximize the number
of unrolled states in order to see the very high-quality state.

 The results (see table 5.1) show a statistically signifi cant increase in mean quality
achieved for the IU-agent with metalevel control in Groups 4 – 5 in particular and for
all groups regarded as a whole (overall mean quality increase ~ 12.6 percent). On many
of the individual domains comprising Groups 2, 3, and 7, the agent was not able to
achieve quality with or without metalevel control, and further investigation suggested

Controlling Deliberation in Coordinators 71

 Table 5.1
 Mean quality comparison

 Group

 Mean Qual.

 (MLC Off)

 Mean Qual.

 (MLC On) N Sig. (1-tail paired t)

 1 1188.82 1185.74 25 0.147

 2 29.74 41.37 25 0.218

 3 18.73 15.23 25 0.275

 4 573.75 613.91 25 0.001

 5 0.00 2.33 18 < 0.001

 6 155.56 178.17 7 0.079

 7 6.44 6.44 25 —

 8 184.85 463.04 19 0.066

 All 297.73 335.23 169 0.030

that these domains may require communication capabilities more advanced than
those implemented in the IU-agent at the time of the experiments. However, log
information for runs of Groups 2 and 3 reveals that the agent was able to stay on
policy longer with metalevel control enabled (fi gures 5.4 and 5.5 respectively).

 Additionally, metalevel control was able to greatly reduce the number of open list
sorts that were aborted and restarted. Figures 5.6 and 5.7 show the time wasted on
aborted sorts over a run of all the domains in Group 4. The line y = x is shown for
illustration: Points near the line indicate that the deliberation was almost completed
when it was interrupted. With metalevel control enabled, the IU-agent had about 12.7
percent of the aborted sorts of the agent lacking metalevel control.

 Discussion

 Metalevel control is not a panacea (Conitzer & Sandholm, 2003). In our experiments,
we found several situations in which the agent performed just as well with metalevel
control disabled. However, certain domain characteristics favored sophisticated meta-
level control:

 • High amounts of uncertainty or many options for domain actions require the IU-
agent to unroll its MDP in a more breadth-fi rst manner in order to avoid falling off
the side of the policy (that is, if there are many [almost] equally likely outcomes for
an action choice, then the agent must unroll several subtrees instead of focusing on
a single high-probability subtree). Metalevel control ’ s advantage in this case is in the
increased number of states unrolled compared with the metalevel control-disabled
IU-agent.

72 G. Alexander, A. Raja, and D. Musliner

Metalevel control disabled
Metalevel control enabled

3,000

2,500

2,000

1,500

1,000

500

0

T
im

e
 (

ti
c
k
s
)

Domain

1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 17 18 1910 20 21 22 23 24 25

 Figure 5.5
 Time spent on policy. Metalevel control allows the agent to remain on policy longer.

Metalevel control disabled
Metalevel control enabled

2,500

2,000

1,500

1,000

500

0

T
im

e
 (

ti
c
k

s
)

Domain

1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 17 18 1910 20

 Figure 5.4
 Time spent on policy. Metalevel control allows the agent to remain on policy longer.

Controlling Deliberation in Coordinators 73

Interrupted Deliberation Data
Almost finished when interrupted

1

10

100

1000

10000

100000

0 2000 4000 6000 8000 10000 12000

W
a

s
te

d
 D

e
li

b
e

ra
ti

o
n

 T
im

e
 (

m
s
)

Predicted Deliberation Time (ms)

 Figure 5.6
 Time wasted on interrupted sorts (Group 4 domains). With the metalevel control features dis-

abled, the agent estimated deliberation time by multiplying the time spent on the previous

deliberative action by a constant ratio.

 • Long chains of enables NLEs or time constraints that necessitate smart scheduling
(e.g., actions with short time windows between their release times and deadlines)
require the IU-agent to think far ahead. If the IU-agent ’ s myopic fallback deliberation
performs well in a domain, then much of the advantage of MDP-based deliberation
would be lost.

 Conversely, certain domain characteristics reduce or eliminate the advantages of
metalevel control for the IU-agent:

 • In domains that are very loosely constrained (e.g., no nonlocal effects, plenty of
slack in the agent ’ s schedule), a greedy approach may perform well. If such a ceiling
effect eliminates the advantages of the IU-agent ’ s reasoning capabilities, then of course
metalevel control would not give it much added advantage.
 • In domains that are too tightly constrained (e.g., very complex interdependencies
among agents and very little slack time in an agent ’ s schedule) it may be very diffi cult
for even a highly sophisticated agent to perform well. Metalevel control may help in
these domains, but it will not guarantee success if success is impossible.

 In short, the described metalevel control scheme enhanced the existing reasoning
capabilities of the IU-agent. One major lesson learned over the course of our research

74 G. Alexander, A. Raja, and D. Musliner

is that metalevel control should be considered from the beginning and should be
developed alongside deliberation, since they affect each other. Changes in deliberation
can require metalevel control changes; for example, on several occasions we noticed
that the IU-agent performed as well without metalevel control on certain domains
where metalevel control had formerly proven advantageous, and we had to adjust the
parameters of our metalevel control to regain the advantage. Conversely, observations
made while implementing the metalevel control strategy, such as gathering perfor-
mance profi le data, suggested areas for improving the deliberation of the agent.

 Conclusion and Future Work

 We have described an approach to controlling deliberation in an MDP-based schedul-
ing agent. The approach consists of collecting performance profi le information from
the agent empirically and using these profi les in a multilevel heuristic decision-making
strategy. Experimental results were presented that suggest the advantages of metalevel
control for the agent in a subset of test domains. There are many open opportunities
in metalevel control, especially in multiagent systems (Alexander et al., 2007 ; this vol.,
chaps. 13, 14, 15). In particular, in chapter 13 of this volume we discuss our work on
extending isolated metalevel control of individual agents to distributed metalevel

Interrupted Deliberation Data
Almost finished when interrupted

10

100

1000

10000

100000

0 2000 4000 6000 8000 10000 12000

W
a

s
te

d
 D

e
li

b
e

ra
ti

o
n

 T
im

e
 (

m
s
)

Predicted Deliberation Time (ms)

 Figure 5.7
 Metalevel control is enabled resulting in fewer interrupted sorts (Group 4 domains).

Controlling Deliberation in Coordinators 75

control of groups of cooperative agents. This involves many of the same issues as
deliberative control of multiple agents, such as the need for coordination and
negotiation.

 Acknowledgments

 This work is published with permission of IFAAMAS. This essay was originally pub-
lished in the Proceedings of the Seventh International Conference of Autonomous Agents
and Multi-agent Systems .

 References

 Alexander , G. , Raja , A. , Durfee , E. , & Musliner , D. (2007). Design paradigms for meta-control in

multi-agent systems . In A. Raja & M. T. Cox (Eds.), Proceedings of the First International Workshop

on Metareasoning in Agent-based Systems (pp. 92 – 103), Richland, SC : IFAAMAS .

 Bertsekas , D. , & Tsitsiklis , J. (1996). Neuro-dynamic programming . Belmont, MA : Athena Scientifi c .

 Boddy , M. , & Dean , T. (1993). Decision-theoretic deliberation scheduling for problem solving in

time-constrained environments. Artifi cial Intelligence , 67 (2), 245 – 286 .

 Conitzer , V. , & Sandholm , T. (2003). Defi nition and complexity of some basic metareasoning

problems . In G. Gottlob & T. Walsh (Eds.), Proceedings of the 18th International Joint Conference on

Artifi cial Intelligence (pp. 1099 – 1106). San Francisco : Morgan Kaufmann .

 Cox , M. T. (2005). Metacognition in computation: A selected research review. Artifi cial Intelligence ,

 169 (2), 104 – 141 .

 Dean , T. , & Boddy , M. (1988). An analysis of time-dependent planning . In Proceedings of the

Seventh National Conference on Artifi cial Intelligence (pp. 49 – 54). Menlo Park, CA : AAAI Press .

 Hansen , E. , & Zilberstein , S. (2001). Monitoring and control of anytime algorithms: A dynamic

programming approach. Artifi cial Intelligence , 126 (1 – 2), 139 – 157 .

 Horling , B. , Lesser , V. , Vincent , R. , Wagner , T. , Raja , A. , Zhang , S. , et al. (1999). The TAEMS

White Paper. Unpublished Document, University of Massachusetts, Amherst.

 Larson , K. , & Sandholm , T. (2004). Using performance profi le trees to improve deliberation

control . In D. McGuinness & G. Ferguson (Eds.), Proceedings of the Nineteenth National Conference

on Artifi cial Intelligence (pp. 73 – 79). Menlo Park, CA : AAAI Press .

 Marquardt , D. (1963). An algorithm for least-squares estimation of nonlinear parameters. Journal

of the Society for Industrial and Applied Mathematics , 11 (2), 431 – 441 .

 Musliner , D. , Goldman , R. , Durfee , E. , Wu , J. , Dolgov , D. , & Boddy , M. (2007). Coordination of

highly contingent plans . In Proceedings of the International Conference on Integration of Knowledge

76 G. Alexander, A. Raja, and D. Musliner

Intensive Multi-Agent Systems (pp. 418 – 422). IEEE Computer Society . http://www.musliner.com/

david/papers/ksco07.pdf .

 Musliner , D. , Goldman , R. , & Krebsbach , K. (2005). Deliberation scheduling strategies for adap-

tive mission planning in real-time environments. In M. Anderson & T. Oates (Eds.), Working

Notes of the 2005 AAAI Spring Symposium on Metacognition in Computation (pp. 98 – 105). Technical

Report SS-05-04. Menlo Park, CA : AAAI Press .

 Raja , A. , & Lesser , V. (2007). A framework for meta-level control in multi-agent systems. Auto-

nomous Agents and Multi-Agent Systems , 15 (2), 147 – 196 .

 Russell , S. , & Wefald , E. (1989). Principles of metareasoning . In Proceedings of the First International

Conference on Principles of Knowledge Representation and Reasoning (pp. 400 – 411). San Francisco :

 Morgan Kaufmann .

 Sutton , R. , & Barto , A. (1998). Reinforcement learning . Cambridge, MA : MIT Press .

 Wu , J. , & Durfee , E. (2007). Solving large TAEMS problems effi ciently by selective exploration

and decomposition . In E. Durfee , M. Yokoo , M. Huhns , & O. Shehory (Eds.), Proceedings of the

Sixth International Joint Conference on Autonomous Agents and Multi-Agent Systems (pp. 291 – 298).

 Richland, SC : IFAAMAS .

 6 Goal-Directed Metacontrol for Integrated Procedure Learning

 Jihie Kim, Karen Myers, Melinda Gervasio, and Yolanda Gil

 Developing systems that learn how to perform complex tasks presents a signifi cant
challenge to the artifi cial intelligence (AI) community. As the knowledge to be learned
becomes complex, with diverse procedural constructs and uncertainties to be vali-
dated, the system needs to integrate a wide range of learning and reasoning methods
with different focuses and strengths. For example, one learning method may be used
to generalize from user demonstrations, another to learn by practice and exploration,
and another to test hypotheses with experiments. The POIROT system pursues such
a multistrategy learning methodology that employs multiple integrated learners and
knowledge validation modules to acquire complex procedural knowledge for a medical
logistics domain (Burstein et al., 2008).

 For a learning system of such complexity, activities of participating agents must be
coordinated to ensure that their collective activities produce the desired procedural
knowledge. This kind of control is inherently metalevel (Anderson & Oates, 2007 ; Cox
 & Raja, this vol., chap. 1) in that it requires the system to refl ect on what it is doing
and why, to monitor its progress, and to make adjustments to its behavior when
performance falls short of expectations. Without such introspection, effective coordi-
nation and prioritization of the base-level learning and reasoning components would
not be possible. This type of introspection corresponds to a form of metareasoning
centered on “ stepping back ” from the system to analyze its behavior, as discussed by
Perlis (this vol., chap. 2). As such, it contrasts with the majority of work to date on
metareasoning, which has focused on the problem of bounded rationality, as described
by Zilberstein (this vol., chap. 3).

 Developing a metalevel reasoner for such a complex, integrated learning system
poses several challenges, including

 • Assessing the progress of learning over time;
 • Systematically addressing confl icts and failures that arise during learning;
 • Addressing gaps and shortcomings of the individual and aggregate learning results;
and

78 J. Kim et al.

 • Supporting fl exible interactions among agents that pursue different learning
strategies.

 We describe a metalevel framework for coordinating the activities of a community of
learners to create an integrated learning system. The metalevel framework is organized
around learning goals , which are formulated through introspective reasoning to iden-
tify problems and requirements for the ongoing learning process. These learning goals
are posted to a shared blackboard to direct the other components in the system. Goals
can be either process or knowledge oriented.

 Process goals defi ne specifi c tasks to be performed as part of the learning process
and are used to coordinate the activities of the various learning and reasoning com-
ponents. Examples of process goals for task learning include hypothesis creation,
hypothesis merging, explanation of observations, and hypothesis validation through
experimentation.

 Knowledge goals provide the means for a component to convey the need for addi-
tional information to further the learning process. In particular, the quality of learned
knowledge could be compromised by missing critical information and the effi ciency
of learning may be impaired by ambiguity arising from insuffi cient knowledge.

 In the succeeding sections of this chapter, we describe the modules within our
metalevel framework that are responsible for addressing process (Maven) and knowl-
edge (QUAIL) goals.

 Maven (moderating activities of integrated learners) formulates and achieves meta-
level process goals to support integrated learning. Maven ’ s design is based on our prior
work on metalevel goals and reasoning for interactive knowledge capture (Kim & Gil,
2007 ; Gil & Kim, 2002). Maven explicitly represents plans for achieving learning goals
along with high-level strategies to prioritize learning goals. By generating assessment
annotations on learned knowledge, Maven keeps track of learning progress and makes
decisions on learning goals to pursue (Kim & Gil, 2008).

 QUAIL (question asking to inform learning) addresses knowledge goals by manag-
ing a process of selecting and posing questions to a human expert to fi ll identifi ed
knowledge gaps (Gervasio & Myers, 2008 ; Gervasio et al., 2009). Question selection
trades off the utility of missing knowledge with the cost of obtaining it.

 Figure 6.1 shows how our goal-oriented metalevel framework for integrated learn-
ing maps onto a more general model of metareasoning described by Cox and Raja
(this vol., chap. 1). The base-level actions correspond to the performance tasks for
which procedural knowledge is being learned. Learning occurs at the reasoning level,
while the metalevel supports control of learning through two essential mechanisms:
metalevel process management (realized by Maven) and metalevel management of
learned knowledge (realized by QUAIL). The metalevel infl uences the components at
the reasoning level by posting appropriate learning goals and information to direct
their activities.

Goal-Directed Metacontrol 79

Learning

and

Reasoning

Reasoning

Learned

Knowledge

Management

Process

Management

Metareasoning

Task

Planner and

Executor

Doing

World

planning
knowledge

demo traces

world state
effects actions

learning state
learning goals

learning goals

answers

 Figure 6.1
 Metareasoning for integrated learning.

 Metalevel process management tracks progress toward current learning goals by
monitoring the performance of base-level components and their results; it also initi-
ates additional goals to drive the system toward achieving overall learning objectives.
Metalevel management of learned knowledge identifi es knowledge gaps by introspec-
tion over the current state of the learned knowledge, takes actions to eliminate gaps
by posing questions to the human demonstrator, and then provides information back
to the base-level learners and reasoners to address unresolved knowledge goals.
Although not yet supported in QUAIL, conceptually it could also coordinate with the
metalevel process-management module to initiate additional activity by the base level
as a means of addressing knowledge gaps (as opposed to relying solely on the human
demonstrator to provide answers).

 Background: A Multiagent Learning System

 The POIROT system is designed to learn complex process models for a medical logistics
domain. Users invoke web services to plan the evacuation of a set of patients, expressed
as a workfl ow . Given a sequence of expert demonstration steps (called a trace) that
shows how to create evacuation plans for moving patients from existing locations to
desired hospitals, the POIROT system attempts to learn a general workfl ow that can
solve similar evacuation problems. Each step in the trace is either a web service invo-
cation (e.g., look up patient requirement, fi nd an airport) or object selection action
(e.g., select a fl ight from a proposed fl ight list).

 The learning process constructs domain methods that contain step orderings,
branches, loops, preconditions, task decompositions, and object-selection criteria,

80 J. Kim et al.

adopting the style of hierarchical-task network methods (Ghallab, Nau, & Traverso,
2004). Several different types of learning approaches (embodied as agents) participate
in learning these complex workfl ows in POIROT. In the following list, we describe the
capabilities of the agents that were modeled in our system. The details of individual
agents are outside the scope of this chapter.

 • Trace generalizers: These generalize information in the given demonstration trace
and build domain method hypotheses (domain methods , for short) for representing
step sequences, loops, branches, and preconditions. Such methods can be used in
creating workfl ows. WIT uses a grammar induction approach to create a fi nite state
model of trace steps (Yaman and Oates, 2007). DISTILL learns general procedure loops
and conditions for each step (Winner and Veloso, 2003).
 • Trace explainers: These build domain methods that explain the given top-level task
goal against the given demo trace. XPLAIN/Meta-AQUA uses a set of explanation pat-
terns for building such domain methods (Cox, this vol., chap. 9; Cox & Burstein,
2008).
 • Hypothesis integrators: These integrate domain methods created by different learn-
ers and detect potential confl icts or ambiguity in the domain methods. Stitcher pro-
vides this capability (Burstein et al., 2008).
 • Workfl ow constructors: For a given problem goal and an initial state, these create a
workfl ow from a set of domain methods and primitive action defi nitions. SHOP2
provides this planning capability (Nau et al., 2005).
 • Workfl ow executors: These test the constructed workfl ows by execution. SHOPPER
provides this capability (Burstein et al., 2008).
 • Knowledge validation by experiments: Test alternative hypotheses by designing and
performing experiments. CMAX (Morrison & Cohen, 2007) provides this capability.

 Individual agents, which are described in Burstein et al., 2008 , communicate through
a shared blackboard.

 The learning problem given to POIROT consists of a single demonstration trace and
a problem description (a top-level task goal and an initial state). The system currently
has limited background knowledge, primarily web service defi nitions for primitive
actions. To learn complex workfl ows from such input, the system needs to coordinate
the learning agents effectively.

 Managing Process Goals: Maven

 Maven has explicit representations of process-oriented learning goals and a set of plans
to prioritize and accomplish those goals. Maven follows the general BDI (belief, desire,
and intention) agent model (Rao & Georgeff, 1995). In a BDI architecture, beliefs rep-
resent what the agent believes to be true about the current state of the world, desires

Goal-Directed Metacontrol 81

consist of the agent ’ s goals, intentions are what the agent has chosen to do, and plans
describe how to achieve intentions. The BDI reasoner matches goals with plans that
decompose them into subgoals, and turns those subgoals into desires. It then decides
which goals to intend based on other plans. The BDI reasoner checks the external
state with sensing actions, and may suspend intended goals or replan its behavior
accordingly. This framework supports both reactive and goal-oriented behavior.

 External State
 As shown in fi gure 6.2, the shared knowledge base (a blackboard) where all the agents
post results forms an external state for Maven. Maven monitors the results of the
participating agents, including issues in generating procedural knowledge. From what
it monitors, it forms models of the current workfl ow knowledge and reasons about
what to do next, that is, what learning goals to generate. Maven intend s some of them
using a set of goal-selection strategies. As an effect, Maven posts intended learning
goals that can be achieved by the agents and initiates AgentTasks . The results from
AgentTasks including new learned knowledge are stored in the shared knowledge base.

External state

DemoTrace

bottom-up
Learners and
Other Agents

Learning
Goals

Agent
Output

Learning Goals
and Agent Tasks

Post Goals for Agents

Decompose and
Select

Learning Goals

Create
Learning Goals

Retrieve
Agent Output

Create Workflow Models

Extend and Assess
Workflow Models

Plans and
Control strategies

Internal state

KB
(definitions of

learning goals and
proc. models)

monitor control

Maven Cycle

 Figure 6.2
 Maven ’ s interaction with other agents.

82 J. Kim et al.

If issues such as ambiguity or confl icts are found, they are also reported by the agents
as a part of the results. The new result can lead to further learning goals.

 Bottom-up control can result when learning agents create new learning goals them-
selves and post the goals as shared learning goals. The agents can pursue the goals
asynchronously without Maven ’ s intervention. Maven responds to the goals created
by the agents as well as goals that Maven itself initiated.

 Workfl ow Models
 Maven keeps track of hypotheses from the participating agents as workfl ow models .
Workfl ow models represent procedural knowledge formed or changed by the agents
during generation of domain methods including alternative method hypotheses and
their constructs such as step orderings.

 Maven creates assessment annotations on individual workfl ow models with respect
to issues found (e.g., unknown conditions for a branch), coverage (e.g., covered
medical evacuation scenarios), and validation status (e.g., whether the model was
validated with simulation). Maven also relates workfl ow models using superseding
relations (i.e., one model supersedes another) and competing relations (i.e., a set of
models for alternatives).

 Learning Goals and Plans
 Maven uses explicit learning goals and plans for achieving them. Table 6.1 shows some
of the process goals and plans used by the system. The set of goals and plans refl ects
both the capabilities that are supported by the participating agents and the knowledge
constructs that need to be learned. They can be extended as new agent capabilities
are introduced.

 The initial Maven knowledge base consists of a set of learning goals G , plans P ,
agent capabilities C for achieving primitive learning goals, and strategies S for selecting
learning goals and progress assessment: < P , G , C , S > .

 Each learning goal g ∈ G can have a set of parameters param g that describes desired
goals. For example, the LearnWorkfl owFromDemoTrace goal is posted/desired with
respect to the demo trace and problem description, and the given background knowl-
edge. Each plan has (1) trigger conditions for determining when to execute the plan,
(2) achievement conditions for detecting achievement of related learning goals, and (3)
substeps for achieving the goal. The substeps in the plan are described in terms of the
parameters and the subgoals involved in achieving the goal:

 < tc g (param g), ac g (param g), substeps g (param g) >

 A learning goal is desired when its trigger conditions are satisfi ed. We introduced the
achievement condition in order to keep track of goal achievement while supporting
bottom-up control. Maven relies on a set of sensors that keep track of trigger conditions

Goal-Directed Metacontrol 83

 Table 6.1
 Example Maven learning goals and plans

 (a) Sample Learning Goal Types Knowledge Creation
GeneralizeTrace
ExplainTrace
CreateWorkfl owWithDomainMethods

 Issue Identifi cation
IdentifyOrderingAmbiguity
IdentifyUnexplainedSteps

 Issue Resolution
ResolveAmbiguousStepOrderingHypotheses
ResolveUnknownBranches

 Knowledge Validation
ValidateWorkfl owKnowledge
EnsureWorkfl owGeneratability
EnsureTraceReproducibility
ValidateKnowledgeWithExperiments

 (b) Sample Maven Plans for Achieving Learning Goals

 Plan:LearnWorkfl owFromDemoTrace
(DemoTrace & ProblemDesc tr ,
BackgroundKnowlege k)

 — trigger condition: a new demonstration trace
and a problem description (with the top-level
task goal and initial state) given

 — substeps: GeneralizeTrace (tr , k) and/or
ExplainTrace (tr , k), to create domain
methods ms, and then
CreateWorkfl owWithDomainMethods (tr , ms)

 — Achievement condition: No remaining issue on
created workfl ow

 Plan:GeneralizeTrace (DemoTrace & ProblemDesc
 tr , BackgroundKnowlege k)

 — trigger condition: No generalized domain
methods for trace.

 — substeps: create an AgentTask for trace-
generalizers (WIT & DISTILL) with the current
trace information

 — Achievement condition: A set of domain
methods for the trace is successfully created by
the trace-generalizers

 Plan:IntegrateKnowledge (DomainMethods m1 ,
DomainMethods m2)

 — trigger condition: more than one domain
method hypotheses exist for the same trace steps.

 — substeps: create an AgentTask for trace-
integrators with the alternative methods

 — Achievement condition: The methods are
successfully integrated

 Plan:ValidateCausalHypotheses
(DemoTrace & ProblemDesc tr,
StepOrderings orderings)

 — trigger condition: notices step sequence
ambiguity

 — substeps: achieve subgoals in sequence

 DesignExperimentForCausalHypotheses (tr,
orderings) to produce experiment
packages{pkg}

 SelectExperimentsToRun ({pkg}, tr) to
select pkgi

 RunDesignedExperiments (pkgi, tr)

 FindAppropriateStepOrderingHypos to
confi rm or modify orderings, or suggest
more experiment

 — Achievement condition: Step orderings
modifi ed or confi rmed

 Plan:CreateWorkfl owWithLearned
Methods (DomakinMethods ms ,
DemoProblemDesc pr)

 — trigger condition: new domain methods
for achieving the top-level task goal
created and there are no unresolved issues
for the domain methods to use …

 Plan:EnsureTraceReproducibility (Workfl ow
 w , DemoTrace & ProblemDesc tr)

 — trigger condition: a workfl ow can be
generated from learned knowledge …

84 J. Kim et al.

…

CG1:LearnWorkflowFromDemoTrace (Trace1, BgrK)

Plan:LearnWorkflowFromDemoTrace

CG1-1:GeneralizeTrace (Trace1, BgrK) GG2:CreateWorkflowWith…

Plan:GeneralizeTrace

WIT:K1 with warning W1 on

missing conditions

CG1-1:Explain Trace (Trace1, BgrK)

Plan:ExplainTrace

DISTILL:K2
Xplain:K3 with F1

XG1:ExplainAirportChoices (K3, W1)
RG1:ResolveMissing
Conditions (K1, W1) Xplain:K4

IG1:IntegrateMethodHypotheses (K1,K2,K4, BgrK)

Plan:IntegrateMethodHypotheses

Stitcher:K5, with warning W2:

Missing causal relations (step orederings)

VG1:ValidateStepOrderings (K5,W2,BgrK)

Plan:ResolveStepOrderingConflictsWithExperiment

VG1-1: DesignExpsOnStepOrderings (K5,W2,BgrK)

CMAX:Exps(Exp1,Exp2,Exp3)

VG1-2: PerformDesignedExperiment (Exp1)

Plan:PerformExperiment

SHOPPER:ExpRS1

VG1-3: AnalyzeExperimentResults (ExpRS1)

VG1-5: AnalyzeExperimentResults (ExpRS2)

Plan:AnalyzeExperimentResults

SHOPPER:ExpRS2

Plan:AnalyzeExperimentResults

K4 supersedes K3
K5 supersedes K1, K2, K4
K6 (with Orderings 2) supersedes K5

CMAX:K6 (Orderings 2)

Plan:PerformExperiment

VG1-4: PerformDesignedExperiment (Exp2)

CMAX:NeedMoreExperiment

Plan:DesignExperimentOnOrdering

: goal posted
 by Maven

: goal posted by
 other agents

: desired goal

: Maven plan

: Task Activity
 (with agent output)

: subgoal

: triggers goal

G: ...

G: ...

G: ...

Plan:...

T1:output

Goal-Directed Metacontrol 85

of all the learning goals and achievement conditions of desired learning goals. Goals
can be achieved serendipitously or goals may fail unexpectedly even after associated
plans are executed.

 When an intended goal is decomposed into subgoals, its subgoals are desired as
defi ned by the Maven plan. For example, in the initial phase of learning, when a new
expert demonstration trace is detected by the Maven sensor, the goal of LearnWork-
fl owFromDemoTrace will be desired for the trace. The LearnWorkfl owFromDemoTrace
goal can be intended and decomposed into its subgoals, GeneralizeTrace, Explain-
Trace, and GenerateWorkfl ow from learned domain methods. The top portion of
fi gure 6.3 (history of desired goals) illustrates how the goals are related. For General-
izeTrace, Maven will create an AgentTask for invoking trace-generalizers (a set of
learning agents that create step orderings, branches, and loops from a given demon-
stration trace). When all the subgoals are achieved and the achievement condition is
satisfi ed (i.e., a workfl ow is successfully generated from the learned domain methods
and there are no issues), the original goal to LearnWorkfl owFromDemoTrace becomes
achieved.

 Some kinds of learning goals can be iteratively desired when their trigger conditions
are satisfi ed. For example, goals for validation experiments can be desired more than
once until the experiment results provide enough information to confi rm or discon-
fi rm the tested hypotheses. The details of other goals in fi gure 6.3 are described below.

 Control Strategies for Learning
 In following the top-down control cycle, Maven can adopt different goal-prioritization
strategies in selecting which goals to intend/pursue in the current situation. For
example, Maven may choose to fi rst create more knowledge and then validate the
created knowledge. The strategies include:

 • In the initial phase of learning, prefer domain-method-creation goals to issue-
resolution goals;
 • For a given piece of knowledge, prefer issue-resolution goals to knowledge-validation
goals;
 • When there are multiple issue-resolution goals, prefer those for more frequently used
knowledge; and
 • Prefer fi nishing subgoals of existing plans instead of intending new goals.

 Additional criteria, such as confi dence in the knowledge created and competence in
solving related problems with learned knowledge, can be introduced to drive the
learning process (Kim & Gil, 2007 ; Kim & Gil, 2003 ; Gil & Kim, 2002). That is, the

 Figure 6.3
 A goal/plan decomposition of desired and intended learning goals.

�

86 J. Kim et al.

selection of which learning goals to pursue can be decided based on expected confi -
dence and competence changes by achieving goals or subgoals.

 Depending on the strategies employed, the system may present different behavior
such as an eager learner that generates more hypotheses fi rst versus a cautious learner
that tests learned knowledge from the beginning and produces more validation goals
early on.

 Learning Goal Life Cycle
 The top-down and bottom-up control cycles imply that learning goals can take several
different paths in their life cycle. This is shown in fi gure 6.4. A goal can be desired
from a trigger condition of the goal or created by other agents, such as an agent posting
a goal to resolve a gap. Some of the desired goals can be selected by Maven and
intended. Such goals are achieved according to Maven plans. As described above,
agents can pursue the goals themselves without Maven intervention. Some of the
desired learning goals may never be intended by Maven, and agents do not follow up
on them.

 Belief Knowledge Base
 The belief knowledge base (KB) in the blackboard (BB) represents the shared beliefs of
the participating agents. The BB contains the given problem description (a demonstra-
tion trace, a top-level task goal and an initial state) and hypotheses that refl ect learned
knowledge so far. Hypotheses are represented as workfl ow models and can be anno-
tated including how they supersede other hypotheses. For example, the analysis of
experiment results may tell us that some step orderings supersede others.

Goal achieved

Goal posted but
never intended

Maven subgoaling

Goal posted
(desired) by Maven Goal intended

by Maven

Goal posted by
learning agents

Learning Agent Behavior

 Figure 6.4
 Learning goal life cycle.

Goal-Directed Metacontrol 87

 Maven Reasoner
 The Maven reasoner is responsible for keeping track of sensors for goal trigger condi-
tions and achievement conditions, desired learning goals, and selecting learning goals
according to the learning control strategies. The assessment of the overall learning
status is performed using goals desired and achieved over time as follows.

 Maven procedure < P , G , C , S >
 While (not done) {
 retrieve_new-results (BB , learning_ history)
 cs ← update_workfl ow_models()
 ∀ g ∈ G
 if tc g (cs) = true, create _ desired_goal (g , cs)
 ∀ a ∈ desired_goals ()
 if ac a (cs) = true, set_achieved (a)
 if (desired_goals () = {} or signifi cant_goals_achieved ())
 done ← true
 p ← prioritize & select (desired_goals(), S , cs)
 if (primitive_goal (p)) create_AgentTask (p , C)
 else // subgoals desired and intended in following iterations
 follow the substeps in plan p , and update belief KB
 }

 In the above procedure, retrieve_new_results (BB , learning_history) accesses the results
using the sensors employed in BB . Maven then updates the learning state by creating
and updating workfl ow models. create_desired_goal (g , learning_state) creates a desired
goal for g with respect to its parameters param g . desired_goals () fi nds the current
desired goals that are not achieved, and create_AgentTask (p , agent-capabilities) creates
tasks for agents having capabilities to achieve p . prioritize & select (goals , S , learning_
state) prioritizes desired goals and intend a goal according to the strategies S and
 learning_state . signifi cant_goals_achieved () checks whether knowledge-creation goals
have been achieved and there are no unresolved gaps or confl icts.

 The selection of which learning goals and AgentTasks to perform depends on which
learning control strategies S that are employed. Following the strategies described
above, Maven can pursue knowledge-creation goals in the initial phase of learning,
and select goals in a coherent manner by following existing plans where possible.
Issue-resolution goals are prioritized based on the domain methods involved, includ-
ing how they are related with other domain methods (e.g., superseding relations, how
methods are used as submethods).

88 J. Kim et al.

 Coordinating Activities of Learning Agents: Examples

 In this section, we provide a walkthrough of Maven behavior using examples from
the POIROT system.

 Initiate Learning
 When a demonstration sequence Trace1 for a medical evacuation task is posted on
the blackboard, Maven detects it as the trigger condition of the goal LearnWorkfl ow-
FromDemoTrace. As shown in fi gure 6.3, Maven creates a desired goal CG1 with Trace1
and associated evacuation problem descriptions, including the initial state W0 and
the task goal PSG1 (move patients before their latest arrival times). CG1 is then
intended by Maven and its subgoals (GeneralizeTrace and ExplainTrace) will be desired.
Maven then intends the subgoals and creates AgentTasks for them. The following
shows how the learning agents accomplish these tasks in POIROT.

 Example of Bottom-Up Behavior
 WIT and DISTILL perform the task GeneralizeTrace. Maven monitors BB and recog-
nizes that CG1-1 is achieved. In the meantime, additional learning goals are desired
to address additional learning requirements. In particular, the WIT algorithm fi nds
loops and branches but does not identify conditions for branches. Maven does not
intend such goals yet since Maven control strategies provide higher priority for the
knowledge-creation goals during the initial phase of learning. It also recognizes that
the current workfl ow model does not yet cover the whole demonstration trace.

 At that point, XPLAIN creates a set of domain methods but produces a failure in
explaining some of the steps, including why the expert did not choose the closest
airport (K3). XPLAIN has the capability to generate its own learning goals and share
them with other agents. It can pursue the generated learning goal XG1 and resolve it
by learning new knowledge K4 for explaining the steps. This type of activity illustrates
the bottom-up asynchronous control of the learning process. Note that the shared
learning goals are accessible by any agents in the system, and agents can proactively
pursue learning goals.

 Note that K4 supersedes K3 in that K4 resolves issues in K3. Maven keeps track of
such superseding relations among the learned knowledge in workfl ow models. Maven
uses them in prioritizing learning goals. For example, learning goals on validating
superseded domain methods are less important than the goals for superseding domain
methods.

 Example of Top-Down Behavior
 Maven notices that multiple alternative domain methods (i.e., competing workfl ow
models) are created for the same trace steps, and triggers a goal for integrating created

Goal-Directed Metacontrol 89

domain methods. When the knowledge-integration goal (IG1) is intended, Stitcher
can perform the associated task.

 The domain methods (workfl ow models) created by WIT, DISTILL, and XPLAIN
complement each other. For example, DISTILL produces conditions for branches that
are missing in WIT output. On the other hand, DISTILL ignores steps without effect.
Stitcher recognizes such gaps and integrates the original methods (K1, K2, K4) into a
new domain method set (K5). K5 supersedes K1, K2, and K4. Any learning goals for
superseded workfl ow models are given lower priorities.

 Learning Phases: Validation by Experiment
 Both WIT and DISTILL rely on consumer – producer relations among the trace steps
(which step produces an effect and which step uses the result) in deciding step order-
ings, and some of the causal relations may not be captured. For example, when a
LookUpFlight web service call for a patient does not return any result, it may cause
the expert to fi nd available planes. Maven can initiate validation goals for potential
missing causal or step-ordering relations.

 CMAX has several experiment design strategies for testing different step orderings.
Note that depending on the experiment execution result, CMAX may decide either to
revise/confi rm the orderings or perform further tests. This may involve the same type
of goals triggered multiple times to perform tests and analyze the test results. Modifi ed
or confi rmed orderings supersede existing knowledge. We have also developed a cost –
 benefi t model deciding which experiment to perform.

 Assessing Progress of Learning and Determining Completion
 Once the detected issues are resolved, the system creates a workfl ow using learned
domain methods that are not superseded by other alternative domain methods.
SHOP2 ’ s planning mechanism is adopted in creating a workfl ow that achieves the
given problem solving goal PSG1, given the initial state W0. If the planner cannot
produce a complete workfl ow, then it will post an appropriate learning goal to address
the source of the problem.

 When a full workfl ow is generated, further validation can be done by executing the
workfl ow with the given problem description and comparing the execution results
with the provided demo trace. When no further issues are found, no more learning
goals will be desired.

 Maven can assess the status of learning by keeping track of (a) what goals were
desired and achieved and (b) workfl ow models representing knowledge that is created
and modifi ed over time. For example, when all the signifi cant intended goals are
achieved, Maven can announce that learning is “ done. ”

90 J. Kim et al.

 Question Asking for Knowledge Goals

 We formulate the question-asking process in terms of three separate activities: question
nomination , question selection , and question posing.

 Question nomination refers to the generation of questions that can potentially
provide value to the learning process. Within the POIROT framework, question gen-
eration is performed by the individual hypothesis formers and evaluators, as they are
best positioned to determine their information needs.

 Question selection is the process of choosing from among nominated questions those
that should be posed to the user. The creation of appropriate selection strategies lies
at the heart of our work and is discussed further below.

 Question posing refers to the interactions with the user to obtain answers. Relevant
issues include modality (not addressed in this chapter) and timing (discussed below).

 Question Catalog
 We have defi ned a catalog of questions to inform the learning-by-demonstration
process, details of which can be found in Gervasio & Myers, 2008 . The catalog covers
areas such as the function and causality of elements in the demonstration trace,
abstraction, alternatives and justifi cations, limitations on learned knowledge, and the
process of learning. The question catalog was derived from an analysis of the general
task-learning process. We identifi ed the different types of generalizations required to
induce a general set of problem-solving methods from the trace of a successful execu-
tion of a plan for a specifi c problem and then systematically analyzed the demonstra-
tion trace and the generated hypotheses to identify the relevant portions about which
questions may arise.

 Question Selection Strategies
 Question-selection strategies must balance the need for information to further the
learning process with the following considerations.

 A. Individual questions contribute different levels of value to the learning process.
 B. Answering questions imposes a burden on the user.
 C. The role of question asking is to inform learning, rather than to replace it by a
knowledge-acquisition process.

 These considerations lead naturally to the formulation of the question-selection
problem in terms of a cost – benefi t analysis, drawing on models of utility and cost for
individual questions.

Goal-Directed Metacontrol 91

 Utility Model for Questions
 The base utility of a question is determined by the component that nominates the
question. The factors that affect base utility are highly dependent on the specifi cs of
the nominating component. For example, learning components might measure utility
in terms of the expected change in the theoretical lower bound on the number of
examples needed to learn the target concept. Components faced with ambiguity might
factor in the expected reduction in the number of valid alternative hypotheses.

 Since our framework involves a community of learners, factors beyond base utility
must be considered to determine overall question utility. First, base utility estimates
must be normalized to make them comparable across components. Second, the rela-
tive importance of contributions from different components must be considered.
Finally, multiple learners may benefi t from the answer to a given question.

 Given these considerations, we propose to model overall question utility relative
to a set L of learners as follows:

 Utility (q) = ∑ l ∈ L w l × Utility (q , l)

 Utility (q , l) = w B × BaseUtility (q , l) + w LG × LearningGoalUtility (q , l)

 The utility of a question for an individual learner l , denoted by Utility (q , l), is defi ned
to be a weighted sum of the base utility BaseUtility (q , l) assigned by the learner and
the utility LearningGoalUtility (q , l) of the associated learning goal that motivated the
question by the learner. Here, BaseUtility (q , l) ∈ [0,1] while w B + w LG = 1. The overall
utility for question q , denoted by Utility (q), is a weighted sum of the utilities assigned
by the individual learners, with the w l encoding the relative weightings assigned to
the individual learners subject to the constraint that ∑ l ∈ L w l = 1.

 Cost Model for Questions
 Prior work on mixed-initiative systems has identifi ed fi ve cost factors for consideration
by an agent when deciding whether to interact with a user (Cohen, Cheng, & Fleming,
2005):

 1. Inherent diffi culty of the question
 2. Level of disruption given the user ’ s current focus of attention
 3. User ’ s willingness to interact with the system
 4. Timing of the interaction
 5. Appropriateness of the question

 Within a learning-by-demonstration setting, the user would be expected to focus on
interacting with the system and be tolerant of questions that may seem ill motivated
or have obvious answers. As such, we can disregard factors (2) – (5) above, focusing
instead on the inherent diffi culty of the question as the basis for the cost model.

92 J. Kim et al.

 With this perspective, the cost model should measure the cognitive burden incurred
by the expert in answering the question. This can be an arbitrarily complex quantity
to measure, involving not only readily observable factors such as time to answer and
brevity of answer but also potentially more complex metrics such as diffi culty in
understanding a question. However, we can use certain heuristics to approximate
cognitive burden. Typically, certain question formats will be easier to answer than
others. For example, yes/no questions usually will be less costly to answer than
multiple-choice questions, which in turn would be less costly than open-ended ques-
tions. 1 Similarly, a question grounded in the demonstration trace most likely will be
easier to answer than the same question asked about a hypothetical situation.

 With these observations in mind, we defi ne the cost of a question by

 Cost (q) = w F × FormatCost (q) + w G × GroundednessCost (q)

 where FormatCost (q) denotes the cost associated with the format of q , and
 GroundednessCost (q) is either C concrete or C hypo , depending on whether the question relates
to concrete elements in the demonstration trace or a hypothetical situation. Both
 FormatCost (q) and GroundednessCost (q) are constrained to lie in the interval [0,1]. The
weights w F and w G allow relative weighting of the two cost factors, subject to the
constraint that w F + w G = 1.

 Control Strategies for Question Posing
 We consider two types of control for managing when to pose questions: asynchronous
and synchronous .

 Asynchronous Control An asynchronous control strategy lets questions be asked con-
tinuously during the learning process. Asynchronous strategies could possibly lead to
faster learning as they would enable early elimination of incorrect or irrelevant
hypotheses, leading to a more focused search. For example, questions to resolve sub-
stantial ambiguity during learning may better be asked as they arise, rather than
waiting until a complete initial hypothesis has been formed.

 However, asynchronous control complicates the management of question asking,
since the decision of whether or not a question is worth asking has to be made without
knowledge of any other questions and possibly even without a hypothesis space
against which the value of a component ’ s contribution can be measured. Management
of continuous questioning has been considered previously. Techniques to address this
problem generally can be categorized as backward or forward looking .

1. Question format and cognitive load are not perfectly correlated (e.g., the halting problem

constitutes a particularly diffi cult yes/no question). Our question catalog has been designed to

enforce this correlation, with simple question formats used only for questions with low expected

cognitive load.

Goal-Directed Metacontrol 93

 Backward-looking approaches incorporate historical information about previous
interactions into their cost models, as a way to prevent question overload. For example,
 Cohen, Cheng, and Fleming (2005) use cost – benefi t analysis to determine when the
expected utility increase for asking a question outweighs the associated costs. The cost
model includes both the associated base bother cost for a question and an accumulation
bother cost derived by summing over costs associated with prior question initiations,
scaled by a decay factor that takes into account the temporal distance from prior ques-
tions to the present.

 In contrast, forward-looking approaches use Markov decision processes (MDPs) to
reason about future expected costs and reward in order to determine when to initiate
interactions. Forward-looking approaches have been used to support questions about
both action-selection strategy (e.g., Scerri, Pynadath, & Tambe, 2002) and learning
user preference models (e.g., Boutilier, 2002).

 Forward-looking approaches require detailed models of the likelihood and utility
of expected question outcomes, which will be diffi cult to obtain in practice. For this
reason, a backward-looking approach has greater appeal for our question-asking
framework.

 Synchronous Control A synchronous control strategy lets questions be asked only at a
fi xed point during the learning process. Synchronous control may sacrifi ce some learn-
ing effi ciency as components may not be able to get critical clarifi cations as early as
desired. But it could lead to better use of the resources for question asking as the ques-
tions could be considered in groups, all pertaining to some stable state of the hypoth-
esis space.

 The synchronous question-selection problem can be formulated as follows. We
assume the following functions defi ned for a collection of questions Q .

 Cost (Q) = ∑ q ∈ Q Cost (q)

 Utility (Q) = ∑ q ∈ Q Utility (q)

 As noted above, question selection imposes a burden on the demonstrator. Further-
more, our goal is to provide question asking in support of learning , rather than devolv-
ing into a knowledge-acquisition process that obtains extensive procedure knowledge
through system-initiated interactions. For these reasons, we impose a budget on ques-
tion asking to restrict access to the user.

 Defi nition (Synchronous Question Selection) Given a collection of questions Q = { q 1 … q n }
and a budget B , determine a subset Q ′ ⊆ Q with Cost (Q ′) ≤ B such that there is no Q ″
 ⊂ Q for which Cost (Q ″) ≤ B and Utility (Q ″) > Utility (Q ′). 2

2. This formulation of the problem assumes that the questions in Q are independent of each

other, i.e., obtaining the answer to one question does not affect the utility of answering the

others.

94 J. Kim et al.

 This framing of synchronous question selection maps directly to the knapsack
problem (Kellerer, Pferschy, & Pisinger, 2005). Although the knapsack problem is NP-
complete, dynamic programming algorithms can generate solutions that run in time
 O (nB). Given a reasonable number of nominated questions and budget, we anticipate
acceptable performance.

 Synchronous question selection could be applied at the end of the learning process,
thus enabling individual learners to refi ne their initial hypotheses prior to generation
of the fi nal learning output. Another possibility is to support a fi xed number of syn-
chronous question-selection sessions during the learning process, thus enabling the
effects of the answers to be propagated through the system. The available budget for
question asking would be distributed across the different sessions, in a manner that
provides the most benefi t to the learning process. This multiphase synchronous question
selection provides some of the benefi ts of asynchronous question selection but with
simpler control and better-understood selection methods.

 Current Status

 Initial prototype versions of Maven and QUAIL have been designed and implemented
to support metalevel control of integrated learning for the POIROT system.

 The initial prototype of Maven was developed with explicit hierarchical relations
among goals and subgoals in ontologies of goal trees using OWL (OWL, 2009). Maven
(1) assesses learning status using workfl ow models that keep track of knowledge gener-
ated from agents, (2) triggers learning goals based on the assessment, (3) selects learn-
ing goals by applying several control strategies, and (4) pursues selected learning goals
using metalevel plans. Whenever new results are posted on the blackboard by the
agents, Maven follows these steps and creates new tasks for the agents. The prototype
supports a simulation of various agent activities during workfl ow learning including
hypothesis generation, hypothesis integration, and hypothesis validation through
experiment. We plan to investigate different learning behaviors using simulation
results.

 Our initial QUAIL prototype implements a synchronous strategy for question selec-
tion. We are using this prototype to understand better how to model question utility
and costs, how to distribute resources across multiple-phase synchronous question
asking, and how learning performance (speed, quality) can be improved through
appropriate question asking. Our initial focus has been on instantiating the question-
asking framework for a particular type of learner, specifi cally a lexicographic prefer-
ence learner (Yaman et al., 2008). Experimental results show that, generally speaking,
judicious question asking can improve learning performance (Gervasio et al., 2009).
However, the results make clear the importance of understanding the value of different
types of information for learning in different contexts.

Goal-Directed Metacontrol 95

 Related Work

 In models of cognitive systems (both models of human cognition and artifi cial intel-
ligence systems), memories play a critical role in learning and problem solving (Tulving
1983). Especially, metacognitive strategies that promote refl ection and self-assessment
are known to increase the effectiveness of learning. We are adopting some of these
strategies for coordinating the activities of integrated learners.

 Goal-driven approaches for learning systems (Ram & Leake, 1995) include Meta-
AQUA (Cox & Ram, 1999), Pagoda (desJardins, 1995), and Ivy (Hunter, 1990). Whereas
most of these systems focus on a uniform learning method, our work supports a wider
range of learning methods with different strengths.

 Ram and Hunter (1992) introduce the notion of explicit knowledge goals to capture
gaps in the system ’ s knowledge, defi ning knowledge goals as comprising both the
specifi cation of the missing knowledge and the task enabled by it. In addition, they
propose augmenting knowledge goals with a utility measure to help drive the infer-
ence process.

 Ensemble methods have been used in classifi cation tasks for combining results from
multiple learners (Dietterich, 2000). These methods show improved accuracy. However,
learning complex “ procedural ” knowledge requires more diverse capabilities from dif-
ferent agents and more general strategies for exploiting their capabilities.

 Recently, there has been increasing interest in control of computation and metar-
easoning in intelligent systems (Anderson & Oates, 2007 ; Cox, 2005 ; Raja & Cox,
2007). Some of the agent-control approaches involve development of utility models
or deliberation policies that determine actions taken by agents in an open environ-
ment (Russell & Wefald, 1991 ; Schut & Wooldridge, 2001). We expect that similar
utility models can be developed based on several criteria such as confi dence in the
knowledge being built and cost of agent tasks, and be used in combination with our
existing learning control strategies.

 Unlike in other metacontrol approaches that control learning with a set of perfor-
mance measures (as described by Epstein and Petrovic in this vol., chap. 4), in our
framework, the learning is driven by learning goals that represent gaps and issues in
generating complex workfl ow knowledge. The goals are mapped to various capabilities
that participating agents can support.

 Summary and Lessons Learned

 We introduced a goal-oriented approach for metalevel coordination of learning agents
designed to acquire complex procedural knowledge. This framework employs a BDI
model to support fl exible top-down and bottom-up control. Based on the capabilities
of participating learning agents and the characteristics of the knowledge to be learned,

96 J. Kim et al.

explicit learning goals and plans for achieving the goals are defi ned. The history of
desired learning goals allows the system to keep track of progress while learning. The
system employs a set of high-level learning control strategies for prioritizing learning
goals. Question-asking capabilities enable knowledge goals to be addressed by exploit-
ing the knowledge of the domain expert in order to fi ll gaps in learned knowledge.

 The metareasoning that we employ for coordinating base-level reasoning and learn-
ing components is a form of introspection designed to enable a system to analyze and
then adapt its behavior at execution time in order to improve overall performance.
Our experience in this effort has validated our belief that this kind of introspective
metareasoning is essential for effective problem solving in complex systems, and that
more research is required to understand how to manage this kind of control process
effectively. The focus for most work on metareasoning to date, by contrast, has empha-
sized the related but distinct problem of bounded rationality.

 Our goal-directed approach combines selection from among predefi ned problem-
solving strategies (for process goals) with question asking managed by cost – benefi t
analysis (for knowledge goals). While our work has shown that these approaches can
be effective for metalevel control of a complex system, it proved more diffi cult than
anticipated to formulate the domain-specifi c background models necessary to support
these methods, namely, the control logic for process selection and the utilities for
question asking. One important direction for future work is to enable development of
these models in a more fl exible and less time-consuming manner. For example, the
control logic for process selection could be derived from high-level principles, rather
than being explicitly hardwired. Such principles would be grounded in objectives for
learning procedural knowledge, such as coverage, coherence, and confi dence; general-
purpose strategies would defi ne approaches for achieving and trading off these objec-
tives that could be tailored to specifi c procedure-learning situations. Utility models
for question asking could be learned via experimentation that would assess the effec-
tiveness of different questions in different contexts.

 Another area for future work is to generalize the notion of processing for knowledge
goals to support mechanisms other than posing questions to the expert user. In par-
ticular, the experimentation performed by CMAX could be applied to address knowl-
edge gaps, as could the invocation of other learning mechanisms.

 Currently, annotations on workfl ow models are limited to supersede and compete
relations. Learning agents can provide more information including how methods are
derived, such as the producer – consumer relations used in creating step orderings or
assumptions made in fi nding loops. We plan to investigate how such intermediate
results can be shared and facilitate further interaction among agents.

 We expect that our metacontrol framework can be useful for capturing procedural
knowledge or workfl ow knowledge in other applications. For example, interactive
acquisition of process models requires reasoning about user-provided process informa-

Goal-Directed Metacontrol 97

tion. To provide useful guidance, the system needs to keep track of issues and gaps in
the knowledge being built (Kim, Gil, & Spraragen, 2009). Some of our learning goals,
both process and knowledge goals, can be mapped to the issues that arise during such
an acquisition process, and our metacontrol approaches may be useful in driving the
interaction with the user.

 Acknowledgments

 This work was supported by the Defense Advanced Research Projects Agency and
the United States Air Force through BBN Technologies Corp. on contract number
FA8650-06-C-7606.

 References

 Anderson , M. , & Oates , T. (2007). A review of recent research in metareasoning and metalearn-

ing. AI Magazine , 28 (1), 12 – 16 .

 Boutilier , C. (2002). A POMDP formulation of preference elicitation problems . In Proceedings of

the 18th National Conference on Artifi cial Intelligence (pp. 239 – 246). Menlo Park, CA : AAAI Press .

 Burstein , M. H. , Laddaga , R. , McDonald , D. , Cox , M. T. , Benyo , B. , Robertson , P. , et al. (2008).

 POIROT — Integrated learning of web service procedures . In Proceedings of the 23rd National Confer-

ence on Artifi cial Intelligence (pp. 1274 – 1279). Menlo Park, CA : AAAI Press .

 Cohen , R. , Cheng , M. , & Fleming , M. W. (2005). Why bother about bother: Is it worth it to ask

the user? In Proceedings of the AAAI Fall Symposium on Mixed-Initiative Problem-Solving Assistants

(pp. 26 – 31). Menlo Park, CA : AAAI Press .

 Cox , M. T. (2005). Metacognition in computation: A selected research review. Artifi cial Intelligence ,

 169 (2), 104 – 141 .

 Cox , M. T. , & Burstein , M. H. (2008). Case-based explanations and the integrated learning of

demonstrations . K ü nstliche Intelligenz (Artifi cial Intelligence) , 22 (2), 35 – 38 .

 Cox , M. T. , & Ram , A. (1999). Introspective multistrategy learning: On the construction of learn-

ing strategies. Artifi cial Intelligence , 112 (1 – 2), 1 – 55 .

 desJardins , M. (1995). Goal-directed learning: A decision-theoretic model for deciding what to

learn next . In A. Ram & D. Leake (Eds.), Goal-driven learning (pp. 241 – 249). Cambridge, MA : MIT

Press .

 Dietterich , T. G. (2000). Ensemble methods in machine learning . In Proceedings of the Third Inter-

national Workshop on Multiple Classifi er Systems (pp. 1 – 15). New York : Springer Verlag .

 Gervasio , M. , & Myers , K. (2008). Question asking to inform procedure learning . In M. T. Cox

 & A. Raja (Eds.), Proceedings of the AAAI Workshop Metareasoning: Thinking about Thinking (pp.

 68 – 75). Technical Report WS-08-07. Menlo Park, CA : AAAI Press .

98 J. Kim et al.

 Gervasio , M. , Myers , K. , desJardins , M. , & Yaman , F. (2009). Question asking for preference learn-

ing: A case study . In Proceedings of the AAAI Spring Symposium on Agents that Learn from Human

Teachers (pp. 56 – 62). Menlo Park, CA : AAAI Press .

 Ghallab , M. , Nau , D. , & Traverso , P. (2004). Hierarchical task network planning: Automated planning:

Theory and practice . San Francisco : Morgan Kaufmann .

 Gil , Y. , & Kim , J. (2002). Interactive knowledge acquisition tools: A tutoring perspective . In

 Proceedings of the Annual Conference of the Cognitive Science Society (pp. 357 – 362). Mahwah, NJ :

 Lawrence Erlbaum .

 Hunter , L. E. (1990). Planning to learn . In Proceedings of the Twelfth Annual Conference of the

Cognitive Science Society (pp. 261 – 276). Hillsdale, NJ : Lawrence Erlbaum .

 Kellerer , H. , Pferschy , U. , & Pisinger , D. (2005). Knapsack problems . Berlin : Springer Verlag .

 Kim , J. , Gil , Y. , & Spraragen , M. (2009). Principles for interactive acquisition and validation of

workfl ows . Journal of Experimental and Theoretical Artifi cial Intelligenc e , 22 , 103 – 134. http://www

.informaworld.com/10.1080/09528130902823698.

 Kim , J. , & Gil , Y. (2008). Developing a meta-level problem solver for integrated learners . In M.

T. Cox & A. Raja (Eds.), Proceedings of the AAAI Workshop, Metareasoning: Thinking about Thinking

(pp. 136 – 142). Technical Report WS-08-07. Menlo Park, CA : AAAI Press .

 Kim , J. , & Gil , Y. (2007). Incorporating tutoring principles into interactive knowledge acquisition.

 International Journal of Human-Computer Studies , 65 (10), 852 – 872 .

 Kim , J. , & Gil , Y. (2003). Proactive acquisition from tutoring and learning principles . In Proceed-

ings of the International Conference on Artifi cial Intelligence in Education (pp. 175 – 182). Amsterdam :

 IOS Press .

 Morrison , C. , & Cohen , P. (2007). Designing experiments to test planning knowledge about

plan-step order constraints . In Proceedings of the ICAPS Workshop on Intelligent Planning and Learn-

ing (pp. 39 – 44). Menlo Park, CA : AAAI Press .

 Nau , D. , Au , T. , Ilghami , O. , Kuter , U. , Munoz-Avila , H. , Murdock , J. , et al. (2005). Applications

of SHOP and SHOP2. IEEE Intelligent Systems , 20 (2), 34 – 41 .

 OWL (2009). Web Ontology Language. http://www.w3.org/TR/owl-features .

 Raja , A. , & Cox , M. (Eds.) (2007). Proceedings of the First International Workshop on Metareasoning

in Agent-Based Systems . Collocated with AAMAS-07. Columbia, SC: IFAAMAS.

 Ram , A. , & Hunter , L. (1992). The use of explicit goals for knowledge to guide inference and

learning. Journal of Applied Intelligence , 2 (1), 47 – 73 .

 Ram , A. , & Leake , D. (Eds.) (1995). Goal-driven learning . Cambridge, MA : MIT Press .

 Rao , A. , & Georgeff , M. (1995). BDI-agents: from theory to practice . In Proceedings of the First

International Conference on Multiagent Systems . San Francisco.

Goal-Directed Metacontrol 99

 Russell , S. , & Wefald , E. (1991). Principles of metareasoning. Artifi cial Intelligence , 49 (1 – 3),

 361 – 395 .

 Scerri , P. , Pynadath , D. , & Tambe , M. (2002). Towards adjustable autonomy for the real world.

 Journal of Artifi cial Intelligence Research , 17 , 171 – 228 .

 Schut , M. , & Wooldridge , M. (2001). Principles of intention reconsideration . In Proceedings of the

International Conference on Autonomous Agents and Multiagent Systems (pp. 340 – 347). New York :

 ACM Press .

 Tulving , E. (1983). Elements of episodic memory . New York : Oxford University Press .

 Winner , E. , & Veloso , M. (2003). DISTILL: Learning domain-specifi c planners by example . In

 Proceedings of the International Conference on Machine Learning (pp. 800 – 807). Menlo Park, CA :

 AAAI Press .

 Yaman , F. , Walsh , T. J. , Littman , M. L. , & desJardins , M. (2008). Democratic approximation of

lexicographic preference models . In Proceedings of the International Conference on Machine Learning

(pp. 1200 – 1207). Menlo Park, CA : AAAI Press .

 Yaman , F. , & Oates , T. (2007). Workfl ow inference: What to do with one example and no seman-

tics . In Proceedings of the AAAI Workshop on Acquiring Planning Knowledge via Demonstration (pp.

 46 – 51). Menlo Park, CA : AAAI Press .

 7 Metareasoning for Multispectral Satellite Image Interpretation

 Paul Robertson and Robert Laddaga

 In this chapter we discuss metareasoning in an image interpretation architecture called
GRAVA: Grounded Refl ective Adaptive Vision Architecture. We further discuss the role
metareasoning plays in GRAVA: producing good image interpretations under a wide
range of environmental conditions.

 In chapter 1 of this volume (“ Metareasoning: A Manifesto ”), the authors, Cox and
Raja, discuss introspective monitoring, and consider it to be an essential attribute of
any system that operates in an uncertain environment. Online monitoring makes a
number of online program repairs possible: replacing of failed approaches by alterna-
tives, applying available contingent plans, or invoking failover procedures. However,
such recovery mechanisms are fruitless when the failure suggests that the entire
approach has been invalidated. Metareasoning is essential for reasoning about the
validity of the current approach and to avoid having the program fruitlessly apply
contingent methods in an environment where they will have no benefi cial effect and
indeed may lead to disastrous results.

 Nowhere is this need more apparent than in computer vision applications, where
changes in illumination, image context, and a host of other environmental factors
can demand a completely different approach to the image-understanding process.
Most successful computer vision programs operate in situations where conditions can
be carefully controlled. In contrast, computer vision systems on mobile robots forces
vision into uncontrollable environments, and we argue that metareasoning is the
cleanest path to reliable systems in this domain. The real world is complex, and
attempting to build static vision programs with hardwired logic to deal with every
possibility is naive. The world in which we live exposes the eye, and camera, to an
enormous diversity of visual variety. When faced with complexity, it is often a good
strategy to “ divide and conquer. ” We divide by contexts , and conquer each context
with an individually tailored program confi guration.

 Our approach draws on observations by Lesser and colleagues (Erman et al., 1980)
on the Hearsay II project but is implemented in an architecture that is self-adaptive

102 P. Robertson and R. Laddaga

(Robertson, 2002). Metareasoning in our approach takes the form of reasoning about
the performance of a subordinate computational process. Performance measurements
can come from two sources: specifi c failures invoked by the subordinate process and
poor performance in comparison to learned performance models. We utilize descrip-
tion length as one important component of learned performance models. Metareason-
ing in our system operates on contexts that are learned with the help of a clustering
algorithm (Robertson & Laddaga, 2002a, 2003).

 We consider a program, or a system of programs, that interprets a sequence of satel-
lite images formed from the passage of the satellite as it traverses its orbit. The
sequence of images thus created will depict the changing landscape visible from the
directed camera of the satellite. These landscape changes we will treat as one compo-
nent of the environment of the satellite image-interpretation program. Other compo-
nents of the environment include the type of camera or sensor and the weather and
atmospheric conditions.

 Consider a collection of programs that specialize in interpreting different scene
types and some way of switching between programs as necessary. Not only would
such an approach make the complexity seem more manageable, but the constraints
of the scene would allow better interpretations to be generated. The correct identifi ca-
tion of objects in a scene may not be uniquely discernible from the pixels in the image,
but the ambiguities might be resolvable from the context in which they appear. For
example, a program that has to deal with ocean scenes is likely to correctly interpret
large tankers as ships, whereas similarly appearing structures in an industrial scene
would be interpreted as, say, a warehouse.

 GRAVA employs a self-adaptive approach toward achieving reliable interpretations
in complex and changing environments. Self-adaptive software is concerned with the
problem of automatically adapting program structure in response to environmental
changes in order to provide robust performance despite those changes (Laddaga,
2001). Self-adaptation encapsulates the idea that a running program may be viewed
as a collection of context-dependent programs that are automatically selected in
sequence as context changes are detected. The selected program is assumed to have
the property that it is a good match for the environment at the time of the adapta-
tion, but this assumption is continuously checked.

 Even if we could know all the different states that the environment could be in,
we would not know a priori what state the environment would be in at any particular
time. Consequently, in order to achieve robust performance, image-understanding
programs should determine the state of the environment at run time and adapt accord-
ingly. Self-adaptive software constantly evaluates its own performance, and when that
performance is below criteria, it changes its behavior. To accomplish this, the run-time
code includes the following things not currently included in shipped software:

Metareasoning for Satellite Image Interpretation 103

 descriptions of software intentions (i.e., goals and designs);
 descriptions of program structure;
 descriptions of the environment of the running program, both computational and
(for embedded software) physical; and
 a collection of alternative implementations and algorithms (a reuse asset base).

 Thus, self-adaptation is a model-based approach to building robust systems. The envi-
ronment, the program ’ s goal, and the program ’ s computational structure are modeled,
and constitute the system ’ s model of itself. In principle, the idea is simple. The envi-
ronment model and the program goal model support continuous evaluation of the
performance of the program. When program performance deteriorates, the program
goal model and the computation model together support modifi cation of the program
structure. In this way, the program structure evolves as the environment changes so
that the components of the program are always well suited to the environment in
which they are running. Robust performance results from having all components
operating within their effective range.

 GRAVA employs metareasoning because it provides the mechanisms necessary to
support two of the core problems of self-adaptive software — a mechanism for reason-
ing about the state of the computational system and a mechanism for making changes
to it. These are what Cox and Raja (this vol., chap. 1) call introspective monitoring
and metalevel control, respectively.

 While the focus of this chapter is on the application of metareasoning in producing
reliable image descriptions in the satellite image-understanding program, a brief over-
view of the approach taken by the program in interpreting visual scenes is helpful.
The satellite image-interpretation program described in this chapter segments, labels,
and parses aerial images so as to generate a rich structural description of the image
contents for each image in the sequence. Figure 7.1 shows a schematic summary of
the GRAVA architecture focusing on the module-supporting dependencies. For
example, the patchwork parser module and the self-adaptive architecture each directly
support the image segmentation and labeling program. Each are also directly sup-
ported by the statistical MDL (minimum description length) theorem prover module.

 To produce an image interpretation, several tools are brought into play. Tools vary
in terms of both the goals they are intended to achieve and the methods they use.
Each particular goal may be satisfi ed by many different algorithms or implementa-
tions. The selection of the right tools ultimately determines the quality of the resulting
interpretation. First, the image is processed to extract features such as texture by apply-
ing tools appropriate to the image at hand. Next, a segmentation algorithm is employed
to produce regions with outlines whose contents are homogeneous with respect to
content as determined by the chosen texture and feature tools. The segmentation
algorithm also depends on tools that select seed points that initialize the segmenta-

104 P. Robertson and R. Laddaga

Communication
Model

MDL Agent
Architecture

Patchwork
Parser

Self-Adaptive
Architecture

Image Segmentation
and Labeling Program

Segmentation
Algorithm

MDL Clustering for
Model Induction

Statistical/MDL
Theorem Prover

Legend
Supports

 Figure 7.1
 The GRAVA architecture with module dependencies.

tion. The choice of tools to initiate the segmentation determines what kind of seg-
mentation will be produced. Next, the regions of the image are labeled based on their
contents. Finally, the image is statistically parsed using a 2D picture grammar.

 At any point, a bad choice of tool — for initial feature extraction, seed point iden-
tifi cation, region identifi cation, or parse rule — can lead to a poor image interpretation.
The earlier the error occurs, the worse the resulting interpretation is likely to be. For
example, a poor choice of tools for extracting textures from the image may result in
a poor segmentation. The poor segmentation will likely result in poor region content
analysis and a potentially disastrous parse of the image. The resulting interpretation
can be very bad indeed. The challenge for a self-adaptive approach is to determine
how the program formed from the collection of tools described above can be organized
so that when a poor interpretation is produced, the program self-adapts into a program
that does a better job.

 Metareasoning

 Before presenting the details of metareasoning in GRAVA, we begin with a general
explanation and motivation for metareasoning. Metareasoning involves reasoning

Metareasoning for Satellite Image Interpretation 105

about the reasoning process. Metareasoning is just like reasoning, but it is applied to
the reasoning engine rather than to the problem domain. Similar results could usually
be achieved by adding further logic to the reasoning system, but several advantages
accrue by having the metareasoning be structured as a separate layer of the reasoning
process:

 Code cleanliness Mixing metareasoning in with the reasoning logic is bad modularity.
It makes the reasoning code hard to read, maintain, and debug.
 Synchronization Metareasoning may need to be invoked at different times to the base
reasoner. Putting them together makes this very diffi cult.
 Representational effi ciency By reasoning at the metalevel, we can handle a whole class
of issues in one place that would have to be repeated for each member of the class at
the reasoning level.

 For metareasoning to take place, the base reasoner is instrumented to allow the state
of reasoning to be reasoned about. For metareasoning to infl uence the reasoning
process, the results of metareasoning must be available to the reasoning process. This
can be accomplished by representing the results of metareasoning as data structures
that are used by the reasoner or by interrupting the reasoning process and restarting
it with new structures. Metareasoning in GRAVA not only reasons about the reasoning
process, it can also interrupt the reasoning process and redirect it (as will be demon-
strated below).

 Metalevels in GRAVA

 The GRAVA architecture was designed to support image-interpretation programs that
take advantage of self-adaptation in order to effectively handle a changing environ-
ment. Self-adaptation results from a metareasoning event (also known as refl ection).
In GRAVA, an application is structured as a hierarchy of processing levels. GRAVA ’ s
base level incorporates not only image-processing elements (“ doers ” in the sense of
chapter 1), but image-interpretation elements (“ reasoners ” in the sense of chapter 1).
GRAVA base-level reasoners reason about the image that they are attempting to inter-
pret. Metareasoning can occur in any of the levels above a base reasoner. To under-
stand how metareasoning in GRAVA works, we begin by giving a brief overview of
salient aspects of the GRAVA architecture.

 Figure 7.2 shows two levels of a GRAVA program. Each layer of a GRAVA program
contains a description that specifi es the goal for the layer. The implementation of that
description is a program consisting of a collection of agents (the tools) that is fi xed at
the top level but which is synthesized by the parent layer for all lower layers. The
lowest level interprets the image by applying the agents that make up the interpreter.
The parent layer of each layer contains a compiler whose purpose it is to synthesize

106 P. Robertson and R. Laddaga

Description

Higher (Parent) Layer

Higher (Parent) Layer

Reflective Layer N

Knowledge of the World at
Layer N

Compiler for Child
Layer Interpreter

Lower (Child)
Layer

Lower (Child) Layer

Interpreter for the Description:
“A program of Agents.”

Description

Reflective
Layer N+1

Knowledge of the World at
Layer N+1

Compiler for Child
Layer Interpreter

Interpreter for the Description:
“A program of Agents.”

 Figure 7.2
 Relationship of interpreter levels in GRAVA.

the interpreter for the layer below by considering two sources of information:

 The description for the child layer.
 The knowledge of the world as collected by the child layer.

 The “ knowledge of the world ” is the result of reasoning about the child layer and the
product of the child layer. Since the knowledge of the world is an input to the compiler
of the child interpreter, it indirectly affects the reasoning of the child process.

 Reasoning in GRAVA

 GRAVA reasons about image contents by fi tting models to parts of the image. This
process is achieved as part of a bidding process among competing agents each of which
attempts to explain image parts. The winner is selected by a Monte Carlo selection

Metareasoning for Satellite Image Interpretation 107

mechanism that uses description length of the competing representations to bias the
selection. If some area (x) of an image fi ts the agent “ airport ” and is selected by the
Monte Carlo selection, this means that the reasoner has executed the rule:

 area(x) & airportAgent → airport(x)

 Layers of Interpretation

 The satellite image interpretation program has three layers, as follows.

 Layer 1 The bottom layer interprets the pixels of the image as nonoverlapping regions.
The regions are obtained by a semantic segmentation algorithm (Robertson, 2002).
 Layer 2 The segments are labeled with semantic markers.
 Layer 3 The labeled segments are parsed using a picture grammar (Robertson, 2002).

 The parse tree produced by layer 3 has segments as its leaves, which in turn have labels
indicating their interpretation as objects in the scene. The layers are not simply applied
sequentially. Instead, Monte Carlo sampling occurs across all layers so that segmenta-
tion, labeling, and parsing choices are made so as to achieve the fi nal parsed image
with a minimal description length (MDL). The Monte Carlo sampling employed to
achieve this result is an anytime algorithm, so after a single iteration an image descrip-
tion is available, but much of the description will likely be incorrect. After multiple
iterations the best MDL description emerges.

 Model Learning and Contexts

 Image interpretation with GRAVA is a two-phase process. The fi rst, off-line, process
learns models from hand-annotated training data or ground truth. These models
include:

 Grammar rules that model the 2D picture structures found in the annotated images;
 Labeling models that map region contents to the named labels annotated by the
human annotator and used in the grammatical rules as terminal symbols; and
 Region content models that determine the features used to drive the segmenter.

 These models correspond to the three layers of the aerial image-interpretation program
described above. The training images are clustered to produce model groups that cor-
respond to different contexts. GRAVA uses a clustering algorithm based on minimal
description length and principle component decomposition ; see Robertson and Laddaga
(2002a). This is done for each of the levels.

 The resulting clusters may distinguish different imaging contexts. For example, in
our training set, images from different multispectral bands were provided. At the label
layer, images are clustered based on different labels present in the images, and at the

108 P. Robertson and R. Laddaga

grammar layer images are clustered based on the grammatical forms present in the
images. Though the contexts may not correspond to simple English descriptions they
do represent different imaging features that require different tool sets. Selecting
a context thus constrains how the image will be interpreted by determining the
tool set.

 Figure 7.3 shows four images that were clustered together into the same context by
virtue of their similar label sets. One of the four images (bottom left) clearly comes
from a different multispectral camera, so these images would not have been clustered
together at the lower layer that clusters on the basis of optical information content.
Clusters, of course, are not given names and may not even be obviously related. These
images, however, all appear to be good examples of sea towns. Selecting agents based

s-uk-12-edinb-c-4 s-uk-29-mersf-c-1

s-w-28-gowe-c-02s-w-26-glas-c-04

 Figure 7.3
 Four images from the same context.

Metareasoning for Satellite Image Interpretation 109

on the correct context dramatically improves the likelihood that the resulting image
interpretation will be accurate.

 Each of the contexts in each of the categories comes with estimated prior probabili-
ties based on their frequency in the training set. In the absence of any other informa-
tion these priors allow the contexts at each layer to be sorted in order of decreasing
likelihood. The contexts at each layer are used by the compiler to drive the selection
of agents for each corresponding level of the program.

 The Role of Contexts in Self-Adaptation

 Metareasoning monitors the operation of the reasoner and estimates the most likely
context based on the current state of knowledge about the world and the child layer ’ s
process state. When it determines that the currently selected context is not the most
likely it resynthesizes the program operating at the level beneath it to utilize agents
appropriate to the newly selected context. At the parsing level this may mean that a set
of grammatical rules is replaced by another, more appropriate, set of rules. For example,
if the grammar set was for a class of “ rural landscape ” images and collected world
knowledge suggests that “ seaport town ” images represent a more appropriate context,
the agents (grammatical rules) for a seaport town will be used in place of those for rural
landscape. This will enable the seaport town to be properly parsed where a correct parse
would have been impossible with a rule set dedicated to rural landscapes.

 It is diffi cult to overstate the importance of context in image-understanding pro-
grams. Most vision programs can ignore the problem by being useful in only a single
context. Interpretation of aerial surveillance images is an activity generally undertaken
by experts, and as can be seen in fi gure 7.3, these images are not open to simple intui-
tive interpretation. For that reason, face recognition perhaps provides a more intuitive
subject in which to consider the importance of context. Facial images vary in terms
of: pose , size , obscuration , race , gender , age , lighting , noise , color , and view .

 Most face-identifi cation and recognition systems work by measuring a small number
of facial features given a canonical pose and matching them against a database of
known faces. Thus, typical face-recognition systems can only deal with well-lighted
frontal views. In practical applications, however, few frames show a full frontal face.
Furthermore, lighting may vary signifi cantly. These factors frustrate attempts to iden-
tify a face. Many applications have much more relaxed recognition goals. If the goal
is to track people as they move throughout a monitored space, the task may be to
identify the individual from a relatively small set of people. For face profi les, different
models involving ear, eye, and nose may prove successful. By building a face recog-
nizer that can seamlessly switch between different contexts such as pose and lighting,
we can construct a recognizer that is robust to normal changes in the natural environ-
ment (Robertson & Laddaga, 2002b). This permits a much wider application of face-
recognition technology.

110 P. Robertson and R. Laddaga

 Figure 7.4
 Context in face recognition.

 In fi gure 7.4, we see four different images of faces, 1 showing four pose contexts:
 “ profi le, ” “ oblique, ” “ off-center, ” and “ frontal. ” In GRAVA, the profi le view is sup-
ported by agents that measure points along the profi le of the face, the corner of the
eye, and the lips. The oblique view with ear supports measurements of the ear and
measurements of the position of the ear, eye, and nose. The triangle formed by the
eye, ear, and nose help to determine the angle of the face to the camera, which allows
measurements to be normalized before recognition. The off-center view permits mea-
surements of points on the eyes, nose, and mouth. The shape of the nose can be
measured but the width of the base of the nose cannot, due to self-occlusion. The
frontal view allows nose width to be measured, but not the nose shape. There are
other contexts that include or exclude ears. The different contexts control, among
other things, what models can be used for matching, what features can be detected,
and what transformations must be made to normalize the measurements prior to
matching. This example shows contexts for pose, but there are also contexts for light-
ing, race, gender, and age.

1. In addition to aerial image interpretation, GRAVA handles other interpretation problems such

as gesture recognition and face recognition.

Metareasoning for Satellite Image Interpretation 111

 Reasoning and Metareasoning about Context
 Though the above sketch shows, for the satellite image interpretation domain, how a
useful form of self-adaptation can be cast in terms of context switches, it does not
explain how we arrive at the decision to change contexts. To understand this aspect
of the problem we consider the relationship that level n has with level n – 1 .

 As we have seen above, each level has two relationships with its parent level. First,
the child level ’ s program is synthesized by its parent level by (a) using the child level ’ s
description as a specifi cation for the child ’ s program, (b) considering the known state
of the child ’ s process as represented in the parent-level knowledge base, and (c) by
considering the set of available contexts that were learned for that level. The child
level ’ s description is the result of task decomposition of the parent level ’ s description.
The child level ’ s relationship to its parent is therefore one of “ task decomposition. ”
The parent level also created the child level as the result of its reasoning about con-
texts, the child specifi cation, and the state of knowledge. That relationship, which
consists in the rationale for the decisions about the child ’ s structure, is a metarelation-
ship. The parent level thus encapsulates four pieces of knowledge about the child: (1)
a more abstract representation of the child ’ s structure; (2) knowledge about why the
child was constructed the way it was — and what agents were ultimately chosen in its
construction; (3) knowledge about the world collected by the child; and (4) how well
the child has been doing at its task. Of the above, (1) and (2) relate to the construc-
tion of the child before the child had a chance to run, while (3) and (4) relate to
knowledge and metaknowledge, respectively, of the child ’ s execution history. We
explain where (4) comes from in the next section.

 In this application, we chose to use contexts to drive the child process structure;
however, in a different application another approach might have been taken. The use
of contexts in this application represents an off-line compilation of alternative self-
adaptive choices. Whatever approach is taken, the parent level is related to the child
level by two forms of knowledge located in the parent level. The child level is a
program tailored to implement the specifi cation of the task-decomposed goal of its
parent. The child has no apparatus to reason about why it does what it does or how
it might do differently if things do not work out well in the current environment —
but the parent level does. The parent represents the knowledge that the child is using
the agents chosen for it precisely because, at the time it was constructed, those
agents were most suitable for performing the tasks decomposed from the parent ’ s
specifi cation.

 Knowing How Well the Child Layer Is Doing
 The execution of any level results in an interpretation of the image chosen so as to
produce the MDL representation. The description length is, in part, a measure of the
goodness of the interpretation. The program can produce an interpretation of a blank

112 P. Robertson and R. Laddaga

image as an “ urban scene ” because of smoothing, 2 but the description length will be
large. When a context begins to change, such as when the image in the sequence
begins to transition from a rural landscape to a suburban one, more parts of the image
will suffer from being alien to the context. That alienation from the context results
in the use of a more smoothed rule and the inevitable growth in description length
for the image. Description length of an image interpretation by a level is governed by
two factors: (1) the complexity of the image being interpreted, and (2) the goodness
of fi t of the context used to create the level. Factor (1) tends to be dominated by the
ground area covered by the image. When the contexts were established (off-line) the
defi ning set of images that formed the cluster had interpretations whose description
length was known. From that set of images ’ description lengths, a model of the typical
description length of an image is established as Gaussian. Since the goodness of fi t of
the context dominates the changes in description length, serious deviations from the
mean (outliers) indicate a change in context.

 In fi gure 7.5, we see a description of the operation on GRAVA of a response to an
evaluation requiring an inference about a change in context and the resulting change
in the confi guration of the child layer. That is, the child layer is operating using a
previously compiled program, assuming a specifi c context. The child layer can either
output an interpretation of an image, or refl ectUp the problem and some assessment
of the insuffi ciency of the results. That action causes the parent layer to reassess the
context and compile a new child layer program. In GRAVA, assessing the performance
of the child is a form of model-based diagnosis (Hamscher, Console & deKleer, 1992 ;
Shrobe, 2002.) We said before that self-adaptive software will include descriptions of:

 software intentions (i.e., goals and designs);
 program structure; and
 the environment of the running program.

 Each of these descriptions will generally be in the form of a model. That is, the descrip-
tions must involve a signifi cant functional abstraction, so as to support operations on
the descriptions that can in turn affect the functional behaviors of the things described.
So, for example, we must be able to recompute subgoals of a goal in light of new
contextual information. Also, we will want to use the models of program structure to
diagnose problems and support reconfi guration of the program. Finally, models of the
physical environment will be used to:

 diagnose program failures and performance problems;
 provide contextual basis for subgoaling and reconfi guring; and
 provide a basis for choosing new strategies for the computation.

2. Smoothing is a method whereby rules are created to ensure the success of an operation (such

as a grammatical rule). Rules generated by smoothing ensure success but entail a large description

length.

Metareasoning for Satellite Image Interpretation 113

Image
Interpretation

Replace
Context Code

Context

Current Circuit

Raw Image Interpreted Image

Compile
Context

Infer context
from models

and signatures

R
efl

ec
tU

p

 Figure 7.5
 Adaptation of context in GRAVA.

 We also said earlier that the chief engineering issue for self-adaptive software was
evaluation of program performance. It is possible to evaluate without diagnosis, if we
simply respond by randomly picking a different algorithm or implementation.
Although this fi ts a broad defi nition of self-adaptive software, our goals are much
higher.

 Instead, the kind of evaluation we envision is one that includes and partially
depends on a diagnosis of at least the proximate cause, and where possible the root
cause, of the failure or performance problem. In this sense, the entire self-adaptive
apparatus in the program can be thought of as a model-based diagnosis system in
support of the program ’ s main goals. The program, its goals, and the environment
that it runs in are all modeled in the running system, and diagnostic reasoning is
employed to evaluate program performance. Thus model-based diagnosis realizes the
self-aware metaphor for self-adaptive software.

 In addition to metareasoning, reasoning about the task decomposition also takes
place in order to consider the need to rebuild a new child program. Finally, the goal
of the program is also subject to change. If the priorities of the system change during

114 P. Robertson and R. Laddaga

a run, the system can self-adapt to refl ect those changes. Adaptation therefore is driven
by these three aspects of the system state:

 metaknowledge about system performance on the current images;
 the abstract representation of the knowledge extracted from the image; and
 the changing state of the goals for the system.

 We have focused on the fi rst of these mechanisms in this chapter. The three sources
of knowledge are managed by a theorem prover that plays a central role in the child
program synthesis.

 GRAVA and the Manifesto

 The principal model of the Manifesto refers to a ground level, an object level and a
metalevel. The corresponding levels in GRAVA are the base or image-interpretation
level, which incorporates the manifesto ’ s ground level and much of the manifesto ’ s
object level, and the metalevels, which include some of the manifesto ’ s object level
and all of the manifesto ’ s metareasoning level. In GRAVA, the image-interpretation
level applies operations to the image in order to segment, label, and thus interpret
the image, but it also invokes evaluation of the fi t of the interpretation. In the mani-
festo the ground level doesn ’ t actually reason, but in GRAVA, the base level not only
computes an interpretation of an image, it also evaluates the interpretation and can
act by choosing to refl ect the problem and results back to the fi rst metalevel. We have
considered the possibility of separating GRAVA ’ s base layer into ground and object
layers, but have not yet performed experiments to determine both the ease and utility
of such a transformation.

 In GRAVA, there can be many metalevels, each treating the level below as an object
level. This is also a departure from the manifesto model, but in practice, GRAVA
doesn ’ t usually use more than one metalevel. We have, however, proposed a second
metalevel to deal with stabilizing GRAVA programs (Laddaga, 2006).

 The image-interpretation level (qua object level) is passed control along with a con-
fi gured set of operators, and applies the operators (qua ground level). It retains control
until it fails an evaluation, and then returns control to its metalevel. When control is
passed to the metalevel, the metalevel must directly interact with the image-interpre-
tation level (qua ground level), in order to estimate a new context, from which it will
derive a new confi guration for the image-interpretation level. Thus information from
the ground level is directly interpreted in the metalevel to estimate a context.

 Currently, GRAVA does not interact with other agents, although GRAVA compo-
nents are all agents that interact with each other via responding to task goal postings
at the object (image-interpretation) level. Since GRAVA accepts the notion of multiple
metalevels, in principle, GRAVA can support multiple agents by having multiple

Metareasoning for Satellite Image Interpretation 115

instantiations of GRAVA controlled by cooperating top metalevels. This approach
would probably not support cross-level cooperation to the degree that might be
needed depending on the nature of the distributed application.

 The manifesto ’ s model is a fairly good abstract description of GRAVA ’ s operation.
Differences are GRAVA ’ s support for multiple metalevels, GRAVA ’ s simplifi ed control
regime, GRAVA ’ s combination of ground and object levels as a single level, and
GRAVA ’ s placement of evaluation of object-level performance in the object level. A
more signifi cant difference is the central role we place on reasoning about contexts
and having environmental context centered in the metalevel rather than the object
level. This difference means that GRAVA never considers the state of its reasoning at
the object level, without also referring to its estimate of the object-level context.

 Discussion

 The GRAVA architecture and image-interpretation programs coded in GRAVA provide
a case study in the advantages and issues of systems incorporating metareasoning. A
number of important and general lessons have emerged from the effort. Some of these
that relate to the advantages of separating reasoning and metareasoning have already
been mentioned in the metareasoning section. The fi rst of these is synchronization :
often a system needs to invoke metareasoning asynchronously with the reasoning
system, especially when metareasoning may be computationally expensive. Another
of these is metareasoning reuse : Even within a single system, metareasoning modules
and approaches may apply to several different reasoning elements and contexts,
and thus there are representational effi ciencies to separating metareasoning from
reasoning.

 Another important lesson we ’ ve learned is that making metareasoning less compu-
tationally expensive is valuable and leads to signifi cant improvements in overall
system performance, as well as more prevalent and advantageous use of the metarea-
soning modules. In GRAVA, this was achieved by adding learning to the metareason-
ing module, to reduce the need to invoke the theorem prover.

 Perhaps the most important lesson we learned is the importance of the meta-
problem-solving methodology of “ divide and conquer. ” For vision systems, and prob-
ably all perceptual systems, dividing the perceived world into context and object
provides an enormous range of computational and conceptual advantages.

 Entanglement It is nice to think of metareasoning and reasoning as separate activities,
and it is advantageous to do so in terms of modularity, as we have argued. In practice,
however, metareasoning and reasoning are entangled in such a way that it is impos-
sible to separate them clearly by role.
 Dimensions of metareasoning Metareasoning is not a one-dimensional activity. For
example, we may reason about what are the best modules to apply in a given context

116 P. Robertson and R. Laddaga

in order to obtain the most useful result, but we may also reason about how long we
expect a computation to take in order to decide how best to allocate our computational
resources — perhaps choose a faster method with some loss of precision or perhaps steal
resources from somewhere else. Finally, we may want to reason about whether our
recent actions have helped the situation. This latter kind of metareasoning can assist
in avoiding a perpetual cycle of unhelpful adaptations.

 Conclusions

 We have interleaved the description of the GRAVA architecture and of the satellite
aerial image understanding program that was implemented using it. Some of the
choices made in the implementation, such as the learning and subsequent use of
contexts, were arbitrary and driven by the problem domain. Others, such as the rela-
tionships between parent and child levels, are general and would be common to other
GRAVA applications. The domain discussed in this chapter uses an effi cient and simple
representation of program structure choices (contexts), but more complex domains
could use richer representations with correspondingly richer metareasoning. We have
described how self-adaptation draws upon both metaknowledge and abstract knowl-
edge in order to effect adaptation to changes in the environment (i.e., changing
makeup of the scene.)

 While many image interpretation programs will merrily continue to interpret
images that do not refl ect the program ’ s domain of competence, the described program,
by using meta- and abstract knowledge, catches itself in the act of doing something
silly and self-adapts into a program that can do better. In this way metareasoning
leads to a program that, through self-knowledge, produces robust performance. In the
cases where a good interpretation cannot be arrived at through self-adaptation, it can
at least indicate that its best interpretation is unreliable.

 Acknowledgments

 This work was sponsored in part by the Defense Advanced Research Projects Agency
(DARPA) and Air Force Research Laboratory, Air Force Material Command, USAF,
under agreement number F30602-98-0056. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes notwithstanding any
copyright annotation thereon. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily representing the offi cial
policies or endorsements, either expressed or implied, of the Defense Advanced
Research Projects Agency (DARPA), the Air Force Research Laboratory, or the U.S.
Government.

Metareasoning for Satellite Image Interpretation 117

 References

 Erman , L. D. , Hayes-Roth , F. , Lesser , V. R. , & Reddy , D. R. (1980). The HEARSAY-II speech-

understanding system: Integrating knowledge to resolve uncertainty . ACM Computing Surveys ,

 12 (2), 213 – 253 .

 Hamscher , W. , Console , L. , & de Kleer , J. (1992). Readings in model-based diagnosis . San Francisco :

 Morgan Kaufmann .

 Laddaga , R. (2001). Active software . In P. Robertson , H. Shobe , & R. Laddaga (Eds.), Self adaptive

software (pp. 11 – 26). New York : Springer .

 Laddaga , R. (2006). Self adaptive software problems and projects. In SE ’ 06: Second International

IEEE Workshop on Software Evolvability, 2006 (pp. 3 – 10). http://www.citeulike.org/user/ekoenig/

article/2443437.

 Robertson , P. (2002). A self adaptive architecture for image understanding. DPhil Thesis, Department

of Engineering Science, University of Oxford.

 Robertson , P. , & Laddaga , R. (2002a). Principle component decomposition for automatic context

induction. In Proceedings of the Artifi cial and Computational Intelligence Conference (pp. 23 – 31).

Tokyo Japan, ACTA Press.

 Robertson , P. , & Laddaga , R. (2002b). A self adaptive architecture and its application to robust

face identifi cation, In Proceedings of the Pacifi c Rim Conference on Artifi cial Intelligence (pp. 542 –

 551). Berlin: Springer-Verlag.

 Robertson , P. , & Laddaga , R. (2003). GRAVA: An architecture supporting automatic context

transitions and its application to robust computer vision. In Proceedings of the 4th International

and Interdisciplinary Conference CONTEXT (pp. 499 – 506). Berlin: Springer Verlag LNAI 2680.

 Shrobe , H. (2002). Computational vulnerability analysis for information survivability . AI Maga-

zine , 23 (4), 81 – 94.

 8 Metareasoning as a Formal Computational Problem

 Vincent Conitzer

 An agent acting in the world generally needs to spend some time and other resources
on deliberation , to assess the quality of the various plans of action available to it. To
fi nd the absolutely optimal plan, an agent generally needs to perform a very large
amount of deliberation: it has to consider all the relevant implications of all the rel-
evant facts that it knows about the world, and, if the agent is able to gather additional
information, it also has to take all relevant information-gathering actions (and con-
sider the implications of the resulting information). This is not always feasible: for
example, if the agent has a deadline for choosing an action, there may not be enough
time for all of this deliberation. Still, the agent may be able to fi nd a plan of action
that is close to optimal. To do so, the agent needs to focus on the parts of the delib-
eration (deliberation actions) that have the greatest impact on the quality of its plan.
Determining which deliberation actions to perform is the metareasoning problem , in
which the agent needs to reason about the reasoning it will perform.

 Though this sounds natural, doing it well is far from easy. For one, the usefulness
of one deliberation action may not be separable from another. For example, if there
is a particularly risky plan that the agent is considering, the agent may need to rule
out two ways in which this plan could potentially fail. If the agent only manages to
rule out one of the two failure possibilities, and does not deliberate on the other, then
the plan is still too risky and will not be chosen. Hence, the deliberation on the fi rst
failure possibility was a waste of time: the agent does not obtain any benefi t from
deliberation unless it considers both failure possibilities. To make things more com-
plicated, the agent generally has to consider the outcomes of earlier deliberation
actions in choosing the next deliberation action. For instance, in the above example,
if the agent considers the fi rst failure possibility and realizes that the plan would in
fact fail in this way, then there is no point in considering the other failure possibility:
the agent should spend its valuable time considering other options rather than point-
lessly fi guring out in exactly how many ways the risky plan would have failed. Hence,
in general, the agent does not merely need to choose a subset of the deliberation
actions; rather, it needs to create a complete contingency plan for deliberating.

120 V. Conitzer

 From the above, it should be clear that the metareasoning problem is nontrivial,
and may in fact be computationally hard. This is an issue of concern, since we want
to avoid the ironic situation in which the agent spends so much time solving the
metareasoning problem that there is no time left to take any actual deliberation
actions. However, even if the problem does turn out to be computationally hard, this
does not mean that we should abandon the metareasoning approach altogether: we
could still fi nd fast heuristics or approximation algorithms that fi nd close-to-optimal
solutions to the metareasoning problem, or algorithms that fi nd the optimal solution
fast under certain conditions. (See also the discussion on optimal metareasoning by
Zilberstein, this vol., chap. 3.)

 In the remainder, we fi rst discuss some known results (Conitzer & Sandholm, 2003)
that imply that certain variants of the metareasoning problem are in fact computation-
ally hard. While these variants by no means capture all the interesting parts of all
metareasoning problems, they are useful for illustrating some computational diffi cul-
ties that metareasoning systems must face. As such, these results set the stage for the
remainder of this chapter, in which we discuss their implications for real metareason-
ing systems.

 Variants of the Metareasoning Problem and Their Complexity

 Before we can determine whether the metareasoning problem is computationally hard,
we fi rst need to defi ne it as a computational problem. However, there are many dif-
ferent settings in which metareasoning is essential, and each of these settings leads to
a different variant of the metareasoning problem. We could try to create a computa-
tional defi nition of the metareasoning problem that is so general that it captures every
variant that we might reasonably encounter. It would not be very surprising if such
a general problem turned out to be computationally hard; moreover, it is not clear
that such a hardness result would tell us anything very interesting, because it could
still be the case that most reasonable variants are in fact quite easy to solve.

 Instead, we will consider defi nitions of some very restricted variants of the metar-
easoning problem that still turn out to be computationally hard. Such results are much
more meaningful, because it seems likely that most real-world metareasoning systems
need to solve a problem that is at least as hard as at least one of these problems. We
discuss mostly the results of Conitzer and Sandholm (2003) . Later in the chapter, we
discuss the implications of these results for the design of metareasoning systems.

 Variant 1: Deliberation That Leads to Predictable Improvements
 As we mentioned above, one of the main diffi culties in metareasoning is that the
outcomes of the deliberation actions are uncertain, and what deliberation action
should be taken next in general depends on the outcomes of the current and past

Metareasoning as a Formal Computational Problem 121

deliberation actions. Hence, in general, a solution to the metareasoning problem
consists of a full contingency plan (at least if we aim to solve the problem to
optimality).

 In this subsection, however, we consider a simplifi ed variant of the metareasoning
problem in which the outcomes of deliberation actions are completely predictable.
Specifi cally, suppose that the agent has m tasks that it needs to complete. For each of
the tasks, it has a default plan that has some cost; however, by deliberating on the
plan more, the agent can reduce this cost. (For example, Conitzer and Sandholm
consider a setting where the agent needs to solve m unrelated vehicle-routing problem
instances, and it can improve the quality of its solution for each routing problem
instance by spending more computation on it — that is, it has an anytime algorithm
for the vehicle routing problem.) The agent also has a deadline T by which it needs
to fi nalize all of its plans. Finally, we assume that for each task i , there is a function
 f i , where f i (t i) is the reduction in the cost of the plan for the i th task that results from
spending t i units of deliberation time on that task. Of course, in reality, this improve-
ment is not so perfectly predictable, but these functions are often used as a modeling
simplifi cation. They are called (deterministic) performance profi les (Boddy & Dean, 1994 ;
 Horvitz, 1987 ; Zilberstein & Russell, 1996). (Performance profi les were discussed earlier
by Zilberstein, this vol., chap. 3.)

 The goal is to obtain the maximum total savings given the time limit. That is, we
want to choose the times t 1 , t 2 , ..., t m to spend on deliberating on the tasks, with the
goal of maximizing f (t)i i

i

m

=∑ 1
 , under the constraint t Ti

i

m ≤
=∑ 1

 . Conitzer and Sandholm
(2003) show that (the decision variant of) this problem is NP-complete, even if the f i
are piecewise linear. In contrast, if we require that the f i are concave, then the problem
can be solved in polynomial time (Boddy & Dean, 1994). 1 However, Conitzer and
Sandholm argue that the f i are generally not concave: for example, anytime algorithms
generally go through distinct phases, and often the end of one phase does not produce
as much improvement as the beginning of the next phase.

 It is quite a negative result that even this simple deterministic variant of the metar-
easoning problem is hard. Still, the implications of this hardness result for metareason-
ing are limited, because there are variants of the metareasoning problem that do not
include the above problem as a subproblem. In a sense, in the above problem, the
deliberation actions reveal new plans of action (e.g., vehicle routes). However, there
are many metareasoning settings in which the set of available plans is known from
the beginning, and the only purpose of deliberation is to discover which plan is best.
If the results of deliberation were perfectly predictable in such a setting, then we would
know from the beginning which plan is best, and hence there would be no point in
doing any deliberation. That is, the metareasoning problem only makes sense in this

1. Similar results based on concavity are common in metareasoning. See, e.g., Horvitz (2001) .

122 V. Conitzer

context if the outcomes of the deliberation actions are uncertain. This is the topic of
the next subsection.

 Variant 2: Deliberation to Evaluate a Fixed Set of Plans
 In this subsection, we consider a different variant of the metareasoning problem.
Suppose there is a fi xed set of possible plans of action that the agent can choose from.
Each plan gives the agent some expected utility. The agent can take some deliberation
actions on each plan; depending on the outcome of the deliberation action, the
expected utility of that plan changes. For example, Conitzer and Sandholm (2003)
consider a setting in which a robot must choose a site for digging for precious metals,
and before starting to dig, the robot can perform tests (deliberation actions) at each
site that will change its beliefs about what metals may be there. Each deliberation
action requires some time (the amount of time is not necessarily the same for each
deliberation action), and there is a deadline.

 Also, we assume that the agent has a probability distribution over how its beliefs
about a plan will change upon taking a deliberation action for that plan. For instance,
in the digging example above, the agent may believe that if it tests at site A , then with
probability 0.6, after the test it will believe that there is a probability of 0.1 that there
is gold at A , and with probability 0.4, after the test it will believe that there is a prob-
ability of 0.2 that there is gold at A . This implies that before the test, it believes that
there is a probability of 0.6 · 0.1 + 0.4 · 0.2 = 0.14 that there is gold at A . At the end of
the deliberation, the agent will choose the plan that currently has the highest expected
utility.

 The goal here is to fi nd a deliberation strategy that maximizes the expected utility
of the agent. Conitzer and Sandholm (2003) show that this problem is NP-hard, even
if there is at most one deliberation action (with only two outcomes) per plan. They
do not even prove that the problem is in NP; it could be that it is, for example,
PSPACE-hard. 2

 The problem that we studied in this subsection has the nice property that each
deliberation action only affects the agent ’ s beliefs for a single plan, and for each plan
there is only a single deliberation action to choose. In the next subsection, we consider
a variant of the metareasoning problem without such properties.

 Variant 3: Deliberation to Disambiguate State
 In the fi nal variant of the metareasoning problem that we consider, the agent knows
that the world can be in any one of several states. To obtain nonzero utility, the agent
needs to determine (by deliberation) the state of the world with certainty. If the agent

2. A closely related class of problems that has been receiving attention more recently is that of

 “ budgeted learning ” problems (Guha & Munagala, 2007 ; Madani, Lizotte, & Greiner, 2004).

Metareasoning as a Formal Computational Problem 123

succeeds in determining the state of the world, then the agent ’ s utility depends on
which state it is. The agent has a set of available deliberation actions; the outcome of
each deliberation action rules out certain states. The outcome of a deliberation action
is not deterministic. For example, Conitzer and Sandholm (2003) consider a setting
in which a robot is trying to determine the nature of a gap in the fl oor in front of it.
If it cannot determine the nature of the gap with certainty, it should be conservative
and turn around, getting utility zero. If it determines the nature of the gap, it may be
able to get past the gap and get some utility, depending on what kind of gap it is. The
agent can take only a certain number of deliberation actions (there is a deadline).

 Again, the goal for the agent is to fi nd a deliberation strategy that maximizes its
expected utility. Conitzer and Sandholm (2003) show that this problem is PSPACE-
hard, making it the hardest of the metareasoning problems that we have considered
(unless the previous problem also turns out to be PSPACE-hard). They also show that
the problem remains NP-hard even if, for every state and every deliberation action,
there is only a single possible outcome for that deliberation action when the world is
in that state (so that the outcomes of deliberation actions are deterministic).

 Implications for Metareasoning Systems

 What is the relevance of these complexity results to the design of metareasoning
systems? Of course, this depends fi rst of all on whether the problems that we consid-
ered are indeed (sub)problems that need to be solved in real metareasoning systems.
It seems likely that they are, but we will consider this question in more detail later in
this section. For now, let us consider metareasoning systems that indeed need to solve
one of the above problems.

 We fi rst note that in all of the above problems, the deliberation that the agent can
perform is limited by a deadline. So, all the time that the agent spends on the metar-
easoning problem (deciding what deliberation actions to take) is time that can no
longer be spent on actual deliberation. If the metareasoning problem were solvable to
optimality in polynomial time, then perhaps the amount of time spent on the metar-
easoning problem would always be negligible. But the hardness results discussed above
imply that more than polynomial time will be required on at least some instances of
the metareasoning problem (unless P = PSPACE, or P = NP for the easier problems).
Now, it is certainly possible that these hard instances do not occur in practice very
often. For example, we already noted that the fi rst problem that we studied can be
solved in polynomial time if the f i are concave; and it may well be the case that for a
particular application, in practice, these functions are in fact always concave. If so,
then the hardness result becomes irrelevant (for this particular application). However,
we cannot decide whether this is the case if we do not know what instances occur in
practice. Moreover, even if the hard metareasoning instances occur only rarely, we

124 V. Conitzer

would still like to handle them properly. So, it might be the case that in practice most
metareasoning instances lie in a class of “ easy ” instances, and this would mitigate the
problem; but it would not eliminate it.

 Once the time spent on the metareasoning problem becomes a signifi cant fraction
of the total time until the deadline, the agent faces a moving-target problem: the
amount of time left for deliberation changes as the metareasoning problem is being
solved — but the time left for deliberation is part of the input of the metareasoning
problem. This can be resolved in various ways. The simplest is to budget some fi xed
amount of time B for metareasoning, so that the time for taking deliberation actions
is T − B , where T was the original deadline. T − B is thus the deadline that is used in
the input of the metareasoning problem. This approach requires us to have a metar-
easoning algorithm that is guaranteed to give a reasonable solution in B units of time;
this could be an approximation algorithm with a running time bound of B , or an
anytime algorithm that we can simply interrupt at time B .

 Another approach would be to have a metareasoning algorithm that, in the fi rst B 1
units of time, fi nds a solution that requires T − B 1 units of deliberation time; then,
in the next B 2 units of time, it fi nds a solution that requires T − B 1 − B 2 units of delib-
eration time; and so on. At the end of each phase, we can stop this metareasoning
algorithm and use the latest solution it provided. One reasonable termination condi-
tion for such a metareasoning algorithm is the following: stop when the quality of
the solution decreased in the latest phase. One downside to this general approach is
that it is not clear that we can reuse any of the computation performed in one
phase of the metareasoning algorithm in a later phase, because the phases are effec-
tively solving different problem instances. Still, there seems to be some hope for such
reuse, because these instances are closely related. Another key question is how to set
the B i ; this may be done dynamically, based on the solutions found in the earlier
phases. This type of analysis of the metareasoning algorithm is getting us into
meta-metareasoning.

 We have implicitly assumed so far that the metareasoning problem is solved fi rst,
and then deliberation starts. This makes sense in a setting where the results of delib-
eration are deterministic, as in the fi rst problem that we studied. However, if the results
of deliberation are not deterministic, then it may make sense to interleave metareason-
ing and deliberation actions. The results of the deliberation actions will allow us to
prune the search space for metareasoning. For instance, in the digging example, if we
do the metareasoning fi rst, then we have to consider both the case where the test for
gold at site A turns out positive and the case where it turns out negative. However, if
we have already decided that the fi rst deliberation action should be to test for gold at
 A , then we should go ahead and perform this test before we return to metareasoning:
if the test turns out (say) positive, then we no longer need to consider what we would
have done if the test had turned out negative.

Metareasoning as a Formal Computational Problem 125

 Finally, let us briefl y return to the question of whether our variants of the metar-
easoning problem were the right ones to study. One debatable aspect is that each of
these variants has a deadline that limits the amount of deliberation that can be per-
formed. Though having such a deadline is realistic in many situations, we could also
consider a model in which there is no deadline, but each deliberation action comes
at a cost. Indeed, such models are common in metareasoning, for example, in the
work on using the expected value of computation to determine when to stop comput-
ing (Horvitz, Cooper, & Heckerman, 1989 ; Horvitz & Breese, 1990). This modifi cation
from a deadline-based model to a cost-based model can affect the complexity of
metareasoning. For example, after this modifi cation, the fi rst problem that we studied
(where the effect of deliberation is deterministic) becomes easy to solve: now, for each
task i separately , we can determine the optimal amount of deliberation ti

* , that is,
 t f t cti t i i ii

* arg max ()∈ − (where c is the cost of a unit of deliberation time). Effectively,
even though the tasks are in and of themselves unrelated, the deadline caused the
decisions about how much time to spend on each task to become interrelated; if we
switch from the deadline model to the cost model, this effect disappears.

 Conclusions

 Metareasoning research often lays out high-level principles, which are then applied
in the context of larger systems. While this approach has proven quite successful, it
sometimes obscures how metareasoning can be seen as a crisp computational problem
in its own right. This alternative view allows us to apply tools from the theory of
algorithms and computational complexity to metareasoning.

 In this chapter, we saw how to formulate variants of the metareasoning problem
as computational problems, and that these computational problems are generally hard.
This approach to the metareasoning problem has at least the following benefi ts:

 Crisp computational formulations of the metareasoning problem make it easier to
consider the key variants of the problem, and to determine what makes the problem
hard.

 The hardness results force us to confront the fact that optimal metareasoning is
not computationally feasible in general, so that we have to consider approximation
algorithms, heuristics, and anytime algorithms for the metareasoning problem, as well
as more involved meta-metareasoning approaches. (It is interesting to contrast this
with the discussion of “ hierarchical vs. loopy ” in Perlis, this vol., chap. 2.)

 The reader may be disappointed that we have not given a single, all-encompassing
defi nition of the general metareasoning problem. Certainly, it seems diffi cult to create
such a defi nition: it seems likely that one would leave out some aspect of the problem.
Nevertheless, it may well be interesting to attempt such a defi nition, even if it is for
no other purpose than to provide a starting point for discussion. However, the diffi -

126 V. Conitzer

culty of giving a truly general defi nition is not the main reason that we focused on
more restricted variants in this chapter. Rather, the main reason for this is that these
simple variants are already computationally hard. Any fully general defi nition of the
metareasoning problem would presumably include all of these variants as special cases.
Because computational problems inherit the hardness of their special cases, this means
that we have already shown that the general metareasoning problem is hard (even
without giving its precise defi nition).

 The above also casts some doubt on the value of coming up with a single, general
defi nition of the metareasoning problem as a formal computational problem. If one
were to write an algorithm to solve such a general problem, it would have to address
a tremendous variety of complexities, including all the ones studied here as well as,
presumably, numerous others. As long as we are not trying to solve the general AI
problem, it is probably more productive to focus on the special cases of the metarea-
soning problem that are important for the application at hand, thereby avoiding some
of the irrelevant complexities. This is absolutely not to say that there is no value in
 studying and discussing metareasoning in general: in fact, doing so is vital to help us
understand the relationships among the different variants of the metareasoning
problem, and will allow for the smooth transfer of techniques across these variants.

 There are still many open questions. For many key variants, the complexity of the
metareasoning problem has not yet been established (including many variants where
there is no deadline but deliberation is costly). For the variants where optimal metar-
easoning has been shown to be hard, there is still a need for approximation algorithms
or inapproximability results, as well heuristics and anytime algorithms without formal
guarantees but with good practical performance. Perhaps more important, it is not yet
entirely clear what the best high-level framework is for metareasoning when optimal
metareasoning is hard, especially when time is limited and the metareasoning is using
up time that could have been used for deliberation actions. As discussed above, we
run into the issue that the problem instance becomes a moving target, because the
available time for deliberation is changing. Moreover, when the results of deliberation
are uncertain, it makes sense to interleave metareasoning and deliberation, because
the outcomes of deliberation actions will allow us to prune the possibilities that the
metareasoning algorithm no longer needs to consider.

 References

 Boddy , M. , & Dean , T. (1994). Deliberation scheduling for problem solving in time-constrained

environments. Artifi cial Intelligence , 67 , 245 – 285 .

 Conitzer , V. , & Sandholm , T. (2003). Defi nition and complexity of some basic metareasoning

problems. In Proceedings of the Eighteenth International Joint Conference on Artifi cial Intelligence

(IJCAI) (pp. 1099 – 1106). San Francisco: Morgan Kaufmann.

Metareasoning as a Formal Computational Problem 127

 Guha , S. , & Munagala , K. (2007). Multi-armed bandits with limited exploration. In Proceedings

of the 39 th Annual ACM Symposium on Theory of Computing (STOC) (pp. 104 – 113). New York: ACM.

 Horvitz , E. J. , & Breese , J. S. (1990). Ideal partition of resources for metareasoning . Technical Report

KSL-90 – 26, Stanford University Computer Science Department.

 Horvitz , E. J. , Cooper , G. F. , & Heckerman , D. E. (1989). Refl ection and action under scarce

resources: Theoretical principles and empirical study. In Proceedings of the Eleventh International

Joint Conference on Artifi cial Intelligence (IJCAI) (pp. 1121 – 1127). Los Altos, CA: Morgan Kaufmann.

 Horvitz , E. J. (1987). Reasoning about beliefs and actions under computational resource con-

straints. In Proceedings of Third Workshop on Uncertainty in Artifi cial Intelligence (pp. 429 – 444).

Amsterdam: North Holland.

 Horvitz , E. (2001). Principles and applications of continual computation. Artifi cial Intelligence ,

 126 , 159 – 196 .

 Madani , O. , Lizotte , D. J. , & Greiner , R. (2004). Active model selection. In M. Chickering & J.

Halpern (Eds.), Proceedings of the 20th Annual Conference on Uncertainty in Artifi cial Intelligence (UAI)

(pp. 357 – 365). Arlington, VA: AUAI Press.

 Zilberstein , S. , & Russell , S. (1996). Optimal composition of real-time systems. Artifi cial Intelli-

gence , 82 (1 – 2), 181 – 213 .

 III Introspective Monitoring

 9 Metareasoning, Monitoring, and Self-Explanation

 Michael T. Cox

 A signifi cant research history exists with respect to metareasoning in artifi cial intel-
ligence (Anderson & Oates, 2007 ; Cox, 2005), and much of it is driven by the problems
of bounded rationality (see Zilberstein, this vol., chap. 3). That is because of the size
of the problem space, the limitations on resources, and the amount of uncertainty in
the environment; as a result, only approximate solutions can be obtained for fi nite
agents. So, for example, with an anytime algorithm that incrementally refi nes plans,
an agent must choose between executing the current plan or further deliberation with
the hope of improving the plan. To make this choice, the agent is reasoning about its
own reasoning (i.e., planning) as well as its potential actions in the world (i.e., the
plan). As such this represents the problem of explicit control of reasoning.

 Figure 1.2 in the manifesto illustrates the control side of reasoning along its upper
portion. Reasoning controls action at the ground level in the environment, whereas
metareasoning controls the reasoning at the object level. For the anytime controller,
metareasoning decides when reasoning is suffi cient and thus action can proceed.
Although other themes exist within the metareasoning tradition, this characterization
is a common one (e.g., Conitzer, this vol., chap. 8; Horvitz, 1987 ; Raja, Alexander,
Lesser & Krainin, this vol., chap. 13; Russell & Wefald, 1991).

 The complementary side of metareasoning, however, is less well studied. The intro-
spective monitoring of reasoning performance requires an agent to maintain some
kind of internal feedback in addition to perception, so that it can perform effectively
and can evaluate the results of metareasoning. For instance, Zilberstein (1993 ; Zilber-
stein & Russell, 1996) maintains statistical profi les of past metareasoning choices and
the associated performance and uses them to mediate the subsequent control and
dynamic composition of reasoning processes.

 But introspective monitoring can be even more explicit. If the reasoning that is
performed at the object level, and not just its results, is represented in a declarative
knowledge structure that captures the mental states and decision-making sequence,
then these knowledge structures can themselves be passed to the metalevel for moni-
toring. For example, the Meta-AQUA system (Cox & Ram, 1999) keeps a trace of its
story understanding decisions in structures called a trace meta-explanation pattern

132 M. T. Cox

(TMXP). Here the object-level story understanding task is to explain anomalous or
unusual events in a ground-level story perceived by the system. 1 Then, if this explana-
tion process fails, Meta-AQUA passes the TMXP and the current story representation
to a learning subsystem. The learner performs an introspection of the trace to obtain
an explanation of the explanation failure called an introspective meta-explanation
pattern (IMXP). The IMXPs are used to generate a set of learning goals that are passed
back to control the object-level learning and hence improve subsequent understand-
ing. TMXPs explain how reasoning occurs; IMXPs explain why reasoning fails.

 Unfortunately these meta-explanation structures are so complicated that, although
they have been shown empirically to support complex learning, they cannot be under-
stood easily by humans. Indeed before I demonstrate the Meta-AQUA system to others,
I often spend twenty minutes reviewing the TMXP and IMXP schemas, so that I can
answer questions effectively. However, I claim that all metareasoning systems share
this characteristic. The kinds of recursive processing an agent must do to perform
metareasoning (e.g., within the metacognitive loop of this vol., chap. 12) and the
types of knowledge structures used to support metareasoning (e.g., the introspective
explanations in this vol., chap. 11, or the workfl ow trace representations in this vol.,
chap. 6) produce a severe cognitive demand on even the most sophisticated observer.
What is required is the implementation of an infrastructure to support interactive
explanation of an agent ’ s own reasoning. 2 By so building such an infrastructure, we
not only improve our understanding of the design of intelligent agents, but we also
move toward agents that truly understand what they are doing and why. A solution
lies along the monitoring side of metareasoning.

 This chapter will examine further the potential that the monitoring of reasoning
provides and will consider what implications exist. For metareasoning in agent-based
systems, the self is the object of the processing, yet for many researchers the centrality
of this statement is left wholly implicit. Here we will briefl y discuss four characteristics
or aspects of self from a computational stance. We consider in turn self-modifying
code, self-knowledge, self-understanding, and fi nally self-explanation. After discussing
the issue of evaluation, we will conclude by enumerating some outstanding problems
related to metareasoning.

 Self-Modifying Code

 Like many novice programmers, I was fascinated by the idea of self-modifying code
as an undergraduate. It seemed to capture in a direct and elegant way the idea of

1. Note that no action-selection occurs with the story understanding task.

2. McGuinness and associates (McGuinness, Ding, Glass, Chang, Zeng, & Furtado, 2006; McGuin-

ness & Patel-Schneider, 2003) have made a similar claim with respect to explanation for the

semantic web.

Metareasoning, Monitoring, and Self-Explanation 133

learning and intelligence. Of course my instructor quickly pointed out that this was
a bad idea from a software engineering perspective and constituted a poor design. It
generates hard-to-understand code that is very diffi cult to debug, because the fl ow of
control lacks transparency. Instead, the goal of top-down design is to abstract the
environment using relevant data structures and to model the dynamics and interac-
tions with these data structures. To effect a change in the behavior of the program, it
was preferable to modify the data, not the code. Yet for some of us, it is easy to confuse
techniques of self-modifi cation with the principles of metareasoning.

 For example, in the concluding paragraph of a chapter from an expert-systems
textbook, Lenat et al. (1983) proclaim the following:

 Once self-description is a reality, the next logical step is self-modifi cation. Small, self-modifying,

automatic programming systems have existed for a decade; some large programs that modify

themselves in very small ways also exist; and the fi rst large fully self-describing and self-modifying

programs are being built just now. The capability of machines has fi nally exceeded human cogni-

 Figure 9.1
 Self-modifying code.

134 M. T. Cox

tive capabilities in this dimension; it is now worth supplying and using meta-knowledge in large

expert systems. (p. 238)

 Given that this quote is more than a quarter of a century old, we can attribute the
over-enthusiastic response to some amount of na ï vet é , but this assertion remains
astonishing nonetheless. To what dimension are they referring when they claim that
human capabilities have been supplanted by machines, and in what manner are self-
modifi cation and metaknowledge the prime factors? Surely, by most accounts, this
exaggerates. The primary issue should be the relationship between learning and
metareasoning.

 To improve performance an agent must be able to adapt and change so that over
time better decisions accrue. Changes can occur in essentially two ways. Agents are
commonly construed as functions from a current state to some action that will change
the state. Self-modifi cation can be cast as adaptive changes to this function given a
suitable representation for the function in a particular data structure and rigorous
algorithms that transform the function. Alternatively, learning can be cast as an accu-
mulation of knowledge. As an agent acquires more knowledge and as its knowledge
base is refi ned and reorganized, its performance and action selections should improve
as a result. Yet it is unclear how metaknowledge is related to successful change and
whether the two alternatives just described can be related.

 Self-Knowledge

 Many researchers stress the importance of metaknowledge in the design of intelligent
agents, and certainly many papers on metareasoning discuss metaknowledge (e.g.,
 Arkoudas & Bringsjord, 2005 ; Barklund, Dell ’ Acqua, Constantini, & Lanzarone, 2000 ;
 Cox, 2005 ; Davis, 1980 ; Hahn, Klenner, & Schnattinger, 1996 ; Raja & Goel, 2007).
Metaknowledge being knowledge about knowledge seems at fi rst blush to be crucial
to learning if not action. That is, how can an agent improve its knowledge without
understanding the knowledge? Indeed, the area of knowledge refi nement appears to
need much in addition to lone assertions in order to evaluate a knowledge base and
to be able to make the necessary changes. Yet much of the recent trend in learning
research demonstrates just how much an agent can learn using data-driven statistical
approaches such as reinforcement learning.

 Much ambiguity also exists with respect to metaknowledge and planning agents.
Confusion results when a cognitive process such as planning and when knowledge
concerning the world such as plans are mistaken for metacognitive processes and self-
knowledge at the metalevel. Part of this problem is the fact that metaknowledge can
exist at both the object and metalevels and that interactions occur between levels.
Consider the statement “ The robosoccer agent followed its plan and won the cham-
pionship because the plan was a good one. ” I claim that, although this statement

Metareasoning, Monitoring, and Self-Explanation 135

 Figure 9.2
 Self-knowledge.

136 M. T. Cox

contains metaknowledge, it does not necessarily involve metareasoning. Instead, it
refers to action at the ground level (i.e., soccer actions) controlled by an object-level
constructed piece of knowledge (i.e., the game plan). To state that the plan was a good
one is an assertion about the plan and thus knowledge about knowledge, but at no
point must we infer metareasoning or the metalevel. Thus metaknowledge is indepen-
dent of metareasoning. 3

 Furthermore, the statement concerns another agent and does not involve the self.
Self-knowledge arises in part from the psychological distinction between semantic and
episodic memory (Tulving, 1972). Semantic knowledge is general knowledge about
objects such as “ All psychologists know a lot about human thinking. ” Episodic knowl-
edge concerns actual events or episodes in a person ’ s life or in an agent ’ s action
history. Much of human reasoning is driven by this type of concrete experience. For
example, I might know that all computer scientists are good at mathematics and that
I am a computer scientist. But I would not conclude that I am good at math through
logical deduction with this semantic knowledge. Instead, I have many experiences
with performing mathematics and have come to trust my ability to do similar prob-
lems in the future. Such confi dence in my own ability is metaknowledge derived by
reasoning about my own reasoning experiences.

 Such an approach to self-knowledge uses a case-based reasoning (Kolodner, 1993 ;
 Leake, 1996 ; Lopez de M á ntaras et al., 2006 ; Riesbeck & Schank, 1989) perspective.
That is, a case-based agent performs reasoning by being reminded of past cases of
experience and by adapting these cases to the current situation when interpreting
perceptions (case-based understanding) or choosing an action to perform (case-based
planning). Ironically and like most AI programs, few case-based implementations focus
on an explicit representation of the self or otherwise operationalize the self despite
specifi c case libraries that represent experience. 4

 Self-Understanding

 Early research in the case-based reasoning community concentrated on cognitive
modeling of the human comprehension process, especially in terms of how humans
acquire a conceptual understanding of stories or textual representations (e.g., Schank
 & Abelson, 1977 ; Schank & Riesbeck, 1981). As is the case with Meta-AQUA, the story

4. An interesting exception exists with the research of Forbus and Hinrichs (2004) that tracks

agent activity logs to ascertain episodic information with respect to self-knowledge.

3. Note that this statement is an assertion about metaknowledge and therefore meta-metaknowl-

edge. However, this distinction is not necessarily very important or useful. What is important is

simply that we as researchers be clear with our categories for purposes of communication of agent

design and implementation.

Metareasoning, Monitoring, and Self-Explanation 137

understanding task is to take as input a representation (either conceptual or textual)
of the story and to produce as output an interpretation of the input. Although inter-
pretation can take many forms, the CBR stance is to retrieve a piece of experience (i.e.,
a script or case) that matches the content of the current sentence and to adapt it to
produce the interpretive understanding. So the story is understood, if the program
can successfully answer questions about the story, paraphrase it, or connect the rep-
resentations into a coherent whole that predicts further events in the story. More
generally, this same process can be applied to monitor one ’ s own plans or exogenous
events executed in the world or to monitor reasoning performed in the head. The key
is that monitoring, like control, is a “ fi rst-class citizen ” in both the reasoning and
metareasoning processes (Cox, 1996b ; So & Sonenberg, 2007).

 An initial introspective cognitive agent called INTRO (Cox, 2007) combines plan-
ning and understanding within a Wumpus World environment (Russell & Norvig,
2003) by integrating the PRODIGY planning and learning architecture (Carbonell,
Knoblock, & Minton, 1991 ; Veloso et al., 1995) with the Meta-AQUA story understand-
ing and learning system. Rather than input all goals for the agent to achieve, the
understanding component compares expected states and events in the world with
those actually perceived to create an interpretation. When the interpretation discloses
divergence from those expectations, INTRO generates its own goals to resolve the
confl ict. These new goals are then passed back to the PRODIGY component so that a
plan can be generated and then executed. As such, introspective monitoring controls
action through the creation of new goals.

 This understanding process depends on declaratively represented percepts of
ground-level states and actions. If the reasoning processes at the object level (i.e., the
mental states and inferences) are likewise represented declaratively, metareasoning can
monitor such activity to obtain some measure of self-understanding. As mentioned in
the introduction, the Meta-AQUA system implements a theory of introspective mul-
tistrategy learning whereby the system builds and executes a learning plan to achieve
a set of learning goals. These goals are spawned in response to explanations of expla-
nation failures, which allow the system to decide what to learn. However, much
remains to be implemented in the INTRO system to achieve a full integration of rea-
soning and metareasoning and of world knowledge and self-knowledge.

 For example, other than control over goal generation, monitoring has no control
over INTRO ’ s reasoning. Consider the possible responses to a failed robosoccer plan.
If an agent was to reason about why its game plan did not succeed by considering its
prior planning (e.g., “ I focused on our ball-handling when creating the plan rather
than the defender ’ s capabilities ”) as opposed to simply analyzing the plan or the plan
execution, then metareasoning and monitoring would be involved. But INTRO cannot
use such inferences to improve its future planning performance. Furthermore, plan-
ning itself is not infl uenced by cases of prior planning, although an introspective

138 M. T. Cox

 Figure 9.3
 Self-understanding.

Metareasoning, Monitoring, and Self-Explanation 139

version of PRODIGY called Prodigy/Analogy (Veloso, 1994) has that capability. Cer-
tainly INTRO has never felt a familiarity at planning time so that it might say to itself,
 “ This partial plan must be close to a correct one, because I have performed similar
planning before. ” 5 Also, INTRO cannot decide whether it is competent enough for a
task (at either the ground or object level) or whether it should ask another agent to
perform the task instead. Finally, despite the fact that INTRO might invoke the Meta-
AQUA component to explain some failed reasoning, it cannot actually explain the
failure to you. Here I claim that not only INTRO but all metareasoning agents would
benefi t from similar capabilities.

 Self-Explanation

 Explanation-aware computing is seeing a recent resurgence in the AI and cognitive
science communities as indicated by the existence of mainstream workshops (Roth-
Berghofer & Schultz, 2005 ; Roth-Berghofer, Schultz, Bahls & Leake, 2007) and compila-
tions (e.g., Roth-Berghofer & Richter, 2008 ; Keil & Wilson, 2000). Explanations provide
numerous functions including event prediction, assignment of personal (e.g., legal)
blame, and diagnosis for repair (Keil, 2006), but their most central purpose is to deter-
mine causal connectedness in service of learning (Keil, 2006 ; Ram & Leake, 1991 ;
 Schank, 1986). Explanation provides a key capability for elaborating the understand-
ing that agents produce when processing the environment, especially when agents ’
perceptions diverge from their expectations. An explanation likewise provides a causal
accounting of mental anomalies discovered during monitoring.

 Explanation is ubiquitous. While discussing self-knowledge, I provided an explana-
tory sentence as an example. To assert that a robosoccer agent won a championship
because the plan was a good one is to causally link the characteristics of the plan to
successful performance (i.e., following the plan). A story-understanding agent com-
prehends an input, if it can explain why the characters in the story do surprising
things by inferring what their goals and motivations are and by enumerating those
events that follow from earlier ones in a causally determined manner (e.g., event e 1
results in a state that is the precondition or determinant for another event e 2). Such
explanations link the causally relevant past events with the desired future states to
account for current observations. 6 Yet explanation is all too absent in many agent-
based implementations.

5. But see the DIAL case-based planner (Leake, Kinley, & Wilson, 1996) that considers familiarity

with past reasoning.

6. Such self-projection into the future and past has been linked to central human cognitive abili-

ties (Buckner & Carroll, 2007).

140 M. T. Cox

 Figure 9.4
 Self-explanation.

Metareasoning, Monitoring, and Self-Explanation 141

 Like Rats in a Maze
 As commented upon in the above section on self-knowledge, statistical techniques
have proven to be a powerful means of enabling agent-based systems to learn complex
behaviors from interactions with regularities in the environment. Indeed, given the
Markov assumption of independent decisions, we can model an agent with the policy
 π * (s) that returns an optimal action, a , from any given state, s . Even though an agent
may not know the environmental probability distribution between states and actions,
an agent that explores states through its actions can converge on the optimal policy
by experiencing rewards and using Q-learning.

 The technique has been used in many complex situations and under various condi-
tions of uncertainty to model behavior in the natural world. For example, both Koni-
daris and Hayes (2005) and Sharma (2003) have shown reinforcement learning to be
capable of simulating the maze learning behavior of rats. In the simplest of trials, one
can place a rat at the base of a T-maze with cheese in one of the two arms. The task
is for the rat to fi nd the food. Given a suffi cient number of trials, the algorithms will
learn the correct set of actions to fi nd the reward. More complex mazes can be
assembled by connecting multiple Ts, each representing a binary decision. But con-
sider the following. The artifi cial rats may learn to fi nd the reward, but do they know
where the cheese is?

 Many years ago, Tolman (1948) ran a very interesting experiment at Berkeley with
actual rats. They had two groups that experienced very different conditions. The fi rst
group of rats represented the standard condition. These rats were deprived of food for
a length of time so that they were hungry, and they were trained over an eleven-day
period through a complex maze system. By the end of the period, they had reached
a high level of performance so that they made few errors when running the maze.
The second group of rats were fed until satiation and then were strapped into small
wheelbarrows. The experimenters then pushed the wheelbarrows through the maze
to the location of the cheese. After eleven days the second group was tested using a
standard test (hungry and on foot). The surprising discovery was that the group very
quickly gained performance equal to that of the standard learning condition. The
experiment demonstrated latent learning in the absence of reward. That is, the reward
was necessary for performance but not for learning.

 This is relevant to metareasoning, because many forms of metareasoning use data-
driven statistical methods and reinforcement-learning driven only by performance as
determined by a reward schedule (e.g., Hansen & Zilberstein, 2001 ; Raja & Lesser,
2007). Moreover, it is diffi cult to claim that these systems can understand themselves
in an explicit way, although they have a statistical model of their own reasoning and
reason recursively about the model. This is true at both the object and the ground
levels. The reinforcement-learning agent reported by Perlis and colleagues (Anderson
 & Perlis, 2005 ; Schmill et al., this vol., chap. 12) contains an internal metacognitive

142 M. T. Cox

loop that detects when the rewards in the environment diverge from its expectations.
Analysis of such perturbations leads to improved performance with respect to standard
reinforcement learners. But can this type of agent explain how and why it learns?
Because the statistical models have no symbolic content, explanation is handicapped.
Instead, we should consider how an agent might learn an explainable policy π e (s) that
decides to take action, a , when in state, s , because of justifi cation, j . For example, such
a policy would suggest that the rat turns left at the T junction because the cheese is at
the end of the left arm . When the cheese is no longer to be found to the left and is
instead at the end of the right arm, a straightforward explanation of failure should
result in more effective learning. Granted, Raja and Goel (2007) are making progress
toward enabling introspective explanations, but as mentioned previously, the kinds
of explanations structures used in metareasoning (i.e., meta-explanations and
introspective explanations) are of less use to humans trying to understand the
metareasoning.

 From Rats to Cognitive Agents
 Two characteristics separate humans from all other species including rats. First is our
creative use of natural language and our ability to communicate to others (and to
ourselves). Second is the (albeit limited) ability to introspect and to explain our iden-
tity as individuals. This chapter challenges the metareasoning community to develop
computational frameworks within which these two characteristics synthesize. The goal
is to create cognitive agents that can explain themselves to others in plain English.
Evidence exists that such self-explanation behavior can help agents learn better (Cox,
2007 ; Cox & Ram, 1999), and lucid English translations will clearly help humans gain
trust in their cognitive assistants.

 The general problem faced by users of cognitive systems is that of trust calibration.
Some users overestimate the ability of systems, whereas others underestimate or mis-
trust them. The root cause in both cases is that users do not understand how or why
computers do what they do. If a system could explain itself in English and tell a user
why it makes a particular decision, the user will more likely know the correct uses and
limits of that system. But most important, it is the very act of explaining itself that
allows a system to improve its performance in ways that ordinary machine learning
programs never will.

 The problem faced by designers of cognitive systems is that the intelligent agents
they wish to develop are so complicated that existing and foreseeable design tech-
niques are unable to effectively engineer them with existing technology alone. Yet if
a learning agent could participate in its own testing and debugging, the agent might
explain those components of its software that have implementation failures so that
engineering bottlenecks can be overcome. One direction toward this ideal is to for-
mulate systems that generate detailed explanation graph structures of their internal

Metareasoning, Monitoring, and Self-Explanation 143

 Table 9.1
 Ten simple mental explanations

 1 I forgot that X.

 2 I am good at Y.

 3 I did not see (or notice) Z.

 4 I mistook an M for an N.

 5 I assumed that I is the case because B.

 6 I thought that all J could K.

 7 I learned that Q today.

 8 I did not have enough time to think about R.
I wasted time worrying (thinking) about R.

 9 S surprised me because B.

 10 I chose to do A1 instead of A2 because B.
I wanted to achieve G1 rather than G2 because B.

behavior and provide interactive graph-navigation aids with English-generation
abilities.

 Many reasons exist for self-explanation, but it is not an easy task. Table 9.1 lists
my top ten favorite explanations I would like to hear a cognitive agent communicate.
Consider the fi rst. Many humans have explained to their friends that they were
late for an appointment because they forgot to fi ll up their car with gas. Cox (1994)
notes that, if a case-based planner uses an indexed memory for retrieval of past cases
in lieu of exhaustive search, then forgetting is a potential causal factor in planning
failures.

 Figure 9.5 illustrates the IMXP explanation structure for such a reasoning failure.
The language task then is to take this graph as input and to output either a paraphrase
or elaboration in English text. A suitable paraphrase might be “ I forgot to fi ll up the
car with gas when I was at the store. ” An elaboration might be something similar to
the following text. “ The context, C , of being at the store did not suffi ciently match
the index, I , with which the goal, G , to fi ll up with gas was stored in memory, so I
failed to retrieve the goal at the right time and thus did not put gas in the tank. Because
the tank was low, I did not have enough fuel and then ran out of gas. ” Being able to
generate such text might be possible using existing language-generation algorithms
(Lester & Porter, 1996 ; McDonald, 2010), although many problems of generative focus
exist.

 Another open research question remains as to the best method of quantitatively
evaluating subjective explanation. An explanation can be true but totally miss the
point. For example, it does not help us understand why fi remen wear red suspenders
if we are told that the suspenders hold their pants up (Ram, 1989). What is most
important in evaluating an explanation is not its veracity per se, but whether it serves

144 M. T. Cox

Missing Action

Mentally
Enables

Mentally
Results

Not Mentally Results

object

object

subject

subject

object

object

3

1

2

Q C

I

G

subject

Mentally
Initiates

Should have filled up

with gas when tank low

Mentally
Enables

Mentally
Results

subject

subject

object

5

6

4

=

Tank
Full

Tank
Full

Fill Tank

Tank
Low

Run out
of gas

Truth

Retrieval
Failure

Answers

outFK

index

Decision
Basis

at
Store

Pose
Question

What
action
to do?

Memory
Retrieval

Infer

 Figure 9.5
 “ Forgetting to fi ll up with Gas ” Meta-XP structure.

the need of the agent (either self or other) targeted by the explanation. The need is
in terms of the current knowledge of the agent and gaps in the knowledge that the
explanation fi lls (Leake, 1994 ; Ram & Leake, 1991). So when knowledge is missing,
incorrect, or disconnected from related knowledge, the best explanation fi lls the gap,
corrects the misconception, or causally links assertions that provide further coherence
and relational structure.

 The challenge is to take these long-standing, subjective principles and to operation-
alize them constructively. A numeric criterion may be a poor substitute for evaluating
the extent to which a large graph structure fulfi lls conceptual needs as opposed to
strictly syntactic ones (e.g., the number of connected components in an explanation),
but the loss due to abstraction and approximation is compensated by the ability to
compare and contrast explanatory solutions. In a very simple way, the dissertation
research of Cox (1996a , b) provides a start toward this goal. Each anomaly in a story
represents a source of knowledge discrepancy for Meta-AQUA and a potential explana-
tion target. For each anomaly, up to three points are awarded: one point for identifying

Metareasoning, Monitoring, and Self-Explanation 145

that a question needs to be posed, a second for providing any explanation, and a third
for matching the “ correct ” explanation as enumerated by an oracle. With this or any
like function, the evaluator should generate a real number between 1 and 0. Then, to
normalize the explanation criterion with performance (given a performance measure
also between 1 and 0), it is suffi cient to calculate performance/ (2-explanation). When
explanation is 1, the measure refl ects performance alone; otherwise, the measure can
be reduced by as much as half the normal performance. Without the incorporation
of self-explanation into the overall performance measure, many metareasoning imple-
mentations can simply optimize performance fi rst and then sprinkle on a bit of meta-
sugar after the fact.

 Conclusion

 I am not the fi rst to call for agents that truly know what they are doing and why. Raja
and Goel (2007) make many of the same arguments, and Brachman (2002) issued the
challenge beforehand. Indeed, Brachman initiated DARPA ’ s cognitive computing
vision that seeks to solve basic research and development problems related to those
described here (Defense Advanced Research Projects Agency [DARPA], 2009). One dif-
ference is that I claim that, if an agent really understands what it is doing and why,
then it should be able to explain this self-understanding to others as well.

 I will simply close with a list of hard problems that, in addition to the problems
of text generation and evaluation, seriously impede progress toward agents that can
meaningfully claim to know themselves.

 The problem of appropriateness Given that metareasoning creates an additional com-
putational burden, how can an agent decide when the potential benefi t of metareason-
ing will outweigh the cost of its overhead?
 The homunculus problem How can we effectively control metareasoning without sub-
stituting yet another computational layer above the metalevel?
 The problem of consciousness How can the many heterogeneous reasoning functions
such as problem solving, understanding, and learning be multiplexed with metarea-
soning into a whole that represents the unity of experience? 7
 The existential problem What are the computational properties that lie beneath the
illusion of separate, independent existence and free will? 8
 The problem of identity What knowledge structure best represents the abstract notion
of self?

7. See Sloman (this vol., chap. 20) for a discussion.

8. For some prominent comments on this issue, see Minsky (1968) and Sloman (1992) .

146 M. T. Cox

 Acknowledgments

 The views, opinions, and fi ndings contained in this chapter are those of the author
and should not be interpreted as representing the offi cial views or policies, either
expressed or implied, of the Defense Advanced Research Projects Agency or the Depart-
ment of Defense. This document has been approved for public release by DARPA for
unlimited distribution. I thank Deborah Dixon for the illustrations used in the fi rst
four fi gures.

 References

 Anderson , M. , & Oates , T. (2007). A review of recent research in metareasoning and metalearn-

ing. AI Magazine , 28 (1), 7 – 16 .

 Anderson , M. , & Perlis , D. (2005). Logic, self-awareness and self-improvement: The metacognitive

loop and the problem of brittleness. Journal of Logic and Computation , 15 (1), 21 – 40 .

 Arkoudas , K. , & Bringsjord , S. (2005). Metareasoning for multi-agent epistemic logics . In J. Leite

 & P. Torroni (Eds.), Computational Logic in Multi-Agent Systems: 5th International Workshop, CLIMA

V, Lisbon, Portugal, September 29 – 30, 2004 (pp. 111 – 125). Berlin : Springer .

 Barklund , J. , Dell ’ Acqua , P. , Constantini , S. , & Lanzarone , G. A. (2000). Refl ection principles in

computational logic. Journal of Logic and Computation , 10 (6), 743 – 786 .

 Brachman , R. J. (2002). Systems that know what they are doing. IEEE Intelligent Systems , 17 (6),

 67 – 71 .

 Buckner , R. L. , & Carroll , D. C. (2007). Self-projection and the brain. Trends in Cognitive Sciences ,

 11 (2), 49 – 57 .

 Carbonell , J. G. , Knoblock , C. A. , & Minton , S. (1991). PRODIGY: An integrated architecture for

planning and learning . In K. VanLehn (Ed.), Architectures for intelligence: The 22nd Carnegie Mellon

Symposium on Cognition (pp. 241 – 278) . Hillsdale, NJ : Lawrence Erlbaum .

 Cox , M. T. (1994). Machines that forget: Learning from retrieval failure of mis-indexed explana-

tions. In A. Ram and K. Eiselt (Eds.), Proceedings of the Sixteenth Annual Conference of the Cognitive

Science Society (pp. 225 – 230). Hillsdale, NJ: LEA.

 Cox , M. T. (1996a). An empirical study of computational introspection: Evaluating introspective

multistrategy learning in the Meta-AQUA system. In R. S. Michalski & J. Wnek (Eds.), Proceedings

of the Third International Workshop on Multistrategy Learning (pp. 135 – 146). Menlo Park, CA: AAAI

Press.

 Cox , M. T. (1996b). Introspective multistrategy learning: Constructing a learning strategy under reason-

ing failure (Tech. Rep. No. GIT-CC-96 – 06). Unpublished doctoral dissertation, Georgia Institute

of Technology, College of Computing, Atlanta.

Metareasoning, Monitoring, and Self-Explanation 147

 Cox , M. T. (2005). Metacognition in computation: A selected research review. Artifi cial Intelligence ,

 169 (2), 104 – 141 .

 Cox , M. T. (2007). Perpetual self-aware cognitive agents. AI Magazine , 28 (1), 32 – 45 .

 Cox , M. T. , & Ram , A. (1999). Introspective multistrategy learning: On the construction of learn-

ing strategies. Artifi cial Intelligence , 112 , 1 – 55 .

 Davis , R. (1980). Meta-rules: Reasoning about control. Artifi cial Intelligence , 15 , 179 – 222 .

 Defense Advanced Research Projects Agency (DARPA) . (2009). Strategic plan . Washington, D.C. :

 U.S. Government .

 Forbus , K. , & Hinrichs , T. (2004). Companion cognitive systems: A step towards human-level AI

(pp. 30 – 34). In AAAI Fall Symposium on Achieving Human-level Intelligence through Integrated Systems

and Research . Menlo Park, CA: AAAI Press.

 Hahn , U. , Klenner , M. , & Schnattinger , K. (1996) Automated knowledge acquisition meets metar-

easoning: Incremental quality assessment of concept hypotheses during text understanding (pp.

9 – 14). In Proceedings of the 10th Banff Knowledge Acquisition for Knowledge-Based Systems Workshop .

Calgary: Knowledge Science Institute.

 Hansen , E. A. , & Zilberstein , S. (2001). Monitoring and control of anytime algorithms: A dynamic

programming approach. Artifi cial Intelligence , 126 (1 – 2), 139 – 157 .

 Horvitz , E. (1987). Reasoning about beliefs and actions under computational resource constraints.

In Proceedings of the Third Workshop on Uncertainty in Artifi cial Intelligence (pp. 429 – 444). Amster-

dam: North-Holland.

 Keil , F. C. (2006). Explanation and understanding. Annual Review of Psychology , 57 , 227 – 254 .

 Keil , F. C. , & Wilson , R. A. (Eds.) (2000). Explanation and cognition . Cambridge, MA : MIT Press .

 Kolodner , J. L. (1993). Case-based reasoning . San Mateo, CA : Morgan Kaufmann .

 Konidaris , G. D. , & Hayes , G. M. (2005). An architecture for behavior-based reinforcement learn-

ing. Adaptive Behavior , 13 (1), 5 – 32.

 Leake , D. (1994). Accepter: Evaluating explanations . In R. C. Schank , A. Kass , & C. K. Riesbeck

(Eds.), Inside case-based explanation (pp. 168 – 206). Hillsdale, NJ : Lawrence Erlbaum Associates .

 Leake , D. (Ed.) (1996). Case-based reasoning: Experiences, lessons, and future directions . Menlo Park :

 AAAI Press/MIT Press .

 Leake , D. , Kinley , A. , & Wilson , D. (1996). Linking adaptation and similarity learning (pp.

591 – 596). In Proceedings of the Eighteenth Annual Conference of the Cognitive Science Society . Hills-

dale, NJ: LEA.

 Lenat , D. B. , Davis , R. , Doyle , J. , Genesereth , M. , Goldstein , I. , & Schrobe , H. (1983). Reasoning

about reasoning . In F. Hayes-Roth , D. A. Waterman , & D. B. Lenat (Eds.), Building expert systems

(pp. 219 – 239). London : Addison-Wesley Publishing .

148 M. T. Cox

 Lester , J. , & Porter , B. (1996). Scaling up explanation generation: Large-scale knowledge bases

and empirical studies (pp. 416 – 423). In Proceedings of the Thirteenth National Conference on Artifi cial

Intelligence . Menlo Park: AAAI Press/MIT Press.

 Lopez de M á ntaras , R. , McSherry , D. , Bridge , D. , Leake , D. , Smyth , B. , Craw , S. , et al. (2006).

 Retrieval, reuse and retention in case-based reasoning. Knowledge Engineering Review , 20 (3),

 215 – 240 .

 McDonald , D. (2010). Natural language generation (pp. 121 – 144). In N. Indurkhya & F. J.

 Damerau (Eds.), Handbook of natural language processing (2nd ed.). Boca Raton, FL : CRC Press .

 McGuinness , D. L. , Ding , L. , Glass , A. , Chang , C. , Zeng , H. , & Furtado , V. (2006). Explanation

interfaces for the semantic web: Issues and models. In Proceedings of the 3rd International Semantic

Web User Interaction Workshop (collocated with ISWC 2006). Berlin: Springer.

 McGuinness , D. , & Pinheiro da Silva, P. (2003). Infrastructure for web explanations (pp. 113 – 129).

In Proceedings of 2nd International Semantic Web Conference (ISWC2003). Berlin: Springer.

 Minsky , M. L. (1968). Matter, mind, and models . In M. Minsky (Ed.), Semantic information process-

ing (pp. 425 – 432). Cambridge, MA : MIT Press .

 Raja , A. , & Goel , A. (2007). Introspective self-explanation in analytical agents. In A. Raja & M.

T. Cox (Eds.), Proceedings of the First International Workshop on Metareasoning in Agent-based Systems

(pp. 76 – 91). Collocated with AAMAS-07. Columbia, SC: IFAAMAS.

 Raja , A. , & Lesser , V. (2007). A framework for meta-level control in multi-agent systems. Autono-

mous Agents and Multi-Agent Systems , 15 (2), 147 – 196 .

 Ram , A. (1989). Question-driven understanding: An integrated theory of story understanding, memory

and learning (Tech. Rep. No. 710). Doctoral dissertation, Yale University, Department of Computer

Science, New Haven, CT.

 Ram , A. , & Leake , D. (1991). Evaluation of explanatory hypotheses. In Proceedings of the Thirteenth

Annual Conference of the Cognitive Science Society (pp. 867 – 871). Hillsdale, NJ: Lawrence Erlbaum.

 Riesbeck , C. K. , & Schank , R. C. (Eds.) (1989). Inside case-based reasoning . Hillsdale, NJ : Lawrence

Erlbaum .

 Roth-Berghofer , T. , & Richter , M. M. (Eds.) (2008). Special issue on explanation. K ü nstliche Intel-

ligenz (Artifi cial Intelligence) , 22 (2).

 Roth-Berghofer , T. , & Schultz , S. (Eds.) (2005). Explanation-aware computing: Papers from the AAAI

Fall Symposium (Technical Report No. FS-05 – 04). Menlo Park, CA: AAAI Press.

 Roth-Berghofer , T. , Schultz , S. , Bahls , D. , & Leake , D. B. (Eds.) (2007). Explanation-aware comput-

ing: Papers from the 2007 AAAI Workshop (Technical Report No. WS-07 – 06). Menlo Park, CA: AAAI

Press.

 Russell , S. J. , & Norvig , P. (2003). Artifi cial intelligence: A modern approach (2nd ed.). Upper Saddle

River, NJ : Prentice Hall .

Metareasoning, Monitoring, and Self-Explanation 149

 Russell , S. J. , & Wefald , E. (1991). Principles of metareasoning. Artifi cial Intelligence , 49 ,

 361 – 395 .

 Schank , R. C. (1986). Explanation patterns: Understanding mechanically and creatively . Hillsdale, NJ :

 Lawrence Erlbaum .

 Schank , R. C. , & Abelson , R. P. (1977). Scripts, plans, goals and understanding: An inquiry into human

knowledge structures . Hillsdale, NJ : Lawrence Erlbaum .

 Schank , R. C. , & Riesbeck , C. (Eds.) (1981). Inside computer understanding: Five programs plus min-

iatures . Hillsdale, NJ : Lawrence Erlbaum .

 Sharma , R. (2003). Latent learning in agents . Unpublished. (Available at http://paul.rutgers.edu/

~ratis/LatentLearningiCML.pdf.)

 Sloman , A. (1992). How to dispose of the free-will issue. AISB Quarterly , 82 , 31 – 32 .

 So , R. , & Sonenberg , L. (2007). Situation awareness as a form of meta-level control. In A. Raja &

M. T. Cox (Eds.), Proceedings of the First International Workshop on Metareasoning in Agent-based

Systems (pp. 61 – 75). Colocated with AAMAS-07. Columbia, SC: IFAAMAS.

 Tolman , E. C. (1948). Cognitive maps in rats and man. Psychological Review , 55 , 189 – 208 .

 Tulving , E. (1972). Episodic and semantic memory . In E. Tulving & W. Donaldson (Eds.), Orga-

nization of memory (pp. 381 – 403). New York : Academic Press .

 Veloso , M. M. (1994). Planning and learning by analogical reasoning . Berlin : Springer .

 Veloso , M. , Carbonell , J. G. , Perez , A. , Borrajo , D. , Fink , E. , & Blythe , J. (1995). Integrating plan-

ning and learning: The PRODIGY architecture. Journal of Theoretical and Experimental Artifi cial

Intelligence , 7 (1), 81 – 120 .

 Zilberstein , S. (1993). Operational rationality through compilation of anytime algorithms . Unpublished

doctoral dissertation, University of California at Berkeley.

 Zilberstein , S. , & Russell , S. J. (1996). Optimal composition of real-time systems. Artifi cial Intel-

ligence , 82 (1 – 2), 181 – 213 .

 10 Metareasoning for Self-Adaptation in Intelligent Agents

 Ashok K. Goel and Joshua Jones

 It is generally agreed in artifi cial intelligence (AI) that the capability of metareasoning
is essential for achieving human-level intelligence (e.g., Brachman, 2002 ; Minsky,
Singh, & Sloman, 2004). Past AI research has shown that metareasoning is useful for
many tasks, including planning about reasoning (Cox & Ram, 1999 ; Wilensky, 1981),
control of reasoning (Davis, 1980 ; Hansen & Zilberstein, 2001 ; Hayes-Roth & Larsson
1996; Punch, Goel, & Brown, 1995 ; Raja & Lesser, 2007 ; Stefi k, 1981), bounding rea-
soning (Horvitz, 2001 ; Horvitz, Cooper, & Heckerman, 1989 ; Russell, 1991), revision
of beliefs (Doyle, 1979), revision of reasoning processes (Leake, 1996 ; Murdock & Goel,
2008 ; Stroulia & Goel, 1995), refi nement of knowledge indices (Fox & Leake, 2001),
self-explanation (Cox & Ram, 1999 ; Goel & Murdock, 1996), and guidance of situated
learning (Anderson et al., 2006 ; Ulam, Jones, & Goel, 2008). Cox (2005) provides a
useful review of some AI research on metareasoning.

 Our work on metareasoning since the early 1990s has focused on self-adaptation
in intelligent agents (e.g., Murdock & Goel, 2001a , b , 2003 ; Stroulia & Goel, 1996 ,
 1997). We adopt a design stance toward self-adaptation in intelligent agents. In par-
ticular, we view an intelligent agent as an abstract information-processing device with
a design that is intended to achieve specifi c functions. Self-adaptation in an intelligent
agent then means that the intelligent agent autonomously modifi es elements in its
design to either better achieve a function or achieve a new function. This characteriza-
tion covers a large range of self-adaptation situations. First, self-adaptations to an
agent ’ s design may be retrospective (i.e., when the agent fails to achieve the desired
function; Birnbaum et al., 1990 ; Leake, 1996 ; Stroulia & Goel, 1995 , 1999), or proac-
tive (i.e., when the agent is asked to deliver a new behavior; Murdock & Goel, 2008).
Second, adaptations may be to the deliberative element in the agent design (Birnbaum
et al., 1990 ; Leake, 1996 ; Murdock & Goel, 2008 ; Stroulia & Goel, 1995), to the reac-
tive element (Stroulia & Goel, 1999), or both. Third, adaptations to the deliberative
element may be modifi cations to its reasoning process (i.e., to its task structure,
selection of methods, or control of reasoning; e.g., Birnbaum et al., 1990 ; Murdock
 & Goel, 2008 ; Stroulia & Goel, 1995), to its domain knowledge (i.e., the content,

152 A. K. Goel and J. Jones

representation, and organization of its knowledge [e.g., Jones & Goel, 2007 ; Leake,
1996]), or both.

 A core and long-standing problem in self-adaptation is that of credit (or blame)
assignment (Minsky, 1961 ; Samuel, 1959). It is useful to distinguish between two kinds
of credit assignment problems: temporal and structural. In temporal credit assignment,
given a sequence of many actions by an agent that leads to a failure, the task is to
identify the action(s) responsible for the failure. Reinforcement learning is one method
for addressing the temporal credit assignment problem (Sutton & Barto, 1998). In
structural credit assignment, given an agent composed of many knowledge and rea-
soning elements that fails to achieve a goal, the task is to identify the element(s)
responsible for the failure. Metareasoning for self-adaptation typically addresses the
problem of structural credit assignment, though it can also be used to guide reinforce-
ment learning (Anderson et al., 2006 ; Ulam, Jones, & Goel, 2008). It is also useful to
note the close relationship between agent self-adaptation and agent learning: the use
of metareasoning for self-adaptation views learning as a deliberative, knowledge-based
process of self-diagnosis and self-repair. In this sense, research on self-adaptation
through metareasoning can be viewed as a bridge between knowledge-based AI and
machine learning.

 Our past work on structural credit assignment over reasoning processes has inves-
tigated the hypothesis that a declarative self-model that captures the teleology of the
agent ’ s design (i.e., the agent ’ s functions in the external world and the internal causal
mechanisms that result in the achievement of the functions) may enable localization,
if not also identifi cation, of the elements in the reasoning process responsible for a
given behavior. Thus, the core theme of our previous work on metareasoning for self-
adaptation in intelligent agents has been that teleology is a central organizing prin-
ciple of self-adaptation of reasoning processes. In recent work, we have explored the
use of metareasoning for self-adaptation of domain knowledge. Since classifi cation is
a ubiquitous task in AI, we have focused on the problem of using metaknowledge for
repairing classifi cation knowledge when the classifi er supplies an incorrect class label.
In this chapter, we fi rst briefl y summarize our previous work on self-adaptation of
reasoning processes and then describe our recent work on self-adaptation of domain
knowledge.

 An Example from Game-Playing Software Agents

 To make the problem concrete, consider an example from the turn-based strategy
game called FreeCiv (www.freeciv.org), an open-source variant of a class of Civiliza-
tion games with similar properties. A human player typically plays the game against
multiple software agents. FreeCiv offers a challenging domain for studying the use
of metareasoning for self-adaptation in a software agent. The game is only partially

Metareasoning for Self-Adaptation 153

observable and nondeterministic. Also, the game has a huge state space, making it
computationally infeasible to learn to play well without substantial decomposition
of the game-playing task. However, a neat decomposition of the game-playing task
into a hierarchical task structure is impossible too, because of complex interactions
among multiple subtasks. In one single turn, for example, a software agent designed
to play FreeCiv may need to address several interacting tasks such as managing exist-
ing cities, managing offensive and defensive units, exploring the world, and building
new cities. Building new cities on the game map is a critical action because each city
produces resources on subsequent turns that can then be used by the agent to further
advance its civilization. The quantity of resources produced by a city on each turn
is based on various factors including the terrain and special resources surrounding
the city ’ s location on the map and the skill with which the city ’ s operations are
managed. So the question becomes: How might a game-playing software agent use
metareasoning to adapt its reasoning processes based on failures in its game-playing
experiences? A closely related question is: How may the agent use metareasoning to
adapt its domain knowledge when its predictions about the game turn out to be
incorrect?

 Self-Adaptation of Reasoning Processes
 When our game-playing software agent fails in some task in playing FreeCiv, then the
agent may want to reason about its own design that led to the failure. This metarea-
soning requires that the agent have a representation of the teleology of its design. We
have developed a computational architecture called the Task-Method-Knowledge
model that captures the teleology of the agent design at multiple levels of aggregation
and abstraction (Murdock & Goel, 2001a , b , 2003) and a corresponding Task-Method-
Knowledge Language (TMKL) for specifying the TMK model in a declarative form
(Murdock & Goel, 2008). Figure 10.1 illustrates the tasks (rectangles) and methods
(rounded rectangles) in a small portion of the TMK model for a software agent that
plays the FreeCiv game.

 Briefl y, TMK models of designs of intelligent agents are expressed in terms of tasks,
methods, and knowledge. A task describes the designer ’ s intent in terms of a compu-
tational goal of producing a specifi c result. A method is a unit of computation that
produces a result in a specifi ed manner. A method decomposes a task into subtasks,
specifi es the ordering among the subtasks, and is represented as a fi nite state machine.
This decomposition may go on up to a primitive level of abstraction at which either
the task corresponds to an action in the game, or domain knowledge about the game
directly accomplishes the task. The knowledge portion of the TMK model describes
the concepts and relations that tasks and methods in the model can use and affect as
well as logical axioms and other inferencing information involving those concepts
and relations. Hoang, Lee-Urban, and Mu ñ oz-Avila (2005) have compared TMKL

154 A. K. Goel and J. Jones

Play FreeCiv Turn

Select Compound Action

Select and Move Unit

Select Improve
Terrain Action

Select Build
City Action

Make Build
City Move

Make Improve
Terrain Move

Select Settler
Unit Role

Select Settler
Unit Action

Select Military
Unit Role

Select Military
Unit Action

Move Settler Unit Move Military Unit

Select Unit Select Unit Action

Set Research
Goals

Set Tax
Rates

Set City
Production

Move
Units

Manage
Citizens

Set
Government

 Figure 10.1
 A Task-Method-Knowledge model of a small portion of a software agent that plays the FreeCiv

game. Rectangles indicate tasks; rounded rectangles indicate methods.

with hierarchical task networks (HTNs; Erol, Hendler, & Nau, 1994) for designing
game-playing agents. They found that since TMKL enables explicit representation of
subgoals, multiple plans for achieving a goal, and other control structures, TMKL is
more expressive than HTN, but that a translation from one to the other is always
possible.

 Given a TMK model of a portion of the game-playing agent, consider what may
happen when introspective monitoring in the REM metareasoning system (Murdock
 & Goel, 2008) detects that the agent has met some failure due to an error in managing
its cities and units in a given turn. At this point, REM would use the TMK model of
the agent, together with the trace of processing that led to the failure, to diagnose the
causes of the error. While the trace of processing provides REM with an account of

Metareasoning for Self-Adaptation 155

the actual processing that led to the failure, the TMK model provides an account of
the desired processing. REM uses these two accounts and information about the spe-
cifi c error to identify the causes for the error. If REM succeeds in generating a hypoth-
esis about the cause for the error at the level of some nonprimitive task or method,
then it uses information about the specifi c error and its cause to access an abstract
adaptation plan and instantiates this plan in the context of the cause of the error.
 Murdock and Goel (2001a , b , 2003 , 2008) provide details of this process, including
results of experimental studies with it.

 Adaptation of Domain Knowledge

 In some situations, the above process of diagnosis may lead to the identifi cation of
some primitive task in the TMK model as a cause of the agent ’ s failure. For example,
given the TMK model illustrated in fi gure 10.1, the metareasoner may identify the
 Select Build City Action primitive task as the cause of failure, based on an analysis of
the goals encoded in the model in conjunction with a trace of processing that led to
the failure. We address this problem by providing the agent not only with a model of
its own reasoning but also of the domain knowledge used in that reasoning. Then,
when a primitive task is identifi ed as responsible for some failure in the reasoning,
self-diagnosis can operate over the model of the knowledge used by that primitive
task and enable the repair of that knowledge. In the work described here, we have not
yet actually implemented the integration of the self-diagnosis and repair of knowledge
with the self-diagnosis of reasoning provided by REM. Instead, we have experimented
with the Select Build City Action classifi er operating independently and interacting
directly with the environment. However, our intent is that this procedure could be
integrated with a system such as REM to form a unifi ed metareasoning system imple-
menting self-diagnosis and repair over both object-level process and knowledge.

 The domain knowledge used in Select Build City Action is classifi cation knowledge:
The agent determines if the tile that a settler unit currently occupies is a good location
in which to build a city (classifi es the location), and if so instructs the unit to build
a city. If not, the unit will instead be moved. Figure 10.2 illustrates a knowledge hier-
archy for the Select Build City Action task used by our FreeCiv game-playing agent. This
classifi cation task is an instance of classifi cation problems that can be decomposed
into a hierarchical set of smaller classifi cation problems; alternatively, problems in
which features describing the world are progressively aggregated and abstracted into
higher-level abstractions until a class label is produced at the root node. This subclass
of classifi cation problems are recognized as capturing a common pattern of classifi ca-
tion (Bylander, Johnson, & Goel, 1991 ; Goel & Bylander, 1989 ; Russell, 1988). We will
call this classifi cation task compositional classifi cation , and the hierarchy of abstractions
an abstraction network .

156 A. K. Goel and J. Jones

Shield Development Efficiency

City Quality

Shield Growth

Shield Potential

Population Happiness Population GrowthShield Food Coincidence

Shield Utilization

Food Start Food Growth

Food Development Efficiency Potential Food

Fresh Water

Sufficient Squares

Shield Start

 Figure 10.2
 A game-playing agent ’ s abstraction network for the classifi cation of city quality in FreeCiv.

 We consider the problem of retrospective adaptation of the content of the inter-
mediate abstractions in the abstraction network (and not its structure) when the
classifi er makes an incorrect classifi cation. Note that once again structural credit
assignment becomes a core problem: given the error at the root node, the structural
credit assignment problem now is to identify the intermediate abstractions in the
abstraction network responsible for the error. Note also that the hypothesis about
using teleological knowledge that works so well for adapting reasoning processes is
not useful in this setting because there is no complex reasoning process to model here.
Instead, we explore an alternative hypothesis for using metareasoning for self-adapta-
tion of domain knowledge: If the semantics of the domain concepts that form the
intermediate abstractions in the hierarchy can be grounded in predictions about per-
cepts in the world, then metaknowledge in the form of verifi cation procedures associ-
ated with those domain concepts is useful for addressing the structural credit
assignment problem. Metareasoning can then use verifi cation procedures associated
with domain concepts to verify the predictions made by those concepts. In the case
of compositional classifi cation, this means that intermediate abstractions in the

Metareasoning for Self-Adaptation 157

abstraction network are chosen such that each abstraction corresponds to a prediction
about percepts in the world, metaknowledge comes in the form of verifi cation proce-
dures associated with the abstractions, and metareasoning invokes the appropriate
verifi cation procedures to perform structural credit assignment and then adapt the
abstractions. The verifi cation procedures explicitly encode the grounding of intermedi-
ate abstractions in percepts from the environment. Below we illustrate, formalize, and
evaluate these ideas, and briefl y discuss the implications of this scheme for a metar-
easoning architecture.

 Compositional Classifi cation
 To more formally describe compositional classifi cation, let T be a discrete random
variable representing the class label. Let S = { s : s is empirically determinable and h [T]
 > h [T | s]}, where h [x] denotes the entropy of x . S is a set of discrete random variables
that have nonzero mutual information with the class label and are empirically determin-
able , meaning that there is some way to interact with the environment to determine
which value has been taken by each member of S . Each member s of S represents a
related set of equivalence classes, where each value taken by s is a unique equivalence
class. In the case of our running FreeCiv example, things like the future population
growth of the potential city and the amount of food provided by terrain squares
around the city location constitute S . A task instance is generated by jointly sampling
the variables in S ∪ T . In FreeCiv, the game engine handles this for us by randomly
generating a game map and managing game dynamics that govern the relationships
among the variables in S .

 Empirical determinability captures the notion of perceptual grounding of concepts,
indicating that each equivalence class represents some verifi able statement about the
world. In the simplest case, empirical determinability means that the value taken by
the variable in a given task instance is directly observable at some later time after clas-
sifi cation has occurred. In general, some experiment may need to be performed in order
to observe the value of some s ∈ S . In FreeCiv, all of the values can be directly observed,
though some only after classifi cation has occurred. This is because in order to be useful,
the prediction of city resource production must be made before the city is actually
constructed and its resource production rate and the values of the intermediate nodes
in the hierarchy can be observed. However, we can obtain the true values later in order
to perform self-diagnosis over the knowledge structure used for the classifi cation. We
call the problem of predicting T in such a setting compositional classifi cation . In order
to make such predictions, our agent will make use of a structured knowledge represen-
tation called an abstraction network , defi ned in the next section. This representation
will capture knowledge about the relationships between variables in S . Knowledge
repair will be required if the distributions P (s | K), s ∈ S ∪ T , K ⊆ S are not always accu-
rately known by the agent, but must instead be inferred from experience.

158 A. K. Goel and J. Jones

 Knowledge Representation
 Here we formally defi ne the knowledge representation used at the object level for the
compositional classifi cation task. This representation is annotated with metaknowl-
edge used by metalevel reasoning process for self-diagnosis. We call this diagnostic
self-knowledge empirical verifi cation procedures , described in more detail below.

 The knowledge structure contains a node for each s ∈ S ∪ T . These nodes are con-
nected in a hierarchy refl ecting direct dependence relationships organized according
to background knowledge. Each node will handle the subproblem of predicting the
value of the variable with which it is associated given the values of its children.

 Defi nition 10.1 A supervised classifi cation learner (SCL) is a tuple < I,O,F,U > , where I is
a set of input strings (input space), O is a set of output symbols (output space), F is a func-
tion from I to O, and U is a function from (i,o): i ∈ I,o ∈ O to the set of SCLs that share the
same input and output spaces I and O.

 Defi nition 10.2 An empirical verifi cation procedure (EVP) is a tuple < E,O > where O is
a set of output symbols (output space) and E is an arbitrary, possibly branching sequence of
actions in the environment and observations from the environment concluding with the selec-
tion of an o ∈ O.

 Any output space O of an empirical verifi cation procedure is an empirically deter-
minable set of equivalence classes. So, a set of equivalence classes is empirically deter-
minable if an empirical verifi cation procedure can be defi ned with an output space
equal to that set of classes.

 Defi nition 10.3 An abstraction network (AN) is a tuple < N,O,L,P > , where N is a (possibly
empty) set of ANs, O is a set of output symbols, L is an SCL, and P is an empirical verifi ca-
tion procedure. Let I be the set of strings that can be formed by imposing a fi xed order on the
members of N and choosing exactly one output symbol from each n ∈ N according to this
order. The SCL L has input space I and output space O, and the empirical verifi cation pro-
cedure P has output space O.

 When N is empty, L is trivial and has no use because the input space is empty. In
these cases (the leaves of the AN), a value determination must always be made by
invoking P . Thus, EVP execution must be possible before classifi cation in the case of
AN leaves, although it is never possible until some time after classifi cation for nonleaf
nodes.

 Object-Level Reasoning
 In a given task instance, the values of the leaf nodes are fi xed by observation. Each
node with fi xed inputs then produces its prediction. This is repeated until the value
of the class label is predicted by the root of the hierarchy (see table 10.1).

Metareasoning for Self-Adaptation 159

 Table 10.1
 Abstraction network object-level reasoning procedure

 begin AN-reasoning(a)

 1. If a . N = ∅ , execute a . P and return the result.

 2. Else, recursively execute this procedure for each n ∈ N to generate an input string i for a . L ,
then return a . L . F (i) and store this value and i for the purpose of the self-diagnosis procedure
(called a.last_value and a.last_input below).

 end

 Table 10.2
 Abstraction network metalevel reasoning procedure

 begin AN-diagnose-and-repair(a)

 1. If a.P = a.last_value then return true .

 2. ∀ n ∈ a . N , call AN-diagnose-and-repair(n). If ∃ n ∈ a . N s.t. AN-diagnose-and-repair(n) = false
then return false .

 3. a.L ← a.L.U(a.last_input, a.P) , return false .

 end

 Metalevel Reasoning
 At some time after classifi cation, the true value of the class label is obtained by the
monitoring process. If the value produced by object-level reasoning was correct, no
further action is taken. If the value is found to be incorrect, the self-diagnosis and
repair procedure shown in table 10.2 is followed, operating over knowledge used at
the object level.

 It should be noted that not all supervised classifi cation learners can operate properly
under this diagnosis and repair procedure — specifi cally, learners that require problem
instances to be drawn from a stationary distribution require an alternative procedure
that inspects each AN node for each repair episode. However, in situations where this
more selective diagnosis procedure can be used, it is parsimonious in terms of requir-
ing the fewest EVP executions to diagnose a failure. This procedure has a base case
when the leaves are reached, as their true values were obtained before classifi cation
and thus cannot be found to be incorrect.

 Notice that an AN abstracts in two ways. One is apparent in the object-level reason-
ing procedure; information is progressively lost at each node in the hierarchy during
reasoning as information is aggregated into equivalence classes, so abstraction takes
place during inference. The second source of abstraction becomes clear in the self-
diagnosis and repair procedure. The EVPs explicitly encode a process of abstraction
from raw state to the equivalence classes produced at nodes in the AN.

160 A. K. Goel and J. Jones

 FreeCiv Experiments
 We have implemented the AN theory of adaptation of classifi cation knowledge in a
computer program called Augur. Augur runs in the FreeCiv domain using the AN
depicted in fi gure 10.2. This AN was used to produce outputs from a set containing
three values, corresponding to poor, moderate, and good city resource production.
These values indicate predictions about the resource production expected from a city
built on a considered map location. Specifi cally, the values correspond to an expected
degree and direction of deviation from a logarithmic baseline resource production
function that was manually tuned to refl ect roughly average city resource production.
Each of the intermediate nodes in the AN has an output set consisting of fi ve values
in this experiment. The empirical verifi cation procedures simply discretize observed
game features. We placed a very simple rote learner within each node in the AN. These
simple learners offer no generalization power of their own, so this experiment relies
on the power of the AN representation itself rather than on powerful learners within
nodes. The content of each rote learner was initialized arbitrarily in a way that was
known to be incorrect in some cases for each of the learners. Because we expect
resource production from cities built on various kinds of map locations to potentially
differ qualitatively as games progress, we trained three separate AN-based learners with
one of each learning to make predictions about resource production in the early,
middle, or late stages of the game. Results reported are cumulative across all three
learners of the appropriate type.

 To test our self-diagnosis and self-repair procedure, we ran 60 independent trials,
each consisting of a sequence of 49 games played by Augur using the AN of fi gure
10.2. Results reported in this section are an average across these trials. Each game
played used a separate randomly generated map, with no opponents. Augur always
builds a city on the fi rst occupied square, after making an estimate of the square ’ s
quality. Building in the fi rst randomly generated occupied square ensures that Augur
will have opportunities to test its knowledge in a variety of states. We evaluated the
result of Augur ’ s self-diagnosis and self-repair procedure by comparing Augur ’ s average
performance during the fi rst seven games to the average performance during the last
seven games. Making this comparison, we observed an average 52 percent decrease in
the error rate of the agent. This improvement in performance is evidence that the
metalevel process has been successful in repairing faulty knowledge at the object level.
We have also experimented with the AN self-diagnosis and self-repair procedure in
other domains such as prediction of the direction of the Dow Jones Index (Jones &
Goel, 2007) and in synthetic settings with similarly positive results.

 Related Research

 As we mentioned in the introduction, the use of metareasoning for self-adaptation in
intelligent agents is related to agent learning: Our work on metareasoning for self-

Metareasoning for Self-Adaptation 161

adaptation views learning as a deliberative problem-solving activity. In particular, our
work on the use of metareasoning for structural credit assignment in compositional
classifi cation is related to past work on tree-structured bias (TSB) (Russell, 1988 ; Tade-
palli & Russell, 1998). However, while TSB research relies on carefully constructed
queries to the environment to learn the functions at internal nodes in a classifi cation
hierarchy, in our work, EVPs encode the metaknowledge used in the self-diagnostic
procedure. That is, rather than using explicitly represented metaknowledge to perform
self-diagnosis, TSB has a fi xed training procedure that implicitly relies on a given type
of query. This procedure can be seen as requiring a very specifi c kind of empirical
verifi ability for internal nodes — thus forcing a particular (and rather complex) form
on the EVPs that a designer would write if applying TSB procedures within the AN
framework. In the work described here, we take the stance that, in general, a broader
set of queries to the environment may be possible. If this is the case, it will be more
effi cient to make use of the observations that most directly allow us to determine the
value of an internal node when learning. In fact, the motivating example given by
 Tadepalli and Russell (1988), concerning a credit-card domain, appears clearly to have
a strong kind of direct empirical verifi ability at internal nodes that could be exploited
by ANs using very simple EVPs. The explicit representation of EVPs is another major
difference between our work on ANs and past research on TSB. EVPs represent an
abstraction from observable quantities to concepts used in an AN. Since the grounding
of concepts in observable quantities is explicitly represented, it becomes fair game to
be operated on during adaptation. It also means that we are able to adapt intermediate
concepts themselves according to their functional roles — recognizing that intermedi-
ate concepts are not fi xed by the environment, but that they are constructs that exist
in order to allow for correct overall classifi cation.

 It is also interesting to note the relationship of our work with two other techniques
described in this volume. At a high level, REM, the metacognitive loop (MCL) (chap.
12), GRAVA (chap. 7), and Augur all use an agent ’ s understanding of itself, and an
agent ’ s expectations of its own performance, to detect failures and diagnose faults.
REM and MCL provide overarching frameworks for metareasoning that include not
only diagnosis and repair of deliberative reasoning, but also guidance of situated learn-
ing (Anderson et al., 2006 ; Ulam, Jones, & Goel, 2008). GRAVA and Augur, on the
other hand, focus on adaptation of domain knowledge. Whereas GRAVA is more
concerned with selection and confi guration of domain models, Augur focuses on
diagnosis and repair of domain knowledge.

 Relationship to the Canonical Metareasoning Architecture

 Figure 1.2 (Cox & Raja, this vol., chap. 1) illustrates a canonical architecture for metar-
easoning. On one hand, our past and current work on self-adaptation of an agent ’ s
 reasoning processes fi ts well with this architecture; we can imagine the teleological

162 A. K. Goel and J. Jones

model of the agent ’ s deliberative reasoning element and the metareasoner using that
teleological knowledge for structural credit assignment over the deliberative reasoning
processes as residing in the metareasoning element in the canonical architecture.

 Of course, the architecture in fi gure 1.2 is an idealized abstraction. Our work sug-
gests several elaborations. First, the canonical architecture implies that an “ object-
level ” reasoning element mediates between the “ ground-level ” and the “ metalevel ”
elements. However, our work on structural credit assignment and self-adaptation in
reactive control agents (Stroulia & Goel, 1999) directly applies metareasoning over
reactive control without any intermediate object-level element for deliberative reason-
ing. In principle, we see no particular reason why deliberative reasoning must neces-
sarily mediate between “ doing ” and metareasoning. Second, the canonical architecture
implies that the ground, object, and metalevels are distinct and separate. However,
our work on using metareasoning for guiding reinforcement learning (Ulam, Jones, &
Goel, 2008) views the three levels as substantially overlapping. Again, in principle, we
see no particular reason for a complete separation between the ground, object, and
metalevels. Third, our current work described in this chapter suggests that some of
the actions at the ground level may be in service of verifying predictions made by
semantics of the domain knowledge at the object level. Thus, in this work, metarea-
soning uses metaknowledge of the relation between knowledge used at the object level
and predictions about percepts accessible from the ground level. Finally, this work
suggests that metaknowledge useful for adapting domain knowledge may be distrib-
uted over the domain concepts in the object level, and not necessarily confi ned to
the metalevel as in the canonical architecture.

 Conclusions

 In this chapter, we described a scheme for using metareasoning in intelligent agents
for self-adaptation of domain knowledge. In particular, we considered retrospective
adaptation of the content of intermediate abstractions in an abstraction network used
for compositional classifi cation when the classifi er makes an incorrect classifi cation.
We showed that if the intermediate abstractions in the abstraction network are orga-
nized such that each abstraction corresponds to a prediction about a percept in the
world, then metaknowledge comes in the form of verifi cation procedures associated
with the abstractions, and metareasoning invokes the appropriate verifi cation proce-
dures in order to fi rst perform structural credit assignment and then adapt the abstrac-
tions. This lends credence to our hypothesis about the use of metareasoning for
self-adaptation of domain knowledge; if the semantics of domain concepts can be
grounded in predictions about percepts in the world, then metaknowledge in the form
of verifi cation procedures associated with the domain concepts is useful for addressing
the structural credit assignment problem.

Metareasoning for Self-Adaptation 163

 This result can be taken as prescriptive by designers of AI agents, suggesting that
whenever possible, the domain concepts used by agent should be grounded in the
agent ’ s perceptions. While the computational advantages of the grounding of domain
knowledge in the agent ’ s perceptions for deliberative reasoning have been long under-
stood, our work indicates that this grounding also offers computational benefi ts for
metareasoning-based adaptation of the domain knowledge used by deliberative
reasoning.

 Acknowledgments

 This research is supported by an NSF (SoD) Grant (0613744) on “ Teleological Reason-
ing in Adaptive Software Design. ”

 References

 Anderson , M. L. , Oates , T. , Chong , W. , & Perlis , D. (2006). The metacognitive loop I: Enhancing

reinforcement learning with metacognitive monitoring and control for improved perturbation

tolerance. Journal of Experimental & Theoretical Artifi cial Intelligence , 18 (3), 387 – 411 .

 Birnbaum , L. , Collins , G. , Freed , M. , & Krulwich , B. (1990). Model-based diagnosis of planning

failures. In Proceedings of the 8th National Conference on Artifi cial Intelligence (pp. 318 – 323). Menlo

Park, California: AAAI Press.

 Brachman , R. J. (2002). Systems that know what they ’ re doing. IEEE Intelligent Systems , 17 (6),

 67 – 71 .

 Bylander , T. , Johnson , T. R. , & Goel , A. K. (1991). Structured matching: a task-specifi c technique

for making decisions. Knowledge Acquisition , 3 (1), 1 – 20 .

 Cox , M. T. , & Ram , A. (1999). Introspective multistrategy learning: On the construction of learn-

ing strategies. Artifi cial Intelligence , 112 (1 – 2), 1 – 55 .

 Cox , M. T. (2005). Metacognition in computation: A selected research review. Artifi cial Intelligence ,

 169 (2), 104 – 141 .

 Davis , R. (1980). Meta-rules: Reasoning about control. Artifi cial Intelligence , 15 (3), 179 – 222 .

 Doyle , J. (1979). A truth maintenance system. Artifi cial Intelligence , 12 (3), 231 – 272 .

 Erol , K. , Hendler , J. , & Nau , D. S. (1994). HTN planning: Complexity and expressivity. Proceedings

of the Twelfth National Conference on Artifi cial Intelligence (AAAI-94) , vol. 2 (pp. 1123 – 1128). Menlo

Park, CA: AAAI Press/MIT Press.

 Fox , S. , & Leake , D. (2001). Introspective reasoning for index refi nement in case-based reasoning.

 Journal of Experimental & Theoretical Artifi cial Intelligence , 13 (1), 63 – 88 .

164 A. K. Goel and J. Jones

 Goel , A. K. , & Bylander , T. (1989). Computational feasibility of structured matching. IEEE Trans-

actions of Pattern Matching and Machine Intelligence , 11 (2), 1312 – 1361 .

 Goel , A. K. , & Murdock , J. W. (1996). Meta-cases: Explaining case-based reasoning. Proceedings of

the Third European Workshop on Case-Based Reasoning (pp. 150 – 163). Berlin: Springer.

 Hansen , E. A. , & Zilberstein , S. (2001). Monitoring and control of anytime algorithms: A dynamic

programming approach. Artifi cial Intelligence , 126 (1 – 2), 139 – 157 .

 Hayes-Roth , B. , & Larsson , J. E. (1996). A domain-specifi c software architecture for a class of

intelligent patient monitoring systems. Journal of Experimental & Theoretical Artifi cial Intelligence ,

 8 (2), 149 – 171 .

 Hoang , H. , Lee-Urban , S. , & Mu ñ oz-Avila , H. (2005). Hierarchical plan representations for encod-

ing strategic game AI . In R. M. Young & J. E. Laird (Eds.), Artifi cial Intelligence and Interactive Digital

Entertainment (pp. 63 – 68). Menlo Park, CA : AAAI Press .

 Horvitz , E. J. , Cooper , G. F. , & Heckerman , D. E. (1989). Refl ection and action under scarce

resources: Theoretical principles and empirical study. In Proceedings of the Eleventh International

Joint Conference on Artifi cial Intelligence (IJCAI-89) (pp. 1121 – 1127). San Francisco: Morgan

Kaufmann.

 Horvitz , E. (2001). Principles and applications of continual computation. Artifi cial Intelligence ,

 126 (1 – 2), 159 – 196 .

 Jones , J. , & Goel , A. K. (2007). Structural credit assignment in hierarchical classifi cation. In Pro-

ceedings of the International Conference on AI (pp. 378 – 384). Athens, GA: Computer Science

Research, Education and Applications (CSREA) Press.

 Leake , D. B. (1996). Experience, introspection and expertise: Learning to refi ne the case-based

reasoning process. Journal of Experimental & Theoretical Artifi cial Intelligence , 8 (3 – 4), 319 – 339 .

 Minsky , M. (1961). Steps Toward Artifi cial Intelligence . In E. A. Feigenbaum & J. Feldman (Eds.),

 Computers and thought (pp. 406 – 450). New York : McGraw Hill .

 Minsky , M. , Singh , P. , & Sloman , A. (2004). The St. Thomas common sense symposium: Design-

ing architectures for human-level intelligence. AI Magazine , 25 (2), 113 – 124 .

 Murdock , J. W. , & Goel , A. K. (2001a). Meta-case-based reasoning: Use of functional models to

adapt case-based agents. In Proceedings of the 4th International Conference on Case-Based Reasoning

(pp. 407 – 421), Berlin: Springer-Verlag.

 Murdock , J. W. , & Goel , A. K. (2001b). Learning about constraints by refl ection. In Proceedings

of the 14th Biennial Conference of Canadian AI Society (pp. 131 – 140). Berlin: Springer-Verlag.

 Murdock , J. W. , & Goel , A. K. (2003). Localizing planning with functional process models. In

E. Giunchiglia, N. Muscettola, & D. S. Nau (Eds.), Proceedings of the Thirteenth International Confer-

ence on Automated Planning and Scheduling (pp. 73 – 81). Menlo Park, CA: AAAI Press.

 Murdock , J. W. , & Goel , A. K. (2008). Meta-case-based reasoning: Self-improvement through

self-understanding. Journal of Experimental & Theoretical Artifi cial Intelligence , 20 (1), 1 – 36 .

Metareasoning for Self-Adaptation 165

 Punch , W. , Goel , A. K. , & Brown , D. (1995). A knowledge-based selection mechanism for strategic

control with application in design, assembly, and planning. International Journal of Artifi cial Intel-

ligence Tools , 4 (3), 323 – 348 .

 Raja , A. , & Lesser , V. (2007). A framework for meta-level control in multi-agent systems. Autono-

mous Agents and Multi-Agent Systems , 15 (2), 147 – 196 .

 Russell , S. (1988). Tree-structured bias. In Proceedings of the Seventh National Conference on Artifi cial

Intelligence (AAAI-88) (pp. 641 – 645). Menlo Park, CA: AAAI Press.

 Russell , S. (1991). Principles of metareasoning. Artifi cial Intelligence , 49 (1 – 3), 361 – 395 .

 Samuel , A. (1959). Some studies in machine learning using the game of checkers. IBM Journal ,

 3 (3), 210 – 229 .

 Stefi k , M. (1981). Planning and meta-planning (Molgen: Part 2). Artifi cial Intelligence , 16 (2),

 141 – 170 .

 Stroulia , E. , & Goel , A. K. (1995). Functional representation and reasoning in refl ective systems.

Journal of Applied Intelligence, Special Issue on Functional Reasoning , 9 (1), 101 – 124 .

 Stroulia , E. , & Goel , A. K. (1996). A model-based approach to blame assignment: Revising the

reasoning steps of problem solvers. In Proceedings of the Thirteenth National Conference on Artifi cial

Intelligence (AAAI-96) (pp. 959 – 964). Menlo Park, CA: AAAI Press.

 Stroulia , E. , & Goel , A. K. (1997). Redesigning a problem-solver ’ s operations to improve solution

quality. In Proceedings of the Fifth International Conference on Artifi cial Intelligence (IJCAI-97) (pp.

562 – 567). San Francisco: Morgan Kaufmann.

 Stroulia , E. , & Goel , A. K. (1999). Evaluating PSMs in evolutionary design: The autognostic experi-

ments. International Journal of Human-Computer Studies , 51 (4), 825 – 847 .

 Sutton , R. , & Barto , A. (1998). Reinforcement learning: An introduction . Cambridge, MA : MIT Press .

 Tadepalli , P. , & Russell , S. (1998). Learning from examples and membership queries with struc-

tured determinations. Machine Learning , 32 (3), 245 – 295 .

 Ulam , P. , Jones , J. , & Goel , A. K. (2008). Combining model-based metareasoning and reinforce-

ment learning for adapting game-playing agents. In Proceedings of the Fourth AAAI Conference on

AI in Interactive Digital Entertainment (pp. 132 – 137). Menlo Park, CA: AAAI Press.

 Wilensky , R. (1981). Meta-planning: Representing and using knowledge about planning in

problem solving and natural language understanding. Cognitive Science , 5 (3), 197 – 234 .

 11 Using Introspective Reasoning to Improve CBR System

Performance

 Josep Llu í s Arcos, O ğ uz M ü l â yim, David B. Leake

 When AI technologies are applied to real-world problems, it is often diffi cult for devel-
opers to anticipate all possible eventualities. Especially in long-lived systems, changing
circumstances may require changes not only to domain knowledge but also to the
reasoning process that brings it to bear. This requires introspective reasoning , metarea-
soning by a system about its own internal reasoning processes. This chapter investi-
gates applying introspective reasoning to improve the performance of a case-based
reasoning system, by guiding learning to improve how a case-based reasoning system
applies its cases.

 Case-based reasoning (CBR) is a problem-solving methodology that exploits prior
experiences when solving new problems, retrieving relevantly similar cases and adapt-
ing them to fi t new needs (for an overview and survey, see Mantaras et al., 2005).
Many CBR systems store each newly solved problem and its solution as a new case for
future use, enabling them to continuously improve their case knowledge. Neverthe-
less, the success of a CBR system depends not only on its cases, but also on its ability
to use those cases appropriately in new situations, which depends on factors such as
the system ’ s similarity measure and the case adaptation mechanism. Consequently, it
is desirable to enable CBR systems to improve the knowledge and processes by which
they bring their cases to bear.

 Metareasoning techniques provide a promising basis for self-improving systems (see
 Anderson & Oates, 2007 , or Cox, 2005 , for recent reviews). As described by Cox and
Raja (this vol., chap. 1), the metareasoning approach incorporates a metareasoning
layer, with monitoring and control capabilities over the reasoning process, to adjust
that reasoning process as needed. Introspective learning techniques have used self-
models as a way to determine when, what, and how to improve the reasoning of
systems. Here we focus on how a self-model may be exploited; an open challenge is
how to provide capabilities for extending and refi ning self-models that are themselves
imperfect or incomplete (Leake & Wilson, 2008).

 Previous research on introspective CBR has shown that metareasoning can enable
a CBR system to learn by refi ning its own reasoning process. That work has tended to

168 J. L. Arcos, O. Mülâyim, and D. B. Leake

apply the introspective approach only to a single aspect of the CBR system, for
example, to adjust the indices used for retrieval. This chapter presents research on
developing an introspective reasoning model enabling CBR systems to autonomously
learn to improve multiple facets of their reasoning processes.

 The remainder of this chapter describes an approach in which an introspective
reasoner monitors the CBR process with the goal of adjusting the retrieval and reuse
strategies of the system to improve solution quality. Novel aspects of this approach,
compared to previous work on introspective reasoning for CBR, include that it applies
a unifi ed model for improving the two main stages of the CBR process, that a single
failure may prompt multiple forms of learning, and that it performs internal tests to
empirically assess the value of changes proposed by the introspective reasoner, to
determine which ones should be retained.

 The next section discusses previous work on introspective learning for case-based
reasoning. The following section presents a detailed description of our approach and
its implementation. The approach has been evaluated on problems from a fi elded
industrial application for design of pollution control equipment, for which we provide
results in the next section. Before concluding the chapter, we put our model into
context with respect to the metareasoning models discussed in chapter 1 of this
volume. In the last section we present our conclusions and directions for future
research.

 Related Work

 Birnbaum et al. (1991) fi rst proposed the use of self-models within case-based reason-
ing. Work by Cox and Ram (1999) develops a set of general approaches to introspective
reasoning and learning that automatically select the appropriate learning algorithms
when reasoning failures arise. Their work defi nes a taxonomy of causes of reasoning
failures and proposes a taxonomy of learning goals, used for analyzing the traces of
reasoning failures and responding to them. Here case-based reasoning is a vehicle for
supporting introspective reasoning: CBR is used to explain reasoning failures and
generate learning goals.

 A number of studies apply introspective approaches to improve the performance
of CBR systems. Leake (1996) identifi es the knowledge sources a CBR system uses in
its reasoning process and the required self-knowledge about these sources, and pro-
vides examples of refi nement of retrieval knowledge using model-based reasoning and
of acquisition of adaptation knowledge by search plans. Fox and Leake (2001) devel-
oped a system inspired by the Birnbaum et al. proposal to refi ne index selection for
case-based reasoners. Fox and Leake ’ s work develops a declarative model for describing
the expectations for correct reasoning behavior, and applies that model to detect and
diagnose reasoning failures. When the introspective reasoner is able to identify the

Using Introspective Reasoning to Improve CBR Performance 169

feature that caused the failure, the system ’ s memory is reindexed, resulting in signifi -
cant performance improvement. The DIAL system (Leake et al., 1995) improves case
adaptation using introspection. This research focuses on improving the performance
of the system by storing the traces of successful adaptation transformations and
memory search paths for future reuse. Likewise, Craw (2006) proposes an introspective
learning approach for acquiring adaptation knowledge, making it closely related to
our work. However, a key difference is that their learning step uses the accumulated
case base as training data for adaptation learning, in contrast to our approach of
incrementally refi ning adaptation knowledge in response to failures for individual
problems.

 Arcos (2004) presents a CBR approach for improving solution quality in evolving
environments. His work focuses on improving the quality of solutions for problems
that arise only occasionally, by analyzing how the solutions of more typical problems
change over time. Arcos ’ s algorithm improves the performance of the system by
exploiting the neighborhoods in the solution space but, unlike the model presented
in this chapter, learns only from success.

 The REM reasoning shell (Murdock & Goel, 2008) presents a meta-case-based rea-
soning technique for self-adaptation. The goal of REM is the design of agents able to
solve new tasks by adapting their own reasoning processes. Meta-case-based reasoning
is used for generating new task-method decomposition plans. Because the goal in REM
is the assembly of CBR reasoning components, the metamodel is focused on describing
the components in terms of their requirements and their effects. In contrast, our
model is focused on describing the expected correct properties of the components and
their possible reasoning failures.

 Introspective reasoning to repair problems may also be seen as related to the use
of confi dence measures for assessing the quality of the solutions proposed by a CBR
system (Cheetham & Price, 2004 ; Delany et al., 2005). Confi dence measures provide
expectations about the appropriateness of proposed solutions. A high confi dence solu-
tion that is determined to be erroneous reveals a failure of the reasoning process used
to form the prediction, which points to the need to refi ne the self-model. The unex-
pected success of a low-confi dence solution may do so as well. Nevertheless, because
confi dence measures provide no explanations for their assessments, they are not
helpful for revealing the origin of the reasoning failure, making their failures hard to
use to guide repairs.

 Introspective Reasoning Approach

 The goal of our introspective reasoning system is to detect reasoning failures and to
refi ne the function of reasoning mechanisms, to improve system performance
on future problems. To achieve this goal, the introspective reasoner monitors the

170 J. L. Arcos, O. Mülâyim, and D. B. Leake

reasoning process, determines the possible causes of its failures, and performs actions
that will affect future reasoning processes.

 To give our system criteria for evaluating its case-based reasoning performance, we
have created a model of the correctly-functioning CBR process itself, together with a
taxonomy of reasoning failures. Failures of a CBR system ’ s reasoning process are
modeled as confl icts between observed system performance and predictions from the
model. These failures, in turn, are related to possible learning goals. Achieving these
goals repairs the underlying cause of the failure.

 As illustrated in the bottom portion of fi gure 11.1, the case-based reasoning process
consists of four steps: (1) case retrieval/similarity assessment , which determines which
cases address problems most similar to the current problem, to identify them as start-
ing points for solving the new problem; (2) case adaptation , which forms a new solution
by adapting/combining solutions of the retrieved problems; (3) case revision , which
evaluates and adjusts the adapted solution; and (4) case retention , in which the system
learns from the situation by storing the result as a new case for future use.

Metamodel
Reasoning-Failures

Learning-Goals

Inference
Trace

Hypothesis
Generation

Blame
Assessment

Monitoring

Retrieve Adapt Revise RetainFinal
Solution

Proposed
Solution

Confidence

Problem User

Solution
Quality

Hypothesis
Evaluation

Quality
Assessment

 Figure 11.1
 Introspective reasoner components. The horizontal line divides the CBR process (bottom) and

the introspective reasoner (top).

Using Introspective Reasoning to Improve CBR Performance 171

 Reasoning failures may be revealed by either of two types of situation: (i) when the
retrieval or adaptation step is unable to propose a solution, or (ii) when the solution
proposed by the system differs from the desired fi nal solution. Failures of the retrieval
or adaptation steps are identifi ed directly by contrasting their performance with model
predictions. The second type of failure can be detected by monitoring the revision
step. In CBR systems, the revision step often involves interaction with the user to
determine the fi nal solution. This interaction provides a feedback mechanism for
assessing the real quality of the solution initially proposed.

 For each of the four CBR steps, the model encodes expectations, and the expecta-
tions are associated with learning goals that are triggered if the expectations are vio-
lated. For example, the expected behavior of the similarity assessment step is to rank
the retrieved cases correctly. If they are ranked incorrectly, the failure may be due to
using an inappropriate weighting when similarity assessments along different dimen-
sions are aggregated. Consequently, a possible strategy for solving the failure is to
refi ne the weight model, and a corresponding learning goal is to learn new
weightings.

 Our model is domain independent, that is, it is focused on the general case-based
reasoning process for retrieval and adaptation, rather than on specifi c details of those
processes for any particular domain. The model deals with three types of knowledge:
indexing knowledge, ranking knowledge, and adaptation knowledge. To apply the
model to any concrete application, domain-specifi c retrieval and adaptation mecha-
nisms must be linked to the model.

 Indexing knowledge determines the subspace of the case base considered relevant
to a given problem. Ranking knowledge identifi es the features considered most rele-
vant to determining similarity, given a collection of retrieved cases. Adaptation knowl-
edge defi nes transformative and/or generative operations for fi tting previous solutions
to a current problem.

 Our approach is shaped by two assumptions about the underlying CBR system. The
fi rst is that the system is initially provided with general retrieval and adaptation
mechanisms, which apply uniform criteria to problems throughout the problem space.
This is a common property of many case-based reasoning systems, but experience
developing CBR systems has shown that this uniform processing may result in sub-
optimal processing, in turn resulting in the generation of low-quality solutions. Con-
sequently, one of the focuses of our approach is to address this problem: One of the
learning goals of the introspective reasoner is to determine the real scope of cases, to
weight the different ranking criteria, and to refi ne the adaptation model for different
problem space regions.

 The taxonomy defi ned for the learning goals borrows partially from the taxonomy
of learning goals proposed by Cox and Ram (1999). Nevertheless, in our approach the
learning goals are oriented specifi cally toward refi ning the CBR process. For example,

172 J. L. Arcos, O. Mülâyim, and D. B. Leake

determining the scope of cases is modeled in terms of differentiation/reconciliation
goals, whereas improving the ranking criteria is modeled in terms of refi nement/
organization goals.

 The second working assumption is that the CBR system is able to determine internal
confi dence estimates for its solutions to new problems. Because confi dence assessment
will be domain specifi c, it is not part of our general model. In the application we
consider, the system always serves in an advisory role to an engineer, who assesses
the system-generated solution before applying it. The engineer ’ s assessment provides
a natural source of feedback for judging whether the system ’ s confi dence value was
appropriate.

 Rather than reasoning about numeric confi dence values, we deal with confi dence
using three qualitative values: low confi dence , medium confi dence , and high confi dence .
The mapping to the numeric intervals that represent the qualitative values must be
defi ned in each application. For instance, in our chemical application, due to the
importance of safety constraints in the chemical processes, high confi dence is ascribed
to values greater than 0.8 on a 0 – 1 scale, and the threshold for low confi dence is 0.6.

 The system ’ s introspective reasoning is organized into fi ve tasks: (1) the monitoring
task, in charge of maintaining a trace of the CBR process; (2) the quality assessment
task, which analyzes the quality of the solutions proposed by the system; (3) the blame
assessment task, responsible for identifying the reasoning failures; (4) the hypothesis
generation task, in charge of proposing learning goals; and (5) the hypothesis evaluation
task, which assesses the impact of proposed improvements on solution generation.

 Figure 11.1 depicts the introspective reasoning components. The horizontal line
divides the CBR process (bottom) from the Introspective Reasoner (top). Rounded
boxes represent inference processes; dashed boxes represent knowledge generated by
inference; dashed lines show knowledge dependencies; black-tipped arrows show
inference fl ows; and hollow-tipped arrows denote control relationships.

 Monitoring
 The monitoring task tracks the case-based reasoning process. For each problem solved
by the CBR system, the monitor generates a trace containing: (1) the cases retrieved,
with a link to the indexing knowledge responsible for the retrieval; (2) the ranking
criteria applied to the cases, together with the values that each criterion produced and
the fi nal ranking; and (3) the adaptation operators that were applied, with the sources
to which they were applied (the cases used) and the target changes produced (the
solution features).

 Note that our model does not require that the adaptation step use only a single
case, nor that all the retrieved cases be involved in all adaptations; any such con-
straints depend on specifi c applications, independent of the general model. Similarly,

Using Introspective Reasoning to Improve CBR Performance 173

our model distinguishes application of indexing criteria and ranking criteria as two
subprocesses involved in the retrieval step, but it does not require that they be decou-
pled in the implementation being monitored. For instance, a K-nearest neighbor
approach (Cover & Hart, 1967) uses the value of K to determine the number of cases
considered and uses the distance measure as a ranking criterion. Other approaches
might separate indexing and ranking by, for example, using crude criteria for indexing
and fi ner-grained criteria for case ranking.

 Quality Assessment
 When the user ’ s fi nal solution is provided to the system, quality assessment is triggered
to determine the “ real ” quality of the system-generated solution, by analyzing the
differences between the system ’ s proposed solution and the fi nal solution. Quality
assessment provides a result in qualitative terms: low quality , medium quality , or high
quality .

 Given the system ’ s initial confi dence assessment and the fi nal quality assessment,
the introspective reasoner fi res learning mechanisms when there is a mismatch
between the two. There are two main types of possible mismatches. When the confi -
dence was high but the actual quality is low, the confl ict points to a failure at the
retrieval stage, because the confi dence of a solution has a strong relationship with the
coverage of the retrieved cases (Cheetham, 2000).

 On the other hand, when the confi dence was low but the quality is demonstrated
to be high, the unexpected success may be due either to low coverage from cases (none
of the system ’ s cases appeared highly relevant) or to bad ranking of the retrieved cases
(the most relevant cases were not considered, due to a failure of the ranking polices
to identify them). When the mismatch between the confi dence and the quality assess-
ments is small (i.e., high versus medium, medium versus high, medium versus low,
and low versus medium) it may suggest a failure in the adaptation stage.

 Blame Assessment
 Blame assessment starts by identifying the source of the failure. It takes as input the
differences between the solution and expected result, and tries to relate the solution
differences to the retrieval or the adaptation mechanisms. The system searches the
taxonomy of reasoning failures and selects those that apply to the observed solution
differences. For instance, when a fi nal solution is radically different from the solution
proposed by the system, the failure may be caused by the indexing knowledge, that
is, either the relevant precedents have not been retrieved or too many cases have been
retrieved.

 Search for applicable failures in the failure taxonomy uses the trace generated by
the monitoring module. It starts by analyzing the index failures. There are three types

174 J. L. Arcos, O. Mülâyim, and D. B. Leake

of index failures: wrong index , broad index , and narrow index . When none of the
retrieved cases has a solution close to the current solution, the wrong index failure is
selected. A broad index failure is selected when many cases are retrieved and their
solutions are diverse. On the other hand, when a small set of cases is retrieved, the
narrow index failure is selected.

 Ranking failures are identifi ed by comparing the retrieval rankings with the solution
differences they generate. Examples of ranking failures are inappropriate ranking scheme ,
 overestimated weights , and underestimated weights .

 Adaptation failures are identifi ed by linking the solution differences to the adapta-
tion operators stored in the monitoring trace. When adaptation uses interpolation,
adaptation failures originate in inappropriate interpolation policies.

 Because the introspective reasoner will often not be able to determine a unique
source for a failure, all the possible causally supported failures are chosen, resulting
in multiple types of learning goals from a single failure.

 Hypothesis Generation
 The fourth reasoning stage, hypothesis generation, identifi es the learning goals related
to the reasoning failures selected in the blame assignment stage. Each failure may be
associated with more than one learning goal. For instance, there are multiple ways of
solving overestimated weights. For each learning goal, a set of plausible local retrieval/
adaptation changes in the active policies is generated, using a predefi ned taxonomy.

 Table 11.1 shows some of the types of hypotheses generated to explain failures in
the retrieval and adaptation stages. The changes must be local because their applicabil-
ity is constrained to the neighborhood of the current problem. For instance, when a
refi nement goal is selected for the adaptation knowledge, an adaptation adjustment
is selected from a predefi ned collection of tuning actions depending on the nature of
the original adaptation. Specifi cally, when adaptations are related to numerical fea-
tures the tuning actions determine different types of numerical interpolations. The
two main types of changes in numeric features affect the shape and slope of the inter-
polation curve.

 Table 11.1
 Examples of types of hypotheses used by the introspective reasoner

 Failure Learning Goal

 Missing index Create index

 Broad index Refi ne index

 Underestimated weight Adjust weighting

 Inappropriate interpolation Change shape
Increase slope

Using Introspective Reasoning to Improve CBR Performance 175

 Hypothesis Evaluation
 The fi fth reasoning stage, hypothesis evaluation, evaluates the impact of introducing
retrieval/adaptation changes. Because the introspective reasoner does not have a com-
plete model of the inference process, it is not possible for it to defi nitively predict the
effects of changes. Consequently, before altering the CBR system, some empirical
evidence about the impact of the change must be obtained. In our current design this
evidence is obtained by re-solving the problem, applying each proposed change and
evaluating its impact. Retrieval/adaptation changes that improve the quality of the
solution are incorporated into the CBR inference mechanisms. Note that when
the introspective reasoner provides a problem to the CBR system for testing purposes,
the case retention step is deactivated.

 Experiments

 We have tested the introspective reasoner as an extension to a fi elded industrial design
application. We have developed a case-based reasoning system for aiding engineers in
the design of gas treatment plants for the control of atmospheric pollution due to
corrosive residual gases that contain vapors, mists, and dusts of industrial origin
(Arcos, 2001). A central diffi culty for designing gas treatment plants is the lack of a
complete model of the chemical reactions involved in the treatment processes. Con-
sequently, the expertise acquired by engineers from their practical experience is essen-
tial for solving new problems. Engineers have many preferences and deep chemical
knowledge, but our interactions have shown that it is hard for them to determine in
advance (i.e., without a new specifi c problem at hand) the scope and applicability of
previous cases. They apply some general criteria concerning factors such as cost and
safety conditions, but other criteria depend on specifi c working conditions of the
treatment process.

 On the other hand, because engineers make daily use of the application system to
provide the fi nal solutions to customers, the system has the opportunity to compare
its proposed solutions with the solutions fi nally delivered. Thus, we have the oppor-
tunity to assess the impact of the introspective reasoner on the quality of the solutions
proposed by the CBR system.

 Applying the CBR Process
 The inference process in this design application is decomposed into three main stages:
(1) selecting the class of chemical process to be realized; (2) selecting the major equip-
ment to be used; and (3) determining the values for the parameters for each piece of
equipment.

 The quality of proposed solutions is computed automatically, by comparing the
proposed solution to the solution applied by the experts at these three different stages.

176 J. L. Arcos, O. Mülâyim, and D. B. Leake

Mismatches at earlier steps are more serious than at later ones. For example, except
in the case of underspecifi ed problems, a mismatch with the class of the chemical
process would indicate a very low-quality solution.

 The retrieval and adaptation steps were designed taking into account the three
knowledge sources described in the previous section: indexing criteria, ranking criteria,
and adaptation operators. Here the problem features are related to the detected pol-
lutants, the industrial origin of the pollutants, and working conditions for the pollu-
tion-control equipment (fl ow, concentrations, temperature). Indexing criteria
determine the conditions for retrieving cases. The main indexing criteria are related
to the initially defi ned chemical relations among pollutants. Ranking criteria deter-
mine a preference model defi ned as a partial order. Initially, the preferences are
homogeneous for the whole problem space. Throughout the experiments, the intro-
spective reasoner automatically refi nes the initial model.

 Reasoning failures originate from situations in which the criteria do not properly
identify the main pollutants or critical working conditions. The consequences are
manifested in solutions for which the proposed chemical process is not correct
or there are inappropriate washing liquids, or by mismatches on equipment
parameters.

 Testing Scenario
 The design application can solve a broad range of problems. However, to test the
effects of introspective reasoning for learning to handle novel situations, it is desirable
to focus the evaluation on sets of frequently occurring problems which share at least
a pollutant (the minimal indexing criterion), in order to have reuse. On the other
hand, it is necessary to have suffi cient diversity: Good performance on quasi-identical
problems can be obtained by case learning alone, so such problems do not generate
opportunities for the introspective reasoner.

 We decided to focus the evaluation of the system on problems with the presence
of hydrogen sulfi de, a toxic gas produced by industrial processes such as wastewater
treatment. From the existing application, we had access to the 510 such solved prob-
lems, ordered chronologically. We divided the problems into two sets: 300 initial
system cases and 210 testing problems.

 To evaluate the contribution of the introspective reasoner we performed an ablation
study, comparing the performance of the system when presenting the problems
sequentially for fi ve different reasoning strategies. In addition to testing inputs in
chronological order, we repeated the experiments ten times with random orders for
the testing problems, to assess the sensitivity of learning to problem ordering. The
tested reasoning strategies are the following:

 No-Retain , a strategy that solved the problems without introspective reasoning and
without incorporating the solved cases into the case memory;

Using Introspective Reasoning to Improve CBR Performance 177

 Retain , which solved the problems without introspective reasoning but incorporated
solved cases into the system (the only learning normally done by CBR systems);
 Int-Retr , which combined Retain with introspective reasoning only for retrieval
refi nement;
 Int-Adapt , which combined Retain with introspective reasoning only for adaptation
refi nement; and
 Int-Compl , which combined Retain with introspective reasoning for both retrieval
refi nement and adaptation refi nement.

 Results
 Table 11.2 shows the results of the evaluation for chronological problem presentation
(results for random ordering were similar). Results support that the storage of solved
problems — case learning alone — improves the performance of the system, but also
show that this policy is not suffi cient. Although the number of high-confi dence solu-
tions increased signifi cantly, the decrease of low-quality solutions is not statistically
signifi cant (see second column in table 11.2).

 A second conclusion from the results is that the main contribution of using intro-
spection to refi ne retrieval knowledge is to reduce the number of low-quality solutions
(a 36.67 percent reduction compared with case learning alone). In our design applica-
tion this improvement is achieved by providing more accurate ranking policies for
determining the chemical process to be realized.

 The main contribution of using introspection for refi ning adaptation knowledge
(see fourth column in table 11.2) is an increase in the number of high-quality solu-
tions (a 12.5 percent increment from Retain). In our task, learning more appropriate
adaptation policies enables better determination of the different equipment
parameters.

 Interestingly, when introspection adjusts both retrieval and adaptation (last column
in table 11.2), the improvement in the retrieval step has an indirect effect on the
adaptation step, increasing the number of high-quality solutions. An intuitive expla-
nation is that better retrieval also facilitates the adaptation process. Thus, using both
introspection strategies, the increase in the number of high-quality solutions, with
respect to case learning alone, reaches 15.63 percent.

 Table 11.2
 Average solution quality for all the strategies

 No-Retain Retain Intr-Retr Int-Adap Int-Compl

 High-Quality 23.81% 30.92% 30.95% 34.29% 35.75%

 Medium-Quality 59.52% 54.59% 60.00% 52.86% 56.04%

 Low-Quality 16.67% 14.49% 9.05% 12.85% 8.21%

178 J. L. Arcos, O. Mülâyim, and D. B. Leake

 Comparing the number of problems that changed their quality of solution, 12
percent of the total solved problems qualitatively increased their solution quality
when introspection was used. Solution qualities varied, but the use of introspection
did not decrease the solution quality for any problem. Moreover, the reduction in
low-quality solutions is statistically signifi cant (ρ < 0.05), even though the increase in
high-quality solutions is not statistically signifi cant. Consequently, we conclude that
the number of problems whose solution quality was improved by the use of introspec-
tion is statistically signifi cant.

 Table 11.3 summarizes the introspective reasoner ’ s processing. Results summarize
the experiments using both introspection strategies, refl ecting learning goals triggered
from the detection of 135 non-high-confi dence solutions. Most activity was focused
on ranking and adaptation failures, because these are the most diffi cult tasks. Note
that not all the generated hypotheses were considered useful by the system (see third
and fourth columns): revisions to the reasoning process were performed for 17 percent
of the instances for which learning goals were triggered. This result illustrates that the
introspective reasoner is dealing with partial understanding of the CBR process and
that the introspective learner ’ s hypotheses should be tested before being applied.

 It is clear that the incorporation of the introspective reasoner entails some compu-
tational overhead. However, it does not interfere with normal system performance:
The introspective reasoner is triggered only after a problem is solved and is a back-
ground process without user intervention. Most of the cost of introspective reasoning
arises from hypothesis generation. Table 11.3 shows that the ratio between failures
and hypotheses generated is 0.6, because only failures highly explained by the model
become hypotheses. Consequently, the number of hypotheses to verify is limited.

 A risk of triggering metareasoning in response to individual reasoning failures is
the possibility of treating exceptions as regular problems. In the current experiments,
such situations did not arise, but in general we assume that the user is responsible for
recognizing the exceptions. In addition, only taking action in response to clearly
identifi ed failures helps the system to avoid reasoning about exceptions.

 Table 11.3
 Summary of the number of times learning goals are triggered. Occ stands for failure occurrences,

Prop stands for hypotheses generated, and Inc stands for changes incorporated into the CBR

process

 Failures Occ. Prop. Inc.

 Indexing Knowledge 12 5 3

 Ranking Knowledge 83 41 8

 Adaptation Knowledge 74 56 12

Using Introspective Reasoning to Improve CBR Performance 179

 Research on humans has shown that introspection may sometimes have negative
consequences. Experiments reported by Wilson and Schooler (1991) showed that,
when people are asked to think about the reasons for a given decision, their attempt
to form plausible explanations for the specifi c context of the current decision may
result in nonoptimal explanations, negatively affecting future decisions. However,
such risks do not apply directly to our approach. First, only the changes incorporated
into the CBR process affect future decisions, that is, not the exploration of plausible
hypotheses. Second, the goal of the hypothesis evaluation process is to verify the effect
of candidate changes on the system. Third, the changes incorporated only have local
effects.

 Relationship to the Metareasoning Manifesto

 Compared to the metareasoning models described in chapter 1 of this volume, our
approach is closely related to the use of metalevel control to improve the quality of
decisions. Taking the “ Duality in reasoning and acting ” diagram (fi g. 1.2) of chapter
1 as a starting point, our approach incorporates some revisions, as illustrated in fi gure
11.2 and described in the following points.

 First of all, at the ground level, our approach adds the user of the system. The role
of the user is twofold: the user (1) presents new problems to the system and (2) provides
feedback by revising the solution proposed by the object level. This second role is
crucial because it allows the metalevel to estimate the performance of the object level.

 In our system, the metalevel continuously monitors the object level (the case-based
reasoning process) and assesses the quality of the solutions proposed by the reasoner
(using the quality assessment module). The feedback of the user ’ s fi nal solution is
exploited to assess the mismatch between system ’ s expectations for its solution (the
solution proposed at the object level) and the correct solution (the solution obtained
from the ground level).

 Figure 11.2
 Relating our model with existing metareasoning models.

Object

Level

CBR Reasoning

Metalevel

Metareasoning

Ground

Level

User

Query

Query

Revise

Change

Monitoring

Proposal

180 J. L. Arcos, O. Mülâyim, and D. B. Leake

 We note the importance of the hypothesis evaluation step. Because the introspec-
tive reasoner cannot completely predict the effects of changing the reasoning level,
the hypothesis evaluation phase acts as an online trainer. Thus, the metalevel, analo-
gously to the ground level, has the ability to require that the object level solve new
problems (top-most query arrow in fi gure 11.2). Moreover, when the metalevel is
testing the performance of the object level, it can temporally deactivate the retention
step (in our experiments this is achieved by activating the No-Retain policy).

 The control of the object level is achieved by acting over three types of knowledge
components used in the reasoning process at the object level: indexing knowledge,
ranking knowledge, and adaptation knowledge.

 Conclusions

 This chapter presented a new introspective model for autonomously improving the
performance of a CBR system by reasoning about system problem-solving failures. To
achieve this goal, the introspective reasoner monitors the reasoning process, deter-
mines the causes of the failures, and performs actions that will affect future reasoning
processes.

 The introspective level reasons about the reasoning at the object level and about
alternative choices to improve the object-level reasoning. Specifi cally, it relies on a
causal model of the correctly functioning retrieval and adaptation stages of CBR.
Failures of a CBR system ’ s reasoning process are modeled as confl icts between observed
system performance and predictions from the causal model. The sources of these
confl icts are identifi ed and associated learning goals are introduced, sometimes trig-
gering multiple types of learning. As a result the case-based reasoning process is
improved for future problem solving.

 We have tested the introspective reasoner in a fi elded industrial design application.
Experiments show that the use of the introspective reasoner improved the perfor-
mance of the system. Introspection-based refi nements of retrieval knowledge reduced
the number of low-quality solutions; refi nements to adaptation knowledge increased
high-quality solutions. Moreover, the combination of both is able to generate more
high-quality solutions.

 Because we tested the introspective prototype in a fi elded application previously
developed by one of the authors, we had the opportunity to deeply analyze and
compare the performance of both systems. The fi elded application was developed by
introducing many ad hoc mechanisms (concerning similarity and adaptation), whereas
the introspective prototype was initially provided with only some broad mechanisms.
Over the course of the experiments, the introspective prototype was able to refi ne its
initial reasoning and reach a performance comparable to that of the fi elded applica-
tion. Thus, one lesson of this research is that a domain-independent introspective

Using Introspective Reasoning to Improve CBR Performance 181

reasoner is a powerful tool that facilitates the design of a CBR system by providing a
mechanism that can autonomously improve the system ’ s reasoning when required.

 Because our model of the CBR reasoning process is domain independent, it can be
applied in other domains. The engineering effort for incorporating the metareasoning
component to other domains would be concentrated on linking domain-specifi c
aspects of the CBR reasoning process to the appropriate parts in the model (retrieval,
adaptation, and revision models). The application of the metareasoning component
to other design domains would provide an opportunity to validate the completeness
of the taxonomies of reasoning failures and learning goals. Our current work aims at
exploring the generality of our approach.

 Acknowledgments

 This research has been partially supported by the Spanish Ministry of Education and
Science project MID-CBR (TIN2006-15140-C03-01), EU-FEDER funds, and by the Gen-
eralitat de Catalunya under the grant 2005-SGR-00093. This work has been conducted
in the framework of the Doctoral Program in Computer Science of the Universitat
Aut ò noma de Barcelona. This material is also based upon work supported by the
National Science Foundation under grant No. OCI-0721674.

 References

 Anderson , M. L. , & Oates , T. (2007). A review of recent research in metareasoning and metalearn-

ing. AI Magazine , 28 (1), 7 – 16 .

 Arcos , J. L. (2001). T-air: A case-based reasoning system for designing chemical absorption plants .

In D.W. Aha & I. Watson (Eds.), Case-based reasoning research and development. No. 2080 in Lecture

Notes in Artifi cial Intelligence (pp. 576 – 588). Berlin : Springer-Verlag .

 Arcos , J. L. (2004). Improving the quality of solutions in domain evolving environments. In P.

Funk & P. A. Conz á lez-Calero (Eds.), Proceedings of the 7th European Conference on Case-Based

Reasoning . No. 3155 in Lecture Notes in Artifi cial Intelligence (pp. 464 – 475). Berlin:

Springer-Verlag.

 Birnbaum , L. , Collins , G. , Brand , M. , Freed , M. , Krulwich , B. , & Pryor , L. (1991). A model-based

approach to the construction of adaptive case-based planning systems. In R. Bareiss (Ed.), Proceed-

ings of the DARPA Case-Based Reasoning Workshop (pp. 215 – 224). San Mateo, CA: Morgan

Kaufmann.

 Cheetham , W. , & Price , J. (2004). Measures of solution accuracy in case-based reasoning systems.

In P. Funk & P. A. Conz á lez-Calero (Eds.), Proceedings of the 7th European Conference on Case-Based

Reasoning . No. 3155 in Lecture Notes in Artifi cial Intelligence (pp. 106 – 118). Berlin:

Springer-Verlag.

182 J. L. Arcos, O. Mülâyim, and D. B. Leake

 Cheetham , W. (2000). Case-based reasoning with confi dence. In E. Blanzieri & L. Portinale (Eds.),

 Proceedings of the 5th European Workshop on Case-Based Reasoning . No. 1898 in Lecture Notes in

Artifi cial Intelligence, (pp.15 – 25). Berlin: Springer-Verlag.

 Cover , T. M. , & Hart , P. E. (1967). Nearest neighbor pattern classifi cation. IEEE Transactions on

Information Theory , 13 , 21 – 27 .

 Cox , M. T. , & Ram , A. (1999). Introspective multistrategy learning: On the construction of learn-

ing strategies. Artifi cial Intelligence , 112 , 1 – 55 .

 Cox , M. T. (2005). Metacognition in computation: A selected research review. Artifi cial Intelligence ,

 169 (2), 104 – 141 .

 Craw , S. , Wiratunga , N. , & Rowe , R. C. (2006). Learning adaptation knowledge to improve case-

based reasoning. Artifi cial Intelligence , 170 , 1175 – 1192 .

 Delany , S. J. , Cunningham , P. , Doyle , D. , & Zamolotskikh , A. (2005). Generating estimates of

classifi cation confi dence for a case-based spam fi lter. In H. Mu ñ oz-Avila & F. Ricci (Eds.), Proceed-

ings of the 6th International Conference, on Case-Based Reasoning . No. 3620 in Lecture Notes in

Artifi cial Intelligence (pp. 177 – 190). Berlin: Springer-Verlag.

 Fox , S. , & Leake , D. B. (2001). Introspective reasoning for index refi nement in case-based reason-

ing. Journal of Experimental & Theoretical Artifi cial Intelligence , 13 , 63 – 88 .

 Leake , D. B. , Kinley , A. , & Wilson , D. C. (1995). Learning to improve case adaption by introspec-

tive reasoning and CBR. In M. Veloso & A. Aamodt (Eds.), Proceedings of the First International

Conference on Case-Based Reasoning . No. 1010 in Lecture Notes in Artifi cial Intelligence (pp.

229 – 240). Berlin: Springer-Verlag.

 Leake , D. B. , & Wilson , M. (2008). Extending introspective learning from self-models . In M. T.

 Cox & A. Raja (Eds.), Metareasoning: Thinking about thinking, Papers from the AAAI Workshop (pp.

 143 – 146). Technical Report WS-08-07. Menlo Park, CA : AAAI Press .

 Leake , D. B. (1996). Experience, introspection, and expertise: Learning to refi ne the case-based

reasoning process. Journal of Experimental & Theoretical Artifi cial Intelligence , 8 (3), 319 – 339 .

 Mantaras , R. , McSherry , D. , Bridge , D. , Leake , D. , Smyth , B. , Craw , S. , et al. (2005). Retrieval,

reuse, revision, and retention in CBR. Knowledge Engineering Review , 20 (3), 215 – 240 .

 Murdock , J. W. , & Goel , A. K. (2008). Meta-case-based reasoning: Self-improvement through

self-understanding. Journal of Experimental & Theoretical Artifi cial Intelligence , 20 (1), 1 – 36 .

 Wilson , T. D. , & Schooler , J. W. (1991). Thinking too much: Introspection can reduce the quality

of preferences and decisions. Journal of Personality and Social Psychology , 60 (2), 181 – 192 .

 12 The Metacognitive Loop and Reasoning about Anomalies

 Matthew D. Schmill, Michael L. Anderson, Scott Fults, Darsana Josyula, Tim Oates,
Don Perlis, Hamid Shahri, Shomir Wilson, and Dean Wright

 Murphy ’ s Law states, “ if anything can go wrong, it will. ” Though it is more of an
adage than a law, it is surprisingly predictive. For each of the fi fteen participants in
the 2004 DARPA Grand Challenge driverless car competition, Murphy ’ s Law held true.
Each of the entries was an impressive engineering feat; to receive an invitation each
team ’ s vehicle had to navigate a mile-long preliminary obstacle course. Yet in the
longer course, every one of the driverless vehicles encountered a situation for which
it was unprepared: some experienced mechanical failures, while others wandered off
course and into an obstacle their programming could not surmount (Hooper, 2004).

 The DARPA Grand Challenge highlights the enormity of the defensive design task,
in which the engineer must attempt to enumerate the ways in which a system might
fail so that they can be appropriately managed. For sophisticated computer systems,
particularly autonomous systems operating in the real world, this is a great challenge.
In general, no system designer, whether we are talking about a learning system, a
planning system, or any other artifi cial intelligence (AI) technology, can enumerate
all the possible contingencies his or her system will encounter. This is not a unique
observation. Such a view has been pointed out before (Brachman, 2006). Systems that
learn and adapt attempt to address this, but learning processes themselves are also
constrained to work in the space for which they were designed. Learning systems can
improve robustness, but only in the situations for which they are designed.

 Consider, though, a driverless vehicle that has become stuck on an embankment
(a fate of several of the participants in the grand challenge). If that vehicle had a self-
model that allowed it to reason about its own control and sensing capabilities, it may
have been in a position to notice and diagnose its own failure. Such a system would
also have the ability to reason about which of its cognitive components, whether they
be controllers, learning algorithms, or planners, might allow the system to recover
from the current failure, or at least prevent it from happening the next time. How can
an AI system create such a self-model so that it can diagnose its own failures?

 We propose that at some level of abstraction, the ways in which a system can fail
are fi nite. Thus, a domain-general metareasoning component can be developed and

184 M. D. Schmill et al.

equipped with knowledge of how systems fail (and how to recover from these failures).
This component, when integrated with an existing AI system (which we will call the
 host), will allow that system to diagnose failures and thus become more robust.

 In this chapter we present our architecture for generalized metacognition aimed at
making AI systems more robust. The key to this enhancement is to characterize a
system by its expectations each time it engages in activity, to watch for violations of
system expectations, and to attempt to reason in an application-general way about
the violation to arrive at a diagnosis and plan for recovery. Our architecture is called
the metacognitive loop (MCL), and we present it here along with details of its
implementation.

 The Metacognitive Loop

 Human intelligence manages to work not just in everyday situations, but also in novel
situations, and even in signifi cantly perturbed situations. For our purposes, we defi ne
a perturbation as a change in conditions under which an agent (human or artifi cial)
has obtained competency.

 Suppose someone who has spent his entire life in the desert is suddenly dropped
in the middle of a skating rink. This person has learned to walk, but never on ice. His
usual gait will not produce the desired result. In coping with this new situation, he
starts by noticing that the proprioceptive feedback he is receiving is unusual in the
context of walking. He must become more aware of what he is doing and reason
sensibly about the situation. This allows him to assess what has changed or gone awry.
Once he has made an assessment, he must respond to the perturbation by modifying
his usual behavior: become more cautious and deliberate, or attempt to learn the
dynamics of walking on ice.

 Dealing with perturbations invariably involves reasoning about one ’ s own self:
about one ’ s abilities, expectations, and adaptivity. We recognize when we possess a
necessary capacity or whether we need to acquire it. What would be required of a
computer system that endeavored to have that same level of robustness?

 An AI system capable of reasoning about its own (reasoning) capabilities is said to
possess the ability of metareasoning. A typical metareasoner can be laid out as in fi gure
12.1, consisting of a sensorimotor subsystem, shown in the fi gure as the ground level
and responsible for sensing and effecting changes in an environment; a reasoning
subsystem, shown as the object level and responsible for processing sensory informa-
tion and organizing actions at the ground level; and a metareasoning component,
shown as the metalevel and responsible for monitoring and controlling the applica-
tion of components at the object level (see Cox and Raja, this vol., chap. 1).

 We are developing an embedded, general-purpose metareasoner based on this basic
architecture. The metacognitive loop (MCL) is a metalevel component that endows

The Metacognitive Loop 185

control monitoring

ground

level

object

level

metalevel

perception

action

 Figure 12.1
 An overview of a typical metareasoning system.

AI systems with self-modeling, monitoring, and repair capabilities. An overview of an
MCL-enhanced system can be seen in fi gure 12.2. A reasoning system that employs
MCL (called the host system) makes explicit its components, capabilities, actions, per-
cepts, and internal state information to compile the infrastructure necessary for a
self-model. Additionally, the host declares expectations about how its activities will
affect the perceptual and state information. MCL monitors the operation of the host
(including its actions and sensory feedback) against its expectations, waiting for viola-
tions to occur. When a violation of expectations is detected, it employs a combination
of a domain-general problem solver and the host ’ s self-model to make recommenda-
tions on how to devote computational resources to anomalous host behavior.

expectations recommendations

ground

level

host

level

MCL

perception

action

 Figure 12.2
 An overview of an MCL-enhanced AI system.

186 M. D. Schmill et al.

 The operation of MCL is analogous to the thought process of the human walking
on ice presented above. It can be thought of as a background process consisting of
three steps: (i) monitoring for and noticing anomalies; (ii) assessing them (probable
causes, or severity); and (iii) guiding an appropriate response into place.

 The monitoring phase corresponds to an agent ’ s “ self-awareness. ” As an agent
accumulates experience with its own actions, it develops expectations about how they
will unfold. An agent might expect an internal state to change to a new value, for a
sensor to increase at some rate, or for an action to achieve a goal before some deadline.
As the agent engages in a familiar behavior, deviations from expectations (anomalies)
cause surprise, and initiate the assessment phase.

 In the assessment stage of MCL, a profi le of the anomaly is generated. How severe
is the anomaly? Must it be dealt with immediately? What is its likely cause? This
anomaly profi le enables MCL to move on to the guide state, where a response will be
selected to either help the agent recover from the failure, prevent it from happening
in the future, or both. Once this response is guided into place by the host system,
MCL can continue to monitor the situation to determine whether or not the response
has succeeded. Should MCL determine that its initial response has failed, it can move
down its list of possible responses until it succeeds, decides to ask for help, or move
on to work on something else.

 Domain-General MCL

 Implementing our MCL-enhanced pilot applications has provided two key insights
into building robust AI systems. First, building systems that employ an MCL compo-
nent requires a structured understanding of how the system and all of its parts func-
tion. Object-level capabilities and expected behaviors must be known or learnable such
that the metareasoner can detect any perturbations to the system. Indeed, in similar
work great attention is paid to the methodologies that enable self-modeling and robust
behavior in AI (Stroulia, 1994 ; Ulam, Goel, Jones, & Murdoch, 2005 ; Williams &
Nayak, 1996), and in the literature of fault detection, isolation, and recovery (FDIR)
(Frank, 1990 ; Isermann, 1997).

 The second insight is that although there may be many different perturbations
possible in a given domain, there are a limited number of distinct ways in which they
may create system failures, and generally an even smaller number of coping strategies.
Can we produce a taxonomy of the ways in which AI systems fail, and reason about
failures using the general concepts present in that taxonomy, such that one general-
purpose reasoner can be useful to a wide variety of host systems and domains? Indeed,
our primary scientifi c hypothesis is that the answer to this question is “ yes, ” and our
current research seeks to determine to what extent this hypothesis is correct.

The Metacognitive Loop 187

 It is useful to consider two different forms of generalized utility here. A system/
domain-general MCL would be coupled “ out-of-the-box ” with any of a wide variety
of host systems and in a wide variety of domains; the host would at a minimum need
only provide MCL with expectations and monitoring information and specify any
tunable actions it might have. An anomaly-general MCL would have a suffi ciently
high-level typology of anomalies such that virtually all specifi c anomalies would fall
into one type or another. Since actual instances of anomalies tend to be system or
domain specifi c, the two dimensions are not totally independent. However, a system/
domain-general MCL would have a protocol design facilitating a kind of “ plug and
play ” symbiotic hook-up, where the system/host need only provide and receive data
from MCL in a specifi ed format, even if MCL might not be equipped to handle anoma-
lies in some domains. An anomaly-general MCL, by contrast, would be equipped to
process virtually any anomaly for any system or domain, even if it might be tedious
to provide the add-on interface between them. Combining the two gives the best of
both worlds: easy hook-up to any host (as long as the designer follows the communi-
cation protocol) and an ability to deal fl exibly with whatever comes its way. Indeed,
the primary difference between MCL and much of the related work, perhaps best
exemplifi ed by that of Goel, is that rather than requiring a complete self-model, MCL
can operate with more modest knowledge about expectations, the failures (probabi-
listically) indicated by violations thereof, and potentially effective repairs.

 The current generation of MCL implements such a generalized taxonomy and uses
it to reason through anomalies that a host system experiences. MCL breaks the uni-
verse of failures down into three ontologies that describe different aspects of anoma-
lies, how they manifest in AI agents, and their prescribed coping mechanisms. The
core of these ontologies contains abstract and domain-general concepts. When an
actual perturbation is detected in the host, MCL attempts to map it into the MCL core
so that it may reason about it abstractly. Nodes in the ontologies are linked, expressing
relationships between the concepts they represent. The linkage both within the ontol-
ogies and between them provides the basis that MCL uses to reason about failures.

 Although the hierarchical network structure of the ontologies lends itself to any of
a number of graph-based algorithms, our implementation represents the ontologies
as a Bayesian network. This allows us to express beliefs about individual concepts
within the ontologies by probability values, to model the infl uence that the belief in
one concept has on the others, and to use any of the many Bayesian inference algo-
rithms to update beliefs across the ontologies as new observations are made by MCL.
The core of our implementation is based on the SMILE reasoning engine. 1

1. The SMILE engine for graphical probabilistic modeling, contributed to the community by the

Decision Systems Laboratory, University of Pittsburgh (http://dsl.sis.pitt.edu).

188 M. D. Schmill et al.

abstract

concrete

indications failures responses

correctionsMCLexpectations

host system

 Figure 12.3
 An overview of the MCL ontologies.

 Each of the three phases of MCL (note, assess, guide) employs one of the ontologies
to do its work (Schmill, Josyula, Anderson, Wilson, Oates, Perlis, Wright, & Fults,
2007). A fl ow diagram is shown in fi gure 12.3. The note phase uses an ontology of
indications. An indication is a sensory or contextual cue that the system has been
perturbed. Processing in the indication ontology allows the assess phase to hypothe-
size underlying causes by reasoning over its failure ontology. This ontology contains
nodes that describe the general ways in which a system might fail. Finally, when
failure types for an indication have been hypothesized, the guide phase maps that
information to its own response ontology. This ontology encodes the means available
to a host for dealing with failures at various levels of abstraction. Through these three
phases, reasoning starts at the concrete, domain-specifi c level of expectations, becomes
more abstract as MCL moves to the concept of a system failure, and then becomes
more concrete again as it must realize an actionable response based on the hypothe-
sized failure.

 In the following sections, we will describe in greater detail how the three ontologies
are organized and how MCL gets from expectation violations to responses that can
be executed by the host system, using the MCL-enhanced reinforcement learning
system as an example. To help illustrate the functions of the ontologies, we will use
a previous study of ours as an example (Anderson, Oates, Chong, & Perlis, 2006). In
this study we deployed MCL in a standard reinforcement learner. There, learned
reward functions in a simple 8 × 8 grid world formed the basis for expectations. 2 When
reward conditions in the grid world were changed, MCL noted the violation and would
respond in a number of ways appropriate to relearning or adapting policies in RL
systems. In a variety of settings, the MCL-enhanced learner outperformed standard

2. Q-learning (Watkins & Dayan, 1992), SARSA (Sutton & Barto, 1995), and prioritized sweeping

(Moore & Atkeson, 1993) were used.

The Metacognitive Loop 189

reinforcement learners when perturbations were made to the world ’ s reward
structure.

 Indications
 A fragment of the MCL indication ontology is pictured in fi gure 12.4. The indication
ontology consists of two types of nodes separated by a horizontal line in the fi gure:
domain-independent indication nodes above the line, and domain-specifi c expecta-
tion nodes below it. Indication nodes belong to the MCL core and represent general
classes of sensory events and expectation types that may help MCL disambiguate
anomalies when they occur. Furthermore, there are two types of indication nodes:
fringe nodes and event nodes. Fringe nodes zero in on specifi c properties of expecta-
tions and sensors. For example, a fringe node might denote what type of sensor is
being monitored: internal state, time, or reward. Event nodes synthesize information
in the fringe nodes to represent specifi c instances of an indicator (for example,
reward not received). Expectation nodes (shown below the dashed line) represent
host-level expectations of how sensor, state, and other values are known to behave.
Expectations are created and destroyed based on what the host system is doing and
what it believes the context is. Expectations may be specifi ed by the system designer
or learned by MCL, and are linked dynamically into indication fringe nodes when
they are created.

 Consider the ontology fragment pictured in fi gure 12.4. This fragment shows three
example expectations that the enhanced reinforcement learner might produce when
it attempts to move into a grid cell containing a reward. First, a reward x should be

state

sensor

timereward

expectation:
LY=LY

expectation:
reward = x

expectation:
LX=LX-1

unchanged

divergence

miss

longshort

reward
not

received

 Figure 12.4
 A fragment of the MCL indication ontology.

190 M. D. Schmill et al.

experienced at the end of the movement. Second, the sensor LY should not change.
Lastly, the sensor LX should decrease by one unit.

 Suppose that someone has moved the location of the reward, but LY and LX behave
as if the reward were still in the original position. MCL will notice an expectation
violation for the reward sensor and create a fresh copy of the three ontologies to be
used as a basis for reasoning through a repair. Based on the specifi cs of the violation,
appropriate evidence will be entered into the indication fringe to refl ect the fact that
a violation occurred: a change in a reward sensor was expected, but the change never
occurred. The relevant expectation node in the fragment in fi gure 12.4 is denoted by
boldface, and its infl uence on associated nodes in the indication ontology is denoted
by heavy arrows. Through the conditional probability tables maintained by the Bayes-
ian implementation of the ontology, MCL ’ s belief in fringe nodes “ reward ” and
 “ unchanged ” will be boosted. From there, infl uence is propagated along abstraction
links within the indication core (activating the sensor node and others). Finally,
fringe-event links combine the individual beliefs of the separate fringe nodes into
specifi cally indicated events. In fi gure 12.4, the “ reward not received ” node is believed
to be more probable due to the evidence for upstream nodes. Once all violated expec-
tations have been noted, and inference is fi nished, the note phase of MCL is
complete.

 Failures
 The note stage having been completed, MCL can move to the assessment stage, in
which indication events are used to hypothesize a cause of the anomaly experienced.
The failure ontology serves as the basis for processing at the assessment stage.

 Belief values for nodes in the failure ontology are updated based on activation in
the indication ontology. Indication event nodes are linked to failure nodes via interon-
tological links called diagnostic links. They express which classes of failures are plau-
sible given the active indication events and the conditional probabilities associated
with those relationships.

 Figure 12.5 shows a fragment of the MCL failure ontology. Dashed arrows indicate
diagnostic links from the indications ontology leading to the sensor failure and model
error nodes, which are shaded and bold. These nodes represent the nodes directly
infl uenced by updates in the indications ontology during the note phase in our
enhanced reinforcement learning example; a “ reward not received ” event can be
associated with either of these types of failure. The remaining links in the fi gure are
intraontological and express specialization. For example, a sensor may fail in two ways:
it may fail to report anything, or it may report faulty data. Either of these is a refi ne-
ment of the sensor failure node. As such, sensor not reporting and sensor malfunction
are connected to sensor failure with specialization links in the ontology to express
this relationship.

The Metacognitive Loop 191

model fit
error

knowledge
error

model
error

procedural
model
failure

expressivity
failure

sensor
failure

predictive
model
failure

sensor
malfunction

sensor not
reporting

. . .

 Figure 12.5
 A fragment of the MCL failure ontology.

 As in the note phase, infl uence is passed along specialization links to activate more
specifi c nodes based on the probabilities of related abstract nodes and priors. Of par-
ticular interest in our RL example is the predictive model failure node, which follows
from the model error hypothesis. The basis for action in Q-learning is the predictive
model (the Q function), and failure to achieve a reward often indicates that the model
is no longer a match for the domain.

 Responses
 Outgoing interontological links from probable failure nodes allow MCL to move into
the guide phase. In the guide phase, potential responses to hypothesized failures are
activated, evaluated, and implemented in reverse order of their expected cost. The
expected cost for a concrete response is computed as the cost of the response multi-
plied by one minus the estimated probability that the response will correct the
anomaly, where the cost is quantifi ed by the host. Interontological links connecting
failures to responses are called prescriptive links.

192 M. D. Schmill et al.

increase

a
parameter

modify:
cope

modify
procedural

models

change
parameters

reset

Q values

modify
predictive

models

rebuild
models

increase

e
parameter

activate
learning

 Figure 12.6
 A fragment of the MCL response ontology.

 Figure 12.6 shows a fragment of the MCL response ontology. Pictured are both MCL
core responses (which are abstract, and shown in italics) and host-level responses
(pictured in bold), which are concrete actions that can be implemented by a host
system. Host system designers specify the appropriate ways in which MCL can effect
changes by declaring properties (such as “ employs reinforcement learning ”) that are
incorporated into the conditional probability tables for the response nodes. Declaring
 “ employs reinforcement learning, ” for example, will make nonzero the prior belief
that responses, such as “ reset Q values ” as seen in fi gure 12.6, will be useful.

 In the portion of the response ontology pictured, prescriptive links from the failure
ontology are pictured as dashed arrows. These links allow infl uence to be propagated
to the nodes “ modify predictive models ” and “ modify procedural models. ” Like the
failure ontology, internal links in the response ontology are primarily specialization
links. They allow MCL to move from general response classes to more specifi c ones,
eventually arriving at responses that are appropriate to the host. In our example,
concrete nodes correspond to either parameter tweaks in Q-learning or resetting the
Q function altogether.

The Metacognitive Loop 193

 Iterative and Interactive Repairs
 Once MCL has arrived at a concrete response in the guide phase, the host system can
implement that response. In our enhanced RL example, this may mean clearing the
Q values and starting over, or boosting the ε parameter to increase exploration or the
 α parameter to accelerate learning. A hybrid system, with many components, may
have several probable responses to any given indication. This is why all the activated
ontology nodes are considered hypotheses with associated conditional probabilities.
MCL will not always have enough information to arrive at an unambiguously correct
response. MCL must verify that a response is working before it considers the case of
an anomaly closed.

 When a response is found to have failed, either by explicit feedback from the host,
or implicitly by recurrence of expectation violations, MCL must recover its record of
the original violation and reinitiate the reasoning process. The decision of when to
recover a reasoning process is actually quite complex: repairs may be durative (requir-
ing time to work), interactive (requiring feedback from the host), or stochastic. Each
time an anomaly is experienced, it may be a manifestation of an all-new failure, the
recurrence of a known failure, or even a failure introduced by an attempted repair.
The heuristics required to make the decision of whether to initiate a new reasoning
process or resume an existing one remain a topic of our ongoing research.

 Once the decision has been made that a response has failed and a reasoning process
should be resumed, MCL reenters and updates the ontologies in two ways. First, it
revises down the belief that the “ failed response ” node will solve the problem, possibly
driving it to zero. The inference algorithm is run and the infl uence of having dis-
counted the failed response is propagated throughout the ontologies. Next, it feeds
any new indications that may have occurred during the execution of the original
response into the indications ontology and again executes the inference algorithm.
Then utility values for concrete responses are recomputed and the next most highly
rated response is chosen and recommended for implementation by the host. Once a
successful response is implemented and no new expectation violations are received,
the changes effected during the repair can be made permanent, and the violation is
considered addressed.

 Evaluation and Future Work

 In this section, we describe a new system architecture we are developing that has the
requisite complexity to highlight how a metareasoner can contribute to a more robust
system. Through this system we also hope to demonstrate the generality of the rea-
soner, as MCL will have to cope with a variety of problems encountered as the various
system components at the object level interact. We also include a short discussion of
our planned evaluation methods.

194 M. D. Schmill et al.

u
se

r
le

ve
l

agent 1 agent M

asset
controller N

asset
controller 1

....o
b

je
ct

 le
ve

l

NLP Interface

security
broker

asset Nasset 1

environmentg
ro

u
n

d
 le

ve
l m

etalevel

MCL

 Figure 12.7
 An overview of an end-to-end MCL-enhanced AI system.

 An overview of our system architecture is pictured in fi gure 12.7. At the ground
level are “ assets ” — simulated agents with sensing and possibly effecting capabilities
that operate in a simulated environment. The architecture is designed to be confi gu-
rable; the assets might be rover units operating in a simulated Mars environment, or
unmanned aerial vehicles operating in a virtual battlefi eld. The core of the simulation
was built based on the Mars rover simulation introduced by Coddington (2007), and
is currently discrete, although an obvious development path would be to transition
to a two- or three-dimensional, continuous world, and eventually to actual robots
acting in the real world. For the purpose of this discussion, we will use the simulated
Mars rover as an example.

 At the object level of the testbed system are three major cognitive components.
First is the monitor and control system of each asset. It is responsible for sequencing
execution of effecting and sensing actions on the actual assets. Our Mars rover con-
troller contains a simple planner that performs route planning to navigate between
waypoints on a map, while taking reasonable measures to attend to the rover ’ s

The Metacognitive Loop 195

resource constraints. The rover controller can also learn operator models for the Mars
environment, in a form similar to those found in STRIPS (Fikes & Nilsson, 1971).

 The second object-level component is a human – computer interface that accepts
natural language commands from human users. Users specify their goals to the lan-
guage processor, which converts them to a goal language usable by the rover control-
ler. The rover controller in turn generates ground-level plans to achieve the user ’ s
goals, and also manages the inevitable competition for limited asset resources.

 Finally, the system contains a security broker. The security broker places constraints
on both the assets and users ’ access to them. For example, the security broker may
state that two rovers may not perform science in the same zone, or the security broker
may state that user U may access panoramic images taken by the rover, but not specifi c
scientifi c measurements in a particular zone.

 The three object-level components address three distinct classes of AI problems.
The rover controller is, obviously, a classic AI control problem. It requires the use of
planning, scheduling, and learning, and the coordination of those capabilities to
maximize the utility of the system assets. The user – asset interface is a classic AI natural
language understanding, learning, and dialogue management problem. Finally, the
security broker introduces security policies as a constraint, as well as information
fusion.

 The domain presents many possibilities for perturbations and associated system
failures. Each path between the ground and object level represents a conceptual
boundary, whereby one component asserts control and has expectations about the
result. Consider a few possible perturbations: the human user may use unknown
lexical or syntactic constructs, the user may be denied access to imagery due to con-
fl icting security policies, or the rover may generate useless observations due to unfore-
seen changes in the Mars environment. Each interaction and its associated expectations
will be monitored by MCL, and any violation will be mapped to the core ontologies.
Possible explanations and repairs will be considered in an order consistent with prior
and learned probabilities in an attempt to prevent further violations.

 After building the various components outlined above, our main experimental task
will be to build and test the MCL ontologies. We want to show that the MCL approach
is effective and results in more perturbation-tolerant systems, and we want to show
that the MCL approach is general, that the same MCL core can handle many different
kinds of perturbations in many different systems.

 For measuring the effectiveness of MCL, the main strategy will involve ablation
studies. Performance metrics will include time to task completion and cost of task
completion (e.g., fuel burned, number of messages sent), and more particularly the
degree of increase in these measures as the scenario diffi culty increases (Anderson,
2004). We will compare performance for three versions of the system: (1) full adaptive
response: all the components/agents of the system with all parts of MCL enabled.

196 M. D. Schmill et al.

(2) Fixed maintenance: the components/agents of the system with no MCL, but rather
a fi xed maintenance policy in which available repair actions are executed in a preven-
tative manner. For instance, the rover rebuilds models every n timesteps, recalibrates
sensors every m timesteps, and so on. (3) Fixed response: The components/agents of
the system with the MCL note phase working, but with the failure and response
ontologies replaced by a single response, which is to run down a list of all available
repairs until one succeeds. Insofar as MCL is an effective strategy for ensuring pertur-
bation-tolerance, the performance of system version (1) should be far better than the
others.

 For measuring the generality of MCL, a different approach must be employed.
Recall that we intend for all the MCL instantiations (e.g., for the natural language
interpreter and the rover) to have identical core algorithms and core nodes (at least
initially), but different fringe nodes (e.g., the type and number of expectations). In
the course of development, we expect that the differences between the host systems
will suggest changes to the core nodes and their connections, in order to enhance
performance. The open research questions are: how much will they end up differing,
and can they be reunifi ed after optimization to generate a more truly universal MCL
system? We will answer those questions in the following four steps.

 First, we will allow each MCL core to be changed and trained however much is
required to achieve the best enhancement over base-level performance (as noted
above). After this initial training and testing, we will measure the following traits of
the MCL systems: (1) which specifi c nodes get used in each system, and (2) what are
the most frequent subtrees used in the ontologies. What we hope to see within each
MCL core is that a majority of the nodes and subtrees are being activated in the course
of processing the various anomalies.

 What we hope to see between any two MCL cores is signifi cant overlap between
the subsets of nodes and subtrees being used in each case. Dice ’ s coeffi cient is a con-
venient measure for this, as it allows quantifi cation of the overlap between sets, in
this case the subset of activated nodes or subtrees, as compared with the full set of
available nodes or subtrees (within the MCL core) or as compared with other subsets
of activated nodes of subtrees (between MCL cores). Low scores (below 0.5) would
indicate poor coverage (extraneous nodes that aren ’ t being used) or insuffi cient
abstraction (different specialized paths being used for each different system), and
would trigger a redesign of the MCL core.

 Second, once we have generated MCL cores that both serve their host systems and
indicate good coverage and abstraction, we will compare the whole cores to one
another using a tree-edit distance measure. We hope to see that the MCL cores remain
fundamentally similar (requiring few edits to turn one into the other).

 Third, we will merge the two MCL cores into one, containing all the nodes and
connections of the two. If the unifi ed MCL is domain general, it should work equally

The Metacognitive Loop 197

well when reattached to the initial host systems. We will test this claim by rerunning
the initial performance tests, and seeing if the enhanced, unifi ed MCL works as well
as the preunifi cation specialized MCLs.

 Fourth and fi nally, once we have a single, unifi ed MCL core with good coverage
and abstraction that works well on both host systems, we will install MCL on a system
not designed by us (and with minimum modifi cations) that we can use as a test-host.
We do this to ensure that we have not inadvertently built our original test systems so
that they would automatically work with MCL.

 Conclusion

 We have described a generalized metacognitive layer aimed at providing robustness
to autonomous systems in the face of unforeseen perturbations. The metacognitive
loop encodes commonsense knowledge about how AI systems fail in the form of a
Bayesian network and uses that network to reason abstractly about what to do when
a system ’ s expectations about its own actions are violated. Our aim is to provide an
engineering methodology for developing metalevel interoperable AI systems and in
so doing provide the benefi t of adding reactive anomaly-handling using the MCL
library. We have also introduced a system architecture with a number of interacting
cognitive components at the object level that we believe is a useful testbed for meta-
cognitive research.

 Acknowledgments

 Supported by NSF (IIS0803739), AFOSR (FA95500910144), and ONR (N000140910328).

 References

 Anderson , M. L. (2004). Specifi cation of a test environment and performance measures for per-

turbation-tolerant cognitive agents. In R. M. Jones (Ed.), Proceedings of the AAAI Workshop on

Intelligent Agent Architectures (pp. 11 – 18). Technical Report WS-04-07. Menlo Park, CA: AAAI Press.

 Anderson , M. L. , Oates , T. , Chong , W. , & Perlis , D. (2006). The metacognitive loop I: Enhancing

reinforcement learning with metacognitive monitoring and control for improved perturbation

tolerance. Journal of Experimental & Theoretical Artifi cial Intelligence , 18 (3), 387 – 411 .

 Brachman , R. J. (2006). (AA)AI: More than the sum of its parts. AI Magazine , 27 (4), 19 – 34 .

 Coddington , A. (2007). Motivations as a meta-level component for constraining goal generation.

In A. Raja & M. T. Cox (Eds.), Proceedings of the First International Workshop on Metareasoning in

Agent-Based Systems (pp. 16 – 30). Collocated with AAMAS-07. Columbia, SC: IFAAMAS.

198 M. D. Schmill et al.

 Fikes , R. E. , & Nilsson , N. J. (1971). STRIPS: A new approach to the application of theorem

proving. Artifi cial Intelligence , 2 (3 – 4), 189 – 208 .

 Frank , P. M. (1990). Fault diagnosis in dynamic systems using analytical and knowledge-based

redundancy — A survey and some new results. Automatica , 26 (3), 459 – 474 .

 Hooper , J. (June, 2004). DARPA ’ s debacle in the desert: Behind the scenes at the DARPA grand

challenge, the 142-mile robot race that died at mile 7. Popular Science , 64 – 67.

 Isermann , R. (1997). Supervision, fault-detection and fault-diagnosis methods — An introduction.

 Control Engineering Practice , 5 (5), 639 – 652 .

 Moore , A. W. , & Atkeson , C. G. (1993). Prioritized sweeping: Reinforcement learning with less

data and less time. Machine Learning , 13 (1), 103 – 130 .

 Schmill , M. , Josyula , D. , Anderson , M. L. , Wilson , S. , Oates , T. , Perlis , D. , Wright, D., & Fults, S.

(2007). Ontologies for reasoning about failures in AI systems. In A. Raja & M. T. Cox (Eds.),

 Proceedings of the First International Workshop on Metareasoning in Agent-Based Systems (pp. 1 – 15).

Collocated with AAMAS-07. Columbia, SC: IFAAMAS.

 Stroulia , E. (1994). Failure-driven learning as model-based self redesign . Doctoral dissertation, Georgia

Institute of Technology, College of Computing, Atlanta.

 Sutton , R. S. , & Barto , A. G. (1995). Reinforcement learning: An introduction . Cambridge, MA : MIT

Press .

 Ulam , P. , Goel , A. , Jones , J. , & Murdoch , W. (2005). Using model-based refl ection to guide rein-

forcement learning. In D.W. Aha, H. Mu ñ oz-Avila, & M. van Lent (Eds.), Proceedings of the IJCAI

Workshop on Reasoning, Representation and Learning in Computer Games. (pp. 107 – 112). Washing-

ton, D.C.: Naval Research Laboratory, Navy Center for Applied Research in Artifi cial

Intelligence.

 Watkins , C. J. , & Dayan , P. (1992). Q-learning. Machine Learning , 8 (3 – 4), 279 – 292 .

 Williams , B. C. , & Nayak , P. P. (1996). A model-based approach to reactive selfconfi guring

systems. In Proceedings of the National Conference on Artifi cial Intelligence (pp. 971 – 978). Menlo

Park, CA: AAAI Press.

 IV Distributed Metareasoning

 13 Coordinating Agents ’ Metalevel Control

 Anita Raja, George Alexander, Victor R. Lesser, and Michael Krainin

 Embedded systems consisting of collaborating agents capable of interacting with their
environment are becoming ubiquitous. It is crucial for these systems to be able to
adapt to the dynamic and uncertain characteristics of an open environment. The
adaptation needs to be based on the priority of tasks, availability of resources, and
availability of alternative ways of satisfying these tasks as well as tasks expected in the
future. Important issues include the timing of this adaptation process, the level of
effort to be invested in the adaptation as opposed to just continuing with the current
action plan, and the ramifi cations of making these decisions in a multiagent context.

 The basic idea of bounded rationality arises in the work of Simon with his defi ni-
tion of procedural rationality (Simon, 1976). Simon ’ s work has addressed the implica-
tions of bounded rationality in the areas of psychology, economics, and artifi cial
intelligence (AI) (Simon, 1982). He argues that people fi nd satisfactory solutions to
problems rather than optimal solutions because people do not have unlimited process-
ing power. In the area of agent design, he has considered how the nature of the
environment can determine how simple an agent ’ s control algorithm can be and still
produce rational behavior. Bounded rationality, discussed in chapters 3 and 4 of this
volume, has been used in the context of beliefs, intentions, and learning (Doyle, 1983);
intelligent system design (Horvitz, 1988); problem solving and search (Simon &
Kadane, 1974); and planning (Stefi k, 1981). Russell, Subramanian, and Parr (1993) cast
the problem of creating resource-bounded rational agents as a search for the best
program that an agent can execute. In searching the space of programs, the agents,
called bounded-optimal agents, can be optimal for a given class of programs or they
can approach optimal performance with learning, given a limited class of possible
programs. Zilberstein (this vol., chap. 3) discusses the implementation characteristics
and formal guarantees of optimal metareasoning that make it a preferred solution
approach for bounded rationality.

 Cox (2005) provides a review of metacognition research in the fi elds of AI and
cognitive science. In our previous work (Raja & Lesser, 2007), we developed a sophis-
ticated architecture that could reason about alternative methods for computation,

202 A. Raja et al.

including computations that handled simple negotiation between two agents. This
chapter builds on results from this earlier work and opens a new vein of inquiry by
addressing issues of scalability, partial information, and complex interactions across
agent boundaries in real domains. It includes defi ning a generalized multiagent frame-
work for metalevel control based on a decentralized Markov decision process (DEC-
MDP) model.

 This chapter is structured as follows: We fi rst describe the taxonomy of agent deci-
sions and their interdependencies from a single-agent perspective and then from a
multiagent perspective. The relevance of these research issues within the context of
Netrads, a real-world tornado-tracking application, is presented, followed by a descrip-
tion of a generalized framework for metalevel control. We then present the conclu-
sions and future work directions.

 Taxonomy of Agent Decisions

 Agents in embedded systems operate in an iterative three-step closed loop: receiving
sensory data from the environment, performing internal computations on the data,
and responding by performing actions that affect the environment either using effec-
tors or via communication with other agents. Two levels of control are associated with
this sense, interpretation, and response loop: deliberative and metalevel control (fi gure
1.2, this vol., ch. 1). The lower control level is deliberative control (also called the
object level), which involves the agent making decisions about what domain-level
problem solving to perform in the current context and how to coordinate with other
agents to complete tasks requiring joint effort. These deliberations may have to be
done in the face of limited resources, uncertainty about action outcomes, and real-time
constraints. Tasks in these environments can be generated at any time by the environ-
ment or other agents and generally have deadlines where completion after the dead-
line could lead to lower or no utility.

 Single-Agent Metalevel Control
 At the higher control level is metalevel control, which involves the agent making
decisions about whether to deliberate, how many resources to dedicate to this delib-
eration, and what specifi c deliberative control to perform in the current context. In
practice, metalevel control can be viewed as the process of deciding how to interleave
domain and deliberative control actions such that tasks are achieved within their
deadlines, and also allocating the required amount of processor and other resources
to these actions at the appropriate times. For example, suppose the current time is 10
and an agent is in the midst of executing a set of high-quality tasks with a deadline
to complete the task at time 25. At time 15 the agent receives a new medium-quality
task T new with expected duration of 10 and a deadline of 40. The sensible metalevel

Coordinating Agents’ Metalevel Control 203

control decision would be for the agent to delay deliberating about how to accomplish
task T new in the context of ongoing activities until the existing task set has completed
execution (time 25). This would guarantee that the existing task set completes within
its deadline and quality can still be gained by processing T new by time 40. The metalevel
control decision process should be designed to be computationally inexpensive, obvi-
ating the need for meta-metalevel control.

 Metalevel control also involves choosing among alternative deliberative action
sequences, including choosing among various alternatives for scheduling/planning;
choosing between scheduling/planning and coordination; and allocating extra time
for learning activities. Consider the following example: suppose the current time is 6
and an agent has two tasks: T x , a high-quality task with expected duration of 10 and
deadline 30; and T y , a low-quality task with expected duration of 6 and deadline 30.
Quality, in this work, is a deliberately abstract domain-independent concept that
describes the contribution of a particular action to the overall problem solving. The
metacontrol decision could be to spend 5 time units doing a detailed high-quality
deliberation about T x to fi nd a good plan for the high-quality task, and to spend 2
time units doing a quick and dirty deliberation to generate a plan for T y (the lower-
quality task). The remaining time not used by deliberative activities will be allocated
to successfully execute both tasks.

 Multiagent Metalevel Control
 In the multiagent context, metalevel control decisions by different agents that are part
of a agent network need to be coordinated. These agents may have multiple high-level
goals from which to choose, but if two or more agents need to coordinate their actions,
the agents ’ metacontrol components must be on the same page. That is, the agents
must reason about the same problem and may need to be on the same stage of the
problem-solving process (e.g., if one agent decides to devote little time to communica-
tion/negotiation before moving to other deliberative decisions while another agent
sets aside a large portion of deliberation time for negotiation, the latter agent would
waste time trying to negotiate with an unwilling partner). Thus, if an agent changes
its problem-solving context, it must notify other agents with which it may interact.
This suggests that the metacontrol component of each agent should have a multiagent
policy in which the progression of what deliberations agents do and when they do
them is choreographed carefully and includes branches to account for what could
happen as deliberation (and execution) plays out.

 Determining the multiagent policy is a complicated problem, as the multiagent
policy is not expected to be simply the union of all single-agent metacontrol policies.
Consider for instance, two agents: A1 and A2 are negotiating about when A1 can
complete method M 1 that enables A2 ’ s method M2. This negotiation involves an itera-
tive process of proposals and counterproposals where at each stage A2 generates a

204 A. Raja et al.

commitment request to A1, and A1 performs local optimization computations (sched-
uling) to evaluate commitment requests; this process repeats until A1 and A2 arrive
at a mutually acceptable commitment. The metalevel control decision would be to
ensure that A1 completes its local optimization in an acceptable amount of time so
that A2 can choose alternate methods in case the commitment is not possible. In
setting up a negotiation, the metalevel control should establish when negotiation
results will be available. This involves defi ning important parameters of the negotia-
tion, including the earliest time the target method will be enabled. Two agents with
different views of metacontrol policy for negotiation need to be reconciled in order
to set up the earliest starting time parameter used in the negotiation process. Rubin-
stein, Smith, and Zimmerman (this vol., chap. 14) discuss a number of local agent
parameters, including coordination-period, quiescence-period, and non-local-freeze
period to handle explicit coordination between agents. Kennedy (this vol., chap. 15)
introduces distributed metamanagement, where a single agent has multiple metalevels
(metareasoning methods) that monitor each other and the same object level. This also
requires choreographing the metalevels, albeit within the same agent.

 A second multiagent metalevel control issue involves exploring how to dynamically
split a network of agents into neighborhoods that are coordinated where each agent
in a neighborhood has similar metalevel control parameter settings; different neigh-
borhoods may have different metalevel control settings. Coordinated metalevel control
decisions do not mean that metalevel control has to be the same in all parts of the
network; instead, it involves fi nding consistent sets for different parts of the network.

 Multiagent metacontrol suggests the need for some kind of metalevel message
passing. There are important trade-offs between the amount of communication (both
size and number of messages) and resulting overhead, and the usefulness of such
communication. Agents must determine what kind of information is contained in a
metalevel message. In some situations, it may be enough for the agent to simply let
others know that it is thinking about context X ; in other cases, such as when agents
are more tightly coupled, an agent may need to communicate some partial results of
its current thinking as well. Agents must also reason about how to handle metacontrol
messages from others and coordinate when these messages should be received and
handled.

 A Real-World Application
 The following is a description of a real-world application that will need this type of
metalevel control. Netrads (Krainin, An, & Lesser, 2007 ; Zink et al., 2005) is a network
of adaptive radars controlled by a collection of meteorological command and control
(MCC) agents that determine for the local radars where to scan based on emerging
weather conditions. The Netrads radar is designed to quickly detect low-lying meteo-
rological phenomena such as tornadoes, and each radar belongs to exactly one MCC.

Coordinating Agents’ Metalevel Control 205

The MCC agent can manage multiple radars simultaneously. It gathers raw data from
the radars and runs detection algorithms on weather data to recognize signifi cant
meteorological phenomena. The time allotted to the radar and its control systems for
data gathering and analysis is known as a heartbeat. Results are used to determine
potential weather scanning tasks for the next scanning cycle. Tasks are classifi ed as
internal tasks (are squarely under the purview of one agent only) and boundary tasks
(shared by multiple MCCs). It is important for MCCs to coordinate both to avoid
wasteful redundant scanning as well as to ensure multiple radar scans when required.

 Each MCC communicates with its neighbors to agree on what weather scanning
tasks it should do and how these tasks should be done in concert with tasks of its
neighbors. The MCC then uses a three-step decentralized process to determine the
best set of scans for the available radars that will maximize the sum of the utilities of
the chosen tasks. It executes a local combinatorial optimization algorithm to deter-
mine the best confi guration from a local point of view, then exchanges these confi gu-
rations with neighborhood agents as part of a hill-climbing negotiation protocol to
determine which radars to schedule and how much radar time to allocate to each task.
This process of local optimization and negotiation is time constrained since radars
need to be constantly repositioned to track weather phenomena and recognize the
arrival of new phenomena.

 For each heartbeat in the Netrads domain, a ground-level action as defi ned in fi gure
1.2 would be a radar scan of a weather task. The object level/deliberative action would
be the MCC spending some initial time in processing the radar data obtained during
the last heartbeat, then performing a local optimization to determine the schedule of
the radars under its control, followed by negotiation rounds of alternating communi-
cation and recomputation of the local schedule. The metalevel decision involves
guiding the schedule optimization and negotiation actions of the MCC to maximize
global utility.

 Solution Approach

 The generalized metalevel control (GeMEC) architecture (fi gure 13.1) consists of a
problem abstraction component, a performance profi le learner, a decision process
component, and a current state evaluator. A trigger is an event requiring the attention
of the metalevel layer. It could be the arrival of a new task or a change in the environ-
ment. In Netrads, a triggering event occurs at every heartbeat since emerging weather
events need to be scanned and analyzed at each heartbeat.

 When the metalevel layer is triggered, the problem abstraction component (PAC)
extracts the associated task and identifi es high-level alternative ways by which the
task can be completed successfully. These alternatives are captured in a task structure
called meta-alt task structure. The PAC uses performance profi le (Dean & Boddy, 1988

206 A. Raja et al.

Metalevel Layer

Metalevel Layer

Metalevel Layer

3. Alternatives

2. Expected Performance

9.Update

5. Current
State

Current
State
Evaluator

6. Deliberative
Action

7. Domain Action

Environment

1. Trigger

8. Actual
Performance

4. Environment
Observation

Problem
Abstraction
Component

Performance
Profile
Learner

Deliberative Layer

Decision
Process
Component

Performance
Profiles DB

Metalevel
Agent
Interaction

 Figure 13.1
 Control fl ow in the generalized metalevel control (GeMEC) architecture.

chap. 3) information about the deliberative action modes from a performance profi le
database to determine these alternatives. Generally, the performance profi le will be a
mapping from run time to expected output quality (Zilberstein, this vol., chap. 3).
The PAC will help control the complexity of the metalevel decision process by weeding
out all superfl uous information. This is especially relevant in applications where each
deliberation action can be performed in different modes resulting in different perfor-
mance characteristics. For instance, scheduling, as a deliberation action, can have
multiple modes: heuristic scheduler (Wagner, Garvey, & Lesser, 1997), MDP-based
scheduler (Musliner et al., 2007), or constraint-based scheduler (Smith, Gallagher,
Zimmerman, & Barbulescu, 2006). This framework will be useful to study concavity
and close-approximations of the profi le function to control complexity of the metar-
easoning process (Conitzer, this vol., chap. 8).

 The GeMEC framework is an extension of fi gure 1.5 (this vol., ch. 1) that describes
metalevel reasoning among multiple agents. Using GeMEC, we elaborate the function-
ality of the metalevel reasoning module and propose a method for communication as
well as for distributed decision making among the agents. In the Netrads application,

Coordinating Agents’ Metalevel Control 207

an MCC has multiple deliberation modes. Varying amounts of time and resources can
be allocated to a single heartbeat, and within a heartbeat, different allocations to
optimization and negotiation cycles can be made. Consider a scenario where two
agents A1 and A2 share an interdependency requiring negotiation. Figure 13.2 is the
task structure representing a set of metalevel alternatives for agent A1 and their associ-
ated quality distributions. Agent A1 can choose to communicate (one-shot negotiation
in this case) with A2 to determine whether A2 is willing to negotiate about the shared
task. If A2 agrees to negotiate then the Negotiate-with-A2 task is enabled and the cor-
responding alternatives will be chosen based on the resources. If A2 refuses to negoti-
ate, A1 will choose to execute one of its local tasks M2 or M3. The leaf nodes are the
domain-level primitive actions and have a quality and duration distribution associated
with them. For example, choosing the Communicate-with-A2 has a duration of 2 units
and will result in a quality value of 10 (meaning Agent A2 agrees to negotiate) 60
percent of the time, and 0 (Agent A2 refuses to negotiate) 40 percent of the time. Here,
agent communication is assumed to be reliable.

 Once constructed, the meta-alt task structure is then sent to the decision process
component (DPC). In the context of the Netrads application, the DPC converts the
metalevel alternative task structure into a Markov decision process (MDP) (Bertsekas

Meta-Alternatives

2 cycles
Neg

5 cycles
Neg

Interleave Neg
and local exec

10 cycles

Negotiate
with A2

Communicate
with A2

Execute
local task

M2 M3

OROR

SUM

disables

enables

Q 60% 10 40% 0

D 100% 2

Q 80% 2 40% 8

D 100% 10

Q 80% 2 40% 8

D 100% 10

Q 80% 8 20% 12

D 100% 10

Q 80% 5 40% 8

D 100% 6

Q 100% 3

D 100% 3

 Figure 13.2
 Task structure describing metalevel alternatives for a specifi c Netrads scenario.

208 A. Raja et al.

 & Tsitsiklis, 1996) using a previously developed algorithm (Raja & Lesser, 2007). The
DPC then computes the policy for the MDP and determines the best deliberative
action to recommend to the deliberative layer given the current context.

 An MDP-based decision process component is appropriate for the Netrads applica-
tion since the meta-alt task structure would tend to remain static in this application
for extended periods of time. Also, the actions of the MCC are typically not adjusted
from heartbeat to heartbeat. In our view, this justifi es embedding the nontrivial cost
of computing an optimal or near-optimal policy for the MDP inside the metalevel
reasoning loop. In applications with a greater level of dynamics, GeMEC ’ s decision
process component could be replaced by other decision-processing technologies such
as stochastic online optimization methods (Bent & Hentenryck, 2004). The choice of
the DPC mechanism hence will depend on the dynamics of the application and the
cost of computing the action choices. Table 13.1 summarizes the reasoning process.

 In Netrads, the DPC could adjust the system heartbeat to adapt to changing weather
conditions. For example, if many scanning tasks are occurring in a certain region,
metacontrol may decide to use a shorter heartbeat to allow the system to respond
more rapidly. It is important to handle different heartbeats for different neighbor-
hoods of MCCs. For example, suppose there is a neighborhood with a heartbeat of 30
seconds and another one with a heartbeat of 60 seconds, with one MCC belonging
to both neighborhoods. Also suppose that this MCC is using a 30-second heartbeat.
We can choose between one of two protocols. After the end of its fi rst heartbeat, new
information is sent to its neighbors in the 60-second neighborhood, or the agent
negotiates only with its 30-second neighbors until its slower neighbors have entered
their next heartbeat.

 The DPC can also adjust the parameters involved in the calculation of an MCC ’ s
local confi guration in order to trade off optimality for a shorter run time, which would
allow more rounds of negotiation to be performed. Spending more time on negotia-
tion may be preferable, for example, when there are many boundary tasks compared
to internal tasks. In fact, the DPC could make this decision for each round in the
negotiation process. This would allow a fast estimate of the optimal local confi guration

 Table 13.1
 GeMEC reasoning loop for Netrads

 1. Extract task

 2. Use performance profi le database to generate meta-alt task structure

 3. Send meta-alt task structure to DPC

 4. Convert meta-alt task structure to a MDP

 5. Derive optimal policy and recommend best action choice

Coordinating Agents’ Metalevel Control 209

to begin negotiation and then switch to a better optimization in later rounds or
perhaps to begin with the current brute force optimization and switch to other
methods after negotiating for a while.

 Toward Formalizing the Multiagent Metalevel Control Process
 Our approach to the DPC involves formalizing the agent ’ s metalevel control problem
using an MDP (Raja & Lesser, 2007 ; Alexander, Raja, & Musliner, 2008). The advantage
of using an MDP to model the metalevel control problem is twofold: the MDP sup-
ports sequential decision making allowing for nonmyopic decision making, and meta-
level reasoning will be inexpensive as it will involve only MDP policy lookup. Several
researchers (Peshkin et al., 2000; Nair et al., 2003, 2003) have studied multiagent
MDPs, but most have assumed full (individual) observability. However, as shown by
Becker et al. (2003) the Netrads application involves agents having partial and differ-
ent views of the global state. The decentralized Markov decision process (DEC-MDP)
(Bernstein, Zilberstein, & Immerman, 2000) is a suitable framework for these types of
problems. A DEC-MDP is a DEC-POMDP that is jointly fully observable (i.e., the com-
bination of both agents ’ observations determines the global state of the system). The
complexity of DEC-MDPs has been shown to be NEXP-complete for fi nite horizon
problems and undecidable for infi nite-horizon problems (Bernstein, Zilberstein, &
Immerman, 2000). The complexity is mainly the result of the explosion in states,
action choices, and observations due to agent interactions.

 One way to overcome this complexity is to approximate the solution. An approxi-
mation of particular interest (Goldman & Zilberstein, 2008) leverages the idea that a
lot of decentralized problems have some structure with infl uence on the level of
decentralization. The key idea is that a feasible approximation can be found by decom-
posing the global reward function into local and temporal problems. A communica-
tion policy is then used to synchronize the single-agent MDPs occasionally. This would
allow agents to exchange information at certain times to obtain a global state (Xuan,
Lesser, & Zilberstein, 2001). When not communicating, the agents will act indepen-
dently of each other and not necessarily follow the optimal policy. This local policy
of an agent can be viewed as Sutton ’ s options (Sutton, Precup, & Singh, 1999). The
options will have terminal actions, specifi cally communication actions. In this model,
it is also assumed that all options are terminated whenever at least one of the agents
initiates communications. It is also assumed that when the agents exchange informa-
tion, the global state of the system is revealed.

 This model is known to be equivalent to a multiagent Markov decision process
(MMDP) (Goldman & Zilberstein, 2008). The optimal policy would involve searching
over all possible pairs of local single-agent policies and communication policies. For
example, each agent needs to ensure that it enters into a negotiation mode only upon

210 A. Raja et al.

agreement of the partner agent to enter into a similar mode. If the other agent refuses
to negotiate, the requesting agent should make sure that it does not enter into a
negotiation mode. This behavior will be manifested by an appropriate defi nition of
the reward function and will enforce coordinated metalevel control. The reward function
for each state s will have two components and can be defi ned as: R (s) = R local + R coord
where R local is the reward obtained from executing local actions and R coord is the reward
obtained from actions requiring coordination. This reward function has to capture the
fact that an agent should not consider negotiating as an action choice for a particular
time frame unless the other agent is choosing the negotiation action for an overlap-
ping time frame.

 In addition to agreeing to negotiate, the agents must agree on negotiation param-
eters. Each agent also needs to determine how much time and resources to allocate
to the negotiation process. The motivation for longer durations would be to improve
the success rate of negotiation. The agent can also choose to interleave the negotiation
with a local domain action execution so that the negotiation has more end-to-end
time, thus accounting for uncertainty in outcome, which improves the success prob-
ability of the negotiation.

 We now describe a simple example of the DPC ’ s decision-making process. Consider
a scenario where there are two agents, A1 and A2, with an interdependency requiring
negotiation. Figure 13.3 describes the metalevel MDP for agent A1. State S21 is a state
where the agent has to communicate with agent A2 and determine whether A2 is
willing to negotiate in the next time period. This is represented by action a11 , which
has a duration of 2 units. Agent A2 can respond with one of two responses: agree to
negotiate (outcome o1) or refuse to negotiate (outcome o2). The states reached and
action choices available to agent A1 vary depending on the outcome of action a11 .
The actions available from state S22 allow agent A1 to allocate different amounts of
time to negotiation where the entire processor is allocated to negotiation only (dura-
tion 3 for action a12 representing the 2-cycle negotiation option and duration 6 for
action a13 representing the 5-cycle negotiation option), or the agent can choose to
interleave the negotiation with a domain action (method M2) for a duration of 10
units (action a14). If outcome o2 occurs, agent A1 will not move into a negotiation
phase and instead will try to ensure that it uses its resources effi ciently by choosing
one of its local domain actions (actions a15 and a16).

 Empirical Study

 We have developed a set of experiments based on a heuristic method to determine
whether metalevel control is indeed useful in the Netrads application. Specifi cally, we
study the usefulness of changing heartbeats of the MCC in order to handle dynamic
weather patterns. Our goal, if we can successfully show the need for metalevel control,

Coordinating Agents’ Metalevel Control 211

Negotiate with
Agent A2
for 2 cycles
Duration = 3

Negotiate with
Agent A2
for 5 cycles
Duration = 6

Communicate
with Agent A2
Duration = 2

Execute local
method M2
Duration = 4

Execute local
method M3
Duration = 6

Interleave Negotiate
with Agent A2 and
method M2 execution
Duration = 10

o1: Agent A2
agrees to
negotiate

o2: Agent A2
rejects offer to
negotiate

S21 a11

a12

a13

a14

a15

a16

S22

S23

 Figure 13.3
 Snapshot of decision process for determining negotiation actions.

is to use the parameters obtained from the heuristic approach to defi ne the DEC-MDP
state and action space in our future work.

 The Netrads simulator implements four different categories of weather tasks called
Storm, Rotation, Velocity, and Refl ectivity. For our experiments, we focused on Storms
and Rotations. The differences between these tasks are the size (Storms occupy a much
larger area than Rotations) and the elevations at which a radar must scan the task to
obtain useful information (Storms must be scanned at the lowest four elevations, but
Rotations must be scanned at the lowest six). We used two kinds of weather scenarios:
 “ Storm scenarios ” and “ Rotation scenarios. ” Storm scenarios contained eighty storm
tasks as well as one task each of the other three types, and Rotation scenarios contained
eighty rotation tasks as well as one task each of the other three types.

 For each of these scenarios, we compared the effectiveness of a 30-second MCC
Heartbeat to a 60-second MCC Heartbeat, while varying the added value we assigned
to more up-to-date information. Radar scans with a 60-second heartbeat received a

212 A. Raja et al.

30sec

60sec-no-penalty

60s-10-percent

60s-20-percent

60s-30-percent

Rotation Scenarios

Experimental Parameters

A
ve

ra
g

e
Q

u
al

it
y

100

90

80

70

60

50

40

30

20

10

0

 Figure 13.4
 Quality obtained by changing heartbeats in Rotation scenarios.

penalty, because they are not up to date; that is, they were assigned just a percentage
of the value they would otherwise have achieved, while radar scans from runs where
the heartbeat was set to 30 seconds received the full value. Four different penalty
values (no penalty, 10 percent penalty, 20 percent penalty, and 30 percent penalty)
plus the 30-second heartbeat (with no penalty) were used in 200 runs each for a total
of 1,000 data points per weather scenario that we examined. The mean results are
shown in fi gures 13.4 and 13.5.

 When no penalty was assessed, a 60-second heartbeat was better in both scenarios;
but when too great a penalty (30 percent) was assessed, the 30-second heartbeat was
better in both scenarios. Thus, for these cases, there is no need for online metalevel
control — a single heartbeat value dominates regardless of task type. However, when
the penalty was set at 10 percent or 20 percent, the optimal choice of heartbeat
depends on the task type: 60 seconds is better for rotations due to the need for more
scanned elevations, and 30 seconds is better for storms. Note that, for rotation tasks,
the average value with a 30-second heartbeat is not much less than the average value
achieved by a 60-second heartbeat with 20 percent penalty, and for storm tasks, the
average value with a 30-second heartbeat is not very much greater than the average
value achieved by a 60-second heartbeat with a 10 percent penalty. These results
indicate that metalevel control is useful if the late penalty assessed for 60-second
heartbeats lies within a critical range of roughly 10 – 20 percent. If the penalty is too
low, the increased amount of scanning performed in a 60-second interval dominates,
but a 30-second heartbeat dominates when the penalty is too high to be overcome,
even for the more scanning-intensive rotation tasks.

Coordinating Agents’ Metalevel Control 213

 Conclusion

 In this chapter, we map the various multiagent metalevel questions to a single general-
ized formalization of metalevel control. We then elaborate how these issues will be
addressed in a real tornado tracking application. And fi nally, we describe a methodol-
ogy to construct a class of MDPs with the ability to model interactions among multiple
metalevel decision process components and provide some initial experimental results
that identify the scenarios where metalevel control could potentially be useful in the
Netrads tornado-tracking application.

 References

 Alexander , G. , Raja , A. , & Musliner , D. (2008). Controlling deliberation in a Markov decision

process-based agent. In L. Padgham, D. Parkes, J. M ü ller, & S. Parsons (Eds.), Proceedings of the

Seventh International Joint Conference on Autonomous Agents and Multi-Agent Systems (pp. 61 – 468).

Richland, SC: IFAAMAS.

 Becker , R. , Zilberstein , S. , Lesser , V. , & Goldman , C. V. (2003). Transition-independent decentral-

ized Markov decision processes. In Proceedings of the Second International Joint Conference on

Autonomous Agents and Multi Agent Systems (pp. 41 – 48). Richland, SC: IFAAMAS.

 Bent , R. , & Hentenryck , P. V. (2004). Regrets only! Online stochastic optimization under time

constraints. In D. McGuiness & G. Ferguson (Eds.), Proceedings of the Nineteenth National Confer-

ence on Artifi cial Intelligence (pp. 501 – 506). Menlo Park, CA: AAAI Press.

30sec

60sec-no-penalty

60s-10-percent

60s-20-percent

60s-30-percent

Storm Scenarios

Experimental Parameters

A
ve

ra
g

e
Q

u
al

it
y

45

40

35

30

25

20

15

10

5

0

 Figure 13.5
 Quality obtained by changing heartbeats in Storm scenarios.

214 A. Raja et al.

 Bernstein , D. , Zilberstein , S. , & Immerman , N. (2000). The complexity of decentralized control

of Markov decision processes. In C. Boutilier & M. Goldszmidt (Eds.), Proceedings of the Sixteenth

Conference on Uncertainty in Artifi cial Intelligence (pp. 32 – 37). San Francisco, CA: Morgan Kaufmann.

 Bertsekas , D. P. , & Tsitsiklis , J. N. (1996). Neuro-dynamic programming . Belmont, MA : Athena

Scientifi c .

 Cox , M. T. (2005). Metacognition in computation: A selected research review. Artifi cial Intelligence ,

 169 (2), 104 – 141 .

 Dean , T. , & Boddy , M. (1988). An analysis of time-dependent planning. In Proceedings of the

Seventh National Conference on Artifi cial Intelligence (pp. 49 – 54). Menlo Park, CA: AAAI Press.

 Doyle , J. (1983). What is rational psychology? Toward a modern mental philosophy. AI Magazine ,

 4 (3), 50 – 53 .

 Goldman , C. , & Zilberstein , S. (2008). Communication-based decomposition mechanisms for

decentralized MDPs. Journal of Artifi cial Intelligence Research , 32 , 169 – 202 .

 Horvitz , E. J. (1988). Reasoning under varying and uncertain resource constraints. In Proceedings

of the Seventh National Conference on Artifi cial Intelligence (pp. 111 – 116). Menlo Park, CA: AAAI

Press.

 Krainin , M. , An , B. , & Lesser , V. (2007). An application of automated negotiation to distributed

task allocation. In Proceedings of the 2007 IEEE/WIC/ACM International Conference on Intelligent

Agent Technology (pp. 138 – 145). Los Alamitos, CA: IEEE Computer Society.

 Musliner , D. , Goldman , R. , Durfee , E. , Wu , J. , Dolgov , D. , & Boddy , M. (2007). Coordination of

highly contingent plans. In Proceedings of the International Conference on Integration of Knowledge

Intensive Multi-Agent Systems (pp. 418 – 422). KIMAS-07. Los Alamitos, CA: IEEE Computer Society.

 http://www.musliner.com/david/papers/ksco07.pdf.

 Nair , R. , Tambe , M. , Yokoo , M. , Pynadath , D. , & Marsella , S. (2003). Taming decentralized

POMDPs: Towards effi cient policy computation for multiagent settings. In G. Gottlob & T. Walsh

(Eds.), Proceedings of the Eighteenth International Joint Conference on Artifi cial Intelligence (pp. 705 –

 711). San Francisco, CA: Morgan Kaufmann.

 Peshkin , L. , Kim , K. E. , Meuleau , N. , & Kaelbling , L. P. (2000). Learning to cooperate via policy

search. In C. Boutilier & M. Goldszmidt (Eds.), Proceedings of the Sixteenth Conference on Uncertainty

in Artifi cial Intelligence (pp. 307 – 314). San Francisco, CA: Morgan Kaufmann.

 Raja , A. , & Lesser , V. (2007). A framework for meta-level control in multi-agent systems. Autono-

mous Agents and Multi-Agent Systems , 15 (2), 147 – 196 .

 Russell , S. J. , Subramanian , D. , & Parr , R. (1993). Provably bounded optimal agents. In Proceedings

of the Thirteenth International Joint Conference on Artifi cial Intelligence (pp. 338 – 344). San Francisco,

CA: Morgan Kaufmann.

 Simon , H. , & Kadane , J. (1974) Optimal problem solving search: All-or-nothing solutions. Com-

puter Science Technical Report CMU-CS-74-41 , Carnegie Mellon University.

Coordinating Agents’ Metalevel Control 215

 Simon , H. A. (1976). From substantive to procedural rationality . In S. J. Latsis (Ed.), Method and

appraisal in economics (pp. 129 – 148). Cambridge : Cambridge University Press .

 Simon , H. (1982). Models of bounded rationality (vol. 1). Cambridge, MA : MIT Press .

 Smith , S. , Gallagher , A. , Zimmerman , T. , & Barbulescu , L. (2006). Multi-agent management of

joint schedules. In E. Durfee & D. Musliner (Eds.), Working Notes of the 2006 AAAI Spring Sympo-

sium on Distributed Plan and Schedule Management (pp. 128 – 135). Technical Report SS-06-04.

Menlo Park, CA: AAAI Press.

 Stefi k , M. (1981). Planning and meta-planning. Artifi cial Intelli gence , 16 (2), 141 – 170 .

 Sutton , R. S. , Precup , D. , & Singh , S. P. (1999). Between MDPs and semi-MDPs: A framework for

temporal abstraction in reinforcement learning. Artifi cial Intelligence , 112 (1 – 2), 181 – 211 .

 Wagner , T. , Garvey , A. , & Lesser , V. (1997). Criteria-directed heuristic task scheduling. Technical

Report TR-97-16. UMASS Department of Computer Science.

 Xuan , P. , Lesser , V. , & Zilberstein , S. (2001). Communication decisions in multi-agent coopera-

tion: model and experiments. In Proceedings of the Fifth International Conference on Autonomous

Agents (pp. 616 – 623). Richland, SC: IFAAMAS.

 Zink , M. , Westbrook , D. , Abdallah , S. , Horling , B. , Lyons , E. , Lakamraju , V. , et al. (2005). Meteo-

rological command and control: An end-to-end architecture for a hazardous weather detection

sensor network. In Proceedings of the 2005 ACM Workshop on End-to-End, Sense-and-Respond Systems,

Applications, and Services (pp. 37 – 42). Berkeley, CA: USENIX Association.

 14 The Role of Metareasoning in Achieving Effective Multiagent

Coordination

 Zachary B. Rubinstein, Stephen F. Smith, and Terry L. Zimmerman

 The ability to dynamically manage internal computational activity is important in
many agent-based systems. We focus in this chapter on a system of scheduling agents,
which are engaged in managing and executing a joint plan in an uncertain environ-
ment. Such agents have limited time to take correcting actions in response to unex-
pected execution results, placing a premium on the need for bounded rationality
(Zilberstein, this vol., chap. 3; Simon, 1957). The agent must balance the time it spends
locally revising its schedule (actions slated to restore feasibility and/or capitalize on
detected opportunities for local schedule improvement) with the time it spends coor-
dinating with other agents (actions taken to identify and exploit opportunities to
boost global schedule quality through joint change). The former is necessary to keep
execution going but may be prone to myopic, suboptimal decisions, given its local
incomplete view of the overall problem and solution. The latter can lead to better
joint scheduling decisions, but the computation and communication costs in obtain-
ing them may render them obsolete before they can be acted on. Given these trade-
offs, it makes sense to try to exploit aspects of the current control state (e.g., the tempo
of execution and level of dynamics in the environment) to dynamically confi gure
appropriate sorts of computational actions.

 The role of metareasoning in this work is to modify agent control during plan
execution in response to a changing environment. Conceptually we have precompiled
the metareasoning decisions into the object-level reasoning process as discussed by
Zilberstein (this vol., chap. 3) rather than introducing an explicit metalevel as depicted
in fi gure 14.6. In our application, we employ a set of rules that we inferred based on
operational experience to govern this behavior. As noted in the discussion of results,
a more principled approach based on learning, such as that of the GeMEC framework
presented by Raja, Alexander, Lesser, and Krainin (this vol., chap. 13) may be war-
ranted. Unlike the research presented by Kennedy (this vol., chap. 15) on distributed
metamanagement for self-protection and self-explanation and the chapters in Part V
of this volume, our work, with its emphasis on operational performance improvement,
does not make any epistemological inferences about the mental state of the individual

218 Z. B. Rubinstein, S. F. Smith, and T. L. Zimmerman

agent or about the states of other agents, nor does it make any claim about the nature
of cognition. Rather, an agent monitors its activity and seeks to reconfi gure responses
based on its ability to process and analyze information in a timely manner. In our
architecture, agents reconfi gure solely based on the computational and messaging load
on the agent and not on the predicted behavior of other agents, as Borghetti and Gini
describe in their work on weighted prediction divergence for metareasoning (this vol.,
chap. 16).

 The specifi c system of interest in our research is the “ CMU agent ” (Smith, Gallagher,
Zimmerman, Barbulescu, & Rubinstein, 2007), one of three competing approaches
developed within the DARPA Coordinators Program for solving the distributed sched-
ule management problem. In brief, this problem requires a set of agents to jointly
execute a schedule so as to maximize the quality obtained by all executed activities.
These “ scenarios ” provide each agent with the portion of the initial schedule that it
is responsible for, a set of alternative (substitutable) activities, and associated outcome
and duration probabilities for all assigned activities. Each agent is also given limited
visibility of interdependent activities that have been assigned to other agents, but no
agent has a global view of either the problem or solution. The CMU agent design takes
a scheduler-centric perspective to solving the Coordinators problem. An incremental,
fl exible times scheduler sits at its core and is used to drive the agent ’ s two core pro-
cesses: (1) it is invoked to perform local scheduling in response to external feedback,
and (2) it is invoked hypothetically to generate and evaluate “ non-local ” options —
 opportunities that entail interagent coordination in order to boost global solution
quality.

 In the sections below, we consider the control problem that the CMU agent faces
in allocating cycles to each of these core processes. In operation, our multiagent system
must interact with a simulated environment in near real time, and hence only limited
computational cycles are available for allocation to either of these processes. We
examine the hypothesis that dynamic management of control parameters related to
this division of computational effort between local scheduling and interagent coordi-
nation can lead to improved performance over any fi xed confi guration of these
parameters.

 Before discussing the control parameters of interest and settling on a specifi c subset
for experimental analysis, we briefl y summarize the CMU agent.

 Overview of the CMU Agent

 The CMU agent architecture is schematically depicted in fi gure 14.1. In its most basic
form, an agent comprises four principal components — the Executor, the Scheduler,
the Distributed State Manager (DSM), and the Options Manager — all of which share
a common model of the current scenario and solution state. This common model

Achieving Effective Multiagent Coordination 219

Execution
Commands

State Update

State Update
State
Changes

State
Update

Start
Failed

Current
Schedule

Commit

OptionsCurrent Problem
and Schedule

Execution
Status

Replies

Queries

Commit

Executor
Options

Manager

Scheduler
Options

DB

Distributed State

Manager(DSM)

MASS (Simulator)

Reschedule

Method
Completed

Generate
Options

O
th

e
r A

g
e

n
ts

Joint Plan

Tsk3Tsk2Tsk1

Tsk1bTsk1a

cz

SUM

St: 30

Q: 20
D: 20

Q: 5
D: 5

<5,5>

<0,30>

<20,20>

<0, >
<0, >

<0, >

MAX enables

Current State

 Figure 14.1
 CMU agent architecture.

couples a domain-level representation of the agent ’ s local (subjective) view of the
overall scenario (encoded as a c-taems [Boddy et al., 2005] task structure) to an under-
lying simple temporal network (STN) (Dechter, Meiri, & Pearl, 1991). At any point
during operation, the currently installed schedule dictates the timing and sequence
of domain-level activities that will be initiated by the agent. The Executor, running
in its own thread, continually monitors the enabling conditions of various pending
activities and activates the next pending activity as soon as all of its causal and tem-
poral constraints are satisfi ed. The other three components run on a separate thread
in a blackboard-based control regime and are responsible for coordinating with other
agents and managing the current schedule over time.

 When execution results are received back from the environment (shown in fi gure
14.1 as the MASS simulator, i.e., the execution simulator provided by the Coordinators
program) and/or changes to assumed external constraints are received from other
agents, the agent ’ s model of current state is updated. An incremental propagator based

220 Z. B. Rubinstein, S. F. Smith, and T. L. Zimmerman

on Cesta & Oddi, 1996 , is used to infer consequences within the STN. In cases where
this update leads to inconsistency in the STN or it is otherwise recognized that the
current local schedule might now be improved, the Scheduler is invoked to revise the
current solution and install a new schedule. Whenever local schedule constraints
change either in response to a current state update or through manipulation by the
Scheduler, the DSM is invoked to communicate these changes to interested agents
(i.e., those agents that share dependencies and have overlapping subjective views).

 After responding locally to a given state update and communicating consequences,
the agent will use any remaining computation time to explore possibilities for improve-
ment through joint change. The Options Manager utilizes the Scheduler (in this case
in hypothetical mode) to generate one or more non-local options, that is, identifying
changes to the schedule of one or more other agents that will enable the local agent
to raise the quality of its schedule. These options are formulated and communicated
as queries to the appropriate remote agents, who in turn hypothetically evaluate the
impact of proposed changes from their local perspective. In those cases where global
improvement is verifi ed, the agents commit to the joint changes.

 Reasoning about Scheduling and Coordinating

 Both the Scheduler and the Options Manager compete for computational resources in
the same execution thread within the CMU agent, and hence, a key control decision
concerns how much time to allocate to each of these activities as execution proceeds.
By default assumption, explicit coordination actions (issuing queries to other agents,
generating options in response to queries, etc.) are given lower priority than local
model updating and schedule revision actions. However, within this default structure
there are still many degrees of freedom in controlling and interleaving scheduling and
coordination processes. The Options Manager can be constrained in its frequency of
use, in the type and number of options that it generates, and in the duration of the
 “ freeze ” period where options can change activities on the schedule only after that
period. Likewise, the Scheduler ’ s operation can also be constrained by limiting how
frequently it is called and the amount of search performed. Ideally, the setting of
parameters relevant to these different Scheduler and Option Manager “ confi gurations ”
should be driven dynamically by characteristics of the current control state.

 In this section, we describe the various control parameters associated with the
Scheduler and the Options Manager in more detail and hypothesize desirable settings
as a function of current control circumstances. Then, in the section discussing experi-
mental design, we identify a specifi c subset of parameters of interest and describe a
series of experiments aimed at demonstrating the benefi t of dynamically managing
these parameter settings as a function of the agent ’ s current control state.

Achieving Effective Multiagent Coordination 221

 Managing the Execution of the Scheduler
 The Scheduler component of the CMU agent is designed to incrementally maintain a
high-quality local schedule as the dynamics of execution unfold. In brief, it operates
through iterative application of two subprocedures: a quality propagator and an activ-
ity allocator. Upon invocation, the quality propagator is fi rst applied to compute the
set of activities that (if scheduled) would maximize overall quality from the agent ’ s
local viewpoint. The activity allocator then takes this set of contributors, unschedules
all activities in the current schedule that are not in this set, and then attempts to
incrementally insert all currently unscheduled contributors into the current schedule.
If at any point during this last step, the activity allocator is unable to feasibly add an
unscheduled contributor activity into the schedule, this activity is marked as “ nogood ”
(i.e., it is “ unschedulable ” together with the set of activities already in the schedule).
It is removed from consideration and the quality propagator is reinvoked to compute
a new set of contributors, and the process continues. The Scheduler terminates when
the set of unscheduled contributors becomes empty (i.e., either all have been inserted
into the schedule, or some subset has been ruled out and the set of substitutable
activities has been exhausted). (The reader is referred to Smith et al., 2007 , for further
details.)

 There are several basic options for controlling the amount of search performed by
the above procedure:

 • Satisfaction of soft constraints when placing unscheduled contributor activities
(explore-facilitated-choices): The operation of inserting a new activity into the current
agent schedule consists of fi nding a feasible “ slot ” (position) in the current scheduled
sequence. In the absence of soft constraints (which in this context act to boost the
quality of a given activity if appropriate precedence relations can be established with
one or more other facilitator activities), all feasible slots are equally good and hence
search can be streamlined by simply taking the fi rst slot found. This in fact is the
default mode of operation, wherein satisfaction of soft constraints is only achieved
serendipitously. However, in scenarios rich with facilitated possibilities, better-quality
solutions can be found by enumerating and selecting from among all feasible slots.
 • Resetting of previously established “ nogoods ” (reset-nogoods): By default, an activity
that fails in all attempts to place it on the timeline is tagged a “ nogood ” and will
remain nogood across calls to the Scheduler. Since the schedule is changing incremen-
tally, it is likely that the set of activities in the schedule for which a potential contribu-
tor activity that has been determined to be nogood is likely to persist over time, and
hence, the added computational expense of redetermining that these potential con-
tributors are nogood on each call can be avoided. However, in circumstances of high
local schedule volatility, perhaps due to forced changes in interdependent decisions
in other agents ’ schedules or to the introduction of new higher-priority tasks with

222 Z. B. Rubinstein, S. F. Smith, and T. L. Zimmerman

high impact on the set of contributors, failing to reconsider the set of nogood activi-
ties can be quite suboptimal (since they were determined heuristically in the fi rst
place).
 • Rescheduling conditions (reschedule-strategy): A basic assumption of the CMU agent
design is that its underlying “ fl exible times ” representation of the schedule provides
a hedge against uncertainty. Accordingly, the agent operates with a default policy
wherein the Scheduler is invoked to revise the schedule only when the results of execu-
tion take the agent outside of the set of feasible evolutions of the future delineated
by the current schedule. Of course, this policy can be conservative and miss opportu-
nities for optimization (e.g., when activities fi nish early). In circumstances where
scheduled activities have high uncertainty, a more aggressive rescheduling strategy
that invokes the Scheduler whenever execution results deviate from expectations by
more than an established threshold can provide a better option.

 Managing the Execution of the Options Manager
 The Options Manager is designed to identify and evaluate opportunities for improving
the quality of the current schedule through joint change by two or more agents. At
present, improvement opportunities center around the establishment of new “ enable-
ment ” chains, which, in essence, establish preconditions that allow a currently
unscheduled local activity to be scheduled. When invoked, the Options Manager uses
the Scheduler in hypothetical mode to compute the maximum quality local schedule(s)
that could be achieved if various remote enabler activities were assumed to be sched-
uled (rather than remaining in their current unscheduled state). The output of the
Scheduler in this mode is a set of non-local options, each of which indicates the new
expected quality and the set of enabler activities of other agents that must be sched-
uled for this option to be taken. From this set, the Options Manager determines if
there is an option with the highest-quality gain, and, if so, issues a query to each agent
owning an enabler activity identifi ed in this option. The query requests the maximum
quality that the remote agent could attain, given that the enabler activity must be
included in its new schedule. Upon receiving responses to the issued queries and
determining that the non-local option does indeed boost overall quality, the Options
Manager issues messages to all parties to commit to this option.

 Similar to the scheduling process, there are several parameters for controlling this
explicit coordination process:

 • Frequency of use (coordination-frequency): One basic parameter specifi es how fre-
quently to trigger the non-local option generation process. Within the blackboard
control framework, nonlocal option-generation actions are generally given lower pri-
ority than model-updating or rescheduling actions. However, there is still an issue of
how frequently to attempt to generate non-local options, since once such an action

Achieving Effective Multiagent Coordination 223

is initiated it cannot be preempted. coordination-frequency = n simply specifi es that a
non-local option-generation action will be queued for execution once every n ticks.
In situations of high dynamics (demanding frequent updating, rescheduling, and DSM
communication among agents), it makes intuitive sense to dial down (decrease)
coordination-frequency. Alternatively, in situations of low dynamics, it makes sense
to accelerate the search for productive multiagent change.
 • “ On demand ” triggering delay period (quiescence period): A second mode in which
the Option Manager and explicit coordination can be triggered is “ on demand, ” that
is, in response to some specifi c event. The receipt of a new task structure is a good
example of this sort of event, as the integration into the agent ’ s schedule of high-value
local activities introduced by this structure may require another agent to schedule an
enabling activity. In this case, integration of the new task, discovery of all interdepen-
dencies with activities of other agents, and establishment of a new local schedule that
refl ects this new task may take a few simulator ticks. To initiate non-local option
generation prior to this point is not likely to be productive. The quiescence period
parameter provides a knob for calibrating the timing of an “ on demand ” response.
 • Number of options generated (nbr-non-locals): The number of options that are gener-
ated on any given call to the Options Manager is a third parameter. By default, the
system currently generates only a single non-local option at a time. However, in situ-
ations where dynamics are low and the computational load is relatively low, increasing
the number of non-local options generated can broaden the search for productive
multiagent change.
 • Freeze period for generating non-local changes (non-local-freeze-period): This param-
eter on the non-local option-generation process stipulates a time window relative to
current time within which agents involved in the non-local option are precluded from
either altering existing scheduled activities or allocating new ones. Since it takes time
to coordinate with other agents, the viability of negotiated scheduling changes depends
on advance planning that accounts for time likely to be consumed in communicating
and committing to them. Through experience with the agent, we have established a
nominal default value for this non-local-freeze-period. However, in situations of high
dynamics and high communication overhead, we expect that it may be advantageous
to increase this horizon.
 • Response priority (response-priority): When an agent receives a query from an agent
pursuing an explicit coordination session, it has to determine when to allot processing
time to generate the response. While the response is being generated, processing of
updates and scheduling may be delayed. The default policy is to make the response-
priority low, which means that, while there are update calls and scheduling calls on
the control agenda, they are processed before the response is generated. While this
policy allows the agent to keep up to date with critical updates, the trade-off is an
increased likelihood of failed coordination sessions, as query responses may be delayed

Query:
 “Schedule M2,
 Priority Hi,
 NFP = 10”

Agent Gray finds higher quality option requiring coordination with Agent White
— sends query w/ priority and freeze period

Query-base ScheduleInitial Schedule

MAX MAX

MIN

SUM

enables

SUM

SUM

Agent White Agent Gray

Q: 15

Q: 15

Q: 30

Q: 5Q: 10

Q: 10 Q: 10

T1-1 T2-1 M 7 M 9

T1 T2

TG TG

M 4

NEW1

NEW1

NEW2

M 4

40
[+20]

M 1

M 1 M 9M 7

M 2

dsm

New tasks arraive for Agent Gray — Scheduling add NEW2

Post Update ScheduleInitial Schedule

MAX MAX

MIN

SUM

enables

SUM

SUM

Agent White Agent Gray

Q: 15

Q: 15

Q: 30

Q: 5Q: 10

Q: 10 Q: 10

T1-1 T2-1 M 7 M 9

T1 T2

TG TG

M 4

NEW1

NEW2

NEW2

M 4

40 40

M 1

M 1 M 9M 7

M 2

Response:
 “deltaQ = [–5]”

Agent White responds with quality change induced by request
— Agent Gray assesses net gain, issues ‘commit.’

Commit ScheduleCommit Schedule

MAX MAX

MIN

SUM

enables

SUM

SUM

Agent White Agent Gray

Q: 15

Q: 15

Q: 30

Q: 5Q: 10

Q: 10 Q: 10

T1-1 T2-1 M 7 M 9

T1 T2

TG TG

M 4

NEW1

NEW1

NEW2

M 4

[–5] [net: +15]

M 1

M 1 M 9M 7

M 2

Achieving Effective Multiagent Coordination 225

such that the initiating agent cannot secure a joint commit in time for the earliest
necessary activities to start. Thus, in some situations, it may be benefi cial to raise the
priority of the responses so that they may be completed in a timely manner.

 Control Parameters
 Table 14.1 summarizes the metalevel control parameters available for managing the
interplay between local scheduling and non-local coordination in the CMU agent. For
purposes of reasoning about the setting of these parameters, we make qualitative value
assumptions. In the next section, we identify and focus on a specifi c subset of param-
eters with the goal of demonstrating the leverage to be gained by managing them
dynamically over the course of a given problem-solving run as a function of the evolv-
ing control state.

 An Empirical Analysis of the Benefi t of Metareasoning

 We focus here on the above defi ned metalevel control parameters that are most effec-
tive in boosting quality via explicit coordination between agents. The sequence in
which such coordination might unfold is illustrated for a simple two-agent example
in fi gure 14.2. The three frames show the subjective views of the two agents and their
respective schedules as they respond to the arrival of a new task structure (the T2-1
subtree) for Agent Gray. The representation here refl ects the c-taems formalism of
specifying quality for leaf nodes (along with other attributes such as activity duration
and probability distributions, not shown) and a quality-accumulation function (QAF)
that specifi es how the qualities of scheduled children are aggregated. Communications

 Table 14.1
 Control parameters in the CMU Agent

 Control Parameter Possible Values

 coordination-frequency low, high

 quiescence period low, high

 nbr-non-locals 1. . . n

 non-local-freeze-period normal, extended

 response-priority low, high

 reschedule-strategy lazy, aggressive

 explore-facilitated-choices t, nil

 reset-nogoods t, nil

 Figure 14.2
 Explicit coordination example.

�

226 Z. B. Rubinstein, S. F. Smith, and T. L. Zimmerman

between agents, such as the messages from an agent ’ s DSM in transmitting assessed
quality for a task, are depicted with dashed lines between the agent names at the top
of each pane in the fi gure.

 The snapshot in the fi rst frame shows Agent Gray ’ s schedule shortly after the new
T2-1 task subtree (with a new enables constraint) is added to its subjective view. As a
result of local scheduling, Agent Gray has boosted local quality by adding the NEW2
activity to its timeline. It is not useful for Gray to schedule the higher quality NEW1
activity since Agent White has not scheduled the required enabler activity, M2. For
its part, Agent White does not modify its schedule upon arrival of T2-1 since its quality
assessment over its subjective view does not perceive a quality boost in scheduling M2
so that NEW1 can be scheduled.

 In the second frame, Agent Gray ’ s Option Manager has requested a scheduling pass
for non-local options and it identifi es an opportunity to boost local assessed quality
if Agent White cooperates. Gray then issues a query requesting Agent White to sched-
ule the enables source activity M2 with a latest fi nish time consistent with the NEW1
allocation. (Not shown is the unrolling that each agent does after these hypothetical
scheduling operations.) In the third frame, Agent White responds to the query by
sending back that scheduling the enables source reduces its local quality by 5. Agent
Gray determines that there is a net gain of 15, issues a commit directive to Agent
White, and reinserts NEW1 on its timeline per the option that generated the query.

 Experimental Design
 Ultimately, as our understanding and refi nement of the explicit coordination compo-
nent mature, this study will be extended to characterize the fi rst four parameters of
table 14.1, which shape key aspects of explicit coordination. This will entail extensive
runs over the large, randomly generated problem sets typical of the Coordinators
competitive evaluations. For this scoping study we restrict our analysis to a few hand-
generated scenarios that illustrate the impact of dynamically modulating one of the
explicit coordination control parameters on option generation and selection. Here we
isolate the impact of the control parameter non-local-freeze-period used by the initiating
agent to select the best option to pursue, that is, the one that will have both the best
chance to be coordinated successfully and the most additional quality.

 As defi ned above, non-local-freeze-period specifi es the time window from the current
time within which an agent is prohibited from modifying its existing schedule. Intui-
tively, the smaller that window is, the more options that may be potentially discovered
but the less time is available for an explicit coordination session to complete. Our
hypothesis is that the best setting for non-local-freeze-period is context dependent and
that no single setting is best for all contexts. Our intuition is that the processing stress
on an agent over a suitable recent time window (henceforth, referred to as the “ process
load ”) will be a good predictor of the current context and, consequently, of the appro-

Achieving Effective Multiagent Coordination 227

 Table 14.2
 Two-term model of metacognition for pursuing explicit coordination

 non-local-freeze-period response-priority process load quality gain?

 normal low low no

 normal low high yes

 extended low low yes

 extended low high yes

priate setting. We suspect that the heavier an agent ’ s process load is, the longer the
 non-local-freeze-period should be, since both its own negotiation response time and that
of other involved agents are likely to lag due to many competing updates.

 To measure an agent ’ s process load, we measure the average latency of jobs on the
control agenda from when they arrive until they are processed. Such jobs include
updates from the simulator, updates and queries from other agents, scheduling invoca-
tions, as well as calls for generation of non-local options, which the agent imposes on
itself. Specifi cally, this latency corresponds to the average time that a job sits on the
blackboard control agenda until it is selected and processed. The longer the latency
is, the busier the agent is.

 For the purpose of this experiment, we have simplifi ed the set of possible values
for both the control parameter settings and the process-load measure. The non-local-
freeze-period parameter can be either normal or extended, and an agent ’ s process load
can be either low or high. The effect of an agent ’ s process load on the control param-
eter settings is assessed according to the quality gain accumulated at the end of the
run relative to the agent running in a baseline explicit coordination confi guration.
This baseline confi guration is described later in this section.

 A longer-term goal of this study is to learn the model for these settings using a
training set of problems. Table 14.2 shows an example portion of such a learned model
for two of the four parameters directly involved in explicit coordination: non-local-
freeze-period and response priority. However, we defer further discussion of this effort
to learn the best setting to the discussion in the fi nal section, and focus here on a set
of model values that is based on logged experience working with the agent. We next
discuss how such a model is used during scenario execution.

 Suppose an agent receives an update of new activities that present the possibility
of a non-local coordination. All agents owning or having visibility of portions of the
new task structures fi rst enter a brief “ quiescent period ” during which they exchange
certain information they need to effectively coordinate over the new tasks (Smith
et al., 2007). Once they exit this quiescent period, each agent adopts an anytime

228 Z. B. Rubinstein, S. F. Smith, and T. L. Zimmerman

scheduling policy in that it fi rst seeks improvements to its existing schedule based
only on local changes it can implement and then later may initiate an explicit coor-
dination session if it has the potential to boost quality. The behavior of the agent
subsequent to the local scheduling pass is the focus here. The baseline confi guration
of the agent can be summarized as follows:

 • Trigger non-local options search after fi ve time ticks following the quiescent period.
 • All agents use a default non-local-freeze-period of two ticks and a default response
priority of low.
 • Sort options by quality and pursue the highest-quality option (by transmitting it as
one or more queries) if it improves current quality as estimated by the initiating agent.
 • Commit to option if net gain is positive when all involved agents respond.

 We propose a three-phase metalevel control mechanism for explicit coordination
(given the arrival of new activities with opportunity for non-local coordination):

 1. Confi gure the non-local scheduling pass: The current value of the process load is
used to set non-local-freeze-period for a scheduling call to fi nd non-local options. If both
normal and extended settings indicate a quality gain according to the model, then
the normal setting is used to avoid missing opportunities.
 2. Select a returned option: When/if the Scheduler returns non-local options, sort the
options by quality and tag each option with the number of remote agents involved.
Then choose the highest-quality option with positive quality gain, breaking ties for
options with the same quality by choosing the one involving fewer agents.
 3. Given a feasible, quality-boosting, non-local option, confi gure it as one or more
queries, and transmit to relevant agents along with the non-local-freeze-period setting.

 Each agent that receives such a query must then enforce the non-local-freeze-period
when conducting its scheduling pass as it attempts to schedule the requested enabler
activity(ies) while respecting near-term activities and restricted space on the agent ’ s
timeline.

 The chosen metacognition dynamics were examined over twelve problems gener-
ated across two problems classes that can be characterized as:

 1. Overall low-stress conditions in which agents receive a new task with a near-term
deadline that requires rapid explicit coordination to achieve maximum quality.
 2. Overall high-stress conditions in which too much and/or too early explicit coordi-
nation activity can potentially interfere with the more urgent need to respond to a
fl urry of updates coming from environmental dynamics.

 The stress level on agents for these scenarios was induced by modulating the number
of dynamic events affecting each agent around the approximate arrival time of new
tasks. These newly arriving tasks offer the opportunity for highest-quality gains if
explicit coordination is successful but does not interfere with the agent ’ s ability to

Achieving Effective Multiagent Coordination 229

keep pace with execution. These dynamic events are refl ected in the process load of
the agents which, in turn, selects for a normal (2 ticks) or extended (5 ticks) setting
of the non-local-freeze-period parameter.

 Results
 Initial experimentation to characterize process load revealed that it fl uctuated rapidly
within highly dynamic scenarios, in some cases backing up more than fi fty updates
and activities on an agent ’ s control agenda, but at times processing the entire agenda
within a tick. As a result, low-stress scenarios representative of the fi rst class were rela-
tively easy to generate (they could be kept small in size) and tended to produce pre-
dictable and reproducible results:

 • The normal non-local-freeze-period value of two ticks provided ample time for agents
involved in explicit coordination to complete negotiations and successfully accrue the
associated quality boost.
 • All observed coordination episodes in low-stress scenarios required less than one tick
from initiation of the search for non-local options to a fi nal commitment of agents ’
schedules.
 • Fixing the non-local-freeze-period value to extended for these scenarios never improved
performance and degraded it in terms of overall quality for three of the six
scenarios.

 We experienced considerably greater diffi culty in defi nitively characterizing metacog-
nition performance for the high-stress scenarios. Even for low-dynamics scenarios
involving many agents, the vagaries of execution are such that fi nal accrued quality
can be quite sensitive to such things as small communication delays across platforms/
machines. As a result, identical performance is often diffi cult to reproduce across
multiple runs of the same scenarios. This effect is compounded for high-stress sce-
narios as they depend on inducing agent congestion via injecting concentrations of
many cascading dynamic changes during the scenario run. Such scenarios require
much larger task structures, and the impact of any one attribute such as non-local-
freeze-period on overall quality accumulation can be masked by myriad other uncer-
tainties of communication and execution. Here is our experience with the six high-stress
scenarios:

 • When running under a non-local-freeze-period value of extended during the interval
surrounding arrival of new tasks, 1 of 6 scenarios resulted in signifi cantly higher
quality compared with running with a non-local-freeze-period fi xed at normal .
 • Running with a non-local-freeze-period of normal in high-stress intervals never pro-
duced higher quality than the extended setting.
 • Explicit coordination logs revealed that often agents burdened with overambitious
explicit coordination attempts during high-stress situations correctly addressed the

230 Z. B. Rubinstein, S. F. Smith, and T. L. Zimmerman

most pressing updates fi rst due to the default low priority of explicit coordination
(response-priority).
 • Run-to-run variations in quality of 5 – 10 percent were noted even with the same
parameter settings.

 These scoping results suggest that we may not have yet adequately simulated a suf-
fi ciently high dynamic stress level to observe the impact, if any, of an extended setting
of non-local-freeze-period . Moreover, the problem sets need to be expanded considerably
in order to determine whether there is a statistical benefi t to the extension of non-
local-freeze-period for these high-stress situations.

 Discussion and Conclusions

 This chapter reports the results of an investigation into the application of metareason-
ing to improve the performance of an agent involved in distributed problem solving
in a dynamic execution environment. In this initial phase, we focus on the impact of
modulating just one parameter of a diverse set that collectively infl uences the agent ’ s
scheduling response to execution dynamics. The target parameter has a role in con-
straining the set of possibilities an agent can consider in response to interagent coor-
dination queries, and we posit that an agent capable of modulating the parameter
based on the process load it is facing will outperform an agent with a static setting.

 The empirical evidence to date indeed suggests that the implemented metareason-
ing mechanism effectively reconfi gures the agent ’ s scheduling apparatus to boost
performance across a range of process load conditions. However, the experiments also
emphasize the diffi culty of isolating and demonstrating a consistent impact for such
metacontrol in complex agents where there are many, often interacting, mechanisms
that infl uence problem-solving performance. Even when a parameter setting is sub-
optimal, different mechanisms in the agent have been observed to compensate so as
to mask any negative impact. Moreover, we have encountered a challenging problem
of reproducing a consistent target level of high-stress load in the simulation environ-
ment, in part because the load depends in complex ways on the induced agent-to-
agent communication levels themselves.

 This experience suggests that full characterization of the impact of single-parameter
metacontrol in such a complex agent may require a signifi cantly larger test suite. In
addition, extending the metareasoning to modulate multiple parameters may boost
performance across a wider range of environment dynamics, if an appropriate model
for such a parameter set can be developed. In the presented experiment, we engineered
a control model for the confi guration switching based on our observations of the
agents ’ performances over a large number of problems. Though engineering the model
is feasible in specifi c, easily identifi able situations, it does not represent a general solu-
tion. The complexities of the interactions among the control parameters and the

Achieving Effective Multiagent Coordination 231

features of the environment make it diffi cult to generate models for a number of
control parameters operating in a varied environment. A more robust solution would
entail having agents learn control models for the appropriate actions for different
contexts by classifying the performance of different confi gurations of the agent over
those contexts.

 To support this learning, we are investigating using MetaMod, a metareasoning
component based on Raja & Lesser, 2007. Using a classifi cation algorithm, such as the
naive Bayes classifi er algorithm provided by MetaMod, the agent will learn the model
by being trained over a set of problems, where each contains specifi c events that
exercise the control parameters being trained and the overall set presents a variety of
values for the selected environment features. All problems will be run with all com-
binations of the control parameter settings (a portion of which appears in table 14.2),
while measuring selected features of the environment and of the agent ’ s state. The
metareasoning component will then apply the learned model in the same manner as
is described in the experimental design section above.

 We note by comparison that the role of metareasoning in the FORR learning and
problem-solving architecture (Epstein and Petrovic, this vol., chap. 4) is to modulate
the learning component itself to improve problem-solving performance (including
scheduling cast as a CSP). It does so by choosing which of a learned set of heuristics
to apply and in what order. While that may eventually also prove useful in our
distributed environment, we will fi rst aim to have the architecture learn a single
more general “ heuristic ” and employ the metareasoning mechanism to effectively
apply it.

 Acknowledgments

 This work is supported by the Department of Defense Advanced Research Projects
Agency (DARPA) under Contract FA8750-05-C-0033. Any opinions, fi ndings and con-
clusions, or recommendations expressed in this chapter are those of the authors and
do not necessarily refl ect the views of DARPA.

 References

 Boddy , M. , Horling , B. , Phelps , J. , Goldman , R. , Vincent , R. , Long , A. , & Kohout , B. (2005).

 C-taems language specifi cation v. 1.06. Unpublished.

 Cesta , A. , & Oddi , A. (1996). Gaining effi ciency and fl exibility in the simple temporal problem.

In Proceedings of the Third International Workshop on Temporal Representation and Reasoning (pp.

45 – 50), TIME ’ 96. Los Alamitos, CA: IEEE Computer Society Press.

 Dechter , R. , Meiri , I. , & Pearl , J. (1991). Temporal constraint networks. Artifi cial Intelligence , 49 ,

 61 – 95 .

232 Z. B. Rubinstein, S. F. Smith, and T. L. Zimmerman

 Raja , A. , & Lesser , V. (2007). A framework for meta-level control in multi-agent systems. Autono-

mous Agents and Multi-Agent Systems , 15 (2), 147 – 196 .

 Simon , H. (1957). A behavioral model of rational choice . In Models of man, social and rational:

Mathematical essays on rational human behavior in a social setting . New York : Wiley .

 Smith , S. F. , Gallagher , A. , Zimmerman , T. , Barbulescu , L. , & Rubinstein , Z. (2007). Distributed

management of fl exible times schedules. In Proceedings of the 2007 International Conference on

Autonomous Agents and Multiagent Systems (pp. 484 – 491), AAMAS-07. Honolulu, HI: The Interna-

tional Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS), Research Publish-

ing Services. Available at http://www.ifaamas.org/Proceedings/aamas07.

 15 Distributed Metamanagement for Self-Protection and

Self-Explanation

 Catriona M. Kennedy

 In autonomic computing (Ganek & Corbi, 2003), “ self-protection ” is one of the “ self* ”
properties enabling an autonomous system to recover from faults and intrusions. Such
a system requires a metalevel to recognize and correct problems in its own operation
without external intervention. The simplest design for an autonomous self-protecting
system is hierarchical with a metalevel ensuring that the system operates according
to requirements. However, a single metalevel cannot critically evaluate its own opera-
tion and state of knowledge.

 In earlier work (Kennedy, 2003 ; Kennedy & Sloman, 2002 , 2003) we developed
some implementations in which distributed metalevels monitor and repair each other
to overcome the vulnerabilities of a hierarchical system. In this chapter, we show how
distributed metalevels can be integrated into a full cognitive architecture required for
human-like cognition. In particular, we argue that distributed metalevel architectures
are also capable of self-explanation as emphasized by Cox (this vol., chap. 9).

 A Cognitive Agent with Metamanagement

 As a starting point for distributed metamanagement, we defi ne a cognitive agent with
a single metalevel, based on the H-Cogaff architecture of Sloman (2001) . H-Cogaff has
three layers: a reactive layer, which responds rapidly to events in the environment but
with very little thought; a deliberative layer, which uses its knowledge of the environ-
ment to reason about hypothetical scenarios and to plan ahead; and a metamanage-
ment layer, which critically evaluates the deliberative layer and interrupts it if necessary
(e.g., if it is not making progress). The metamanagement concept is related to that of
 Beaudoin (1994) , Hansen and Zilberstein (2001) , Cardon et al. (2001) and Singh
(2005) .

 Our simplifi ed version of H-Cogaff is shown in fi gure 15.1. This shows an agent as
a two-layer structure containing an object level O1 and a metalevel M1, respectively.

 KE represents object-level knowledge of the external world to allow deliberative
reasoning. Some of this can be a predictive model (e.g., involving rules about expected

234 C. M. Kennedy

behavior of objects), which can be internally simulated (Minsky, 1968). O1 also
includes a reactive layer, which involves immediate reactions to the external world.
The dotted vertical arrows within boxes are translations between levels of abstraction.
 “ Perception ” is a translation from sensor readings to high-level knowledge. Similarly,
 “ control ” is a translation from the selected options on the knowledge level into motor
sequences.

 Our object level in fi gure 15.1 (containing both reactive and deliberative layers)
corresponds to the object level in fi gure 1.2 in chapter 1, and the environment in
fi gure 15.1 corresponds to the ground level in fi gure 1.2.

 Metalevel
 The metalevel in fi gure 15.1 monitors and critically evaluates the information states
and processes that the object level is relying on (its knowledge and algorithms). For
example, the deliberative layer in O1 could enable the agent to predict the effect of

M1

Metalevel (M1)
KI self-knowledge
SI, EI internal sensors and effectors

Object level (O1)
KE knowledge of world
SE, EE external sensors and effectors

External world

Perception and
Control

Reasoning
Reacting

Sensing and
Acting

KI

SI EI

O1

KE

SE EE

 Figure 15.1
 A cognitive agent with metamanagement.

Distributed Metamanagement 235

its actions using its knowledge KE (“ if I move the red block onto the blue block, then
the blue block will be covered ”). In contrast, the metalevel does not rely on KE but
can question it. For example, it might predict problems due to limited understanding
of blocks (“ my knowledge of ‘ blocks ’ and ‘ surfaces ’ is limited and I might get con-
fused ”). Therefore the metalevel requires “ knowledge about knowledge ” or metaknowl-
edge — part of KI (“ internal knowledge ”) in the diagram.

 Self-Model KI can be regarded as a partial “ self-model ” and contains the fol-
lowing:

 1. A map of object-level components , along with their current and recent states (traces)
and a model of their normal behavior in the form of expected trace patterns. A “ com-
ponent ” might be a software component or executing process, or it can be an abstract
concept (such as “ focus of attention ”) used within an ontology of mental states (an
agent may detect that its attention is being distracted). See, for example, Gordon,
Hobbs, and Cox (this vol., chap. 19). The model of normal behavior can be learned
through self-familiarization, which is a process of generalizing from self-observation
in different circumstances. Simple examples are given in Kennedy, 2003 . This normal
behavior model is similar to the model of “ self ” learned by an artifi cial immune system
(Hofmeyr & Forrest, 2000; Mitchell 2005).
 2. Knowledge of the agent ’ s goals and motivations . In autonomic computing, these can
be a specifi cation of correct operation (where this differs from normal operation).
Some goals may be externally specifi ed as “ policies, ” while others may be secondary
goals developed by the agent itself.
 3. Knowledge about the agent ’ s knowledge (metaknowledge), including known failures
or knowledge gaps that it wants to correct. In our single-agent approach, metaknowl-
edge is a part of self-knowledge. In a multiagent system, metaknowledge may include
beliefs about other agent ’ s knowledge. In the single metalevel of fi gure 15.1, the
agent ’ s metaknowledge is its knowledge of KE. This is called W** in the taxonomy of
 Minsky (1968) .

 Metalevel Control of the Object Level
 Internal sensors and effectors (SI and EI) are software components used by the meta-
level to sense and modify object-level states and processes. Internal sensors read
object-level traces (such as recent rule-fi ring or memory access history). Internal effec-
tors adjust object-level processes to correct any problems and to make improvements
as defi ned by the agent ’ s goals. Examples of effector action include interrupting a
reasoning process that is not making progress, replacing a fl awed component with an
alternative, or initiating a new learning process. Additionally, the scheduling of dif-
ferent object-level processes may be adjusted according to changing circumstances and
estimated cost see, e.g., Russell & Wefald, 1991 ; Etzioni, 1991).

236 C. M. Kennedy

 Evaluating Object-Level Performance
 The metalevel detects and corrects “ anomalies ” in the object level ’ s performance. This
is similar to the metacognitive loop of Schmill, Anderson, Fults, Josyula, Oates, Perlis,
Shahri, Wilson, and Wright (this vol., chap. 12). An “ anomaly ” is an unexpected
occurrence that may indicate a problem. In fi gure 15.1, KI contains self-knowledge
acquired through earlier self-familiarization and allows the metalevel to predict the
pattern of reasoning of the object level, given a known environmental event. Effec-
tively the agent anticipates its own mental state. Similar models of reasoning processes
have been applied in case-based planning (see, e.g., Fox & Leake, 1995).

 One kind of anomaly (type 1) occurs when the object-level reasoning does not
follow a desirable pattern. It may be distracted by irrelevant details or it may violate
a requirement, for example, one involving temporal constraints (Rubenstein, Smith,
 & Zimmermann, this vol., chap. 14, use temporal constraints to control schedules,
but they may also be applied to an agent ’ s reasoning priorities).

 Another kind of anomaly (type 2) occurs when the model in KE predicts a state
that does not correspond to the reality. Although this kind of anomaly may be
detected partly by the object level (e.g., measurements may be out of range), the rec-
ognition of the “ strange ” nature of the new situation is an introspective (hence meta-
level) function because it involves questioning whether the agent ’ s current knowledge
is suffi cient for the situation (see also Goel & Jones, this vol., chap. 10). The diagnosis
process should determine whether any new learning is required or whether the
anomaly is due to other factors such as the failure of a sensor interpretation
component.

 Metareasoning and Self-Familiarization

 Any new learning process resulting from a metalevel decision might include further
self-familiarization (in addition to object-level learning processes). For example, the
agent may decide to learn more about why it gets confused in some situations. The
kind of learning involved in self-familiarization is itself a form of metareasoning, since
the agent is constructing a general hypothesis (that a rule exists) by observing its own
reasoning, including its learning.

 In contrast, we would not defi ne a purely reactive adaptation process (e.g., a neural
network) as metareasoning, even if its inputs are reasoning traces. We are assuming
that metareasoning involves the ability to explain and critique the object-level reason-
ing or learning (see also Cox, this vol., chap. 9).

 Ground-Level Interaction with the Metalevel
 To detect lack of knowledge, the metalevel must reason about informational entities
that refer to entities in the external world (e.g., its concept of “ block ”). This means that

Distributed Metamanagement 237

the metalevel also needs to know the state of the world. Ground-level information is
an additional requirement for type 2 failures (lack of knowledge) that is not necessarily
required for general metamanagement such as detecting oscillations in object-level
reasoning (type 1). However, even with type 1 anomalies, undesirable outcomes in
the environment often need to be taken into account when evaluating the object-level
reasoning (e.g., if there is imminent danger due to its focusing on a minor problem).

 In our architecture, the metalevel interacts only indirectly with the ground level,
by cautious and exploratory use of object-level components that it is only partially
trusting. For example, a robot expects to fi nd an offi ce at the end of a corridor, but
instead fi nds a cupboard. Without metalevel reasoning, it may still detect an anoma-
lous measurement, but it would just assume that the cupboard is a very small offi ce.
With metalevel reasoning, it can consider two possibilities: (a) the object level has
made an error (such as in navigation or in feature recognition) or (b) the object-level
knowledge of the building is incomplete, which led to a wrong expectation about this
particular corridor. To rule out (a), it can explore the area using alternative object-level
methods (for route planning, sensing, and perception). If they all give the same
anomalous result, the robot may conclude instead that its knowledge is incomplete.
At each point in its exploration, different object-level components are being trusted,
while others are being critically questioned. The role of the metalevel is to have the
capability to do this questioning. It would not in this case question all components
simultaneously, since it needs to rely on some components to deliver the ground-level
information.

 Note that a “ self-protection ” scenario is not signifi cantly different from an “ acci-
dental ” one. For example, a hostile agent may deliberately confuse the robot by
causing an error, or it may exploit the robot ’ s lack of knowledge by deliberately insert-
ing anomalous components in the terrain.

 An Example Implementation
 In previous work (Kennedy, 2003), we designed a virtual world called “ Treasure, ”
implemented in SimAgent (Sloman & Poli, 1995), in which an autonomous vehicle
collects treasure while avoiding ditches and ensuring that its energy supply is regularly
recharged. Components of the agent controlling the vehicle can fail or be subverted
by an enemy. For example, the perception of the agent can fail so that it interprets
the environment incorrectly.

 In SimAgent, each agent is implemented as a set of “ condition-action ” rules, which
is divided up into modules (rule sets). Each module is concerned with sensing, percep-
tion, acting, or other functions such as metareasoning. In the Treasure implementa-
tion, the metalevel ’ s model of expected internal processing (corresponding to KI) is a
set of patterns of rule-fi ring traces associated with different activities that were learned
during a self-observation phase.

238 C. M. Kennedy

 During operation in a hostile environment, this model can be used as a guideline
for the correct behavior of object-level components. The agent can access a trace of
recently fi red rules, which is comparable to the episodic memory required by Cox (this
vol., chap. 9). If the actual rule-fi ring pattern does not fi t the model-predicted pattern,
and is accompanied by an unexpected worsening of the external world, the metalevel
decides that a failure in the affected set of rules has occurred.

 Distributed Metamanagement

 In the self-protection context, a hostile environment can attack any part of the system,
including the failure detection and recovery components of the metalevel. For example,
the metalevel failure-detection code may be illegally modifi ed or some of its reasoning
components may be prevented from executing. They may also fail due to an error.

 A more complex kind of failure is a lack of knowledge or inaccurate knowledge to
detect problems in the object level. The metalevel relies on its knowledge (KI) of the
object level in the same way as the object level relies on its knowledge (KE) of the
world.

 In order to question the metalevel (and the knowledge it is relying on), the agent
requires an additional metalevel. To avoid an infi nite regress of monitoring levels
(“ homunculus ” problem), the metalevels may be distributed so that they mutually
monitor each other. One particular confi guration of this is shown in fi gure 15.2.

 In this case, two metalevels (M1 and M2) monitor each other, and both monitor
the same object level. The two metalevels represent different metareasoning methods.
For example, they may use different measures to evaluate object-level performance.
The relation between M2 and M1 has the same nature as that between M1 and O1.
The main difference is that the interaction between M2 and M1 is two-way (since M1
also monitors M2). The actions, however, need to be coordinated so that metalevels
do not interfere with each other. This is indicated by dashed arrows pointing away
from the boxes, meaning that the actions are not always executed (or not immedi-
ately). Some examples of mutual metalevels were implemented in the Treasure
Scenario (Kennedy, 2003).

 In chapter 1 of this volume, fi gure 1.5 defi nes a form of distributed metareasoning
as a multiagent architecture in which the metalevels of the respective agents exchange
information in order to coordinate their actions. Our approach is different from this
multiagent architecture, because we are aiming for distributed metalevel control of one
agent , where the inter-metalevel relationship is mutual; in other words, metalevels are
also each other ’ s “ object level. ”

 Since the metalevels are distributed, the agent also has a distributed self-model. In
fi gure 15.2 the different kinds of self-knowledge (versions of KI) held by M1 and M2
represent two perspectives from which the self-model is viewed. Note that the self-

Distributed Metamanagement 239

M1

Metalevels (M1, M2)
KI self-knowledge
SI, EI internal sensors and effectors

Object level (O1)
KE knowledge of world
SE, EE external sensors and effectors

External world

Perception and
Control

Reasoning
Reacting

Sensing and
Acting

KI

SI EI

O1

KE

SE EE

M2

KI

SI EI

 Figure 15.2
 Distributed metamanagement.

model of M1 includes M2 and vice versa. The fi gure may be generalized to produce
networks of meta- and object levels in which each metalevel controls a subset of the
network. The aim is that all metalevels are monitored and evaluated by at least one
remaining metalevel to provide full self-protective coverage.

 Action Coordination in Distributed Metamanagement
 For self-protection, all levels are active concurrently. M2 should be able to dynamically
adjust its monitoring of M1 in response to any problems it fi nds. The same is true for
M1 ’ s monitoring of M2 (as well as its monitoring of the object level). If an anomaly
is detected, the metalevel requires more processing resources (e.g., for more detailed
monitoring) to enable timely intervention.

 Different metalevels may detect different kinds of failure. In our implementation,
the fi rst metalevel to make a decision on how to act inhibits all others by broadcasting
that it has made a decision. The remaining metalevels cannot evaluate the “ winning ”

240 C. M. Kennedy

metalevel ’ s action until it has made some progress; they must wait until the new
metalevel has produced a meaningful reasoning trace along with associated environ-
mental states. In this way, confl icts and oscillations are prevented. (Longer-term oscil-
lation may of course still occur, but for complex real-world problems, human cognition
is also subject to indecisiveness and “ false starts ”).

 However, the components may have to agree among themselves before allowing
any action, such as in metalevel cost evaluations. In a hostile environment, any meta-
level may contain hostile code and cause rapid damage. A classic fault-tolerance
approach is to use a majority voting system to determine whether to allow a compo-
nent to take action. Distributed agreement has been addressed in the fault-tolerance
literature (see, e.g., Verissimo & Rodrigues, 2001). Multiagent systems are also address-
ing these challenges, but they assume that the agents are cooperative (not hostile).
See, for example, this volume, chapters 13 (Raja, Alexander, Lesser, and Krainin) and
14 (Rubinstein, Smith, and Zimmerman), to which we will return after elaboration of
distributed metamanagement below.

 Accurate Models of “ Self ”
 The agent ’ s self-model must be suffi ciently accurate to allow it to survive in a hostile
environment in which any component may be attacked. The aim is to ensure that all
metalevels are themselves monitored, and that the monitoring is suffi ciently detailed
for the situations the agent must survive in. The distributed self-model (all versions
of KI) should represent the normal behavior of all metalevels and object levels so that
anomalies can be detected when compared with observations. The nature of the envi-
ronment dictates the required level of detail in the model and monitoring (as with
natural evolution).

 Closed metalevel networks If all metalevels are monitored, the network is “ closed ”
in the sense that no external “ agent ” is monitoring or controlling any part of the
system (it is fully self-protective). Since it also monitors its self-monitoring (with some
time delay), it has some aspects of “ loopiness ” (Perlis, this vol., chap. 2) in a weak
sense. However, practical engineering considerations prevent it from being fully
 “ loopy, ” since it must have object levels with externally defi ned functionality (they
are not self-referring). A related idea to “ loopiness ” is that of “ organizational closure ”
in biological systems (Maturana & Varela, 1980) in which living systems are defi ned
as “ self-producing ” (autopoietic) and have no externally defi ned functionality — they
only refer to and produce themselves. Autopoiesis has been applied to social systems
(Luhmann, 1982). From a psychology perspective, Antaki and Lewis (1986) also point
out the “ loopiness ” of social metacognition: for example, “ A believes that (B believes
that (A believes that (B . . .))). ”

Distributed Metamanagement 241

 Minimizing additional complexity In fi gure 15.2 the “ horizontal ” inter-metalevel
relation has the same form as the vertical relation between metalevel and object level
(the same kind of arrows are used). The goal is to minimize the additional features
required for distributed metalevel processing by reusing the same mechanisms already
used in the meta-object-level relation. These same mechanisms (which may be rules
or sections of code) are concurrently playing different roles. They are “ talking about ”
different things, but using the same concepts and methods. This is similar to the
software engineering practice of component reuse in multiple contexts. See, for
example, Northrop (2002) .

 It is also necessary to limit metalevel complexity in order for the system to become
familiar with the correct operation of its metalevels, which is required for detecting
their failure. Otherwise, there will be large gaps in the self-model. We have shown
that this kind of self-familiarization is possible in the proof-of-concept implementa-
tion in Kennedy (2003) . In that implementation, the architecture was “ multiagent. ”
The model of expected behavior was “ bootstrapped ” by discovering classes of activity
in rule-fi ring traces. For an architecture with two metalevels, we divided the training
into three phases:

 Phase 1 Both metalevels learn about object-level processing: Each M i (where i is 1 or
2) learns about the normal operation of the object level in a protected environment
and builds its initial model KI. The object level interacts with the environment in situ-
ations it has learned previously.
 Phase 2 Both metalevels take turns observing each other detecting and responding
to attacks against an object level in an environment permitting object-level attacks
only. For a metalevel M j learning about M i , this looks as follows:
 (a) M j detects failure in the object level and takes corrective action using KI.
 (b) M i observes the trace of M j ’ s reasoning and activity during its error detection and
repair of the object level and uses these traces to build its model of M j (part of its KI).
 Phase 3 Operational phase with no restriction on hostile attacks, where a metalevel
M i is repaired by M j and coordination of action is necessary.

 In the above, we assume that the reasoning processes and actions of metalevel M j
when detecting a failure in M i will be approximately the same as M j ’ s processing when
detecting a failure in the object level (which M i has learned). Component reuse should
make this assumption reasonable. This is also similar to the kind of assumption made
about training scenarios in general; they should be a good enough approximation of
reality to be useful. More details are in Kennedy (2003) .

 Reducing the Cost of Distributed Metamanagement
 From the above, it is clear that distributed metamanagement has potential disadvan-
tages due to its added complexity. However, the additional costs may be offset by

242 C. M. Kennedy

opportunities for adaptation and self-optimization that would not be possible in a
centralized metalevel system.

 Metareasoning is already used to evaluate the cost of object-level reasoning options
(Raja, Alexander, Lesser, and Krainin, this vol., chap. 13). The same principle can be
applied on the metalevel, where one metalevel monitors another. For example, if M2
(in fi gure 15.2) believes that M1 ’ s metareasoning is using excessive processing resources
in a low-risk situation, it may interrupt M1 ’ s analysis and restore control to any sus-
pended object-level processes. Therefore, an agent with distributed metamanagement
has the potential to recognize and reduce the cost of its own metareasoning. The
confl ict between M1 and M2 is not very disruptive in this case; it just means there
was insuffi cient consensus to continue with any metalevel processing. Some related
work on reasoning about the cost of monitoring includes Zilberstein (1993) , within
the context of algorithm compilation.

 Figure 15.2 may be generalized to include n object levels and m metalevels, each
able to monitor and change the other. Even if there is some partitioning of the
network, only those connections that are the most useful should be preserved. For
example, unproductive connections between meta- and object levels may be disabled
if a suffi cient number of metalevels agree that a connection has been unproductive
or detrimental to the object-level task. No additional complexity is required here, other
than the mechanisms already in place for agreement about metalevel interventions.
The system may eventually stabilize into a confi guration that counteracts the over-
heads of a single metalevel system, where disruptive operations are not corrected.

 Comparison with Multiagent Metareasoning

 A multiagent system is constrained by the metaphor of individuals in a society. In
contrast, distributed metalevels within a single agent may have many confi gurations,
including those that resemble “ multiagent ” systems but where the “ agents ” can share
memory workspaces and directly reconfi gure other “ agents. ” An example “ multiagent ”
confi guration is where each metalevel controls its own object level (as well as its subset
of metalevels) in fi gure 15.3. The object levels may interact with and reason about the
world in different ways. Similarly, they may have different partial views of the current
state of the world. The simplest architecture is where one object level is the “ primary ”
(in control of action) while the other is the “ backup ” ready to take control if the
primary fails.

 The monitoring aspect of distributed metamanagement may be applied to multia-
gent architectures if they form a self-protective coalition. The agents would need to
make available their reasoning traces for critical evaluation by other agents. Effectively,
the agents would form a community with compatible goals (“ values ”), where their
mental state is broadcast to a subset of other agents. The actual metamanagement (the

Distributed Metamanagement 243

M1

Metalevels (M1, M2)
KI self-knowledge
SI, EI internal sensors and effectors

Object levels (O1, O2)
KE knowledge of world
SE, EE external sensors and effectors

External world

Perception and
Control

Reasoning
Reacting

Sensing and
Acting

KI

SI EI

O1

KE

SE EE

O2

KE

SE EE

M2

KI

SI EI

 Figure 15.3
 Distributed metamanagement with multiple object levels.

control aspect) would not normally apply, since autonomous agents do not activate
or reconfi gure each other. However, exceptions may occur if multiple agents agree
about the “ hostility ” of another agent and the need to interrupt it (as happens in
distributed metamanagement). The agent community can develop a collective “ self-
model ” if the agents build models of each other and agree on similar goals. On the
individual level the difference between “ self ” and “ other agent ” would still exist,
however.

 There are also many challenges in distributed metamanagement that are being
addressed by multiagent architectures. We list three of them below.

 1. Coordination of action Agreement between metalevels is similar to agreement
among agents, except that the multiagent metalevels are not critically evaluating other
metalevels. For example, metalevel agreement between agents about object-level
options (such as when to negotiate and when to act) is addressed in the GeMEC project
(Raja, Alexander, Lesser, and Krainin, this vol., chap. 13). Metalevel agreements about

244 C. M. Kennedy

joint plan execution in an uncertain environment is addressed by Rubinstein, Smith,
and Zimmerman (this vol., chap. 14). These methods may be applicable to distributed
metamanagement if the metalevels have to agree on whether an object-level process
is problematic or not.
 2. Network connectivity and partial viewpoints Since full connectivity between meta-
and object levels is not practical, splitting the network into neighborhoods is neces-
sary. This is also a problem for multiagent networks and is being addressed by the
GeMEC project (this vol., chap. 13). Similarly the agents of chapter 14 (this vol.) have
partial viewpoints of their joint task. Multiagent approaches to neighborhoods may
therefore be applicable to distributed metamanagement.
 3. Self-familiarization Many of the same principles of mutual observation are being
addressed in agents that build models of each other (Borghetti & Gini, this vol., chap.
16; Gordon, Hobbs, & Cox, this vol., chap. 19).

 Toward Self-Explanation in a Distributed Metamanagement System

 Self-explanation has been defi ned by Cox (this vol., chap. 9) and plays an important
role in the “ episodic logic ” system of Morbini and Schubert (this vol., chap. 17). Self-
explanation is also important for self-protection. The agent needs to explain the cause
of a failure and to plan corrective actions accordingly. Explanations by a single meta-
level about one or more object levels can be added to our earlier example where a
robot fi nds a cupboard (it can give an ongoing explanation of what its current hypoth-
eses are, and what it will try out next). However, explanations by a distributed meta-
management system are more challenging. We present some examples below. We will
refer to fi gure 15.2, although the examples should also apply to other confi gurations.
We assume sensors and effectors of both metalevels can access the same object level
(shown in fi gure 15.2).

 M2 explaining a failure of M1
 Example 1 “ M1 failed to detect the error in O1 ’ s reasoning at step S (because of an
error in M1 ’ s execution of step T in its own processing). ” In this case M1 is “ fail-silent ”
(fails to operate). Note that M2 monitors two different levels and may be able to
explain failures on both levels.
 Example 2 “ M1 wrongly detected an error in O1 at step S ; the problem is in step U . ”
This introduces the additional problem of disagreement between two metalevels, since
M1 is also reporting a problem. Furthermore, because of the mutual relationship, M1
may also claim to have detected an error in M2. Coordination methods required for
consistent action can also be used for coherent explanations.
 Example 3 “ M1 ’ s knowledge of O1 needs to be corrected or extended. ” The same
problem of disagreement may also occur here.

Distributed Metamanagement 245

 Distributed metalevels can also have an equivalent in human-like metacognition.
Example 1 might be expressed as: “ How did I fail to notice my mistake at step S ? I am
not being cautious enough. ” This is a criticism of one ’ s own metamanagement, due
to its failure to do anything at all (“ fail-silence ”).

 Example 2 is more complex, but might have the following form: “ I suspect I made
a mistake during step S as it does not seem to have gone correctly (this is M1 ’ s hypoth-
esis because the trace of step S appears unusual), but I have to keep open the possibility
that it is something different; maybe step S was correct but actually step U is wrong
and I ’ m just thinking incorrectly that S was wrong (M2 ’ s critical questioning of M1 ’ s
interpretation). ” Here, the meaning of the term “ I ” changes from M1 to O1 and then
to M2 in the course of the sentence. The relationship between the different levels and
the linguistic self-explanation is made clearer in table 15.1. In this example, a disagree-
ment between two metalevels can result in indecision.

 Example 3 is similar and may have the following form: “ I suspect I ’ m not understand-
ing this because I don ’ t know very much about concept C , but it is also possible that
my knowledge about C is correct and I ’ m just thinking wrongly that I ’ m not understand-
ing it. ” M2 ’ s hypothesis is that M1 ’ s understanding of what O1 needs to know is wrong.
In this case, it may be possible to explore both competing hypotheses.

 In the examples above (particularly example 3), M2 needs a different kind of model
of O1 than the one used by M1. Otherwise, it has no grounds for questioning M1 ’ s
knowledge (since they would both use the same knowledge and methods). For example,
M1 may use rule-fi ring traces while M2 monitors memory-retrieval patterns (see, e.g.,
Gordon, Hobbs, & Cox, this vol., chap. 19).

 Human-like self-explanation can provide a global and summarized overview of the
agent ’ s experience such as in “ global workspace ” theory (Baars, 1988). In our system,
more than one metalevel may participate in constructing such a narrative by observing
other metalevels. As with action coordination, the fi rst metalevel to construct an
atomic part of an explanation (such as a sentence) can broadcast its readiness to act
and inhibit all others. Subsequent sentences can then be constructed by other meta-
levels. This means that the content of the “ global workspace ” may be changing during
the course of an explanation.

 Table 15.1
 Changing meaning of “ I ” during self-explanation

 Part of sentence Meaning of “ I ”

 “ I suspect that . . . ” M1

 “ I made a mistake . . . ” O1

 “ but I have to keep open . . . ” M2

246 C. M. Kennedy

 To satisfy the requirement of closed metalevels (where all metalevels are moni-
tored), a metalevel constructing an explanation must itself be subject to critical evalu-
ation in the same way as other metalevels. This would be analogous to human
metacognition, where it is possible to doubt one ’ s own self-explanation and interrupt
it. As with all boxes in the diagrams used here, such a metalevel does not have to be
a static component in the architecture, but could instead be an emergent stable coali-
tion of participating components, as in some neuroscience models (see, e.g., Koch,
2004).

 Conclusions and Future Work

 In the context of autonomic computing or robotics, the capability of the system to
protect itself against faults and intrusions requires a nonhierarchical distributed archi-
tecture. However, self-explanation is also important, not only for the system itself but
also to enable humans interacting with it to understand the reasons for its actions.
Reconciling these two requirements is possible, but requires an integrated, cross-
disciplinary approach to cognitive systems. In addition to AI methods, research in
distributed fault-tolerance, software engineering, and cognitive neuroscience can make
a valuable contribution.

 References

 Antaki , C. , & Lewis , A. (Eds.) (1986). Mental mirrors: Metacognition in social knowledge and com-

munication . London : Sage Publications .

 Baars , B. J. (1988). A cognitive theory of consciousness . New York : Cambridge University Press .

 Beaudoin , L. P. (1994). Goal processing in autonomous agents . Doctoral dissertation, School of

Computer Science, University of Birmingham, UK.

 Cardon , S. , Mouaddib , A. , Zilberstein , S. , & Washington , R. (2001). Adaptive control of acyclic

progressive processing task structures. In Proceedings of the Seventeenth International Joint Conference

on Artifi cial Intelligence (pp. 701 – 706), IJCAI-01. San Francisco: Morgan Kaufmann.

 Etzioni , O. (1991). Embedding decision-analytic control in a learning architecture. Artifi cial Intel-

ligence , 49 , 129 – 159 .

 Fox , S. , & Leake , D. (1995). Modeling case-based planning for repairing reasoning failures. In M.

T. Cox and M. Freed (Eds.), Proceedings of the 1995 AAAI Spring Symposium on Representing Mental

States and Mechanisms (pp. 31 – 38). Menlo Park, CA: AAAI Press.

 Ganek , A. G. , & Corbi , T. A. (2003). The dawning of the autonomic computing era. IBM Systems

Journal , 42 (1), 5 – 18 .

 Hansen , E. , & Zilberstein , S. (2001). Monitoring and control of anytime algorithms: A dynamic

programming approach. Artifi cial Intelligence , 126 (1 – 2), 139 – 157 .

Distributed Metamanagement 247

 Hofmeyr , S. A. , & Forrest , S. (2000). Architecture for an artifi cial immune system. Evolutionary

Computation , 8 (4), 443 – 473 .

 Kennedy , C. M. (2003). Distributed refl ective architectures for anomaly detection and autonomous

recovery . Doctoral dissertation, School of Computer Science, University of Birmingham, UK.

 Kennedy , C. M. , & Sloman , A. (2002). Acquiring a self-model to enable autonomous recovery

from faults and intrusions. Journal of Intelligent Systems , 12 (1), 1 – 40 .

 Kennedy , C. M. , & Sloman , A. (2003). Autonomous recovery from hostile code insertion using

distributed refl ection. Journal of Cognitive Systems Research , 4 (2), 89 – 117 .

 Koch , C. (2004). The quest for consciousness: A neurobiological approach . Englewood, CO : Roberts .

 Luhmann , N. (1982). The world society as a social system. International Journal of General Systems ,

 8 (3), 131 – 138 .

 Maturana , H. , & Varela , F. (1980). Autopoiesis and cognition: The realization of the living . Dordrecht,

the Netherlands : D. Reidel .

 Minsky , M. (1968). Matter, mind, and models . In M. Minsky (Ed.), Semantic information processing

(pp. 425 – 432). Cambridge, MA : MIT Press .

 Mitchell , M. (2005). Self-awareness and control in decentralized systems. In Working Papers of the

AAAI 2005 Spring Symposium on Metacognition in Computation (pp. 80 – 85). Menlo Park, CA: AAAI

Press.

 Northrop , L. M. (2002). SEI ’ s software product line tenets. IEEE Software , 19 (4), 32 – 40 .

 Russell , S. J. , & Wefald , E. (1991). Do the right thing: Studies in limited rationality . Cambridge, MA :

 MIT Press .

 Singh , P. (2005). EM-ONE: An architecture for refl ective commonsense thinking . Doctoral dissertation,

Artifi cial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts.

 Sloman , A. , & Poli , R. (1995) SimAgent: A toolkit for exploring agent designs. In M. Wooldridge,

J. Miller & M. Tambe (Eds.), Intelligent Agents , vol. II, Workshop on Agent Theories, Architectures,

and Languages (pp. 392 – 407), IJCAI-95. Berlin: Springer-Verlag.

 Sloman , A. (2001). Varieties of affect and the CogAff architecture schema. In Symposium on

Emotion, Cognition, and Affective Computing at the AISB-01 Convention (pp. 39 – 48). Society for

the Study of Artifi cial Intelligence and Simulation of Behaviour. York, UK: AISB.

 Verissimo , P. , & Rodrigues , L. (2001). Distributed systems for system architects . Dordrecht, the

Netherlands : Kluwer Academic .

 Zilberstein , S. (1993). Operational rationality through compilation of anytime algorithms . Doctoral

dissertation, University of California at Berkeley.

 16 Weighted Prediction Divergence for Metareasoning

 Brett J. Borghetti and Maria Gini

 One of the most important elements of agent performance in multiagent systems is
the ability of an agent to predict how other agents will behave. In many domains
there are often different modeling systems already available that one could use to
make behavior predictions, but the choice of the best one for a particular domain and
a specifi c set of agents is often unclear. To fi nd the best available prediction, we would
like to know which model(s) would perform best in each possible world state of the
domain. However, when we have limited resources and each prediction query has a
cost, we may need to decide which queries to pursue using only estimates of their
benefi t and cost: metareasoning. To estimate the benefi t of the computation, a metar-
easoner needs a robust measurement of performance quality. In this chapter we
present a metareasoning system that relies on a prediction performance measurement,
and we propose a novel model performance measurement that fulfi lls this need:
weighted prediction divergence.

 Agent models are internal representations of other agents in an environment. Agent
modeling separates the characteristics of an agent from its environment. When an
agent models another, the modeler ’ s goal is to either predict future behavior or explain
past behavior by identifying the beliefs of the modeled agent. In this work, we focus
specifi cally on measuring the ability of models to make predictions, in an attempt to
answer the following important metareasoning question: Given a world state and a
collection of candidate models, how can we a priori select the one model (or a weighted
distribution over models) that is most likely to perform the best in that state? When
computational cost is an issue, the answer to this question lies within the answers to
several related questions:

 • How do we automatically abstract the world state space into a set of contexts to
reduce the computational cost?
 • How can we estimate a model ’ s general prediction quality in a specifi c context
without measuring quality at every possible world state within that context?
 • How do we compare the relative performance of several heterogeneous models ’
predictive capabilities in a specifi c context?

250 B. J. Borghetti and M. Gini

 While the ability to characterize relative performance of heterogeneous models is
important for a wide collection of metareasoning strategies, and is thus the main
thrust of this chapter, we must fi rst examine a specifi c metareasoning strategy to derive
the desiderata for the relative performance measurement. In the next section, we
propose a metareasoning system coupled with a robust measurement of model-
prediction performance to yield a powerful new method of model selection for an
agent. After reviewing some of the existing methods used for performance measure-
ment, we present a new method for characterizing model prediction performance. We
then introduce one target domain for our empirical testing of this prediction-perfor-
mance measurement. We discuss empirical results using this method and conclude
with a description of future work required to realize the overall metareasoning system.

 Context-Aware Metareasoning for Prediction-Model Selection

 Consider an agent trying to choose actions to take in some world where the utility of
an action is partially dependent on the behavior of the other agents in the world. We
describe the behaviors of the agents (and the way those behaviors affect and are
affected by the world) using an extensive-form game tree where nodes describe world
states and edges describe actions taken by specifi c agents. The value of a world state
can be estimated by summing the values of its branches, weighted by the likelihood
of the branch (action) being chosen. This process can be used at each sub-branch to
fi nd the value of the sub-branches recursively. The recursion bottoms out when a
branch is terminated at a leaf node that contains a real-world value. Each node in the
tree may also have an intrinsic value that can be included in the calculation.

 The well-known minimax algorithm (as discussed in Russell & Norvig, 2003)
describes this process when there are two agents and the game is zero-sum (in every
outcome, one player gains exactly the value the other player loses) and the agents are
assumed to have perfect (not bounded) rationality. Many extensions to minimax have
been developed that allow the assumption of perfect rationality to be relaxed (e.g.,
 Carmel & Markovitch, 1996 ; Luckhardt & Irani, 1986 ; Stone, Riley, & Veloso, 2000 ;
 Sturtevant, Zinkevich, & Bowling, 2006). By replacing the minimizer with an
algorithm that predicts the opponent ’ s behavior at a given node (as in Carmel &
Markovitch, 1996) we obtain an algorithm that selects actions with the highest value
when playing against a specifi c modeled opponent. When the model is estimating the
other agent ’ s probability distribution over actions, then the quality of the value cal-
culation is dependent upon how similar the predicted behavior distribution is to the
actual behavior distribution.

 If we want to have a metareasoner that makes decisions about which calculations
to carry out using the utility of a calculation as a criterion, we need to know the cost
of the calculation and the value of the calculation (Russell & Wefald, 1991). In this

Weighted Prediction Divergence 251

book, part II (“ Metalevel Control ”) and part III (“ Introspective Monitoring ”) discuss
other examples of these concepts in further detail.

 In the setting described above, the relative value of several candidate calculations
(queries of different predictive models) can be estimated by the quality of their predic-
tions at the specifi ed world state. Unfortunately, measuring the predictive quality of
every model at every possible world state in a branch of the game tree is at least as
expensive as obtaining all the predictions in the fi rst place — thus, computing predic-
tion quality for every node in a branch would not yield any resource savings. In order
for our metareasoner to be useful, it must be able to estimate the prediction quality
for each node without fully calculating prediction quality.

 We now defi ne the architecture of a metareasoning agent designed to act within
the multiagent environment. At the highest level, the system is one in which the
metalevel device is monitoring the performance of the object-level reasoner and com-
puting the utility of reasoning methods, as depicted in fi gure 16.2.

 The inside of the reasoning object is shown in fi gure 16.1. There are a number of
candidate models that receive input from the environment (and observe the actions
of the other agent 1). We assume that each candidate model has inputs and produces

Strategy
Action

Generator

Prediction
Engine

Candidate
Models

Control

Monitoring

Action
Selection

Perception

Object Level

 Figure 16.1
 Object level: The object ’ s candidate models observe the action of other agents and provide pre-

dictions to a prediction engine. The prediction engine is controlled by metareasoning, based on

the metalevel monitoring of the performance of the candidate models.

1. For the sake of linguistic clarity, we will refer to only one agent being modeled, to avoid

confusion between the agent and the multiple candidate models used to predict the actions of

that agent. Though not discussed further in this work, the metareasoning arrangement proposed

here can be used to model multiple target agents.

252 B. J. Borghetti and M. Gini

a prediction output in the form of a probability distribution over the possible actions
the modeled agent could take. Furthermore, we assume that the models are input-
heterogeneous but output-homogenous: each model is trying to predict a distribution
of what the modeled agent will do next, but each model may be considering different
information from which to make predictions.

 At the object level, the strategy action generator is attempting to discover fruitful
strategies for future behavior of the agent. In order for the strategy action generator
to choose a high-value future strategy, it may need to consider many “ what if ” predic-
tions about various events that could occur in the future in order to evaluate different
possible strategies. Depending on the context (collection of world states) of the desired
prediction, some models may have better prediction performance than others. Thus,
the selection of a predictive model (or weighted distribution over models) should be
 context-aware for each prediction. For each prediction-in-context that must be made,
it is the prediction engine ’ s job to generate the overall prediction using the set of
available candidate models.

 The prediction engine ’ s selection of model(s) is infl uenced by the modules in the
metareasoning level, as shown in fi gure 16.2. The context abstraction module deter-
mines the appropriate abstract context from a given world state. It provides this
context as a tag for the activity repository for every prediction and observation event.
The model generates a prediction event whenever it is queried for a prediction. Predic-
tion events contain the predicted distribution over modeled agent actions and the

Utility
Calculation

Activity
Repository

Context
Abstraction

Control

C
o

n
te

xt

Monitoring

Predictions
Prediction Cost
Observations

World State

Metalevel

 Figure 16.2
 Metalevel: The metareasoner reviews past predictions, prediction costs, and observations to yield

a utility measurement for each context. The utility calculation advises the prediction engine by

providing an expected performance profi le for each model in each context.

Weighted Prediction Divergence 253

cost incurred by that model to generate the prediction. Observation events include
the observed behavior of the modeled agent. The utility calculation fi rst computes the
distribution of agent behavior in each tagged context. Then it calculates a prediction-
quality measurement from the predictions and observations seen within the context.
Finally, it computes the utility for each model in each context from the prediction
quality and the prediction cost. The latest performance profi les are passed to the pre-
diction engine prior to each prediction.

 The remainder of this chapter presents and explores one of the important facets of
this metareasoning architecture: measuring the prediction performance of a model in
a context. Before we discuss our novel and theoretically grounded measurement
concept, we review the related research in the area.

 Related Work

 Agent modeling is often used in computational analysis of an environment to help
an agent make decisions. Researchers have examined many domains where agent
modeling can be useful: competitive economics, national security, politics, and, of
course, games (Kott & McEneaney, 2007).

 Computer science is rich with research on different techniques for how to represent
an agent in a model, how to obtain the information to populate the model, how to
use the model, and how to evaluate the model based on overall performance in the
domain. While actual performance within the domain is ultimately the goal for an
agent, there are many other factors affecting overall agent performance besides how
accurate the agent model is. The structure of the environment, the prior biases in the
behavior of the modeling agent, and the way it uses the information from the model
are a few examples. If we want to determine how well a model works in order to decide
which of several models is better, we need to measure the accuracy of the models
 directly .

 Though many researchers have provided empirical studies that compare the overall
domain performance of their methods with other modeling methods or different
approaches (such as Monte-Carlo simulation, game-theoretic equilibrium play, or
rules-based strategy), few have quantifi ed how well their models predict the other
agents ’ behavior directly.

 There are several exceptions in which researchers do examine the accuracy of the
model, not just the performance of the overall system. Carmel and Markovitch (1996)
examine the model size and average error versus sample size while running their
domain independent modeling US- L* algorithm, showing that model-size growth
slows with more examples while average error drops. Rogowski (2004) expands on this
work, providing an algorithm it-us-l* and presenting its domain-independent model-
quality measure (i.e., average hold-out-set prediction accuracy) in several experiments.

254 B. J. Borghetti and M. Gini

In robot soccer games in RoboCup, Riley and Veloso (2002) use the probability of
correctly recognizing which play an agent is about to make to measure their learning
algorithm, but they do not provide any other direct model quality measures. In the
plan recognition fi eld, researchers have also employed the measurements of precision
and recall (Blaylock & Allen, 2005; Cox & Kerkez, 2006) when comparing performance
of candidate recognition algorithms.

 The majority of the model prediction-quality measures in these efforts rely on
extensions to error measurements intended for binary classifi cation (1 point for correct
prediction, 0 points for incorrect prediction). Though this information does provide
a basic quality measure, its value diminishes as the number of possible agent actions
per state grows.

 In the world described in the previous section, there are no restrictions on unifor-
mity of the number of actions leading from a node. Some nodes may have few actions
leading away while others may have many. Under this condition, the value of a func-
tion comprised of binary-based prediction-quality measurements from multiple het-
erogeneous nodes is unclear. For the function to be meaningful, the underlying quality
measure must be more general.

 A more detailed representation of general classifi cation performance (which is
applicable to the performance measurement of a model that predicts which action
an opponent will take) is the confusion matrix. A confusion matrix is an M -by- M
matrix that represents a classifi er ’ s distribution of classifi cation labels provided to M
different classes. Column headings hold the model ’ s predictions and row headings
indicate the true class. Thus, the cells along the diagonal represent correct classifi ca-
tions and the cells on the off-diagonal represent incorrect classifi cations. In addition
to providing accuracy or error rate (computed from the main diagonal of the matrix),
the matrix reveals the number (or probability) of each type of mistake (off-diagonal
cells). This additional information can be valuable when different predictive mistakes
have different costs. Several agent-modeling efforts use the confusion matrix to char-
acterize their model ’ s prediction quality. Davidson uses a confusion matrix to quan-
tify a neural-network agent model ’ s ability to predict whether the opponent will fold,
call, or raise under many different circumstances in poker (Davidson, Billings, Schaef-
fer, & Szafron, 2000). Sukthankar and Sycara use a confusion matrix to characterize
their prediction of which type of breach-and-enter maneuver the opposing force is
about to perform in a simulated military tactical engagement (Sukthankar & Sycara,
2006).

 While confusion matrices are a step in the right direction, they can quickly become
unwieldy if the space of possible options M is large (or continuous) or there are mul-
tiple stages of predictions that must be made during the course of an engagement
(such as in chess, poker, and military endeavors). In multiple-stage prediction encoun-

Weighted Prediction Divergence 255

ters (which can often be characterized as extensive form games and depicted with
game trees) there would need to be a confusion matrix for every possible agent predic-
tion node. Sometimes the act of getting to a prediction node is not certain — the prob-
ability depends on which events occurred over the history of the encounter (the path
taken through the game tree). The probabilities might be codependent (depending on
the probabilities of all the agents in the environment). In these circumstances there
may be no clear way in which to generate a single confusion matrix quantifying the
goodness of a model.

 A New Approach for Evaluating Prediction Performance in Agent Models

 Given the diffi culty of the problem and the lack of its treatment in the fi eld, we now
present a fl exible method for characterizing relative prediction quality that is inde-
pendent of the agent in which it resides. This quality measurement does not consider
total performance of the agent — only the model ’ s ability to predict another agent ’ s
behavior. Before we present the measurement, let us fi rst take a moment to list the
desiderata of a predictive performance measurement that is to be used in a metarea-
soning role.

 Given a context (an abstraction of the world state), an actual behavior distribution
(a probability distribution over a fi nite number of possible actions, 2 which describes
the behavioral choices of the agent in that context), and a prediction of the target ’ s
behavior distribution in the context (as provided by a predictive model, given the
context), we characterize prediction divergence PD P Q(,) . Prediction divergence is the
scalar measure of the distance between the actual distribution P and the predicted
distribution Q such that PD P Q(,) has the following properties:

 1. ∀ = ⇔ ≡P Q PD P Q P Q, : (,) 0 The function value should be zero if and only if two
distributions are the same.
 2. ∀ > ⇔ ≠P Q PD P Q P Q, : (,) 0 The function value is nonnegative and only positive
when the distributions are different.
 3. ∀ =P Q PD P Q PD Q P, : (,) (,) The function is symmetric.
 4. ∀ + ≤P Q R PD P Q PD Q R PD P R, , : (,) (,) (,) The function obeys the triangle inequality.
When combined with the previous three properties, this property completes the char-
acterization of the function as a metric.
 5. ∀ > ∧ > ⇒ >P Q R S PD P S PD P R PD P R PD P Q PD P S PD P, , , : ((,) (,)) ((,) (,)) (,) (, QQ) The
function values obey the transitive property.

2. While we describe a fi nite number of actions here, the functions presented later are applicable

to continuous distributions as well.

256 B. J. Borghetti and M. Gini

 6. Given any extreme 3 distribution P and any of its distributional complements 4
 P−1 PD P P C(,)− =1 where C is a positive constant. The function values should be
bounded by a fi xed constant such that any two distributions that are maximally far
apart 5 are bounded. This enables the function to be scaled by dividing by C such that
the function values lie on the interval [0,1].
 7. ∀ extreme P , Q , and their respective complements P Q− −1 1, PD P P PD Q Q(,) (,)− −=1 1 .
All function bounds are equal regardless of the width of the underlying distributions.
This is a minor extension of the previous property, which allows heterogeneous nodes
to be weighted and summed in mathematically meaningful ways.

 Comparing Behavior Models with Real Agent Behavior

 We now develop the measurement function characterized by the desired properties
described above. Information theory provides tools for comparing distributions. Its
tools have been in use for well over half a century. Relative entropy (also known as
the Kullback – Leibler distance) between two probability mass functions (Cover &
Thomas, 2006) is a very widely used similarity measure. Given two distributions p and
 q , relative entropy is defi ned as:

 D p q p x
p x
q xx X

(||) ()log
()
()

=
∈
∑ (1)

 While relative entropy is characterized by certain desirable properties such as equality,
nonnegativity, and transitivity, unfortunately it is not symmetric (property 3) or
bounded (property 6). We instead choose a related, but lesser-known similarity measure
that is symmetric and bounded as discussed by Fuglede and Topsoe (Fuglede & Topsoe,
2004; Topsoe, 2000). This measure, Jensen – Shannon divergence (JSD) is sometimes
referred to as capacitory discrimination. JSD is calculated between two distributions p
and q as:

 JSD p q D p
p q

D q
p q

(,) ||
()

||
()= +⎛

⎝⎜
⎞
⎠⎟ + +⎛

⎝⎜
⎞
⎠⎟2 2

 (2)

 One can think of JSD as the average relative entropy from each distribution (p and q)
to the distribution that is midway between them. In addition to keeping the desired
properties from relative entropy, the square root of JSD is a metric (Topsoe, 2000),

3. An extreme distribution is one in which one of the elements contains all of the probability

mass and the other elements all contain no probability mass.

4. We defi ne a distributional complement for an extreme distribution as another extreme distri-

bution where all of the probability mass is located at a different point than in the original

distribution.

5. A loaded coin with P(heads) = 0, P(tails) = 1 is maximally far from a loaded coin with P(heads)

= 1, P(tails) = 0.

Weighted Prediction Divergence 257

meaning that it covers the fi rst four properties above and provides additional validity
for its use as a distance measurement. For the remainder of this work we will use the
term Root-JSD to represent the square root of the value calculated in equation (2). By
letting one of the distributions represent the predicted behavior distribution produced
by the model and letting the other distribution represent the observed behavior dis-
tribution of the target agent, we can measure the predictive quality of our model using
 Root-JSD .

 For any given interaction between agents, we may have many contexts. Each
context consists of many pairs of predicted and observed actual behavior distributions
that need to be compared using Root-JSD . For example, in extensive form games such
as poker, a model might be based on a portion of the game tree that contains a set of
the opponent ’ s decision nodes (N). At each node (n N∈) where the opponent has an
opportunity to decide his next action, there exists a distribution over his possible
actions. Some nodes may occur more frequently or may be worth more (in terms of
risked utility). When developing a prediction quality measurement we would like to
weight the prediction quality at each decision node by its importance in our decision
making and then combine the weighted prediction quality for all the nodes of
interest.

 In order to measure the overall similarity between the set of predicted conditional
probability distributions (P) and the set of observed conditional probability distribu-
tions (Q) in an interaction, we defi ne a function that combines all of the individual
 Root-JSD measurements at each agent-decision node in the set, using a weighting func-
tion for each node. Given a set of opponent decision nodes (N), associated sets of
predicted and true probability distributions ∀ ∈k N P Qk k, , , and a weighting function
for each node ∀ ∈k N W k, () , we defi ne weighted prediction divergence (WPD) as:

 WPD N
W k JSD P Q

W k

k k
k N

k N

()
() (,)

()
= ∈

∈

∑
∑

 (3)

 Equation (3) yields a value in [0,1], making it very useful for comparing overall predic-
tion quality of multiple models for entire histories of agent interactions. We can also
weight the individual decision nodes within a context group according to some func-
tion of their importance with respect to the decision problem. Some possible weighting
functions and their rationale for use include:

 • Uniform weighting: all nodes are weighed equally.
 • Frequency weighting: weight the nodes by their frequency of occurrence, giving
more importance to decisions that have to be made more often.
 • Utility weighting: weight the nodes by a function of the possible utility outcomes
(e.g., U Umax min−) so that the outcome of a valuable decision leads to more increase or
decrease in utility for the modeling agent.
 • Risk (reward) weighting: multiply probability of occurrence by utility weight.

258 B. J. Borghetti and M. Gini

 In the next section, we use a tailored frequency-weighting scheme to compare the
performance of two black-box predictive models (fi xed and learning) in the Texas
Hold ’ em poker domain.

 Experiments

 We now show how the predictive performance measure can be used to differentiate
model performance in different contexts. These experiments demonstrate the validity
of the technique described previously for determining which model is better at making
predictions within each of several contexts. In the remainder of this section we intro-
duce our target domain and describe the models that we are comparing and the
protocol for the measurement. We then show the results of the experiments and
discuss the implications for the feasibility of metareasoning using an automated
version of this technique.

 Texas Hold ’ em Domain Characteristics
 Texas Hold ’ em poker is a well-known zero-sum imperfect information game. It is
a poker variant in which players attempt to make the best set of cards from their
private (hole) cards and several fully visible community cards that are usable by every
player. Each hand consists of multiple rounds of dealing and betting where players
try to win the pot: the hand ends when either all but one player has folded (uncon-
tested win) or several players have stayed in the game until all betting is complete
(the showdown).

 There are four rounds in which players can bet chips based on the strength of
their cards: the prefl op , fl op , turn , and river . If any player decides to fold before all four
betting rounds have been completed, he forfeits any claim on the pot and must sit
out the remainder of the hand while the other players fi nish. If all but one of the
players have folded prior to the completion of the river betting round then the remain-
ing player wins the pot uncontested and the hand is terminated without further
betting rounds.

 In a heads-up (two-player) limit (fi xed increment bet) Texas Hold ’ em match,
we can express each round of betting in terms of an extensive form game. In
this version of Texas Hold ’ em there are over 10 17 (Billings et al., 2003) possible
game outcomes — making even this simplistic variant of Texas Hold ’ em very rich in
strategic opportunity.

 Opponent Modeling in Poker
 There are two types of opponent models for the poker domain: fi xed and learning.
A fi xed model is usually based on either general poker knowledge or an off-line
trained program that reviews previously documented matches and builds a model

Weighted Prediction Divergence 259

from them. The fi xed model does not change its function over time during an encoun-
ter with an adversary. A learning model is different from a fi xed model in that it can
change its strategy over time as it observes the behavior of its current adversary during
an encounter.

 For these experiments we compare the performance of two black-box models: a
fi xed-strategy opponent model and a learning opponent model. Each of these models
was part of a larger modeling system in our entry for the 2007 Computer Poker Com-
petition: PokeMinnLimit1. The fi xed-strategy model was based on general poker
knowledge for playing limit poker. It uses static parameters for a pot-value function
that predicts the likelihood of the opponent ’ s folding, calling, or raising. In competi-
tion, our agent uses the fi xed model to provide predictions of opponent behavior
before there are suffi cient observations to use the learning model.

 In contrast, the learning model has no predefi ned probability distribution over
opponent behavior. Instead, it attempts to make predictions of the opponent ’ s behav-
ior based solely on past observations in the current match once at least one observa-
tion has been made at that decision node. At each node in the game tree where the
opponent makes a decision, the learning model records the frequencies of the actions.
Then it computes the probability that the opponent will fold, call, or raise in the
future based on the accumulated frequencies of each action, conditional on the game
tree node where the agent made the decision. This particular model makes several
assumptions in order to reduce the number of nodes in the game tree that it must
compute: the model does not consider what cards the opponent may have; each
betting round is considered independent; all data are gathered and weighted equally
for the entire course of the encounter. This particular style of model is biased toward
learning a stationary policy opponent well, at the possible expense of being misled by
a nonstationary adversary.

 Comparing Model Quality
 We now show how WPD can be used to compare performance between two candidate
agent models. We focus on the models ’ ability to predict the behavior of the
top performer in the 2007 Computer Poker “ Limit Equilibrium ” Competition:
Hyperborean07LimitEq1.

 The modifi ed frequency-weighting function W (n) we use in these experiments
to compute WPD weights each node by how relevant it is in the poker game tree.
We calculate this relevance recursively: the root-node of a tree has a relevance of 1.

Each child of the root-node has a relevance of 1
| |Cr

 where Cr is the number of the root-

node ’ s children. Each child of the root-node ’ s children Cc has a relevance of
1

| || |C Cr c

and so forth.

260 B. J. Borghetti and M. Gini

 We compared the performance of the fi xed model to the learning model. To
compare the prediction quality of these models we needed data about the true behav-
ior of our desired opponent. For the test-data set, we retrieved all 660 matches (1.98M
hands) from the 2007 Computer Poker Competition (Zinkevich, 2007) played by
Hyperborean07LimitEq1. We felt these data were representative of the true behavior
of Hyperborean07LimitEq1 because it was the largest set of data available to the public,
and the data document Hyperborean07LimitEq1 ’ s behavior against many different
opponents. We scanned all of the test data to determine the frequency counts for
each action at each game tree node in each round. We declared the resulting
probability distributions for each node in the game tree as behavioral truth for
Hyperborean07LimitEq1.

 To determine the learning model ’ s ability to learn the opponent ’ s distribution of
behavior, we isolated a training set of 20 matches played between PokeMinnLimit1
and Hyperborean07LimitEq1. We trained the learning model using only observations
that it could have made during these 20 matches. We then gathered predictions from
the trained model on the hands from the test set and calculated the WPD between
the learning model ’ s predictions of Hyperborean07LimitEq1 ’ s behavior and Hyper-
borean07LimitEq1 ’ s actual behavior. A similar procedure (without a training phase)
was used to obtain the WPD for the fi xed-strategy model. The aggregate results for
3,000 hands for both models are shown in fi gure 16.3. Because of the heterogeneous
nature of Texas Hold ’ em poker ’ s four betting rounds, we chose to separate the oppo-
nent decisions into four context groups: prefl op, fl op, turn, and river. While we made
this decision based on our expertise of the domain, we expect that there may be better
divisions of contexts that could be made (by pot size, for example) that might yield
even further separation between the different models. The automation of context
determination is a key area for future research in order to make further progress with
the metareasoning system described in this chapter.

 Discussion

 Though the learning model quickly becomes better at predicting behavior than the
fi xed-strategy model during the prefl op and fl op rounds, the learning model ’ s predic-
tion quality in the turn and river rounds grow worse over the course of the game.
After approximately 380 iterations on the turn (and after approximately 740 iterations
on the river) the fi xed-strategy model would have better predictive performance than
the learning model.

 While the learning model appears to be very useful for predicting the true oppo-
nent ’ s behavior on the prefl op and possibly the fl op (at least when compared to the
fi xed model we used), its utility is questionable during the turn and river, where the

Weighted Prediction Divergence 261

Pre-flop
Flop
Turn
River

500 1000 1500 2000 2500 3000

Hand Number

Pre-flop Fixed Strategy

Flop Fixed Strategy

Turn Fixed Strategy River Fixed Strategy

10–3

10–2

10–1

10–4

W
P

D
 (

lo
g

 s
ca

le
)

 Figure 16.3
 Comparing learning versus fi xed-strategy models in each of the four betting rounds in a 3000-

hand limit poker game: The horizontal lines represent the fi xed-strategy model WPD . The darker

fl uctuating lines represent the learning model ’ s WPD values, which are better (lower) than the

fi xed strategy for the prefl op and fl op, but worse than the fi xed strategy for the turn and river.

fi xed model ’ s predictions might be preferred. Although fi nding the cause of the
reduced accuracy of the learning model during the turn and the river is beyond
the scope of this work, it is important to note that this analysis reveals the fl aws in
the learning model even when other performance-based methods fail to do so. For
example, in a separate experiment with 100 matches (300,000 hands) we examined
relative performance between two agents in terms of number of small bet increments
won per hand (sb/h). We noticed that the learning strategy model achieves an average
0.04 sb/h greater win rate than the fi xed strategy model from hands 500 through 3,000
when each played against Hyperborean07LimitEq1. If we had relied on just the earn-
ings performance measure as the method of determining the better model (as much
of the other research in the fi eld does), we might not have realized that subcompo-
nents of the learning model were not performing as well as the same subcomponents
in the fi xed model.

262 B. J. Borghetti and M. Gini

 If the metalevel reasoning system described earlier had been available at the time
of competition and could have seen the prediction-quality difference between the
learning and fi xed models in these contexts, it might have been possible for the rec-
ommender to advise the agent to switch to using the fi xed model instead of the learn-
ing model in the turn and river betting rounds. This may have improved the
performance of the agent in the competition. Testing this hypothesis is reserved for
future work.

 Conclusion and Future Work

 We have shown that prediction-quality assessments can be used to point out strengths
and weaknesses in opponent models that remain hidden under domain-based perfor-
mance measurements. We identifi ed the desiderata of a strong measure of model
quality necessary for metalevel reasoning in the multimodel agent prediction setting.
By borrowing a concept from information theory (Jensen – Shannon divergence), we
have developed a weighted prediction divergence metric and characterized several
tailored weighting schemes. Weighted prediction divergence incorporates all desired
properties of our performance measure allowing us to determine the relative prediction
quality between models. We have shown empirically how weighted prediction diver-
gence values for several models could be used to select the best model for the current
context. These techniques form one of the foundations of metareasoning, empowering
a metalevel reasoner to make real-time decisions about which models to use in certain
contexts.

 There is at least one additional effort that must be completed before the metarea-
soner described in the introduction can be realized. We must choose a state abstraction
method which can automatically cluster world states into contexts such that the
prediction-quality estimation system described in this work can assess models with
fewer computational resources. Though we have shown a meaningful context for
poker in this work, the contexts for the collection of nodes we used were generated
manually. Automating this process would enable multidomain applicability for the
metareasoning technique we present.

 In general, when one considers the relationship between learning and metareason-
ing, the two may be hard to differentiate. In our work, the goal of the metareasoning
level is to determine which of several models will perform the best in a given situa-
tion. The context generator is responsible for abstracting the state to discover similar
situations to those seen previously. The activity repository (which contains the con-
texts and the models ’ performance within those contexts) is merely a collection of
context-sensitive observations. The utility calculation is a math equation based on the
past performance of the models in similar contexts. Our metareasoning level has the
ability to remember situations from the past and how well each of the opponent

Weighted Prediction Divergence 263

models would have performed in the situation. In effect, the metareasoner, by control-
ling model selection, can enable the agent to improve its performance in repeated
situations. This is learning.

 References

 Billings , D. , Burch , N. , Davidson , A. , Holte , R. , Schaeffer , J. , Schauenbert , T. , et al. (2003). Approxi-

mating game-theoretic optimal strategies for full-scale poker. In International Joint Conference on

Artifi cial Intelligence (pp. 661 – 668). St. Louis, MO: Academic Press.

 Blaylock , N. , & Allen , J. (2005). Recognizing instantiated goals using statistical methods . In Gal

Kaminka (Ed.), IJCAI Workshop Modeling on Others from Observation (MOO-2005) (pp. 79 – 86).

 Menlo Park, CA : IJCAI .

 Carmel , D. , & Markovitch , S. (1996). Incorporating opponent models into adversary search.

In Thirteenth National Conference on Artifi cial Intelligence (pp. 120 – 125). Menlo, Park, CA: AAAI

Press.

 Cover , T. M. , & Thomas , J. A. (2006). Elements of information theory . New York : John Wiley &

Sons .

 Cox , M. T. , & Kerkez , B. (2006). Case-based plan recognition with novel input. Control and Intel-

ligent Systems , 34 (2), 96 – 104 .

 Davidson , A. , Billings , D. , Schaeffer , J. , & Szafron , D. (2000). Improved opponent modeling in

poker. In International Conference on Artifi cial Intelligence (pp. 1467 – 1473). Las Vegas: CSREA Press.

 Fuglede , B. , & Topsoe , F. (2004). Jensen – Shannon divergence and Hilbert space embedding. In

 Proceedings of the International Symposium on Information Theory, 2004 (ISIT 2004) (p. 31). Piscat-

away, NJ: IEEE Computer Society.

 Kott , A. , & McEneaney , W. M. (2007). Adversarial reasoning: Computational approaches to reading

the opponent ’ s mind . Boca Raton, FL : Chapman & Hall/CRC .

 Luckhardt , C. A. , & Irani , K. B. (1986). An algorithmic solution of n -person games. In Fifth

National Conference on Artifi cial Intelligence (AAAI) (pp. 158 – 162). Menlo, Park, CA: AAAI Press.

 Riley , P. , & Veloso , M. (2002). Planning for distributed execution through use of probabilistic

opponent models. In Sixth International Conference on AI Planning and Scheduling (AIPS-2002) (pp.

72 – 81). Menlo, Park, CA: AAAI Press.

 Rogowski , C. (2004). Model-based opponent-modelling in domains beyond the prisoner ’ s

dilemma. In Workshop on modeling other agents from observations at AAMAS (pp. 41 – 48). Piscat-

away, NJ: IEEE Computer Society.

 Russell , S. J. , & Norvig , P. (2003). Artifi cial intelligence: A modern approach (2nd ed.). Upper Saddle

River, NJ : Prentice-Hall .

264 B. J. Borghetti and M. Gini

 Russell , S. J. , & Wefald , E. (1991). Principles of metareasoning . Artifi cial Intelligence , 49 (1 – 3),

361 – 395.

 Stone , P. , Riley , P. , & Veloso , M. M. (2000). Defi ning and using ideal teammate and opponent

agent models. In Twelfth Innovative Applications of AI Conference (IAAI-2000) (pp. 1040 – 1045).

Menlo, Park, CA: AAAI Press.

 Sturtevant , N. , Zinkevich , M. , & Bowling , M. (2006). Prob-max- n : playing n -player games with

opponent models. In National Conference on Artifi cial Intelligence (AAAI) (pp. 1057 – 1063). Menlo

Park, CA: AAAI Press.

 Sukthankar , G. , & Sycara , K. (2006). Robust recognition of physical team behaviors using spatio-

temporal models. In Fifth International Conference on Autonomous Agents and Multiagent Systems

(AAMAS). Piscataway, NJ: IEEE Computer Society.

 Topsoe , F. (2000). Some inequalities for information divergence and related measures of discrimi-

nation. IEEE Transactions on Information Theory , 46 (4), 1602 – 1609 .

 Zinkevich , M. (2007). Data fi les from the 2007 computer poker competition . Retrieved from

 http://www.cs.ualberta.ca/~pokert/2007/data.html .

 V Models of Self

 17 Metareasoning as an Integral Part of Commonsense and

Autocognitive Reasoning

 Fabrizio Morbini and Lenhart Schubert

 In this chapter we summarize our progress toward building a self-aware agent based
on the notion of explicit self-awareness 1 (Schubert, 2005). An explicitly self-aware agent
is characterized by (1) being based on extensive, human-like knowledge about the world
and itself and the ability to reason with that knowledge, (2) relying on a transparent
(easily understood, and semantically well-defi ned) knowledge representation, and (3)
being able to explain itself and display its self-awareness through natural language
dialogues. The second point is not strictly related to self-awareness, but it facilitates
implementation of some aspects, such as answer explanation, and simplifi es testing
and debugging of the agent. In addition, we emphasize the importance of metalevel
reasoning in commonsense reasoning and self-awareness, while questioning the
common view of agent control structure in terms of separate object-level and metalevel
strata. Instead, we suggest a “ continual planning ” (and execution) control structure
wherein the agent ’ s metalevel and object-level reasoning steps mingle seamlessly.

 We fi rst review the requirements imposed by explicit self-awareness and by this
intermingling of object-level and metalevel reasoning on the knowledge representa-
tion and reasoning system and then describe how these have been realized in the new
version of the EPILOG 2 system. Then we demonstrate our agent by looking at a few
questions, each related to some aspects of self-awareness. Finally, we conclude with a
discussion of our long-term plans.

1. Conditions 1 and 3 for explicit self-awareness, by requiring human-like abilities, are intended

to set aside weaker notions of self-awareness such as monitoring and regulation of internal

parameters (as in operating systems or thermostats), internal event-logging (for example, of func-

tion calls and their local environments), or goal-directed behavior (as in heat-seeking missiles or

ant colonies). Certainly the conditions are not intended to be necessary for all reasonable notions

of self-awareness.

2. EPILOG is a reasoning system for Episodic Logic (see Schubert & Hwang, 2000). Its main

components are a general inference engine based on backward and forward chaining and a set

of specialists to aid the general inference engine in particular types of inferences (e.g., temporal,

introspective).

268 F. Morbini and L. Schubert

 Metareasoning

 Schubert (2005) lists a series of requirements on a knowledge representation and rea-
soning system to enable explicit self-awareness as defi ned in the previous section. We
fi rst summarize these requirements, and then describe in some detail how two of these
requirements have been implemented in EPILOG.

 1. Logic framework : we require an explicit, transparent 3 representation for the agent ’ s
commonsense knowledge and metaknowledge that allows for easy browsing/editing/
debugging and manipulation by general inference methods. We chose Episodic Logic
(EL) as an extension of fi rst-order logic (FOL) that is more fully adapted to the expres-
sive devices of natural language (NL) (e.g., see Schubert and Hwang, 2000).
 2. Events and situations : the agent must be able to refer to events described by
complex sentences (e.g., the event described by EPILOG ’ s failure to answer a question).
This capability has always been an integral part of EL and therefore of EPILOG.
 3. Generic knowledge : much of everyday knowledge is expressed using generic or
probabilistic adverbs such as usually or probably . In EPILOG generics are expressed
using probabilities, though this support is very limited and in need of further
development.
 4. Attitudes and autoepistemic inference : the ability to reason about one ’ s own knowl-
edge and to represent one ’ s beliefs is fundamental to self-awareness. Our commitment
is to a formal computational notion of knowing as described by Kaplan (2000) and
 Kaplan and Schubert (2000) . We describe below how the basic machinery needed for
this has been implemented in EPILOG.
 5. Metasyntactic devices : a self-aware agent needs to be able to refer in its logical
language to the syntax of that language itself. How some of these devices have been
implemented in EPILOG will be described later in this section.

 The following subsections focus on how the last two requirements, those most central
to self-awareness and metareasoning, have been implemented in EPILOG. As a nota-
tional alert, we should mention that EL uses infi x notation for predication and prefi x
notation for function application; e.g., EL very Expressive()() states that EL is very
expressive; the predicate very Expressive() is infi xed, while the predicate modifi er very
(a function that maps monadic predicates to monadic predicates) is prefi xed.

 Substitutional Quantifi cation and Quasi-Quotation
 As motivated and exemplifi ed by Schubert (2005) and Morbini and Schubert (2007) ,
it is important to be able to refer to syntactic elements of EL in an EL formula itself.

3. An example of knowledge that is not explicit and transparent would be the matrices of

numbers learned by a machine-learning technique.

Metareasoning as Part of Commonsense Reasoning 269

For instance, this allows a formal treatment of axiom schemas, enables EPILOG to
classify its own predicates and formulas, and allows EPILOG to choose executable
procedures for solving certain kinds of problems deliberately, based on axioms about
their effects.

 To enable this kind of “ syntactic self-awareness, ” EPILOG currently supports two
devices: substitutional quantifi ers and quasi-quotation. Their implementation is
straightforward and posed no major problems. The two main modifi cations required
concerned the following components:

 1. EL-Parser : we added substitutional quantifi ers and metavariables. A metavariable
is a particular type of variable that is bound by a substitutional quantifi er. A substitu-
tional quantifi er is much like a normal quantifi er except that it quantifi es over sub-
stitutions of expressions of a particular category for the metavariable. For example,
 ∀ ⇒ ()()()()wff w w me Know that w 4 quantifi es over substitutions of EL well-formed
formulas for the variable w . The truth conditions of the formula are that all instances
of the formula are true under the object-level semantics, when EL well-formed formu-
las (not containing metavariables) are substituted for w .
 2. Quasi-quotation : written with a quote sign (apostrophe), quasi-quotation accepts
as argument an expression that may contain metavariables; substitution for such
metavariables treats quasi-quotes as transparent. As an example of the use of quasi-
quotation, we can express in EL that the “ = ” predicate is commutative by writing
 ’ = ()()Commutative ELpredicate where Commutative is a predicate modifi er and ELpredi-
cate is a predicate (true of certain syntactic objects). Other examples that will be seen
later are the use of AppearancePred and AppearanceFactAbout to describe internal predi-
cates and formulas.
 3. Unifi cation routines : since we have provided for metavariables, unifi cation should
be able to unify not only variables with terms but also metavariables with EL expres-
sions of the appropriate categories. For example, we can unify me Know that w()() with
 me Know that x Foo?()()() , yielding unifi er ? /x Foo w(){ } .

 Recursive QA
 Morbini and Schubert (2007) described the basic properties that a computational
notion of knowing should have. In that work, we indicated why knowing is very dif-
ferent from being able to infer , and we referred to Kaplan and Schubert ’ s algorithmic
ASK mechanism as a basis for knowing . As was shown by Kaplan and Schubert (2000),
certain axiomatic constraints on ASK can assure soundness of simulative inference,
and we can also assure compliance with certain natural requirements on knowing,
such as that ()φ ψand is known iff φ is known and ψ is known. Here we describe how
ASK is supported in EPILOG. The intuitive way to implement ASK (and thus to answer

4. Of course, the omniscience claim expressed by this formula is absurd.

270 F. Morbini and L. Schubert

questions that involve predicates like Know or Believe) is to allow for question-asking
within a question-answering (QA) process, where the subordinate QA process is
guaranteed to terminate relatively quickly. If a question requires prolonged reasoning,
the answer is by defi nition not known. Answering questions about nested beliefs
thus involves further nesting of QA processes. That is the basic idea behind recursive
QA.

 Again, implementing this is straightforward in any system with a clean and modular
implementation of the QA process. What is needed is that the QA process must work
only on local variables, and the same must be true for all systems on which QA
depends (e.g., knowledge base, unifi cation, inference and normalization).

 In addition to having a modular system, one needs a way to connect inference with
the QA process so that this process can be started whenever it is required by some
inference. In EPILOG this is achieved by using the metasyntactic devices described in
the previous subsection and by providing a single special-purpose function, called
 “ Apply , ” that the QA process knows how to evaluate whenever its arguments are
quoted and metavariable-free. It executes a Lisp function of the same name for the
given arguments. In particular, to implement the ASK mechanism we added the fol-
lowing axiom to EPILOG ’ s standard knowledge base; this defi nes knowing that w, for
a formula w containing no free variables, as being true just in case the knownbyme?
Lisp function returns yes for argument w :

((’) ((())

((

∀ ⇔wff w w WithoutFreeVars me Know that w

Apply ’knownbymee? w yes’) ’))=

 In effect, knownbyme? implements the ASK mechanism as a recursive QA-process. Note
that EL allows for an optional restrictor in quantifi ed statements, and here a restrictor
 ’w WithoutFreeVars() is present. WithoutFreeVars is a predicate with one argument
denoting an expression, typically specifi ed using quotation, that is true whenever the
argument contains no free variables. To evaluate this predicate EPILOG will have
another axiom in its knowledge base:

((’)

((’) ’

∀ ⇔
=

wff w w WithoutFreeVars

Apply ’withoutfreevars? w yes)))

 Where withoutfreevars? is the Lisp function that detects whether or not an EL expres-
sion contains free variables. An alternative to this approach would be to leave the
attachment of procedures to EL predicates or functions implicit; however, by using
explicit attachment axioms like the above, EPILOG is able to make its own refl ective
decisions about when to employ particular procedures.

 Whenever the QA process encounters a subgoal that contains an equality in which
one of the two equated terms is an Apply -term, where its arguments are quoted and
metavariable-free, EPILOG evaluates it by executing the Lisp function specifi ed as the

Metareasoning as Part of Commonsense Reasoning 271

fi rst argument of Apply , with the arguments provided for it. The result, which must
be a quoted EL term, will be substituted for the Apply term in the original equality.

 Inference in EPILOG

 In this section we will describe other characteristics of EPILOG ’ s inference machinery
indirectly related to metareasoning and important to EPILOG ’ s overall functioning.

 Normalization
 Because EL uses nonstandard constructs (e.g., substitutional quantifi cation, quotation,
lambda abstraction, and modifi ers), the standard FOL normalization to clause form
cannot be used. Besides, clause form can be exponentially larger than the original
form, for example, for a disjunction of conjunctions. Normalization in EPILOG is
based on a term-rewriting system that currently employs a total of fourteen rules. They
perform such transformations as moving negations inward, Skolemizing top-level
existentials, ordering the arguments of ANDs and ORs, eliminating simple tautologies,
and moving quantifi ers inward.

 As in other reasoning systems, normalization contributes greatly to reasoning effi -
ciency by collapsing classes of “ obviously ” equivalent formulas into unique (sets of)
formulas. As an example, consider the unnormalized form of the statement, “ One
email in my inbox contains no message ” :

(()
(((() ())

((

∃
∃
e e AtAbout Now

x x Email and x In MyInbox
No y y Messa

0 0

gge x Contains y e) ())) * *))0

 where we have reduced “ my inbox ” to a constant for simplicity. If this is provided to
EPILOG as a fact, then normalization introduces Skolem constants for the existentials
 e0 and x , narrows the scope of the episode-characterization operator “ ** ” to exclude
atemporal conjuncts, separates implicit conjunctions, and (if we choose to include a
rule mandating this) replaces ()No y phi psi with (())∀ y phi not psi :

 ()SK AtAbout Now1 , ()SK Email2 , ()SK In MyInbox2 ,
 ((() (())) * *)∀ z z Message not SK Contain z SK2 1

 Note that normalization of a goal, unlike normalization of a fact, does not Skolemize
existentials, because these serve as matchable variables. In proving a goal with a top-
level universal, the universal quantifi er may be eliminated and the variable given a
unique new name. This step can thus be thought of as the dual of Skolemization.

 Inference Graph Handling
 EPILOG ’ s QA is in its simplest form a natural deduction back-chaining system. It starts
with the initial question and then generates a proof subgoal and a disproof subgoal

272 F. Morbini and L. Schubert

(i.e., the negation of the initial question). The QA process maintains an agenda of
subgoals based on a binary tree that decides which subgoal to process fi rst. We have
not fi nalized the method of sorting subgoals on the agenda; candidate criteria include:
subgoal complexity, their probability, and their level (i.e., the number of inference
steps taken to produce a subgoal from the initial question). More testing is required
to decide which combination of criteria is effective in the majority of situations.

 Each subgoal is fi rst checked to see if it can be simplifi ed:

 1. Conjunctions are split into their conjuncts, and each conjunct is handled indepen-
dently of its siblings until it is solved. When a solution to a conjunct is obtained, it
is properly combined with the solutions of the siblings.
 2. Disjunctions are split for each disjunct by assuming the negation of the remaining
disjuncts. Here we make use of another feature, namely, knowledge base inheritance.
Each question is associated with a knowledge base that defi nes what knowledge can
be used to answer the question. When assumptions are made, they are loaded into a
new knowledge base (to be discarded at the end of the QA process) that inherits the
contents of the knowledge base used before the addition of the assumptions. Currently
the consistency of the assumptions is not checked, but problems will be detected from
the contradictory answers produced.
 3. Implications, A B⇒ , are converted into two alternative subgoals: ()not A , and B
assuming A .
 4. Equivalences are split into conjunctions.
 5. Universally quantifi ed goals are simplifi ed by generating a new constant and unify-
ing the universal variable with it. If the universal quantifi er has a restrictor, the restric-
tor is assumed.

 When no more simplifi cations can be applied, goal-chaining inference is attempted.
From each subgoal, one or more keys are extracted and used to retrieve knowledge.
These keys are the minimal well-formed formulas embedded entirely by extensional
operators such as quantifi ers and truth-functional connectives. Each subgoal main-
tains another agenda that decides which key to use fi rst for retrieval. As in the case
of subgoal ordering, we have not yet fi nalized the sorting criterion. Possibilities are
preferring keys that contain more variables, or ones with the least amount of associ-
ated knowledge (so as to focus on a quick proof, if one exists).

 Naturally, if a retrieved fact exactly matches a goal, then goal-chaining terminates
for that goal. In the general case, goal-chaining inferences can be thought of as being
resolution-like, except that the literals being resolved may be arbitrarily embedded by
extensional operators. As a simple example, suppose that we have a known fact
 (() (() ()))∀ x x P x Q and x R , that is, every P is a Q and an R . If we use this fact in
pursuing a goal of form (())C Q and phi (where C is a constant and phi is some well-
formed formula), then the derived goal will be (())C P and phi . The extensionally

Metareasoning as Part of Commonsense Reasoning 273

embedded literals that were unifi ed were ()C Q in the goal and ()x Q in the given fact.
If one of these were intensionally embedded, for instance by the reifi cation operator
 “ that ” (e.g., forming an object of an attitudinal predicate), the unifi cation and hence
the goal-chaining inference would not be attempted. (For details, see Schubert &
Hwang, 2000 .) For each successful inference performed for a subgoal together with a
retrieved formula, a child subgoal is attached to this subgoal and the process is
repeated (with termination if the derived subgoal is a trivial subgoal: truth or falsity).

 The two processes just described (i.e., simplifi cation and inference) construct an
inference tree. However, loops and repetitions can occur, worsening performance or
preventing success altogether (in case the subgoal selection proceeds depth-fi rst).
Therefore, we added two optimizations, the second of which transforms the inference
tree into an inference graph:

 1. Loop detection: a loop is created when the same subgoal appears twice along an
inference branch. In saying that a new subgoal is the “ same ” as a previous one, we
mean that it is expressed by the same EL formula and is associated with the same
knowledge base.
 2. To avoid doing the same reasoning multiple times, we detect when a new node is
generated with a subgoal identical to a previous one on a different branch (thus not
forming a loop). If the knowledge base associated with the previous node contains
formulas not available at the new node, we treat the new node as unrelated to the
previous one. But if the knowledge base associated with the new node is identical with
that of the previous one, we connect the two nodes and completely stop further pro-
cessing of the new node; and if the knowledge base of the new node properly contains
that of the previous node, we again connect the two nodes but then continue to
process the new node as if the old didn ’ t exist. In case the old node is answered, the
answer is propagated to the new node as well, using the inserted connection.

 Term Evaluation
 Sometimes the answer may contain complex terms, such as functions, instead of a
simple result in the form expected by whoever asked the question.

 For example, to the question “ How old are you? ” the system could answer with
 “ The difference in years between 1st of January 1991 and now ” instead of actually
computing the difference. To deal with this issue, we augment the question with type
constraints that defi ne the desired type of the answers. In addition, we employ axioms
that describe how to obtain a particular type from another.

 For example, the above question in EL becomes:

(((’ ’)
((’ (()))

((

Wh x y x RoundsDown y
z y Expresses z K Plur Year

e e

∃
∃

∃ AAtAbout Now z AgeOf Epi Me e) (() * *))))2

274 F. Morbini and L. Schubert

 The QA process will then use axioms in its knowledge base that describe how to use
the predicate Expresses to compute the x that expresses y as a number of rounded
down years.

 Examples

 In this section we describe some of the examples used to test the features of this
system. We will point out how metareasoning plays a (major or minor) role in these
examples.

 Morbini and Schubert (2007) provided a preliminary discussion of the questions
 “ Do pigs have wings? ” and “ Did the phone ring (during some particular episode
E1)? ” Previously, such examples could only be handled “ Socratically, ” leading EPILOG
through the proofs step by step, whereas now the questions are solved autono-
mously, as projected in that paper. We will not repeat the details here, but we should
reiterate the claim the examples are intended to illustrate: much of our common-
sense question-answering, even if not explicitly concerned with metalevel concepts,
tacitly relies on metaknowledge about our own cognitive functioning. In the case of
the question whether pigs have wings, we claimed that a negative answer depends
on the metabelief that our “ pig knowledge ” is complete with respect to pigs ’ major
body parts (especially very visible ones; for contrast, consider the question “ Do pigs
have tonsils? ”). This autocognitive approach (as we termed it in Morbini and
Schubert, 2007) is not only more realistic than the usual default inference approaches,
but also more effi cient, because it substitutes fast ASK (self-query) checks for poten-
tially unbounded consistency checks. Similarly, the question whether the phone
rang, in the case of a negative answer, depends on metabeliefs about how, and under
what conditions, we acquire and retain knowledge about audible events in our
environment.

 One of the most interesting new questions we have tried so far is the question
 “ How old are you? ” Though one can easily imagine simple shortcut methods for
answering such a question, doing so in a principled, knowledge-based fashion can be
nontrivial. Table 17.1 shows a selection of the knowledge used for this question.

 The “ @ e ” construct in the third axiom means “ characterizes an episode that is at
the same time as e . ” The reason for introducing axioms for AtAbout is that this predi-
cate appears in our interpretation of English present-tense sentences.

 Expressed in EL, the question “ How old are you? ” as previously mentioned
becomes:

(((’ ’)
((’ (()))

((

Wh x y x RoundsDown y
z y Expresses z K Plur Year

e e

∃
∃

∃ AAtAbout Now z AgeOf Epi Me e) (() * *)))),2

Metareasoning as Part of Commonsense Reasoning 275

 Table 17.1
 Most signifi cant knowledge used to answer the question “ How old are you (now)? ”

 EPILOG ’ s birth date is Jan. 1, 1991:

 (($ ’))date BirthDateOf Epi Me1991 1 1 2

 If an event happens at the same time as another then it happens at about the same time as
the other:

 ((() ()))∀ ∀x y x SameTime y x AtAbout y

 Meaning postulate relating ** and @ :

 ((((@) (() (* *)))))∀ ∀ ⇔ ∃wff w e w e e e SameTime e w e1 1 1

 The age of a physical object during an arbitrary episode is the difference between the date of
the episode and the date of birth of that object:

(() (((()))

((((
∀ ∀

∀
y y PhysicalObj x x be BirthDateOf y

e TimeElapsedBBetween DateOf e x AgeOf y e())) @))))

 Defi nes how to evaluate the function TimeElapsedBetween and to express the result as an
amount in a given unit of measure (i.e. type , such as “ year ” or “ second ”):

(()
(()

((’)
((’

∀
∀

∀
∀ =

x x ELDate
y y ELDate

type type
r r

pred ELTimePred
((’ ’ ’))

(’ (
Apply x y type

r Expresses TimeElapsedBet
’DiffOfDates?

wween x y K Plur type) (()))))))

 Defi nes how to compute the fl oor of a given numeric amount:

((((’) (’ (’)))

(’
∀ ∀ =x y y NumericAmount And x Apply y

x R
’RoundsDown?

ooundsDown y’)))

 after the addition of implicit conventional constraints on the form of the answer. The
answer found is that the age of EPILOG is ((()))amt K Plur Year18 . This answer is
the unifi er found for the variable x while the unifi er found for the variable z is
 (() ($ ’))− DateOf Now date 1991 1 1 . Metareasoning is used to fi nd the expression that
represents the same amount of time but is expressed as a number of years. During this
process the QA process applies the appropriate conversion and evaluation functions
based on the syntactic form of the formulas involved.

 This application of metareasoning can be seen as making EPILOG aware of the
procedures at its disposal and what they accomplish, leaving to EPILOG ’ s own deliber-
ate decision making the choice of what procedural knowledge to use at what times.
This also opens the door to future work on learning by self-programming (see Robert-
son and Laddaga ’ s work in this vol., chap. 7): the creation and purposeful use of new
programs (or plans) aimed at solving specifi c problems.

 The next question considered here is “ What is your name (now)? ” Metareasoning
enters the process only incidentally here (we ’ ll point out where), but to the extent

276 F. Morbini and L. Schubert

 Table 17.2
 Knowledge used to answer the question “ What is your name (now)? ”

 EpilogName is a name:

 ()EpilogName Name

 A name is a thing:

 (() ())∀ x x Name x Thing

 Now is during event E2 :

 ()Now During E2

 The event E2 is characterized by EPILOG having name EpilogName :

 (() * *)E Have EpilogName EPILOG 2

 Have is a continuous property: if x has y in e then x has y at all times during e :

((((() * *)

(() (() @)))))
∀ ∀ ∀

∀
x y e x Have y e

z z During e x Have y z

 Meaning postulate relating ** and @ :

 ((((@) (() (* *)))))∀ ∀ ⇔ ∃wff w e w e e e SameTime e w e1 1 1

 For every time e at the same time of e1 if e is during an event x then also e1 is:

 ((() (() ())))∀ ∀ ∀x e e During x e e SameTime e e During x1 1 1

that an agent ’ s knowledge makes reference to itself (here, through the self-referring
term EPILOG), it indicates its potential for refl ective cognition. Table 17.2 lists the
knowledge used to answer this question.

 The question in EL is represented as

(()
(((() ())

(()

∃
∃
∃

e e AtAbout Now

z z Name and E Have z
y y Thing

PILOG
0 0

((((()))))) * *))y Be L x x z e= 0

 The apparently convoluted form is due to the fact that this question is automatically
generated from the NL input. (“ What ” is interpreted as “ what thing, ” and the verb
phrase “ is your name ” becomes “ is (at about now) identical with a name that you
have. ”) After normalization we obtain the simpler question

(()

((() ()) (() * *
∃

∃
e e AtAbout Now

z z Name and z Thing E Have z ePILOG
0 0

00)))

 The normalization procedure moves inward the “ ** ” operator using the knowledge
that “ Name ” and “ Thing ” are atemporal predicates. This knowledge, used by the nor-
malization procedure, is asserted explicitly in EL. This is the incidental use of
metaknowledge referred to at the beginning of this example.

Metareasoning as Part of Commonsense Reasoning 277

 In the current reasoning we manually add the fact that EPILOG ’ s name is valid in
an interval of time that includes the Now point. However, in future we would like
this property to be automatically generated by a module in charge of maintaining the
self-model of the system.

 The last example shows how the metasyntactic devices could be used to answer
topical questions. The question is “ What do you know about the appearance of pigs? ”
Table 17.3 contains the knowledge used to answer this question.

 The question in EL becomes

 (((())))∃ x x AppearanceFactAbout K Plur Pig .

 The answer found is (((())))that K Plur Pig ThickBodied . Note that this answer depends
on the metainference from the second and third axioms that the answer well-formed
formula is indeed an appearance-fact about pigs. We are not aware of any other system
capable of deductive topical reasoning of this sort, in support of descriptive question-
answering. However, to retrieve more complex knowledge about pigs, for example,
that pigs have curly tails, more complex knowledge would have to be used.

 Discussion

 The traditional conception of the role of metareasoning in an intelligent agent is
diagrammed in fi gure 1.2 (this vol., chap. 1). The emphasis in this conception is on
control and monitoring of object-level reasoning by higher-level reasoning processes,
and in turn, the control of action in the world by object-level reasoning (see, e.g.,
 Cox, 2005).

 The distinction we have made between procedural knowledge, world knowledge,
and metaknowledge might be thought to correspond respectively to the ground-level,
object-level, and metalevel modules in fi gure 1.2. However, this is not so, because as

 Table 17.3
 Knowledge used to answer the question “ What do you know about the appearance of pigs? ”

 Pigs are thick-bodied:

 ((()))K Plur Pig ThickBodied

 ThickBodied is a predicate about the appearance of something:

 (’)ThickBodied AppearancePred

 Every formula with structure ()x P in which P is an appearance predicate is a fact about the
appearance of x :

((’)

(() ((())
∀

∀
pred p p AppearancePred

x x p that x p AppearanceFactAbbout x)))

278 F. Morbini and L. Schubert

our examples showed, even question-answering can make simultaneous use of proce-
dures, object-level knowledge, and metaknowledge.

 The deployment of these kinds of knowledge is not stratifi ed, but instead tightly
intertwined: any subgoal in the QA-process might draw upon procedural, object-level,
or metalevel knowledge for its achievement.

 It might be thought that this mingling of knowledge and reasoning levels in our
system is attributable to our focus on question-answering instead of autonomous,
motivated behavior. However, the kind of purposive agent we envisage (and are
actively working toward) will still intertwine the various kinds of knowledge and
reasoning in the manner of our QA system, rather than using cascaded levels of deci-
sion making. It will be based on continual modifi cation, evaluation, and partial execu-
tion of a “ lifelong ” plan, as diagrammed in fi gure 17.1.

 The lifelong plan will contain hierarchically structured goals and actions, and the
agent will perpetually try to improve the expected long-term net utility of the plan,
while at the same time executing steps that do not require further planning and are
currently due. The steps themselves could be reasoning steps (e.g., try to determine
the truth or falsity of some proposition) just as easily as they could be communicative
or physical actions; so, in terms of the structure and execution of the life plan, there
is not a clear separation between thinking and acting. Furthermore, the expansion of
goals or high-level steps into executable actions in general will depend on reasoning
similar to the reasoning currently carried out by our QA mechanism; that is, this

General

Knowledge

(incl. meta)

Curr. state

KB:

Episodic

EPILOG:

Reasoning

(incl. meta-

reasoning)

Phys. action

(listening,

speaking)

Continual

Planner

“Life plan”

Step 1

Step 2

. . . .

Learning: Acquiring knowledge, abstracting plans

perception

retrieve

store

control

control

monitoring

 Figure 17.1
 Reasoning (including reasoning based on metaknowledge) in a continually planning, self-

motivated agent. (No uniform metacontrol.)

Metareasoning as Part of Commonsense Reasoning 279

reasoning will draw on procedural knowledge, world knowledge, and metaknowledge
as needed.

 In short, the role played in the standard model of fi gure 1.2 by metalevel reasoning
is played in our conceptual architecture by a continual reward-seeking planner, as in
fi gure 17.1. Though hierarchical planning involves multiple levels of plan structure,
the distinction between these levels is orthogonal to that between ground-level,
object-level, and metalevel knowledge and activity. Of course, in any behavioral
system (as in a human organization), the buck has to stop somewhere; at some root
level, there have to be fi xed mechanisms that actually make the system run. For us,
that mechanism will be a carefully designed continual-planning plus execution algo-
rithm, but exactly what it does will depend on the special-purpose procedures, world
knowledge, and metaknowledge that it accesses. Note that this does not mean that
all decision making takes place at a single level. The planner may well schedule sub-
plans and procedures that already incorporate decision-making steps. However, the
general planner will integrate expected utilities globally, in order to make globally
rewarding decisions.

 How does this outlook on metareasoning and agent architecture relate to some of
the other perspectives found in this book? First, Cox and Raja ’ s manifesto (this vol.,
chap. 1), along with contributions like those of Costantini, Dell ’ Acqua, and Pereira
(2008), and several others, adhere at least roughly to the schema in fi gure 1.2, the
emphasis being on metalevel control and self-improvement through self-monitoring.
As may be inferred from our remarks above on planner-based agency, we suppose that
self-improvement is primarily a matter of learning to plan better. These improvements
would be a by-product of the processes employed by the fi xed planning-and-execution
system, including ones for synthesizing, abstracting, and storing subplans, for using
available knowledge to predict consequences of contemplated actions and their net
future utility, and for using the episodic record of the agent ’ s experiences to debug,
improve, and augment the available knowledge about the world, about the agent itself,
about the consequences of actions, and about their utilities to the agent.

 These activities aimed at self-improvement certainly will involve metalevel reason-
ing as well as object-level reasoning; but we have not yet explored them in detail,
because they seem to us highly dependent on the fundamental knowledge representa-
tions and reasoning abilities of the agent, indicating that the latter need to be more
fully developed fi rst. For example, planning involves reasoning about the conditions
before, during, and after an action is performed, and hence failure analysis is heavily
dependent on the expressiveness of the action and state representations used, and on
the available reasoning methods. Similarly, the problem of detecting inconsistencies
or gaps in an agent ’ s declarative knowledge depends very much on the kinds of rep-
resentations and reasoning methods employed. This motivates our current focus on
the issues of developing representations and reasoning methods that allow for human-

280 F. Morbini and L. Schubert

like commonsense knowledge and reasoning, including reasoning about the self and
about syntactic objects internal or external to the system.

 Unlike Hart and Scassellati (this vol., chap. 18), we are not directly concerned with
gaining insight into phenomena associated with self-awareness in humans (or higher
mammals), such as self-recognition in a mirror. Our quest is for explicit self-awareness
in machines that are knowledgeable and capable of reasoning, though certainly we
would like to make use of fi ndings about human self-awareness where possible. The
work of Gordon, Hobbs, and Cox (this vol., chap. 19) is closest in spirit to our own,
in the emphasis it places on developing a rich, human-like self-model in machines,
and on formulating representations adequate for this task, rather than focusing pri-
marily on process. However (and this may just be a terminological difference), they
regard metareasoning as concerned chiefl y with monitoring and control, whereas we
regard the process of drawing conclusions about one ’ s own mental contents and
attributes, even in the service of settling such issues as whether pigs have wings, as
bona fi de instances of metareasoning.

 Summary and Future Work

 The examples given show the ability of the current system to handle basic forms of
metareasoning, in support of commonsense question-answering about the world and
about itself. This ability is based on a systematic implementation of an ASK mechanism
for self-query, and of a general syntax and mechanism for handling quasi-quotation
and substitutional quantifi cation. These enhancements are layered on top of a capacity
for inference in a very rich natural logic (EL) that can deal with events characterized
by complex sentences, predicate modifi cation, and various forms or reifi cation and
modality.

 As we showed, the new mechanisms enable well-founded question-answering for
such questions as “ How old are you? ” (using the birth date, and assuring an answer
expressed in a syntactically appropriate way), and “ What do pigs look like? ” (based
on syntactic inference about which internal formulas express appearance knowledge
about pigs). In addition, the new mechanisms enable deliberate reasoning about
special-purpose procedures available to the system and about their goal-directed invo-
cation. We also showed previously how autocognitive reasoning can enable effective
negative inferences (e.g., that pigs don ’ t have wings, or that the phone didn ’ t ring in
the last fi fteen minutes) and inferences about the system ’ s autobiography and recent
discourse events (Schubert, 2005 ; Morbini & Schubert, 2007). Though we have not
addressed self-improvement based on metareasoning (the classical goal of metareason-
ing), we regard the kinds of introspective abilities we have implemented as crucial to
such self-improvement. In principle, they enable reasoning about the system ’ s own
knowledge and procedures, including their shortcomings.

Metareasoning as Part of Commonsense Reasoning 281

 However, much remains to be done, and the following are some of the more press-
ing items:

 1. So far we have implemented only an exhaustive retrieval mechanism to allow
testing of the reasoning system. We will need a much more selective retrieval scheme
in order to be able to scale up to a large knowledge base, as needed for commonsense
applications. The original version of EPILOG had an effi cient content-based indexing
scheme, but it was not designed to handle the metasyntactic devices we have added,
suffered from certain retrieval gaps (in proving existential goals), and depended on
hand-coded type hierarchies rather than forming these automatically. We are working
to overcome these limitations, and plan to test the scalability of the resulting system
using some large knowledge base (e.g., the FOL version of OpenCyc; see Ramachan-
dran, Reagan, & Goolsbey, 2005).
 2. The previous version of EPILOG employed reasoning “ specialists ” to effi ciently
perform taxonomic, temporal, partonomic, and other important kinds of specialized
reasoning. The specialists were invoked “ unconsciously ” for predicates and functions
they were designed to reason about, but in the new version, we would like to make
the inference engine aware of its specialists and their capabilities, using explicit attach-
ment axioms involving the Apply function.
 3. Another front that needs work is the refi nement of the ASK mechanism for knowl-
edge introspection. Currently the mechanism is made time-bounded by a hard limit
on depth of reasoning. (However, the limit can be computed, so that several desirable
properties of knowing are maintained; e.g., given that EPILOG knows A it also knows
(A or B)).

 Acknowledgments

 This work was supported by NSF grants IIS-0328849 and IIS-0535105 and by a gift
from Robert Bosch Corporation. We also thank the anonymous referees for their
helpful comments.

 References

 Costantini , S. , Dell ’ Acqua , P. , & Pereira , L. M. (2008). A multi-layer framework for evolving and

learning agents . In M. T. Cox & A. Raja (Eds.), Metareasoning: Thinking About Thinking, Papers from

the AAAI Workshop (pp. 121 – 128). Tech. Rep. No. WS-08-07. Menlo Park, CA : AAAI Press .

 Cox , M. (2005). Metacognition in computation: A selected research review. Artifi cial Intelligence ,

 169 (2), 104 – 141 .

 Kaplan , A. (2000). A computational model of belief . Ph.D. dissertation, University of Rochester.

Department of Computer Science.

282 F. Morbini and L. Schubert

 Kaplan , A. N. , & Schubert , L. K. (2000). A computational model of belief. Artifi cial Intelligence ,

 120 (1), 119 – 160 .

 Morbini , F. , & Schubert , L. K. (2007). Towards realistic autocognitive inference. In E. Amir, V.

Lifschitz, and R. Miller (Eds.), Papers from the 2007 AAAI Spring Symposium on Logical Formaliza-

tions of Commonsense Reasoning (pp. 114 – 118). Menlo Park, CA: AAAI Press.

 Ramachandran , D. , Reagan , P. , & Goolsbey , K. (2005). First-orderized ResearchCyc: Expressivity

and effi ciency in a common-sense ontology. In P. Shvaiko, J. Euzenat, A. Leger, D. L. McGuin-

ness, and H. Wache (Eds.), Papers from the 2005 AAAI Workshop on Contexts and Ontologies: Theory,

Practice, and Applications (pp. 33 – 40). Menlo Park, CA: AAAI Press.

 Schubert , L. K. (2005). Some knowledge representation and reasoning requirements for self-

awareness. In M. Anderson & T. Oates (Eds.), Proceedings of the AAAI Spring Symposium on Meta-

cognition in Computation (pp. 106 – 113). Tech. Rep. No. SS-05 – 04. Menlo Park, CA: AAAI Press.

 Schubert , L. , & Hwang , C. (2000). Episodic logic meets Little Red Riding Hood: A comprehensive,

natural representation for language understanding . In L. Iwanska & S. Shapiro (Eds.), Natural

language processing and knowledge representation: Language for knowledge and knowledge for language

(pp. 111 – 174). Menlo Park, CA : AAAI Press .

 18 Robotic Models of Self

 Justin Hart and Brian Scassellati

 Why do puppies chase their tails? Folk wisdom would tell us that a puppy is being
playful or is seeking attention. Veterinarians would say that the puppy chases, and
sometimes even bites, its own tail because it does not realize that this fascinatingly
evasive object is actually part of its own body. While this behavior in a puppy is
nothing to be concerned with, tail chasing in an older dog is often a sign of dementia,
skin irritation, or anxiety. Whereas an older dog is expected to understand that its
own tail is not an object that should be chased or bitten, a young puppy is still
coming to understand the boundaries of its own body. We assume that through its
experiences, a puppy is able to learn that its tail does belong to itself, perhaps by
observing that its tail is a constant companion or that catching and biting its tail
results in pain.

 Like puppies, human infants are not born with a complete sense of themselves.
During the fi rst few months of life, infants must learn to discriminate between their
own bodies, the movements of parents and others who are responsive to the child,
and the movement of objects on television or of wind-blown leaves, that is, items that
are unresponsive to the child ’ s actions (Rochat, 2003). They must come to understand
that the fl ailing fi ngers and arms that they often see in their cribs are part of them-
selves, that they will be able to control the movements of these strange-looking
appendages, and eventually be able to effect desired changes in the world using them.

 Traditionally, robots have had no sense of self, nor did they need it. In factory
automation, or even in traditional task-based robotic systems, the robot carried out a
specifi c goal by selecting between appropriate behaviors or by tuning the parameters
of a fi xed behavioral repertoire. These robots could not perceive their own mechanical
bodies and did not need to discriminate between different types of activity within
their environment. As robots become more complex (involving richer sensing and
more degrees of freedom) and as they move out of the factory and into environments
like our homes, schools, and hospitals, the need for these machines to be more aware
of their own limits, their own capabilities, and the results of their own actions becomes
critical. Robots should not chase their own mechanical tails.

284 J. Hart and B. Scassellati

 To highlight this point, consider two robotic applications. First, consider a robot
operating in a factory that constructs automobiles. This robot consists of a camera
system that looks down onto a conveyor belt, a mechanical arm that can maneuver
parts from one position on the belt to another, and the computational resources to
recognize defects in these parts. As parts slide into view on the belt, the robot must
decide if the part is defective. The robot must orient itself to defective parts, grasp
them, and remove them from the line. In this case, distinguishing the robot ’ s arm
from other objects in the fi eld of view can be accomplished simply in multiple ways.
One solution would be to paint the arm and gripper a distinctive color that is not
used elsewhere in the vicinity of the robot, allowing the robot to spot the gripper and
the part by identifying the unique color. Another would be to preprogram the kine-
matics (the body structure and motion capabilities) of the robot. The kinematic equa-
tions could then be solved algebraically to identify how to move the arm to grasp
particular parts. When wear and tear on the robot ’ s parts slowly degrade the accuracy
of these precoded equations, trained technicians can be on hand to recalibrate or
reprogram the equations as needed. Faults can be detected simply by establishing
boundaries on the robot ’ s behavior. If the gripper moves too far away from the assem-
bly line, or parts are not picked up as frequently as expected, a fault can be signaled.
The system could then be stopped until a technician repairs the equipment.

 Now compare this factory automation system to a robot designed to aid elderly
homeowners carrying groceries or other supplies from their car to their kitchens.
Perhaps with two arms and a wheeled base, this robot would need to perform grasp-
ing, lifting, and carrying of arbitrary packages under the direction of its owner. This
home assistant robot requires many of the same behavioral capabilities as the factory
robot; it too must recognize important components in the environment, grasp them,
and maneuver them into appropriate positions. However, none of the easy-to-
construct systems that were used in the factory robot are likely to be successful in the
home assistance robot. We cannot count on selecting a unique color for the robot
that completely distinguishes it from all homes and from all shopping packages. We
also cannot rely on maintaining a perfect kinematic model to predict the locations of
the robot ’ s limbs — without the constant supervision of trained technicians, these
equations are likely to be useful for only a short time. Instead, our robot requires some
more fl exible way of identifying itself, identifying when faults occur, and adapting to
new confi gurations (such as when it is carrying a large shopping bag).

 The real-world requirements of robotics add a dimension to the self-model not
directly considered in other chapters of this book. To our formalism, this chapter will
add the capability to reason about the robot ’ s physical presence in the world, its con-
struction, its sensory capabilities, and its interactions with its environment. As adap-
tive and self-trained kinematic and sensory self-models are introduced, we will also
observe that lower-level processes, traditionally hard-coded into the system and buried

Robotic Models of Self 285

beneath convenient abstractions, will become fi rst-class cognitive models accessible
directly to the system (as discussed in this vol., chap. 1).

 Self-Identifi cation

 In ethology, the traditional test of self-awareness in animals is the mirror rouge test
(Gallup, 1970). Figure 18.1 shows a chimpanzee participating in this test. First, a mirror
is placed into the habitat of an animal and the animal is given time to acclimate to
its presence. During this phase, many animals will engage their own refl ection with
either social or aggressive behaviors, as they do not recognize the refl ection as them-
selves. After acclimating to the mirror, some animals, such as chimpanzees, will begin
to use the mirror to groom themselves, in a recognizable self-directed behavior. The
animal is then anesthetized, and a section of the body that can only be seen in the
mirror (such as the forehead) is dyed. If the animal inspects the mark through use of
the mirror, it is considered to have recognized its own appearance in the mirror.

 Gallup ’ s (1982) model supposes that the animal must have a self-concept, typically
in the form of an image that resembles the animal. This supposition leads to a model
of how to perform self-recognition based on similarity of appearance. An appearance-
based model stores an explicit representation of appearance that is then matched
against a current sensory state to determine if the animal (or robot) currently perceives
itself. Though this technique has a simplicity that is appealing, there are many diffi -
culties in implementing this solution. First, the perspective of the image is often seen
as third person (as one would appear in a photograph), though this is clearly not easily

 Figure 18.1
 A chimpanzee subject of the mark test. (Photo used by permission of Daniel Povinelli.)

286 J. Hart and B. Scassellati

matched to a fi rst-person perspective (as the animal might observe itself). Second, the
complexity of the matching process makes a complete implementation of this strategy
infeasible. To identify the diffi culty inherent in this process, imagine looking down
at your hand and attempting to catalog all of the possible shapes that your hand might
form. The range of possible appearances from a fi st to an open palm to a peace sign
provides an endless variety of physical appearances.

 A second methodology focuses not on visual appearance matching but rather on
some matching process between the movement of the body and the visual scene.
 Mitchell (1997) supports the idea of kinesthetic-visual matching in which the only
knowledge required to recognize oneself in the mirror is the relationship between the
visual scene and proprioception. In our own research, we have demonstrated the
effectiveness of this alternative explanation by constructing a robot that can distin-
guish between self and other. An early version of this system (Michel, Gold, &
Scassellati, 2004) used temporal contingency to learn timing parameters that distin-
guished the movement of the robot ’ s own arm (seen in the camera ’ s fi eld of view)
from the movement of people in the environment. The robot estimated the delay
between sending a motor command and observing a visual change. Though this
approach had some advantages, it was limited in its extensibility and by sensor noise.

 A more recent version of this system (Gold & Scassellati, 2007) uses a Bayesian
kinesthetic-visual matching model to allow a humanoid robot to perform self – other
discrimination and mirror self-recognition without social understanding and without
an explicit kinematic model. A humanoid robot named Nico learned the relationship
between its own motor activity and perceived motion by observing the movements
of its arm for four minutes. Each new observation was used to update three models
for each object in its visual fi eld. The fi rst model is that of random noise, generated
with no structure over time. The second model consists of an observed internal state
of motor activity that generates the external feedback of motion; thus, the consistency
of the match between motor activity and motion dictates the likelihood of this model.
The third model is that of motion generated by somebody else; it is identical to its
own self-motion model, only the motor state is hidden and must be reasoned about
probabilistically. Presented with a mirror, the robot then judged its mirror image to
match its “ self ” model, while people were judged to be “ animate others. ” Figure 18.2
shows the scene through Nico ’ s cameras during this test. In this picture, we can see
Kevin Gold in front of Nico, a mirror that Nico can see himself in, and to the right
we see Nico ’ s fi nger. In fi gure 18.3, we see that Nico has segmented out Kevin as an
animate other, marking him in purple. Nico has marked himself both in the mirror
and directly in his visual fi eld in green. Other moving objects determined to be noise
are marked in red.

 Why pursue such research for a robotic system? What advantage does the ability
to recognize oneself provide to a robot? One answer is that the modeling effort itself

Robotic Models of Self 287

 Figure 18.2
 Nico looking at himself in the mirror, with experimenter Kevin Gold behind it (Gold &

Scassellati, 2007).

 Figure 18.3
 Nico ’ s software segmenting himself and an animate other, Kevin Gold, from the scene (Gold &

Scassellati, 2007).

288 J. Hart and B. Scassellati

has value, as it provides insight into potential methodologies and algorithms that may
be occurring in biological systems. Though the fact that a robot performs a task in a
certain way is never proof that a biological system also necessarily utilizes the same
solution, the computational model can both provide a proof-of-concept for a particu-
lar solution and potentially provide insights into the nature of the problem itself
(Webb, 2001). In this case, the fact that a kinesthetic-visual matching algorithm can
successfully solve the self-identifi cation problem leads us to question the necessity of
purely visual appearance-based methods.

 A second answer is that these self-identifi cation algorithms are the fi rst step toward
a more comprehensive robotic model of self. Current research in our lab focuses on
developing robotic self-models that integrate the kinematic and sensory systems of
the robot (Hart, Scassellati, & Zucker, 2008). Kinematic self-models such as ours and
others (Hersch, Sauser, & Billard, 2008) enable robots to learn through experience the
structure of their bodies and how they move through space. We will argue that a robot
that had a more comprehensive model of its body schema and of its own capabilities
would provide connections to other areas that have been traditionally disparate areas
of research in robotics: fault recognition and recovery, causal learning, and tool use.

 Fault Detection and Recovery

 Though the majority of robotic systems operate with no fault-detection mechanism,
the detection, identifi cation, and diagnosis of faults in machinery is an active area of
interest in both research and industry. Systems used to perform this in an automatic
fashion offer both the capability to assist human technicians in diagnostic tasks as
well as to allow machinery to automatically diagnose and recover from faults.

 In industry, the dominant method to accomplish this task is rule-based diagnosis
(Darwiche, 2000). These systems use hand-crafted sets of rules written by domain
experts that are checked against the system ’ s status. More popular in research is model-
based diagnosis, in which a model of the system is developed using symbolic logic (de
Kleer & Williams, 1987 , 1989 ; Darwiche, 2000 ; Hofbaur & Williams, 2002). An auto-
mated theorem prover then uses this model along with status reports from devices in
the system in order to perform diagnosis.

 Rule-based diagnosis systems are favored in industry because they have a lower
computational overhead and do not require a background in symbolic logic and arti-
fi cial intelligence to understand (Darwiche, 2000). Model-based diagnosis systems offer
a number of advantages including being easier to update and modify and allowing
developers to mathematically prove properties of the model.

 Perhaps the most intriguing use of model-based diagnosis to date has been the
Livingstone system, which was employed in the Remote Agent software aboard NASA ’ s
 Deep Space One probe (Muscettola, Nayak, Pell, & Williams, 1998). Deep Space One was

Robotic Models of Self 289

the fi rst spacecraft to be controlled by artifi cial intelligence without human supervi-
sion. Though Deep Space One ’ s self-model was built by scientists and engineers on the
ground, it did use a logical model of itself while operating in space in order to adapt
its control policy to systems reporting faults.

 Fault detection as it is currently envisioned follows either rule-based or model-based
techniques, both of which require a constant detection and recovery system to be
preconstructed by the programmers when the system is initially deployed. These
techniques cannot adapt to online changes in the system ’ s hardware confi guration,
nor can they adapt to changes in the control architecture. For a robot that can con-
struct its own model of its physical extent, its kinematic structure, and its capabilities,
fault detection takes on a somewhat different role; fault detection becomes an ongoing
process of comparing current short-term models of the robot ’ s self with a more stable
longer-term model of the robot ’ s self. An adaptive model thus allows for a more fl ex-
ible recognition process that is based on the perception of the robot ’ s current capabili-
ties that also allows for long-term modifi cations.

 Causal Learning

 Causal learning is a research area concerned with the sequences of events that link
causes with effects. Often modeled by the forward algorithm (Rabiner, 1989), which
asserts that prior time steps have a causal relationship to future ones, causal learning
often operates over symbolic descriptions of the world (which at times makes it dif-
fi cult to apply in robotic systems). These symbols are linked together in either prede-
termined or statistically salient sequences to create causal chains that indicate the
prevalence at which a particular event (the cause) results in the production of a sec-
ondary event (the effect). Though this learning is often symbolic in nature, there have
been many attempts to ground these symbols in perceptually salient cues (Yoshikawa,
Hosoda, & Asada, 2004 ; Yoshikawa, Tsuji, Hosoda, & Asada, 2004).

 Notice that this process, by which a causal learning system searches for pairings of
events separated in time, is very similar to the process of kinesthetic-visual matching
described above for self-identifi cation. Rather than seeking a visual stimulus to match
an earlier motor command from the robot, we instead initially match any motor
command from the robot with a later-occurring event. If these two events recur under
similar actions and situations, we can imagine that the robot could learn to produce
particular actions (causes) to create a certain desired result (the effect). While this
process by itself may provide interesting evidence and goal-directed behavior to the
robot system, the most common application for this type of learning is tool use, which
we discuss as a special case below. Causal learning has also been studied in the context
of fault detection and diagnosis, as implemented in the OCCAM system (Pazzani,
1990a , b).

290 J. Hart and B. Scassellati

 Tool Use

 When a person uses a tool, that tool becomes causally tied to him or her. An interest-
ing example of this incorporation into the self-model comes from Yamamoto, Moizumi,
and Kitazawa (2005) , in which it is demonstrated that when a person touches some-
thing with the tip of a tool, the sensory experience attached to that action is the
sensation of feeling the tip of the tool contacting the object being touched rather than
the feeling of the tool providing increased tactile resistance in the hand in response
to the touch. In other words, while the person is using that tool, they perceive it as
an extension of his- or herself.

 Experiments to allow robots to build better models of this boundary between them-
selves and the rest of the world also mark the crucial difference between a robot that
must be programmed to grip an object in its gripper and one that can learn to grip
an object on its own. The current state-of-the-art is to preprogram robots with such
capabilities. A robot with a causal model, however, can learn its own optimal gripping
strategies. By modeling the relationship of objects in the environment to the
self, rather than programming in grasping behaviors, future robotic systems may
be able learn things such as tool use without needing to be programmed to use indi-
vidual tools.

 Conclusion

 We often think of metareasoning as a high-level component that can be added to
existing agent architectures to oversee or monitor typical activity. This internal critic
offers suggestions, monitors progress, or infers higher-level information from the
mundane activities of the agent. Perhaps the most salient lesson from our work on
self-modeling in robotic systems is that metareasoning can be built into some of the
most basic components of these systems in order to solve real-world problems. This
may include basic components that are often considered to be complete and beyond
need for revision (such as low-level control algorithms and kinematic models). As part
of the basic construction of an agent, metareasoning and self-modeling systems can
serve to unify a range of problem domains under a single system-wide design. This
integration also allows for problems (like self-recognition) that on the surface appear
to be high-level cognitive tasks to become part of the moment-to-moment operation
that is critical to agent behavior. Perhaps we should not consider metareasoning
systems as an additional module that can be added late in the design process but rather
as central guiding principles to self-governed behavior.

 In this chapter, we have promoted a viewpoint that unifi es a few subfi elds of robot-
ics that until now were studied in isolation. By recasting the primary questions of
these fi elds as part of the continual process for constructing an accurate model of self,

Robotic Models of Self 291

 Figure 18.4
 Nico, the humanoid robot, used by the authors in robotic self-modeling experiments.

we demonstrate that each of these questions can be characterized as part of a larger
domain. Adaptive, self-taught models of self provide a framework for studying causal
learning, tool use, kinematic analysis, and fault detection and recovery. While the
study of these fi elds independently will continue to advance the state of the art, it is
our belief that the study of these as part of an integrated self-model will allow for even
more fundamental insights into how to build useful, adaptive, and practical robotic
systems and may cast light onto the underlying processes of self-identifi cation that
biological systems must also solve.

 Acknowledgments

 Support for this work was provided by National Science Foundation awards 0534610
(Quantitative Measures of Social Response in Autism), 0835767 (Understanding Regu-
lation of Visual Attention in Autism through Computational and Robotic Modeling),
and CAREER award 0238334 (Social Robots and Human Social Development). Some

292 J. Hart and B. Scassellati

parts of the architecture used in this work were constructed under the DARPA Com-
puter Science Futures II program. This research was supported in part by a software
grant from QNX Software Systems Ltd., hardware grants by Ugobe Inc., and generous
support from Microsoft and the Sloan Foundation. Research supported by AFOSR
and NGA.

 References

 Darwiche , A. (2000). Model-based diagnosis under real-world constraints. AI Magazine , 21 ,

 57 – 73 .

 de Kleer , J. , & Williams , B. (1987). Diagnosing multiple faults. Artifi cial Intelligence , 32 (1),

 97 – 130 .

 de Kleer , J. , & Williams , B. (1989). Diagnosis with behavioral modes. In N. S. Sridharan (Ed.),

 Proceedings of the Eleventh International Joint Conference on Artifi cial Intelligence (IJCAI ’ 89)

(pp. 124 – 130). San Francisco: Morgan Kaufmann.

 Gallup , G. (1970). Chimpanzees: Self-recognition. Science , 67 (3914), 86 – 87 .

 Gallup , G. (1982). Self-awareness and the emergence of mind in primates . American Journal of

Primatology , 2 , 237 – 248 .

 Gold , K. , & Scassellati , B. (2007). A Bayesian robot that distinguishes “ self ” from “ other. ”

In Proceedings of the Twenty-Ninth Annual Meeting of the Cognitive Science Society (CogSci2007)

(pp. 384 – 392). Mahwah, NJ: Lawrence Erlbaum.

 Hart , J. , Scassellati , B. , & Zucker , S. W. (2008 , May). Epipolar geometry for humanoid robotic

heads. In B. Caputo & M. Vincze (Eds.), Proceedings of the 4th International Cognitive Vision Work-

shop (ICVW 2008) (pp. 24 – 36). Berlin: Springer.

 Hersch , M. , Sauser , E. , & Billard , A. (2008). Online learning of the body schema. International

Journal of Humanoid Robotics , 5 , 161 – 181 .

 Hofbaur , M. , & Williams , B. C. (2002). Mode estimation of probabilistic hybrid systems. In C.J.

Tomlin & M.R. Greenstreet (Eds.), Proceedings of the International Conference on Hybrid Systems,

Computation, and Control . Lecture Notes in Computer Science 2289 (pp. 253 – 266). Berlin: Springer.

 Michel , P. , Gold , K. , & Scassellati , B. (2004 , September). Motion-based Robotic self-recognition.

In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

Piscataway, NJ: IEEE Press.

 Mitchell , R. (1997). Kinesthetic-visual matching and the self-concept as explanations of mirror

self-recognition. Journal for the Theory of Social Behaviour , 27 (1), 17 – 39 .

 Muscettola , N. , Nayak , P. , Pell , B. , & Williams , B. (1998). Remote agent: To boldly go where no

AI system has gone before. Artifi cial Intelligence , 103 (1 – 2), 5 – 47 .

Robotic Models of Self 293

 Pazzani , M. (1990a). Creating a memory of causal relationships: An integration of empirical and

explanation-based learning methods . Hillsdale, NJ : Lawrence Erlbaum .

 Pazzani , M. (1990b). Learning fault diagnosis heuristics from device descriptions . In Y. Kodratoff

 & R. S. Michalski (Eds.), Machine learning III: An artifi cial intelligence approach (pp. 214 – 234). San

Mateo, CA : Morgan Kaufmann .

 Rabiner , L. R. (1989). A tutorial on hidden Markov models and selected applications in speech

recognition. Proceedings of the IEEE , 77 (2), 257 – 296 .

 Rochat , P. (2003). Five levels of self-awareness as they unfold early in life. Consciousness and

Cognition , 12 , 717 – 731 .

 Webb , B. (2001). Can robots make good models of biological behaviour? Behavioral and Brain

Sciences , 24 (6), 1033 – 1050 .

 Yamamoto , S. , Moizumi , S. , & Kitazawa , S. (2005). Referral of tactile sensation to the tips of

L-shaped sticks. Journal of Neurophysiology , 93 (5), 2856 – 2863 .

 Yoshikawa , Y. , Hosoda , K. , & Asada , M. (2004). Cross-anchoring for binding tactile and visual

sensations via unique association through self-perception. In Proceedings of the Fourth International

Conference on Learning and Development . Piscataway, NJ: IEEE Press.

 Yoshikawa , Y. , Tsuji , K. , Hosoda , K. , & Asada , M. (2004 , October). Is it my body? Body extraction

from uninterpreted sensory data based on the invariance of multiple sensory attributes. In Pro-

ceedings of the IEEE/RSJ International Conference on Intelligent Robotics and Systems . Piscataway, NJ:

IEEE Press.

 19 Anthropomorphic Self-Models for Metareasoning Agents

 Andrew S. Gordon, Jerry R. Hobbs, and Michael T. Cox

 One of the hallmarks of human intelligence is the ability to predict and explain states
and events in the external environment in service of the selection of plans and poli-
cies in goal-directed behavior. This ability requires some capacity for mental represen-
tation of environmental states and events in a manner that facilitates reasoning. The
manifesto introduced by Cox and Raja (this vol., chap. 1) defi nes reasoning as a deci-
sion cycle within an action-perception loop between the ground level (doing) and the
object level (reasoning). With respect to this model, the task of the object level is to
produce a mental model of the environment and use these representations in the
selection of appropriate actions at the ground level. As social creatures, the mental
models that humans manipulate include representations of other people — their
thoughts, plans, goals, and emotions — that are used to predict and explain their
behavior. As people are part of their environments, the mental models that people
manipulate must also include some representation of the self, which may be the
subject of object-level inference as well. However, the model of metareasoning pre-
sented by Cox and Raja suggests a more functional model of the self that includes
representations of one ’ s own object-level reasoning behavior, monitored by a metar-
easoning component that can directly intervene to control these reasoning
processes.

 One of the central concerns in the model of metareasoning as defi ned in chapter
1 is the character of the information that is passed between the object-level and the
metalevel reasoning modules to enable monitoring and control. Cast as a representa-
tion problem, the question becomes: How should an agent ’ s own reasoning be repre-
sented to itself as it monitors and controls this reasoning? The manifesto describes
these representations as models of self , which serve to control an agent ’ s reasoning
choices, represent the product of monitoring, and coordinate the self in social
contexts.

 Self-models have been periodically explored in previous artifi cial intelligence (AI)
research since Minsky (1968) , and explicit self-models have been articulated for a
diverse set of reasoning processes that include threat detection (Birnbaum, Collins,

296 A. S. Gordon, J. R. Hobbs, and M. T. Cox

Freed, & Krulwich, 1990), case retrieval (Fox & Leake, 1995), and expectation manage-
ment (Cox, 1997). Typically built to demonstrate a limited metareasoning capacity,
these self-models have lacked several qualities that should be sought in future research
in this area, including:

 1. Broad coverage Self-models should allow an agent to reason about and control the
full breadth of its object-level reasoning processes.
 2. Integrated Self-models of different reasoning processes should be compatible with
one another, allowing an agent to reason about and control the interaction between
different reasoning subsystems.
 3. Reusable The formulation of self-models across different agents and agent archi-
tectures should have some commonalities that allow developers to apply previous
research fi ndings when building new systems.

 Despite continuing interest in metareasoning over the last two decades (see Anderson
 & Oates, 2007 ; Cox, 2005), there has been only modest progress toward the develop-
ment of self-models that achieve these desirable qualities. We speculate that this is
due, in part, to an emphasis on process rather than representation in the development
of metareasoning systems. That is, researchers have tended to make only the repre-
sentational commitments necessary to demonstrate the algorithmic approach that
they advocate. As a predictable result, the collective set of representations across this
fi eld of research is modular, narrowly scoped, and specifi cally tied to particular agent
architectures.

 As in other areas of AI, a more balanced view of the relative contributions of process
and representation may lead to new opportunities in this fi eld that are currently
obscured. Instead of avoiding representational commitments, we should encourage
the development of systems that make these commitments in a principled manner.
This chapter describes an approach to representation in metareasoning, advocating
principles to guide progress toward integrated, broad-coverage, reusable self-models.

 Anthropomorphic Self-Models

 One approach for achieving integrated, broad-coverage, reusable self-models for
metareasoning is to try to mirror the sorts of representations that are used by people.
To understand this approach, it is fi rst necessary to recognize that people, too, employ
representational models of mental states and processes as part of everyday common-
sense reasoning. In the fi eld of psychology, the model that people have of their own
reasoning states and processes (as well as those of others) is commonly referred to as
a theory of mind . The study of this model began in earnest with Heider (1958) and has
received an enormous amount of theoretical attention over the last half century (cf.
 Smedslund 1997) , particularly in the areas of developmental psychology (Wellman,

Anthropomorphic Self-Models 297

Cross, & Watson, 2001), cognitive anthropology (Lillard, 1998), and primate studies
(Call & Tomasello, 1999). Although some philosophers have argued that a represen-
tational theory of mind is neither necessary (Goldman, 2006) nor benefi cial (Church-
land, 1986), process-oriented cognitive models of human fi rst-person mind-reading
(introspection) and third-person mind-reading (perspective-taking) have generally
included a prominent role for explicit representations of mental state (e.g., Nichols &
Stich, 2003).

 The anthropomorphism approach to metareasoning representations is to formalize
the self-model that people have of themselves and others and to utilize these repre-
sentations to support monitoring and control in AI agents. In other words, rather than
devising a new representational framework based on the functionality of the AI agents,
we should identify and utilize a representational framework that is already successfully
employed by billions of existing intelligent people.

 Why Anthropomorphism?
 The argument for pursuing an anthropomorphic approach to the representation of AI
self-models is that people will be controlling, collaborating with, and designing these
systems, and each of these activities will be facilitated if there are parallels that can
be drawn between these AI self-models and the models that people use to think about
themselves and others.

 Parallelism between AI and human self-models is critical to enabling people to
control these systems. As a strategy for managing the complexity of AI agents, the
natural tendency of people will be to anthropomorphize these systems — seeing them
as if they were people whose behavior is governed by a logic that parallels their own.
Although unavoidable, adopting this intentional stance (Dennett, 1987) toward AI
agents will only be fruitful if the constituents of this logic are grounded in the opera-
tion of the agent in some meaningful way. For example, consider the specifi c problem
of interpreting natural language imperatives that a person might deliver to infl uence
the metareasoning behavior of an AI agent: “ Focus on what you are doing, Mr. Robot,
and quit worrying about tomorrow ’ s work! ” People have specifi c expectations about
how this directive should be executed by the AI agent, expectations that can only be
met if there is something that parallels the concept of a focus of attention , among
others, in the self-model of the AI agent.

 The necessity of anthropomorphism in AI self-models is even more apparent when
multiagent systems consist of a heterogeneous mix of AI agents and people. The
manifesto defi nes distributed metareasoning as the coordination of problem-solving
contexts among agents in a multiagent system, where the metacontrol component of
each agent should operate according to a multiagent policy. Strategies for coordinating
these problem-solving contexts are likely to be complex even if the agents (and their
self-models) were homogeneous. If these systems are a heterogeneous mix of people

298 A. S. Gordon, J. R. Hobbs, and M. T. Cox

and AI agents, then each participant will need to be able to reason about the problem-
solving contexts of the others. Without a shared self-model, or at least one that is
compatible at a high level, the AI agents are faced with a much more diffi cult reason-
ing problem, and the humans are faced with an impossible one. If people in multia-
gent collaborations are required to reason about the self-models of AI agents that are
 different from their own, then only the developers themselves will be able to
participate.

 For practical purposes, anthropomorphism also makes good engineering sense.
Progress in the development of AI agents will continue to require the cooperative effort
of large teams of researchers and developers. If these agents employ representational
models of themselves that resemble those of their developers, then time and costs
needed to understand and constructively contribute to these systems can be substan-
tially reduced.

 Formalizing Commonsense Psychology
 Watt (1998) explored the relationship between anthropomorphism and theory of
mind reasoning as it pertains to AI systems and argued for the central importance of
commonsense psychology to understanding this type of reasoning. In AI, common-
sense psychology has generally been approached in the same terms as commonsense
(naive) physics (Hayes, 1978), that is, as a representational model (a set of logical
axioms) that enables commonsense inference. However, instead of supporting com-
monsense inference about liquids, fl ow, and physical force, this representational
model attempts to reproduce the predictions and explanations that people make
regarding the behavior of people based on their beliefs, goals, and plans. In this view,
human anthropomorphic reasoning can be understood as the adoption of this repre-
sentational model for predicting and explaining the behavior of nonhuman beings.

 Commonsense reasoning about human psychology is not the same thing as metar-
easoning. Whereas commonsense reasoning about psychology serves the express pur-
poses of prediction and explanation, metareasoning is specifi cally concerned with
monitoring and control. The most successful optimization policies employed by an
agent ’ s metareasoning capabilities may be the product of calculations that are extremely
different from those employed for logical inference. However, the anthropomorphism
approach to metareasoning representations argues that the formalisms used for these
two disparate functions should be roughly identical. That is, the model of self that is
passed between reasoning and metareasoning modules in an agent should be expressed
in the same vocabulary that drives commonsense psychological inference.

 Hobbs and Gordon (2005) describe a large-scale effort to describe a model of com-
monsense psychology as a set of thirty content theories expressed in fi rst-order logic.
Aiming to achieve greater coverage over commonsense psychological concepts than
in previous formalization projects, this work employed a novel methodology where

Anthropomorphic Self-Models 299

the breadth of commonsense psychology concepts were fi rst identifi ed through a
large-scale analysis of planning strategies, elaborated by an analysis of English words
and phrases, and then formalized as axiomatic theories in which all of the identifi ed
concepts could be adequately defi ned.

 Gordon and Hobbs (2003) present one of the thirty content theories produced using
this methodology, a commonsense theory of human memory. In the commonsense
view, human memory concerns memories in the minds of people, which are operated
upon by memory processes of storage, retrieval, memorization, reminding, and repres-
sion, among others. The formal theory of commonsense human memory presented
by Gordon and Hobbs supports inferences about these processes with encodings of
roughly three dozen memory axioms in fi rst-order logic. Key aspects of this theory
can be characterized as follows:

 1. Concepts in memory People have minds with at least two parts, one where concepts
are stored in memory and a second where concepts can be in the focus of one ’ s atten-
tion. Storage and retrieval involve moving concepts from one part to the other.
 2. Accessibility Concepts that are in memory have varying degrees of accessibility,
and there is some threshold of accessibility for concepts beyond which they cannot
be retrieved into the focus of attention.
 3. Associations Concepts that are in memory may be associated with one another,
and having a concept in the focus of attention increases the accessibility of the con-
cepts with which it is associated.
 4. Trying and succeeding People can attempt mental actions (e.g., retrieving), but
these actions may fail or be successful.
 5. Remembering and forgetting Remembering can be defi ned as succeeding in
retrieving a concept from memory, while forgetting is when a concept becomes
inaccessible.
 6. Remembering to do A precondition for executing actions in a plan at a particular
time is that a person remembers to do it, retrieving the action from memory before
its execution.
 7. Repressing People repress concepts that they fi nd unpleasant, causing these con-
cepts to become inaccessible.

 Applied to the problem of representation in metareasoning, the formal commonsense
theory of human memory provided by Gordon and Hobbs (2003) argues for represen-
tations of memory storage, retrieval, reminding, and repression, among other con-
cepts. Although feasible, few argue that an agent ’ s metareasoning functionality should
be implemented as a logical theorem prover. Neither does the anthropomorphism
approach to metareasoning representation take this route. Instead, the aim is to ensure
that the representations used for monitoring and control of reasoning processes have
some direct correspondence to the sorts of relations that appear in commonsense

300 A. S. Gordon, J. R. Hobbs, and M. T. Cox

psychological theories. Specifi cally, the predicate relations that defi ne mental states
and processes in the theories should correspond to functionality that enable monitor-
ing and control of reasoning processes.

 Metareasoning about Memory in Agents

 One of the characteristics of human memory is that it is fallible; few among us can
consistently remember everyone ’ s birthday, where we parked the car, or how many
meters there are in a mile. This fallibility is the reason that it is useful for people to
engage in metareasoning about memory, which leads us to tie strings around our
fi ngers, leave notes for ourselves, and schedule appointments using datebooks, among
other memory-supporting strategies. It would be unfortunate if the hardware memory
chips inside our computers were as problematic. However, when considering the
utility of metareasoning about memory in software agents, these memory chips are
not the central concern. Instead, it is useful to consider the broad set of agent func-
tionality that can be viewed as analogous to human memory; anthropomorphically,
if an agent had a set of memory functions, what would they be?

 Standard database actions are perhaps the most straightforward analogues to human
memory functions, in the commonsense view. Memory storage and retrieval can easily
be viewed as the insertion and querying of records in database tables. Other com-
monsense memory concepts are analogous to the functionality of full-text search
engines, where memory storage is accomplished through text indexing and remind-
ings are analogous to ranking of documents based on their similarity to a text query.
Conceivably, monitoring and control of these functions through metareasoning may
optimize the performance of these software systems. However, the utility of anthro-
pomorphic self-models in agent systems is most evident when these software systems
employ the sorts of artifi cial intelligence reasoning techniques that are inspired by
human cognitive function, for example, planning, scheduling, prediction, explana-
tion, monitoring, and execution.

 From this perspective, the AI techniques that most directly align with common-
sense models of human memory are those used to support case-based reasoning
(Aamodt & Plaza, 1994 ; Kolodner, 1993 ; Lopez de M á ntaras et al., 2006). In this view,
the case base is itself the agent ’ s memory, the cases are its memories, case indexing is
memory storage, and case retrieval is reminding (see also this vol., chaps. 9 and 11).
The use of commonsense concepts about human memory is one of the notable char-
acteristics of the Meta-AQUA system (Cox & Ram, 1999), an implementation of a
metareasoning agent that performs case-based explanation in a story-understanding
task. Within the context of this research effort, explicit representations have been
formulated for the majority of commonsense memory concepts that appear in Gordon
and Hobbs ’ s (2003) theory. In the following section, we describe how these representa-

Anthropomorphic Self-Models 301

tions are implemented in support of metareasoning within this type of case-based
reasoning architecture.

 Expectation-based Metareasoning
 The Meta-AQUA system (Cox & Ram, 1999) demonstrated the utility of anthropomor-
phic self-models in an AI system that includes a metareasoning functionality. This
system operated in the domain of automated story understanding, developed to
explore issues of introspective multistrategy learning around a previous story-under-
standing system, AQUA (Ram, 1994). The original AQUA system viewed story under-
standing as question-driven process, involving the identifi cation of both the questions
raised by a story and the questions that it answers, supported by applying case-based
reasoning techniques over a case library of explanation patterns. If we view the AQUA
system as the object-level reasoning task, then Meta-AQUA can be viewed as a meta-
cognitive layer that monitors and controls this case-based reasoning process in order
to improve its performance. By employing an explicit representational model of the
object-level story-understanding reasoning process to identify learning goals, Cox and
Ram (1999) were able to demonstrate object-level performance improvements over
experimental conditions involving the random selection of learning goals or without
learning.

 The specifi c problem that is addressed in Meta-AQUA system is to determine, given
a failure of some performance of the system, a strategy to repair the problem that
underlies such failures. The approach is to fi rst explain why the failure occurred, then
decide what the system needs to learn in order to avoid the failure in the future, and
fi nally develop and execute a plan to achieve this learning goal. In the context of a
question-based story-understanding system, this requires a capacity for recognizing
when explanations generated through object-level reasoning were erroneous, but also
the ability to reason about why a particular explanation was proposed in the fi rst
place. To perform such metalevel reasoning, the system needs a declarative representa-
tion and explicit trace of the execution of object-level reasoning. That is, a trace of
 what happened helps to explain why it happened.

 In Meta-AQUA, explanations of reasoning failures are generated by comparing
expectations with observations. Specifi cally, Meta-AQUA explicitly represents the
expected reasoning behavior of various components of the overall system as a causal
graph, and then compares these representations with the actual trace of the execution
of object-level reasoning. This “ mental check ” aids in the diagnosis of reasoning fail-
ures; by identifying where the expected and observed diverge, the system can follow
the causal links in order to assign blame.

 Importantly, the causal representations of expected object-level reasoning behavior
(as well as representations of observed behavior) in Meta-AQUA are described in terms
of commonsense psychology. For example, Meta-AQUA employs an explicit model of

302 A. S. Gordon, J. R. Hobbs, and M. T. Cox

 memory retrieval and forgetting in order to diagnose failures of the case-retrieval func-
tionality of system. Here the expected object-level reasoning is described as a successful
memory-retrieval episode, where a retrieval goal, contextual cues, and an index cause
the successful retrieval of an appropriate memory item. The causal model helps explain
how this process could fail by hypothesizing a number of possible memory failures:
failure due to a missing index, failure due to a missing object in memory, failure due
to a missing retrieval goal, or failure due to not attending to the proper contextual
cues. By comparing this causal model to the reasoning trace in the face of a reasoning
failure, Meta-AQUA can select the most appropriate learning goals to pursue to improve
the future performance of the system.

 Discussion

 Research toward the development of an effective metareasoning component for agents
and agent systems has been slow, producing a modest number of prototype systems
designed to demonstrate the utility of a particular metareasoning approach. Much of
this work has been successful by focusing on process rather than representation, by
making only the representational commitments necessary to support metareasoning
within the context of a given agent architecture and task. As a consequence, the col-
lective set of representations used in these systems has none of the characteristics that
are needed to enable this technology to move forward: representations that have broad
coverage, are integrated across object-level reasoning subsystems, and are reusable
across different agents and agent architectures. In this chapter we have argued for
making representational commitments in metareasoning systems in a principled
manner, that is, through the development of anthropomorphic self-models.

 The representational approach that we describe in this chapter involves two distinct
research activities. First, formal theories of commonsense psychology are developed
using a combination of empirical, analytical, and traditional knowledge engineering
techniques. Our efforts in this task (Hobbs & Gordon, 2005) have aimed to develop
theories that have both broad coverage of commonsense psychology concepts (breadth)
and the competency to draw commonsense inferences in support of automated predic-
tion and explanation (depth). Second, the commonsense concepts that appear in these
theories are explicitly represented for use in metareasoning in agent systems. Our
efforts in this task (Cox, 2007 , 1997) have advanced a comparison-based approach,
where the expected outcome of object-level reasoning behavior is compared with the
actual reasoning outcomes that are observed.

 In this chapter, we describe how these two research activities relate to each other
in support of metareasoning about memory. The formalization of commonsense con-
cepts of memory help us identify the breadth of concepts that will be passed between
object-level and metalevel reasoning components in support of monitoring and
control. The comparison-based implementation of metareasoning demonstrates that

Anthropomorphic Self-Models 303

representations at this level of abstraction can be effectively grounded for use in real
agent systems. Although these two research activities were pursued completely inde-
pendently by the coauthors of this chapter, we see that closer coordination of these
efforts in the future offer a principled approach to developing integrated, reusable,
broad-coverage representations for metareasoning systems.

 First, anthropomorphic self-models can achieve broad coverage by hitting the right
level of representational abstraction. Commonsense psychological concepts like
 reminding and forgetting are general enough that they can be easily aligned with a large
number of disparate object-level software functions when agents are viewed from an
anthropomorphic perspective. Conversely, these concepts are specifi c enough to
provide the metalevel reasoning component of an agent enough information and
control to diagnose and correct problems as they arise.

 Second, anthropomorphic self-models can achieve the goal of integrated represen-
tations by working to mirror the integrated coherence of human commonsense psy-
chological models. Although not without its inconsistencies, commonsense psychology
is remarkable in that it allows people to predict and explain behavior by drawing
coherent connections between a wide variety of mental states and processes. It allows
us, for example, to tell a coherent story about how forgetting something can result in
an incorrect prediction about a world state during the execution of a plan, and how
the failure to achieve the goal of the plan subsequently leads to emotional feelings of
guilt. The ease in which people effortlessly reason about memory, prediction, execu-
tion, goal management, and emotion in an integrated manner should serve as inspira-
tion for the representations used in metareasoning agents. By deriving their
representational commitments from commonsense psychology, anthropomorphic
self-models aim to enable this level of integration as more and more of these object-
level reasoning functions are included in AI-based agent systems in the future.

 Third, anthropomorphic self-models can achieve the goal of reusable representa-
tions, where the content of these representations is not inextricably tied to one par-
ticular agent implementation. Representational commitments are made not at the
level of software, but rather to the conceptual framework that is used to characterize
an agent ’ s reasoning functions. By standardizing the representations used in metarea-
soning systems around this framework, we can begin to conceptualize metareasoning
systems that are interchangeable across agent architectures and tasks. This would, in
turn, enable some form of comparison and competition between different approaches,
and would allow developers to apply validated research fi ndings when building new
metareasoning systems.

 Acknowledgments

 The project or effort described here has been sponsored, in part, by the U.S. Army
Research, Development, and Engineering Command (RDECOM). The views, opinions,

304 A. S. Gordon, J. R. Hobbs, and M. T. Cox

and fi ndings contained in this article are those of the author and should not be inter-
preted as representing the offi cial views or policies, either expressed or implied, of the
Defense Advanced Research Projects Agency, of the Department of Defense, or of the
United States Government. This document has been approved for public release by
DARPA for unlimited distribution.

 References

 Aamodt , A. , & Plaza , E. (1994). Case-based reasoning: Foundational issues, methodological varia-

tions, and system approaches. AI Communications , 7 , 39 – 59 .

 Anderson , M. , & Oates , T. (2007). A review of recent research in metareasoning and metalearn-

ing. AI Magazine , 28 , 7 – 16 .

 Birnbaum , L. , Collins , G. , Freed , M. , & Krulwich , B. (1990). Model-based diagnosis of planning

failures. In Proceedings of the Eighth National Conference on Artifi cial Intelligence (pp. 318 – 323).

Cambridge, MA: MIT Press.

 Call , J. , & Tomasello , M. (1999). A nonverbal false belief task: The performance of children and

great apes. Child Development , 70 , 381 – 395 .

 Churchland , P. (1986). Neurophilosophy . Cambridge, MA : MIT Press .

 Cox , M. T. (1997). An explicit representation of reasoning failures. In D. Leake & E. Plaza (Eds.),

 Case-based reasoning research and development: Second International Conference on Case-Based Reason-

ing (pp. 211 – 222). Berlin: Springer.

 Cox , M. T. (2005). Metacognition in computation: A selected research review. Artifi cial Intelligence ,

 169 , 104 – 141 .

 Cox , M. T. (2007). Perpetual self-aware cognitive agents. AI Magazine , 28 , 32 – 45 .

 Cox , M. T. , & Ram , A. (1999). Introspective multistrategy learning: On the construction of learn-

ing strategies. Artifi cial Intelligence , 112 , 1 – 55 .

 Dennett , D. (1987). The intentional stance . Cambridge, MA : MIT Press .

 Fox , S. , & Leake , D. (1995). Using introspective reasoning to refi ne indexing. In Proceedings of the

Thirteenth International Joint Conference on Artifi cial Intelligence . Menlo Park, CA: International

Joint Conferences on Artifi cial Intelligence.

 Goldman , A. (2006). Simulating minds: The philosophy psychology, and neuroscience of mindreading .

 Oxford : Oxford University Press .

 Gordon , A. , & Hobbs , J. (2003). Coverage and competency in formal theories: A commonsense

theory of memory. In P. Doherty, J. McCarthy, & M. Williams (Eds.) Proceedings of Logical For-

malizations of Commonsense Reasoning: Papers from the 2003 AAAI Spring Symposium (pp. 64 – 73).

Technical Report SS-03-05. Menlo Park, CA: AAAI Press.

Anthropomorphic Self-Models 305

 Hayes , P. (1978). The naive physics manifesto . In D. Michie (Ed.), Expert systems in the microelec-

tronic age (pp. 242 – 270). Edinburgh, Scotland : Edinburgh University Press .

 Heider , F. (1958). The psychology of interpersonal relations . New York : Wiley .

 Hobbs , J. , & Gordon , A. (2005). Encoding knowledge of commonsense psychology. Paper

presented at the Seventh International Symposium on Logical Formalizations of

Commonsense Reasoning, Corfu, Greece. Available at http://www.iccl.tu-dresden.de/announce/

CommonSense-2005/.

 Kolodner , J. L. (1993). Case-based reasoning . San Mateo, CA : Morgan Kaufmann .

 Lillard , A. (1998). Enthopsychologies: Cultural variations in theories of mind. Psychological Bul-

letin , 123 , 3 – 32 .

 Lopez de M á ntaras , R. , McSherry , D. , Bridge , D. , Leake , D. , Smyth , B. , Craw , S. , et al. (2006).

 Retrieval, reuse and retention in case-based reasoning. Knowledge Engineering Review , 20 ,

 215 – 240 .

 Minsky , M. (1968). Matter, mind, and models . In M. Minsky (Ed.), Semantic information processing

(pp. 425 – 432). Cambridge, MA : MIT Press .

 Nichols , S. , & Stich , S. (2003). Mindreading: An integrated account of pretence, self-awareness, and

understanding other minds . Oxford : Clarendon Press .

 Ram , A. (1994). AQUA: Questions that drive the understanding process . In R. Schank , A. Kass ,

 & C. Riesbeck (Eds.), Inside case-based explanation (pp. 207 – 261). Hillsdale, NJ : Lawrence Erlbaum .

 Smedslund , J. (1997). The structure of psychological common sense . Mahwah, NJ : Lawrence Erlbaum .

 Watt , S. (1998). Seeing this as people: Anthropomorphism and common-sense psychology . Unpublished

doctoral dissertation, The Open University, Milton Keynes, UK.

 Wellman , H. , Cross , D. , & Watson , J. (2001). Meta-analysis of theory of mind development: The

truth about false-belief. Child Development , 72 , 655 – 684 .

 20 Varieties of Metacognition in Natural and Artifi cial Systems

 Aaron Sloman

 Some AI researchers aim to make useful machines, including robots. Others aim to
understand general principles of information-processing machines with various kinds
of intelligence, whether natural or artifi cial, including humans and human-like
systems. They primarily address scientifi c and philosophical questions rather than
practical goals. However, the tasks required to pursue scientifi c and engineering goals
overlap, since both involve building working systems to test ideas and demonstrate
results, and the conceptual frameworks and development tools needed for both
overlap. This chapter, partly based on philosophical analysis of requirements for
robots in complex 3D environments, surveys varieties of metacognition, drawing
attention to requirements that drove biological evolution and which are also relevant
to ambitious engineering goals.

 Varieties of Requirements and Designs

 AI has always included the study of metacognition for both scientifi c and engineering
purposes (Minsky, 1968 ; Cox, 2005). That includes study of various kinds of self-
monitoring, self-control, and self-discovery, including development of new concepts
for self-description. My interest in AI started (around 1969) with philosophical and
scientifi c concerns, aiming for designs expressing scientifi c theories (e.g., Sloman,
1978 , chaps. 6 – 10), rather than useful artifacts (e.g., Russell & Wefald, 1991). This
study overlaps with philosophy of mind and evolutionary biology: Evolution pro-
duced organisms with many different designs, shaped by many different sets of
requirements; and we cannot expect to understand all the trade-offs in humans unless
we compare alternatives, including nonhuman animals and possible robots. That
involves studying both the space of sets of requirements (niche space) and the space
of designs that can be compared and assessed against those requirements (design
space). Such comparisons, instead of using only numerical fi tness measures, should
(as noted in Minsky, 1963) include structured descriptions of strengths and weaknesses

308 A. Sloman

in various conditions and in relation to various functions, like consumer reports on
multifunctional products. A partial analysis is in Sloman (2003) .

 Simply simulating evolution will not yield such comparisons. Another approach,
illustrated in Sloman (2007a) , attempts analytically to retrace steps of biological evolu-
tion, especially identifying important discontinuities. Philosophy, especially concep-
tual analysis, will inevitably be involved in the process. This chapter attempts to
identify issues to be addressed in an analytical comparative study. It overlaps with
other chapters, but emphasizes biological needs and the physical environment.

 Requirements for Organisms and Human-like Robots

 In waking animals, sensors and effectors interact continuously with the environment,
and do not need to share a CPU with more central processes. So internal processes,
including planning, deciding, self-monitoring, refl ecting, and learning, run concur-
rently with sensing and acting, using dedicated machinery, e.g., different parts of
brains. This removes the problem of how much CPU time to allocate to metareason-
ing, investigated by many AI researchers (e.g., Russell & Wefald, 1991), though other
constraints can produce similar problems, e.g., if acting and reasoning about what to
do require the agent to be in different locations, or looking in different directions
(Sloman, 1978 , chap. 10). The nontrivial problem of how much dedicated computing
power to allocate to each type of function is mostly settled for organisms by
evolution.

 With dedicated hardware for different tasks, the assumption that intelligent indi-
viduals must cycle through “ sense → think → act ” substates, possibly with metareason-
ing added, can be jettisoned, since architectures include interacting concurrent processes
of many kinds. (However, some implementations use a single powerful CPU, as argued
in Sloman (2008b) , supporting multiple concurrently active virtual machines with
different roles.) So arrows in architecture diagrams, such as fi gures 20.1 and 20.2,
unlike fl owcharts, can represent fl ow of information and control between enduring ,
functionally varied subsystems, operating at different levels of abstraction, on different
time-scales, some changing continuously, others discretely. This has deep implications
for forms of representation, algorithms, possible interactions, and confl icts between
subsystems, and for trade-offs between design options. Such concurrency was impos-
sible in the early days of AI, as computers had miniscule memories and were far too
slow.

 The environment (or “ ground level ”) may include arbitrarily complex, partially
understood, physical structures and processes, and also other information-users. Intel-
ligent machines, like animals, may start with some “ innate ” information about the
environment, but in many cases will have to develop theories about what sorts of
structures and processes can occur in the environment, and how they work. This may

Varieties of Metacognition 309

ENVIRONMENT

Remote and hidden parts

 Figure 20.1
 In animals and robots, concurrently active dynamical subsystems may vary in many ways, includ-

ing degree of environmental coupling, speed of change, whether continuous or discrete, what is

represented, etc. The longest arrows represent reference from high-level subsystems to remote

and hidden entities and processes in the environment. Intermediate gray arrows represent infor-

mation fl ow between subsystems. Short black arrows represent substate transitions.

310 A. Sloman

THE ENVIRONMENT

ALARMS

Personae
action

hierarchy

REACTIVE PROCESSES

DELIBERATIVE PROCESSES

(Planning, deciding,
‘What if’ reasoning)

perception

hierarchy
META-MANAGEMENT

processes

(reflective)

Variable

threshold

attention

filters

Long

term

associative

memory

Motive

activation

 Figure 20.2
 A sketchy representation of a human-like architecture specifi cation, H-CogAff, developed within

the CogAff project (Sloman, 2003). Alarm mechanisms mostly monitor passively, but can produce

rapid control transfer when needed, sometimes generating emotions. The architecture grows itself

while interacting with the environment. This is a special case of the CogAff schema. So far only

simpler cases have been implemented. (See Kennedy, this vol., chap. 15.)

Varieties of Metacognition 311

involve extending the architecture. Current AI learning mechanisms still lag far behind
what animals can achieve.

 Control Hierarchies

 Much AI research on metareasoning aims to address problems of bounded rationality
(see Zilberstein, this vol., chap. 3). However, there is a much older, more general
requirement, namely the requirement for hierarchical control. That requirement was
 “ discovered ” millions of years ago by evolution and addressed in a wide variety of
organisms. Instead of designing a control mechanism that deals with all possible cir-
cumstances at a low level of detail, it is often better to provide distinct mechanisms
that monitor different things and propose appropriate changes on the basis of what
is detected. The changes might modify behavior immediately, e.g., by changing
process parameters or subgoals (e.g., causing gaze redirection), or in the long term by
altering submodules — as happens in learning and self-debugging systems. Subsump-
tion architectures do the former, using concurrent control at different levels of abstrac-
tion (Brooks, 1986). An example of metacognition producing long-term change was
HACKER (Sussman, 1975).

 Multiple controllers can sometimes reach confl icting decisions. It is impossible for
either evolution or human designers to anticipate all such cases for a complex system
functioning in a complex and partly unknown environment. So additional meta-
metalevel control subsystems can be useful, monitoring other controllers and taking
action when confl icts are detected. In simple cases, they may modify numerical
weights to maximize expected utility (Russell & Wefald, 1991). In more sophisticated
designs, dedicated meta-metalevel modules may be able to improve specifi c modules
separately, so as to reduce unwanted interactions, e.g., adding preconditions to rules
or metarules, as in Sussman (1975) . They may also detect situations requiring new
modules, with their own applicability conditions, and create them by copying and
editing portions of older modules or by using planning mechanisms to create a new
complex module for the new context, as in SOAR (Laird, Newell, & Rosenbloom,
1987). For most species this creation of new competences is done only by evolution
during phylogeny, though some do it during ontogeny (Chappell & Sloman, 2007).

 Metalevel decisions may themselves involve arbitrarily complex problems and the
control systems involved may also be monitored and modulated by higher-level con-
trollers. In principle, such a control philosophy can involve arbitrarily many layers of
metacontrol, but in practice there will be limits (Minsky, 1968). Catriona Kennedy ’ s
chapter in this book illustrates “ mutual meta-management ” by a collection of subsys-
tems each guarding a main system and also other guards. Such systems have not been
found in nature, though such a design could be useful in some artifi cial systems. If
telepathy were possible, humans might fi nd mutual meta-management useful!

312 A. Sloman

 Meta-management and Meta-semantic Competence

 Following Beaudoin (1994), we use the label “ meta-management ” (fi gure 20.2) to
emphasize the heterogeneity of “ meta- ” level functioning, including control as well
as monitoring, reasoning, learning, etc. Different meta-management functions can
support different types of mental state (Sloman, 2002). Although many researchers
regard architectures as unchangeable, in humans, higher-level layers develop over
several years, including multiple switchable high-level control-regimes labeled
 “ Personae ” in fi gure 20.2.

 Meta-management may use deliberation and reasoning along with reactive mecha-
nisms, e.g., an “ alarm ” subsystem (fi gure 20.2) that normally only monitors processes,
but can detect situations that need rapid control actions, possibly modifying the
behavior of large numbers of other modules, for instance freezing (in order to avoid
detection), fl eeing, feeding, fi ghting, or mating. Other options include: slowing down,
changing direction, invoking special perceptual capabilities, doing more exhaustive
analysis of options, etc. Some alarm mechanisms performing these functions need to
act very quickly, so they will need fast pattern recognition rather than reasoning, and
may produce errors. Different effects of such alarm mechanisms in a layered control
hierarchy correspond to different types of “ emotion ” (Sloman, 2001 ; Wright, Sloman,
 & Beaudoin, 1996). Different architectures support different affective phenomena
(Sloman, Chrisley, & Scheutz, 2005). Acquiring “ emotional intelligence ” includes
learning not to react in some frightening situations, and learning how to modulate
 “ disruptive ” control mechanisms to reduce risks, e.g., when controlling a dangerous
vehicle. Running alarm mechanisms continuously removes the problem of how often
to pause to decide whether to reconsider the situation.

 Systems that acquire and use information have semantic competences , whether (like
neural nets) they use information expressed in scalar parameters or (like symbolic AI
systems) they use structural information about states of affairs and processes with more
or less complex objects, with changing parts, features, and relationships. In contrast,
using information about information, or information about things that acquire,
derive, use, contain, or express information, requires meta-semantic competences,
including the ability to represent things that represent and what they represent. This
includes representing having or rejecting (as opposed to merely having or rejecting)
beliefs, goals, and plans of both oneself and other individuals.

 An individual A with meta-semantic competence may need to represent informa-
tion I in another individual B where I has presuppositions that A knows are false, but
 B does not. For example, B may think there are fairies in his garden and have the goal
of keeping them happy. A must be able to represent the content of B ’ s beliefs and
goals even though A does not believe the presuppositions. Further, A may know that
a description D1 refers to the same thing as description D2 , and therefore substitutes
 D2 for D1 in various representing contexts. But if B does not know the equivalence,

Varieties of Metacognition 313

such substitutions may lead A to mistaken conclusions about B ’ s mental states. Dealing
with such “ referentially opaque ” information is more diffi cult than handling “ refer-
entially transparent ” forms of representation. Some theorists explore adding new
logical operators to standard logic, producing modal belief logics, for example. Instead
of using notational extensions, we can provide architectural extensions that allow infor-
mation to be represented in special “ encapsulated ” modes that prevent “ normal ” uses
of the information. Such an encapsulation mechanism can be used for various meta-
semantic purposes, such as representing mental states or information contents of other
things, counterfactual reasoning and metaphorical reasoning. An example of such a
mechanism is the ATT-Meta system of Barnden. 1

 Important research questions include: which animals have which sorts of meta-
semantic competence, how and why they evolved, when and how such competences
develop in young children, and what brain mechanisms are required to support them.
More research is needed on what sorts of meta-semantic competence are required
for the meta-management architectural layer in fi gure 20.2, and for the higher-level
visual capabilities required for seeing someone as happy, sad, puzzled, looking for
something, etc., or for intentionally performing communicative actions. Construction
of AI models can help us identify requirements and trade-offs, but powerful tools
are needed. The SimAgent toolkit (Sloman & Logan, 1999), used in Kennedy ’ s work,
was designed to support (among other things) architecture-based meta-semantic
competences.

 Meta-management and Consciousness

 It is often suggested that consciousness depends on the existence of something like a
meta-management layer in an architecture, though details differ (Minsky, 1968 ;
 Sloman, 1978 ; Johnson-Laird, 1988 ; Baars, 1988 ; Shanahan, 2006). However, the
concept of “ consciousness ” (like “ emotion ” and “ self ”) is riddled with confusion and
muddle. For serious science it is best replaced with a collection of precisely defi ned
labels for special cases, e.g., notions of self-knowledge (McCarthy, 1995). Some self-
knowledge based on introspection includes trivial, transient cases such as a program
checking the contents of a register or a sensor reading, and nontrivial cases, e.g.,
architectures with self-observation subsystems running concurrently with others and
using a meta-semantic ontology referring to relatively high-level (e.g., representa-
tional) states, events, and processes in the system, expressed in nontransient reusable
information structures (Sloman, 2007b).

 A system with an architecture allowing introspection to acquire information about
its internal states and processes, including intermediate data-structures in perceptual
and motor subsystems, could be said to be self-aware. This subsumes cases discussed

1. See http://www.cs.bham.ac.uk/~jab/ATT-Meta/.

314 A. Sloman

in McCarthy (1995) , and also much of what philosophers say about “ qualia ” and
 “ phenomenal consciousness. ” Introspection is a kind of perception and therefore has
the potential for error, notwithstanding arguments that knowledge of how things
seem to you is infallible (Schwitzgebel, 2007). That claim “ I cannot be mistaken about
how things seem to me ” or “ I cannot be mistaken about the contents of my own
experience ” is a trivial but confusing tautology, like “ a voltmeter cannot be mistaken
about what voltage it reports. ” What seems to you to be going on inside you cannot
be different from what seems to you to be going on inside you, but it may be different
from what is actually going on inside you. Intelligent refl ective robots may fall into
the same confusion.

 Pre-confi gured and Meta-confi gured Competences

 Intelligent systems may start with the ontologies they need for categorizing things (as
in precocial biological species), or, as in some altricial species (Sloman & Chappell,
2005), may develop their own ontologies through exploration and experiment using
mechanisms that evolved to support self-extension, through interaction with a
complex, richly structured, changing environment. A distinction can be made between
 “ pre-confi gured ” competences, which are largely genetically determined, and “ meta-
confi gured ” competences, produced by a succession of acquired competences (Chap-
pell & Sloman, 2007).

 Layered development processes can start by learning from the environment how
to learn more in that environment, e.g., learning what one can do and what sorts of
new information may result — “ epistemic affordances ” in the environment. Meta-
confi gured learning can include substantive ontology development: creation of new
concepts not defi nable in terms of previous concepts. This clearly happens in science
(Sloman, 1978 , chap. 2) and is also needed in children and intelligent robots. The
widely believed theory that all symbols have to be “ grounded ” in sensorimotor signals
is a version of the erroneous philosophical theory of “ concept empiricism. ” 2

 One function of meta-management is discovering the need to modify current theo-
ries about the environment, e.g., because predictions have failed. Sometimes abduc-
tion can be used to produce a new theory using old concepts, e.g., a theory explaining
why a beam of varying thickness does not balance at its midpoint. However, some
new theories need new concepts referring to the unobserved but hypothesized proper-
ties that explain observations, e.g., magnetism. Unfortunately, the search space for
abduction of new theories is explosively expanded if additional undefi ned symbols
can be introduced. So learners may need meta-management capabilities to guide the
creation of substantially new concepts.

2. See http://www.cs.bham.ac.uk/research/projects/cogaff/talks/#models.

Varieties of Metacognition 315

 Ontology development is needed not only for coping with the environment, but
also for internal meta-management uses, extending the individual ’ s meta-semantic
competences, e.g., noticing how one ’ s experience of a rectangular object changes as
one views it from different directions or noticing that going without liquid for a long
time produces an introspectable state.

 Meta-semantic ontology extension may result from self-organizing capabilities of
self-monitoring mechanisms, e.g., using something like a Kohonen net to develop an
ontology for intermediate states in perceptual processing, such as tastes, color sensa-
tions, shape experiences, etc. Such concepts of sensory contents may be in principle
uncommunicable to other individuals because the concepts are “ causally indexical, ”
i.e., they implicitly refer to the classifi cation mechanism (as suggested in Sloman &
Chrisley, 2003). This may produce philosophical confusions in some future robots.

 The space of theories of metacognition is vast and unconstrained, except for specifi c
applications. An unexplored constraint, suggested in Sloman (2007b) , is that the
theory should explain how different individuals with the same initial architecture can
reach divergent beliefs on many philosophical problems, e.g., about the nature of
human consciousness, free will, emotional states.

 Affordances, Proto-affordances, and Mathematical Metacognition

 Many researchers assume that the function of vision is to provide information about
geometrical and physical properties and relations of objects in the environment.
 Gibson (1979) argued that organisms need, instead, information about which actions
are available to them in particular situations and which ones will produce desired
results: perception provides information about positive and negative action affor-
dances for the perceiver. This revolutionary proposal was the fi rst step along a major
road, though we still have a long way to go (Sloman, 2009). Perception of affordances
related to possible actions depends on more fundamental perception of “ proto-
affordances, ” namely possible processes and constraints on processes involving motion
of 3D objects and object fragments, whether or not the processes can be produced by
the perceiver, and whether or not they are relevant to the perceiver ’ s goals, e.g., seeing
how a branch can move in the breeze and how other branches constrain its motion.

 Humans can also reason about interactions between proto-affordances of different
objects, e.g., working out possible behaviors of a machine made of levers, pulleys,
ropes, and gear wheels (Sloman, 1971). If one end of a long, straight, rigid object is
moved down while the center is fi xed, the other end must move up. A learner might
discover such facts initially as statistical correlations. Later, refl ection on what is
understood by “ rigidity, ” namely that some feature of the internal structure of the
material prevents change of shape, can lead to the realization that the effect has a
kind of necessity that is characteristic of mathematical discoveries. If objects are not

316 A. Sloman

only rigid but also impenetrable, many other examples of structural causation can be
discovered: for example, if two centrally pivoted rigid and impenetrable adjacent gear
wheels have their teeth meshed and one moves clockwise, the other must move
counterclockwise.

 Many truths about geometry and topology can be discovered by refl ection on
empirically discovered interactions between proto-affordances. Some of the conse-
quences may be predictable even in situations never previously encountered. Sauvy
and Suavy (1974) present examples of topological discoveries that can be made by
children, and, I suggest, future playful and refl ective robots, playing with various
spatial structures, strings, pins, buttons, elastic bands, pencil and paper, etc.

 Robots with appropriate metacognitive refl ective capabilities could, like human
children, notice invariant features in some of the structures and processes produced
when they interact with the environment, for example noticing that containment is
transitive. I have suggested (in Sloman 1971 ; 1978 , chap. 8; 2008a) that this lends
support to Kant ’ s (1781/1929) philosophical claim that mathematical knowledge is
both synthetic and nonempirical. 3

 Some discoveries are primarily about properties of static structures, such as that
angles of a triangle must add up to a straight line. But a child learning to count
through counting games and experiments may notice recurring patterns and realize
that they too are not merely statistical correlations but necessary consequences of
features of the processes. For example, if a set of objects is counted in one order the
result of counting must be the same for any other order of counting (subject to the
normal conditions of counting).

 Developing a more detailed analysis of architectural and representational require-
ments for systems capable of making such discoveries is research in progress. The
discoveries depend on the fact that an individual can fi rst learn to do something (e.g.,
produce or perceive a type of process) and then later notice that the process has some
inevitable features — inevitable in the sense that if certain core features of the process
are preserved, altering other features, e.g., the location, altitude, temperature, colors,
materials, etc. of the process cannot affect the result.

 This makes it possible for a Kantian structure-based notion of causation to be used
alongside Humean (or Bayesian) correlation-based notions of causation. It is possible
that some other animals, e.g., some nest-building birds and hunting mammals, also
develop Kantian causal reasoning abilities. 4

 Similarly, refl ection on invariant patterns in sets of sentences could lead to logical
discoveries made centuries ago by Aristotle and then later extended by Boole and
Frege, among others, regarding patterns of inference that are valid in virtue of their

3. See http://www.cs.bham.ac.uk/research/projects/cogaff/talks/#toddlers for examples.

4. See http://www.cs.bham.ac.uk/research/projects/cogaff/talks/wonac for detailed rationale.

Varieties of Metacognition 317

logical form alone. Bertrand Russell tried to reduce all mathematical knowledge to
logical knowledge (thought of as a collection of tautologies). I suggest that logical
knowledge, like mathematical knowledge, arises from use of metacognitive mecha-
nisms refl ecting on empirical discoveries, a process not yet modeled in AI.

 Refl ecting on Epistemic Affordances

 Action affordances are the possibilities for and constraints on possible actions that can
be performed, whereas positive and negative epistemic affordances in a situation are the
varieties of information available to or hidden from the perceiver. They are linked
because an agent can discover that some physical actions change epistemic affor-
dances. Moving toward an open doorway makes more information available about
what is beyond the door, whereas moving sideways both adds and removes informa-
tion about the contents of the next room. As you move round a house you discover
things about the external walls, doors, and windows of the house, including their
sequential order. You can then use that information to work out the epistemic affor-
dances available by going round in the opposite direction (as Kant noticed) — an
essentially mathematical competence at work in a familiar nonmathematical context.

 In the fi rst few years of life children acquire not only hundreds of facts about
actions that alter action affordances , but also myriad facts about actions that alter epis-
temic affordances . Every slight movement forward, backward, turning, looking down,
moving an object, etc. will immediately alter the information available. Infants do
not know these things are being learned: the meta-semantic competence to refl ect on
what is going on has not yet developed. How it develops, and what changes occur in
forms of representation, mechanisms, or architectures, are questions for future research.
This may have profound importance for educational policies, especially as children
with disabilities (including congenital blindness, deafness, or physical deformity) can
reach similar end states via different routes, and that may be true also of future robots.

 Epistemic Affordances and Uncertainty

 In a large, complex, partly inaccessible environment neither animals nor machines
can achieve complete or certain information. In AI, psychology, and neuroscience it
is generally assumed that reasoning about probabilities is required for coping with
uncertainty and partial information. But in some cases there are simpler and more
powerful alternatives, namely, (a) using information about which actions alter epis-
temic affordances, and (b) using more abstract ontologies that do not require great
precision of measurement or control.

 Illustrating (a): an agent who notices that there is some uncertainty about a matter
of importance, e.g., because of noise or imprecise sensors, can avoid reasoning with

318 A. Sloman

probabilities, by detecting an action affordance that alters epistemic affordances,
reducing or removing the uncertainty, so that simple reasoning or planning suffi ces.
Examples are moving some object, or changing one ’ s viewpoint, in order to see more
of a partially hidden object or region of space. Often second-order epistemic informa-
tion is available, indicating that certain actions can be performed to produce new
epistemic affordances.

 Illustrating (b): instead of using only geometrical descriptions it often suffi ces to
use topological or functional descriptions, or to shift from subcategories to super-
categories. For example, even if you cannot tell the precise distance between two
surfaces you can sometimes see that the gap is too small for a nearby armchair to pass
through, and sometimes when you cannot tell whether the thing in the distance is a
male or a female, you can be sure it ’ s a person, avoiding the need to handle the dis-
junction and associated probabilities, provided that the person ’ s sex is irrelevant in
that context.

 Figure 20.3 indicates possible confi gurations of a pencil and a mug, and possible
translations or rotations, with uncertain consequences. In some cases there are good

(D)

(E)

(C)

(B)

(A)

(F)

(G)

 Figure 20.3
 A mug on its side, with possible locations for a pencil, and possible translations or rotations of

the pencil indicated by arrows. If pencil A moves horizontally to the right, will it enter the mug?

If pencil G is rotated in the vertical plane about its top end, will it hit the mug? In both cases

moving the pencil vertically upward removes the uncertainty. The other pencil locations also

have associated uncertainty that can be removed by small changes. Different initial moves will

extend epistemic affordances for different cases.

Varieties of Metacognition 319

epistemic affordances, providing clear “ yes/no ” answers. Between those situations are
 “ phase boundaries, ” where epistemic affordances are reduced. A meta-management
system can learn about, or discover by reasoning, that some actions improve epistemic
affordances because the confi guration moves away from the phase boundary to a
region of certainty. A thirsty individual may see that a mug on the table is within
reach, without knowing whether it contains liquid. Reasoning with probabilities can
be avoided by noticing possible actions that increase epistemic affordances: e.g., stand-
ing up to look into the mug or reaching out to bring it closer. 5

 Sometimes manipulation of probability distributions can be avoided by using the
metaknowledge that there are “ regions of certainty ” (ROCs), defi nitely-yes and defi -
nitely-no regions, with a fuzzy boundary that is a “ region of uncertainty ” (ROU). An
important type of metacognitive learning is discovering when and how it is possible
to move from a ROU into a ROC, by performing some action, e.g., by changing direc-
tion of gaze, changing viewpoint, rotating an object, altering direction of movement,
changing size of grip, or moving something out of the way. When you cannot tell
whether you are on a course to collide with the right edge of a doorway, you may be
able to tell that aiming further to the right will defi nitely cause a collision and aiming
a bit to the left will defi nitely avoid the collision without having to reason with
probabilities.

 Conclusion

 I have tried to show how designs produced by evolution, especially designs involving
dedicated processors with different functions, escape some of the problems faced by
AI researchers considering metareasoning in systems based on general computers. But
the biological examples produce new problems and opportunities for AI. The CogAff
schema presented in Sloman (2003) , which subsumes fi gure 20.2, provides a frame-
work for exploring, describing, and comparing alternative designs with various sorts
of metacognition, including varieties that do and do not require meta-semantic com-
petences, a requirement met in humans and other biological organisms, but very few
current AI systems.

 I have also tried to indicate ways in which detailed studies of the very complex
environments in which animals evolved or future robots may have to perform can
lead to new requirements and new opportunities for metacognition, especially require-
ments for making use of more varieties of affordance than Gibson identifi ed, including
fi rst-order and second-order epistemic affordances. This can sometimes provide good
nonprobabilistic ways of dealing with uncertainty.

 Gibson ’ s work has been extended, including design ideas about metacognition that
have not yet been explored except in very simple situations. Further research on this

5. More examples are in http://www.cs.bham.ac.uk/research/projects/cosy/papers/#dp0702.

320 A. Sloman

may contribute signifi cantly to making machines more human-like. It may also enable
us to understand humans better.

 There is far more still to be done — provided that we can understand the architec-
tural and representational requirements and the myriad positive and negative action
affordances and epistemic affordances in different environments. This may lead not
only to more advanced machines, but also to a deeper understanding of what humans
and other animals do and how they do it. A better understanding of normal compe-
tences could lead to better diagnoses and treatments of genetic or trauma-induced
abnormalities. Understanding how young animals learn about fi rst- and second-order
action affordances and epistemic affordances could give us new insights into human
mathematical capability and help dedicated teachers to support mathematical learning
more effectively.

 Acknowledgments

 I have learned from many people over many years. Recent ideas came from discussions
with Jackie Chappell about nonhuman organisms and nature – nurture trade-offs,
and members of the EU-Funded CoSy and CogX robotics projects: http://www
.cognitivesystems.org, http://cogx.eu. I thank the editors for their patience and
understanding.

 References

 Baars , B. J. (1988). A cognitive theory of consciousness . Cambridge : Cambridge University Press .

 Beaudoin , L. (1994). Goal processing in autonomous agents . Unpublished doctoral dissertation,

School of Computer Science, The University of Birmingham, Birmingham, UK.

 Brooks , R. (1986). A robust layered control system for a mobile robot. IEEE Journal on Robotics

and Automation , RA-2 , 14 – 23 .

 Chappell , J. , & Sloman , A. (2007). Natural and artifi cial meta-confi gured altricial information-

processing systems. International Journal of Unconventional Computing , 3 (3), 211 – 239 .

 Cox , M. T. (2005). Metacognition in computation: A selected research review. Artifi cial Intelligence ,

 169 (2), 104 – 141 .

 Gibson , J. J. (1979). The ecological approach to visual perception . Boston : Houghton Miffl in .

 Johnson-Laird , P. (1988). The computer and the mind: An introduction to cognitive science . London :

 Fontana Press .

 Kant , I. [1781] (1929). Critique of pure reason . Trans. Norman Kemp Smith. London : Macmillan .

 Laird , J. E. , Newell , A. , & Rosenbloom , P. S. (1987). SOAR: An architecture for general intelligence.

 Artifi cial Intelligence , 33 , 1 – 64 .

Varieties of Metacognition 321

 McCarthy , J. (1995). Making robots conscious of their mental states. In M. T. Cox & M. Freed

(Eds.), AAAI Spring Symposium on Representing Mental States and Mechanisms. Palo Alto, CA: AAAI.

 Minsky , M. L. (1963). Steps towards artifi cial intelligence . In E. Feigenbaum & J. Feldman (Eds.),

 Computers and thought (pp. 406 – 450). New York : McGraw-Hill .

 Minsky , M. L. (1968). Matter, mind, and models . In M. L. Minsky (Ed.), Semantic information

processing . Cambridge, MA : MIT Press .

 Russell , S. J. , & Wefald , E. H. (1991). Do the right thing: Studies in limited rationality . Cambridge,

MA : MIT Press .

 Sauvy , J. , & Suavy , S. (1974). The child ’ s discovery of space: From hopscotch to mazes — an introduction

to intuitive topology. Trans. Pam Wells . Harmondsworth : Penguin Education .

 Schwitzgebel , E. (2007). No unchallengeable epistemic authority, of any sort, regarding our

own conscious experience — Contra Dennett? Phenomenology and the Cognitive Sciences , 6 ,

 107 – 112 .

 Shanahan , M. (2006). A cognitive architecture that combines internal simulation with a global

workspace. Consciousness and Cognition , 15 , 157 – 176 .

 Sloman , A. (1971). Interactions between philosophy and AI: The role of intuition and non-logical

reasoning in intelligence. In Proceedings 2nd IJCAI (pp. 209 – 226). London: William Kaufmann.

 http://www.cs.bham.ac.uk/research/cogaff/04.html#200407 .

 Sloman , A. (1978). The computer revolution in philosophy . Hassocks, Sussex: Harvester Press (and

Humanities Press). http://www.cs.bham.ac.uk/research/cogaff/crp .

 Sloman , A. (2001). Beyond shallow models of emotion. Cognitive Processing: International Quarterly

of Cognitive Science , 2 (1), 177 – 198 .

 Sloman , A. (2002). Architecture-based conceptions of mind . In P. G ä rdenfors , J. Wolenski , & K.

 Kijania-Placek (Eds.), In the Scope of Logic, Methodology, and Philosophy of Science (Vol. II , pp.

 403 – 427). Dordrecht : Kluwer .

 Sloman , A. (2003). The cognition and affect project: Architectures, architecture-schemas, and the new

science of mind. (Tech. Rep.) . Birmingham : School of Computer Science, University of

Birmingham .

 Sloman , A. (2007a). Diversity of developmental trajectories in natural and artifi cial intelligence.

In C. T. Morrison & T. T. Oates (Eds.), Computational Approaches to Representation Change during

Learning and Development: AAAI Fall Symposium 2007, Technical Report FS-07-03 (pp. 70 – 79). Menlo

Park, CA: AAAI Press.

 Sloman , A. (2007b). Why some machines may need qualia and how they can have them: Includ-

ing a demanding new Turing test for robot philosophers. In A. Chella & R. Manzotti (Eds.), AI

and Consciousness: Theoretical Foundations and Current Approaches: AAAI Fall Symposium 2007,

Technical Report FS-07-01 (pp. 9 – 16). Menlo Park, CA: AAAI Press.

322 A. Sloman

 Sloman , A. (2008a , July). Kantian philosophy of mathematics and young robots . In S. Autexier ,

 J. Campbell , J. Rubio , V. Sorge , M. Suzuki , & F. Wiedijk (Eds.), Intelligent Computer Mathematics

(pp. 558 – 573). Berlin, Heidelberg : Springer .

 Sloman , A. (2008b). The well-designed young mathematician. Artifi cial Intelligence , 172 (18),

 2015 – 2034 .

 Sloman , A. (2009). Architectural and representational requirements for seeing processes and

affordances . In D. Heinke & E. Mavritsaki (Eds.), Computational modelling in behavioural neurosci-

ence: Closing the gap between neurophysiology and behaviour . London : Psychology Press .

 Sloman , A. , & Chappell , J. (2005). The altricial-precocial spectrum for robots. In Proceedings

IJCAI ’ 05 (pp. 1187 – 1192). Edinburgh: IJCAI.

 Sloman , A. , & Chrisley , R. (2003). Virtual machines and consciousness. Journal of Consciousness

Studies , 10 (4 – 5), 113 – 172 .

 Sloman , A. , Chrisley , R. , & Scheutz , M. (2005). The architectural basis of affective states and

processes . In M. Arbib & J.-M. Fellous (Eds.), Who needs emotions? The brain meets the robot

(pp. 203 – 244). New York : Oxford University Press .

 Sloman , A. , & Logan , B. (1999). Building cognitively rich agents using the Sim_agent toolkit.

 Communications of the ACM , 42 (3), 71 – 77 .

 Sussman , G. (1975). A computational model of skill acquisition . New York : American Elsevier .

 Wright , I. , Sloman , A. , & Beaudoin , L. (1996). Towards a design-based analysis of emotional

episodes. Philosophy, Psychiatry, & Psychology , 3 (2), 101 – 126 .

 Contributors

 George Alexander is a fourth-year doctoral student in the College of Computing at
University of North Carolina at Charlotte (UNCC), working in the Game Intelligence
Group. He received a B.S. in computer science and mathematics (summa cum laude)
from UNCC in 2006. His research interests include artifi cial intelligence, machine
learning, and natural language. (gralexan@uncc.edu)

 Michael L. Anderson is Assistant Professor in the Department of Psychology at Franklin
 & Marshall College, and Visiting Assistant Professor at the Institute for Advanced
Computer Studies at the University of Maryland, College Park, where he is also a
member of the Graduate Faculty of the Neuroscience and Cognitive Science Program.
Dr. Anderson is author or coauthor of over fi fty scholarly and scientifi c publications
in artifi cial intelligence, cognitive science, and philosophy of mind. Primary areas of
research include an account of the evolution of the cortex via exaptation of existing
neural circuitry (the “ massive redeployment hypothesis ”); the role of behavior, and
of the brain ’ s motor-control areas, in supporting higher-order cognitive functions; the
foundations of intentionality (the connection between objects of thought and things
in the world); and the role of self-monitoring and self-control in maintaining robust
real-world agency. (www.agcognition.org; anderson@cs.umd.edu)

 Josep Llu í s Arcos is a Research Scientist at the Artifi cial Intelligence Institute of the
Spanish National Research Council (IIIA-CSIC). Dr. Arcos received an M.S. in musical
creation and sound technology from Pompeu Fabra University in 1996 and a Ph.D.
in computer science from the Universitat Polit è cnica de Catalunya in 1997. He is the
corecipient of several awards at case-based reasoning conferences and computer music
conferences. Currently he is working on case-based reasoning and learning, on self-
organization and self-adaptation mechanisms, and on artifi cial intelligence applica-
tions to music. (www.iiia.csic.es/~arcos; arcos@iiia.csic.es)

 Brett J. Borghetti earned a Doctorate of Philosophy in computer science in 2008 from
the University of Minnesota, Twin Cities, Minnesota; a Master of Science degree in
computer systems in 1996 from the United States Air Force Institute of Technology

324 Contributors

(AFIT) Dayton, Ohio; and a Bachelor of Science in electrical engineering in 1992 from
Worcester Polytechnic Institute, Worcester, Massachusetts. He is a Lieutenant Colonel
in the U.S. Air Force and is an Assistant Professor of Computer Science at AFIT at
Wright-Patterson Air Force Base. He has worked at the Air Intelligence Agency (AIA)
in San Antonio, the National Air and Space Intelligence Center (NASIC) in Dayton,
the United States Strategic Command (USSTRATCOM) in Omaha, and the Training
Systems Product Group in Dayton. (brett.borghetti@afi t.edu)

 Vincent Conitzer is an Assistant Professor of Computer Science and Economics at Duke
University. He received Ph.D. (2006) and M.S. (2003) degrees in computer science from
Carnegie Mellon University and an A.B. (2001) degree in applied mathematics from
Harvard University. His research focuses on computational aspects of microeconomics,
such as game theory, mechanism design, voting/social choice, and auctions. This work
uses techniques from, and includes applications to, artifi cial intelligence and multia-
gent systems. (www.cs.duke.edu/~conitzer/; conitzer@cs.duke.edu)

 Michael T. Cox is a Program Manager in the Information Processing Techniques Offi ce
of the Defense Advanced Research Projects Agency. He received Ph.D. (1996) and B.S.
(1986, summa cum laude) degrees in computer science from the Georgia Institute of
Technology in Atlanta, Georgia. Previously he was senior scientist at BBN Technolo-
gies, Cambridge, Massachusetts, Assistant Professor of Computer Science and Engi-
neering at Wright State University, Dayton, Ohio, and postdoctoral fellow in Computer
Science at Carnegie Mellon University, Pittsburgh, Pennsylvania. Dr. Cox ’ s research
foci include case-based reasoning, mixed-initiative planning, multistrategy learning,
and computational introspection. In particular, he is interested in how goals affect
intelligent behavior across all these processes. (mcox.org; Michael.Cox@DARPA.mil)

 Susan L. Epstein is Professor of Computer Science at Hunter College and the Graduate
Center of the City University of New York. Her work in artifi cial intelligence is directed
toward knowledge representation and machine learning for the automated develop-
ment of expertise. She is known for her work in constraint satisfaction, game playing,
path fi nding, and two-dimensional layout design. A past Chair of the Cognitive
Science Society, she is particularly interested in multiple representations, multiple
learning methods, and the integration of visual perception with high-level reasoning.
Dr. Epstein ’ s collaborators have included linguists, microbiologists, evolutionary biol-
ogists, psychologists, chemists, mathematicians, and geographers. She holds a B.S. in
mathematics from Smith College, an M.S. in mathematics from New York University,
and M.S. and Ph.D. degrees in computer science from Rutgers, the State University of
New Jersey. (www.cs.hunter.cuny.edu/~epstein/; susan.epstein@hunter.cuny.edu)

 Scott Fults currently has a postdoctoral position with Don Perlis in the Computer
Science Department at the University of Maryland, College Park. He received his Ph.D.

Contributors 325

in linguistics from University of Maryland, College Park, in 2006. He has been using
his linguistics skills to build a dialogue agent to explore ideas about metacognition
and language processing. His dissertation discusses the syntax and semantics of posi-
tive and comparative adjectives, focusing on how morpho-syntactic structure affects
meaning. He also works on vagueness, number cognition, and the online semantic
processing of quantifi ers and negation. (www.active.cs.umd.edu; scott@cs.umd.edu)

 Melinda Gervasio is currently a senior computer scientist at SRI International with
interests in mixed-initiative learning, machine learning for planning and scheduling,
and end-user programming. Prior to joining SRI in 2003, Dr. Gervasio was a research
scientist at the Institute for the Study of Learning and Expertise, where she conducted
research in the areas of personalization and mixed-initiative planning and scheduling.
She received her Ph.D. in computer science from the University of Illinois at Urbana-
Champaign in 1996 for her dissertation on explanation-based learning for planning.
(www.ai.sri.com/people/gervasio/; melinda.gervasio@sri.com)

 Yolanda Gil received her Ph. D. in computer science from Carnegie Mellon University
in 1992. Her research interests include intelligent user interfaces, knowledge-rich
problem solving, distributed computing, and the semantic web. An area of recent
interest is the use of knowledge-rich computational workfl ows for large-scale scientifi c
data analysis and discovery. She is currently an Associate Division Director at the
Information Sciences Institute of the University of Southern California, Marina del
Rey, California, and a Research Associate Professor in the Computer Science Depart-
ment. (www.isi.edu/~gil; gil@isi.edu)

 Maria Gini is a Professor at the Department of Computer Science and Engineering of
the University of Minnesota. Her work includes coordinated behaviors among robots
and in multiagent systems, learning of opponent behaviors, and autonomous eco-
nomic agents. She is the chair of the ACM Special Interest Group on Artifi cial Intel-
ligence (SIGART). She is on the editorial board of numerous journals, including
 Autonomous Agents & Multi-Agent Systems , Electronic Commerce Research and Applications ,
 Web Intelligence and Agent Systems , Autonomous Robots , and Integrated Computer-Aided
Engineering . She is a Fellow of the Association for the Advancement of Artifi cial Intel-
ligence. (www-users.cs.umn.edu/~gini/; gini@cs.umn.edu)

 Ashok K. Goel is an Associate Professor of Computer Science and Cognitive Science in
the School of Interactive Computing at Georgia Institute of Technology. He is Director
of the School ’ s Design & Intelligence Laboratory, and a Co-Director of Georgia Tech ’ s
Center for Biologically Inspired Design. He is an Associate Editor of IEEE Intelligent
Systems and ASME Journal of Computing and Information Science in Engineering . His
research on knowledge-based artifi cial intelligence has been supported by NSF, DARPA,
ONR, DHS, and IES, and he has been a consultant to NEC and NCR. His research on

326 Contributors

self-adaptive intelligent agents described in this volume is supported by an NSF
(Science of Design) Grant (0613744) on “ Teleological Reasoning in Adaptive Software
Design. ” (www.cc.gatech.edu/directory/ashok-goel; goel@cc.gatech.edu)

 Andrew S. Gordon is a Research Associate Professor of Computer Science at the Insti-
tute for Creative Technologies at the University of Southern California. He received
his Ph.D. from Northwestern University in 1999, and a B.A. in cognitive science from
Northwestern University in 1993. He conducts interdisciplinary research in artifi cial
intelligence, computational linguistics, knowledge management, and training tech-
nologies. He is the author of the book Strategy Representation: An Analysis of Planning
Knowledge . (www.ict.usc.edu/~gordon/; gordon@ict.usc.edu)

 Justin Hart is a Ph.D. candidate in the Computer Science Department at Yale Univer-
sity, where he is advised by Brian Scassellati. He received his M.Eng. in computer
science from Cornell University in 2006, and his B.S. in computer science from West
Virginia University in 2001. His research focuses on constructing computational
models of the process by which children learn about their sensory and physical capa-
bilities and how they can interact with their environment. (pantheon.yale.edu/~jwh42/;
justin.hart@yale.edu)

 Jerry R. Hobbs is a prominent researcher in the fi elds of computational linguistics,
discourse analysis, and artifi cial intelligence. Dr. Hobbs earned his Ph.D. from New
York University in 1974 in computer science. He has taught at Yale University and
the City University of New York. From 1977 to 2002 he was with the Artifi cial Intel-
ligence Center at SRI International, where he was a principal scientist and program
director of the Natural Language Program. He has written numerous papers in the
areas of parsing, syntax, semantic interpretation, information extraction, knowledge
representation, encoding commonsense knowledge, discourse analysis, the structure
of conversation, and the semantic web. In September 2002 he took a position as
Research Professor and ISI Fellow at the Information Sciences Institute, University of
Southern California. He is a past president of the Association for Computational Lin-
guistics and is a Fellow of the American Association for Artifi cial Intelligence. In
January 2003 he was awarded an honorary Doctorate of Philosophy from the Univer-
sity of Uppsala, Sweden. (www.isi.edu/~hobbs; hobbs@isi.edu)

 Eric Horvitz is a Distinguished Scientist at Microsoft Research. His research interests
span theoretical and practical challenges with developing computational systems that
sense, learn, and reason. He has pursued principles of bounded rationality and metar-
easoning under limited computational resources. His research introduced and explored
several core concepts in metareasoning, including the use of fl exible computational
procedures under uncertain and varying computational resources, decision-theoretic

Contributors 327

metareasoning, expected value of computation, continual computation, and the
pursuit of bounded optimality. Eric has been elected a Fellow of the Association for
the Advancement of Artifi cial Intelligence (AAAI) and of the American Association
for the Advancement of Science (AAAS). He has served as President of the AAAI,
and on the advisory boards of the NSF Computer and Information Science and Engi-
neering (CISE) Directorate and the Computing Community Consortium (CCC). He
received his PhD and MD degrees at Stanford University. (http://research.microsoft
.com/~horvitz; horvitz@microsoft.com)

 Joshua Jones is a Ph.D. candidate in computer science in the School of Interactive
Computing at Georgia Institute of Technology and a member of the School ’ s Design
 & Intelligence Laboratory. His research interests lie at the intersection of knowledge-
based AI and machine learning. In particular, his Ph.D. work investigates the use of
metareasoning for diagnosing and repairing classifi cation knowledge when a classifi er
makes an incorrect prediction. After graduation in 2009, he plans to work at University
of Maryland, Baltimore County, as a postdoctoral research scientist. He received his
B.S. in computer science from the University of New Hampshire in 1999. (www.cc
.gatech.edu/~jkj; jkj@umbc.edu)

 Darsana Josyula is an Assistant Professor of Computer Science at Bowie State Univer-
sity, Bowie, Maryland and is a member of the ALMECOM group at the Institute of
Advanced Computer Studies, University of Maryland. Her research interests include
commonsense reasoning, resource-bounded reasoning, knowledge acquisition, meta-
cognitive computing, and natural language understanding in artifi cial agents. She
received her Ph.D. in computer science at the University of Maryland, College Park,
in 2005. Her dissertation work developed a model of metacognition that uses a time-
sensitive and contradiction-tolerant reasoning mechanism on explicit representations
of beliefs, desires, intentions, expectations, and observations, to monitor and correct
actions of an agent operating in a setting where concurrent actions are allowed. The
model was implemented in a natural language interfacing agent to monitor and fi x
problems in natural language understanding as well as task execution. (www.cs.umd
.edu/~darsana; darsana@cs.umd.edu)

 Catriona M. Kennedy has a B.Sc. in computer science from Stirling University Scotland
(1982). After extensive experience as a software developer she returned to academia
to pursue a Ph.D. (2003) at the University of Birmingham in the area of refl ective
agents under Aaron Sloman. Since then she has worked as a research fellow at Bir-
mingham University, specializing in software architectures for autonomic computing
and intelligent scientifi c assistance. She is currently a visiting scientist at the MIT
Computer Science and AI Lab. (www.cs.bham.ac.uk/~cmk/; C.M.Kennedy@cs.bham
.ac.uk)

328 Contributors

 Jihie Kim is a Research Assistant Professor in Computer Science at the University of
Southern California, a Computer Scientist at the USC/Information Sciences Institute.
Dr. Kim received a Ph.D. from the University of Southern California and a master ’ s
and a bachelor ’ s degree from the Seoul National University. Her current interests
include pedagogical tools for online discussions, knowledge-based approaches to
developing workfl ow systems, and intelligent user interfaces. (www.isi.edu/~jihie;
jihie@isi.edu)

 Michael Krainin is currently a graduate student in computer science at the University
of Washington. Michael received his bachelor ’ s degree in computer science from the
University of Massachusetts Amherst, where he worked as an undergraduate researcher
in the Multi-Agent Systems Lab. In cooperation with the Collaborative Adaptive
Sensing of the Atmosphere (CASA) Engineering Research Center, he has conducted
research in distributed control mechanisms for adaptive sensor networks. His achieve-
ments include an honorable mention in the 2007 CRA ’ s Outstanding Undergraduate
Award, a 2008 Goldwater Scholarship, and the Overall Undergraduate Achievement
Award given by the UMass Computer Science Department. (mkrainin@gmail.com)

 Robert Laddaga is a Senior Scientist at BBN Technologies, where he has been working
on symbolic learning systems, self-adaptive vision systems, and self-adaptive network-
ing. Dr. Laddaga is the PI of BBN ’ s self-adaptive networking software effort, PI of BBN ’ s
Enhanced Bootstrapping effort, and Project Director of BBN ’ s Integrated Learning
project. Dr. Laddaga was a research scientist at the MIT Computer Science and Artifi cial
Intelligence Laboratory (CSAIL) for over nine years. He served as Director of Software
Development at Symbolics Inc., and was the President of Dynamic Object Language
Labs and of Artelligence. He was an Assistant Professor of Computer Science at the
University of South Carolina. His past research accomplishments included work in
intelligent tutoring of symbolic logic and probability; work in cognitive science includ-
ing eye-tracking and speech generation; work in software and AI development envi-
ronments; development of DARPA research programs in Self-Adaptive Software and
Autonomous Negotiating Agents; and research on AI, self-adaptive software, adaptive
networking, vision, sensor networks, pervasive and perceptually enabled environ-
ments, and information survivability. (openmap.bbn.com/~laddaga/; rladdaga@bbn
.com)

 David B. Leake is a Professor of Computer Science and Associate Dean of the School
of Informatics at Indiana University. He is also a member of the faculty of the univer-
sity ’ s Cognitive Science and Human – Computer Interaction programs. He received his
Ph.D. in computer science from Yale University in 1990. His research interests include
case-based reasoning, context, explanation, human-centered computing, intelligent
user interfaces, introspective reasoning, and knowledge capture and management. He
has over 100 publications in these areas. He is the Editor in Chief of AI Magazine , the

Contributors 329

offi cial magazine of the Association for the Advancement of Artifi cial Intelligence.
(www.cs.indiana.edu/~leake/; leake@cs.indiana.edu)

 Victor R. Lesser received his B.A. in mathematics from Cornell University in 1966 and
the Ph.D. degree in computer science from Stanford University in 1973. He then was
a research computer scientist at Carnegie-Mellon University, working on the Hearsay-
II speech understanding system. Since 1977 he is has been on the faculty of the
Department of Computer Science at the University of Massachusetts, Amherst, where
he is a distinguished professor. He is an internationally recognized researcher in the
areas of multiagent/distributed AI and blackboard systems. He has also made contribu-
tions in the areas of real-time AI, signal understanding, diagnostics, plan recognition,
computer-supported cooperative work, and computer architecture. Professor Lesser is
a Founding Fellow of the Association for the Advancement of Artifi cial Intelligence
(AAAI), an IEEE Fellow, and recipient of the IJCAI-09 Award for Research Excellence.
He was General Chair of the fi rst international conference on Multi-Agent Systems
(ICMAS) in 1995, and Founding President of the International Foundation of Autono-
mous Agents and Multi-Agent Systems (IFAAMAS) in 1998. To honor his contributions
to the fi eld of multiagent systems, IFAAMAS established the “ Victor Lesser Distin-
guished Dissertation Award. ” (dis.cs.umass.edu/lesser.html; lesser@cs.umass.edu)

 Fabrizio Morbini received a Laurea in electronic engineering from Universit à degli
Studi di Brescia in 2002 with a thesis on extensions to the DISCOPLAN system super-
vised by Professor Alfonso Gerevini. He began graduate studies at the University of
Rochester in the fall of 2003. Under the guidance of Lenhart Schubert, he pursued his
research on the EPILOG reasoner, revising and extending it to support his work toward
a self-aware agent. He received his M.S. from the University of Rochester in 2004.
(www.cs.rochester.edu/~morbini/; fmorbini@gmail.com)

 O ğ uz M ü l â yim is a Ph.D. Student at the Artifi cial Intelligence Institute of the Spanish
National Research Council (IIIA-CSIC). His undergraduate degree is in computer
science. His research is devoted to applying reactive and proactive introspective rea-
soning techniques to improve the performance of case-based reasoning systems.
(oguz@iiia.csic.es)

 David Musliner received his B.S.E. in electrical engineering and computer science from
Princeton University (1988) and his Ph.D. in computer science from the University of
Michigan (1993). Dr. Musliner designed and implemented the Cooperative Intelligent
Real-Time Control Architecture (CIRCA), one of the fi rst AI control architectures
capable of reasoning about and interacting with dynamic, hard real-time domains.
CIRCA includes active metacontrol for managing its planning processes to meet soft
real-time deadlines. In 1995, Dr. Musliner joined the Automated Reasoning group at
the Honeywell Technology Center, where he led research projects on real-time tasking

330 Contributors

and time-sensitive multiagent planning and scheduling systems for human coordina-
tion. In 2008, Dr. Musliner joined SIFT where he is currently investigating new con-
cepts in high-level control of UAV teams, formal verifi cation for spacecraft operating
procedures, and planning for autonomous satellite defense (www.musliner.com/david;
david.musliner@musliner.com)

 Karen Myers is Director of the Intelligent Mixed-Initiative Planning and Control
Technologies (IMPACT) program within the Artifi cial Intelligence Center at SRI Inter-
national. She is also an SRI Principal Scientist. Her current interests lie with the devel-
opment of mixed-initiative AI systems that enable humans and machines to solve
problems cooperatively. Dr. Myers joined SRI in 1991 after completing a Ph.D. in
computer science at Stanford University. (www.ai.sri.com/people/myers; myers@ai.sri
.com)

 Tim Oates is an associate professor in the Department of Computer Science and Elec-
trical Engineering at the University of Maryland, Baltimore County. He received his
Ph.D. from the University of Massachusetts, Amherst, and, prior to coming to UMBC
in the fall of 2001, spent a year as a postdoc in the Artifi cial Intelligence Lab at the
Massachusetts Institute of Technology. His research is in the areas of artifi cial intel-
ligence, machine learning, data mining, language acquisition, and robotics. The top-
level goal of his research is to develop a theoretical and algorithmic basis that will
allow machines to replicate the human transition from sensors to symbols to seman-
tics. (www.coral-lab.org/~oates; oates@cs.umbc.edu)

 Don Perlis is currently a Professor of Computer Science at the University of Maryland,
College Park. He received his Ph.D. in computer science at the University of Rochester
in 1981, under the direction of James Allen. His research has evolved from studies in
 “ pure ” mathematical logic, then to applications of logic to formal commonsense rea-
soning, and more recently to the use of metacognition in commonsense behavior
more generally. His efforts most recently have revolved around developing a method-
ology for general-purpose self-modeling and self-repairing systems. (www.active
.cs.umd.edu; perlis@cs.umd.edu)

 Smiljana Petrovic is an Assistant Professor of Computer Science at Iona College, New
Rochelle, New York. Her research interests lie primarily in the areas of constraint
satisfaction programming and machine learning. Dr. Petrovic develops problem-
solving techniques that select and combine heuristics. She holds a B.S. in mathematics
from the University of Belgrade and M.S. and Ph.D. degrees in computer science from
the City University of New York. (www.iona.edu/faculty/spetrovic/; spetrovic@iona
.edu)

 Anita Raja is an Associate Professor of Software and Information Systems at the Uni-
versity of North Carolina at Charlotte. She received a B.S. Honors in computer science

Contributors 331

with a minor in mathematics (summa cum laude) from Temple University, Philadel-
phia, in 1996 and a M.S. and Ph.D. in computer science from the University of Mas-
sachusetts Amherst in 1998 and 2003, respectively. Her research focus is in the design
and control of multiagent systems with particular emphasis on metacognition and
bounded rationality. She has led efforts in studying the role of metalevel control in
complex single-agent and multiagent systems. Professor Raja was the program co-chair
of the First International Workshop on Meta Reasoning in Agent-Based Systems
(MRABS) held at AAMAS 2007, the AAAI-2008 workshop on Metareasoning: Thinking
about Thinking and the SASO-2009 workshop on Metareasoning in Self-adaptive
Systems. (www.sis.uncc.edu/~anraja; anraja@uncc.edu)

 Paul Robertson is a Senior Scientist at BBN Technologies, where he has been working
on computer vision, self-adaptive software, health-care computing, computer learning,
and metareasoning systems. Dr. Robertson was a Research Scientist at MIT, where he
worked on robotics and autonomous systems. His projects at MIT included model-
based autonomy, vision for autonomous robot navigation, self-regenerative software
systems for multirobot cooperation, and learning spatial models for robot navigation.
He was Chief Scientist at Dynamic Object Language Labs, where he developed advanced
languages and reasoning systems for artifi cial intelligence. Dr Robertson was PI on an
Oxford University, DARPA-funded contract to develop a Self-Adaptive Satellite Image
Interpretation System that utilized metareasoning to avoid unlikely interpretations.
He was manager of PC Products at Symbolics, Inc., where he led a team to develop
PC-based solutions that bridged the gap between Lisp machines and the emerging PC
market. He was Assistant Professor of Computing Science at the University of Texas
at Dallas where he conducted research into computer learning systems. (openmap
.bbn.com/~robertson/; paulr@bbn.com)

 Zachary B. Rubinstein is a Systems Scientist in the Robotic Institute at Carnegie Mellon
University. Dr. Rubinstein ’ s major research focus is in effective collaboration among
heterogeneous agents in dynamic environments. He has an extensive background in
the areas of scheduling, planning, distributed systems, multiagent systems, blackboard
systems, and case-based reasoning. Prior to his current position, he was an Assistant
Professor in the Department of Computer Science at the University of New Hampshire.
He received his Ph.D. in computer science from the University of Massachusetts,
Amherst, and has worked in industry for more than fi fteen years, building a variety
of complex systems in the areas of dynamic process management, nearly autonomous
systems, blackboard architectures, and assisted fi nancial profi ling. (www.cs.cmu
.edu/~zbr/; zbr@cs.cmu.edu)

 Brian Scassellati is an Associate Professor of Computer Science at Yale University. Dr.
Scassellati received his Ph.D. in computer science from the Massachusetts Institute of

332 Contributors

Technology in 2001 under the direction of Rodney Brooks. He also holds a Master of
Engineering in computer science and electrical engineering (1995), and Bachelor ’ s
degrees in computer science and electrical engineering (1995) and brain and cognitive
science (1995), all from MIT. His research focuses on building embodied computa-
tional models of the developmental progression of early social skills. He was named
an Alfred P. Sloan Fellow in 2007 and received an NSF Career award in 2003. (www
.cs.yale.edu/~scaz/; scaz@cs.yale.edu)

 Matthew D. Schmill is a Research Assistant Professor at the University of Maryland,
Baltimore County. He received his Ph.D. in computer science at the University of
Massachusetts, Amherst, in 2004 for a dissertation entitled “ Learning the Structure of
Activity for a Mobile Robot. ” His current research includes improving the robustness
of AI systems using metacognitive problem-solving, learning syntax for unknown
terms in artifi cial student – teacher interactions, and applications of machine learning
to computational fi nance. (matt.schmill.net; matt@schmill.net)

 Lenhart Schubert is a Professor of Computer Science at the University of Rochester, a
post he took up in 1988 after many years at the University of Alberta. His research
interests center around language, knowledge representation and acquisition, infer-
ence, planning, and self-awareness. These interests are tied together by the general
goal of developing agents with common sense and the ability to converse and acquire
knowledge through language. Schubert is a Fellow of the AAAI and a former Alexander
von Humboldt Fellow, has served as program chair of several major conferences
in natural language processing and knowledge representation, has numerous
publications in those areas, and has led the development of general systems for com-
monsense inference (EPILOG), knowledge acquisition from text (KNEXT), and invari-
ant discovery in planning (DISCOPLAN). (www.cs.rochester.edu/~schubert/; schubert
@cs.rochester.edu)

 Hamid Shahri is a Ph.D. student in the Department of Computer Science, University
of Maryland, and a graduate research assistant in the ALMECOM research group. His
research interests include information integration, knowledge representation, and
adaptive and intelligent systems. He received his B.S. from Ferdowsi University of
Mashhad, Iran, and an M.S. from the University of Maryland, both in computer
science. (www.cs.umd.edu/~hamid; hamid@cs.umd.edu)

 Aaron Sloman took a fi rst degree in mathematics and physics (1956, Cape Town), then
was seduced by philosophy and did a DPhil on Kant ’ s philosophy of mathematics
(1962, Oxford). He later became convinced that the best way to do philosophy is to
build successively larger fragments of working minds, as proposed in The Computer
Revolution in Philosophy (1978). He has worked on vision, ontologies required for
animals and robots, affective states and processes, mathematical development, nature –

Contributors 333

 nurture trade-offs, architectures, software tools for teaching and research in AI, under-
standing causation, and forms of representation in intelligent systems. He is a Fellow
of AAAI, ECCAI and SSAISB. Hon DSc Sussex University (2006). (www.cs.bham.ac
.uk/~axs/#whoiam; A.Sloman@cs.bham.ac.uk)

 Stephen F. Smith is a Research Professor in the Robotics Institute at Carnegie Mellon
University where he heads the Intelligent Coordination and Logistics Laboratory. He
received his B.S. in mathematics from Westminster College in 1975, and his M.S. and
Ph.D. degrees in computer science from the University of Pittsburgh in 1977 and 1980,
respectively. Dr. Smith ’ s research focuses broadly on the theory and practice of next-
generation technologies for complex planning, scheduling, and coordination prob-
lems, and he has authored or coauthored over 215 technical articles in this area. In
2005, Dr. Smith received the Allen Newell Medal for Research Excellence, awarded
annually by the Carnegie Mellon University School of Computer Science. In 2007 he
was elected a Fellow of the Association for the Advancement of Artifi cial Intelligence.
Dr. Smith ’ s current research interests include adaptive search algorithms and heuris-
tics, stochastic optimization frameworks, mixed-initiative and collaborative planning
and scheduling tools, reconfi gurable and self-organizing planning and scheduling
systems, and agent-based frameworks for distributed task and resource allocation.

 Shomir Wilson is a Ph.D. candidate at the University of Maryland. He earned bachelor ’ s
degrees in computer science, mathematics, and philosophy from Virginia Tech in
2005. His research interests include commonsense reasoning and natural language
understanding. (www.cs.umd.edu; shomir@umd.edu)

 Dean Wright is a Ph.D. candidate in computer science at the University of Maryland,
Baltimore County. He has received multiple degrees from Hood College in Frederick,
Maryland. He is researching ways to use metacognition to improve agent performance
in the face of multiple or continuing problems. (www.csee.umbc.edu/~dean3; dean3
@umbc.edu)

 Shlomo Zilberstein is Professor of Computer Science and Director of the Resource-
Bounded Reasoning Lab at the University of Massachusetts, Amherst. He received a
B.A. in computer science (summa cum laude) from the Technion, and a Ph.D. in
computer science from the University of California, Berkeley. Professor Zilberstein ’ s
research focuses on the foundations and applications of resource-bounded reasoning
techniques, which allow complex systems to make decisions while coping with uncer-
tainty, missing information, and limited computational resources. His research inter-
ests include approximate reasoning, decision theory, design of autonomous agents,
heuristic search, information gathering, principles of metareasoning, planning and
scheduling, multiagent systems, reinforcement learning, and reasoning under uncer-
tainty. (rbr.cs.umass.edu/shlomo; shlomo@cs.umass.edu)

334 Contributors

 Terry L. Zimmerman is a Project Scientist at Carnegie Mellon University ’ s Robotic
Institute. His research interests lie in automated planning and scheduling, particularly
methodologies for handling uncertainty, learning augmentations, and distributed and
multiagent planning systems. Dr. Zimmerman has over fi fteen years experience devel-
oping probabilistic risk and reliability assessment and safety analysis techniques for
energy production facilities. He received his B.S. in engineering science from Iowa
State University, his M.S. in nuclear science and engineering from Idaho State Univer-
sity, and a Ph.D. in computer science from Arizona State University in 2003. (wizim
+@cs.cmu.edu)

 Index

 Abduction, 314

 ACE, 45 – 48, 54

 Action affordances, 315, 317, 318, 320

 Action-perception loop, 4, 295

 Adaptation, 102, 113, 114, 116, 151, 161,

168, 169, 171 – 174, 201, 236, 242

 Aerial image, 103, 116

 Affordances, 314, 315, 316

 Alarms, 310

 Alarm subsystem, 312

 Altricial, 314

 Anomaly, 144, 186, 187, 190, 191, 193, 197,

236, 239

 Anthropomorphic self-models, 12, 296,

300 – 303

 Anthropomorphism, 297 – 299

 Anytime algorithm, 5, 34, 35, 37, 107, 121,

124, 131

 Appearance-based method, 288

 AQUA, 301

 Architecture, 9, 11, 31, 32, 34, 37, 38, 43, 80,

101, 103 – 105, 137, 153, 157, 161, 162, 184,

193, 194, 197, 201, 205, 206, 218, 219,

231, 233, 237, 238, 241 – 243, 246, 251, 253,

279, 289, 290, 292, 296, 301 – 303, 308,

310 – 313, 315, 317, 329, 331, 333

 Ariadne, 45, 50

 Assessment phase of MCL, 184, 186, 188,

190

 ATT-META, 313, 313n

 Autocognitive reasoning, 280

 Autonomic computing, 13, 234, 235, 246,

327

 Bayesian, 187, 190, 197, 286, 316

 Biology, 307

 Blackboard, 78, 80, 81, 86, 88, 94, 219, 222,

227, 329, 331

 Blame assignment, 152, 174

 Bounded optimality, 29, 31, 32, 37, 38, 327

 Bounded rationality, 10, 28 – 33, 37, 38, 43,

48, 77, 96, 131, 201, 217, 250, 311, 326,

331

 Brittleness, 11

 Case-based reasoning, 136, 167 – 172, 179,

180, 300, 301, 324, 328, 329, 331

 Causal chain, 289

 Causal learning, 288, 289, 291

 Causally indexical, 315

 Causation, 316, 333

 Changing viewpoint, 319

 Children, 313, 314, 316, 317, 326

 CogAff schema, 310, 319

 Commonsense memory, 300

 Commonsense psychology, 298, 299,

301 – 303

 Commonsense reasoning, 15, 17, 22 – 24, 267,

296, 298, 327, 330, 333

 Competences, 311 – 315, 319, 320

 Computational complexity, 11, 31, 32, 120,

123, 125, 126, 206, 209, 286

336 Index

 Computer vision, 101, 331

 Consciousness, 16, 17, 21, 23, 145, 313 – 315

 Constraint graph, 45, 47

 Contingency plan, 119, 121

 Control-regimes, 312

 Coordinators, 218, 219, 226

 Counting, 316

 c-taems, 219, 225

 Decision process component, 205 – 208, 213

 Decision theory, 27, 28, 333

 Dedicated hardware, 308

 Deep Space One, 288, 289

 Deliberation, 5, 7, 8, 30 – 32, 34, 37, 38, 59,

60, 64 – 67, 69, 71, 73, 74, 95, 119 – 126, 131,

202, 206, 207, 312

 Deliberative control, 65, 75, 202

 Design space, 307

 Diagnosis, 5, 112, 113, 139, 155, 159, 161,

184, 236, 288, 289, 301

 Diagonal Lemma, 18, 19

 DIAL, 139n5, 169

 Digression-based weight learning, 52

 Discoveries, 315 – 317

 DISTILL, 80, 83, 84, 88, 89

 Distributed metamanagement, 204, 217, 233,

239 – 244

 Distributed metareasoning, 5, 7, 8, 10, 11,

238, 297

 Domain general, 11, 184 – 187, 196

 Enabler, 222, 226, 228

 Enables constraint, 226

 Encapsulation, 313

 EPILOG, 267, 267n, 268 – 271, 274 – 278, 281,

329, 332

 Episodic logic, 244, 267n, 268

 Epistemic affordances, 314, 317 – 320

 Evolution, 240, 307, 308, 311, 319, 323

 Existential problem, 145

 Expectation, 24, 77, 137, 139, 142, 161, 168,

169, 171, 179, 184 – 190, 193, 195 – 197, 222,

237, 296, 297, 301, 327

 Explainable policy, 142

 Explanation, 5, 7, 78, 80, 104, 132, 132n2,

137, 139, 142 – 145, 169, 179, 195, 244 – 246,

267, 298, 300 – 302, 325, 328

 Face recognition, 109, 110, 110n

 Factory automation, 283, 284

 Failure, 5, 7, 11, 18, 24, 30, 53, 77, 88, 101,

102, 112, 113, 119, 132, 137, 139, 142 – 144,

152 – 155, 159, 161, 168 – 174, 176, 178, 180,

181, 183, 184, 186 – 188, 190 – 193, 195, 196,

235 – 239, 241, 244, 245, 279, 301 – 303

 Fault detection and recovery, 186, 288, 289,

291

 Flexible times, 218, 222

 Forgetting, 143, 144, 299, 302, 303

 FORR, 43, 44, 46 – 48, 51 – 55, 231

 Forward algorithm, 289

 Free will, 145, 315

 Freeze period, 204, 220, 223 – 230

 GeMEC, 205, 206, 208, 217, 243, 244

 Geometry, 316

 GRAVA, 11, 101 – 107, 110, 110n, 112 – 116,

161

 Ground level, 4 – 7, 7n, 13, 32, 44, 47, 114,

131, 132, 136, 137, 141, 162, 179, 180,

184, 185, 194, 195, 205, 234, 236, 237,

277, 279, 295, 308

 Guide phase of MCL, 188, 191, 193

 HACKER, 311

 Hard constraints, 61

 H-CogAff, 233, 310

 Hearsay II, 101, 329

 Heartbeat, 205, 207, 208, 210 – 213

 Hierarchical control, 311

 Homunculus problem, 145

 Hoyle, 44 – 46, 50, 51, 53, 55

 Human-like robots, 308

 Image interpretation, 101 – 105, 107, 109,

110n, 112 – 116, 331

Index 337

 Image interpretation architecture, 11, 101

 IMXP, 7, 132, 143

 Incompleteness Theorem, 18

 Indication, 188 – 190, 193

 Informed unrolling, 63

 Initial introspective cognitive agent. See

INTRO

 Innate information, 308

 Intelligent robots, 283 – 291, 308

 Intentions, 18, 21, 22, 81, 103, 112, 201, 327

 Internal, 6, 34, 81, 131, 141, 143, 152, 161,

167, 168, 172, 185, 186, 189, 192, 202,

205, 208, 217, 234, 235, 237, 239, 243,

249, 267, 269, 280, 286, 290, 308, 313, 315

 INTRO, 137, 139

 Introspection, 3, 7, 77, 79, 96, 132, 169,

177 – 180, 281, 297, 313, 324

 Introspective explanation, 132, 142

 Introspective learning, 168, 169

 Introspective meta-explanation pattern

(IMXP), 132

 Introspective monitoring, 4 – 7, 10, 11, 101,

103, 131, 137, 154, 251

 Introspective reasoning, 43, 78, 167 – 169, 172,

176 – 178, 328, 329

 IU-agent, 59, 60, 63 – 65, 67, 69 – 71, 73, 74

 Kinematics, 284

 Kinesthetic-visual matching, 286, 288, 289

 Latency, 227

 Learning, 7, 10, 13, 13n, 24n, 43, 44, 47 – 55,

77 – 83, 85, 87 – 97, 107, 115, 116, 122n,

132 – 134, 137, 139, 141, 142, 145, 151, 152,

160 – 162, 167 – 174, 176 – 178, 180, 181, 183,

188, 188n, 190 – 193, 195, 201, 203, 217,

231, 235, 236, 241, 254, 258 – 263, 268n,

275, 278, 279, 288, 289, 291, 301, 302,

308, 311, 312, 314, 316, 319, 320, 323 – 325,

327, 328, 330 – 334

 Learning goal, 7, 10, 78 – 89, 91, 94 – 97, 132,

137, 168, 170 – 172, 174, 178, 180, 181, 301,

302

 Livingstone, 288

 Logical discoveries, 316

 Loopy, 16, 19, 20 – 23, 125, 240

 Markov assumption, 141

 Markov decision process, 10, 43, 59, 60, 93,

202, 207, 209, 213

 Mars rover, 194

 Maven, 78, 80 – 89, 94

 MCC, 204 – 206, 208, 210, 211

 MCL, 11, 25, 161, 184, 185,-197

 MDL, 103, 104, 197, 111

 MDP, 10, 11, 59 – 61, 63 – 65, 67, 67n, 68, 69,

71, 73, 74, 93, 202, 206 – 211, 213

 MDP-based scheduling agent, 74

 Meta-AQUA, 6, 7, 7n, 80, 95, 131, 136, 137,

139, 144, 300 – 302

 Metacognition, 3, 12, 184, 201, 227 – 229, 240,

245, 246, 307, 311, 315, 319, 325, 327,

330, 331, 333

 Metacognitive loop, 11, 25, 161, 184, 185,

197

 Metaknowledge, 3, 4, 11, 111, 114, 116, 134,

136, 136n3, 152, 156 – 158, 161, 162, 235,

268, 274, 275 – 279, 319

 Metalevel control, 4, 5, 6, 8, 10, 11, 33, 34,

59, 60, 63 – 65, 70, 71, 73, 74, 94, 96, 103,

179, 185, 202 – 206, 209, 210, 212, 213, 225,

228, 238, 239, 242, 279, 311, 331

 Metalevel networks, 240

 Metalevel rationality, 31

 Meta-management, 310 – 315, 319

 Metamemory, 3

 Meta-metaknowledge, 136n3

 Meta-metalevel control, 203

 Metareasoner, 6, 155, 162, 184, 186, 193,

249 – 252, 262, 263

 Metareasoning, 3 – 13, 15, 23, 24, 24n, 26 – 38,

43, 44, 47, 48, 50 – 55, 77 – 79, 95, 96,

101 – 105, 109, 111, 113 – 116, 119 – 121,

121n, 122 – 126, 131 – 134, 136, 137, 139,

141, 142, 145, 151 – 157, 160 – 163, 167, 168,

178, 179, 181, 183 – 185, 201, 204, 206, 217,

338 Index

218, 225, 230, 231, 236 – 238, 242, 249 – 251,

251n, 252, 253, 255, 258, 260, 262, 268,

271, 274, 275, 277, 279, 280, 290, 295 – 303,

308, 311, 319, 326, 327, 331, 333

 Metareasoning problem, 11, 32, 37, 38,

119 – 126

 Meta-semantic ontology extension, 315

 Minimal description length, 107

 Mirror rouge test, 285

 Model-based diagnosis, 112, 113, 288

 Model of intelligence, 8

 Model(s) of self, 5, 8 – 10, 12, 288, 290, 291,

295, 298. See also Self-model

 Monitoring, 4 – 11, 21, 22, 25, 30, 33 – 36, 60,

70, 79, 101, 103, 131, 132, 137, 139, 154,

159, 167, 170 – 174, 179, 184 – 187, 238 – 240,

242, 251, 252, 267, 277 – 280, 295, 297 – 300,

302, 307, 308, 311, 312, 315, 323

 Monte Carlo, 106, 107, 253

 Monte-Carlo sampling, 107

 Multiagent metalevel control, 203, 204,

209

 Multiagent policy, 8, 203, 297

 Multiagent systems, 5, 11, 13, 74, 240, 242,

249, 297, 324, 325, 329, 331, 333

 Mutual meta-management, 311

 NASA, 288

 Netrads, 202, 204 – 211, 213

 Neuroscience, 246, 317

 Niche space, 307

 Nico, 286, 287

 Nogood, 221, 222, 225

 Non-local coordination, 225, 227, 228

 Note (monitoring) phase of MCL, 24, 188,

190, 191, 196

 NP-hard, 45, 123

 N-pops-and-growth, 68, 70

 Object level, 4 – 7, 9, 11 – 13, 13n, 21, 29 – 38,

43, 44, 46, 47, 54, 114, 115, 131, 132, 136,

137, 139, 155, 158 – 160, 162, 179, 180, 184,

185, 193 – 195, 197, 202, 204, 205, 217,

233 – 244, 251, 267, 269, 277 – 279, 295, 296,

301 – 303

 Online monitoring, 101

 Ontology, 188 – 193, 235, 313 – 315

 Open list, 63 – 65, 67 – 69, 71

 Optimal metareasoning, 10, 29 – 33, 36 – 38,

43, 120, 125, 126, 201

 Organizational closure, 240

 Performance profi le, 33 – 36, 38, 60, 65, 74,

121, 205, 206, 208, 252, 253

 Personae, 310, 312

 Phase boundary, 319

 Phenomenal consciousness, 314

 Philosophical confusions in robots, 315

 Philosophy, 21, 27, 307, 308, 311, 323, 332,

333

 Phylogeny vs. ontogeny, 311

 Physical environment, 112, 308

 Picture grammar, 104, 107

 Planning, 5, 6, 9, 13, 27, 28, 30, 33, 59, 79,

80, 89, 131, 134, 136, 137, 139, 143, 151,

183, 194, 195, 201, 203, 223, 236, 237,

267, 278, 279, 299, 300, 308, 310, 311,

318, 324 – 326, 329 – 334

 POIROT, 77, 79, 80, 88, 90, 94

 Precocial, 314

 Prediction divergence, 12, 218, 249, 255, 257,

262

 Probabilities, 109, 190, 191, 193, 195, 218,

255, 268, 317 – 319

 Problem abstraction component, 205, 206

 Problem of appropriateness, 145

 Problem of identity, 145

 Process-openlist-n-percent, 68

 PRODIGY, 137, 139

 Prodigy/Analogy, 139

 Propagator, 219, 221

 Proto affordances, 315, 316

 Pruning, 29, 64

Metareasoning (cont.)

Index 339

 PSPACE-hard, 122, 123

 Psychology, 12, 13, 201, 240, 296, 298, 299,

301 – 303, 317, 323

 Q-learning, 141, 188n, 191, 192

 QUAIL, 78, 79, 94

 Qualia, 314

 Quality accumulation function (QAF), 61, 62,

225

 Quasi-quotation, 268, 269, 280

 Question answering, 270, 274, 278, 280

 Rational metareasoning, 31

 Referentially, 313

 Reinforcement-learning, 141

 Relative support weight learning, 52

 Remote agent, 220, 222, 228, 288

 Repair, 24, 101, 139, 152, 155, 157, 159 – 161,

169, 170, 185, 187, 190, 193, 195, 196,

233, 241, 284, 301, 327

 Representation(s), 7, 9, 12, 21, 30, 34, 47, 54,

60, 80, 107, 111, 114, 116, 132, 134, 136,

137, 152 – 154, 157, 158, 160, 161, 219, 222,

225, 249, 254, 267, 268, 279, 280, 285,

295 – 299, 301, 302, 303, 308, 313, 316, 320

 Requirements, 9, 12, 78, 169, 233, 246,

267 – 269, 284, 307, 308, 313, 316, 319, 320

 Research questions, 5, 196, 313

 Response, 24, 102, 112, 134, 137, 169, 178,

186, 188, 191 – 193, 195, 196, 202, 210, 217,

218, 220, 223, 225, 227, 228, 230, 239, 290

 Robotic, 246, 283, 284, 286, 288 – 291, 320

 Robots, 12, 101, 194, 283, 288, 290, 307,

314 – 317, 319

 ROC — region of certainty, 319

 ROU — region of uncertainty, 319

 Rule-based diagnosis, 288

 Satellite images, 102

 Science, 139, 195, 313, 314

 Second-order epistemic information, 318, 319

 Seeming, 19

 Segmentation algorithm, 103, 107

 Self-adaptation, 3, 102, 103, 105, 109, 111,

116, 151 – 153, 156, 160 – 162, 169, 323

 Self-adaptive software, 102, 103, 112, 113

 Self-assessment, 95

 Self-aware, 3, 12, 43, 53, 55, 113, 186,

267 – 269, 280, 285, 313, 329, 332

 Self-concept, 285

 Self-debugging, 311

 Self-description, 25, 133, 307

 Self-diagnosis, 11, 152, 155, 157 – 161

 Self-directed behavior, 285, 311

 Self-explanation, 132, 139, 140, 142, 143,

145, 151, 217, 233, 244 – 246

 Self-knowledge, 11, 25, 116, 132, 134, 136,

139, 158, 168, 234 – 236 238, 313

 Self-model, 12, 152, 167 – 169, 183, 185 – 187,

235, 238, 240, 241, 277, 280, 284, 286,

288 – 291, 295 – 298, 300 – 303, 330

 Self-modifying code, 11, 132, 133

 Self-projection, 139n6

 Self-protection, 217, 233, 237 – 239, 244

 Self-reference, 10, 15, 17 – 22, 25

 Self-understanding, 11, 132, 136, 137, 145

 Simple temporal network (STN), 219, 220

 Slot, 221

 SMILE, 187, 187n

 SOAR, 311

 Soft constraints, 61, 221

 Sort-budget, 68, 69

 Statistically parsed, 104

 Story understanding, 7, 131, 132, 137, 139,

300, 301

 Structured CSP, 45

 Substitutional quantifi cation, 268, 271, 280

 TAEMS task structure, 59, 61 – 63, 70

 Tarski hierarchy, 19

 Teleological reasoning, 163

 Telepathy, 311

 Theory of mind, 296 – 298

 Thread, 219, 220

340 Index

 Time-to-sort heuristics, 67

 TMXP (trace meta-explanation pattern), 7,

131 – 132

 Trade-offs, 32, 204, 307, 308, 313, 320

 Treasure, 237, 238

 Type II rationality, 28

 Uncertainty, 5, 28, 30, 34, 63, 131, 141, 210,

222, 317 – 319

 Workfl ow, 79 – 82, 85 – 89, 94 – 96, 132

 Workfl ow model, 82, 86 – 89, 94, 96

 XPLAIN, 80, 84, 88, 89

	Cover

	Contents
	Foreword
	I Basic Themes
	1 Metareasoning
	2 There’s No “Me” in “Meta”—Or Is There?
	3 Metareasoning and Bounded Rationality

	II Metalevel Control
	4 Learning Expertise with Bounded Rationality and Self-Awareness
	5 Controlling Deliberation in Coordinators
	6 Goal-Directed Metacontrol for Integrated Procedure Learning
	7 Metareasoning for Multispectral Satellite Image Interpretation
	8 Metareasoning as a Formal Computational Problem

	III Introspective Monitoring
	9 Metareasoning, Monitoring, and Self-Explanation
	10 Metareasoning for Self-Adaptation in Intelligent Agents
	11 Using Introspective Reasoning to Improve CBR System Performance
	12 The Metacognitive Loop and Reasoning about Anomalies

	IV Distributed Metareasoning
	13 Coordinating Agents’ Metalevel Control
	14 The Role of Metareasoning in Achieving Effective Multiagent Coordination
	15 Distributed Metamanagement for Self-Protection and Self-Explanation
	16 Weighted Prediction Divergence for Metareasoning

	V Models of Self
	17 Metareasoning as an Integral Part of Commonsense and Autocognitive Reasoning
	18 Robotic Models of Self
	19 Anthropomorphic Self-Models for Metareasoning Agents
	20 Varieties of Metacognition in Natural and Artificial Systems

	Contributors
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /None
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /None
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /None
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /None
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /None
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /None
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /None
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /None
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /None
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /None
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /None
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /None
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /None
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /None
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /None
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /None
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /None
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /None
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /None
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /None
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /None
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /None
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /None
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /None
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

