To appear in: AIIDE-08, October 22-24, 2008, Stanford University, California.

Combining Model-Based Meta-Reasoning and Reinforcement Learning
for Adapting Game Playing Agents

Patrick Ulam, Joshua Jones & Ashok K. Goel
School of Interactive Computing, Georgia Institute of Technology, Atlanta, USA 30332
{pulam, jkj, goel } @cc.gatech.edu

Abstract

Human experience with interactive games will be
enhanced if the game-playing software agents learn
from their failures and do not make the same mis-
takes over and over again. Reinforcement learning,
e.g., Q-Learning, provides one method for learning
from failures. Model-based meta-reasoning that
uses an agent’s self-model for blame assignment
provides another. In this paper, we combine the
two methods. We describe an experimental inves-
tigation of a specific task (defending a city) in a
computer war strategy game called FreeCiv. Our
results indicate that in the task examined, model-
based meta-reasoning coupled with reinforcement
learning enables the agent to learn the task with ef-
fectiveness matching that of hand coded agents and
with speed exceeding that of non-augmented rein-
forcement learning.

1 Introduction

Intelligent agents, such as software agents acting as non-
player characters (NPC) in an interactive game, often fail
in their tasks. However, NPC’s in most commercially avail-
able interactive games generally do not learn from their mis-
takes. As a result, the human player quickly tires of playing
the game. The human player’s experience with an interactive
game surely will be enhanced if the NPC’s learned from their
failures and not make the same mistake over and over again.

Meta-reasoning provides one method for learning from
failures. In model-based meta-reasoning, an agent is en-
dowed with a self-model, i.e., a model of its own knowledge
and reasoning. When the agent fails to accomplish a given
task, the agent uses its self-model, possibly in conjunction
with traces of its reasoning on the task, to assign blame for
the failure(s) and modify its knowledge and reasoning accord-
ingly. Such techniques have been used in domains ranging
from game playing [B. Krulwich and Collins, 1992], to route
planning [Fox and Leake, 1995], to assembly planning [Mur-
dock and Goel, 2003].

However, [Murdock and Goel, 2008] showed in some cases
model-based meta-reasoning can only localize the causes for
its failures to specific portions of its task structure, but not
necessarily identify the precise causes or the modifications

needed to address them. They used reinforcement learning
(RL) to complete the partial solutions generated by meta-
reasoning: first, the agent used its self-model to localize the
needed modifications to specific portions of its task structure,
and then it used Q-learning within the identified parts of the
task structure to precisely identify the needed modifications.

In this paper, we evaluate the inverse hypothesis, viz.,
model-based meta-reasoning may be useful for focusing RL.
The learning space represented by combinations of all pos-
sible modifications to an agent’s reasoning and knowledge
can be too large for RL to work efficiently. If, however,
the agent’s self-model partitions the learning space into much
smaller subspaces and model-based meta-reasoning localizes
the search to specific subspaces, then RL can be expedient.
We evaluate this hypothesis in the context of game play-
ing in a highly complex, extremely large, non-deterministic,
partially-observable environment.

2 Reinforcement Learning

Reinforcement learning (RL) is a machine learning technique
in which an agent learns through trial and error to maxi-
mize rewards received for taking particular actions in partic-
ular states over an extended period of time [Kaelbling et al.,
1996]. Although RL is very popular and has been successful
in many domains, its use is limited in some domains because
of the so-called curse of dimensionality: the exponential
growth of the state space required to represent additional state
variables. In many domains, this prevents the use of RL with-
out significant abstraction of the state space. To overcome this
limitation, much research has investigated the incorporation
of background knowledge, e.g. in the form of some hierar-
chical task decomposition, into RL. There are many variants
of hierarchical RL, most of which are rooted in the theory
of Semi-Markov decision processes [Barto and Mahadevan,
2003]. Hierarchical RL techniques such as MAXQ value de-
composition [Dietterich, 1998] rely on domain knowledge in
order to determine the hierarchy of tasks that must be accom-
plished by the agent, as does our approach. However, in our
approach, the agent uses model-based meta-reasoning to de-
termine the portion of the task structure over which the re-
ward should be applied after task execution. Furthermore,
many hierarchical methods focus on abstractions of tempo-
rally extended actions for the hierarchy [Sutton er al., 19991,
our approach uses the hierarchy to delimit natural partitions

in non-temporally extended tasks.

Anderson, et. al. [Anderson et al., 2006] have applied
meta-reasoning in the context of RL. In their “metacogni-
tive loop” (MCL) architecture, a metareasoning component
monitors the performance of an RL-based agent. The meta-
reasoner is able to detect problems in RL, such as those that
may be caused by environmental perturbations. When the
meta-reasoner detects such an occurrence, measures are taken
to assist the lower-level RL portion of the agent in recovering
from the problems. These measures may include discarding
the already learned policy, or adjusting the exploration factor
in order to encourage a period of increased exploration after a
perturbation is detected. Thus, in MCL, meta-reasoning plays
the role of monitoring for and correcting problems in RL. In
contrast, in the work described here, meta-reasoning is used
to focus RL during normal operation. The two approaches
are likely to be complementary.

3 The FreeCiv Game

The domain for our experimental investigation is a popular
computer war strategy game called FreeCiv. FreeCiv is a
multi-player game in which a player competes either against
several software agents that come with the game or against
other human players. Each player controls a civilization that
becomes increasingly modern as the game progresses. As
the game progresses, each player explores the world, learns
more about it, and encounters other players. Each player
can make alliances with other players, attack the other play-
ers, and defend their own assets from them. FreeCiv pro-
vides a highly complex, extremely large, non-deterministic,
partially-observable domain in which the agent must operate.
In the course of a game (that can take a few hours to play)
each player makes a large number of decisions for his civi-
lization ranging from when and where to build cities on the
playing field, to what sort of infrastructure to build within the
cities and between the civilizations’ cities, to how to defend
the civilization.

Due the highly complex nature of the FreeCiv game, our
work so far has addressed only subtasks within the game,
and not the game as a whole. Due to limitations of space,
in this paper we describe only one task in detail, which we
call Defend-City. This task pertains to the defense of one of
the agent’s cities from enemy civilizations.

4 Agent Model

We built a simple agent (that we describe below) for the
Defend-City task. The agent was then modeled in a variant
of a knowledge-based shell called REM [Murdock and Goel,
2008] using a version of a knowledge representation called
Task-Method-Knowledge Language (TMKL). REM agents
written in TMKL are divided into tasks, methods, and knowl-
edge. A task is a unit of computation; a task specifies what is
done by some computation. A method is another unit of com-
putation; a method specifies how some computation is done.
The knowledge portion of the model describes the different
concepts and relations that tasks and methods in the model
can use and affect as well as logical axioms and other in-
ferencing knowledge involving those concepts and relations.

Formally, a TMKL model consists of a tuple (T, M, K) in
which T is a set of tasks, M is a set of methods, and K is
a knowledge base. The representation of knowledge (K) in
TMKL is done using Loom, an off-the-shelf knowledge rep-
resentation (KR) framework. Through the use of a formal
framework such as TMKL, dependencies between the knowl-
edge used by tasks as well as dependencies between tasks
themselves can be described in such a way that an agent will
be able to reason about the structure of the tasks. TMKL is
similar to HTN [Erol et al., 1994] but more expressive than
HTN in part because TMKL enables explicit representation
of sub-goals and multiple plans for achieving a goal. When
Hoang, Lee-Urban and Munoz-Avila [Hoang et al., 2005] de-
signed a game-playing agent in both TMKL and HTN, they
found that TMKL provides constructs for looping, condi-
tional execution, assignment functions with return values, and
other features not found in HTN. They also found that since
HTN implicitly provides support for the same features, trans-
lation from TMKL to HTN is always possible. A thorough
discussion of TMKL can be found in [Murdock and Goel,
2008].

Table 1 describes the functional model of the Defend-City
task as used by model-based meta-reasoning. The overall
Defend-City task is decomposed into two sub-tasks by the
Evaluate-then-Defend method. These subtasks are the eval-
uation of the defense needs for a city and the building of a
particular structure or unit at that city. One of the subtasks,
Evaluate-Defense-Needs, can be further decomposed through
the Evaluate-Defense method into two additional subtasks: a
task to check internal factors in the city for defensive require-
ments and a task to check for factors external to the imme-
diate vicinity of the city for defensive requirements. These
subtasks are then implemented at the procedural level for ex-
ecution as described below.

The Defend-City task is executed each turn that the agent
is not building a defensive unit in a particular city in order
to determine if production should be switched to a defensive
unit. It is also executed each turn that a defensive unit has
finished production in a particular city. The internal evalua-
tion task utilizes knowledge concerning the current number
of troops that are positioned in and around a particular city
to determine if the city has an adequate number of defenders
based on available information. This is implemented as a re-
lation in the form of the evaluation of the linear expression:
allies(r) + d > t where allies(r) is the number of allies
within radius r, d is the number of defenders in the city and
t is a threshold value. The external evaluation of a city’s de-
fenses examines the area within a specified radius around a
city for nearby enemy combat units. It uses the knowledge of
the number of units, their distance from the city, and the num-
ber of units currently allocated to defend the city in order to
provide an evaluation of the need for additional defense. This
is also implemented as a relation in the form of the linear ex-
pression enemies(r)+e; < d where enemies(r) is the num-
ber of enemies in radius r of the city, e; is a threshold value,
and d is the number of defenders in the city. These tasks pro-
duce knowledge states in the form of defense recommenda-
tions that are then used by the task that builds the appropriate
item at the city. The Build-Defense task uses the knowledge

Table 1: TMKL Model of Defend-City Task
| TMKL Model of the Defend-City Task]

Task Defend-City
by | Evaluate-Then-Build
makes | City-Defended
Method Evaluate-Then-Build
transitions:
state: s/ | Evaluate-Defense-Needs
success | s2
state: s2 | Build-Defense
success | success

additional-result | City-Defended, Unit-Built

Wealth-Built

Task Evaluate-Defense-Needs
input | External/Internal-Defense-Advice
output | Build-Order
by | UseDefenseAdviceProcedure
makes | DefenseCalculated
Method Evaluate-Defense-Needs
transitions:
state: s/ | Evaluate-Internal
success | s2
state: s2 | Evaluate-External
success | success

additional-result | Citizens-Happy, Enemies-Accounted

Allies-Accounted

Task Evaluate-Internal
input | Defense-State-Info
output | Internal-Defense-Advice
by | InternalEvalProcedure
makes | Allies-Accounted, Citizens-Happy
Task Evaluate-External
input | Defense-State-Info
output | External-Defense-Advice
by | ExternalEvalProcedure
makes | Enemies-Accounted
Task Build-Defense
input | BuildOrder

by | BuildUnitWealthProcedure
makes | Unit-Built, Wealth-Built

states generated by the evaluation subtasks, knowledge con-
cerning the current status of the build queue, and the technol-
ogy currently available to the agent to determine what should
be built for a given iteration of the task. The Build Defense
task will then proceed to build a defensive unit, either a war-
rior or a phalanx based on the technology level achieved by
the agent at that particular point in the game, or wealth to
keep the citizens of the city happy. The goal of the Defend-
City task is to provide for the defense of a city for a certain
number of years. The task is considered successful if the city
has not been conquered by opponents by the end of this time
span. If the enemy takes control of the city the task is con-
sidered a failure. In addition, if the city enters civil unrest,
a state in which the city revolts because of unhappiness, the

task is considered failed. Civil unrest is usually due the ne-
glect of infrastructure in a particular city that can be partially
alleviated by producing wealth instead of additional troops.

5 Experimental Setup

We compared four variations of the Defend-City agent to
determine the effectiveness of model-based meta-reasoning
in guiding RL. These were a control agent, a pure meta-
reasoning agent, a pure RL agent, and a meta-reasoning-
guided RL agent. The agents are described in detail below.

Each experiment was composed of 100 trials and each trial
was set to run for one hundred turns at the hardest difficulty
level in FreeCiv against eight opponents on the smallest game
map available. This was to ensure that the Defend-City task
would be required by the agent. The same random seed was
utilized in all the trials to ensure that the same map was used.
The random seed selected did not fix the outcome of the com-
bats, however. The Defend-City task is considered successful
if the city neither revolted nor was defeated. If the task was
successful no adaptation of the agent occurred. If the agent’s
city is conquered or the city’s citizens revolt, the Defend-City
task is considered failed. Execution of the task is halted and
adaptation appropriate to the type of agent is initiated. The
metrics measured in these trials include the number of suc-
cessful trials in which the city was neither defeated nor did
the city revolt. In addition, the number of attacks successfully
defended per game was measured under the assumption that
the more successful the agent in defending the city, the more
attacks it will be able to successfully defend against. The fi-
nal metric measured was the number of trials run between
failures of the task. This was included as a means of deter-
mining how quickly the agent was able to learn the task and
is included under the assumption that an agent with longer
periods between task failures indicate that the task has been
learned more effectively.

5.1 Control Agent

The control agent was set to follow the initial model of the
Defend-City task and was not provided with any means of
adaptation. The initial Defend-City model used in all agents
executes the Evaluate-External only looking for enemy units
one tile away from the city. The initial Evaluate-Internal task
only looks for defending troops in the immediate vicinity of
the city and if there are none will build a single defensive
unit. The control agent will not change this behavior over the
lifetime of the agent.

5.2 Pure Model-Based Meta-Reasoning Agent

The second agent was provided capabilities of adaption based
purely on model-based meta-reasoning. Upon failure of the
Defend-City task, the agent used an execution trace of the last
twenty executions of the task, and in conjunction with the cur-
rent model, it performed failure-driven model-based adapta-
tion. The first step is the localization of the error through the
use of feedback in the form of the type of failure, and the
model of the failed task. Using the feedback, the model is
analyzed to determine in which task the failure has occurred.
For example, if the Defend-City task fails due to citizen revolt

Table 2: State variables for RL. Based Agents

| Pure RL State Variables [Additional State Variables | Associated Sub-Task |

<1 Allies in City

Evaluate-Internal

< 3 Allies in City

Evaluate-Internal

< 6 Allies in City

Evaluate-Internal

<1 Allies Nearby

Evaluate-Internal

< 2 Allies Nearby

Evaluate-Internal

< 4 Allies Nearby

Evaluate-Internal

< 1 Enemies Nearby

Evaluate-External

< 3 Enemies Nearby

Evaluate-External

< 6 Enemies Nearby

Evaluate-External

Internal Recommend

Evaluate-Defense

External Recommend

Evaluate-Defense

Table 3: Failure types used in the Defend-City task

| Model Location (task) [Types of Failures |

Defend-City Unit-Build-Error,
Wealth-Build-Error,
Citizen-Unrest-Miseval,
Defense-Present-Miseval,
Proximity-Miseval,
Threat-Level-Miseval,
None
Unit-Build-Error,
Wealth-Build-Error,
None
Citizen-Unrest-Miseval,
Defense-Present-Miseval,
None
Proximity-Miseval,
Threat-Level-Miseval,
None

Build-Defense

Evaluate-Internal

Evaluate-External

the algorithm would take as input: the Defend-City model, the
traces of the last twenty executions of the task, and feedback
indicating that the failure was a result of a citizen revolt in the
city. The failure localization algorithm would take the model
as well as the feedback as input. As a city revolt is caused by
unhappy citizens, this information can be utilized to help lo-
calize where in the model the failure may have occurred. This
algorithm will go through the model, looking for methods or
tasks that result in knowledge states concerning the citizens’
happiness. It will first locate the method Evaluate-Defense-
Need and find that this method should result in the assertion
Citizens-Happy. It will continue searching the sub-tasks of
this method in order to find if any sub-task makes the asser-
tion Citizens-Happy. If not, then the error can be localized
to the Evaluate-Defense-Need task and all sub-tasks below it.
In this case, the Evaluate-Internal task makes the assertion
Citizens-Happy and the failure can be localized to that partic-
ular task. An extensive discussion on failure localization in
meta-reasoning can be found in [Murdock and Goel, 2008].
Given the location in the model from which the failure is sus-
pected to arise, the agent then analyzes the execution traces
available to it to determine to the best of its ability what the

type of error occurred in the task execution through the use
of domain knowledge. For this agent, this is implemented
through the use of a failure library containing common fail-
ure conditions found within the Defend-City task. An exam-
ple of a failure library used in this task is shown in Table 3.
If a failure has been determined to have occurred, it is then
used to index into a library of adaptation strategies that will
modify the task in the manner indicated by the library. These
adaptations consist of small modifications to the subtasks in
the defend city tasks, such as changing the Evaluate-External
subtask to look for enemies slightly further away. This is
a slight variation on fixed value production repair [Murdock
and Goel, 2008], as instead of adding a special case for the
failed task, the agent replaces the procedure with a slightly
more general version. If multiple errors are found with this
procedure, a single error is chosen stochastically so as to min-
imize the chance of over-adaptation of the agent.

5.3 Pure Reinforcement Learning Agent

The third agent used a pure RL strategy for adaptation im-
plemented via Q-Learning. The state space encoding used by
this agent is a set of nine binary variables as seen in Table 2.
This allows a state space of 512 distinct states. It should be
noted, however, that not all states are reachable in practice.
The set of actions available to the agent were: Build Wealth,
Build Military Unit. The agent received a reward of -1 when
the Defend-City task failed and a reward of O otherwise. In
all trials alpha was kept constant at 0.8 and gamma was set to
0.9.

5.4 Meta-Reasoning-Guided RL Agent

The final agent utilized model-based meta-reasoning in con-
junction with RL. The Defend-City task model was aug-
mented with RL by partitioning the state space utilized by
the pure RL agent into three distinct state spaces that are then
associated with the appropriate sub-tasks of the Defend-City
task. This essentially makes several smaller RL problems.
Table 2 shows the states that are associated with each sub-
task. The Evaluate-External task is associated with three
binary state variables. Its actions are the equivalent of the
knowledge state produced via the Evaluate-External relation
in the pure meta-reasoning agent, namely a binary value in-
dicating if the evaluation procedure recommends that defen-

Number of Failures
100

80
60

Failures

40 | _ !
0! ‘ ‘ ‘ !

Pure RL

Control Model-
Based

Model+RL

Type of Adaptation

Figure 1: Number of Failures

sive units be built. In a similar manner, Evaluate-Internal is
associated with six binary state variables as shown Table 2.
The actions are also a binary value representing the relation
used in the pure meta-reasoning agent. There are two ad-
ditional state variables in this agent that are associated with
the Evaluate-Defenses sub-task. The state space for this par-
ticular portion of the model are the outputs of the Evaluate-
External and Evaluate-Internal tasks and is hence two binary
variables. The actions for this RL task is also a binary value
indicating a yes or no decision on whether defensive units
should be built. It should be noted that while the actions of the
individual sub-tasks are different from the pure RL agent, the
overall execution of the Defend-City task results in two pos-
sible actions for all agents, namely an order to build wealth
or to build a defensive unit. Upon a failure in the task execu-
tion, the agent initiates meta-reasoning in a manner identical
to the pure meta-reasoning agent. Utilizing a trace of the last
twenty executions of the Defend-City task as well as its in-
ternal model of the Defend-City task, the agent localizes the
failure to a particular portion of the model as described in sec-
tion 5.2. If an error in the task execution is detected, instead
of utilizing adaptation libraries to modify the model of the
task as in the pure meta-reasoning agent, the agent applies a
reward of -1 to the sub-task’s reinforcement learner as indi-
cated via meta-reasoning. The reward is used to update the
Q-values of the sub-task via Q-Learning at which point the
adaptation for that trial is over. If no error is found, then a
reward of O is given to the appropriate reinforcement learner.
In all trials alpha was kept constant at 0.8 and gamma was set
to 0.9.

6 Results and Discussion

Figure 1 depicts the number of trials in which a failure oc-
curred out of the one hundred trials run for each agent. The
more successful adaptation methods should have a lower
failure rate. As can be seen from the results, the meta-
reasoning-guided RL agent proved most effective at learn-
ing the Defend-City task, with a success rate of around twice
that of the control agent. The pure meta-reasoning agent
with the hand designed adaptation library proved to be suc-
cessful also with a failure rate slightly higher then that of
the meta-reasoning-guided RL agent. The pure RL agent’s
performance did not match either of the other two agents in
this metric, indicating that most likely the agent had not had
enough trials to successful learn the Defend-City task. The

of Attacks Survived Per Trial

of Attacks
QO =N WhH DN

E

Control Model
Based

Adaptation Method

Pure RL Model+RL

Figure 2: Average Attacks Resisted

Average Trials beween Failures

o

I

w

Trials Between Failures
N

o

Failures

Figure 3: Average Number of Trials Between Failures

pure RL agent’s failure rate did improve over that of the con-
trol, however, indicating that some learning did take place,
but not at the rate of either the pure meta-reasoning agent or
the meta-reasoning-guided RL agent.

The second metric measured was the number of attacks
successfully defended by the agent in its city. This serves
as another means of determining how effectively the agent
has been able to perform the Defend-City task. The more
attacks that the agent was able to defend, the more success-
fully the agent had learned to perform the task. The results
from this metric can be seen in Figure 2. Both the pure meta-
reasoning and meta-reasoning-guided RL agent were able to
defend against an equal number of attacks per trial indicating
that both methods learned the task to an approximately equal
degree of effectiveness. The pure RL based agent performed
around twice as well as the control but was less then half as
effective as the meta-reasoning methods, once again lending
support to the conclusion that the pure RL based agent is ham-
pered by its slow convergence times. This result, coupled
with the number of failures, provide significant evidence that
the meta-reasoning methods learned to perform the task with
a significant degree of precision. They not only reduced the
number of failures when compared to the control and pure RL
based agent, but were also able to defend the city from more
than twice as many attacks per trial.

Figure 3 depicts the average number of trials between fail-
ures for the first twenty-five failures of each agent averaged
over a five trial window for smoothing purposes. This metric
provides a means of measuring the speed of convergence of
each of the adaptation methods. As can be seen, the meta-
reasoning-guided RL agent shows the fastest convergence
speed followed by the non-augmented meta-reasoning. The

pure RL did not appear to improve the task’s execution un-
til around the twelfth failed trial. After this point the con-
trol and the pure RL inter-trial failure rate begin to deviate
slowly. Though not depicted in the figure, the performance
of the pure RL based agent never exceeded a inter-trial fail-
ure rate of three even after all trials were run. This lends
further evidence to the hypothesis that pure RL cannot learn
an appropriate solution to this problem in the allotted num-
ber of trials though it should be noted that the performance of
this agent did slightly outperform that of the control, indicat-
ing that some learning did occur. The meta-reasoning-guided
RL agent outperformed the pure meta-reasoning agent in this
metric.

Beyond the experiment described in detail in this paper, we
have also applied meta-reasoning-guided RL to another prob-
lem in FreeCiv. While our results for the new problem are
still preliminary, this additional work bears some mention as
it helps to establish the generality of the method. In this al-
ternative setting, we wish to learn to make decisions about
when to use offensive units to attack enemy units in FreeCiv.
The agent will inspect a candidate offensive unit and an en-
emy unit, comparing their relative strengths. The agent then
either decides to attack the enemy unit, or to hold position
and defend, based on the expectation of victory or defeat. We
have broken the decision making process into several distinct
underlying decisions that compare various aspects of the two
units in question. Reward (punishment) is provided when ei-
ther of the two units dies. The reward is +1 if the enemy
is defeated or -1 if the friendly unit is killed. In this setting
so far we have simply compared a baseline based on random
action selection to the behavior observed when we make use
of meta-reasoning-guided RL. The random actor defeated the
enemy unit 49% of the time, while the meta-reasoning-guided
RL agent was able to kill the enemy unit 68% of the time, pro-
viding evidence that meta-reasoning-guided RL is successful
in improving the performance of the agent.

7 Conclusions

This work describes how model-based meta-reasoning may
guide RL. In the experiments described, this has been shown
to have two benefits. The first is a reduction in learning time
as compared to an agent that learns the task via pure RL. The
model-guided RL agent learned the task described, and did
so faster then the pure RL based agent. In fact, the pure
RL based agent did not converge to a solution that equaled
that of either the pure meta-reasoning agent or the meta-
reasoning-guided RL agent within the allotted number of tri-
als. Secondly, the meta-reasoning-guided RL agent shows
benefits over the pure meta-reasoning agent, matching the
performance of that agent in the metrics measured in addi-
tion to converging to a solution in fewer trials. In addition,
the augmented agent eliminates the need for an explicit adap-
tation library such as is used in the pure-model based agent
and thus reduces the knowledge engineering burden on the
designer significantly. This work has only looked at an agent
that can play a small subset of FreeCiv. Future work will fo-
cus largely on scaling up this method to include other aspects
of the game and hence larger models and larger state spaces.

References

[Anderson et al., 2006] Michael L. Anderson, Tim Oates,
Waiyian Chong, and Donald Perlis. The metacognitive
loop I: Enhancing reinforcement learning with metacogni-
tive monitoring and control for improved perturbation tol-
erance. J. Exp. Theor. Artif. Intell., 18(3):387-411, 2006.

[B. Krulwich and Collins, 1992] L. Birnbaum B. Krulwich
and G. Collins. Learning several lessons from one experi-
ence. In Proceedings of the 14th Annual Conference of the
Cognitive Science Society, pages 242-247, 1992.

[Barto and Mahadevan, 2003] A. G. Barto and S. Mahade-
van. Recent advances in hierarchical reinforcement learn-
ing. Discrete Event Dynamic Systems, 13(4):341-379,
2003.

[Dietterich, 1998] Thomas G. Dietterich. = The MAXQ
method for hierarchical reinforcement learning. In Pro-
ceedings of the Fifteenth International Conference on Ma-
chine Learning, pages 118-126, 1998.

[Erol et al., 1994] Kutluhan Erol, James Hendler, and
Dana S. Nau. HTN planning: Complexity and expressiv-
ity. In Proceedings of the Twelfth National Conference on
Artificial Intelligence (AAAI-94), volume 2, pages 1123—
1128, Seattle, Washington, USA, 1994. AAAI Press/MIT
Press.

[Fox and Leake, 1995] Susan Fox and David B. Leake. Us-
ing introspective reasoning to refine indexing. In Proceed-
ings of the Thirteenth International Joint Conference on
Artificial Intelligence, 1995.

[Hoang er al., 2005] Hai Hoang, Stephen Lee-Urban, and
Héctor Mufioz-Avila. Hierarchical plan representations for
encoding strategic game ai. In AIIDE, pages 63-68, 2005.

[Kaelbling et al., 1996] Leslie P. Kaelbling, Michael L.
Littman, and Andrew P. Moore. Reinforcement learn-

ing: A survey. Journal of Artificial Intelligence Research,
4:237-285, 1996.

[Murdock and Goel, 2003] W. Murdock and A. K. Goel. Lo-
calizing planning with functional process models. In Pro-
ceedings of the Thirteenth International Conference on
Automated Planning and Scheduling, 2003.

[Murdock and Goel, 2008] J. William Murdock and
Ashok K. Goel. Meta-case-based reasoning: self-
improvement through self-understanding. J. Exp. Theor.
Artif. Intell., 20(1):1-36, 2008.

[Sutton et al., 1999] Richard S. Sutton, Doina Precup, and
Satinder P. Singh. Between MDPs and semi-MDPs:
A framework for temporal abstraction in reinforcement
learning. Artificial Intelligence, 112:181-211, 1999.

