
PROGRV-DiiNG LANGUAGE STANDARDS -- WHiO NE-EDS THEM?

q . GCcorge N. Baird
Paul Oliver

ADPE Selection Office
Department of the Navy

Washington, D. C. 20376

ABSTRACT

t' The programming language standards used in the United States are

produced and maintained by the American National Standards Institute.

The standards produced by ANSI are voluntary in that they can be

either (ANSI) adopted or ignored by the community which they effect.

The first programming language to be standardized was FORTRAN in 1966,

followed by COBOL in 1968. The COBOL standard was updated and revised

in 1974. The proposed revision to the FORTRAN standard is also close

to being adopted.

We can now take a look at what impact that language standard-

ization has had on the user community. This paper addresses the

standardization process as reviewed by the COBOL, FORTRAN, and PL/I

committees. COBOL will be addressed in greater detail due to the

timing and impact of the revised COBOL standard.

The problem with the standardization process as a whole will also

be addressed.

SDDC
LA_

UIN

______ ____ uMAY~
~b~bU ~ A a2ja1977

INTRODUCTION

The purpose of this paper is to look at the results of the stan-

dardization of programming languages over the past ten years and

attempt to determine their impact on the computing community. The

American National Standards Institute (ANSI), Incorporated is responsible

for the production and maintenance of national standards. These stan-

dards are voluntary in that they can be either adopted by members of

the using community or ignored. In the case of programming languages,

the Federal Government has encouraged the implementation of COBOL

through FIPS PUB 211 and its successor FIPS PUB 21-1 2, and will probably

follow suit with PL/I, BASIC, and the soon to be revised FORTRAN stan-

dard.

Programming language standards are produced/maintained by a

series of Technical Committees called American National Standard

Technical Committee (ANSC). ANSC X3Jl is responsible for PL/I, ANSC

X3J3 is responsible for FORTRAN, and ANSC X3J4 is responsible for

COBOL.

Computer software standards adopted and published by ANSI must"I be reviewed by the technical committee responsible for that standard

within five years of their acceptance. The committee then must do

one of three things: reaffirm the standard as being adequate; with-

draw the standard as not being necessary or useful; or revise the

standard as it deems appropriate.

The guidelines for revising standards suggest that compatability

between previous versions of a standard is highly desirable. However,

1

p - - -- ------.

when a committee is reviewing a standard for the purpose of updating

it these guidelines are not always given the appropriate priority.

3FORTRAN was first standardized in 1966 . COBOL followed suit

4by being standardized in 1968 . The COBOL standard was revised in

5
1974 and gives us the first opportunity we have had to see how the

updating of a programming language standard will impact the user

community. PL/I6 and BASIC 7 are close to being adopted as national

standards.

FORTRAN and PL/I will be mentioned lightly as to the method in

which they have been developed and subsequently subjected to the

standardization process. COBOL will be examined in depth from the

pre-standardization days to a look at what the 3rd COBOL standard might

look like, so as to determine the problems uncovered to date regarding

its standardization.

PROBLEMS WITH STANDARDIZATION

The standardization of COBOL is accomplished by ANSC X3J4. The

sources of language specifications for the national standard are the

CODASYL8 COBOL Journal of Development (JOD) and the version of ANSI

COBOL being revised. This is by an agreement between ANSC X3 and the

CODASYL Executive Committee to use only the specifications published

in the JOD as input to the national standard. This sometimes precludes

the inclusion of commonly implemented language features in the national

COBOL standard merely because they have not yet been recognized by

CODASYL and placed in the JOD. Thus, the national standard may exclude

many language features which have long been part of a de facto standard

2

because of their implementation by the various producers of COBOL

compilers. As a result, there is a problem of restrictiveness in the

standardization of COBOL. A second problem has to do with the evolu-

tionary growth of COBOL. (It has been suggested that revolutionary

growth might more accurately describe the current changes being made

to COBOL by CODASYL.) There is no real assurance that as new COBOL

specifications are developed they will remain compatible with previous

specifications. There are two reasons for this: (1) a language

element/function was ill defined to begin with and therefore subject

to implementor definition; (2) incompatible changes to COBOL are

introduced leaving both users and implementors with conversion problems.

The net effect of this process will be a major conversion every five

or so years when compilers are introduced which support the latest

COBOL standard.

The X3Jl group which is in charge of the standardization of PL/I

will not be bound by the limitations imposed on the COBOL group with

regard to sources of language features to be included in subsequent

versions of the standard. Presumably, X3Jl will be free to adopt

features from any source it so desires. The second problem is how-

ever likely to plague the PL/l standard almost as much as it has COBOL.

We say "almost" because PL/I has had a period of exposure which should

contribute to its stabilization. Added to this is the controversy

over the form of the PL/I standard. Basically, the issue is whether

a standard should be written for users of a language or for implementors

of compilers. Both positions have merit, but it should be pointed out

I ____3 p q~ . _ __-

I

that user guides are generally provided by vendors as well as authors,

and need not have the precision required for implementation.

Then we have the FORTRAN standard, which has shown a remarkable

degree of stability. Unfortunately, this stability has also resulted

in a standard which has been left far behind by most implementations.

FORTRAN users have eagerly used the many extensions introduced by

producers of FORTRAN compilers, and with good reason, since many of

these extensions are useful.

Are there any common issues here? We think there are several.

The first is the role of the Federal Government in the standards

setting process. This role has been active and supportive in the

case of COBOL. The result has been an evolving standard which creates

problems in the very process of evolution. The Government's attitude

toward FORTRAN has been one of benign neglect, and the standard has

been stable albeit stagnant. The Government's interest in PL/I has

been slight, and its attitute has at times bordered on the antagonistic.

The PL/I standard has been long in coming and its acceptance is still

questionable. (It should be emphasized that in referring to "the

Government" we mean the entire spectrum of users and policy makers;

we do not mean any given agency, nor do we mean to imply a concerted

position on the part of "the Government".) Are these true causes and

effects, or simply coincidences with no casual relationships?

Secondly, the industry as a whole needs to re-examine what is

the purpose of standards and, more importantly, what is meant by a

"standard". The stated purpose of language standards is to assure

4

the portability of programs; yet the user community spends millions

of dollars annually in converting "portable" COBOL programs. One of

the reasons for this is that no one was really implementing the COBOL

standard. But this is not the only reason. A language standard is

necessary to portability, but not nearly sufficient. What we are

doing about standardizing the entire interface between the application

programmer and the computer system? Additionally, is it fair to

refer to something which changes every few years a "standard"? Perhaps

we should re-examine our entire approach at language definition to

see if we can definr more stable languages, perhaps with their own

self-extending capabilities.

COBOL STANDARDIZATION -- THE ROLE OF THE AMERICAN NATIONAL STANDARDS

INSTITUTE AND CODASYL

The American National Standards Institute (ANSI) Technical Committee

13J4 is responsible for the definition of the COBOL language standard.

There are, as indicated earlier, restrictions as to the source from

which new COBOL language elements may be selected. The primary source

is the documentation of specifications produced by the Conference on

Data Systems Languages (CODASYL).

CODASYL is responsible for the development of the COBOL language

through one of its subcommittees, the Programming Languages Committee

(PLC). The COBOL specifications are made public through the CODASYL

COBOL Journal of Development, which contains the official definition

of COBOL.

COBOL was initially standardized in 1968. Prior to that time,

5

compilers were implemented from specifications published by CODASYL

and implementor-defined language elements. There were many problems

due to the ways in which the CODASYL language elements were implemented.

Implementors violated the semantic and syntax rules at will. There

was a reason for this; tbc CODASYL specifications were changing many

times each year. As a result, there was no strong desire to attempt to

implement a moving target. This resulted in a group of compilers which

were developed from the same source language specifications but which

were incompatible.

The 1968 COBOL Standard (X3.23-1968) was derived solely from the

CODASYL documents as of December 1967. The use of the 1968 COBOL

Standard caused problems for the writers of both COBOL compilers and

application porgrams. Older compilers generally did not support

COBOL as defined in the standard. Therefore, most compilers had to

be modified to accept standard source programs. The same problem

existed with source programs produced prior to the availability of

compilers implemented in accordance with the standard. As a result,

converting to COBOL 1968 was, in some cases, so severe a change that

language conversion programs had to be provided by implementors.

When X3J4 took on the review of COBOL 68 it was obvious that, due to

the shortcomings of the 1968 Standard, it needed to be revised. Draw-

ing from the latest CODASYL specifications, COBOL 74 was produced.

The 1974 COBOL Standard will logically replace its predecessor

and was derived solely from the CODASYL specifications of December 1971.

This resulted in the standard consisting of more state-of-the-art

6

features but also caused some major incompatibilities with the 1968

specification. As a result of the standardization process, there

are (and will be) differences between compilers.

TOWARD DEVELOPMENT OF A PL/I STANDARD

PL/I (short for "Programming Language No. 1") is the product of

a team set up by the FORTRAN users of the SHARE organization. It was

first described in 1965 by Radin and Rogoway, although its name at the

time was NPL (for "New Programming Language"). The name was changed

to PL/I when the National Physics Laboratory of Great Britain objected

to the use of its initials.

The original SHARE effort produced a complete specification of the

language before any compiler was produced. The very first report was

reall, a union of FORTRAN and COBOL and reflected more an attempt at

consolidating the past than anticipating future needs. A second report,

a much improved effort, was circulated for comment prior to the third

release, which represented the first official definition of the NPL.

The American National Standards Institute and the European

Computer Manufacturers' Association (ECMA) have had committees working

jointly since 1969 to produce a PL/I Standard, and this effort is

now nearing completion. A draft proposed standard for PL/I was

published in February 1975 under the aegis of the Computer and Business

Equipment Manufacturers Association (CBEMA).

This draft standard has undergone a period of public review during

which comments regarding it have been considered. It is anticipated

that the draft standard, revised as necessary, will be submitted to the

7

I!

American National Standards Committee X3 for letter ballot. Upon com-

pletion of the ballot, the proposal will be forwarded to the American

National Standards Institute for approval as an American National

Standard. Concurrently, the draft standard is being considered by

the European Computer Manufacturers' Association and the International

Organization for Standardization (ISO) for approval as an ECMA and

an International Standard, respectively.

De-spite the general anticipation of approval, acceptance of this

standard by ANSI, ECMA, and ISO is not a foregone conclusion, as there

is a substantial nucleus of opposition to it. This opposition stems

less from the merits of the language itself, which is essentially the

same PL/I familiar to most IBM users, but from the definitional method

of Standard PL/I. This method has attempted to close the gap that has

always existed in the industry between language definition theory and

practice. In the process the ANSI committee responsible for PL/I

(X3JI) has striven to combine the precision and completeness required

by a formal definition with the lucidity and naturalness essential to

general acceptance. Most observers agree the committee has done an

admirable job with respect to precision and completeness. Many feel

it has completely failed with respect to lucidity and naturalness.

The method of definition is such that semantics are defined by

showing how language interpretation would affect the workings of an

abstract machine. The abstract machine is so defined that, when offered

the representation of a purported PL/I program, it will determine

whether it is valid, and if so will execute the program to cause

T 8

-l -

certain changes in the state of the machine. The concrete syntax of

Standard PL/I is defined by production rules expressed in a metalanguage

not dissimiliar from that used to define AI.GOL 60. The abstract syntax

of PL/I is the syntax of programs in a representation that is con-

venient for the definition of semantics. A translator is defined that

converts program segments from concrete syntax representation to

abstract syntax representation. Finally, an abstract machine, the

interpreter, is used to define the semantics of a given program state-

ment by executing its abstract syntax representation according to a

prescribed set of rules. Errors in a given program segment may thus

be found at three distinct levels:

(1) Concrete syntax rules render the statement

GET LIST (A(I,J) DO I = 1 TO M,N);

illegal, since an extra pair of parentheses is required

to determine whether M is an input variable or part of

the DO-loop.

(2) The statement

DECLARE X FLOAT FIXED;

is correct according to the concrete syntax, but fails

to satisfy the abstract syntax during the translation

phrase (it gives X the conflicting attributes of both

fixed and floating point).

(3) The question of whether all 5 elements of A are set

to 0, where A is allocated, by the statement

DECLARE A (5) INITIAL (0)

9

cannot be resolved until the interpretation phrase,

as it is a semantic issued.

A complete description of the definitional mothod used for the

PL/I standard and a complete discussion of the ensuing controversy

are beyond the scope of this paper. A flavor of the nature of the

critics' objections may be obtained by the realization that the answer

to the question posed by the third example required the performance

of interpretation steps that fill nearly two full pages of the standard

document (small print at that). Surely, say the critics, this is too

much to find out that only the first element, A(l), is initialized.

Despite the controversy, it is safe to say that some form of

a PL/I standard will soon be available. It is also safe to say that

despite, the controversy it has evoked, the draft proposed Standard

PL/I is a landmark document that will have a significant impact on

the industry.

FORTRAN STANDARDIZATION

The standardization process for FORTRAN is unlike that of both

COBOL and PL/I. There is no 'other' committee which produces the lan-

guage specifications for FORTRAN, as CODASYL does for COBOL. There

are no strong ties or dependencies between X3J3 and the international

comunity as is for PL/I. (ANSC X3J3 is responsible for the maintenance

of the FORTRAN standard.)

X3J3 has been working most diligently toward a revised FORTRAN

Standard since 1966 when the first FORTRAN Standard was approved. The

10

language elements which will makeup the revised FORTRAN Standard are

drawn primarily from the user communitv and particuLlIa rly from specific

implementations. This in effect takes de facto standards (supported

by several implementations) and includes them in the national standard.

An important consideration in the preparation of the revision

to the FORTRAN Standard was the minimizing of conflicts or incompati-

bilities with the previous standard. The new standard includes changes

which created incompatibilities only when the change corrected a pre-

vious error or added significantly to the FORTRAN language. An

additional consideration concerning the approval of incompatible changes

was based on the number of programs it might impact. There are only 10

known conflicts between the 1966 FORTRAN and its proposed revision,

one of which involves the addition of several functions which may

cause some user-defined words to be modified. (Contrast that with 56

incompatible differences between COBOL 68 and COBOL 74.)

Current FORTRAN compilers which will accept a FORTRAN program

based on the 1966 FORTRAN Standard will merely have to be extended to

accept programs containing new features from the revised FORTRAN

standard.

THE ROLE OF THE FEDERAL GOVERNMENT

The role of the Federal Government in the development of the

COBOL language has been extensive and decisive. COBOL is the "standard"

programming language in the Government. Furthermore, COBOL compilers

represent the first category of software which is measured for conform-

ance to a standard. The role of the Government in the validation of

11

COBOL compilers is particularly significant.

The concept of validating COBOL was established 15 January 1963.

This was the first meeting of the American Standards Association (ASA)

Committee* Task Group for Processor Documentation and COBOL. The pro-

gram of work for the Task Group included the writing of test problems

which could be used to determine that COBOL compilers did indeed support

the features of the COBOL language. A working group was established

for creating the test problems. In April 1967, the Air Force issued a

contract for a system to be designed and implemented which could be

used in testing a compiler against the standard. In August of 1967,

the Special Assistant to the Secretary of the Navy created a task

group to encourage the use of COBOL throughout the Navy. Being aware

of both the ASA Task Group and Air Force efforts, a project was

established to determine the feasibility of validating COBOL compilers.

After examinging the information and test programs available at that

time, the first working set of routines was produced by the Navy

Programming Languages Group under the direction of Captain Grace

Hopper, USNR. Because of the favorable comments received on this

initial work, the Navy decided to continue the effort. After steady

development and testing for a year, Version 4 of the Navy COBOL Audit

Routines was released in December 1969. The routines consisted of 55

programs (18,000 card images) capable of testing the full standard.

In December 1970, the Deputy Comptroller for Data Automation

*The American Standards Association (ASA) has since changed its name

to the American National Standards Institute, Incorporated (ANSI).

This committee is known as X3J4 COBOL Standardization and Maintenance.

12

in the Office of the Secretary of Defense asked the Navy to create

the Department of Defense Compiler Validation System for COBOL, taking

advantage of (1) the better features of both the Navy COBOL Audit

Routines (Version 4) and the Air Force CCVS and, (2) the four years

of experience in designing and implementing audit routines on various

systems as well as the actual validation of compilers for procurement

purposes. Responsibility for ensuring the appropriate validation

of COBOL compilers throughout the Department of Defense was given to

the Department of the Navy's Information Systems Division (OP-91),

and the Central COBOL Compiler Testing Facility (CCCTF) was created

to-discharge this responsibility.

Subsequently, the National Bureau of Standards (NBS), which has

the responsibility for the development and maintenance of Federal ADP

Standards, delegated to the Department of Defense and thereby to the

Department of the Navy the responsibility for the operation of a

Government-wide COBOL Compiler Testing Service, which has replaced

the CCCTF. This responsibility is discharged by the Federal COBOL

Compiler Testing Service (FCCTS), an activity of the Software Develop-

ment Division of the Department of the Navy Automatic Data Processing

Equipment Selection Office (ADPESO) through the implementation and
10

maintenance of the COBOL Compiler Validation System (CCVS) . The

first enforcement effort on the validation of COBOL compilers was

the issuance by GSA of a Federal Property Management Regulation (FPMR)

This regulation requires all compilers brought into the Federal

inventory to be. validated, and also that any derivations must be

corrected within 12 calendar months.

13

COBOL - FROM PRE-STANDARDIZArION I)AYS UNTIL THIE PRESLNT

The problem deals with the conversion of programs bitvts, different

versions of the American National Standard COBOL (i.e., between X3.23-

1968 and X3.23-1974). The cost of programmer time is becoming more

expensive while software and computers in general are either decreasing

or leveling off in price. This heavily impacts the use of COBOL when

conversion is considered. For example, if a program based on COBOL 68

merely had to be re-compiled using a compiler based on COBOL 74 then

a certain level of personnel time would be involved. This could be

easily accomplished by a trainee or a programming librarian.

If any conversion is involved, the amount of personnel time will

increase drastically due to the human interaction of making changes to

the source program during several compilations. The process may be

shortened if a form of a source program translator is available. Still

an individual. would have to run the source program through the trans-

lator, check the output of the translator and finally run the corrected

source program through the compiler. (There may be syntax changes which

are missed by the translator and would require human intervention.)

For semantic differences, further debugging may be required even if

the areas to be changed are easily located.

The ideal situation, (and the most cost effective) at this point

would be to simply recompile without any conversion. The 54 page

COBOL conversion document produced by the National Bureau of Standards

(FIPS PUB 43)12 shows that this is not the case between COBOL 68 and

COBOL 74. Based on the premise that standards exist to protect our

14

programming investment and at the same timc to save the user money,

the following is presentd to show the prec i e problem with the current

COBOL development/standardization effort.

COBOL is the most widely used high level programming language in

this country. As a result there are many installations which are

dependent on both the development and standardization of COBOL. The

comunity as a whole has welcomed the standardization of COBOL through

the acceptance of the 1968 COBOL Standard. The introduction of the

1974 COBOL Standard has left users decidely frustrated. The reason

for this is the degree of incompatibility between the 1968 and 1974

COBOL Standards. Further, the implication of what the next COBOL

Standard might look likesuggests that unnecessary incompatibilities

will exist between the current 1974 COBOL Standard and its successor.

The comments on incompatibility in the above paragraph seems to

defy the purpose of having standards as well as the purpose which

CODASYL originally intended COBOL to accomplish:

"In developing data processing systems for existing

computers, it is important that these systems be capable
of processing on future, more powerful computers of any
manufacturer, with a minimum of conversion costs."

The above quote is from the objectives of the CODASYL COBOL Journal

of Development, page 1-1-1, paragraph 1.1. This objective can only

be met if the development of COBOL is controlled so that there is

a compatible evolution of the language as it is enhanced and encompasses

more capabilities and functions.

The Government has been a heavy user of COBOL for reasons of

15

compatibility between systems. This has been primarily due to (1) pro-

curement practices (which can cause the upgrading of a system to result

in its replacement by a totally different computer); (2) sharing of

software; and (3) backup purposes. Compatibility between COBOL compilers

is a must. This has been partially achieved through the formal stan-

dardization of COBOL, the use of Standard COBOL as a programming

language and the validation of compilers to determine whether they con-

form to the specifications contained in the COBOL Standard. As a

result of both the national standards program (ANSI) and the standards

programs within the Government, a user can, to a degree, achieve the

aforementioned objectives set forth by CODASYL. The problem addressed

here began as the COBOL community attempted to implement and use COBOL

as defined in the 1974 COBOL Standard. The basic problem has to do

with the incompatible development of COBOL since 1967.

In justifying what has been stated in the previous three paragraphs,

the impact of using COBOL must be described from pre-standardization

days through the next COBOL Standard (the update to COBOL 1974). Dis-

cussion should be prefaced with the ground rules used to date in

regard to both COBOL and its sponsor CODASYL. As was stated earlier,

MSC X3J4 through its direction from X3, CBEMA, etc. recognize the

CODASYL COBOL Journal of Development (JOD) produced by the Programing

Language Committee (PLC) as the sole source for COBOL language elements

which were candidates for inclusion in the 1968 Standard. For the

1974 Standard language elements from both the JOD and the 1968 Standard

were eligible for inclusion.

16

Pre-1968 Standard

COBOL compilers were implemented from the CODASYL specifications

as well as implementor defined constructs. The problem at this point

was due to the ways in which the CODASYL language elements were imple-

mented. Portions of statements were implemented; semantic and syntax

rules were violated. This resulted in compilers developed from the

same language specification but which were basically incompatibIc.

1968 Standard (X3.23-1968)

The 1968 COBOL Standard was derived solely from CODASYL COBOL JOD

updated through 1968. The use of COBOL 1968 caused problems for the

writers of both COBOL compilers and COBOL programs. Compilers pre-

viously written generally did not support the modules as defined in

the standard due to the implementation techniques and language element

selection techniques described above. Therefore, most compilers had

to be modified to accept source programs based on the 1968 COBOL

Standard due to the method by which language elements from the JOD

had been implemented in a modified form to suit the implementor. As

a result, converting to COBOL 1968 was so severe that in some cases

language conversion programs had to be provided by implementors to

take the user from the existing compiler to the new COBOL 1968 compiler.

The Justification for the "cost" of conversion was that future

conversions would be unnecessary whether it was to a new compiler for

the current system or to an entirely foreign system. Also, if manu-

facturers preferred supportong only one compiler, the impetus was to

support a compiler based on the 1968 COBOL Standard due to Government

- t17

procurement policy (FIPS PUB 21) and the ability to demonstrate

compatibility with other systems.

1974 Standard (X3.23-1974)

The 1974 COBOL Standard was derived solely from the CODASYL

COBOL JOD updated through 1971. Please note that the ground rules

stated above indicated that the 1974 COBOL Standard would be created

from elements in both the 1968 COBOL Standard and the CODASYL COBOL

JOD. The reason for this is simply to allow a language element dropped

by CODASYL to be retained in a future standard by ANSI for compatibility

purposes. During development of the 1974 COBOL Standard this was not

done and as a result several language elements disappeared from the

COBOL Standard during its revision.

There are some disturbing differences between the 1968 and 1974

COBOL Standards which are relevant to the topic of this dicussion.

Some changes which caused incompatibilities were necessary due to lack

of an adequate definition of language elements. Other changes which

cause incompatibilities were due to bad planning and/or lack of

coordination on the part of the COBOL development group. Below are a

few of the incompatible differences between COBOL 1968 and COBOL 1974

and a relevant comment for each:

(a) Random Access Module - The key by which records were

stored and retrieved was implementor defined. This precluded any

hope of compatibility between implementations. This module was

replaced in the 1974 COBOL Standard by Relative 1-0 and Indexed 1-6

modules which are very explicit about the key which is used to store

j 1

and retrieve records. There should be little or no compatibility

problems between implementations supporting COBOL 1974. However,

conversion may be severe for programs based on the 1968 specification.

(b) EXAMINE Statement - Deleted and replaced by the INSPECT

statement. This was one of the most illogical changes made. The

EXAMINE statement is used quite often and will require conversion.

The INSPECT statement gives the user additional capability that the

EXAMINE statement did not permit. However, the EXAMINE statement

in the 1968 COBOL Standard could have been modified, in a compatible

way, to accomplish everything the INSPECT statement is capable of,

and thereby precluded any problems with conversion.

(c) NOTE Statement - Deleted in favor of a technique which

was more versatile to use and cheaper to implement compared to the

NOTE statement. This requires conversion of any program in which

the programmer "wisely" documented his program with comments in the

Procedure Division. It could certainly be debated whether the cost

of conversion will outweigh the advantages of having a more versatile

comment capability. It could also be debated as to whether in this

case the development group dropped the ball by deleting the NOTE

statement or X3J4 fumbled it when they did not retain the NOTE state-

ment as well as include the new comment capability.

(d) REKARKS paragraph in the IDENTIFICATION DIVISION - Deleted

in favor of the new technique in (c) above. This deletion begs for

justification. There are several paragraphs in the Identification

Division which contain comment entries as did the REMARKS paragraph.

The conversion in this case is simply the removal of the word

19

Nowi11 • •

"REUARKS" from the source 'r' r- The conmient entry previously

associated with the RENARKS L-graph would then b, long to the pre-

vious paragraph which would not contain additional comments. This

conversion problem borders on the ridiculous.

There were many other incompatible changes between the 1968 and

1974 COBOL standards, but the four above have demonstrated both

unjustified changes (b, c, and d) as well as poor planning and ill

definition (certainly a and possibly b and c). Appendix B of X3.23-1974

American National Standard Programming Language COBOL contains a list

of changes made to COBOL 68 to produce COBOL 74. 44 changes render

existing statements incompatible with COBOL 74 and 12 elements previously

implementor defined are now defined in COBOL 74.

There will be a conversion cost associated with using the 1974

COBOL Standard. Part of it is anticipated and expected in areas whose

definition was left to the implementor of the compiler as was the old

Random Access module. It would have been better if these areas

had either been completely defined in the beginning or not included

in the standard. The other part of the conversion costs can only be

explained as being associated with change for the sake of change which

could have been avoided with a bit of discretion on the part of the

CODASYL and/or X3J4.

The justification of converting from the 1968 COBOL Standard

to the 1974 COBOL Standard could be stated in terms of better defined

language elements as in converting from the old Random Access to

either Relative 1-0 or Indexed I-0. But again there will be addi-

tional costs due to the unnecessary conversion that is required.

20

The Next COBOL Standard

There are several questions regarding the next COBOL Standard.

It should certainly be a superset of the 1974 COBOL Standard. Source

programs acceptable to a 1974 COBOL Compiler should be acceptable to a

compiler based on the next standard with a minimum of changes required.

The only exception should be changes with defined language elements/

actions previously left either to the discretion of the implementor or

undefined. If this cannot be accomplished then a question arises as

to whether the 1974 COBOL Standard (FIPS PUB 21-1) should be updated.

The evolution and compatibility problems are shown by recent

actions taken by CODASYL in regard to changes to the JOD. These changes

provide no additional capability to the user, but from a syntax point

of view will be unmitigated disaster to the user. The points in

question are covered in the PLC minutes from meeting of November 7, 1975.

In summary there are five changes which are of concern.

(a) The ALTER statement was deleted. Regardless of whether

the ALTER statement is good, bad, or indifferent, it has been eliminated

and programs using it will have to be converted at some point.

(b) The realignment of the clauses between the ENVIRONMENT

and DATA Divisions means that clauses which are currently in the

Environment Division will have to be moved to the Data Division and

vice versa. This could invalidate 90% of the existing COBOL programs.

(c) The deletion of the 77 level item in the Working Storage

section as being redundant with an elementary 01 level item will

probably invalidate 95% of existing COBOL programs.

21

d) The deletion of numeric procedure names begs for justifica-

tion. It has been permitted since the first COI)ASYL report on COBOL

was published. There is no way a user could have protected himself

from this kind of a change.

(e) The OPEN REVERSED facility was deleted. This permitted

a file which is at its end to be read in reversed order (i.e., last

record first, next to the last record second, ... first record last).

The above changes collectively will probably impact every COBOL

program every written. The quote from the objectives in the JOD

mentioned earlier has just become a grossly misleading statement.

Recommendation For COBOL

It appears that as the COBOL language is developed no thought is

given to existing compilers, libraries of source programs and the cost

of eventually having to modify both compilers and source programs. This
J

is not a criticism of development work which can extend COBOL to

accomplish new things, but it is a criticism of the apparent disregard

to the amount of time and money some of these meaningless changes are

going to cost COBOL users. In this day and age of shrinking budgets

the economic impact of language changes should be taken into considera-

tion and justified prior to permitting the changes to be made.

The problem has been adequately defined and unfortunately the

solution is not as simple as describing the problem. The next COBOL

standard should be a result of the compatible growth and maturing of

COBOL 74. The problem associated with controlling this would logically

require the cooperation of the two groups involved.

22

A proposed solution to the problem for COMl. follows ;nd is by

no means intended to solve all of the problms ,lsec t 'te 'ith the

development and standardization of a high level language - but merely

a means by which the cost of developing, maintaining and converting

compiler/programs and more importantly using COBOL can be reduced.

(a) CODASYL should not make changes (semantic or syntax)

that would be incompatible with the current COBOL Standard. The only

exception to this would be a language element which contained an

implementor defined aspect leading to unpredicatable results. (This

would protect our current programming investment and ensure that

programs running today would not have to be needlessly converted for

use on future compilers/systems.)

(b) X3J4 should not select language elements from the CODASYL

JOD which contain an implementor defined aspect which would lead to

unpredictable results. (This does not include entries in the Environ-

ment Division which require the use of an implementor provided name.)

(c) X3J4 should produce a standard which is compatible with

the current COBOL 74 Standard. Areas which are currently implementor

defined or lead to unpredictable results should be either defined or

deleted.

CONCLUSION

The standardization of prograning languages is a workable concept

and should be exploited. There are some concrete ground rules which

should be imposed in the standardization arena which will preclude the

problems described in this paper from being perpetuated in the future.

1 ' S23 -

1. There should be upward compatibility between a programming

languaic st.anda rd and its successor. Anv dcviat iol from

this should be economically justified (X3.3 at least

attempted this in revising the FORTRAN standard).

2. Standards should be updated sooner - FORTRAN being the

case in point here.

3. More implementation experience and use should be required

for language elements being included in a language stan-

dard. (COBOL is the worst offender in this case.)

44

24

REFERENCE

1. Federal Information Processing Standards Publication 21 COBOL (68)
March 15, 1972, U. S. (overnm.cnt Print ing Office, Pub] ic Documents
Dcpartment, Washington, D. C. 20402.

2. Federal Information Processing Standards Publication 21-1 COBOL (74)
December 1, 1975, U. S. Government Printing Office, Public Documents
Department, Washington, D. C. 20402.

3. X3.9-1966 American Standard FORTRAN, American National Standards
Institute, Inc., 10 East 40th Street, New York, New York 10016.

4. X3.23-1968 American National Standard COBOL, American National
Standards Institute, Inc., 10 East 40th Street, New York, New York
10016.

5. X3.23-1974 American National Programming Language COBOL, American
National Standards Institute, Inc., 10 East 40th Street, New York,
New York 10016.

6. BSR X3.53 Basic/l-12 1975 February Draft Proposed Standard Pcogramming
Language PL/I CBEMA, 1828 L Street, NW, Washington, D. C. 29036.

7. BASIC Draft Proposed Standaird Progrmming Langua?e BASIC, CBEMLA,
1828 L Street, NW, Washington, D. C. 20036.

8. Conference on Data System Languages - Non-Profit organization that
is responsible for controlling the growth of COBOL.

9. CODASYL COBOL Journal of Development 1972, II0-GP-IC, Technical
Services Branch, Department of Supply and Services, 5th Floor,
88 Metcalfe Street, Ottawa, Canada.

10. Baird, G. N. and Cook, M. M., "Experiences in COBOL Compiler
Validation", Proc. 1974 NCC, AFIPS Press, Vol. 43, pp. 417-421.

11. Federal Property Management Regulation (FPMR) 101-32.1305-la COBOL
Compiler Validation Federal Register, Vol. 40, No. 221, Friday,
November 14, 1975.

12. Federal Information Processing Standards Publication, 12 Aids for
COBOL Conversion FIPS PUB 21 to FIPS PUB 21-1, December 1, 1975,
U. S. Government Printing Office, Public Documents Department,
Washington, D. C. 20402.

25

a~U
, '

.. . . L'-

IIH'11L iO' RAliHIC DATJ] 2.3.Nci'ta A ,SHF1 TZ
.17 : .

gramingLangageStandardsq Wh Needs Them My 7

Software Development Dvso

ADESelect ion Office' 11. (:ontrct /(;rant No.
Department of the Navy
Washington, D. C. 20376

12. ';''o ,()rt .iniza: on Navre and A~idr.es, 13. Tylle of Rcepott Pel'riod
AI)PE Selection Office Covered

Department of the Navy
Washington, D. C. 20376 14.

15. Sulpleintaar y Notes

16, Ahsrfacts

Thle programming language standards used in the United States are produced and
maintained by the American National Standards Institute. The standards produced
by ANSI are voluntary in that they can be either (ANSI) adopted or ignored by
the community which they effect. The first programming language to be standardized
was FORTRAN in 1966, followed by COBOL in 1968. The COBOL standard was updated
and revised in 1974. The proposed revision to the FORTRAN standard is also
close to being adopted.,

We can now take a look at what the impact that language standardization has had
on the user community. This paper addresses the standardization process as
reviewed by COBOL, FORTRAN, and PL/I committees., COBOL will be addressed in greater
detail due to the timing and impact of the revised COBOL standard.

17. heyWords and Document Analysis. 17c. Descriptors

l7b. ldcftiafwrs/Operi-Endid 'rermis

17c. COSATI Field/Group 09/02

18. Availability Statemnent 119. Seurt Class (This 121. No. of Paps

I INCI.ASSWI:fl 1 26
Release unlimited. IT0 -Security Clatin (Thia J22. P'rice

Torom Tri---ij lis-v- j-17)TIIlS l'OfM MAY lI 1H~IlOIUCPl) IO M0 141867

