
Academic Paper : Security of Passwords

112 วารสารเทคโนโลยีสารสนเทศ ปีท่ี 8 ฉบับท่ี 2 กรกฎาคม - ธันวาคม 2555
Vol. 8, No. 2, July - December 2012Information Technology Journal

Abstract
 Authentication has become a very important security
mechanism. Recently, many attackers have been looking to
attack organisations’ password databases, since they are the
sources which attackers can potentially used to gain
unauthorised access to information, network and resources.
Therefore, it is important to understand how to securely choose
and store passwords in such a way that it can prevent
attackers from learning what the users’ passwords are. This
paper discusses many aspects of password security, starting
from a way to generate a secure password to ways to
securely store a password. It will be explained that the most
common method used to store passwords today, i.e., MD5 or
SHA-1 hashing, may not be the best solution. Thus, better
solutions in salting passwords and using slower hash functions
are introduced.

Keywords: password security, password hashing, salted
password, slow hash.

1. Introduction
 Information and network security has increasingly become
a topic of interest to many security professionals and researchers.
It is a well known fact that the aim of security is to achieve
confidentiality, integrity and availability [1]. Confidentiality
means keeping information or data as a secret. Only those
who are authorised should be able to access and read the data.
Integrity means that we should have a means to check for the
completeness and correctness of data. That is, there should
be a mechanism to detect any unauthorised modifications of
data that could occur. Availability is the ability to access data,
network or resources whenever it is required. In other words,
if and when an authorised person would like to have an access
to his or her data, network or resources, he or she must be
able to at that instant. As mentioned, these three security
characteristics are the main goals of security. They are

Security of Passwords

Sirapat Boonkrong*

* Faculty of Information Technology, King Mongkut’s University of Technology North Bangkok.

collectively known as the CIA model of security.
 The CIA model of security has been around for a long
time, stating the required security characteristics. However,
as time has progressed, more security goals are required. One
of them is authentication. Authentication is now considered
a necessity for many applications and systems. Authentication
can be described as a method for confirming the identity of
a particular entity. Authentication can also be considered as
an intrusion prevention system. It is the first line of defence
that is used for protecting network and its resources so that
only authorised persons can have an access. Authentication
is actually a part of a security mechanism called access
control, which refers to issues concerning access of system
resources. There are four main parts to access control. They
are identification, authentication, authorisation and accounting.
 Identification is just identifying who each user is. This is,
for example, done by issuing a username. Authentication is
a process used for determining whether or not users are
allowed access. In addition, authentication is a process used
for confirming the identity of a user. That is, once a username
is entered, the user must prove that this username really
belongs to him or her. The next thing that usually comes after
authentication is authorisation. Authorisation is a process that
deals with restrictions and limitations on access. Authorisation
tells what each user is and is not allowed to do or access. In
other words, authorisation gives users their access rights to
resources. The fourth part of access control is accounting.
Accounting keeps records of who has entered the system,
what that person has done and when. To put it simply,
accounting is a process of keeping a log of the system.
 The main focus of this paper will be on the authentication
process, concentrating the uses of passwords and their
security issues. As mentioned above, authentication is a
process of confirming the identity of someone or something.
In other words, authentication is proving that “you are really
the person you claim to be.” One very popular way to carry
out authentication is by using a username and a password.
Actually, authentication methods can be categorised into many
groups, which will be explained in the later sections.
 This paper will, therefore, be structured as follows. Section
2 gives an overview of available authentication methods.
Section 3 discusses passwords, their security issues and how
to choose a password. Ways to store passwords will be
discussed in Section 4. Section 5 will conclude the paper.

Academic Paper : Security of Passwords

113วารสารเทคโนโลยีสารสนเทศปีท่ี 8 ฉบับท่ี 2 กรกฎาคม - ธันวาคม 2555
Vol. 8, No. 2, July - December 2012 Information Technology Journal

2. Authentication Methods
 As mentioned briefly in Section 1, there are actually four
authentication methods [2] available today. Each of the four
methods can be explained as follows.
 2.1 Something-you-know method
 The first authentication method is called the something-
you-know method. It is a method which a user uses what he
or she remembers to prove his or her identity. In other words,
the user would use his or her knowledge to prove that he or
she is really who he or she claims to be. A good example for
this authentication method is a password or an ATM pin code.
 2.2 Something-you-have method
 The second authentication method is called the something-
you-have method. This second method of authentication
addresses something the user carries in their possession. This
includes smart cards and authentication tokens. An authentication
token is a small device with a display that presents a
s ix-digi t number used to support remote login
authentication. A token can be either synchronous or
asynchronous. A synchronous token is synchronised with a
server. They use the time to generate a number that will be
entered during the user login phase. When a user would like
to log into a system, he or she enters a username together with
the number displayed on the token. This number changes
according to the current time. For an RSA SecurID Token [3],
the number on the token changes every minute and is also
synchronised with the authentication server.
 On the other hand, asynchronous tokens use a challenge-
and-response system. The authentication server and the token
do not need to be synchronised. That is, when a user would
like to log in, the server presents the user with a numerical
sequence. The user enters this sequence into the token, which
produces a response. The user then places this
response into the system to gain access.
 The main advantage of using an authentication token,
either synchronous or asynchronous, is that the user’s pass-
word changes every time he or she logs in. This is also known
as one-time password, which reduces the risk of passwords
being guessed by attackers.
 2.3 Something-you-are method
 The third method of authentication deals with a
characteristic of a user. This is a process of using body
measurements, known as biometrics. Popular biometrics
includes fingerprint, palm print, hand geometry, facial
recognition, iris pattern and retinal print. Out of all possible
biometrics, it has been said that only three are considered
truly unique. They are fingerprints, retina of the eye and iris
of the eye.
 Biometrics work by comparing the users actual charac-
teristic with the stored data in order to determine if the user
is really he or she is claiming to be. A problem with this
method is that human characteristics can change over time
due to normal development, illness or injury. Therefore,
fallback or failsafe authentication mechanisms [4] should be
created just in case
 2.4 Something-you-produce method
 The fourth area of authentication is something that a user

performs or produces. The two popular methods that fall into
this category are signature and voice recognition. With
signature recognition, a user signs a digital pad with a stylus
that captures the signature. The signature is then saved and
compared with a signature on a database for validation.
 Voice recognition works in a similar way in that a user
speaks a phrase into a microphone. The voice is captured and
stored on a database. Later, when authenticating himself or
herself, the user speaks the same phrase so that it can be
compared with the voice stored on the database.
 We now have seen the four authentication methods. The
question is which one should we really use? It has been
claimed that in order to achieve stronger authentication, hence
better security, two authentication methods should be used
alongside one another. This is known as two-factor
authentication [5]. That is, we could use a smart card
together with a password, which would be something you
have with something you know. An example is when a user
withdraws money from a cashpoint, he or she would have to
enter his or her pin code (something-you-know method) as
well as inserting a credit card (something-you-have method).
Even though two-factor authentication stronger than using
just one single method, some researchers [6] still say that it
is not enough.
 Having said that all four authentication methods exist
today, only the first method, specifically passwords, will be
considered in this paper

3. Passwords
 Password is the most popular authentication method in
computing today. That is why we feel that there is a need to
discuss passwords in detail.
 Before going any further, let us briefly establish here what
an ideal password should be. On the whole, it has been
suggested that an ideal password should be something that a
user can remember, something that a computer can verify,
and something that nobody else can guess. This sounds easy,
but is difficult to achieve.
 The problem with passwords nowadays is that people tend
to choose “bad” passwords. These are the passwords that are
easy to “crack.” What is the solution to this? One solution is
to use randomly generated cryptographic keys. This would
make the work of cracking a password equivalent to the work
of a brute force or exhaustive key search. Does using
randomly generated cryptographic keys for passwords sound
plausible? Let us compare keys and passwords.
 3.1 Key vs Passwords
 Suppose an attacker Trudy is confronted with a 64-bit
cryptographic key. That means there are possible 264 keys in
total, thus on average Trudy must try 263 keys before finding
the correct key.
 This time, suppose Trudy is confronted with an 8-character
password. Each character is 8 bits long, which means there
are 256 possible choices for each character. Therefore, the
total number of possible passwords is 2568 = 264 passwords.
The number appears to be equivalent to the exhaustive key
search problem. But . . . is it really?

Academic Paper : Security of Passwords

114 วารสารเทคโนโลยีสารสนเทศ ปีท่ี 8 ฉบับท่ี 2 กรกฎาคม - ธันวาคม 2555
Vol. 8, No. 2, July - December 2012Information Technology Journal

 One issue with passwords is that users do not select
passwords at random. The reason is because they have to
remember it. For example, users are more likely to choose an
8-character password as password, rather than something
random like s9@KOpwA. The implication of this is that
clever attackers would make far fewer than 263 guesses before
getting the correct password. In other words, the actual
number of passwords is far fewer than the number of keys of
the same size. The majority of randomly generated passwords
are not taken into account since they are not used anyway.
We could, therefore, claim that the non-randomness of
passwords reduces the amount of work carried out by
attackers to crack a password, and is also at the root of many
of the most serious problems with passwords.
 3.2 Choosing a password
 It has been mentioned that weak or bad passwords create
problems with security. Examples of bad passwords include
Somchai, Doraemon, 08111979 and JohnSmith. The first
password sample, Somchai, is just a name of a user. This
would be a very easy guess. The second password, Doraemon,
would also be easy to guess if anyone knows that the user is
a fan of Doraemon. The third is just the user’s date of birth,
and the fourth contains a first name and a surname of the user.
It is clear that all of these examples are weak passwords,
because they are not difficult for attackers or anyone to guess.
 Authentication can be thought of as the first line of defence
of a network or a system. That means security can be said to
rest on passwords, an authentication method. Therefore,
passwords should be difficult to crack and easy for users to
remember. Examples of a better password include sHJiLJ-
M50Emim, 876261400154, D0raem0n and MtFbwY. Let us
analyse each one in turn to see whether it fits our criteria for
good passwords: easy to remember and difficult to guess.
 The first password, sHJiLJM50Emim, appears to be
random, which makes it very difficult to guess. However, it
is not easy to remember. The second password, 876261400154,
consists of twelve digits. This seems difficult to guess, but
also difficult to remember. It has been documented that well-
trained military personnel are only able to memorise up to
twelve digits. That means for regular users, it is near
impossible to memorise that many random digits. The third
password, D0raem0n, looks a good password due to the
mixture of letters and numbers. However, this may not be the
case, because if anyone knows that the user is a fan of
Doraemon, he or she could try to make a guess. The fourth
example, MtFbwY, is difficult to guess. It is also very easy
to remember, even though the password appears to be random.
This fourth example of password is made by a password
creation method known as a passphrase [7].
 A passphrase is a series of characters derived from a set
of words or a sentence. One way to generate a passphrase is
that a user thinks of his or her favourite sentence, then takes
the first letter of each word and put them together. For
example, a user’s favourite sentence might be “May the Force
be with You”. Taking the first letter of each word, the
passphrase formed from this sentence would be MtFbwY.
Users do not actually have to take the first letter of each word.

Any letter can be used, but taking the first letters would be
the easiest to remember.
 Passphrases are said to be the source of the better
passwords that should be used. The following widely
published [2] and well known password experiment confirms
this claim. The experiment divides people into three groups.
Group A select passwords consisting of at least six characters,
with at least one non-letter. Group B select passwords based
on passphrases. Group C select passwords consisting of eight
randomly selected characters. The aim of the experiment is
for the experimenters to crack those chosen passwords, and
the results are as follows. In Group A, about 30% of passwords
are easy to crack, and users find their passwords easy to
remember. In Group B, about 10% of the passwords are
cracked, and users find their passwords easy to remember.
Group C, about 10% of the passwords are cracked, but users
find their passwords difficult to remember. From the password
experiment, it is clear to see that passphrases provide the best
option for passwords. This is because they are difficult to
crack, yet easy to remember.

4. Storing Passwords
 In the past few months at the time of writing this paper,
a number of high profile companies had seen their passwords
leaked to the online public even though a lot of efforts had
been put into protecting them. Unfortunately, disclosure of
password databases is one of the main aims of hackers’
community. Therefore, it is important to understand how
passwords can be stored, and what each storing method means
for the security of passwords. Let us go through and analyse
each method in turn.
 4.1 Plaintext passwords
 The most basic way that a password can be stored is in
plaintext. This means that in a password file or a password
database, usernames and passwords are stored in a
human-readable form. That is, if a password if testpassword,
it is also stored in a database as testpassword. When a user
enters his or her username and password, the system checks
them against the database to see if they match.
 This is the worst possible method for storing passwords,
in security context. Most reputable systems and Web sites do
not store passwords in their plaintext form. This is because
if the password database is obtained by an attacker,
everybody’s password is immediately accessed, known and
compromised.
 4.2 Encrypted passwords
 In order to reduce the risk of passwords being exposed as
plaintext, some Web sites have adopted encryption as their
solution. Encryption, as a reminder, uses a secret key to
transform a plaintext password into a random string of text.
This means that if an adversary were to get hold of a password
database, he or she would not be able to see what the real
passwords are. Only passwords in ciphertext form would be
seen. The adversary would need to have the secret key to
decrypt them. This does not sound so bad, does it?
 The problem with this method is that the secret key is
often stored on the same machine or server that passwords

Academic Paper : Security of Passwords

115วารสารเทคโนโลยีสารสนเทศปีท่ี 8 ฉบับท่ี 2 กรกฎาคม - ธันวาคม 2555
Vol. 8, No. 2, July - December 2012 Information Technology Journal

are. What happens if the server gets hacked? The hacker would
not have to do much work to obtain the secret key, which
would allow him or her to decrypt all the passwords. This
implies that this method is considered insecure.
 4.3 Hashed passwords
 Hashing is similar to encryption in the sense that it
transforms a password into a random string of letters and
numbers. However, as we already know, hashing, such as
MD5 [8] and SHA-1 [9] ensures at least two things. Firstly,
it is infeasible to do the reverse of a hash. We cannot take the
hashed password and run the hashing algorithm backwards
to get the original password. Secondly, it is very improbable
that two different passwords will produce the same output of
random string of letters and numbers.
 Hashing is the most widely used method for storing
passwords both on a local network and on the Internet. A hash
function works by taking a password as its input, and
scrambling it to produce a seemingly random result. Two
popular hash functions used for storing passwords are MD5
and SHA-1. For example, the MD5 hash of the password
“password” is 5f4dcc3b5aa765d61d8327deb882cf99. Using
another hash function in SHA-1, the hash value of the same
password would be 5baa61e4c9b93f3f0682250b6
cf8331b7ee68fd8.
 Hash functions are often used in password systems because
instead of storing passwords in clear text, only the hash
values of the passwords are stored. Since it is almost
impossible to reverse the hash, the hashing method seems to
be a secure way of keeping passwords. When a user logs into
a system, the hash value of the entered password is
computed and compared with the hash in the password
database. If they match, the password is correct. If not, the
user will have to give another attempt. Moreover, since it is
said that the hashes are unique, it is very likely that the user
will only be able to log in with the correct password.
 Unfortunately, over the last months at the time of writing,
a number of Internet companies found that their passwords
databases had been cracked even though their passwords had
been hashed. The reason that this had occurred is because
there is a downside to this method. That is, although an
adversary cannot reverse a hash value back to its original
password, he or she can try many different passwords until
one matches the required hash.
 To go into a little bit more detail, the problem with simple
hash functions is that it is possible for hackers to pre-compute
all hashes of all possible passwords, and stored them in
databases. These databases of pre-computed hash values are
known as rainbow tables [10]. If a password database leaks,
with the help of rainbow tables (which is essentially a list of
billions of different hashes and their matching passwords),
hackers can just look up the hashes in the rainbow table. To
see this, just try typing 5f4dcc3b5aa765d61d8327deb882cf99
into Google. It will quickly be seen that it is the MD5 hash
for “password”.
 If hashes are not found in rainbow tables, it means that
they are the hashes for long and complex passwords that have
not been pre-computed. This is one reason why picking a long

and complex password is a good idea, since hackers will not
have had it already pre-computed.
 4.4 Salted passwords
 A way to ease the concerns of rainbow tables is with
something called salt. Salting a hash [11] means adding a
random string of letters and numbers, called a salt, to the
beginning or end of a password before hashing it. In other
words, instead of just hashing a password H(password), we
compute H(password; salt). In this method, a different salt is
used for each password. Even if the salts are stored on the
same server as passwords, it will still be very difficult to find
salted hash values in the rainbow tables.
 Let us look at an example of the salting method. Suppose
a password, “password”, is chosen by a user, together with a
random salt value “fh90$$PA28”. Therefore, instead of
computing the hash value of “password”, H(password),
H(passwordfh90$$PA28) is calculated to obtain the hash
value 29e20a65f0d0336463b0391174ac74b3 for MD5 or the
hash value b6ac9606d892f5af75ec9ceb39435a1e5f567dcf
for SHA-1. These values could be put into Google and no
results would be found.
 Since each user has a different salt applied to his or her
password, rainbow tables are practically useless. This is
because it is not possible to pre-compute the hashes of all
possible passwords with all possible salt values.
 Unfortunately, it has to be said that password cracking
techniques benefit from two things: the speed of hash
functions and Moore’s Law. First of all, originally hash
functions, MD5 or SHA-1, were not designed to protect
passwords. As we have learned, they were design for checking
the integrity of messages by detecting modifications. For this
reason, hash functions were designed to be very fast.
 Secondly, Moore’s Law states that processor speeds and
overall processing power will double every two years. This
means that as computers have increased in speed and with
the speed of hash functions, it has made it possible for rainbow
tables to start attacking passwords, even when salted. In
other words, hackers can now compute hash values of millions
of passwords per second, applying different salts with each
password. This, in turn, makes the rainbow tables larger.
Hence, hacking with rainbow tables has become more possible.
 The solution to this problem is to use a hash function that
is slow. If the hash function itself is slow, the process of
“enlarging” rainbow tables will also be slowed down.
 4.5 Slow hashes
 Fortunately, there are hashes that are a lot less speedy than
MD5 and SHA-1, the property stated above. Experts are now
pointing to slower hashes as a better option for storing
passwords. Hash functions like MD5 and SHA-1 are fast, as
mentioned. That is, if we type in a password, it will return
the hash values quite quickly. In brute force attack, time is a
very important factor. By using a slower hash function, brute
force attacks will take much longer, since each password takes
more time to compute.
 One such hash function is known as bcrypt. bcrypt [12]
is a hash function based on an encryption algorithm called
Blowfish. bcrypt is just like a normal hash function with an

Academic Paper : Security of Passwords

116 วารสารเทคโนโลยีสารสนเทศ ปีท่ี 8 ฉบับท่ี 2 กรกฎาคม - ธันวาคม 2555
Vol. 8, No. 2, July - December 2012Information Technology Journal

additional parameter. bcrypt takes a password, a random salt
value as well as a cost as its arguments. The cost tells the hash
function how hard to work in computing the hash value.
Hence, it determines how long the calculation will take. The
idea of bcrypt is actually quite simple. bcrypt makes sure that
it always takes the same amount of time to hash the same
password, regardless of how powerful the hardware used to
compute the hash is. To re-emphasise, bcrypt allows users to
specify the work factor used to generate the hash. It means
that if somebody changed the value of the work factor, the
hash value of the password would be different.
 Another and newer algorithm is known as scrypt. scrypt
[13] is actually a password-based key derivation function.
scrypt was purposefully designed to be very computational
expensive and intensive, so that it takes a long time to
compute. The main idea of scrypt is that it has a very large
memory requirement that comes from large pseudorandom
bit strings generated as a part of the algorithm. These large
strings, although not generated at the same time, require the
use of a lot of memory space. It appears that scrypt is the
algorithm that concerns with the memory usage. There is a
well known computing tradeoff namely: more memory is
needed if spped is to be increased, or reducing the memory
space at the cost of the speed of the computation. This is the
reason why scrypt is another suitable way to store passwords
on any system.
 It has been stated in [14] that on modern hardware, the
cost of cracking a password that uses scrypt to hash is
approximately 100 billion times more than the cost of cracking
the same password using a normal hash function. Moreover,
when running scrypt, users are able to specify such
parameters as the maximum amount of time or the maximum
amount of memory used to execute scrypt algorithm. scrypt
is available for download at [14].
 Even though scrypt’s RFC document is still in the draft
version, there has been an attempt to compare the cost of
cracking a password (in one year) that is stored by using the
methods explained in this paper. The author of [15] explained
that the results are estimated costs for building a password-
cracking machine based on a 130nm semiconductor process.
The results are taken from [15] and are shown in Table 1 as
follows.

Technique/Password Size

 A main advantage of bcrypt and scrypt is that over time,
the cost can be increased to keep pace with faster and faster
computers, and keep passwords safe by making the hash

function slower and slower.

5. Conclusion
 Computer networks, specifically the Internet, have
provided us with many benefits. Unfortunately, with those
benefits, come threats that could cause many damages to our
assets. One way to prevent those threats is to use authentication.
Authentication is an intrusion prevention mechanism used
to confirm an identity of an entity. Many methods of
authentication are presented here in this paper. One has been
a focus, in particular. That method is the use of passwords.
 Passwords are the most commonly used authentication
mechanism due to convenience. This paper has discussed how
to choose a password that is easy to remember, but difficult
to guess. A password by the means of passphrase is considered
the best way to match those criteria.
 Ways to store passwords were the next to be discussed.
There are many methods that we can use to store passwords.
They include storing them as plaintext, encrypting them,
hashing them, hashing them with a salt value and hashing
them using slow hash algorithms. It has been explained that
some of them are more secure than the others. In other words,
applying slower hash functions appears to be a better method,
at least in the near future. However, just like any other aspects
of security, methods for storing passwords will have to be
reviewed from time to time. In addition, human factor plays
an important part. Users can help by increasing the
complexity of their password to ensure a longer and more
complex password.

6. References
[1] Martin Abadi, “Security Protocols and Specifications,”
 In Foundations of Software Science and Computation
 Structures: Second International Conference ,
 FOSSACS’99, Vol. 1578, pp. 1-13, Springer-Verlag,
 Berlin Germany, 1999.
[2] Mark Stamp, Information Security: Principles and
 Practice, Second Edition, John Wiley & Sons Inc.,
 New Jersey, 2011.
[3] Benjamin Halpert, “Mobile Device Security,”
 In Proceedings of the 1st annual conference on Information
 security curriculum development, InfoSecCD’04,
 pp. 99-101, ACM, 2004.
[4] Ariel Rabkin, “Personal knowledge questions for
 fallback authentication: security questions in the era of
 Facebook,” In Proceedings of the 4th symposium on
 Usable privacy and security, SOUPS’08, pp. 13-23,
 ACM, 2008.
[5] David Coffin, “Two-Factor Authentication,” Expert
 Oracle and Java Security, pp. 177-208, Apress,
 Springer Link, 2011.
[6] Bruce Schneier, “Two-Factor Authentication: too little,
 too late,” Communications of the ACM, Vol 48,
 No. 4, pp. 27, April, 2005.
[7] Sigmund N. Porter, “A password extension for improved
 human factor,” Computer & Security, Vol.1, Iss. 1,
 pp. 54-56, January, 1982.

Table 1 Estimated Cost of Hardware to Crack One
 Password in One Year.

Technique/
Password Size

6 Lower
Case

Letters

8 Lower
Case

Letters

8
Characters

10
Characters

MD5 < $1 < $1 < $1 $1.1K

Salted MD5 < $1 < $1 $130 $1.1M

bcrypt < $1 $4 $130K $1.2B

scrypt < $1 $150 $4.8M $43B

Academic Paper : Security of Passwords

117วารสารเทคโนโลยีสารสนเทศปีท่ี 8 ฉบับท่ี 2 กรกฎาคม - ธันวาคม 2555
Vol. 8, No. 2, July - December 2012 Information Technology Journal

[8] Ron Rivest, “The MD5 Message Digest Algorithm,”
 RFC1321, Internet Engineering Task Force, April, 1992.
[9] Federal Information Processing Standards Publication
 180-1, “Secure Hash Standard,” the National Institute
 of Standards and Technology, April, 1995.
[10] Antony G. Robertiello and Kiran A. Bandla, “Attacks
 on MD5 Hashed Passwords,” Technical Report, George
 Mason University, USA, 2005.
[11] Robert Morris and Ken Thompson, “Password security:
 a case history,” Communications of the ACM, Vol. 22,
 Iss.11, pp. 594-597, November, 1979.

[12] Niels Provos and David Mazières, “A Future-Adaptable
 Password Scheme,” In Proceedings of 1999 USENIX
 Annual Technical Conference, pp. 81-92, 1999.
[13] C. Percival and S. Josefsson, “The scrypt Password-
 Based Key Derivation Function,” Internet Draft, Internet
 Engineering Task Force, September, 2012.
[14] Scrypt: Technical Details, Available online at
 http://www.tarsnap.com/scrypt.html: Retrieved on
 26th December, 2012.
[15] Colin Percival, “scrypt: A new key derivative function,”
 The Technical BSD Conference, BSDCan 2009, May,
 2009.

