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The fundamental theorem of Galois theory extends in a natural way to infinite
Galois extensions, taking into account the natural profinite topology on the Galois
group.

1. Basic properties

We can describe the Galois group of even an infinite Galois extension as an
inverse limit of finite Galois groups.

Proposition 1.1. If K/F is Galois, then the natural map

Gal(K/F )→ lim←−
L/F finite Galois, L⊆K

Gal(L/F )

is an isomorphism.

Proof. The point is simply that K is the union of finite Galois subextensions L/F :
indeed, this follows by considering the Galois closure of each element of K over F .

This means that every automorphism of K fixing F is determined by its restric-
tion to such L, so the natural map is injective. On the other hand, it is clear from
the definition of the inverse limit that if we have a system of automorphisms of ev-
ery L/F compatible with restriction, that it induces a well-defined automorphism
of K fixing F , so we have surjectivity as well. �

We immediately conclude:

Corollary 1.2. If K/F is Galois, then Gal(K/F ) naturally has the structure of a
profinite group, induced by the isomorphism of the proposition.

As a first example of an infinite Galois group, we consider finite fields.

Example 1.3. Let Fq be a finite field. Since finite fields are perfect, we see that
F̄q is Galois over Fq. We know that for every n, there is a unique extension of
Fq of degree n, with Galois group canonically isomorphic to Z/nZ, and that the
extension of degree m is contained in the extension of degree n if and only if m|n.
This means that Gal(F̄q/Fq) is the inverse limit over all positive n of Z/nZ, under
the canonical quotient maps. By definition, this is Ẑ, the free profinite group on
one (topological) generator.

Since we have opened the door to infinite Galois extensions, it is natural to
consider the maximal Galois group of any given field. If F is perfect, its maximal
Galois group is Gal(F̄ /F ). If not, F̄ is not separable over F , so we need to consider
a smaller field.

Definition 1.4. Given a field F , the separable closure F sep of F is the sepa-
rable part of the field extension F̄ /F . The absolute Galois group GF of F is
Gal(F sep/F ).
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Note that the latter definition makes sense, since F sep is always Galois over F .
Indeed, if α is separable over F , all the other roots of its minimal polynomial over
F are likewise separable, and therefore contained in F sep.

2. The fundamental theorem

The extension of the fundamental theorem of Galois theory to arbitrary Galois
extensions is the following:

Theorem 2.1. Let K/F be a Galois extension, with G := Gal(K/F ). Then the
maps L 7→ Gal(K/L) and H 7→ KH are mutually inverse, inducing an inclusion-
reversing bijection between fields L lying between K and F , and closed subgroups
H of G.

More precisely, we have for any intermediate field L that KGal(K/L) = L, and
for any subgroup H ⊆ G, that Gal(K/KH) = H̄, where H̄ is the closure of H in
G.

Furthermore, under the given correspondence:
(1) finite extensions L/F correspond to open subgroups H ⊆ G, and indeed

cosets of H ⊆ G are in bijection with imbeddings of L into K fixing F ;
(2) Galois extensions L/F correspond to normal closed subgroups H E G, and

indeed conjugates of L correspond to conjugates of H;

Note that (1) is the correct generalization to infinite extensions of the statement
that the degree of L over F is the index of H in G. Before proving the theorem,
we need two simple lemmas, the first on profinite groups and the second on normal
extensions.

Lemma 2.2. Let G = lim←−i∈I
Gi be a profinite group, where the Gi are an inverse

system of finite groups. Suppose H ⊆ G is a subgroup. Then H is open in G if and
only if there exists i ∈ I and a subgroup Hi ⊆ Gi such that H is the preimage of
Hi under the projection map G→ Gi.

Proof. Since the map G → Gi is ocntinuous and Gi has the discrete topology, the
preimage in G of any subset of Gi is certainly open. Conversely, suppose H is open
in G. Then we have seen that H is also closed, hence compact, so H is covered by
a finite number of open sets of the form H ∩

∏
i∈I Ui, where Ui = Gi for all but

finitely many i. By the definition of inverse limits, each such set can actually be
written with only a single Ui 6= Gi. Similarly, since H is a finite union of such sets,
it can also be written in the same form, with a single Ui 6= Gi. That is to say, H is
the preimage of Ui under G → Gi. But since G → Gi is a group homomorphism,
the image of H is a subgroup Hi ⊆ Gi, so we see that H is indeed the preimage of
a subgroup Hi, as desired. �

The following lemma follows easily from our earlier results, and has been used
implicitly before. We state it explicitly for the sake of clarity.

Lemma 2.3. Suppose K/F is normal, and L is an intermediate extension. Then
any imbedding L→ K̄ fixing F has image contained in K, and can be extended to
an automorphism of K fixing F .

Proof. Indeed, since K/L is algebraic, any imbedding L → K̄ fixing F extends to
an imbedding K → K̄ fixing F , which must have image K since K/F is normal.
Thus, the image of L is contained in K, and moreover, the extended imbedding



INFINITE GALOIS THEORY 3

differs from the inclusion K ⊆ K̄ by an automorphism of K, which necessarily fixes
F . �

The main additional result on profinite groups we recall is that a subgroup is
closed if and only if it is the intersection of open subgroups. Armed with our
knowledge of profinite groups and the fundamental theorem of Galois theory in the
finite case, it is now easy enough to prove the generalization.

Proof of theorem. We already proved in full generality that K/L is Galois if and
only if KGal(K/L) = L.

For the other direction, we first prove that Gal(K/KH) = H when H is open.
By Lemma 2.2, H is the preimage of some HL ⊆ Gal(L/F ) for L/F finite Galois,
with L ⊆ K. That is, H is the set of automorphisms of K which restrict on L to
an element of HL. Now suppose σ ∈ Gal(K/KH). Then σ fixes all the elements
of LHL , since the definition makes it clear that LHL ⊆ KH , so by the fundamental
theorem of Galois theory applied in the finite case, σ restricts on L to an element
of HL, and we thus have σ ∈ H. Hence Gal(K/KH) ⊆ H, but the other inclusion
is obvious, so we have proved the desired statement.

We next claim that for any H ⊆ G, we have that Gal(K/KH) is closed. Gal(K/KH)
is clearly the intersection of Gal(K/L), where L/F is finite and L ⊆ KH . For each
such L, if E/F is the Galois closure, Gal(K/L) is the preimage in Gal(K/F ) of the
subgroup Gal(E/L) ⊆ Gal(E/F ), so is an open subgroup. Hence Gal(K/KH) is
closed. Since H ⊆ Gal(K/KH), we have H̄ ⊆ Gal(K/KH), and just need to prove
equality.

We are therefore reduced to seeing that Gal(K/KH) ⊆ H when H is closed. We
know that H is the intersection of the open subgroups H ′ containing it, so let H ′

be an open subgroup containing H. Then certainly KH′ ⊆ KH , so Gal(K/KH) ⊆
Gal(K/KH′

) = H ′ by the above, so we find Gal(K/KH) ⊆ ∩H′⊇H openH ′ = H,
and we obtain the desired equality.

It remains to prove assertions (1) and (2). For (1), we first note that the second
part implies the first: indeed, a closed subgroup is open if and only if it has finite
index, and we claim that because L/F is separable, it has finitely many imbeddings
in K fixing F if and only if it is finite over F . Certainly, if L/F is finite, it has finitely
many imbeddings. Conversely, every imbedding of a subfield can be extended to
all of L, and the extended imbedding has image contained in K by Lemma 2.3.
If L/K is not finite, it contains finite extensions of arbitrarily large degree, which
then produce arbitrarily many imbeddings.

Next, we see that for σ ∈ G, we obtain an imbedding L ↪→ K fixing F , simply by
applying σ to the given inclusion L ⊆ K. Moreover, we obtain the same imbedding
for any element in σH, since elements of H fix L, so precomposing by them doesn’t
change the imbeddings. We thus have a map from left cosets of H to imbeddings
of L into K fixing F , and we wish to see this is surjective. But surjectivity follows
immediately from Lemma 2.3.

Moving on to (2), we again start by observing that the second part implies the
first. In this case, it suffices to see that a field extension L/F contained in K is
normal if and only if σ(L) = L for all σ ∈ Gal(K/F ). But Lemma 2.3 implies that
{σ(L) : σ ∈ Gal(K/F )} is precisely the set of images of imbeddings of L into K̄
fixing F , so these are all equal precisely when L/F is normal.
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Finally, we note that

KσHσ−1
= {x ∈ K : ∀τ ∈ H,στσ−1(x) = x} (y := σ−1(x))

= σ{y ∈ K : ∀τ ∈ H,στσ−1(σy) = σy}
= σ{y ∈ K : ∀τ ∈ H, τ(y) = y}
= σKH ,

and conversely

Gal(K/σ(L)) = {τ ∈ Gal(K/F ) : ∀x ∈ σ(L), τ(x) = x} (y := σ−1(x))

= {τ ∈ Gal(K/F ) : ∀y ∈ L, τ(σ(y)) = σ(y)}
= {τ ∈ Gal(K/F ) : ∀y ∈ L, σ−1τσ(y) = y} (ξ := σ−1τσ)

= σ{ξ ∈ Gal(K/F ) : ∀y ∈ L, ξ(y) = y}σ−1

= σ Gal(K/L)σ−1,

so we obtain the desired bijection between conjugate fields of L and conjugate
subgroups of H in Gal(K/F ). �


