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Abstract Recent developments in sequencing technology have created a fl ood of new 
data on human genetic variation, and this data has yielded new insights into human popu-
lation structure. Here we review what both early and more recent studies have taught us 
about human population structure and history. Early studies showed that most human 
genetic variation occurs within populations rather than between them, and that genetically 
related populations often cluster geographically. Recent studies based on much larger data 
sets have recapitulated these observations, but have also demonstrated that high-density 
genotyping allows individuals to be reliably assigned to their population of origin. In fact, 
for admixed individuals, even the ancestry of particular genomic regions can often be reli-
ably inferred. Recent studies have also offered detailed information about the composition 
of specifi c populations from around the world, revealing how history has shaped their 
genetic makeup. We also briefl y review quantitative models of human genetic history, 
including the role natural selection has played in shaping human genetic variation.
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   20.1   Introduction 

 Technological developments arising from the 
International Human Genome Sequencing and the 
International Haplotype Map (The International 
HapMap Consortium, 2003, 2005, 2007)  [20–  22]  proj-
ects are transforming the study of human population 
genetics by dramatically reducing the cost of sequenc-
ing and genotyping. For example, as of early 2009, it 
costs about U.S. $500 per sample to genotype a mil-
lion variable DNA sites (i.e., SNPs) and structural 
variants in the human genome and between $50,000 
and $100,000 to sequence a human genome de novo. 
Recalling that the fi rst human genome cost on the order 
of $1 billion dollars to sequence, this is a 10 4  gain in 
effi ciency over less than a decade. Furthermore, by the 
time this book is published the costs we quote above 
may be reduced by another factor of two or three. In 
the next 5–10 years, therefore, we will likely see hun-
dreds of thousands (if not millions) of human genomes 
sequenced, and the vast majority of variation within 
and among human populations cataloged and analyzed 
to answer fundamental questions in human and medi-
cal genomics. 

 The purpose of this chapter is to lay the ground-
work for thinking about how we will begin to make use 
of this tremendous abundance of data. While these 
data will dwarf all that has come before, we will see 
that many of the questions we wish to answer are actu-
ally quite old – some as old as the fi eld of human 
genetics, itself. 

   20.1.1   Evolutionary Forces Shaping 
Human Genetic Variation 

 Quantifying patterns of human genetic variation serves 
several important roles in genetics. First, it helps us 
understand human history and often gives us insights 
into time periods that have left no written record. For 
example, global patterns of human genetic variation 
suggest an African origin of modern humans approxi-
mately 150,000–200,000 years ago and are consistent 
with a “serial” founder model (see Sect. 20.5.1) for 
subsequent colonization and peopling of the world. 
Second, it helps us understand human  evolutionary  
history. For example, patterns of human genetic varia-

tion allow us to delineate what genomic changes are 
unique to our species (i.e., shared by all humans to the 
exclusion of other apes), and which may be shared 
ancestrally (or recurrently) with other species. 
Likewise, patterns of human genetic variation can give 
us insight into regions of the human genome that may 
have experienced recent positive, negative, or balanc-
ing selection (see Nielsen et al.  [39]  for a recent 
review). 

 Understanding patterns of human genetic variation 
is also fundamental for the proper design of medical 
genomic studies, since population structure can often 
be a confounding variable in genome-wide association 
mapping. As the density of markers queried for asso-
ciation with disease increases and we begin to look at 
rare variants that may show limited geographic distri-
butions, quantifying population structure at ever fi ner 
scales will be critical to the interpretation and analysis 
of experiments which aim to correlate patterns of 
genetic and phenotypic variation. In order to properly 
set the stage for our discussion, we will briefl y review 
some key concepts from population genetics, anthro-
pology, and genetics that may be unfamiliar to some 
readers. 

 The evolutionary dynamics of natural populations 
(be they human, plant, animal, or otherwise) are gov-
erned by a confl uence of different evolutionary forces. 

 Chief among these is  mutation , which is the ulti-
mate source of variation. As this book illustrates, the 
process of mutation is a heterogeneous category of 
changes in DNA that come about through myriad path-
ways and ultimately induce changes ranging from sin-
gle base pair alterations (i.e., single nucleotide 
polymorphisms or SNPs) to small insertion and dele-
tions to large-scale structural rearrangments or even 
the addition or deletion of whole chromosomes. Most 
of the variation we will discuss in this chapter will be 
of the “small scale” variety, with a particular emphasis 
on understanding patterns of microsatellite, SNP, and 
haplotype variation. 

 We limit ourselves to these marker types largely 
due to practicality: assaying SNP and microsatellite 
variation has become standardized, and there are now 
a plethora of studies – such as those cited later on in 
this chapter – that have undertaken surveys using these 
markers across diverse human populations. Our hope 
is that, as the world of personalized genomics becomes 
a reality, large and micro-scale structural variation 
becomes cataloged and standardized in similar ways. 
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20 Genetics and Genomics of Human Population Structure 

 The second key force shaping patterns of human 
genetic variation is  genetic drift . As you will recall from 
Chap. 16, genetic drift is a stochastic force that appor-
tions variation by randomly subsampling variation from 
one generation to the next. Traditionally, we model 
genetic drift as simple binomial sampling of alleles. 
That is, if we consider a biallelic locus under no selec-
tion and represent the frequency of an allele  A  at time  t  
in a given population of size  2N  as  x  t , the frequency in 
the next generation ( xt+1   ) is binomially distributed with 
probability of success  x  t  and sample size  2N . (It turns 
out this binomial distribution can be generalized and 
there is a rich treatment of this subject in theoretical 
population genetics.) This random sampling from gen-
eration to generation induces what is known as a “ran-
dom walk,” such that the collection of allele frequencies 
from the start of the population history until the current 
time ( x 0 , x 1 ,…, x t  ) as well as the distribution of long-term 
average frequencies across different sites can be mod-
eled using a litany of theoretical tools. 

 For our purposes, we will focus on several qualitative 
impacts of this neutral evolutionary model. First, for a 
given population, the dynamics of genetic drift will be 
governed by the magnitude of  2N , so that populations 
with a large number of individuals will “drift” more 
slowly or take smaller steps in frequency space from 
generation to generation than small populations. This 
model also suggests that if we were to follow lines-of-
descent (i.e., the number of offspring left some time in 
the future by a given lineage today) with no difference 
in average offspring number among lineages, then the 
probability of a given lineage eventually overtaking the 
population is simply given by its current frequency. (For 
example, a lineage or allele at 20% frequency has a 20% 
chance of eventually getting fi xed in the population, and 
an 80% chance of eventually getting lost.) Likewise, the 
model predicts that frequency is often a good proxy for 
age (at least for neutral alleles) so that a mutation at 25% 
frequency in the population is very likely to be older 
than a mutation at 5% frequency. For this reason, the 
distribution of SNP frequencies or the so-called allele-
frequency spectrum contains a fair amount of informa-
tion regarding the history of the population. 
Mathematically, we would defi ne this quantity using an 
equation such as the following for a population with 
 sample  size of  n   i   individuals:

      Yi := {the number of SNPs where the sample  
frequency is i/(2ni)}.    (20.1)

 We will return to  Yi    later in the chapter and discuss 
methods for inferring demographic history and selec-
tion from these frequencies. (Note: in the equation 
above we are assuming directionality as to which allele 
is the ancestral form and which is the derived. In prac-
tice, we infer this information from comparative 
genomic data, ideally, with correction for multiple 
mutations occurring at the site. See  [17,   18]  for a dis-
cussion of this problem). 

 The third force that will affect patterns of human 
genetic variation is  migration  or, more generally, 
 demographic history . By this we mean that a given 
population (certainly for humans) is unlikely to 
 reproduce as a fully endogamous unit. Rather, there is 
some probability every generation that new migrants 
from other populations may enter and contribute to the 
gene pool of the next generation. We also know that a 
given population is unlikely to remain the exact same 
size from generation to generation; it may increase or 
decrease in size, or go through boom/bust cycles. The 
number of demographic models one can construct is 
staggering, but certain general properties of models are 
described below. 

 For example, populations that have a closely shared 
evolutionary history – say they are exchanging migrants 
often or split from a common ancestral population a 
short time ago – will show a strong and positive cor-
relation in allele frequencies both over time (i.e., the 
two populations’ x t  values for a specifi c SNP will be 
correlated over time) as well as across the genome 
(i.e., the observed Y i  values will be correlated). We can 
also defi ne a quantity such as the “joint allele frequency 
spectrum” to help us quantify this correlation and 
gauge the impact of different evolutionary forces on 
sets of populations. Mathematically, for a pair of popu-
lations  i  and  j  with sample size  n   i   and n j  this might take 
the form of a quantity Y ij  such that:

     Yij =  {the number of SNPs where the sample 
frequency is i/(2ni) in population 
i and j/(2nj) in population j}.    (20.2)

 As we will see throughout this chapter, the allele 
frequency spectrum both of a single population (i.e., 
 Y i  ) and for a pair ( Yij   ) or more ( Yijkl…   ) contains a fair 
amount of information regarding the evolutionary 
history of the populations in question. Many of the 
commonly used statistics in population genetics such 
as Wright’s F-statistics, defi ned in Sect. 20.2.1, are 

591



 S. Ramachandran et al.

20

summaries of these quantities. In Fig.  20.1  we show 
how different demographic forces acting on a 
 population can impact their marginal ( Yi   ) and joint 
( Yij   ) site-frequency spectra.  

 The fourth force which contributes to the distribu-
tion of human genomic variation is natural selection. 
As was discussed in the chapter on population genetics 
(Chap. 16), selection works to decrease the frequency 
of deleterious alleles, increase the frequency of posi-
tively selected variants, and stabilize the frequency of 
variants subject to balancing selection. In human pop-
ulations, it appears that selection is a much weaker 
force than genetic drift or demographic history in shap-
ing global patterns of genomic variation. Nonetheless, 
there are some clear examples of positive and balanc-
ing selection on the human genome which have been 
recently reviewed (see  [39] ). Here, we will discuss 
selection briefl y and mostly in light of selection against 
deleterious alleles, since this is the most prevalent form 
of selection operating on the human genome (see 
Sect. 20.6.2).   

   20.2   Quantifying Population Structure 

 In this section, we introduce several methods for 
quantifying and detecting population structure. We 
begin by introducing the classic  F -statistics, which 
measure the degree of genetic differentiation among 
pre-defi ned and discrete subpopulations. We will then 
focus on model-based clustering methods, which aim 
to characterize latent and possibly nondiscrete popu-
lation  structure. 

   20.2.1   F ST   and Genetic Distance 

 Nonrandom mating in a population with substruc-
ture has two consequences: fi rst, preferential mating 
between individuals from the same subpopulation is a 
form of  inbreeding , and has the effect of reducing 
genetic diversity (measured as, say, heterozygosity) in 
the overall population; second, as the subpopulations 
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  Fig. 20.1    Frequency spectrum gallery (adapted from Gutenkunst 
et al., manuscript submitted). ( a ) Impact of different evolutionary 
forces on shared patterns of genetic variation for a pair of popula-
tions, as defi ned by the density of alleles at relative frequencies  x1    
and  x2    in populations 1 and 2. ( b ) Graphical description of an 
evolutionary model in which a pair of populations diverge and 
continue to exchange migrants. Specifi cally, an equilibrium pop-
ulation of effective size N A  diverges into two populations  2N A  t    
generations ago. Populations 1 and 2 have effective sizes    n 1  NA    
and   n  2 NA   , respectively. Migration is symmetric at  m = M/(2N A )  
per generation, and the scaled mutation rate   q   = 1,000. ( c ) The 
allele frequency spectrum (AFS) at  t  = 0. Each entry is colored 

according to the logarithm of the number of SNPs with a given 
pairwise sample frequency, ranging from 0 to 14 copies of an 
allele in each population. ( d ) The AFS at various times for vari-
ous demographic parameters, on the same scale as  c . From the 
two-dimensional spectra, note that increased migration leads to 
more correlated SNP  frequencies, and differences in population 
size lead to asymmetric genetic drift and thus an asymmetric 
AFS. For τ = 1, the single-population spectra are also shown, 
where the scale is the fraction of polymorphisms observed at a 
given sample frequency. In these, note in particular that when 
populations experience growth, the spectrum is skewed toward 
rare alleles, particularly for the middle scenario.       
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experience independent genetic drift, allele frequencies 
at genetic markers tend to diverge. Originally intro-
duced by Wright in 1921  [69]  to quantify the inbreed-
ing effect of population substructure,  FST    has become 
one of the most widely used measures of genetic dif-
ferentiation between predefi ned subpopulations. 

 Consider the simple setting, in which a population 
consists of several subpopulations.  FST    is defi ned as the 
decrease in heterozygosity among subpopulations 
( HS   ), relative to the heterozygosity in the total popula-
tion ( HT   ):

     
-

,T S
ST

T

H H
F

H
=    (20.3)

where  HS    is the  expected  heterozygosity, computed 
under the assumption that mating is random within 
each subpopulation (Hardy-Weinberg equilibrium), 
while  HT    is analogously computed assuming random 
mating in the entire population without population 
structure. 

 Alternatively,  FST    is often loosely interpreted as the 
proportion of variance in allele frequencies at a locus 
that is explained by the subpopulation level of organi-
zation. For example, suppose the frequency of an allele 
is 0 and 1 in two subpopulations, respectively, then 
 FST    = 1, meaning the variance in allele frequency is 
completely explained by the population division. 
Under this framework,  FST    at a biallelic single nucle-
otide polymorphism (SNP) marker can be computed 
based on the allele frequencies:

   

2

,
(1- )

p
STF

p p

s
=      (20.4)

where   sp

2   is the variance of allele frequencies among 
subpopulations and      denotes the average allele fre-
quency in the pooled population. It can be shown that 
(20.3) and (20.4) are mathematically equivalent for 
biallelic markers, but (20.4) is often computationally 
more convenient. 

  FST    is often taken as a genetic distance measure, 
with higher values of  FST    refl ecting a greater level of 
genetic divergence. However, both (20.3) and (20.4) 
defi ne  FST    for a specifi c locus;  FST    can vary consider-
ably from locus to locus. Moreover, a locus that is 
under population- or environment-specifi c selection 
can also exhibit unusually high  FST   . For example, 

across globally-distributed human populations, func-
tional polymorphisms in genes related to skin pigmen-
tation show unusually high levels of  FST    (i.e., population 
differentiation) as compared to the genome-wide dis-
tribution (see  [45] ). To reduce the variance across the 
markers and the bias due to a small number of strongly 
selected loci, when  FST    is reported as an index for 
genetic distance among subpopulations, it is often cal-
culated by averaging both the numerator and the 
denominator in (20.3) or (20.4) across loci. 

 When one is interested in quantifying the degree of 
substructure among predefi ned populations,  FST    is a sim-
ple and useful measure of genetic distance. However, it is 
often the case that we are interested in using the genetic 
data itself to defi ne the populations. In particular, if we 
are interested in detecting cryptic or hidden population 
structure, then we need to resort to other approaches (see 
Sect. 20.4). One method for detecting latent population 
structure, principal component analysis (PCA), was 
introduced in Sect. 6.4.4. In the next section, we explain 
a complementary approach, which defi nes subpopula-
tions based on statistical genetic models for the data.  

   20.2.2   Model-Based Clustering 
Algorithms 

 Cluster analysis refers to a large family of approaches, 
whose goal is to simultaneously defi ne subsets (called 
clusters) and to assign observational units into these 
clusters, so that members in the same cluster are simi-
lar by some criteria. For a comprehensive survey of 
clustering approaches, readers are referred to Mardia 
et al.  [32]  or Hastie et al.  [15] . 

 In the context of inferring genetic structure, the data 
usually consist of individuals genotyped at multiple 
genetic markers (e.g., restriction fragment length poly-
morphisms RFLPs, microsatellites, or SNPs). In the 
discrete population model, all alleles in an individual 
are assumed to be drawn randomly from one of the 
subpopulations, according to a set of allele frequencies 
that are specifi c to each subpopulation. The goal of the 
analysis is to simultaneously estimate subpopulation 
allele frequencies and group membership (i.e., which 
individuals are drawn from which subpopulation). 
However, for many human populations, there is often 
no single group from which individuals derive their 
ancestry. That is, recent migration gives rise to 

593



 S. Ramachandran et al.

20
 genetically admixed individuals, whose genomes rep-
resent a mixture of alleles from multiple “ancestral” 
populations (see Sect. 20.5). 

Mathematically, this means that an individual may 
have partial membership in more than one cluster. 
These clusters are biologically interpreted as ancestral 
populations for the admixed individuals. For example, 
African Americans in the United States are a recently 
admixed group, deriving ancestry from European and 
West African ancestral populations  [65] . Under the 
admixture model, an African American individual’s 
population membership is characterized by the  indi-
vidual ancestry  (IA) proportion, which is a vector rep-
resenting the probability that a randomly selected 
allele from this individual originates from a European 
(or alternatively, an African) ancestor. 

 Under either the discrete or the admixture model, 
individuals’ memberships (or IA values) are jointly 
inferred with the allele frequencies in each subpopula-
tion, using either maximum likelihood or Bayesian 
methods. We begin by explaining the maximum likeli-
hood approach for the discrete subpopulation model, 
as this model illustrates the principles that underlie 
most of the model-based approaches  [63] . Let 
  ( ( , ), ( , ))m

iG a i m b i m=    denote the genotype of individ-
ual  i  at marker  m , with    a(i,m)    and    b(i,m)    being the 
unordered pair of alleles. Let    Zi Œ  (1,..., k)    indicate the 
subpopulation membership for individual  i , and 
  { }

l

k
mP p=    be the frequency of allele  l  at marker  m  in 

population  k . Under the assumption that genotypes 
among markers are independent conditioning on an 
individual’s membership, and that all markers are in 
Hardy-Weinberg equilibrium within each subpopula-
tion, the likelihood function, treating  Z  and  P  as param-
eters, is simply the product of the probability of 
observing each allele:

     
( , ) ( , )

( , ; ) .i i

a i m b i m

z z
m m

i m

L P Z G p pµÕÕ      (20.5)

 For the admixture model, one can substitute  Zi    by 
  , ,( , )a b

i m i mZ Z   , the population origin of each allele, and 
model ,

a
i mZ      and   ,

b
i mZ    as independent draws from the 

multinomial probability vectors of individual ancestry. 
The inference of population structure amounts to the 
inference on  Zi   , or the genome-wide average of 
  , ,( , )a b

i m i mZ Z   . 
 In the maximum likelihood approach, the expec-

tation maximization (EM) algorithm can be used to 
find the maximum likelihood estimates for the 

parameter values, ( P,Z )  [57,   63,   70,   74] . Alternatively, 
Bayesian approaches incorporate prior distributions 
into the likelihood, in order to evaluate the poste-
rior distribution. The Bayesian methods offer a fl ex-
ible framework for incorporating more complex 
population history models. For example, one of the 
widely used Bayesian programs, STRUCTURE, 
includes useful features such as modeling linkage 
among loci, and the ability to model correlated 
allele frequencies between evolutionarily related 
ancestral populations  [14,   49] .  

   20.2.3   Characterizing Locus-Specifi c 
Ancestry 

 For admixed populations, methods described in the 
preceding section can be used to infer individual ances-
try, which represents the genome-wide average ances-
try proportions in an individual. If admixture has 
occurred recently, the genome of an admixed individ-
ual resembles a mosaic of fairly long chromosomal 
blocks derived from one of the ancestral populations. 
With high-density genotype data, it is now feasible to 
delineate these ancestry blocks with relatively high 
accuracy. Figure  20.2  illustrates how ancestry blocks 
can be reconstructed. While numerous statistical meth-
ods have been proposed (e.g.,  [60,   62] ), it is important 
to realize that the source of information underlying all 
methods is the different allele and haplotype frequen-
cies among the ancestral populations. As such, the 
accuracy with which one can infer locus-specifi c 
ancestry depends on the genetic divergence between 
the ancestral populations. The distribution of the 
ancestry blocks also depends on the admixing history: 
ancient admixing events result in smaller ancestry 
fragments, while recent admixing events give rise to 
extended blocks. With any method, the ability to iden-
tify a switch in ancestral state deteriorates when the 
blocks are very small. Therefore, the accuracy of locus-
specifi c ancestry inference depends on (at least) two 
aspects of the population history: the divergence 
between the ancestral populations, and the time of the 
admixing events. Simulation studies using HapMap 
data suggest that current high-density genotype data 
harbor suffi cient information for accurate ancestry 
inference for African-Americans or Hispanics  [62] . 
Locus-specifi c ancestry can provide information 
regarding the population history of an admixed 
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 population, as well as the fi ner-scale genetic structure 
within admixed groups. These are topics we will dis-
cuss in greater detail in Sect. 20.5.    

   20.3   Global Patterns of Human 
Population Structure 

 In this and the subsequent section, we begin a detailed 
exploration of empirical studies of human population 
genetic structure. First we explore major studies and 
datasets, now paradigms in the fi eld of human popula-
tion genetics, that compare human genetic variation at 
the level of multiple continents; the title of each subsec-
tion in this section is the title of a major paper or book 
in human population genetics. More recent studies of 
high-density genotyping data reveal patterns in genetic 
variation at fi ne geographic scales, as will be discussed 
after this section’s historical perspective is presented. 

   20.3.1   The Apportionment of Human 
Diversity 

 Most studies of human population genetics begin by 
citing a seminal 1972 paper by Richard Lewontin bear-
ing the title of this subsection  [29] . Given the central 
role this work has played in our fi eld, we will begin by 

discussing it briefl y and return to its conclusions 
throughout the chapter. In this paper, Lewontin sum-
marized patterns of variation across 17 polymorphic 
human loci (including classical blood groups such as 
ABO and M/N as well as enzymes which exhibit 
 electrophoretic variation) genotyped in individuals 
across classically defi ned “races” (Caucasian, African, 
Mongoloid, South Asian Aborigines, Amerinds, 
Oceanians, Australian Aborigines  [29] ). A key conclu-
sion of the paper is that 85.4% of the total genetic 
variation observed occurred within each group. That 
is, he reported that the vast majority of genetic differ-
ences are found within populations rather than between 
them. In this paper and his book  The Genetic Basis of 
Evolutionary Change   [30] , Lewontin concluded that 
genetic variation, therefore, provided no basis for 
human racial classifi cations. 

 Lewontin’s argument is an important one, and sepa-
rates studying the geographic distribution of genetic 
variation in humans from searching for a biological 
basis to racial classifi cation. His fi nding has been 
reproduced in study after study up through the present: 
two random individuals from any one group (which 
could be a continent or even a local population) are 
almost as different as any two random individuals from 
the entire world (see proportion of variation within 
populations in Table  20.1  and  [20] ).  

 An important point to realize is that Lewontin’s cal-
culation (and later work that confi rms his fi nding) are 
based on the  F -statistics introduced in Sect. 20.2.1 (see 

  Fig. 20.2    Estimating ancestry along a chromosome. The  top panel  shows ancestry blocks along a simulated chromosome ( red : 
African,  blue : European;  yellow : Asian). The  bottom panel  shows the reconstructed ancestry using high-density SNP markers, which 
are indicated by the  black ticks at the bottom of each panel        
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 [67]  for a discussion) averaged across single genetic 
loci. While it is an undeniable mathematical fact that 
the amount of genetic variation observed within groups 
is much larger than the differences among groups, this 
does not mean that genetic data do not contain discern-
able information regarding genetic ancestry. In fact, 
we will see that minute differences in allele frequen-
cies across loci when compounded across the whole of 
the genome actually contain a great deal of informa-
tion regarding ancestry. Given current technology, for 
example, it is feasible to accurately identify individu-
als from populations that differ by as little as 1% in F ST  
if enough markers are genotyped. (See discussion 
below for a detailed treatment of the subject.) It is also 
important to note that when one looks at correlations 
in allelic variation across loci, self-identifi ed popula-
tions and populations inferred for human subjects 
using genetic data correspond closely  [12,   53] .  

   20.3.2   The History and Geography of 
Human Genes 

 For more than 40 years, Luigi Luca Cavalli-Sforza 
and colleagues have worked to document and inter-
pret patterns of human genetic variation. Along the 
way they have developed and perfected many of the 
statistical methods used to visualize and quantify pat-
terns of variation and interpret their fi ndings in light 

of human history and evolution. Their canonical book, 
 The History and Geography of Human Genes , sum-
marizes much of what they have learned about the pat-
tern and process of human genetic variation across 
1,800 indigenous populations. 

 Before delving into their fi ndings, it is important to 
defi ne two important concepts that permeate their work 
and those of the fi eld a whole. The fi rst is  treeness , a 
concept introduced by Cavalli-Sforza and Piazza  [5]  to 
summarize population structure across multilocus 
data. Statistically, we can think of  treeness  as a way of 
summarizing “block structures” seen in matrices of 
pairwise genetic distances between populations. 
Specifi cally, block structures emerge when popula-
tions descended from a common ancestor are grouped 
together in these matrices, since closely related popu-
lations (say sister populations) will show similar levels 
of differentiation to a distant pair of closely related 
populations, the matrix will appear to show nearly 
duplicated rows and columns (or “blocks” of related-
ness). By summarizing the blocks as arising from 
bifurcating trees, one can in theory build up a history 
of the population splitting events that gave rise to the 
sampled groups. It is important to emphasize that pop-
ulation trees are somewhat different from traditional 
phylogenetic (or species) trees since they are summa-
rizing a reticulated history with often a great deal of 
gene fl ow among the terminal branches. The second 
concept that is important to discuss is the technique of 
principal component analysis (PCA). As we have 

  Table 20.1    In this analysis of molecular variance, the total genetic variation observed is partitioned by that explained within 
populations in the same sample, among populations within regions, and among regions (from  [53] , reprinted with permission from 
AAAS)   

 Sample  Number of regions 
 Number of 
populations 

 Variance components and 95% confi dence intervals (%) 

 Within populations 
 Among populations 
within regions  Among regions 

 World  1  52  94.6 (94.3, 94.8)  5.4 (5.2, 5.7) 
 World  5  52  93.2 (92.9, 93.5)  2.5 (2.4, 2.6)  4.3 (4.0, 4.7) 
 World  7  52  94.1 (93.8, 94.3)  2.4 (2.3, 2.5)  3.6 (3.3, 3.9) 
 World-B97  5  14  89.8 (89.3, 90.2)  5.0 (4.8, 5.3)  5.2 (4.7, 5.7) 
 Africa  1  6  96.9 (96.7, 97.1)  3.1 (2.9, 3.3) 
 Eurasia  1  21  98.5 (98.4, 98.6)  1.5 (1.4, 1.6) 
 Eurasia  3  21  98.3 (98.2, 98.4)  1.2 (1.1, 1.3)  0.5 (0.4, 0.6) 
 Europe  1  8  99.3 (99.1, 99.4)  0.7 (0.6, 0.9) 
 Middle East  1  4  98.7 (98.6, 98.8)  13 (1.2, 1.4) 
 Central/South Asia  1  9  98.6 (98.5, 98.8)  1.4 (1.2, 1.5) 
 East Asia  1  18  98.7 (98.6, 98.9)  1.3 (1.1,1.4) 
 Oceania  1  2  93.6 (92.8, 94.3)  6.4 (5.7, 7.2) 
 America  1  5  88.4 (87.7, 89.0)  11.6 (11.0,12.3) 
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already seen in Sect. 6.4.4, PCA is a general tool for 
exploratory data analysis that has found wide applica-
tion in genetics. Cavalli-Sforza and colleagues were 
among the fi rst to use PCA of population allele fre-
quency matrices to identify major axes of variation in 
the data and interpret these axes in light of human his-
tory, as we will discuss below. One important distinc-
tion to emphasize is that much of the PCA work they 
carried out was done at the  population  level while 
much of the PCA that is carried out today is done at the 
individual level. (That is, PCA analysis of genotype 
value matrices where the entries are “0,” “1,” or “2” 
depending on how many copies of the “A” allele vs. 
the “a” allele, a given individual carries at a locus). 

 Using PCA Cavalli-Sforza and colleagues deeply 
explored human population genetics structure in  The 
History and Geography of Human Genes . (A represen-
tative example of the PCA plots they generated is given 

in Fig.  20.3 , which summarizes major axes of variation 
across the sampled populations they studied). A key 
emphasis of their work was on understanding how or 
whether language presented barriers to gene fl ow (i.e., 
quantifying how much of nonrandom mating in human 
populations is attributable to language) (see Fig.  20.4 ). 
The idea that languages and genes may evolve at simi-
lar rates and that a similarity in linguistic markers 
between two languages may likely refl ect a recent 
shared genetic history among speakers of those lan-
guages remains controversial in the fi eld of linguistics. 
However, Cavalli-Sforza et al.  [8]  underscored that 
human evolutionary genetics studies can rely on data 
and results from other fi elds – such as anthropology, 
archaeology, and linguistics – to synthesize inferences 
about human history.   

 The book by Cavalli-Sforza and colleagues is 
known for its numerous  synthetic maps   [34] . Synthetic 

  Fig. 20.3    Principal component map of 42 population studies by 
 [6] . The fi rst two PCs summarize 27% and 16% of the variation, 
respectively. Africans cluster in the lower right quadrant, with 
Europeans in the upper right, Southeast Asians in the lower left, 
Northeast Asians and Americans in the upper left. The fi rst PC 
separates Africans and Europeans from the rest; the authors pro-

pose that the fi rst PC does not separate Africans from non-Afri-
cans because there are only 6 African populations compared to 
36 other populations. From   [7] . From Cavalli-Sforza L., The 
History and Geography of Human Genes, copyright 1994 
Princeton University Press. Reprinted by permission of Princeton 
University Press       
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maps overlap a single principle component onto a 
 geographic map and are interpreted as revealing migra-
tion routes taken through the frequency and geographic 
spread of the allelic variant (see last three columns of 
Fig.  20.5 ). Many synthetic maps reveal north-south 
and east-west gradients in genetic variation, which 
might be interpreted as linking variation in a particular 
gene to climate or ecology. Recent work shows that 
PCA is expected to reveal axes of genetic variation that 
are orthogonal  [41]  and that multiple interpretations 
may be consistent with a given PCA representation of 
genetic variation.   

   20.3.3   Genetic Structure of Human 
Populations 

 An important and infl uential resource for studying 
human genetic variation has been the Human Genome 
Diversity Panel. Spearheaded by Howard Cann, Luca 
Cavalli-Sforza, and Jim Weber  [4]  (see Box 20.1), the 
HGDP is a collection of immortalized lymphoblastoid 
cell lines of over 1,000 individuals from 51 popula-
tions. By creating a renewable resource of DNA, the 
panel has afforded deep inferences on human evolu-
tionary history, especially genomic signatures of 

  Fig. 20.4    Aligning the genetic tree with linguistic families and superfamilies, as in  [8] . From  [7]        . From Cavalli-Sforza L., The 
History and Geography of Human Genes, copyright 1994 Princeton University Press. Reprinted by permission of Princeton 
University Press
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 historical relationships between populations, by pro-
viding a means to genotype (and ultimately sequence) 
genomes from diverse human populations. The fi rst 

study of genetic variation in the HGDP scored poly-
morphism across 377 autosomal microsatellite loci in 
the panel  [53]  and recapitulated Lewontin’s  [29]  result 

  Fig. 20.5    Comparing synthetic maps from  [34]  with theoretical 
and empirical expectations. Menozzi et al.  [34]  performed princi-
pal component analyses on frequencies of 38 genes in various 
populations; the  last three columns  of this fi gure depict their origi-
nal results. In the panel displaying PC1 in Europe, for example, the 
frequencies of certain alleles decrease (shown by more  yellow col-
ors ) away from the Middle East; authors state that this pattern par-
allels the arrival of agriculture, which originated in the Middle East 
and then spread northward to Europe  [6] . The Menozzi et al.  [34]  
fi gures have been arranged to correspond with the shapes seen in 
the  fi rst two columns , which are based on theoretical and simula-
tion results from  [41] . Novembre and Stephens [41] simulated 

populations evenly-spaced in two-dimensional habitats with homo-
geneous migration rates aross time and space. Their PCA of these 
simulations found large-scale orthogonal gradients and “saddle” 
and “mound” patterns (see fi rst column) when visualizing princi-
pal components even under this homogenous migration scheme. 
The second column displays PCA results from their simulations. 
The fi rst column shows common structures seen in covariance 
matrices of population allele frequencies where genetic similarity 
decreases with geographic distance in a two-dimensional habitat, 
known as a stepping stone model. The regularity with which they 
observe these patterns runs counter to Menozzi et al.’s [34] claim 
that their PCA results are indicative of specifi c migration events.       
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that the vast majority of human population genetic 
variation is found within local populations. However, 
the study also demonstrated individuals could be 
assigned to their continent of origin, and in some cases 
their population of origin using the model-based clus-
tering algorithm STRUCTURE  [49] . The authors 
reported “it was only in the accumulation of small 
allele-frequency differences across many loci that pop-
ulation structure was identifi ed.” 

 In a follow-up study (see Fig.  20.6 ), Rosenberg 
et al.  [52]  genotyped 993 total markers in the HGDP 
and demonstrated increased resolution of population 
structure as a result of increasing the amount of genetic 
data used. In particular, when the method is asked to 
identify two clusters (i.e.,  K  = 2), the authors found that 
STRUCTURE differentiates between indigenous 
American (purple cluster) and African (orange cluster) 
populations, with other populations having a gradient 
of membership in the African cluster that drops off 
with geographic distance from Africa. As the number 
of clusters  K  used in the STRUCTURE analysis 
increased, correlations in genotype data within conti-
nents of origin allowed Eurasia, East Asia, and Oceania 
to be identifi ed as separate clusters as well. The struc-
ture that is identifi ed is that of differences between 
continents, with a few notable exceptions. For exam-
ple, the orange Africa cluster membership in the 
Mozabites refl ects the gene fl ow this Middle Eastern 
population has had with Africa, due to the samples’ 
location in North Africa. Similarly, membership in the 
blue Eurasian cluster in the Maya refl ects gene fl ow 
with Europe during colonization that this American 
population experienced to a greater extent than other 
American populations in the HGDP.  

 The genotyping of 650,000 SNPs in these popula-
tions  [31]  allowed the detection of individual ancestry 
and population substructure with very high resolution 
within continents as well as across them (more exam-
ples of analyses with dense SNP maps will be dis-
cussed in Sect. 20.4). Li et al.  [31]  were further able to 
examine the distribution of ancestral alleles (nucle-
otides observed in chimpanzee) in HGDP populations 
by genotyping two chimpanzee samples at the same 
markers. The ancestral allele-frequency spectrum 
across loci can yield clues to the history of individual 
populations, because we expect populations with a 
small effective size and/or populations that have expe-
rienced a bottleneck to have more pronounced genetic 
drift, which can result in a relatively rapid increase in 

derived allele frequencies compared to populations 
with larger effective sizes or populations that have 
experienced expansion.  

   20.3.4   A Haplotype Map of the Human 
Genome 

 A comprehensive search for genetic causes of  common 
diseases, such as type II diabetes or macular degenera-
tion, requires examining genetic differences between a 
large number of affected individuals (i.e., cases) and 
matched controls. Key to facilitating this effort is 
knowledge about patterns of linkage disequilibrium 
(LD) or nonrandom association among SNPs in the 
genome. Such correlations between causal mutations 
and their haplotypes have long been used in human 
genetic research of disease (e.g., in studies of the HLA 
region, and in the identifi cation of causes of Mendelian 
disorders such as cystic fi brosis). 

 The International HapMap Project was formally ini-
tiated in October 2002 as a means of systematically 
describing patterns of linkage disequilibrium in the 
human genome in order to catalyze medical genetic 
research into the heritable basis of common disease. It 
also represented the beginning of a paradigm shift in 
both the amount of data and types of questions that 
could be answered by human population geneticists. 
The stated goal of the project was to “determine com-
mon patterns of DNA sequence variation in the human 
genome”  [21] , with the goal of typing over one million 
SNPs in 270 individuals including 60  trios  (samples of 
two parents and one of their biological children). The 
project has far surpassed that goal, as seen in Box 20.1. 

 The HapMap data provide insight into LD patterns 
across three populations. Chief among the concepts 
developed around the project is the notion of  tag SNPs  
or representative SNPs in a region that can serve as 
“proxies” for other SNPs. That is, using tag SNPs 
means genetic variation can be effi ciently queried for 
association with disease without genotyping every 
SNP in a given chromosomal region (therefore drasti-
cally reducing the cost of carrying out a genome-wide 
association study). 

 Tag selection methods exploit redundancy among 
SNPs; however, since the HapMap initially sampled 
only three populations, an issue for association studies 
is whether tag SNPs chosen from the HapMap dataset 
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  Fig. 20.6    Inferred population structure based on 1,048 
individuals and 993 markers. Each individual is represented 
by a  thin line  partitioned into  K  colored segments that 
represent the individuals estimated membership fractions in 
 K  clusters.  Black lines  separate populations, whose names 
are to the  left  of the fi gure, with continent listed on the  right  
of the fi gure. The value of  K  indicates how many clusters 
STRUCTURE was assuming existed in the dataset for a 
particular set of runs for the method. From  [52]        
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20     Box 20.1  Examples of publicly available human population genetic datasets

 Description of three major datasets used by the human population genetics community. These are not the only 
large datasets available for research, but illustrate how much data are being generated to better understand 
human genetic variation, genetic signatures of human history, and the genetic underpinnings of disease. 

 Dataset Name  Initial reports of data  Amount of data generated 

 Human Genome Diversity Project   [4]  (2002)  lymphoblastoid cell lines from 1,064 individuals 
in 51 populations 

  [53] (2002)   377 autosomal microsatellites 
  [52] (2005)   993 markers (microsatellites and insertion/

deletion polymorphisms) 
  [31] (2008)   650,000 SNPs in 938 of these individuals 

 International HapMap Project  [21] (2003 paper)  270 people across three populations (30 trios 
from Yoruba people of Ibadan, Nigeria; 45 
unrelated individuals from Tokyo, Japan; 45 
unrelated individuals from Beijing, China; 30 
United States trios with northern and western 
European ancestry) 

 [22] (2005 paper)  1 million SNPs in these individuals (1 SNP per 5 
kilobases) 

 [23] (2007 paper)  An additional 2.1 million SNPS (1 SNP per 
kilobase) 

 HapMap Phase III, draft 2 reported 
online in January 2009 

 an additional 1.5 million SNPs and an increase to 
1184 individuals (populations added: Chinese 
from Denver; Gujurati from Houston; Luhya 
from Webuye, Kenya; Mexican ancestry from 
Los Angeles; Maasai from Kinyawa, Kenya; 
Toscans from Italy; African ancestry from 
Southwest USA) 

 1,000 Genomes Project  www.1000genomes.org  Sequencing the genomes of approximately 2,000 
people from around the world 

adequately capture patterns of variation in other popu-
lations. Conrad et al.  [10]  showed that the portability 
of tag SNPs from HapMap to HGDP populations was 
quite good within large geographic regions such as 
continents. These dense genotype data reveal other 
important patterns resulting from continental 
 population structure, such as an increase in LD with 
distance from Africa, refl ecting that African lineages 
have smaller preserved blocks of LD due to increased 
time for recombination events to break up correlations 
(also seen in the HGDP by Conrad et al.  [10] ). 

 Data from the initial HapMap project do not enable 
much inference about evolutionary relationships 
between populations, so the genotyping of individuals 
from additional populations has become a priority in 
human population genetics. As the cost of SNP geno-
typing lowers, studies allow for across- and within-

continental pictures of population structure to emerge. 
Dense genotype data from multiple populations allow 
the inference of both continental differentiation and 
the fi ne-scale study of within-region relationships 
among individuals. It is these fi ner-scale patterns that 
we will explore in the next section.   

    20.4   The Genetic Structure of Human 
Populations Within Continents 
and Countries 

 Large-scale human population genetic studies like the 
Human Genome Diversity Panel and International 
HapMap Project discussed in Sect. 20.3 initially had to 
choose between sampling densely geographically and 
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sampling densely genomically. In just the last 2–3 years, 
improvements in genotyping technologies have allowed 
studies to report analyses of hundreds of thousands of 
SNPs genotyped in individuals from many populations. 
These datasets reveal the genetic signatures of historical 
events like migrations and conquests in more detail than 
geneticists could have hoped for when the fi eld began. 
Here we explore how the history of Eurasia, the 
Americas, and Africa has shaped patterns of genetic 
variation of its inhabitants. (Note: the reason we have 
chosen to start with a discussion of Eurasia is simply 
that these are the populations that, to date, have been 
studied most intensively genetically. We believe the next 
few years will bring fi ne-scale studies of population 
structure across global human populations and strongly 
advocate these studies be undertaken, particularly in 
parts of the world currently understudied.) 

   20.4.1   Genetic Differentiation in Eurasia 

 Instead of grouping individuals into populations a pri-
ori (as early population genetic analyses necessitated), 
today we can let the data speak for themselves and tell 
us which individuals naturally cluster together based 
on genetic distance. A convenient means of accom-
plishing this is undertaking PCA on individual geno-
type scores (i.e., the “0,” “1,” “2” matrices mentioned 
above). Often when this is done, individuals from the 
same population tend to cluster together in PCA space. 
In fact, many PCA plots of globally distributed popu-
lation structure seem to resemble geographical maps 
of the world with individuals from contiguous geo-
graphic regions clustering near each other in PCA 
space and revealing a close relationship between geo-
graphic distance and genetic differentiation (see 
Figs. 6.4 and  20.7 ).  

 Specifi cally, multicontinental studies of genomic 
diversity often fi nd a clustering of populations accord-
ing to their respective continents in the fi rst few princi-
pal components, followed by differentiation between 
regions within continents. When sampling is dense, 
principal components can often serve as proxies for 
geographic axes  [41,   42] , separating Northern from 
Southern populations or Eastern from Western. For 
example, multiple studies observe North-to-South 
clines in European genetic differentiation, as seen 
using haplotype diversity in Fig.  20.8 . Principal com-

ponents also reveal evidence of genetic admixture 
between populations that can often be interpreted 
based on historical events such as colonization or slave 
trade; these signatures of admixture are discussed at 
length in Sect. 20.6.  

 As Fig. 6.4 shows, the European geographic map is 
an effi cient summary of the fi rst two principal compo-
nents – or, put another way, dimensions – of European 
genetic variation. Novembre et al.  [42]  and Heath et al. 
 [16]  also showed that individual genotypes, despite 
low differentiation among populations in Europe as 
measured by  FST    (see    Table 20.1), can be used to pre-
dict an individual’s geographic origin within a few 
hundred kilometers (when that individual’s geographic 
origin is representative of their ancestry). Likewise, 
several recent studies using high-density genotyping 
arrays have demonstrated the ability to reliably distin-
guish individuals of Ashkenazi Jewish ancestry from 
those without Ashkenazi Jewish ancestry in both 
European and European-American populations  [36, 
  47,   64] . The ability to detect fi ne-scale geographic 
structure will only improve as whole-genome sequenc-
ing data become available; the studies discussed here 
are based on SNPs whose minor allele frequency is 
usually greater than 5%. Newer sequencing technolo-
gies will call lower frequency alleles more accurately, 
and low frequency alleles likely refl ect recent muta-
tions and may account for much differentiation between 
neighboring populations. 

 The larger mean heterozygosity and smaller mean 
linkage disequilibrium observed in Southern Europe 
compared to Northern Europen might be explained by 
an expansion in Europe from the South to the North 
 [28] . South-to-North movement in Europe occurred 
during the fi rst Paleolithic settlement of the continent 
by anatomically modern humans, and during the 
Neolothic expansion  [2] . Thus we might expect to see 
a genetic signature of such movement, although 
another important controversy in historical anthropol-
ogy is whether technologies such as agriculture trav-
eled via demic diffusion (the movement of people and 
their genes) or cultural diffusion (the spread of tech-
nologies without a concomitant genetic signature) 
(see, for example,  [46] ). 

 Genetic variation in specifi c countries has been 
studied as well, such as that of Finland  [24] . Studying 
a specifi c population may give insights into inbreeding 
or homozygosity patterns, as well as the genetic signa-
tures of founder effects or multiple waves of migration 
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in, for example, linkage disequilibrium patterns or 
admixture blocks. Jakkula et al.  [24]  found genetic 
signatures supporting multiple historical bottlenecks 
resulting from consecutive founder effects, in keeping 
with Finland’s history of two major migration waves (a 
western one from 4,000 years ago, and a southern and 
western one from 2,000 years ago). A study of 7,003 
Japanese individuals also shows that local regions in 
Honshu Island, the largest island of Japan, are geneti-

cally differentiated despite frequent migration within 
Japan during the last century  [73] . 

 Single-population studies are of great interest, as 
populations that experienced bottlenecks and subse-
quent low levels of immigrations (like the Finnish, 
Askenazi Jewish, or Icelandic peoples) may see a rise 
in Mendelian disease frequencies, and it has been pro-
posed that gene mapping for complex traits may be 
easier in these populations than others. The Finns, for 

  Fig. 20.7    PCA for 815 Eurasian individuals using nearly 
50,000 SNPs. Individuals group closely with others in their self-
identifi ed population of origin, and the populations are differen-
tiated in a way that mirrors a geographic map of Eurasia, much 

like the close relationship seen in Fig. 6.4 between genes and 
geography in Europe. HGDP denotes populations from the 
Human Genome Diversity Panel [4]. From  [71]        
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example, exhibit a substantial degree of homozygosity 
due to their population history, although not the amount 
of homozygosity seen in cultures with consanguineous 
marriages  [24] . In such a population, the tagging of 
recessive variants in complex disorders may be done 
with common SNPs; indeed, the use of homozygous 
segments to identify rare alleles associated with 
Mendelian mutations has been successful in Finland 
(Meckel syndrome)  [61] . Interestingly, Ashkenazi 
Jewish populations exhibit very similar patterns of 
linkage disequilibrium (and, in fact,  less  LD) than the 
CEPH European populations genotyped as part of 
HapMap, but approximately 20% higher levels of 
homozygosity  [43] . Studies such as these address the 
power of genome-wide association datasets to demon-
strate history-related stratifi cation even within appar-
ently homogeneous genetic populations, and shed light 
on the importance of rare variants in fi ne-scale genomic 
studies.  

   20.4.2   Genetic Variation in Native 
American Populations 

 During an expansion from a parent population via 
serial bottlenecks, sometimes called a “serial founder 

effect,” linkage disequilibrium will increase and 
heterozygosity will decrease with distance from the 
origin of the expansion in the absence of selection 
 [50] . Large linkage disequilibrium blocks were 
observed in the fi ve Native American populations gen-
otyped in the HGDP  [10] . However, additional popula-
tion samples from the Americas are important to help 
us understand the peopling of the Americas via the 
Bering Strait and what signature colonization, in this 
case by Europe, might have on genetic data. Wang 
et al.  [66]  studied 24 newly sampled populations of 
Native Americans from Canada, Meso- and South 
America. 

 The study found lower heterozygosity at microsat-
ellite loci in indigenous Americans than in the non-
American HGDP populations, and also observed a 
greater variance in heterozygosity among American 
populations. This could be a signature of a quick initial 
peopling of the Americas, followed by subsequent iso-
lation of populations in the continent. A rapid coastal 
migration followed by a slower inland migration was 
supported by a higher level of genetic diversity in 
western South America compared to eastern South 
America. Wang et al.  [66]  also tested for correlations 
in differences between linguistic stocks or families and 
genetic distance between populations, fi nding that 
genetic distance and linguistic distance are more highly 

  Fig. 20.8    Haplotype diversity within Europe. Two numbers are 
shown in each region; the fi rst shows the mean number of dis-
tinct haplotypes in a region in a genomic window containing 10 
SNPs, the second refl ects haplotype diversity in a 25-SNP 
 window. The authors fi nd that haplotype diversity, as refl ected 

by the numbers displayed, is higher in southern Europeans coun-
tries than in northern European countries, indicating that south-
ern populations have larger effective sizes than northern ones 
and that the original peopling of Europe happened with migra-
tions from the South to the North. From  [1]        
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correlated within linguistic families than between 
families. 

 The study found support for an East Asian origin 
for Native American genetic variation, with relatively 
higher similarity to East Asian genetic variation in 
North Americans than South Americans, and also 
observed a private allele in the Native American sam-
ples. Wang et al.  [66]  showcase how a variety of 
hypotheses regarding demographic history can be 
tested with genetic data, when aligned with linguistic 
and archaeological data.  

   20.4.3   The Genetic Structure of African 
Populations 

 Africa and African populations play an important role 
in human evolutionary history given the African origin 
for anatomically modern humans and the amount of 
our genomic variation shaped by the out-of-Africa 
bottleneck  [11] . However, it is important to recognize 
that African populations have been evolving since the 
human diaspora. Tishkoff et al.  [65]  sampled 121 
African populations at over 1,000 microsatellite loci to 
study the demographic history of Africans as inferred 
from genetic data. 

 The investigators identifi ed 14 ancestral clusters in 
Africa; these clusters approximately correspond to lin-
guistic families, self-identifi ed ethnicities, and/or cul-
tural practices such as hunting-and-gathering. There 
was also a great deal of mixed ancestry in most popu-
lations, a signature of recent migrations in the African 
continent. 

 Three hunter-gatherer populations in the study were 
among the fi ve most genetically diverse populations in 
the African sample, and African and Middle Eastern 
populations were found to share a number of alleles 
not observed elsewhere. Within Africa, the most pri-
vate alleles were seen in click-speaking populations. 

 The spatial distribution of heterozygosity was used 
to pinpoint the origin of the modern human migration 
within the African continent in the same manner as by 
Ramachandran et al.  [50] . Tishkoff et al.’s  [65]  analy-
sis places this origin in southwestern Africa near the 
border of Namibia and Angola, which corresponds to 
the current San homeland. This lends support to the 
San being a genetically ancient population, although 
perhaps their current geographic origin does not refl ect 

their ancestors’ geographic location 100,000 years 
ago. As geographic analyses become more refi ned, 
genetic variation appears to be more clinal than 
 clustered  [50] . This is because, at within-continental 
geographic distances, migration levels may be high 
and levels of admixture across populations will 
increase. We cannot study population genetics within 
continents without understanding recent genetic 
admixture, the subject of the next section.   

   20.5   Recent Genetic Admixture 

 The ultimate cause for population structure is nonran-
dom mating. For example, if individuals from geo-
graphically distant populations are less likely to mate 
than individuals from the same population, over time, 
discernible differences in allele frequencies will accu-
mulate (as explained in Sect. 20.1). Compounding 
these differences across the genome provides power 
for reliably differentiating individuals from different 
populations even if, overall, the degree of population 
differentiation is low  [31,   42] . On the other hand, 
migration facilitates gene fl ow. Recent global explora-
tion and colonization have led to a rapid increase in 
gene fl ow among individuals from different continents. 
Their offspring are referred to as admixed and we can 
mathematically model chromosomes from admixed 
individuals as mosaics of segments derived from dif-
ferent ancestral populations. This section summarizes 
variation in several admixed populations, with the goal 
of illustrating the power genetic data have to shed light 
on a population’s recent history. 

   20.5.1   Populations of the Americas 

 The population history and genetic structure among 
the Native American groups was surveyed in 
Sect. 20.4.2. The fi rst signifi cant wave of European 
infl uence arrived in the New World with Christopher 
Columbus’ voyages of 1492–1504. During the six-
teenth to nineteenth century, between 9.4 and 12 mil-
lion Africans (mostly from West and Central Africa) 
were transported to the New World through the trans-
atlantic slave trade. The arrival of Europeans and 
Africans in the New World gave rise to numerous 
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admixed populations. In this section, we focus on two 
such groups: African Americans and Hispanics. 

 According to the 2007 U.S. Census, 41 million U.S. 
residents self-identify as having some degree of direct 
African ancestry (i.e., identify as “black” or African-
American). Studies of genetic variation among 
African-Americans suggest that, on average, 80% of 
their genetic ancestry is West African, although indi-
vidual ancestry proportions vary substantially as do 
the average ancestry proportions for different sampling 
localities within the United States  [44] . Based on chro-
mosomal block lengths, the admixing time between 
Europeans and Africans is estimated to have occurred 
7–14 generations ago  [14,   74] . At 25 years per genera-
tion, this places admixture as occurring between 175 
and 350 years ago. Historical records indicate that the 
largest sources of the African slaves were the coastline 
in West and West Central Africa. However, locating 
the precise African ancestral populations for the 
African Americans has been challenging, in particular 
due to the lack of genetic data in geographically and 
ethnically diverse African populations. The recent 
study by Tishkoff et al.  [65] , discussed in Sect. 20.4.3, 
fi lls in this gap by genotyping over 2,000 Africans 
from 113 populations; in the near future, genetic data 
will likely be used to characterize admixture patterns 
within the  African  component of the African 
Americans. 

 Hispanics derive their ancestry from European, 
African, and Native American individuals. The term 

Hispanic describes populations that share a common 
language and cultural heritage, including Mexicans, 
Puerto Ricans, and Cubans, to name a few. However, 
these groups do not constitute a uniform ethnicity with 
a similar genetic background. At present, Hispanics 
represent the largest and fastest-growing minority pop-
ulation in the United States. Although genetic studies 
characterizing the population structure in the Hispanic 
population have been limited both in the marker den-
sity and in subgroup representation, evidence is mount-
ing that individual ancestry proportions vary 
tremendously among subgroups that are identifi ed as 
Hispanic. At a population level, Puerto Ricans have 
higher African ancestry compared to the Mexicans 
 [56] ; even within Mexico, the Native American ances-
try proportions vary among States, ranging from 35% 
in Sonora in the North to 65% in Guerrero in center-
Pacifi c  [59] . 

 The history of admixed populations is clearly dis-
cernible in patterns of genetic variation as summarized 
by PCA. Consider, for example, the GlaxoSmithKline 
POPRES sample  [1,   37,   42]  consisting of 3,875 indi-
viduals of varying ethnic backgrounds from over 80 
countries genotyped on the Affymetrix 500 K platform. 
In Fig.  20.9 , we reproduce key results from    Nelson et al. 
 [37]  on PCA analysis of PopRes and the core HapMap 
populations (i.e., Yoruba from Ibadan, Nigeria, CEPH 
with ancestry from Northern Europe, Japanese from 
Tokyo, and Han Chinese from Beijing). This sample 
contains representation from several major continental 

  Fig. 20.9    Genetic structure in the PopRes data. Subject scores are colored by continental and/or ethnic origin (see legend). Percent 
of variation explained by each component is given in  parentheses  on each axis label. Reprinted from  [37] , with permission from 
Elsevier       
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populations as well as a large sample of African-
Americans from the United States and Hispanics from 
Mexico. We note that the fi rst principal component can 
be interpreted as an “African-American admixture” 
principal component (or, equivalently, Africa vs. 
Europe + Asia); principal component two corresponds 
to “East Asia vs. Europe”; principal component three 
corresponds to an “East Asia vs. South Asia” axis of 
variation; and principal component 4 (PC4) to a 
“Mexican admixture” axis. Importantly, individuals of 
admixed ancestry appear on the PCA map as in between 
the centroids of their putative ancestral populations.  

 An important feature of this analysis is that along 
the “Mexican admixture” PC, individuals show vary-
ing degrees of admixture between Europeans and a 
presumably “unsampled” population which likely cor-
responds to Native Americans. Analyzing just the 
European, East Asian, and Mexican samples 
(Fig.  20.10 ), we fi nd that PC1 is an East Asia vs. 
Europe principal component and PC2 separates the 
East Asian sample from the (unsampled) Native 
American sample (so that the least admixed individuals 
are furthest away from the East Asian samples along 
PC2). This suggests that there is substantial genetic 

differentiation between East Asian and Native 
American populations so that the former is likely a 
poor proxy for the later (and vice versa).   

   20.5.2   Admixture Around the World 

 Genetic admixture is a worldwide phenomenon and is 
not limited to the North America. An example of an 
admixed population in the Eurasian continent is the 
Uyghur population living in the Xinjiang province in 
western China. Because of its proximity to the Silk 
Road – the historically important trade route connect-
ing East Asia with the West, Central Asia, and the 
Mediterranean world – the Uyghur population derives 
ancestry from East Asian, European and the Middle 
East ancestral populations [31]. Using high-density 
SNP markers, a recent genetic study estimated approx-
imately equal ancestral contributions from the 
European and East Asian populations to the Uyghur 
population  [72] . In central Algeria in Northern Africa, 
the Mozabites originated from a Berber ethnic group 
in the Middle East that had close cultural contact with 
diverse African and European populations. Not sur-
prisingly, SNP analysis of the Mozabite individuals in 
HGDP detects substantial European, African, and 
Middle Eastern ancestry (see Fig.  20.6 ). 

 Owing to the availability of high-throughput geno-
typing technologies, our ability to detect fi ner-scale 
population structure and more ancient admixture has 
dramatically increased during the past few years. The 
600,000 SNP markers typed in the HGDP samples 
revealed genetic structure that was not detected pre-
viously using 300 microsatellites: most prominently, 
the detection of the Middle Eastern populations as a 
separate cluster  [31,   54] . Moreover, the SNP data 
suggest that the impact of genetic mixture is more 
profound than has been previously implicated. Many 
Middle Eastern individuals appear admixed, perhaps 
because of the continuous migration in this area. 
Finally, in the analysis of the European populations, 
while the genetic structure matches geography, there 
is undeniable continuity between populations. Thus, 
it is more appropriate to consider the structure within 
the European continent as continuous clines rather 
than as a discrete cluster. In summary, the increasing 
amount of the genetic data will allow us to character-
ize population structure at a higher resolution within 
continents.   

  Fig. 20.10    Principal component and STRUCTURE analysis of 
the PopRes Mexicans from Guadalajara, Europeans from 
throughout Europe, and East Asians from Japan and China. 
From  [1]        
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   20.6   Quantiative Modeling of Human 
Genomic Diversity 

 The primarily qualitative studies described above have 
given great insight into both the global and local pat-
terns of human genetic history. Quantitative models 
can offer additional insights; for example, we can use 
quantitative models to ask how severe particular bot-
tlenecks were, or exactly when populations diverged. 

 Much quantitative modeling relies on resequencing 
data. SNP genotyping chips provide a genome-wide 
picture of variation at low cost, but they can be diffi cult 
or impossible to use for quantitative inference. Primarily, 
this is because the sites assayed on a chip are not a ran-
dom sample of the genome; they are typically chosen 
because they are known to be polymorphic in some 
smaller “discovery” population. This ascertainment pro-
cess biases the resulting data  [9] , particularly the allele 
frequency spectrum. Although this bias can, in some 
cases, be controlled for (e.g.,  [25] ), it is unfeasible in 
general  [38] . In Fig.  20.11 , for example, we report the 
joint and marginal allele frequency spectra (AFS) for 
the PopRes and HapMap populations. We note that the 
joint allele frequency spectra reproduce qualitative pat-
terns of the PCA analysis in Fig.  20.9 , such as a stronger 
correlation in allele frequency and lower F ST  for closely 
related populations (e.g., East Asia from PopRes and 
JPT + CHB from HapMap or Europe from PopRes and 
CEPH from HapMap). Nonetheless, the marginal (or 
one dimensional) spectra are quite skewed toward inter-
mediate frequency alleles as a result of the ascertain-
ment bias in the Affymetrix 500K chip, which favored 
middle frequency variants for use in GWAS. The goal of 
this section is to describe how (unbiased) AFS data can 
be used for quantitative demographic inference of both 
demographic history and selection.  

   20.6.1   Demographic History 

 The demographic history of a set of populations 
encompasses the order and timing of any divergence or 
admixture events, as well as changes in population 
sizes and rates of gene fl ow over time. In principle, the 
greatest statistical power for inferring such a model 
from genetic data would arise from calculating the full 
likelihood of the data given the model  [19] . However, 
at present such calculations are very diffi cult at the 

genomic scale. Thus many methods for inferring 
demographic events rely on modeling summaries of 
the data. The allele frequency spectrum is a particu-
larly popular summary. As seen in Fig.  20.1 , the fre-
quency spectrum encodes substantial information 
about demographic history. (Although Myers et al. 
 [35]  have shown that it does not alone uniquely deter-
mine demographic history.) For example, the center col-
umn of part D of Fig.  20.1  shows that the one-dimensional 
(i.e., single population) allele frequency spectrum is 
skewed toward rare alleles in situations of population 
growth, while the right two columns show that asym-
metric population sizes yield an asymmetric AFS. 

 An early study by Marth et al.  [33]  introduced an 
analytic method for calculating the allele frequency 
spectrum for a single population with piecewise con-
stant population size. Using this method to fi t models 
for several global populations revealed signatures of 
ancient population growth in African-Americans (pre-
sumably occurring in their African ancestors), and bot-
tlenecks in the history of both European-American and 
East-Asian populations. These historical events have 
been well supported by subsequent genetic studies. 

 Considering the joint history of multiple popula-
tions substantially complicates the models, as diver-
gence and gene fl ow must be incorporated. 
Consequently, the computational methods become 
more demanding. In a ground-breaking study, Schaffner 
et al.  [58]  used extensive coalescent simulations to rep-
licate both summaries of the allele frequency spectrum 
and patterns of LD for West African, European, and 
East Asian populations, developing the fi rst quantita-
tive model for their joint genetic history. The computa-
tionally intensive nature of their analysis, however, 
precluded them from statistically assessing the confi -
dence of their inferences or testing multiple models. 

 Recent theoretical and computational advances in the 
simulation of the frequency spectrum with diffusion the-
ory have enabled more comprehensive statistical charac-
terization of such models (Gutenkunst et al., in press). 
Figure  20.12  shows an illustrative model of human his-
tory, and the resulting expected frequency spectra. Within 
this model, parameters such as divergence times, migra-
tion rates, admixture proportions, and bottleneck sizes 
have been quantitatively inferred.  

 Models have also reached further back in time, before 
the emergence of modern humans. In particular, a recent 
analysis by Fagundes et al.  [13]  compared several mod-
els of early human history, including the possibility of 
interbreeding with other hominids. The analysis showed 
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that a model in which modern humans simply replaced 
other hominids was best supported by the data.  

   20.6.2   Quantitative Models of Selection 

 Quantitative demographic models also play an impor-
tant role in the search for evidence of selection acting on 
the genome. In particular, scans for selection seek 
genomic regions with unusual patterns of genetic varia-
tion, and demographic models defi ne the null expecta-
tion of how unusual a region must be to be statistically 
signifi cant when testing the hypothesis that it is under 
selection  [40] . 

 Beyond the search for unusual patterns of genetic 
variation, quantitative modeling has also given insight 
into the general signatures left by selection on the human 
genome. For example, an early analysis of the allele fre-
quency spectrum for different classes of polymorphism 
revealed strong negative selection on mutations that 
change amino acid sequence. Furthermore, within those 
mutations computational algorithms such as Polyphen 
can predict which changes are most damaging  [68] . 

 More recently, the distribution of the selective effects 
of new mutations has been inferred from the allele fre-
quency spectrum  [3] . The selection coeffi cient  s  of a 
mutation is defi ned as the relative reproductive advan-
tage conferred upon carriers of the mutation. As seen in 
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  Fig. 20.11    Frequency spectra of the POPRES populations and 
HapMap samples ( CEU : CEPH Utah residents with ancestry 
from northern and western Europe;  CHB  Han Chinese in Beijing, 
China;  JPT  Japanese in Tokyo, Japan;  YRI  Yoruba in Ibadan, 
Nigeria). ( a ) Minor Allele Frequency Spectra for the four sub-
continental populations. The spectrum expected under neutrality 

is also shown in  black . ( b ) Two-dimensional joint frequency 
spectra for each pairwise sub-continental population compari-
son.  Colors  represent the number of SNPs within each bin. 
Entries in the spectra containing less than 100 SNPs are shown 
in  white . Autosomal estimates of  FST    for each comparison are 
shown in the  upper left hand corner  of each fi gure. From  [1]        
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Fig.  20.13 , the frequency spectra of synonymous and 
nonsynonymous variants differ dramatically. After cor-
recting for demographic history using the synonymous 
mutations, it was found that the distribution of negative 
selection coeffi cients on newly arising amino-acid 
changing mutations possesses a very long tail. Roughly 
a third of amino acid substitutions are nearly-neutral 
(| s | < 0.01%), another third are moderately deleterious 
(0.01% < | s | < 0.1%), and nearly all the remainder are 
highly deleterious or lethal (| s | > 1%). Knowledge of this 
distribution lets one calculate that very few of the fi xed 
differences between human and chimp are selectively 

deleterious so that most are neutral or nearly, and that 
10–20% of them result from positive selection. As the 
fl ood of data from the next generation of sequencing 
endeavors becomes available (e.g., the 1,000 Genomes 
Project and associated enterprises), we expect these pre-
liminary estimates to be further refi ned, along with a 
quantitative understanding of human demographic 
history.        
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  Fig. 20.12    Illustrative model of human expansion out of Africa 
and across the globe. The model includes African-American 
( ASW ), West African ( YRI ), European ( CEU ), East Asian ( CHB ), 
and Mexican ( MXL ) populations. Using quantitative estimates 
for divergence times, population sizes, migration rates, and 
admixture proportions, the expected frequency spectrum under 
the model can be calculated using either diffusion or coalescent 
theory. Similar to Fig. 20.1.d., the resulting marginal spectra are 
shown for each pair of populations. Each spectrum shows dis-

tinct signatures of genetic history. For example, the recent 
European admixture into African-American and Mexican popu-
lations results in very highly correlated allele frequencies 
between populations pairs CEU-ASW (2nd row, 1st column) and 
CEU-MXL (3rd row, 1st column). Further, the Out-of-Africa bot-
tleneck means that 2D spectra between African and non-African 
populations are asymmetric. When observed in real data, it is 
these sorts of signatures that guide quantitative modeling of 
human history       
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  Fig. 20.13    Analysis of site-frequency spectra from over 30,000 
coding SNPs found by resequencing of 11,000 genes in 20 
European-Americans ( EUR ) and 15 African-Americans ( AFR ) 
yields estimates of demographic model and distribution of 
 fitness effects of newly arising mutations and SNPs [3]. 
( a ) Comparison of observed and predicted SFS for synonymous 
sites. Predictions are from two different types of models: a 
demographic model with growth in the AFR and a bottleneck in 

EUR ( green ) and for a model with weak negative selection on 
silent sites ( blue ). ( b ) Analogous comparison for nonsynony-
mous SNPs (nsSNPs) demonstrates that strong purifying selec-
tion, weak negative selection, and demographic history are all 
needed to accurately model the observed distribution of 
nsSNPs. ( c ) Estimated distribution of fi tness effects for newly 
arising mutations in the human genome as well as SNPs at dif-
ferent population frequencies       
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