SU(5) Grand Unified Theory

Safinaz Ramadan Center of Theoretical Physics at BUE in Egypt

January 13, 2011

The Standard Model

The Way where we are

The S.M. is a theory based on the symmetry group $\mathsf{SU}_{\mathsf{c}}(3) \times \mathsf{SU}_{\mathsf{L}}(2) \times \mathsf{U}_{\mathsf{Y}}(1)$

Fermions Content

Where $\alpha = 1, 2, 3 = N_c$. The electromagnetic charge Q_{em}

$$
Q_{em} = T_{3L} + Y/2
$$

SU(5) Grand Unified Theory

Considering only the first fermions family

c || || c

Lagrangian

Consider only $SU_{L}(2) \times U_{\gamma}(1)$ electroweak model & Ignore Su_c (3) For the time being

c || || c

$$
L = L_{G. bosons} + L_{fermions} + L_{\phi} + L_{\gamma}
$$

Where:

$$
L_{G\ bosons} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} F_{\mu\nu}^{i} F_{i}^{\mu\nu}
$$

$$
F_{\mu\nu}^{i} = \partial_{\mu} A_{\nu}^{i} - \partial_{\nu} A_{\mu}^{i} + g \epsilon^{ijk} A_{\mu}^{j} A_{\nu}^{k}
$$

$$
B_{\mu\nu} = \partial_{\mu} B_{\nu} - \partial_{\nu} B_{\mu}
$$

The symmetry invariance holds under the following transformations :

$$
\frac{\vec{\tau} \cdot \vec{A}_{\mu}}{2} \longrightarrow U(\theta) \frac{\vec{\tau} \cdot \vec{A}_{\mu}}{2} U(\theta)^{-1} - \frac{i}{g} \left[\partial_{\mu} U(\theta) \right] U(\theta)^{-1}
$$

$$
U(\theta) = e^{-i \frac{\vec{\tau}}{2} \cdot \vec{\theta}(x)} \qquad SU(2)
$$

Transformation law for the-SU(2) gauge field

Gives for θ (x) <<1

$$
A_\mu^{i'} = A_\mu^i - \, \frac{1}{g} \partial_\mu \theta^i + \quad \, \underbrace{\epsilon_{ijk} \theta^j A_\mu^k}_{\textcolor{red}{\overline{\mathcal{M}}}} \, .
$$

 $\frac{\vec{\tau}}{2} \cdot \vec{F}_{\mu\nu}^{\prime} = U(\theta) \frac{\vec{\tau}}{2} \cdot \vec{F}_{\mu\nu} U(\theta)^{-1}$

For small θ (x),

$$
{F^{i}_{\mu\nu}}^{\prime}=F^{i}_{\mu\nu}+g\epsilon_{ijk}\theta^{j}F^{k}_{\mu\nu}
$$

The second term is the transformation law for a triplet under SU(2), so that A^i_{μ} s (i=1,2,3) carry charges.

> \blacksquare **Transformation** law for SU(2) tensor

Similarly the transformation laws For U(1) gauge field (photon) and $U(1)$ tensor:

$$
B'_{\mu} = B_{\mu} + \frac{1}{g'} \partial_{\mu} \theta(\mathsf{x})
$$

$$
B'_{\mu\nu} = -B_{\mu\nu}
$$

Fermions part :
\n
$$
L_{f} = \sum_{f} i \overline{f} \gamma_{\mu} D^{\mu} f
$$
\n
$$
D_{\mu} = \partial_{\mu} - ig \frac{\overline{f}}{2} \cdot \overline{A}_{\mu} - ig' \frac{Y}{2} B_{\mu}
$$
\nTo be read as:
\n
$$
D_{\mu} = \partial_{\mu} - ig \frac{\overline{f}}{2} \cdot \overline{A}_{\mu} - ig' \frac{Y}{2} B_{\mu}
$$

٠

$$
\begin{array}{rcl} D_{\mu} \left(\begin{array}{c} u \\ d \end{array} \right)_{L} & = & \partial_{\mu} \left(\begin{array}{c} u \\ d \end{array} \right)_{L} - \left(i g \frac{\vec{\tau}}{2} \cdot \vec{A}_{\mu} + i g' \frac{1}{6} B_{\mu} \right) \left(\begin{array}{c} u \\ d \end{array} \right)_{L} \\ D_{\mu} u_{R} & = & \partial_{\mu} u_{R} - i g' \frac{2}{3} B_{\mu} u_{R} \end{array}
$$

Symmetry $\sqrt{4}$ massless gauge fields ! all fermions massless ! **SSB**

The electroweak symmetry is spontaneously broken by Higgs scalars

$$
\boldsymbol{\Phi} = \begin{pmatrix} \boldsymbol{\Phi}^+ \\ \boldsymbol{\Phi}^0 \end{pmatrix} \qquad \qquad \Phi : (\mathbf{1}_{\mathrm{c}}, \mathbf{2}_{\mathrm{L}}, \mathbf{1}_{\mathrm{Y}})
$$

 $\mu^2 > 0$

$$
L_{\phi} = \frac{1}{2} \left(D_{\mu} \phi \right)^{+} \left(D_{\mu} \phi \right) - V(\phi)
$$

$$
D_{\mu} \phi = \left(\partial_{\mu} - \frac{i}{2} g' B_{\mu} - \frac{i}{2} g \overrightarrow{\tau} \cdot \overrightarrow{A}_{\mu} \right) \phi
$$

$$
V(\phi) = -\frac{\mu^{2}}{2} \phi^{+} \phi + \frac{\lambda}{4} \left(\phi^{+} \phi \right)^{2}
$$

The vacuum state, chosen to correspond to the vacuum expectation value (VEV.)

$$
\langle \Phi \rangle_0 = |\langle 0 | \Phi | 0 \rangle| = \begin{pmatrix} 0 \\ \frac{\nu}{\sqrt{2}} \end{pmatrix} with \quad \nu = \quad \left(\frac{\mu^2}{\lambda}\right)^{1/2}
$$

Verifying That SU_L(2) x SU_V (1)
$$
\xrightarrow{\text{op } 50 \text{ cm} (1)}
$$

\n
$$
T_3 < \Phi >_{0} = \frac{\tau_3}{2} < \Phi >_{0} \neq 0
$$

\n
$$
Y < \Phi >_{0} = Y_{\Phi} < \Phi >_{0} \neq 0
$$

\nBut

\nBut

\n
$$
Q_{em} < \Phi >_{0} = 0
$$

\nBut
$$
Q_{em} < \Phi >_{0} = 0
$$

\nBut
$$
Q_{em} < \Phi >_{0} = 0
$$

\nIt is invariant under a symmetry operation exp (i) corresponding to the generator Φ is given (i) of the generator Φ is given by Φ and Φ

 pp (iaG) erator G $\Phi > 0$ $if exp(100)$ $\exp(i\alpha G) < \Phi > 0 = 0$.

The covariant derivative in L_{Φ} :

$$
\frac{1}{2}\bigl (\,D_{\mu}\,\varPhi \, \bigr)^{+}\,\bigl (\,D_{\mu}\,\varPhi \, \bigr)
$$

Will yields the gauge bosons masses :

For Ex.:
$$
W^{\pm} = \frac{1}{\sqrt{2}} (A_{\mu}^{1} \mp i A_{\mu}^{2})
$$
 $M_{\mathbf{w}}^{2} = g^{2}v^{2}/4$.

While The Yukawa coupling between scalars and fermions :

$$
L_Y = f^{(e)}(\overline{\nu} \quad \overline{e})_L \Phi e_R + f^{(u)}(\overline{u} \quad \overline{d})_L \widetilde{\Phi} u_R + f^{(d)}(\overline{u} \quad \overline{d})_L \Phi d_R + h.c.
$$

Will produce fermions masses

$$
\tilde{\Phi} = i\tau_2 \Phi^*
$$

$$
m_{\rm e}=f^{(\rm e)}v/\sqrt{2},
$$

 $m_{\rm u} = f^{(\rm u)}v/\sqrt{2}$, $m_{\rm d} = f^{(\rm d)}v/\sqrt{2}$.

 The aim is constructing a grand unified theory of strong, weak, and electromagnetic interactions.

 $*$ So that the different gauge couplings g_s , g and g' will be unified in one coupling: g_G

What is required for the new grand unified group ?

In principle, it should be large enough to contain the $SU(3)$ x $SU(2)$ x $U(1)$ group of S.M. as a subgroup;

thus it must be at least of rank 4.

 $SU(5)$ motivation Listing the Lie groups having rank 4 :

[SU(3)]², [SU(2)]⁴, O(9), O(8), Sp(8), SU(5), F₄ {Exponential group}.

That a group of rank l:

SU($1 + 1$), O($2I+1$), Sp($2I$), O($2I$).

* All these possibilities are excluded, except $[SU(3)]^2$ & SU(5) groups.

Since they do not have complex representations. That we must have complex representations for fermions, because in the S.M. the fermions are not equivalent to their complex conjugates. ($e^+_{L} \neq e_{R}$)

 $SU(5)$ motivation

* The remaining $[SU(3)]^2$ is also excluded.

Since leptons will be described by quantum numbers of color and flavor, that they really don't have.

 The SU(5), being of rank-4, is the smallest group that can contain SU(3) x SU(2) x U(I) without introducing any new fermions. It has complex representations and has the right quantum numbers to fit leptons and quarks.

SU(5) is the unique theory for the simplest grand unification scheme.

SU(5) Generators

$$
T^{21,22,23} = \frac{\lambda^{21,22,23}}{2} = \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \sigma^{1,2,3} \\ 0 & 0 & 0 & 0 \end{pmatrix}
$$
 SU(2) generators
\n
$$
Ex: T^{23} \equiv T_3
$$
 the weak isospin =
$$
\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}
$$
 The factor
\n
$$
T^{21,22,23} = T_3
$$
 the weak isospin =
$$
\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}
$$
 The factor
\n
$$
T^{21,22,23} = T_3
$$
 the weak isospin =
$$
\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}
$$
 The factor
\n
$$
T^{21,22,23} = T_3
$$
 the weak isospin =
$$
\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}
$$

It remains to identify the electroweak hypercharge generator , that is;

- T_3 Q is known consistently with the charges of the quarks and leptons . So that Y/2 could be constructed.

$$
\frac{Y}{2} = \sqrt{\frac{5}{3}} \frac{\lambda_{24}}{2}
$$
 with $\lambda_{24} = \frac{1}{\sqrt{15}} Diagonal(-2, -2, -2, 3, 3)$ Notice that Y on the diago

is nal that doesn't belong to $SU(2)$ nor $SU(3)$

And with
$$
Q_{em}
$$

generator: $Q(5) = \begin{pmatrix} -1/3 & & & & \\ & -1/3 & & & \\ & & -1/3 & & \\ & & & 1 & \\ & & & & 0 \end{pmatrix}$

Finally, the rest of the 24 matrices (12 generators Which will correspond to new gauge bosons) act in the off- diagonal space, and obtained by inserting pauli matrices appropriately;

Ex:

$$
\lambda_{13} = \left(\begin{array}{cc} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right), \lambda_{14} = \left(\begin{array}{cc} 0 & -i & 0 \\ 0 & 0 & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)
$$
Notice the number of diagonal
general
generators

The electroweak gauge bosons are defined by:

 $B_{\mu} = A^{24}{}_{\mu}$ $W^3_{\mu} = A^{23}_{\mu}$ $W^{\pm} = \frac{1}{\sqrt{2}} \left(A_{\mu}^{21} \pm A_{\mu}^{22} \right)$

So : etc.

 $\sqrt{2} A^{\mu} =$

The new gauge fields, X µ $\frac{1}{2}$ and X^µ $\frac{1}{2}$, i= 1,2,3 defined by:

$$
X_1^{\mu} = \frac{1}{\sqrt{2}} (A_9^{\mu} + iA_{10}^{\mu})
$$

\n
$$
Y_1^{\mu} = \frac{1}{\sqrt{2}} (A_{16}^{\mu} + iA_{17}^{\mu})
$$

\netc.

Notice that B_{μ} still on the diagonal

SU(5) Fermions content

 $\overline{2}$

 $\overline{6}$

1

3

 $\sqrt{3}$

SU(5) Grand Unified Theory

The standard model SU_c (3) $\,\times\,$ SU_L(2) $\,\times\,$ U_Y (1) contains 15 left handed fields as follows:

The SU(5) theory unify both quarks and leptons (leading to baryon number and lepton number violation) in 5 and 10 dim. irreducible representation.

$$
\overline{5} \equiv \psi_L^i = \begin{pmatrix} d_{r(1)}^c \\ d_{g(2)}^c \\ d_{b(3)}^c \\ e^- \\ -\nu_e \end{pmatrix} \begin{bmatrix} \text{SU(3)}c \\ \text{SU(3)}c \\ \text{SU(3)}c \\ \text{SU(3)}c \end{bmatrix} = (\chi_{ij})_L = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & u_3^c & -u_2^c & -u^1 & -d^1 \\ -u_3^c & 0 & u_1^c & -u^2 & -d^2 \\ u_2^c & -u_1^c & 0 & -u^3 & -d^3 \\ u^1 & u^2 & u^3 & 0 & -e^+ \\ d^1 & d^2 & u^3 & e^+ & 0 \end{pmatrix}_L
$$

The assignment of quarks and leptons to multiplets of the grand unified group SU(5) explaining **(-1/3) quark charges** (not explained by QCD nor E.W.), that (for 5 rep.):

$$
-3Q_{d}+Q_{e}=0 \qquad \Longrightarrow \qquad Q_{d}=-Q_{e}/3.
$$

conjugation of 5
 $\begin{pmatrix} d_{1(r)} \ d_{2(g)} \ \vdots \end{pmatrix}$
 $\begin{pmatrix} d_{1(r)} \ d_{2(g)} \ d_{3(b)} \ e^+ \ \vdots \end{pmatrix}$

Taking the charge

Charge quantization

$$
D_{\mu}\ \chi_{pq} = \partial_{\mu}\chi_{pq} - ig_G\ (A_{\mu})^{pr}\chi_{rq} - ig_G\ (A_{\mu})^{qs}\chi_{ps} = \partial_{\mu}\chi_{pq} - 2ig_G\ (A_{\mu})^{pr}\chi_{rq}
$$

So, The fermions Lagrangian becomes;

Proton decay

From (1) we can get terms like:

$$
L_I = \frac{g_G}{\sqrt{2}} \left(\overline{e_L^-} \hspace{0.1cm} \right) \mu \hspace{0.1cm} X^{\alpha}_{\mu} \hspace{0.1cm} d^c_{\alpha} \hspace{0.1cm} +h.c. \right)
$$

And From (2) we can get terms like:

$$
L_I = \frac{g_G}{\sqrt{2}} \quad (\varepsilon_{\alpha\beta\lambda} \,\overline{u}_L^{\beta} \, \gamma^{\mu} \, X_{\mu}^{\alpha} \, u^{c\lambda} \, + h.c.)
$$

Leading to a proton decay:

The amplitude of the process $\propto\,{{\sf g}^2}_{{\sf G}}/$ M $^2_\chi$. Squaring the amplitude to get the decay rate. Then the life time of the proton $\tau_{\sf p}$ \propto M $^4_\chi/$ ${\sf g^4_{\; G}}$. As predict from the G.U.T. scale : m_x is of order 10^{14} Gev, giving τ_p of order 10^{30} years !

While exp. show that proton is stable and having live time $\tau_p \ge 6 \times 10^{32}$ years !

$$
SU(5) \rightarrow SU_C(3) \times SU_L(2) \times U(1)
$$

The Lagrangian for the Higgs scalars Φ :

$$
L_{\Phi} = Tr(D_{\mu} \Phi)^{2} - m_{1}^{2} Tr \Phi^{2} + \lambda_{1} Tr (\Phi^{2})^{2} + \lambda_{2} Tr \Phi^{4}
$$

With the effective potential:

$$
V_\Phi=m_1^2Tr\Phi^2+\lambda_1 Tr(\Phi^2)^2+\lambda_2 Tr\Phi^4
$$

Taking Φ in the T^{24} direction

$$
\Phi = \phi^{24} T^{24} = \frac{1}{\sqrt{15}} \phi_{24} \left[Diagonal(-2, -2, -2, 3, 3) \right]
$$

This choice will fulfill our target, which is :

. . .

Breaking SU(5) generators . (so that: X, Y gauge bosons . will acquire masses) Keeping S.M. generators unbroken. (S.M. gauge bosons still massless)

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

But

.

. . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The condition of symmetry invariance :

 $[\Phi, T] = 0$ symmetry invariant

Where T is a generator of a symmetry transformation $U = exp(-i \alpha \cdot T)$.

With a transformation property of Φ under U:

.

. .

 $\Phi \longrightarrow U \Phi U^+$

Easily you can check that < Φ > commutes with SU_c (3) x SU_L (2) x U_Y (1) generators , leaving S.M. symmetry unbroken. Will it doesn't commute with the remaining 12 G.B. of SU(5) (SU(5) symmetry has broken)

. . . .

SU(5) Grand Unified Theory of the original Unified Theory of the Unified Theory of the Unified Theory of the U

Taking the minimum of the potential gives the form of expectation value corresponding to this symmetry breaking:

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . .

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

By calculating :

. . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

$$
Tr[A_\mu,\Phi]^2=\frac{-4\upsilon_\Phi^2}{15}\sum_i^3 25(\overline{X}_i^\mu X_\mu^i+\overline{Y}_i^\mu Y_\mu^i)
$$

.

We can see that only X and Y Lepto-quarks acquire masses

$$
L_{mass}=\frac{20}{3}g_{G}^{2}\upsilon_{\Phi}^{2}\sum_{i}^{3}(\overline{X}_{i}^{\mu}X_{\mu}^{i}+\overline{Y}_{i}^{\mu}Y_{\mu}^{i})
$$

That all the 3 colors have the same mass

$$
m_X^2 = m_Y^2 = \frac{20}{3} g_G^2 v_\Phi^2 \bigg|
$$

So that the vev for the adjoint of Higgses is of order 10¹⁵ Gev

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

$$
SU_C(3) \times SU_L(2) \times U(1) \rightarrow SU_C(3) \times U_Q(1).
$$

The general Lagrangian for the 5 of Higgs scalars H

$$
L_H=\frac{m_2^2}{2}H_5^+H_5+\frac{\lambda_3}{4}(H_5^+H_5)^2
$$

Manage as in the S.M.

To break $SU_c(3) \times SU_L(2) \times U_Y(1)$ to $SU_c(3) \times U_Q(1)$ we must take the vev in the neutral, $SU_L(2)$ doublet, colour singlet component of H.

$$
\langle H \rangle = \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \nu_H \end{array}\right)
$$
 Remember:
\n
$$
T_{23} \langle H \rangle \neq 0
$$
 Broken
\n
$$
T_{24} \propto Y \langle H \rangle \neq 0
$$
 Broken
\n
$$
Q \langle H \rangle = 0
$$
 Unbroken

With the effective potential:

$$
\mathsf{V}(\mathsf{H})\,=\,-\frac{m_2^2}{2}H^+H\,-\,\frac{\lambda_3}{4}(H^+H)^2
$$

and at the minimum

$$
H_5^2=v_H^2=-m_2^2/\lambda_3
$$

This vev give masses to W^{\pm} and Z^{0} bosons as in S.M. :

As we write $V(\Phi)$ & V (H). Now considering the coupling between two sectors and write down the general SU(5)-invariant fourth-order potential:

$$
V(\Phi, H) = m_1^2 Tr \Phi^2 + \lambda_1 Tr (\Phi^2)^2 + \lambda_2 Tr \Phi^4 + \frac{m_2^2}{2} H_5^+ H_5 + \frac{\lambda_3}{4} (H_5^+ H_5)^2 + \underbrace{\alpha H^+ H Tr \Phi^2 + \beta H^+ \Phi^2 H}_{}
$$

The underlined coupling terms will yields coupling terms between h_{3} & h_{2} (h_{3} are the triplet higgs scalars and $h₂$ the two higgs duplets)

So the total Higgs masses:

$$
(2 \alpha + \frac{4}{15} \beta) v_{\Phi}^{2} H_{3}^{+}H_{3} + (2 \alpha + \frac{9}{15} \beta) v_{\Phi}^{2} H_{2}^{+}H_{2}
$$

As it should be (as we 'll see
later) m _{h2} \approx G.U.T. scale
Subject–triplet
splitting problem
splitting problem

Making the second term equal to zero, requires fine tuning of parameters , that:

$$
\alpha = -\frac{9}{30}\beta. \qquad \beta < 0
$$

 \sim

Fermions masses & Yukawa Interactions in SU(5)

In the minimal SU(5) theory the fermion masses may originate only through the coupling to the 5-dim. Higgs rep. H_5 . While Φ_{24} decouples from the fermions, for it 'd give them masses of order Gut scale.

Writing the Yukawa couplings of fermions with the H_5 Higgs :

$$
\mathcal{L}_Y = f_d \,\bar{\psi}_R \,\chi \,\Phi^\dagger + f_u \frac{1}{2} \chi^T \,C \,\chi \,\Phi + h.c.
$$

When gets its vacuum expectation value < H > T = (0000 v_w), we get for the fermionic masses:

$$
\mathcal{L}_m = -[f_d v_W(\bar{d}d + \bar{e}e) - f_u v_W \bar{u}u]
$$

Fermions must not pick mass Before E.W. symmetry breaking

Notice?

As in the Standard Model $m_f = f v$. But we predict the electron and down quark masses being equal.

This prediction appears very bad (we know that $m_d \simeq 10$ MeV , $m_e \simeq 0.5$ MeV), but we must recall that it is valid only at the large scale M_x where the whole SU(5) symmetry becomes operative.

Higgs scalars $h_α$ ($α$ = r, g, b) interactions with fermions:

$$
\mathcal{L}_h = f_d \bar{\psi}_R{}_i \chi^i{}^\alpha h_\alpha^+ + f_u \epsilon_{ijkl\alpha} (\chi^T)^{ij} C \chi^{kl} h^\alpha
$$

Yields:

$$
\mathcal{L}_h = \left\{ f_d \left(\epsilon^{\alpha \beta \gamma} \bar{u}_{L\beta}^c d_R^{\gamma} + \bar{u}_L^{\alpha} e_R^+ + \bar{d}_L^{\alpha} \nu_R^c \right) \right. \\ \left. + f_u \left(\epsilon^{\alpha \beta \gamma} \bar{u}_{R\beta}^c d_L^{\gamma} + \bar{u}_R^{\alpha} e_L^+ \right) \right\} h^{\alpha} \right\}
$$

Like the situation before for the X and Y bosons, we have the possible exchanges of h_{α} which leads to the proton decay.

Of course, the amplitude is proportional to the small Yukawa coupling and the corresponding limit on m_h is somewhat less strict. From (τp)exp ≥ 1032 yr, the following lower limit on $m_h \ge 10^{12}$ GeV.

This is the famous doublet-triplet splitting phenomenon: $m_{h^3} \gg m_{h^2}$.

SU(5) is a smart theory **But** it may be needs many modifications to solve some problems within it

