# SU(5) Grand Unified Theory

Safinaz Ramadan Center of Theoretical Physics at BUE in Egypt



January 13, 2011



## The Standard Model

The Way where we are

The S.M. is a theory based on the symmetry group  $SU_c(3) \times SU_l(2) \times U_{\gamma}(1)$ 

**Fermions Content** 

|                       | $\left(\begin{array}{c} \nu_{\rm e} \\ {\rm e}^{-} \end{array}\right) {\rm L}$ | e <sub>R</sub> | $: \left( \begin{array}{c} d \\ v \end{array} \right)_{L}^{\alpha}$ | u <sup>α</sup> <sub>R</sub> | $d_{\perp}^{\alpha}$ |  |
|-----------------------|--------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------|-----------------------------|----------------------|--|
| SU <sub>c</sub> (3):  | 1 <sub>c</sub>                                                                 | 1 <sub>c</sub> | 3 <sub>c</sub>                                                      | 3 <sub>c</sub>              | 3 <sub>c</sub>       |  |
| SU <sub>L</sub> (2) : | 2 <sub>L</sub>                                                                 | 1 <sub>L</sub> | 2 <sub>L</sub>                                                      | 1 <sub>L</sub>              | 1 <sub>L</sub>       |  |
| SU <sub>y</sub> (1) : | -1                                                                             | -2             | 1/3                                                                 | 4/3                         | -2/3                 |  |

Where  $\alpha = 1,2,3 = N_c$ . The electromagnetic charge Q em

$$Q_{em} = T_{3L} + Y/2$$

SU(5) Grand Unified Theory

Considering only the first fermions family

 $d_{R}^{\alpha}$ 

Lagrangian

Consider only SU<sub>L</sub>(2) x U<sub>Y</sub> (1) electroweak model & Ignore Su<sub>c</sub> (3) For the time being

$$L = L_{G. bosons} + L_{fermions} + L_{\Phi} + L_{Y}$$
  
Where:

$$L_{G \ bosons} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} F_{\mu\nu}^{i} F_{i}^{\mu\nu}$$
$$F_{i}^{\mu\nu} = \partial_{\mu} A_{\nu}^{i} - \partial_{\nu} A_{\mu}^{i} + g \epsilon^{ijk} A_{\mu}^{j} A_{\nu}^{k}$$

$$B_{\mu\nu} = \partial_{\mu} B_{\nu} - \partial_{\nu} B_{\mu}$$

The symmetry invariance holds under the following transformations :

$$\frac{\vec{\tau} \cdot \vec{A}_{\mu}}{2} \longrightarrow U(\theta) \frac{\vec{\tau} \cdot \vec{A}_{\mu}}{2} U(\theta)^{-1} - \frac{i}{g} \left[ \partial_{\mu} U(\theta) \right] U(\theta)^{-1}$$
$$U(\theta) = e^{-i \frac{\vec{\tau}}{2} \cdot \vec{\partial}(x)} \qquad SU(2)$$

Transformation law for the-SU(2) gauge field

Gives for  $\theta$  (x) <<1

$$A^{i'}_{\mu} = A^i_{\mu} - \frac{1}{g} \partial_{\mu} \theta^i + \underbrace{\epsilon_{ijk} \theta^j A^k_{\mu}}_{\mu}$$

$$\frac{\vec{\tau}}{2} \cdot \vec{F}'_{\mu\nu} = U(\theta) \frac{\vec{\tau}}{2} \cdot \vec{F}_{\mu\nu} U(\theta)^{-1}$$

For small  $\theta$  (x),

$$F^{i}_{\mu\nu}{}' = F^{i}_{\mu\nu} + g\epsilon_{ijk}\theta^{j}F^{k}_{\mu\nu}$$

The second term is the transformation law for a triplet under SU(2), so that  $A^{i}_{\mu} s$  (i=1,2,3) carry charges.

Transformation law for SU(2) tensor

Similarly the transformation laws For U(1) gauge field (photon) and U(1) tensor:

$$B'_{\mu} = B_{\mu} + \frac{1}{g'} \partial_{\mu} \theta(\mathbf{x})$$

$$B'_{\mu\nu} = B_{\mu\nu}$$

Fermions part :  

$$L_{f} = \sum_{f} i \overline{f} \gamma_{\mu} D^{\mu} f$$

$$D_{\mu} = \partial_{\mu} - ig \frac{\vec{\tau}}{2} \cdot \vec{A}_{\mu} - ig' \frac{Y}{2} B_{\mu}$$
To be read as:

$$\begin{array}{lll} D_{\mu} \left( \begin{array}{c} u \\ d \end{array} \right)_{L} &=& \partial_{\mu} \left( \begin{array}{c} u \\ d \end{array} \right)_{L} - \left( ig \frac{\vec{\tau}}{2} \cdot \vec{A_{\mu}} + ig' \frac{1}{6} B_{\mu} \right) \left( \begin{array}{c} u \\ d \end{array} \right)_{L} \\ & \\ D_{\mu} u_{R} &=& \partial_{\mu} u_{R} - ig' \frac{2}{3} B_{\mu} u_{R} \end{array}$$



Symmetry 4 massless gauge fields ! SSB all fermions massless !

The electroweak symmetry is spontaneously broken by Higgs scalars

$$\Phi = \begin{pmatrix} \Phi^+ \\ \Phi^0 \end{pmatrix} \qquad \Phi: (1_c, 2_L, 1_Y)$$

$$L_{\Phi} = \frac{1}{2} \left( D_{\mu} \Phi \right)^{+} \left( D_{\mu} \Phi \right) - V(\Phi)$$
$$D_{\mu} \Phi = \left( \partial_{\mu} - \frac{i}{2} g' B_{\mu} - \frac{i}{2} g \overrightarrow{\tau} \cdot \overrightarrow{A_{\mu}} \right) \Phi$$
$$V(\Phi) = -\frac{\mu^{2}}{2} \Phi^{+} \Phi + \frac{\lambda}{4} (\Phi^{+} \Phi)^{2}$$

 $\mu^2 > 0$ 

SU(5) Grai Unified meory

The vacuum state, chosen to correspond to the vacuum expectation value (VEV.)

$$\langle \Phi \rangle_0 = |\langle 0|\Phi|0\rangle| = \begin{pmatrix} 0\\ \nu\\ \sqrt{2} \end{pmatrix}$$
 with  $\nu = \left(\frac{\mu^2}{\lambda}\right)^{1/2}$ 

Verifying That 
$$SU_{L}(2) \times SU_{Y}(1) \xrightarrow{\langle \Phi \rangle_{0}} SU_{em}(1)$$
  
 $T_{3} \langle \Phi \rangle_{0} = \frac{\tau_{3}}{2} \langle \Phi \rangle_{0} \neq 0$   
 $Y \langle \Phi \rangle_{0} = Y_{\Phi} \langle \Phi \rangle_{0} \neq 0$   
But  
 $Q_{em} \langle \Phi \rangle_{0} = 0$   
 $Idea: the vacuum state
 $\langle \Phi \rangle_{0} \text{ is invariant under}$   
 $a symmetry operation exp (i\alpha G)$   
corresponding to the generator G  
if  $\exp(i\alpha G) \leq \Phi \rangle_{0} = \langle \Phi \rangle_{0}$$ 

If exp (idd)  $\exp(i\alpha G) < \Phi >_0 = 0.$ 

(iαG)

The covariant derivative in  $L_{\Phi}\;$  :

$$\frac{1}{2} \left( D_{\mu} \Phi \right)^{+} \left( D_{\mu} \Phi \right)$$

Will yields the gauge bosons masses :

For Ex.: 
$$W^{\pm} = \frac{1}{\sqrt{2}} \left( A^1_{\mu} + i A^2_{\mu} \right) \qquad M^2_{W} = g^2 v^2 / 4.$$

While The Yukawa coupling between scalars and fermions :

$$L_Y = f^{(e)}(\overline{\nu} \ \bar{e})_L \Phi e_R + f^{(u)}(\bar{u} \ \bar{d})_L \widetilde{\Phi} u_R + f^{(d)}(\bar{u} \ \bar{d})_L \Phi d_R + h.c.$$

Will produce fermions masses

$$\tilde{\Phi} = i\tau_2 \Phi^*$$
.

$$m_{\rm e}=f^{\rm (e)}v/\sqrt{2},$$

 $m_{\rm u} = f^{(\rm u)} v / \sqrt{2}, \qquad m_{\rm d} = f^{(\rm d)} v / \sqrt{2}.$ 



\* The aim is constructing a grand unified theory of strong, weak, and electromagnetic interactions.

 $\ast$  So that the different gauge couplings  $~g_s$  , g and g' will be unified in one coupling:  $~g_G$ 

What is required for the new grand unified group ?

In principle, it should be large enough to contain the SU(3) x SU(2) x U(1) group of S.M. as a subgroup;

thus it must be at least of rank 4.

SU(5) motivation

\* Listing the Lie groups having rank 4 :

[SU(3)]<sup>2</sup>, [SU(2)]<sup>4</sup>, O(9), O(8), Sp(8), SU(5), F<sub>4</sub> {Exponential group}.

That a group of rank I:

SU(I + 1), O(2I+1), Sp(2I), O(2I).

\* All these possibilities are excluded, except [SU(3)] <sup>2</sup> & SU(5) groups.

Since they do not have complex representations. That we must have complex representations for fermions, because in the S.M. the fermions are not equivalent to their complex conjugates. ( $e_L^+ \neq e_R^-$ )

SU(5) motivation

\* The remaining [SU(3)]<sup>2</sup> is also excluded.

Since leptons will be described by quantum numbers of color and flavor, that they really don't have.

\* The SU(5), being of rank-4, is the smallest group that can contain
 SU(3) x SU(2) x U(I) without introducing any new fermions. It has complex representations and has the right quantum numbers to fit leptons and quarks.

## SU(5) is the unique theory for the simplest grand unification scheme.

## SU(5) Generators



It remains to identify the electroweak hypercharge generator , that is;

 $\frac{Y}{2} = Q - T_3$  Q is known consistently with the charges of the quarks and leptons . So that Y/2 could be constructed.

$$\frac{Y}{2} = \sqrt{\frac{5}{3}} \quad \frac{\lambda_{24}}{2} \quad \text{with } \lambda_{24} = \frac{1}{\sqrt{15}} \text{ Diagonal}(-2, -2, -2, 3, 3)$$
 Notice that on the diagonal on the diagonal (-2, -2, -2, 3, 3) Notice that on the diagonal (-2, -2, -2, 3, 3) Notice that on the diagonal (-2, -2, -2, 3, 3) Notice that on the diagonal (-2, -2, -2, 3, 3) Notice that on the diagonal (-2, -2, -2, 3, 3) Notice that on the diagonal (-2, -2, -2, 3, 3) Notice that on the diagonal (-2, -2, -2, 3, 3) Notice that on the diagonal (-2, -2, -2, 3, 3) Notice that on the diagonal (-2, -2, -2, 3, 3) Notice that on the diagonal (-2, -2, -2, 3, 3) Notice that on the diagonal (-2, -2, -2, 3, 3) Notice that on the diagonal (-2, -2, -2, 3, 3) Notice that on the diagonal (-2, -2, -2, 3, 3) Notice that on the diagonal (-2, -2, -2, 3, 3) Notice that on the diagonal (-2, -2, -2, 3, 3) Notice that on the diagonal (-2, -2, -2, 3, 3) Notice that on the diagonal (-2, -2, -2, 3, 3) Notice that on the diagonal (-2, -2, -2, 3, 3) Notice that on the diagonal (-2, -2, -2, 3, 3) Notice that on the diagonal (-2, -2, -2, 3, 3) Notice that on the diagonal (-2, -2, -2, 3, 3) Notice that on the diagonal (-2, -2, -2, 3, 3) Notice that on the diagonal (-2, -2, -2, 3, 3) Notice that on the diagonal (-2, -2, -2, 3, 3) Notice that on the diagonal (-2, -2, -2, 3, 3) Notice that on the diagonal (-2, -2, -2, 3, 3) Notice that on the diagonal (-2, -2, -2, 3, 3) Notice that on the diagonal (-2, -2, -2, 3, 3) Notice that on the diagonal (-2, -2, -2, 3, 3) Notice that on the diagonal (-2, -2, -2, 3, 3) Notice that on the diagonal (-2, -2, -2, 3, 3) Notice that on the diagonal (-2, -2, -2, 3, 3) Notice that on the diagonal (-2, -2, -2, 3, 3) Notice that on the diagonal (-2, -2, -2, 3, 3) Notice that on the diagonal (-2, -2, -2, 3, 3) Notice that on the diagonal (-2, -2, -2, 3, 3) Notice that on the diagonal (-2, -2, -2, 3, 3) Notice that on the diagonal (-2, -2, -2, 3, 3) Notice that on the diagonal (-2, -2, -2, 3, 3) Notice that on the diagonal (-2, -2, -2, 3, 3) Notice that on the diagonal (-2, -2, -2, 3, 3)

Notice that Y is on the diagonal that doesn't belong to Su(2) nor SU(3)

And with 
$$Q_{em}$$
  
generator:  $Q(5) = \begin{pmatrix} -1/3 & & & \\ & -1/3 & & \\ & & -1/3 & & \\ & & & 1 & \\ & & & & 0 \end{pmatrix}$ 

Finally, the rest of the 24 matrices (12 generators Which will correspond to new gauge bosons) act in the off- diagonal space, and obtained by inserting pauli matrices appropriately;

### Ex:



### The electroweak gauge bosons are defined by:

$$W^{3}_{\mu} = A^{23}_{\mu}$$
  

$$B_{\mu} = A^{24}_{\mu}$$
  

$$W^{\pm} = \frac{1}{\sqrt{2}} \left( A^{21}_{\mu} \mp A^{22}_{\mu} \right)$$

<u>So :</u>

 $\sqrt{2} A^{\mu} =$ 

| $\left(\frac{1}{\sqrt{2}}A_3^{\mu} + \frac{1}{\sqrt{6}}A_8^{\mu} - \frac{2B^{\mu}}{\sqrt{30}}\right)$ | $\frac{1}{\sqrt{2}}A^{\mu}_{1-i2}$                                                      | $\frac{1}{\sqrt{2}}A^{\mu}_{4-i5}$                        | $ar{X}^{\mu}_1$                                                | $\bar{Y}_{1}^{\mu}$                                      |
|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|
| $\frac{1}{\sqrt{2}}A^{\mu}_{1+i2}$                                                                    | $-\frac{A_3^{\mu}}{\sqrt{2}} + \frac{A_8^{\mu}}{\sqrt{6}} - \frac{2B^{\mu}}{\sqrt{30}}$ | $\frac{A_{6-i7}^{\mu}}{\sqrt{2}}$                         | $ar{X}^{\mu}_2$                                                | Ϋ́ <sup>μ</sup>                                          |
| $\frac{1}{\sqrt{2}}A^{\mu}_{4+15}$                                                                    | $\frac{1}{\sqrt{2}}A^{\mu}_{6+i7}$                                                      | $-\sqrt{\frac{2}{3}}A_8^{\mu}-\frac{2B^{\mu}}{\sqrt{30}}$ | $ar{X}^{\mu}_{3}$                                              | Ϋ́ <sup>μ</sup> <sub>3</sub>                             |
| $X^{\mu}_1$                                                                                           | $X^{\mu}_2$                                                                             | X <sup>µ</sup> <sub>3</sub>                               | $\frac{W\frac{\mu}{3}}{\sqrt{2}} + \frac{3B^{\mu}}{\sqrt{30}}$ | W <sup>µ</sup> ₊                                         |
| $Y^{\mu}_{1}$                                                                                         | Y <sup>µ</sup> <sub>2</sub>                                                             | Υ <sup>μ</sup> <sub>3</sub>                               | <i>₩</i> <sup>μ</sup> _                                        | $-\frac{W_3^{\mu}}{\sqrt{2}}+\frac{3B^{\mu}}{\sqrt{30}}$ |
| SU(5) Grand Unified Theory                                                                            |                                                                                         |                                                           |                                                                |                                                          |

The new gauge fields,  $X^{\mu}{}_{i}$  and  $X^{\mu}{}_{i}$ , i= 1,2,3 defined by:

$$X_{1}^{\mu} = \frac{1}{\sqrt{2}} \left( A_{9}^{\mu} + i A_{10}^{\mu} \right)$$
$$Y_{1}^{\mu} = \frac{1}{\sqrt{2}} \left( A_{16}^{\mu} + i A_{17}^{\mu} \right)$$
etc.

Notice that **B**<sub>µ</sub> still on the diagonal

## SU(5) Fermions content

| SU(5)<br>Generators         |  |
|-----------------------------|--|
| Gauge bosons                |  |
| Fermions<br>content         |  |
| Interactions                |  |
| Proton Decay                |  |
| SU(5) SSB                   |  |
| Doublet- triplet<br>problem |  |
| Conclusion                  |  |

SU(5) Grand Unified Theory

2

6

3

3

The standard model  $SU_c(3) \times SU_L(2) \times U_Y(1)$  contains 15 left handed fields as follows:

| $(\nu_e, e^-)_L$ : (1,2)            | $\implies$ colour singlet, isospin doublet.                 |
|-------------------------------------|-------------------------------------------------------------|
| $(u^lpha,d^lpha)_L$ : (3,1)         | $\implies$ colour triplet, isospin singlet.                 |
| $e_{L}^{+}:(1,1)$                   | $\implies$ Singlet.                                         |
| $u_L^{lpha c}{:}(\overline{3}{,}1)$ | $\implies$ colour triplet (antiparticles), isospin singlet. |
|                                     |                                                             |
| $d_L^{lpha c}$ :(3,1)               | $\implies$ colour triplet(antiparticles), isospin singlet.  |

The SU(5) theory unify both quarks and leptons (leading to baryon number and lepton number violation) in  $\overline{5}$  and 10 dim. irreducible representation.

$$\overline{5} \equiv \psi_L^i = \begin{pmatrix} d_{r(1)}^c \\ d_{g(2)}^c \\ d_{b(3)}^c \\ e^- \\ -\nu_e \end{pmatrix}_L^{-1} \begin{bmatrix} \mathsf{SU(3)c} \\ \vdots 10 \equiv (\chi_{ij})_L = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & u_3^c & -u_2^c & -u^1 & -d^1 \\ -u_3^c & 0 & u_1^c & -u^2 & -d^2 \\ u_2^c & -u_1^c & 0 & -u^3 & -d^3 \\ u^1 & u^2 & u^3 & 0 & -e^+ \\ d^1 & d^2 & u^3 & e^+ & 0 \end{pmatrix}_L$$

The assignment of quarks and leptons to multiplets of the grand unified group SU(5) explaining (-1/3) quark charges (not explained by QCD nor E.W. ), that (for 5 rep.):

$$-3Q_{\rm d}+Q_{\rm e}=0 \qquad \Longrightarrow \qquad Q_{\rm d}=-Q_{\rm e}/3.$$

Charge quantization

SU(5) Grand Unified Theory

Taking the charge conjugation of  $\overline{5}$  $;5 \equiv \psi_R = \begin{pmatrix} d_{1(r)} \\ d_{2(g)} \\ d_{3(b)} \\ e^+ \\ -\nu_e^c \end{pmatrix}_R$ 





$$D_{\mu} \chi_{pq} = \partial_{\mu} \chi_{pq} - ig_G (A_{\mu})^{pr} \chi_{rq} - ig_G (A_{\mu})^{qs} \chi_{ps} = \partial_{\mu} \chi_{pq} - 2ig_G (A_{\mu})^{pr} \chi_{rq}$$

So, The fermions Lagrangian becomes;



## Proton decay

From (1) we can get terms like:

$$L_I = \frac{g_G}{\sqrt{2}} \left( \overline{e_L^-} \gamma^{\mu} X_{\mu}^{\alpha} d_{\alpha}^c + h.c. \right)$$

And From (2) we can get terms like:

$$L_{I} = \frac{g_{G}}{\sqrt{2}} \quad (\varepsilon_{\alpha\beta\lambda} \,\overline{u}_{L}^{\beta} \,\gamma^{\mu} \,X_{\mu}^{\alpha} \,u^{c\lambda} + h.c.)$$

Leading to a proton decay:

The amplitude of the process  $\propto g_G^2 / M_X^2$ . Squaring the amplitude to get the decay rate. Then the life time of the proton  $\tau_p \propto M_X^4 / g_G^4$ . As predict from the G.U.T. scale :  $m_x$  is of order 10<sup>14</sup> Gev, giving  $\tau_p$  of order 10<sup>30</sup> years !

While exp. show that proton is stable and having live time  $\tau_p \ge 6 \times 10^{32}$  years !





$$SU(5) \xrightarrow{24} SU_{C}(3) \times SU_{L}(2) \times U(1)$$

The Lagrangian for the Higgs scalars  $\Phi$  :

$$L_{\Phi} = Tr(D_{\mu}\Phi)^{2} - m_{1}^{2}Tr\Phi^{2} + \lambda_{1}Tr(\Phi^{2})^{2} + \lambda_{2}Tr\Phi^{4}$$

With the effective potential:

$$V_{\Phi} = m_1^2 T r \Phi^2 + \lambda_1 T r (\Phi^2)^2 + \lambda_2 T r \Phi^4$$

Taking  $\Phi$  in the  $T^{24}$  direction

$$\Phi = \phi^{24} T^{24} = \frac{1}{\sqrt{15}} \phi_{24} Diagonal(-2, -2, -2, 3, 3)$$

This choice will fulfill our target, which is :

\*Breaking SU(5) generators . (so that: X, Y gauge bosons . will acquire masses ) \* Keeping S.M. generators unbroken. (S.M. gauge bosons still massless)

But

The condition of symmetry invariance :

 $[\Phi, T] = 0$  symmetry invariant

Where T is a generator of a symmetry transformation U = exp(-i  $\alpha$ .T).

With a transformation property of  $\Phi$  under U:

 $\Phi \longrightarrow U \Phi U^{+}$ 

Easily you can check that  $\langle \Phi \rangle$  commutes with SU<sub>c</sub> (3) x SU<sub>L</sub> (2) x U<sub>Y</sub> (1) generators , leaving S.M. symmetry unbroken. Will it doesn't commute with the remaining 12 G.B. of SU(5) (SU(5) symmetry has broken )

Taking the minimum of the potential gives the form of expectation value corresponding to this symmetry breaking:

$$\begin{array}{l} <\Phi>=\frac{v_{\Phi}}{\sqrt{15}} \ Diagonal(-2,-2,-2,3,3) \\ \\ \mbox{At the minimum:} \\ v_{\Phi}^2=\frac{m^2}{4\lambda_1+\frac{14}{15}\lambda_2} \\ \\ \mbox{With the condition:} \quad \lambda_2>0, \quad \lambda_1>-\frac{7}{30}\lambda_2 \\ \\ \\ \mbox{Gauge Bosons} \\ \\ \mbox{masses} \\ \\ \mbox{The covariant derivative term in L}_{\Phi}: \\ \\ \mbox{D}_{\mu}\Phi=\partial_{\mu}\Phi+ig_G[A_{\mu},\Phi] \\ \\ \\ \mbox{Produces gauge} \\ \\ \mbox{fields masses terms:} \\ \end{array}$$

## By calculating :

$$Tr[A_{\mu}, \Phi]^{2} = \frac{-4\upsilon_{\Phi}^{2}}{15} \sum_{i}^{3} 25(\overline{X}_{i}^{\mu}X_{\mu}^{i} + \overline{Y}_{i}^{\mu}Y_{\mu}^{i})$$

We can see that only X and Y Lepto-quarks acquire masses

$$L_{mass}=rac{20}{3}g_G^2 v_\Phi^2 \sum_i^3 (\overline{X}_i^\mu X_\mu^i+\overline{Y}_i^\mu Y_\mu^i)$$

.

That all the 3 colors have the same mass

$$m_X^2 = m_Y^2 = rac{20}{3} g_G^2 v_\Phi^2$$

So that the vev for the adjoint of Higgses is of order 10<sup>15</sup> Gev

$$SU_{c}(3) \times SU_{L}(2) \times U(1) \xrightarrow{5} SU_{c}(3) \times U_{\varrho}(1).$$

The general Lagrangian for the 5 of Higgs scalars H

$$L_H = \frac{m_2^2}{2} H_5^+ H_5 + \frac{\lambda_3}{4} (H_5^+ H_5)^2$$

Manage as in the S.M.

To break  $SU_c(3) \times SU_L(2) \times U_Y(1)$  to  $SU_c(3) \times U_Q(1)$  we must take the vev in the neutral,  $SU_L(2)$  doublet, colour singlet component of H.

$$< H >= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \upsilon_H \end{pmatrix}$$
 Remember:  

$$T_{23} < H > \neq 0$$
 Broken  

$$T_{24} \propto Y < H > \neq 0$$
 Broken  

$$Q < H > = 0$$
 Unbroken

With the effective potential:

$$\mathsf{V(H)} = -\frac{m_2^2}{2}H^+H - \frac{\lambda_3}{4}(H^+H)^2$$

and at the minimum

$$H_5^2 = v_H^2 = -m_2^2/\lambda_3$$

This vev give masses to  $W^{\pm}$  and  $Z^{0}$  bosons as in S.M. :

As we write V( $\Phi$ ) & V ( H ). Now considering the coupling between two sectors and write down the general SU(5)-invariant fourth-order potential:

$$V(\Phi, H) = m_1^2 T r \Phi^2 + \lambda_1 T r (\Phi^2)^2 + \lambda_2 T r \Phi^4 + \frac{m_2^2}{2} H_5^+ H_5 + \frac{\lambda_3}{4} (H_5^+ H_5)^2 + \frac{\alpha H^+ H T r \Phi^2 + \beta H^+ \Phi^2 H}{4}$$

The underlined coupling terms will yields coupling terms between  $h_3 \& h_2 (h_3)$  are the triplet higgs scalars and  $h_2$  the two higgs duplets)

So the total Higgs masses:

$$(2 \ \alpha + \frac{4}{15} \ \beta) \ \upsilon_{\Phi}^{2} \ H_{3}^{+} H_{3} + (2 \ \alpha + \frac{9}{15} \ \beta) \ \upsilon_{\Phi}^{2} H_{2}^{+} H_{2}$$
As it should be ( as we 'll see  
later) m \_{h\_{2}} \approx G.U.T. scale
Duplet -triplet  
splitting problem
Not right because m \_{h\_{2}}
of order 100 Gev

Making the second term equal to zero, requires fine tuning of parameters, that:

$$\alpha = -\frac{9}{30}\beta. \qquad \beta < 0$$

## Fermions masses & Yukawa Interactions in SU(5)

In the minimal SU(5) theory the fermion masses may originate only through the coupling to the 5-dim. Higgs rep.  $H_5$ . While  $\Phi_{24}$  decouples from the fermions, for it 'd give them masses of order Gut scale.

Writing the Yukawa couplings of fermions with the H<sub>5</sub> Higgs :

$$\mathcal{L}_Y = f_d \,\bar{\psi}_R \,\chi \,\Phi^\dagger + f_u \frac{1}{2} \chi^T \,C \,\chi \,\Phi + h.c.$$

When gets its vacuum expectation value  $\langle H \rangle^T = (0000 v_w)$ , we get for the fermionic masses:

$$\mathcal{L}_m = -[f_d v_W (\bar{d}d + \bar{e}e) - f_u v_W \bar{u}u]$$

Fermions must not pick mass Before E.W. symmetry breaking Notice?

As in the Standard Model  $m_f = f v$ . But we predict the electron and down quark masses being equal.

This prediction appears very bad (we know that  $m_d \simeq 10 \text{MeV}$ ,  $m_e \simeq 0.5 \text{MeV}$ ), but we must recall that it is valid only at the large scale  $M_x$  where the whole SU(5) symmetry becomes operative.

Higgs scalars  $h_{\alpha}$  ( $\alpha$  = r, g, b) interactions with fermions:

$$\mathcal{L}_h = f_d \bar{\psi}_{R\,i} \chi^{i\,\alpha} h^+_{\alpha} + f_u \epsilon_{ijkl\alpha} (\chi^T)^{ij} C \chi^{kl} h^{\alpha}$$

#### Yields:

$$\mathcal{L}_{h} = \left\{ f_{d} \left( \epsilon^{\alpha\beta\gamma} \bar{u}_{L\beta}^{c} d_{R}^{\gamma} + \bar{u}_{L}^{\alpha} e_{R}^{+} + \bar{d}_{L}^{\alpha} \nu_{R}^{c} \right) \\ + f_{u} \left( \epsilon^{\alpha\beta\gamma} \bar{u}_{R\beta}^{c} d_{L}^{\gamma} + \bar{u}_{R}^{\alpha} e_{L}^{+} \right) \right\} h^{\alpha}$$

Like the situation before for the X and Y bosons, we have the possible exchanges of  $h_{\alpha}$  which leads to the proton decay.

Of course, the amplitude is proportional to the small Yukawa coupling and the corresponding limit on  $m_h$  is somewhat less strict. From  $(\tau p)exp \ge 1032$  yr, the following lower limit on  $m_h \ge 10^{12} \text{GeV}$ .



This is the famous doublet-triplet splitting phenomenon:  $M_{h^3} \gg M_{h^2}$ .



# SU(5) is a smart theory But it may be needs many modifications to solve some problems within it

