
VERILOG HDL
(and C)

1 ENGN3213: Digital Systems and Microprocessors L#5-6

Some Reference Material

The following are suggested reading..

http://engnet.anu.edu.au/DEcourses/engn3213/Documen ts/VERILOG/

➤ VerilogIntro.pdf - Very simple introduction which emphasises the ground rules for good
coding style

➤ verilog-tutorial.pdf - Another very simple introduction which introduces some other
things but is no good on coding style

➤ coding and synthesis with verilog.pdf - explains ways to build some common circuits

➤ VerilogTutorial.pdf - a VERILOG reference with lots of useful information

➤ cummings-nonblocking-snug99.pdf - There are several other useful articles by
Cummings eps. Finite State Machines in VERILOG.

2 ENGN3213: Digital Systems and Microprocessors L#5-6

Some Reference Material (ctd)

➤ 1996-CUG-presentation nonblocking assigns.pdf - A discussion about
blocking and non-blocking assignments but mostly for simulation. An
interesting discussion about how to simulate inertial and transport delays in
real hardware using VERILOG.

➤ vlogref.pdf - Cadence VERILOG compendium.. heaps of reference
material

➤ verilogSlides.pdf - some of this lecture’s slides

➤ Beware of some inconsistencies and note those
in the hardware blocks of MU0!

3 ENGN3213: Digital Systems and Microprocessors L#5-6

How To Represent Hardware?

Hardware definition language provides a way of describing and documenting
hardware so that

➤ You can read it again later

➤ Someone else can read and understand it

➤ It can be simulated and verified

➤ It may be synthesised into gates

➤ It can be shipped and you can make money

4 ENGN3213: Digital Systems and Microprocessors L#5-6

Ways to represent hardware

➤ Schematics

➤ Write a NETLIST

➤ Write primitive Boolean equations

➤ Use Hardware Description Language

5 ENGN3213: Digital Systems and Microprocessors L#5-6

What are Hardware Description Languages (HDLs)?

➤ Textual representation of a logic design but has various levels of
abstraction

➤ Not programming languages YOU MUST MAKE THE CONCEPTUAL
LEAP

➤ Similar development chain
➤ Compiler → assembly code → binary machine code
➤ Synthesis tool: HDL source → gate-level specification → hardware

6 ENGN3213: Digital Systems and Microprocessors L#5-6

Why use HDLs?

➤ Easier to make system abstractions (VIZ the combinational and
sequential logic abstractions)

➤ Easy to write and edit

➤ Compact

➤ Don’t have to follow wires on a schematic

➤ Easy to analyse

➤ Why not to use an HDL

➤ To avoid understanding the hardware

➤ A schematic can be a complex work of art... but not if you do a proper
RTL design

7 ENGN3213: Digital Systems and Microprocessors L#5-6

HDL HIstory

➤ 1970s: First HDLs

➤ Late 1970s: VHDL
➤ VHDL = VHSIC HDL = Very High Speed Integrated Circuit HDL
➤ VHDL inspired by programming languages of the day (Ada)

➤ 1980s:
➤ Verilog first introduced
➤ Verilog inspired by the C programming language
➤ VHDL standardized

8 ENGN3213: Digital Systems and Microprocessors L#5-6

HDL HIstory

➤ 1990s:
➤ Verilog standardized (Verilog-1995 standard)

➤ 2000s:
➤ Continued evolution (Verilog-2001 standard)

➤ Both VHDL and Verilog evolving, still in use today

➤ ICARUS Verilog needs plenty of Verilog-2001 compliance - work in
progress.

9 ENGN3213: Digital Systems and Microprocessors L#5-6

About Verilog...

➤ A surprisingly big language

➤ lots of features for simulation and synthesis of hardware.

➤ We are going to learn a focussed subset of VERILOG

➤ We will use it at a level appropriate for computer design

➤ Focus on synthesisable constructs

➤ Initially restrict some features just because they are not necessary

➤ If you haven’t seen it in lectures, ask me before you use it

10 ENGN3213: Digital Systems and Microprocessors L#5-6

Why an HDL is not a Programming Language

➤ In a program, we start at the beginning (e.g. ’main’), and we proceed
sequentially through the code as directed

➤ The program represents an algorithm, a step-by-step sequence of actions
to solve some problem

for (i = 0; i<10; i=i+1) {
if (newPattern == oldPattern[i]) match = i;

}

➤ Hardware is all active at once; there is no starting point

11 ENGN3213: Digital Systems and Microprocessors L#5-6

What do you really have to know to understand and use VERILOG?

➤ VERILOG can be for SYNTHESIS or for SIMULATION: you must learn
to distinguish them

➤ SYNTHESISABLE VERILOG runs CONCURRENTLY in hardware (C.F.
C language)

➤ VERILOG has some basic abstractions:

1. COMBINATIONAL and SEQUENTIAL

2. WIRES and REGS (not important but basic)

12 ENGN3213: Digital Systems and Microprocessors L#5-6

What are the usual problems of VERILOG that you need to look out for?

➤ You are breaking with the COMBINATIONAL / SEQUENTIAL paradigm

➤ Your code is poorly synthesisable: Two ways:

1. You are using simulation-only constructs in your code for
synthesis.

2. YOUR CODE IS FOR SYNTHESIS BUT TRANSLATES BADLY INTO
HARDWARE - THE USUAL PROBLEM

13 ENGN3213: Digital Systems and Microprocessors L#5-6

WIRES and REGS

➤ Variables in VERILOG are either WIRES or REGS
➤ Neither of these is like a variable in C
➤ WIRES

➤ A WIRE is a through-connection within or to a module. The input and
output ports are WIREs. ASSIGNS assign to WIRES

➤ REGS
➤ The combinational and sequential paradigms in terms of ALWAYS

blocks imply a persistance to the variables they assign to
➤ Example: the variables on the left hand sign of statements inside

ALWAYS blocks are REGS
➤ REGS have persistance and store VALUES from one event to the

next
➤ REGS are not registers in the electronic sense

14 ENGN3213: Digital Systems and Microprocessors L#5-6

WIRES and REGS

Component
Value: V = 8’h1a

WIRE

REG: V = 8’h1a

WIRE
Module

Circuit Schematic VERILOG

15 ENGN3213: Digital Systems and Microprocessors L#5-6

Verilog Program Structure

16 ENGN3213: Digital Systems and Microprocessors L#5-6

Modelling sequential and combinational circuits

17 ENGN3213: Digital Systems and Microprocessors L#5-6

VERILOG by example: MULTIPLEXER (combinational)

module mux(sel, a, b, c);
input a;
input b;
input sel;
output c;
reg c;
always@(a or b or sel)

if (sel == 1’b1)
c = a;

else
c = b;

// c = sel ? a : b;

endmodule

a

b

c

Sel

18 ENGN3213: Digital Systems and Microprocessors L#5-6

VERILOG by example: D-type Flip Flop (sequential)

module dff(clk, d, q);
input clk;
input d;
output q;
reg q;
always@(posedge clk)

q <= d;
endmodule

d q

clk

19 ENGN3213: Digital Systems and Microprocessors L#5-6

ASSIGNS... an alternative construct for treating SIMPLE combinational circuits

module inv(a, y);
input [3:0] a;
output [3:0] y;
assign y = ˜a;

endmodule

module and8(a, y);
input [7:0] a;
output y;
assign y = &a;

endmodule;

20 ENGN3213: Digital Systems and Microprocessors L#5-6

Tristate Buffers

➤ Tristate buffers are multiplexers that have the possibility of producing an
open circuit output

Bus

tristate tristate tristate

open circuit

21 ENGN3213: Digital Systems and Microprocessors L#5-6

Tristate Buffers

module tristate(a, en, y);
input [3:0] a;
input en;
output [3:0] y;
assign y = en ? a : 4’bz;

endmodule

module mux2(d0, d1, s, y);
input [3:0] d0, d1;
input s;
output [3:0] y;
tristate t0(d0, ˜s, y);
tristate t1(d1, s, y);

endmodule

22 ENGN3213: Digital Systems and Microprocessors L#5-6

Combinational logic
// Using a reg
// -----------------------------
wire a,b;
reg c;
always @ (a or b)

c = a & b;
// Using a wire
// -----------------------------
wire a,b,c;
assign c = a & b;
// using a built in primitive (without instance name)
// -----------------------------
reg a,b;
wire c;
and (c,a,b); // output is always first in the list
// using a built in primitive (with instance name)
// -----------------------------
reg a,b;
wire c;
and u1 (c,a,b); // output is always first in the list

23 ENGN3213: Digital Systems and Microprocessors L#5-6

Program structure example: Testing an 8 bit adder

➤ For simulation the Verilog program structure consists of synthesisable code
and a testbench.

Top module

Sub modules

Testbench

24 ENGN3213: Digital Systems and Microprocessors L#5-6

Top module

module adder(Xw,Yw,Sw,Cout);

input [7:0] Xw;
input [7:0] Yw;

output [7:0] Sw;
output Cout;

wire [7:0] Sw;

full_adder fa0(Xw[0],Yw[0],Sw[0],0 ,C0);
full_adder fa1(Xw[1],Yw[1],Sw[1],C0,C1);
full_adder fa2(Xw[2],Yw[2],Sw[2],C1,C2);
full_adder fa3(Xw[3],Yw[3],Sw[3],C2,C3);
full_adder fa4(Xw[4],Yw[4],Sw[4],C3,C4);
full_adder fa5(Xw[5],Yw[5],Sw[5],C4,C5);
full_adder fa6(Xw[6],Yw[6],Sw[6],C5,C6);
full_adder fa7(Xw[7],Yw[7],Sw[7],C6,Cout);

endmodule

25 ENGN3213: Digital Systems and Microprocessors L#5-6

1 bit full adder

module full_adder(X,Y,S,Cin,Cout);

input X;
input Y;
input Cin;

output S;
output Cout;

assign S = (XˆY)ˆCin;
assign Cout = ((XˆY)&Cin)|(X&Y);

endmodule

26 ENGN3213: Digital Systems and Microprocessors L#5-6

Testbenches: A test bench for the adder

module TB_adder; //No inputs or outputs for a testbench

reg [7:0] X;
reg [7:0] Y;

wire [7:0] S;
wire Cout;

adder ad(X,Y,S,Cout);

initial begin
$display("\t\ttime\t X\t Y\t S\t Cout\n");
#1 X = 8’hab;
#1 Y = 8’hbb;
#1$display("%d\t%b\t%b\t%b\t%b\t\n",$time,X,Y,S,Cou t);

end

endmodule

27 ENGN3213: Digital Systems and Microprocessors L#5-6

Running the simulation

[ggb112@localhost adder]$ more cmp.sh

#!/bin/sh
iverilog full_adder.v adder.v TB_adder.v
./a.out

[ggb112@localhost adder]$ sh cmp.sh

time X Y S Cout

3 10101011 10111011 01100110 1

28 ENGN3213: Digital Systems and Microprocessors L#5-6

Pitfalls of Treating Verilog like a Programming Language

➤ If you program sequentially, the synthesiser may add a lot of hardware to
try to do what you say

➤ If you program in parallel (multiple ’always’ blocks), you can get
non-deterministic execution - Which ’always’ happens first?

if(x == 1) out = 0;
if(y == 1) out = 1;// else out retains previous state? R-S latc h!

➤ You don’t realize how much hardware you’re specifying e.g. x = x + 1 can be a LOT of
hardware

➤ Slight changes may suddenly make your code ’blow up’. A chip that previously fit
suddenly is too large or slow

29 ENGN3213: Digital Systems and Microprocessors L#5-6

Structural vs Behavioral HDL Constructs

➤ Structural constructs specify actual hardware structures
➤ Low-level, direct correspondence to hardware
➤ Primitive gates (e.g., and, or, not)
➤ Hierarchical structures via modules

➤ Behavioural constructs specify an operation on bits
➤ High-level, more abstract
➤ Specified via equations, e.g.

out = (a&b)|c

➤ Not all behavioural constructs are synthesisable
➤ We’ve already talked about the pitfalls of trying to ’program’
➤ But even some combinational logic won’t synthesise well

➤ out = a%b //modulo operation-what does this synthesise to?

➤ The following are discouraged for synthesis:
+... − ... ∗%... < ... <= ... < ... <= ... << ... >>

30 ENGN3213: Digital Systems and Microprocessors L#5-6

ENGN3213 Software

31 ENGN3213: Digital Systems and Microprocessors L#5-6

Example: Counter

32 ENGN3213: Digital Systems and Microprocessors L#5-6

➤ 3 bit asynchronously resettable counter which counts 0, 1, 2, 3, 4, 5
➤ External reset to start the counter
➤ Issues - switch debouncing?

[ggb112@localhost counter]$ more cmp.sh
#!/bin/sh

iverilog counter_3bit.v TB_counter_3bit.v

./a.out

[ggb112@localhost counter]$ sh cmp.sh
VCD info: dumpfile C3B.vcd opened for output.

time clk rst count
3 1 0 0000
7 1 0 0001

11 1 0 0010
15 1 0 0011
19 1 0 0100
23 1 0 0101
27 1 0 0000
31 1 0 0001
35 1 0 0010
39 1 0 0011
43 1 0 0100
47 1 0 0101

Example: Counter

module counter_3bit(clk, rst, count);

input clk;
input rst;

wire rst; //not necessary but true

output [3:0] count;

reg [3:0] count; //count is assigned in ALWAYS block

// 3 bit asynchronously resettable
always @(posedge clk or posedge rst) begin

if (rst)
count <= 3’b0;

else
if (count == 3’b101)

count <= 3’b0;
else

count <= count + 3’b001;
end

endmodule

33 ENGN3213: Digital Systems and Microprocessors L#5-6

Example: Counter

34 ENGN3213: Digital Systems and Microprocessors L#5-6

module TB_counter_3bit;

reg clk;
reg rst;
wire [3:0] cnt;

counter_3bit c3b(clk, rst, cnt);

initial begin
clk = 0;
rst = 1;
#1rst = 0;
$display("\t\t time \t clk \t rst \t count");
forever #2 clk = ˜clk;
end

initial begin
$dumpfile("C3B.vcd");
$dumpvars;

end

initial begin: stopat
#50; $finish;
end

always @(posedge clk) begin
$display("%d\t %b \t %b \t %b",$time,clk, rst, cnt);
end
endmodule

