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My wife, Joan, was looking at an ad in a grocery store flyer one morning. There
was a special on rolls of paper towels available in two in two different size rolls, both of
the about a foot wide and perforated into sheets 1 foot long.. The cost of the larger rolls
was double that of the smaller roll. Joan wanted to know which size was the best buy.

On the basis of the pictures in the ad, I estimated that both types of rolls were
wrapped around cardboard cylinders with an outer radius of about 1 inch, and that the
outer layer of the larger roll was about 5 inches from the central axis of the cardboard
core, while that of the smaller roll was about 3 inches from the central axis. Assuming
that both rolls were wrapped with the same degree of tightness around their cardboard
cores, say .01 inch in thickness for the paper and airspace between layers, I needed to
compare how many squares of paper towel were on each of the two roll sizes in order to
answer her question.

I will refer to these data and assumptions as Joan’s Paper Roll Problem in the
discussion below.

1. Modeling Joan’s Paper Roll Problem
Because we are assuming that both rolls have the same width and the same

tightness, we can model the paper rolls from a side view perpendicular to the central axis
of the cardboard core of the rolls. Then the edge of the paper on the roll is an Arithmetic
spiral winding out from the carbord core of radius 1 inch to the outside edge of the roll.
The diagram below shows this view of a paper roll of outer radius 3 inches:

1. Calculus Solution of the Paper Roll Problem based on the Archimedean Spiral
Model.

Since the width of the paper on both rolls is 1 ft., we can compute tha amount of
paper on each roll by finding the length of the Archimedean spiral

(1)   r = h(θ) = A θ
where θ is the angle in radians swept out as the spiral increases from the radius of 0 to the
radius r of the roll. Each wind of the roll will increase r by T ft., the thickness of each

sheet, while θ will increase by 2π radians, so 2πA = T, so 
 
A =

T
2π

ft. For the assumed

thickness of T = (1/100) in. = 1/1200 ft. for each layer,  
 
A =

T
2π

=
1

2400π
ft..
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To reach the surface of the cardboard core, where r = 1/12 ft. the angle θ swept

out must increase from 0 to the angle θ = θ1  where 
1
12

ft. = 1
2400π

θ1 . Therefore,  θ1 =

200 π radians. Similarly, to reach the surface of a roll of radius R ft. in. roll, the angle θ

swept out must increase from 0 to the angle θ = θR  so R ft. = 1
2400π

θR , which implies

that θR =2400 π R radians.
In particular, to reach the surface of the 5 in. roll, the angle θ swept out must

increase from θ = 0 radians  to the angle θ = θ5 radians  so 
5
12

ft. = 1
2400π

θ5 , so θ5 =

1000 π radians.

2. Solution of the Paper Roll Problem By Calculus.
The formula from calculus for the arc length of a curve  r = h(θ) in polar

coordinates  between  θ = c radians and θ = d radians is:

 
L(c,d) = h'(θ)2 + h(θ)2

c

d

∫ dθ

For the Archimedean spiral h(θ) = T
2π

θ, h '(θ) = T
2π

, so this arc length is given by

(2)
 
L(c,d = T

2π
1+ θ2

c

d

∫ dθ

This is an interesting integral to calculate! We will carry out the integration later
but here is the indefinite integral given in one table of integrals:

 
1+ θ2dθ∫ =

1
2
θ 1+ θ2 + Ln( 1+ θ2 + θ)





 +c

We can express the solution (2) in terms of a function f[θd] of a single varible  θd.
That variable θd represents the angle in radians starting from 0 radians and wrapping
counter clockwise around pole to  the angle θ = θd radians:

 
f (θd ) = T

2π
1+ θ2dθ

0

θd

∫ =
T
4π

θ 1+ θ2 + Ln( 1+ θ2 + θ)










0

θd

We use this result to obtain the following formula for the length L(c, d) of the arithmetic
spiral:

 L(c,d) = f[θd ]− f[θc ]

where 
 

T
4π

=
.01
4π

in. =
1

400π
in. =

1
4800π

ft.

We have already observed that  θ1 = 200π radians  at the outer edge of the 1 in.
cardboard core. Similarly, for the outer edge of a 3 in. roll,  θ3 = 600π radians , and for a 5
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in. roll,  θ5 = 1000π radians .  Therefore, the length in ft. of a roll of paper of radius 3 in.
wrapped on cardboard core of radius 1 in. is

 
f[θ3]− f[θ1]=

1
4800π

θd 1+ θd
2 + Ln( 1+ θd

2 + θd )



200π

600π

≈ 209.44 ft.

Similarly, the length of the 5 in. roll is

 
f[θ5]− f[θ1]=

1
4800π

θd 1+ θd
2 + Ln( 1+ θd

2 + θd )



200π

1000π

≈ 628.319 ft.
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3.  Details of the Indefinite Integration of 1+θ 2dθ∫ .

 1) Let θ = tan r, dθ = sec2 r dr. Then 1+ θ2dθ = sec3 r dr.∫∫

2) Next, integrate-by-parts twice and simplify:

Let u = sec r, dv = sec2 rdr, then du = sec r tan r dr and v = tan r so

sec3 rdr∫ = sec r sec2 rdr∫ = sec r tan r − tan2 r∫ sec rdr =

sec r tan r − (sec2 r∫ −1) sec rdr = sec r tan r + sec rdr∫ − sec3 rdr∫
∴2 se c3 rdr∫ = sec r tan r + sec rdr∫

3) From 2) we have

 
1+ θ2dθ∫ = sec3 r dr∫ =

1
2

(sec r tan r + sec r dr)∫

4) Integrate the sec r by multiplying by 1 = sec r + tan r
tan r + sec r

 to obtain an integral of the form

dw
w∫  where w = tan r + sec r:

 

sec r dr∫ = sec r
sec r + tan r
sec r + tan r








dr =∫ (Multiply by 1)

=
sec2 r + sec r tan r

tan r + sec r














dr) =∫

dw
w∫ = (where w = tan r + sec r)

= ln w + K = ln(tan r + sec r) + K
5)  By 4), we obtain:

 
1+ θ2dθ∫ = sec3 r dr∫ =

1
2

[(sec r tan r + sec r dr)∫ ] =
1
2

[(sec r tan r) + ln(tan r + sec r)]+ K

Use a right triangle with legs of length  θ = sec r and 1 (different θ than that in the given
integral !)  to see that:

 
1+ θ2dθ∫ = sec3 r dr∫ =

1
2

[(θ 1+ θ2 + ln( 1+ θ2 + θ)]+ K

Therefore, the total length f[θd] of a paper roll starting at c = 0 radians and wrapping until
θ = θd radians is:

 

f[θd ]=
T
2π

1+ θ2dθ
0

θd

∫ =
T
4π

θ 1+ θ2 + Ln( 1+ θ2 + θ)










0

θd

=

=
T
4π

θd 1+ θd
2 + Ln( 1+ θd

2 + θd )




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4. Two Elementary Solutions. Dick Stanley and Patrick Callahan developed the
following two simple and elegant approaches to a paper roll problem in which the
successive layers are modeled as concentric paper cylinders. They developed two
differentt solutions based on that model that they credited to Mickey and Minnie Mouse.

Mickey’s approach: Find the number of concentric layers of paper on the roll
and then divide by the length of the middle layer to find the total length of the paper on
the roll.

Minnie’s approach:  Find the area of the paper at the end of the roll by
subtracting the area of the core of the roll from the area of the entire roll end including
the core. This area is equal to the length of the paper on the roll times its thickness.

Note that because, in both of these approaches, the paper roll consists of
concentric cylinders of a fixed thickness rather than the Archimedean spiral used in
Section 1, our calculus solutions of the Archimedean spiral model may not be the same as
those obtained by the approaches by Mickey and Minnie. However, as long as the
thickness of the cylindrical layers is very small in comparison to length of the roll, the
differences in the computed paper roll lengths may turn out to be negligible. We’ll see!

First, let’s apply Mickey’s appoach using assumed the paper thickness of T = .01
in. and a cardboard core radius of 1 in., the number of layers on the rolls of radius 3 in.
and 5 in. respectively is given by the following calculations:

 

3 in.
.01 in

−
1 in.

.01 in
− = 300 −100 = 200 layers;

5 in.
.01 in

−
1 in.

.01 in
− = 500 −100 = 400 layers .

The average radius of the layers in a 3 in. roll is 2 in., while the average radius of the
layers in a 5 in. roll is 3 in. Consequently, the average length of a layer in a 3 in. roll is
(2 in.))(2π) = 4π  in. while the average length a of a layer in a 5 in. roll is (3 in)(2π) = 6π
in.. It follows that:

i) the total length in feet of a 3 in. roll is (200 ) (4π) /12 ft ≈ 209.440 ft.
ii) the total length in feet of a 5 in. roll is (400 ) (6π) /12 ft ≈ 628.319 ft.

These values agree with the values s obtained with the calculus solution with the
Archimedean spiral model to three decimal places.

Next, let’s apply Minnie’s idea: For the 3 in. roll with the 1 in. core, the area of
the end of the roll minus the area of the 1 in. core is 32π − 12π = 8π square inches. For
the 5 in. roll with the 1 in. core, the area of the end of the roll minus the area of the 1 in.
core is 52π − 12π = 24π square inches.

From this, we can conclude that:

i) the length in feet of the 3 in.roll 
8π
.01

=
800π
12

 = 209.440 ft.

ii) the total length in feet of a 5 in. roll is 
24π
.01

=
2400π
12

= 200π ft. ≈ 628.319 ft.

just as Mickey concluded.
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Thus, both Mickey’s and Minni’s solutions of Joan’s Paper Roll Problem are
essentially the same and are very close to the values obtained by calculus in the previous
sections.

We can generalize Mickey’s solution to rolls whose outer layer have radius r
inches that are wrapped around a cardboard core of radius 1 in. with the same tightness as
the rolls in Joans’s Paper Roll Problem so that the thickness of each layer is .01 in.

In the general case, the number of layers of paper in a roll of radius r inches is:

 

r in.
.01 in

−
1 in.

.01 in
− = 100 r −100 = 100 (r −1) layers

and the average radius of the layers in the roll is (r + 1)/2 in.= (r + 1)/24 ft.  so the total
length L(r) of the paper on the roll in ft. is

 
L(r) = 100(r − 1)(2π)(

r +1
24

) =
25π

3
(r2 −1)

Therefore, the number of foot-square sheets of paper towel on a roll of outer radius  r >

1/12  ft. is 
25π
3
(r2 −1) . Note that this formula specilizes to the correct formula obtained

above for rolls of radii 3 in. and 5 in.:  

Next, let’s apply Minnie’s idea for a roll of outer radius r in. and core
radius of 1 in: The area of the end of the roll in square inches minus the area of the 1 in.
core is πr2 − π 12 = π (r2 −1)  square inches. Thus, if L(r) is the length of the paper on the

roll in inches,  π (r2 −1) = L(r) 1
100

, so L(r) = 100 π (r2 −1) in. = 25π
3
(r2 −1) ft.

Therefore, the number of foot-square sheets of paper towel on a roll of outer radius  r >

1/12  ft. is 
25π
3
(r2 −1) , which is the same as Mickey’s solution.

An activity related to Mickey’s and Minnie’s  solutions.
Dick Stanley and Patrick Callahan described the following activity that sheds

light on the concentric cylinder model which is the basis of both Mickey’s and Minnie’s
solution of the Paper Roll Problem. Suppose a paper roll of outer radius R with a
cardboard core of radius 1 inch is resting on a horizontal table. Imagine cutting the paper
roll along a line perpendicular to the carboard core with a razor blade until you reach that
core. The layers of the roll would fall and form a trapezoid-shaped pile. The base of the
pile would have length 2πR and the top of the pile would have length 2π. Consequently,
the two edges of the pile would have slope 1/π as in the following diagram:
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Note that in both Mickey’s and Minnie’s solution of Joan’s Paper Roll
Problem, the length L(r) in feet of the roll is the quadratic function of the outer radius r of

the roll: L(r) = 25π
3
(r2 −1) ft.

The calculus solution of Joan’s Paper Roll Problem given in Section 2
based on the arithmetic spiral model:

 
f[θ3]− f[θ1]=

1
4800π

θd 1+ θd
2 + Ln( 1+ θd

2 + θd )



200π

600π

≈ 209.44 ft.

 
f[θ5]− f[θ1]=

1
4800π

θd 1+ θd
2 + Ln( 1+ θd

2 + θd )



200π

1000π

≈ 628.319 ft.

which give the same values for the lengths in feet of the two roll sizes as the quadratic

function L(r) = 25π
3
(r2 −1) ft.even though the indefinite integral does not appear to be

quadratic. 

In the next section, we will investigatee the mathematical connection between the
arithmetic spiral and concentric cylinder models of Joan’s Paper Roll Problem.

5. The Solution of the Archimedean Spiral Model of Joan’s Paper Roll Problem is
not quadratic but it is quadratic for all practical purposes.

We have shown in the preceding sections that the length in feet of a paper roll in
the form of an Archimedean spiral of sheet thickness T = .01 in. = 1/1200 ft. that winds
outward from a central angle of 0 radinas to a central angle of θd radians is given by the
function f defined by:

 

f[θd ]=
T
2π

1+ θ2dθ
0

θd

∫ =
T
4π

θ 1+ θ2 + Ln( 1+ θ2 + θ)










0

θd

=

=
T
4π

θd 1+ θd
2 + Ln( 1+ θd

2 + θd )





For large positive values of θ = θd , the expression 1+θd
2 is approximately equal to  θd

so, for large values  θd , f[θd ] is approximately equal to the function g defined by
g[θd ] = q[θd ] + nq[θd ]

where:

 
q[θd ] = T

4π
θd

2



 nq[θd ]= T

4π
Ln 2 θd
 

We will call the function q and nq  the quadratic part of g and the non-
quadratic part of g. Note that q is a quadratic function that increases from its minimum
value at 0 through positive values of  θd .

Let’s compare the values and graphs of the functions:
f = the solution by calculus Archimedean spiral model,
 g = an approximation to the solution f for large values of the angle θd ,

  q = the quaratic part of g,
 nq = the non-quadratic part of g. 
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When these four functions are graphed on the domain 0 < θd < 3000 π  (below
left) the functions f, g and q appear to coincide while the residual function r appears to be
0. However, the diagram (below right) show the graphs of the same four functions on the
much smaller interval .5 < θd < π .  (The lower limit of .5π for θd  was chosen to assure
that the values of the residual part r(θd ) are positive.)

 

0 < θd < 1000 π .5π < θd < 3π Range = (0, .815)

3. A A very brief outline of a solution of the Paper Roll Problem based on
remarkable results of Archimedes on the Archimedean Spiral.

In his book On Spirals, Archimedes (287 BC – 212 B.C.) used a beautiful
exhaustion argument to compute the area A1 enclosed by the first turn of the
Archimedean spiral r = A θ as well as the areas An enclosed by the horizontal axis of nth
turn of that spiral. His results are summarized in the diagram and table below:

r =
T
2π

θ ⇒ A1 =
1
3
π 2π T

2π






2

=
1
3
πT 2

A2 =
7
12
π 4π T

2π






2

=
7
12
π 2T( )2 = 7

3
πT 2

R2 = A2 − A1 = (
7
3
−
1
3
)πT 2 = 6 1

3
πT 2




=

= 6A1 = 2πT
2 .

Rn+1 = nR2 = n 2πT
2( ) = nR2 for n > 1.

For Minnie’s solution of Joan’s Paper Roll Problem, the cardboard core is of
radius 1 in. and the outer radii of the two rolls are 3 in. and 5 in. respectively. The total
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length of the paper roll is the total area of the paper roll divided by the thickness. For a 3
in. radius roll with thickness T =.01 in. = 1/1200 ft., the result is

Length(3 in.) =
2πT 2( ) 100 +101+102 + .....+ 298 + 299( )

T
= 2πT( ) (299)(300)

2
−
(99)(100)

2





=

πT ((299)(300) − (99)(100)) ≈ 208.9159

Length(5 in.) =
2πT 2( ) 100 +101+102 + .....+ 498 + 499( )

T
= 2πT( ) (299)(300)

2
−
(99)(100)

2





=

πT ((499)(500) − (99)(100)) ≈ 627.2713


