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1 Introduction

Real materials are composed of a huge numbers of particles. For example, one
cubic centimeter of copper or one liter of water contains about 10%® atoms. The
enormity of the number of degrees of freedom prevents one from be able to either
determine or store the initial conditions let alone from solving the equations of
motion. Hence, a detailed microscopic description appears impossible. Nev-
ertheless, the equilibrium states of such materials can be defined by a relative
few macroscopic quantities, such as temperature, pressure or volume, etc. These
quantities reflect the collective properties of the constituents of the material but
still can be measured quite directly by macroscopic means. Likewise, certain
non-equilibrium states of the material can also described by a few easily mea-
sured quantities such as the voltage drop across or the electrical current flowing
through an electrical circuit element. Often simple “laws” emerge between the
macroscopic quantities that describe the properties of these complex systems.
The subject of Thermodynamics is devoted to revealing relations, sometimes
expected and sometimes unexpected, between the macroscopic quantities de-
scribing materials. Statistical Mechanics provides statistically based methods
which bridge the gap between the physics of the individual particles that com-
prise the materials and the simple thermodynamic “laws” that describe the
macroscopic properties of many-particle systems.

2 Thermodynamics

Thermodynamics is a branch of science that does not assert new fundamental
principles but, instead predicts universal relations between measurable quan-
tities that characterize macroscopic systems. Specifically, thermodynamics in-
volves the study of macroscopic coordinates which can be expressed in terms of
an extremely large number of microscopic degrees of freedom, and that describe
the macroscopic states of systems.

2.1 The Foundations of Thermodynamics

Macroscopic measurements have the attributes that they involve large numbers
of microscopic degrees of freedom (such at the positions and momenta of 10°
atoms) and, are measured over extremely long time scales compared with the
time scales describing the microscopic degrees of freedom (of the order 10~7
seconds). In general, for sufficiently large systems and when averaged over
sufficiently long time scales, the fluctuations of the macroscopic variables are
extremely small and so only the average values need be retained.

Typical macroscopic variables are the internal energy U, the number of par-
ticles N and the volume of the system V. The internal energy U is a precisely
defined quantity, which in the absence of interactions between the system and its
environment, is also a conserved quantity. For systems which contain particles
that do not undergo reactions, the number of particles N is also a well-defined



and conserved quantity. The volume V of a system can be measured, to within
reasonable accuracy. A measurement of the volume usually occurs over time-
scales that are long enough so that the long wavelength fluctuations of the
atomic positions of the systems boundaries or walls are averaged over.
Thermodynamic measurements are usual indirect, and usually involve ex-
ternally imposed constraints. Systems which are constrained such that they
cannot exchange energy, volume or number of particles with their environments
are said to be closed. Since one usually only measures changes in the internal
energy of a system AU, such measurements necessarily involve the system’s en-
vironment and the assumption that energy is conserved. Such measurements
can be performed by doing electrical or mechanical work on the system, and
preventing energy in the form of heat from flowing into or out of the system.
The absence of heat flow is ensured by utilizing boundaries which are imperme-
able to heat flow. Boundaries which are impermeable to heat flow are known
as adiabatic. Alternatively, one may infer the change in internal energy of a
system by putting it in contact with other systems that are monitored and that
have been calibrated so that their changes in internal energy can be found. For
any process, the increase in the internal energy AU can be expressed as the sum
of the heat absorbed by the system AQ and the work done on the system AW.

AU = AQ + AW (1)

where N is being held constant. This equation is a statement of the conservation
of energy. This basic conservation law in its various forms, forms an important
principle of thermodynamics.

2.2 Thermodynamic Equilibrium

Given a macroscopic system, experience shows that this system will evolve to
a state in which the macroscopic properties are determined by intrinsic factors
and not by any external influences that had been previously exerted on the sys-
tem. The final states, by definition, are independent of time and are known as
equilibrium states.

Postulate I

It is postulated that, in equilibrium, the macroscopic states of a system can be
characterized by a set of macroscopic variables. These variable may include vari-
ables taken from the set {U,V, N} together with any other macroscopic variables
that must be added to the set in order to describe the equilibrium state uniquely.

For example, in a ferromagnet this set may be extended by adding the total
magnetic moment M of the sample. Thus, for a ferromagnet one might specify
the equilibrium state by the macroscopic variables {U, N,V, M}. Another ex-
ample is given by the example of a gas containing r different species of atoms,
in which case the set of macroscopic variables should be extended to include



the number of atoms for each species {Ny, Na,...N,}. Due to the constraint
N =3%"_, N, the total number N of atoms should no longer be considered as
an independent variable.

The set of variables {U,V, N, M, ...} are extensive variables, since they scale
with the size of the system. This definition can be made more precise as follows:
Consider a homogeneous system that is in thermal equilibrium. The value of the
variable X for the equilibrated system is denoted by Xg. Then the variable X
is extensive if, when one considers the system as being composed of A identical
subsystems (A > 1), the value of the variable X for each subsystem is equal
to A1 X,. This definition assumes that the subsystems are sufficiently large so
that the fluctuations 6. X of X are negligibly small.

The extensive variables {U,V, N} that we have introduced, so far, all have
mechanical significance. There are extensive variables that only have thermo-
dynamic significance, and these variables can can also be used to characterize
equilibrium states. One such quantity is the entropy S.

Postulate I1

The entropy S is defined only for equilibrium states, and takes on a value
which is uniquely defined by the state. That is, S is a single-valued function
S(U,V,N) of the mechanical extensive variables. The entropy has the property
that it is mazimized in an equilibrium state, with respect to the variation of
hypothetical internal constraints. The constraint must be designed so that, in
the absence of the constraint, the system is free to select any one of a number
of states each of which may be realized in the presence of the constraint. If the
hypothetical internal constraint characterized by the variable x is imposed on the
system, then the entropy of the system depends on the constraint through x and
can be denoted by S(x). The maximum value of the entropy of the unconstrained
system S is given by the mazimum value of S(x) found when x is varied over
all possible values.

The function S(E,V, N) for a system is known as the fundamental relation,
since all conceivable thermodynamic information on the system can be obtained
from it.

Postulate III

The entropy of a system is not only an extensive variable, but also the en-
tropy of a composite system is the sum of the entropies of its components. The
entropy is a continuous, differentiable and a monotonically increasing function
of the entropy.

Postulate IIT ensures that when the absolute temperature T' is defined for
an equilibrium state, then T" will be positive.

Postulate IV



The entropy of a system vanishes in the limit where

(gg)v,zv o )

The above condition identifies a state for which the absolute temperature ap-
proaches the limiting value T — 0.

Postulate IV is equivalent to Nernst’s postulate that the entropy takes on
a universal value when T' — 0. The above form of the postulate defines the
universal value of the entropy to be zero.

2.3 The Conditions for Equilibrium

The above postulates allows the conditions for equilibrium to be expressed in
terms of the derivatives of the entropy. Since, entropy is an extensive quantity,
its derivatives with respect to other extensive quantities will be intensive. That
is, the derivatives are independent of the size of the system. The derivatives
will be used to define intensive thermodynamic variables.

First, we shall consider making use of the postulate that entropy is a single-
valued monotonic increasing function of energy. This implies that the equation

for the entropy
S = S(U,V,N) (3)

can be inverted to yield the energy as a function of entropy
U = U(SV,N) (4)

This inversion may be difficult to do if one is presented with a general expression
for the function, but if the function is presented graphically this is achieved
by simply interchanging the axes. Consider making infinitesimal changes of
the independent extensive variables (S, V, N), then the energy U(S,V, N) will
change by an amount given by

oU oU oU
- (& 7 & N
v <85>V,N a5+ (aV)s,N W (6N>s,vd )

The three quantities



are intensive since if a system in equilibrium is considered to divided into A
identical subsystems the values of these parameters for each of the subsystems
is the same as for the combined system. These three quantities define the energy
intensive parameters. A quantity is intensive if its value is independent of the
scale of the system, that is, its value is independent of the amount of matter
used in its measurement. The intensive quantities can be identified as follows:

By considering a process in which S and N are kept constant and V is
allowed to change, one has

dU = <8U) dv (7)
oV )sn
which, when considered in terms of mechanical work AW, leads to the identifi-
cation oU
el = —_ P 8
(&%), )

where P is the mechanical pressure. Likewise, when one considers a process in
which V and N are kept constant and S is allowed to change, one has

oUu
dU = [ — ds (9)
oS VN
which, when considered in terms of heat flow AQ, leads to the identification
U\ o (10)
oS VN
where T is the absolute temperature. Finally, on varying N, one has
au = a—U dN (11)
ON sV
which leads to the identification
ou
il = 12
<8N>&V 8 -

where p is the chemical potential. Thus, one obtains a relation between the
infinitesimal changes of the extensive variables

dU = TdS — PdV + pdN (13)
This is an expression of the conservation of energy.

Direct consideration of the entropy, leads to the identification of the entropic
intensive parameters. Consider making infinitesimal changes of the independent



extensive variables (U,V, N), then the entropy S(U,V,N) will change by an
amount given by

oS oS oS
dsS = | =—= Al + | == av + | == dN (14)
o )y n oV )un ON )y
The values of the coefficients of the infinitesimal quantities are the entropic
intensive parameters. By a suitable rearrangement of eqn(13) as

1 P "
= —dU —dV — = dN 1
ds Td +Td Td (15)

one finds that the entropic intensive variables are given by
05y _
o )y B
o5y _
oV )un B
oS
9y (16)
ON )y T

where T is the absolute temperature, P is the pressure and p is the chemical
potential.

Nln Hi=

The conditions for equilibrium can be obtained from Postulate II and Pos-
tulate III, that the entropy is maximized in equilibrium and is additive. We
shall consider a closed system composed of two systems in contact. System 1 is
described by the extensive parameters {U;, V1, N1} and system 2 is described
by {Us, Vo, No}. The total energy Ur = U; + Us, volume Vi = Vi + V4
and number of particles Ny = N; + N, are fixed. The total entropy of the
combined system St is given by

St = S1(Uy,Vi,N1) + S3(Usz, Vo, N3) (17)
and is a function of the variables {Uy, Vi, N1, Us, Vo, Na}.

Heat Flow and Temperature

If one allows energy to be exchanged between the two systems, keeping the
total energy Ur = U; + Us constant, then

851 852
dSt = <> dU; + () dU, (18)
oUy Vi 0Us Va.Na
Since Uy is kept constant, one has dU; = — dU,. Therefore, the change in the
total entropy is given by
)~ (),
dSt = — — | == dU 19
’ [ <8U1 Vi,Ny Uy Va,N2 ' ()
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Figure 1: An isolated system composed of two subsystems.

Furthermore, in equilibrium S7 is maximized with respect to the internal par-
titioning of the energy, so one has

dSt = 0 (20)
For this to be true, independent of the value of dU;, one must satisfy the con-
dition e e

(et).... ~ (&) @
oUv ) v, N, U2 ) v, n,

or, equivalently

1 1

= 22

T - T (22)

Thus, the condition that two systems, which can only exchange internal energy
by heat flow, are in thermal equilibrium is simply the condition that the tem-
peratures of the two systems must be equal, T} = Tb.

Let us consider the same closed system, but one in which the two bodies
are initially not in thermal contact with each other. Since the two systems are
isolated, they are in a state of equilibrium but may have different temperatures.
However, if the two systems are put in thermal contact, the adiabatic constraint
is removed and they will no longer be in thermal equilibrium. The system will
evolve, by exchanging energy in the form of heat, between the two systems
and a new equilibrium state will be established. The new equilibrium state,
obtained by removing the internal constraint will have a larger entropy. Hence,
for the two equilibrium states which differ infinitesimally in the partitioning of
the energy, dS+ > 0 and

)~ (62
dSt = — — [ == dU; > 0 23
g [ <6U1 Vi,Ny U, Va,Ny ' ( )

10
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This inequality shows that heat flows from systems with higher temperatures
to systems with lower temperatures, in agreement with expectations.

Work and Pressure

Consider a system composed of two sub-systems, which are in contact that
can exchange energy and also exchange volume. System 1 is described by the
extensive parameters {Uy, Vi, N1} and system 2 is described by {Uz, Va2, Na}.
The total energy is fixed as is the total volume. The energy and volumes of the
sub-systems satisfy

Ur = U + U,
Vp = Vi + W, (25)

and N; and N, are kept constant. For an equilibrium state, one can consider
constraints that result in different partitionings of the energy and volume. The
entropy of the total system is additive

Sr = S1(U, Vi, N1) + Sa(Ua, Va2, No) (26)

The infinitesimal change in the total entropy St found by making infinitesimal
changes in U; and V; is given by

asl> (552) } [ (a&) (332) }
dS- = et - == dU; + e | dv;
’ { <3U1 v \OU2 /)y | M) gon \OVa) w1

(27)
since dU; = — dUs and dV; = — dV5. Thus, on using the definitions for the
intensive parameters of the sub-systems, one has

1 1 P Py
dSt = | = — — | dU; — — — | dV} 28
T |:T1 Tz} 1+{T1 Tg] 1 (28)
Since the equilibrium state is that in which Sp is maximized with respect to the
variations dU; and dV7, one has dS7 = 0 which leads to the conditions
11
T
Py Py
e 29
T T (29)

Hence, the pressure and temperature of two the sub-systems are equal in the
equilibrium state.

Furthermore, if the systems are initially in their individual equilibrium states
but are not in equilibrium with each other, then they will ultimately come into

11



thermodynamic equilibrium with each other. If the temperatures of the two
subsystems are equal but the initial pressures of the two systems are not equal,
then the change in entropy that occurs is given by

d
dSTZ(Pl—P2>;/1>O (30)

Since dSt > 0, one finds that if P, > P, then dV; > 0. That is, the system
at higher pressure will expand and the system at lower pressure will contract.

Matter Flow and Chemical Potential

The above reasoning can be extended to a system with fixed total energy,
volume and number of particles, which is decomposed into two sub-systems
that exchange energy, volume and number of particles. Since dU; = — dUs,
dVy, = — dVo and dN; = — dN,, one finds that an infinitesimal change in the
extensive variables yields to an infinitesimal change in the total entropy, which
is given by

a8 a5
s = [ (5,0~ (08) 0 ) 20
1/ vi,Ny 2/ V,,N,
NN
i Uy,N1 Vs Uz,N2

051 > ( 055 ) 1
oL - (=2 AN
|: < 6N1 U1 7V1 aNQ U2 7V2 - '

+
1 1 Py Py ] 1 2
= | = - = |d Lo 220 gy — |22 - 22N
{Tl Tz]UlJr[Tl TQ_V1 {Tl T !

(31)

Since the total entropy is maximized in equilibrium with respect to the internal
constrains, one has dSt = 0 which for equilibrium in the presence of a particle
exchange process yields the condition

M1 M2
- = 2

On the other hand, if the systems initially have chemical potentials that differ
infinitesimally from each other, then

dN-
dSTZ(Mz—Ml)Tl>0 (33)

Hence, if gy > pg then dN7; > 0. Therefore, particles flow from regions of
higher chemical potential to regions of lower chemical potential.

12



Thus, two systems which are allowed to exchange energy, volume and parti-
cles have to satisfy the conditions

T = Ty
P = B
pro= p2 (34)

if they are in equilibrium.

2.4 The Equations of State

The fundamental relation S(U,V, N) or alternately U(S,V, N) provides a com-
plete thermodynamic description of a system. From the fundamental relation
one can derive three equations of state. The expressions for the intensive pa-
rameters are equations of state

T = T(S,V,N)
P = P(S,V,N)
po= p(S,V,N) (35)

These particular equations relate the intensive parameters to the independent
extensive parameters. If all three equations of state are not known, then one
has an incomplete thermodynamic description of the system.

If one knows all three equations of state, one can construct the fundamental
relation and, hence, one has a complete thermodynamic description of the sys-
tem. This can be seen by considering the extensive nature of the fundamental
relation and it behavior under a change of scale by s. The fundamental equation
is homogeneous and is of first order so

U(sS,sV,SN) = s U(S,V,N) (36)

Differentiating the above equation w.r.t s yields
8l @ n oUu dsV n oUu dsN B
0sS SV.sN ds sV $S.5N ds OsN 5.5V ds o
N =

9sS sV,sN sV sS,sN OsN sS,sV

which, on setting s = 1, yields the Euler Equation

oU oU oU
(as)m St (av)w v (aN)S,V =t 87

which, when expressed in terms of the intensive parameters, becomes

TS — PV +puN=1U (38)

13

U(S,V,N)

U(S,V.N)



In the entropy representation, one finds the Euler equation in the form

1 p "
T U + T Vv T N =S8 (39)
which has exactly the same content as the Euler equation found from the energy
representation. From either of these equations it follows that knowledge of the
three equations of state can be used to find the fundamental relation.

The three intensive parameters cannot be used as a set of independent vari-
ables. This can be seen by considering the infinitesimal variations of the FEuler
Equation

dU = TdS +Sdl' — PdV —V dP + pdN + N du (40)
and comparing it with the form of the first law of thermodynamics
dU = TdS — PdV + udN (41)

This leads to the discovery that the infinitesimal changes in the intensive pa-
rameters are related by the equation

0=S8dl — VdP + Ndu (42)

which is known as the Gibbs-Duhem relation. Thus, for a one component sys-
tem, there are only two independent intensive parameters, i.e. there are only
two thermodynamic degrees of freedom.

2.5 Thermodynamic Processes

Not all processes, that conserve energy, represent real physical processes. Since
if the system is initially in a constrained equilibrium state, and an internal
constraint is removed, then the final equilibrium state that is established must
have a higher entropy.

A quasi static processes, is one that proceeds sufficiently slowly that its tra-
jectory in thermodynamic phase space can can be approximated by a dense
set of equilibrium states. Thus, at each macroscopic equilibrium state one
can define an entropy S; = S(U;,V;,N;,X,). The quasi-static process is
a temporal succession of equilibriums states, connected by non-equilibrium
states. Since, for any specific substance, an equilibrium state can be char-
acterized by {U,V, N, X}, a state can be represented by a point on a hyper-
surface S = S(U,V, N, X) in thermodynamic configuration space. The cuts of
the hyper-surface at constant U are concave. The quasi-static processes trace
out an almost continuous line on the hyper-surface. Since individual quasi-
static processes are defined by sequence of equilibrium states connected by non-
equilibrium states, the entropy cannot decrease along any part of the sequence
if it is to represent a possible process, therefore, S;11 > ;. Thus, an allowed
quasi-static process must follow a path on the hyper-surface which never has a
segment on which S decreases. A reversible process is an allowed quasi-static

14



process in which the overall entropy difference becomes infinitesimally small.
Hence, a reversible process must proceed along a contour of the hyper-surface
which has constant entropy. Therefore, reversible process occur on a constant
entropy cut of the hyper-surface. The constant entropy cuts of the hyper-surface
are convex.

Adiabatic Expansion of Electromagnetic Radiation in a Cavity

Consider a spherical cavity of radius R which contains electromagnetic ra-
diation. The radius of the sphere expands slowly at a rate given by ‘fi—}f. The
spectral component of wavelength A contained in the cavity will be changed
by the expansion. The change occurs through a change of wavelength dA that
occurs at reflection with the moving boundary. Since the velocity ‘ﬁl—lf is much
smaller than the speed of light C, one only needs to work to keep terms first-

order in the velocity. A single reflection through an angle 6 produces a Doppler

Figure 2: Electromagnetic radiation being reflected through an angle € from the
walls of a slowly expanding spherical electromagnetic cavity.

shift of the radiation by an amount given by

A dR
d\ = 2 E E cos (43)
The ray travels a distance 2 R cos between successive reflections. Hence, the

time between successive reflections is given by

c
—_— 44
2 R cosf (44)
Thus, the rate at which the wavelength changes is given by
dA A dR
=z - 2= 4
dt R dt (45)

15



On integrating the above equation, one finds that

A
— = Constant 46
o (46)
Therefore, the wavelength scales with the radius. Quantum mechanically, each
state evolves adiabatically so no transitions occur. The wavelength scales with
the radius such as to match the boundary condition.

The equation of state for the electromagnetic radiation is

1U
P = IV (47)
so for adiabatic expansion (with © =0 and dN = 0), one has
dU = — P dV (48)
which leads to dU 1 v »
u - 3V
Hence, for adiabatic expansion, one has
U V3 = Constant (50)
Putting this together with Stefan’s law
U=ocVT* (51)
one finds that
o T* V3 = Constant (52)

or RT = const. Thus, the temperature of the cavity decreases inversely with
the radius of the cavity as R increases. Furthermore, since A scales with R, one
finds that the density of each spectral component must scales so that A T is
constant.

2.6 Thermodynamic Potentials

The Postulate II is the entropy maximum principle which can be restated as
the entropy of a system is maximized in equilibrium (at fixed total energy) with
respect to variations of an internal parameter. This is a consequence of the
concave geometry of the constant energy cuts of the hyper-surface in thermo-
dynamic configuration space. We have formulated thermodynamics in terms of
entropy and the extensive parameters. Thermodynamics has an equivalent for-
mulation in terms of the energy and the extensive parameters. In this alternate
formulation, the entropy maximum principle is replaced by the energy minimum
principle. The energy minimum principle states that the energy is minimized
in an equilibrium state with respect to variations of an internal parameter (for
fixed values of the entropy). This is a consequence of the convex nature of

16



the constant entropy cuts of the hyper-surface in thermodynamic configuration
space. The statements of the entropy maximum and the energy minimum prin-
ciples are equivalent as can be seen from the following mathematical proof.

Equivalence of the Entropy Maximum and Energy Minimum Princi-
ples

The entropy maximum principle can be stated as
oS
sl = 0
(%),
0%S
( 8X2> , < 0 (53)

where X is an internal parameter. From the chain rule, it immediately follows
that the energy is an extremum in equilibrium since

= 0 (54)

Hence, it follows from the entropy maximum principle that the energy is an
extremum.
The energy is extremum is a minimum, this follows by re-writing the second

derivative of S as 26 5 o5
(o2), = Lox (%), ] 5
0X? ), 0X \oX /), 1y

and designating the internal derivative by A, i.e. let

oS
A= (22
(%), )
so the entropy maximum principle requires that
%S ) ( 0A )
— = | == < 0 (57)
(%), = (%),

If we consider A to be a function of (X,U) instead of (X,S5), i.e. A(X,S) =
A(X,S(X,U)), then

<§§>U B <§§)S * (gﬁ)x (3}?)(} (58)
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where the last term vanishes because of the entropy maximum principle. Hence,
0A 0A
— = | == (59)
0xX ), 0X )¢

), = Lox (),
= | = | == < 0 (60)
<8X ). 0X \0X /, |s
Using the chain rule, the innermost partial derivative can be re-written as
oS ou as
(o), = (%), (), o
Hence, on substituting this into the maximum principle, one has
(5), - ~Lax (30). (&), ]
X2/, 0X \0X /)4, \0U /J« |¢
L (PUN (0SY (U [0 (05) ] o
N 0X2 )4 \0U) 0X )g | 0X \OU )« |¢

The last term vanishes since we have shown that the energy satisfies an ex-
tremum principle. Therefore, one has

9*s\ _ (&U\ [0S
axz), axz ) \au )

_ _ (v
- 1T \ax?),

Thus, we have

< 0 (63)
Thus, since T > 0, we have
0*U
— 4
(GXQ)S >0 (64)

so the energy satisfies the minimum principle if the entropy satisfies the maxi-
mum principle. The proof also shows that the energy minimum principle implies
the entropy maximum principle, so the two principles are equivalent.

Sometimes it is more convenient to work with the intensive parameters rather
than the extensive parameters. The intensive parameters are defined in terms
of the partial derivatives of the fundamental relation S(U, V, N) or equivalently
U(S,V, N). Taking partial derivatives usually leads to a loss of information, in
the sense that a function can only be re-created from its derivative by integra-
tion up to a constant (or more precisely a function) of integration. Therefore, to
avoid loss of information, one changes extensive variables to intensive variables
by performing Legendre transformations.
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Legendre Transformations

The Legendre transformation relies on the property of concavity of S(E, V, N)
and is introduced so that one can work with a set of more convenient variables,
such as T instead of S or P instead of V. This amounts to transforming from
an extensive parameter to its conjugate intensive parameter which is introduced
as a derivative.

The Legendre transformation is introduced such that the change of variables
is easily invertable. Instead of considering the convex function y = y(z) ! being
given by the ordered pair (z,y) for each x, one can equally describe the curve
by an envelope of a family of tangents to the curve. The tangent is a straight
line

y =pz + Y(p) (65)

with slope p and has a y-axis intercept denoted by ¥ (p). Due to the property
of convexity, for each value of p there is a unique tangent to the curve. Hence,
we have replaced the sets of pairs (z,y) with a set of pairs (p,v). The set of
pairs (p, ) describes the same curve and has the same information as the set
of pairs (z,y).

v(p)| [/

X

Figure 3: A concave function y(x) is specified by the envelope of a family of
tangents with slopes p and y-axis intercepts 1 (p).

Given a curve in the form of y = y(x), one can find ¥ (p) by taking the
derivative to yield
_

In (66)

IThe convexity and concavity of a function implies that the second derivative of the function
has a specific sign. All that we shall require is that the second derivative of the function does
not go to zero in the interval of z that is under consideration.
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which specifies the slope p of the tangent line at the tangent point x. The above
equation can be inverted to yield = z(p) and, hence, one can obtain y(p)
from y = y(x(p)). Then, the y-axis intercept of the tangent can be found as a
function of p from

Y(p) = y(p) — pz(p) (67)

The function ¥ (p) is the Legendre transform of y(z). The quantity ¥ (p) contains
exactly the same information as y(x) but depends on the variable p instead of
the x variable.

The inverse transform can be found by constructing (x,y) from (p,). First
the point x at which a tangent with slope p touches the curve is found. Second,
after inverting x(p) to yield p(x), one finds y(x) from

y = p(x) + ¥(p(x)) (68)

The point of tangency x is found by considering a tangent with slope p and a
neighboring tangent with slope p 4+ dp. The tangent is described by

y =px + ¥(p) (69)

which is valid everywhere on the tangent including the point of tangency which
we denote by (z,y). The neighboring tangent which has an infinitesimally differ-
ent slope p + dp is described by a similar equation, but has a point of tangency
(x + dz,y + dy) that differs infinitesimally from (z,y). To first-order in the
infinitesimals, one finds the coordinates describing the separation of the two
points of tangency are related by
dy:pdx—&—(x—&-@)dp (70)
dp
However, since the two neighboring points of tangency lie on the same curve
and because the slope of the tangent is p, one has

dy = pdx (71)

Thus, we find that the xz-coordinate of the point of tangency is determined by
the equation

dip
= — — 72
v = - (72
The abscissa is given by
y@) = ¢ + ap (73)

in which p has been expressed in terms of x. This is the inverse Legendre
transformation.

The inverse Legendre transformation should be compared to the Legendre
transformation

Yp) = y —xp (74)



in which z has been expressed in terms of p via inversion of

dy

T dx (75)

Thus, the relation between (z,y) and (p,) is, apart from a minus sign, sym-
metrical between the Legendre and inverse Legendre transformations.

The Helmholtz Free-Energy F

The Helmholtz Free-Energy is denoted by F' is a function of the variables
(T,V,N) and is obtained by performing a Legendre transform on the energy
U(S,V,N). The process involves defining the temperature 7' via the derivative

and then defining a quantity F' via
F=U-TS (77)

The definition of T is used to express S as a function of T'. Then eliminating
S from the two terms in the above expression for F', yields the Helmholtz Free-
Energy F(T,V,N).
One can show that F' does not depend on S by considering an infinitesimal
transformation
dF = dU — SdT — T dS (78)

and then by substituting the expression
dU = T dS— PdV + pdN (79)

obtained from U(S,V, N) and the definition of the energetic extensive parame-
ters. Substitution of the expression for dU into dF yields

dF = —SdTl — PdV + pdN (80)

which shows that F' only varies with 7', V and N. It does not vary as dS is
varied. Thus F is a function of the variables (T, V, N). Furthermore, we see
that S can be found from F' as a derivative

(),

The Helmholtz Free-Energy has the interpretation that it represents the
work done on the system in a process carried out at constant T' (and N). This
can be seen from the above infinitesimal form of dF since, under the condition
that dT° = 0, one has

dFF = — PdV (82)

21



The inverse transform is given found by starting from F(7,V,N) and ex-

pressing S as
oF
5o (%) -
o)y y

This equation is used to express T as a function of S, i.e. T = T(S). The
quantity U is formed via
U=F+TS (84)

Elimination of T in favour of S in both terms leads to U(S,V, N) the energy.
The Enthalpy H

The enthalpy is denoted by H and is a function of the variables (S, P, N). It is
obtained by a Legendre transform on U(S, V, N) which eliminates the extensive
variable V' and introduces the intensive variable P. The pressure P is defined

by the equation
ou
P = (= 85
(7)., =

and then one forms the quantity H via
H=U+PV (86)

which on inverting the equation expressing pressure as a function of V' and
eliminating V' from H, one obtains the enthalpy H(S, P, N).

The enthalpy is a function of (S, P, N) as can be seen directly from the
infinitesimal variation of H. Since

dH = dU + VdP + PdV (87)
and as

dU = TdS — PdV + pdN (88)
one finds that

dH = TdS + VdP + pdN (89)

which shows that H only varies when S, P and N are varied. The above
infinitesimal relation also shows that

V= (g;[)sw 0

The enthalpy has the interpretation that it represents the heat flowing into
a system in a process at constant pressure (and constant N). This can be seen
from the expression for the infinitesimal change in H when dP = 0

A1 = T dS (91)

which is recognized as an expression for the heat flow into the system.
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The inverse Legendre transform of H(S, P, N) is U(S,V, N) and is performed

by using the relation
oH
= | =5 2
v = (), 2

to express P as a function of V. On forming U via

U=H-PV (93)
and eliminating P from U, one has the energy U(S,V, N).
The Gibbs Free-Energy G

The Gibbs Free-Energy G(T, P, N) is formed by making two Legendre trans-
formation on U(S,V, N) eliminating the extensive variables S and V' and intro-
ducing their conjugate intensive parameters T and P. The process starts with
U(Sv, N) and defines the two intensive parameters T and — P via

oU
T = (=
(8S)MN

- (gl‘i>s,1\f oy

The quantity G is formed via
G=U-TS+4+ PV (95)

which on eliminating S and V' leads to the Gibbs Free-Energy G(T, P, N).
On performing infinitesimal variations of S, T, V', P and N, one finds the
infinitesimal change in G is given by

dG = dU — TdS — SdT' + PdV + V dP (96)
which on eliminating dU by using the equation
dU = TdS — PdV + pdN (97)

leads to
dG = - SdI' + VdP + pdN (98)
This confirms that the Gibbs Free-Energy is a function of T', P and N, G(T, P, N).

It also shows that
%
or P,N
vV = (8(?) (99)
oP TN
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The inverse (double) Legendre transform of G(T', P, N) yields U(S, V, N) and
is performed by expressing the extensive parameters as

aG
T ) p.x

vV o= (gg)m (100)

and using these to express T in terms of S and P in terms of V. The energy is
formed via

-5

U=G+TS—-PV (101)
and eliminating 7" and P in favour of S and V, to obtain S(U,V, N).

The Grand-Canonical Potential )

The Grand-Canonical Potential Q(7,V, u) is a function of 7', V' and p. It
is obtained by making a double Legendre transform on U(S,V, N) which elim-
inates S and NV and replaces them by the intensive parameters T' and p. This
thermodynamic potential is frequently used in Statistical Mechanics when work-
ing with the Grand-Canonical Ensemble, in which the energy and number of
particles are allowed to vary as they are exchanged with a thermal and particle
reservoir which has a fixed T and a fixed pu.

The double Legendre transformation involves the two intensive parameters

defined by
ou
T = |—
( as ) VN

ou
= — 102
8 (aN) sy o)
The quantity € is formed as

Q=U-TS - uN (103)

elimination of the extensive variables S and N leads to Q(T,V, i), the Grand-
Canonical Potential.
The infinitesimal change in €2 is given by

dQ) = dU — TdS — SdT — pdN — N du (104)
which, on substituting for dU, leads to
dQ) = — SdT' — PdV — N du (105)

The above equation confirms that €2 only depends on the variables T', V' and pu.
Furthermore, this relation also shows that

o0
- S B (W>V,/L
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The inverse (double) transformation uses the two relations

o0
—5 = (aj_‘>V,p.

to express T and p in terms of S and N. The quantity U is formed via
U=Q+ TS+ uN (108)

which on eliminating 7" and p leads to the energy as a function of S, V and N,
ie. U(S,V,N).

As examples of the use of thermodynamic potentials, we shall consider the
processes of Joule Free Expansion and the Joule-Thomson Throttling Process.

Joule Free Expansion

Consider a closed system which is composed of two chambers connected by
a valve. Initially, one chamber is filled with gas and the second chamber is
evacuated. The valve connecting the two chambers is opened so that the gas
can expand into the vacuum.

The expansion process occurs at constant energy, since no heat flows into
the system and no work is done in expanding into a vacuum. Hence, the process
occurs at constant U.

Due to the expansion the volume of the gas changes by an amount AV and,
therefore, one might expect that the temperature of the gas may change by an
amount AT. For a sufficiently small change in volume AV, one expects that
AT and AV are related by

oT
AT = | — A 1
(8V>UN v (109)

where U is being kept constant.
On applying the chain rule, one finds

or= [ (ar),, (), Jov oo

However, from the expression for the infinitesimal change in U

dU = TdS — PdV (111)

25



one finds that the numerator can be expressed as

U _r (% - P (112)
oV TN oV TN
whereas the denominator is identified as
oU )
— = Cy (113)
(57), .

which is the specific heat at constant volume.

The quantity proportional to
a8
— (114)
oV T.N

is not expressed in terms of directly measurable quantities. It can be expressed
as a derivative of pressure by using a Maxwell relation. We note that the
quantity should be considered as a function of V', which is being varied and is
also a function of T which is being held constant. Processes which are described
in terms of the variables V and T can be described by the Helmholtz Free-Energy
F(T,V,N), for which

dF = — SdT — PdV + pdN (115)

The Helmholtz Free-Energy is an analytic function of 7" and V', therefore, it
satisfies the Cauchy-Riemann condition

0*F 0’F
—_— = | == (116)
ovorT ) oTov ]
which on using the infinitesimal form of dF' to identify the inner partial differ-
entials of F', yields the Maxwell relation

@), o

Hence, the temperature change and volume change that occur in Joule Free

Expansion are related via
oP
T (aT> P
[ V,N

AT = —
Cv

] AV (118)

which can be evaluated with the knowledge of the equation of state.
Since the expansion occurs at constant energy, one finds from

dU = TdS — PdV = 0 (119)
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that o9 P
() ¢ o0

ov UN T
Thus, the entropy increases on expansion, as it should for an irreversible process.

Joule-Thomson Throttling Process

The Joule-Thomson throttling process involves the constant flow of fluid
through a porus plug. The flowing fluid is adiabatically insulated so that heat
cannot flow into or out of the fluid. The temperature and pressure of the fluid
on either side of the porus plug are uniform but are not equal

£ T (121)
P # P (122)

Thus, a pressure drop AP defined by

AP = P — P, (123)
and temperature drop AT defined by

AT =Ty — Ty (124)

occur across the porus plug.

Pl'Tl PZ'TZ

Figure 4: A fluid is confined in a cylindrical tube and two pistons (solid black
objects). The pistons force the fluid through the porus plug (orange hatched
region). In this process the pressure and temperature on each side of the plug
are kept constant but not equal.

The Joule-Thomson process is a process for which the enthalpy H is constant.
This can be seen by considering a fixed mass of fluid as it flows through the
plug. The pump that generates the pressure difference can, hypothetically, be
replaced by two pistons. Consider the volume of fluid contained in the volume
V1 between the piston and the plug, as having internal energy U;. When this
volume of gas has been pushed through the plug, the piston has performed an
amount of work P; V7. The piston on the other side of the porus plug performs
a negative amount of work equal to — P>V, when the gas occupies the volume
V5 between the piston and the plug. The change in internal energy is given by

Uy — U =P Vi — P, Va (125)
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This implies that
U+ PPVE = U + P, Vg (126)

or the enthalpy H of the fluid is constant in the throttling process.
For sufficiently small changes in pressure, the temperature drop is related to

the pressure drop by
oT

AT = <8P>H AP (127)

where the enthalpy H is being kept constant.
On applying the chain rule, one finds

=), @), e o

However, from the expression for the infinitesimal change in H
dH = TdS + V dP (129)

one finds that the numerator can be expressed as

oH oS
— =T || =— Vv 130
<8P>T,N (aP)T,N i 150
whereas the denominator is identified as
87—[)
I g, (131)
< or PN

which is the specific heat at constant pressure.

The quantity proportional to
oS
— (132)
OP ) r n

is not expressed in terms of directly measurable quantities. It can be expressed
as a derivative of volume by using a Maxwell relation. We note that the quantity
should be considered as a function of P, which is being varied and is also a
function of T" which is being held constant. Processes which are described in
terms of the variables P and T can be described by the Gibbs Free-Energy
G(T, P, N), for which

dG = —SdT + V dP + pdN (133)

The Gibbs Free-Energy is an analytic function of T' and P, therefore, it satisfies
the Cauchy-Riemann condition

2 2
*G N\ _ (oG 134
aPaT ) aTdP )
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which on using the infinitesimal form of dG to identify the inner partial differ-
entials of G, yields the Maxwell relation

S CO N

Hence, the pressure change and volume change that occur in the Joule-Thomson

process are related via
v
T <3T> v
[ P,N

AT =
Cp

} AP (136)

which can be evaluated with the knowledge of the equation of state.
Since the expansion occurs at constant enthalpy, one finds from

dH = T dS + VdP = 0 (137)

08 v
(5p),, = 7 159

Thus, the entropy increases for the irreversible Joule-Thomson process only if
the pressure drops across the porus plug.

that

The description of the above processes used two of the Maxwell’s relations.
We shall give a fuller description of these relations below:

Maxwell Relations

The Maxwell Relations are statements about the analyticity of the ther-
modynamic potentials. The Maxwell relations are expressed in the form of an
equality between the mixed second derivatives when taken in opposite order. If
B(z,y) is a thermodynamic potential which depends on the independent vari-
ables x and y, then analyticity implies that

0’B 0°B
= (139)
0x0dy Oyox
The Maxwell relations for the four thermodynamic potentials which we have
considered are described below:

The Internal Energy U(S,V,N)

Since the infinitesimal change in the internal energy is written as

dU = TdS — PdV + pdN (140)

29



one has the three Maxwell relations

@) = ()
(). = (39,
(

oP B o
()., = (%), iy

The Helmholtz Free-Energy F(T,V,N)

Since the infinitesimal change in the Helmholtz Free-Energy is written as
dF = —SdT — PdV 4+ pdN (142)

one finds the relations

8V)TN (149)

The Enthalpy H(S, P,N)

Since the infinitesimal change in the enthalpy is written as
dH = TdS + VdP + pdN (144)

one has

oV ou
- = = 14
<8N>S,P <6P)SN (145)
The Gibbs Free-Energy G(T, P,N)
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Since the infinitesimal change in the Gibbs Free-Energy is written as
dG = —SdI' + VdP + pdN (146)

one has

()., = G5, 17

The Grand-Canonical Potential Q(T,V, u)

Since the infinitesimal change in the Grand-Canonical Potential is written
as
dQY = — SdIl' — PdV — N du (148)

one finds the three Maxwell relations
@, -
°1% T oT Vi
a8 _ ON
(&) = (),

@),

The Nernst Postulate

The Nernst postulate states that as T — 0, then S — 0. This postulate
may not be universally valid. It can be motivated by noting that the specific
heat Cy is positive, which implies that the internal energy U is a monotonically
increasing function of temperature T. Conversely, if T' decreases then U should
decrease monotonically. Therefore, U should approach its smallest value as
T — 0 and the system should be in a quantum mechanical ground state. The
ground state is unique if it is non-degenerate or, in the case where the ground
state has a spontaneously broken symmetry, may have the degeneracy associated
with the broken symmetry. In either case, since the entropy is proportional to
the logarithm of the degeneracy, one expects the entropy at T = 0 to be a
minimum. For degeneracies which are not exponential in the size of the system,
the entropy is not extensive and, therefore, can be considered as being effectively
zero in the thermodynamic limit NV — 0. This assumption might not be valid
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for the case of highly frustrated systems such as ice or spin glasses, since these
systems remain highly degenerate as T' — 0.

Classically, the entropy can only be defined up to an additive constant. Since
classical states are continuous and, therefore, the “number of states” depends
on the choice of the measure. Because of this, the classical version of Nernst’s
postulate states that the entropy reaches a universal minimum value in the
limit T"— 0. Therefore, Walther Nernst’s initial 1906 formulation was that the
T = 0 isotherm is also an isentrope?. Max Planck’s 1911 restatement of the
postulate gave a value of zero to the entropy at T = 0. This restatement is
frequently attributed to Simon 3.

Nernst’s postulate has a number of consequences. For example, the specific
heat vanishes as T — 0. This follows if S approaches zero with a finite
derivative, then

oS
Co, =T (3T)V — 0 as T — 0 (150)
Likewise,
C’—Ta—s — 0 as T — 0 (151)
=2 \er),
The thermal expansion coefficient also vanishes as T' — 0, as the Maxwell
relation 5V 58
s = - (= (152)
or' ) pn OP )1 n
shows that ov
— -0 as T — 0 (153)
) p N

Hence the coefficient of volume expansion « defined by
1
a =3 <g¥>PN — 0 as T — 0 (154)

vanishes as T — 0.
Likewise, from the Maxwell relation

@@,

oP
<6T>VN — 0 as T — 0 (156)

one discovers that

2W. Nernst, “Uber die Beziehung zwischen Warmeentwicklung und maximaler Arbeit bei
kondensierten Systemen”, Ber. Kgl. Pr. Akad. Wiss. 52, 933-940, (1906).

3F. Simon and F. Lange, “Zur Frage die Entropie amorpher Substanzen”, Zeit. fiir Physik,
38, 227-236 (1926)
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In the limit T' — 0, the difference between the specific heats at constant pressure
and constant volume vanish with a higher power of T than the power of T with
which the specific heats vanish.

From the above formula, one realizes that the classical ideal gas does not
satisfy Nernst’s postulate. However, quantum mechanical ideal gasses do satisfy
Nernst’s postulate.

Another consequence of the Nernst postulate is that the absolute zero tem-
perature cannot be attained by any means. More precisely, it is impossible by
any procedure, no matter how idealized, to reduce the temperature of any sys-
tem to the absolute zero in a finite number of operations. First we shall consider
the final step of a finite process. Cooling a substance below a bath tempera-
ture usually requires an adiabatic stage, since otherwise heat would leak from
the bath to the system and thereby increase its temperature. Suppose that, by
varying a parameter X from X; to X5, one adiabatically cools a system from a
finite temperature Ts to a final temperature 7. Then the adiabaticity condition
requires

S(T1, X1) = S(Tz, Xz) (157)

Furthermore, if we reduce the system’s final temperature 75 to zero, the right-
hand side vanishes according to Simon’s statement of Nernst’s principle. Thus,
we require

STy, X1) =0 (158)
which is impossible for real systems for which S is expected to only approach
its minimal value in the limit T — 0. Hence, this suggests that the final stages
of the process must involve infinitesimal temperature differences. Such a pro-
cesses is illustrated by a sequence of processes composed of adiabatic expansions
between a high pressure P; and a low pressure P» followed by isothermal con-
tractions between P, and P;. The internal energy and temperature is lowered
during the adiabatic expansion stages. The curves of entropy versus temper-

4

s P,

Py

Figure 5: The unattainability of 7" = 0 is illustrated by a substance which
undergoes a series of stages composed of an adiabatic expansion followed by
an isothermal compression. An infinite number of stages would be required to
reach T'= 0.

ature for the different pressures must approach each other as 7' — 0. Hence,
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both the magnitudes of temperature changes and entropy changes decrease in
the successive stages as T approaches zero. Therefore, absolute zero can only be
attained for this sequence in the limit of an infinite number of stages. For these
two example, the unattainability of absolute zero can simply be understood by
noting that the adiabat becomes the isotherm as T' — 0.

Extremum Principles for Thermodynamic Potentials

The Energy Minimum Principle states that the equilibrium value of any
unconstrained internal parameter X minimizes U(S,V, X) for a fixed value of
S. It can be stated in terms of the first-order and second-order infinitesimal
changes

dU =
U > 0 (159)

where S is held constant.

This principle can be formulated in terms of a composite system which is
composed of a system and a reservoir, for which the total energy and entropy
are defined by

Ur = U + Ug
St = S + Sy (160)

The energy minimum principle applied to the combined system becomes

dU + dUr = 0
(U +Ugr) > 0 (161)
wherej since St is constant, dSg = — dS. We also note that, if the reservoir
is sufficiently larger than the system one may set d?Ur = 0, in which case the
second line simplifies to
U > 0 (162)

For a system in thermal contact with a reservoir at constant temperature T,
the infinitesimal change in internal energy of the reservoir is given by the heat
it absorbs

dUr = T dSp = —TdS (163)

Hence, one has

dU + dUg = 0
dU — TdS = 0 (164)
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which, if T" is being held constant, leads to
AU -TS)=0
dFF = 0 (165)
where F' is defined as
F=U-TS8 (166)

Hence, the quantity F satisfies an extremum principle for processes at constant
T. For a sufficiently large reservoir, one may set d?Ur =~ 0. This can be seen
by examining the second-order change due to a fluctuation, say of the entropy.

For this particular case,
02U
U = (G5 @sw?

0SR?
(o UR) 9)2

T 2
o (49) (167)

U
PU = |5
(a )
T
= = 168
- (168)
Therefore, if Cr > C, one has d?U > d?Ug. Applying this type of consid-
eration to the fluctuations of any set of extensive variables leads to the same
conclusion. The extremum principle is a minimum principle since

Likewise,

U = d*(U -TS8S)
> 0 (169)

where the first line holds, since T is being held constant and since S is an
independent variable, so the last term can only contribute to a first-order change
T dS. Thus, one has the condition

2F > 0 (170)

If F is reinterpreted in terms of the Helmholtz Free-Energy F(T,V,N), this
leads to the Helmholtz Minimum Principle. The Helmholtz Minimum Principle
states that, for a system being held at constant temperature 7', the equilibrium
value of unconstrained internal parameter minimizes F (T, V, X).

For a system in thermal contact with a pressure reservoir of pressure P, the
infinitesimal change in internal energy of the reservoir is equal to the work done
on it

dUr = — PdVg = PdV (171)
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Hence, one has

dU + dUp = 0
AU + PdV = 0 (172)

which, if P is being held constant, leads to

AU + PV) =
dH = 0 (173)
where H is defined as
H =U+4+ PV (174)

Hence, the quantity H satisfies an extremum principle for process at constant
P. The extremum principle is a minimum principle since

U = d*(U + PV)
> 0 (175)

where the first line holds since P is being held constant and V' is an independent
variable. Thus, one has the condition

EH >0 (176)

The Enthalpy Minimum Principle states that, for a system being held at con-
stant pressure P, the equilibrium value of unconstrained internal parameter
minimizes H(S, P, X).

For a system in thermal contact with a reservoir at constant temperature T'
and constant pressure P

dUrp = T dSp — PdVgp = —TdS + PdV (177)
Hence, one has

dU + dUp = 0
dU — TdS + PdV = 0 (178)

which, if 7" and P are being held constant, leads to
AU -TS+ PV)=0
dG =0 (179)

where G is defined as
G=U-TS+ PV (180)

Hence, the quantity G satisfies an extremum principle for process at constant
T and P. The extremum principle is a minimum principle since

U = 44U -TS + PV)
> 0 (181)
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where the first line holds since T' and P are being held constant and since S
and V are independent variables. Thus, one has the condition

d’G > 0 (182)

The Gibbs Minimum Principle states that, for a system being held at constant
temperature T and pressure P, the equilibrium value of unconstrained internal
parameter minimizes G(T, P, X).

A perhaps clearer, but less general, derivation of the minimum principle for
thermodynamic potentials can be found directly from the entropy maximum
principle. As an example of a minimum principle for a thermodynamic poten-
tial, consider a closed system composed of a system and reservoir which are in
thermal contact. The entropy of the combined system St is given by

Sr(U,V,N : Uy, Vi, Ny) = S(U,V,N) + Sp(Ur—U,Vp—V, Ny — N) (183)

We shall consider the Taylor expansion of Sy in powers of U, and we shall
assume that the reservoir is much bigger than the system so that the terms
involving higher-order derivatives are negligibly small

U

Sr(U,V,N :Ur,Vr,Nr) = S(UV,N) + Sr(Ur,Vr —=V,Nr —N) — — + ...

TR

= SR(UT,VT*V,NTfN) + <
Tr

where terms of the order N2/Nx have been neglected. We note that the term in
the round parenthesis is of order N and contains all the information about the
subsystem of interest. The entropy maximum principle applied to the combined
system then implies that, in equilibrium, one must have

oS 1
() L -
o )y n Tr
where Tg is the temperature of the thermal reservoir defined by the partial
derivative ang(UT). Also one has
T
%S )
A B (186)
(8U ? V,N

Now consider the convex generalized thermodynamic function F(U : Tg, V, N),
previously identified in the expression for St, which is defined by

F(U:Tgr,V,N) = U — Tr S(U,V,N) (187)

for some constant Tk. The first two derivatives of F w.r.t. U are given by

oF a8
(av)m = T (av)m (15%)
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and

O2F 928
<am>w = T (am)w (189)

which shows that, if the parameter Tr is identified with the temperature T" of
the system, then F' satisfies a minimum principle and that the minimum value

of F is given by the Helmholtz Free-Energy F (T,V,N).

2.7 Thermodynamic Stability

The condition of thermodynamic stability imposes the condition of convexity or
concavity on the thermodynamic functions characterizing the system. Consider
two identical systems in thermal contact. The entropy maximum principle holds
for the combined system, of energy 2 U, volume 2 V and a total number of
particles 2 N. For the combined system to be stable against fluctuations of the
energy, the entropy function must satisfy the inequality

S(2U,2V,2N) > S(U + AU,V,N) + S(U — AU,V,N) (190)

for any value of AU. Due to the extensive nature of the entropy, this inequality
can be re-written as

2 S(U,V,N) > S(U+AU,V,N) + S(U— AU,V, N) (191)

Geometrically, the inequality expresses the fact that any chord joining two points
on the curve S(U) must lie below the curve. Such a curve is known as a concave
curve. In the limit AU — 0, one obtains the weaker stability condition

S(U)

U

Figure 6: A concave curve representing S(U). Any chord connecting two points
on S(U) must lie below the curve.

028
0> () (192)
oU? VN
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This condition must hold if the macroscopic state of the system characterized
by U, V, N is an equilibrium state. This condition can be re-stated as

2
0 > (552>
oU? )y n

1 oT
DU el
B T <8U>V,N

1 1
> - =
- T2 CynN

(193)

Thus, for a system to be stable, its heat capacity at constant volume must be
positive. This implies that the energy is a monotonically increasing function of
temperature at constant volume.

Likewise, if the energy and volume are allowed to fluctuate, the condition
for stability becomes

2 S(U,V,N) > S(U+ AU,V +AV,N) + S(U— AU,V —AV,N) (194)

which can be expanded to yield

928 928 928
0 > () AU2+-2< ) AUAV—%() AV? (195)
o2 )y oUudV ) V2 )

The right hand side of this inequality can be expressed as the sum of two terms

2 2 2 UV
V,N N UN

(ms> ou? vV ov?
oU?
V,N

(196)
This leads to two weak conditions for stability, which are
%S
0> | = 197
- <8U 2 > V.N (197)

and

2
(#%)
625 Uov
[ 2 B
ov?2 UN (
The last condition can be re-stated as

2 2 2 2
(52, (57),, 2 (st97) (19)
U,N V,N N

which is a condition on the determinant of the matrix of the second-order deriva-
tives. The two by two matrix is a particular example of a Hessian Matrix which,
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more generally, is an N by N matrix of the second-order derivatives of a func-
tion of IV independent variables. The Hessian is the determinant of the Hessian
matrix. The Hessian describes the local curvature of the function. Although
the above two conditions have been derived for two identical subsystems, they
can be applied to any macroscopic part of a homogeneous system since thermo-
dynamic quantities are uniformly distributed throughout the system.

Stability Conditions for Thermodynamic Potentials

The energy satisfies a minimum principle, which is reflected in the behavior of
the thermodynamic potentials. Therefore, the convexity of the thermodynamic
potentials can be used to obtain stability conditions for the thermodynamic
potentials.

The energy U(S, V, N) satisfies a minimum principle. For a system composed
of two identical subsystems each with entropy S, volume V and number of
particles N, the condition for equilibrium under interchange of entropy and
volume is given by

U(S+AS,V+AV,N) + U(S—AS,V —AV,N) > 2U(S,V,N) (200)

For stability against entropy fluctuations, one has

AN
052 VN
aT
= >
(%), =

which leads to the condition Cy > 0 i.e. the specific heat at constant volume
is always positive. Stability against volume fluctuations leads to

AN
ov? SN
oP
(= >
(%), =

Thus, the entropy is a convex function of the extensive variables and the convex-
ity leads to stability conditions against fluctuations of the extensive variables
which always have the same signs. However, stability against fluctuations of
both S and V leads to a more complex and less restrictive condition

2 2 2 2
o0°U 8l > 0“U (203)
ov?2 SN 052 V.N oSOV )
This can be shown to lead to the condition
— (ap) >0 (204)
ov TN
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i.e. an increase in volume at constant temperature is always accompanied by a
decrease in pressure.

The extension of the stability conditions to the thermodynamic potentials
involves some consideration of the properties of the Legendre transform. It
will be seen that the thermodynamic potentials are convex functions of their
extensive variables but are concave functions of their intensive variables.

Consider a function y(x) which satisfies a minimum condition. The Legendre
transform of y(z) is 1¥(p). One notes that the Legendre transform and inverse
Legendre transform introduces the conjugate variables x and p via

b= (gz) (205)

and -

T = — (8p> (206)
These relations lead to p o2

o

oxr (8962) (207)
and 5 a%p

T

% - (&) 209

Thus, on equating the expressions for i—p, one has
X

¥ <gi‘;) _ <31¢> (209)

op?

which shows that the sign of the second derivative w.r.t. the conjugate vari-
ables changes under the Legendre transform. Therefore, the condition for sta-
bility against fluctuations in x when expressed in terms of the thermodynamic
potential y has the opposite sign to the condition for stability of fluctuations
in p when expressed in terms of ¥. The stability condition for fluctuations of
the other variables (which are not involved in the Legendre transform) have the
same sign for both y and .

The Helmholtz Free-Energy F(T,V, N) is derived from the Legendre trans-
form of U(S,V, N) by eliminating the extensive variable S in favour of the in-
tensive variable T'. The condition for stability against temperature fluctuations
is expressed in terms of F(T,V,N) as

O2F
Z - < 21
(8T2>V,N =0 (210)

which has the opposite sign as the stability conditions against entropy fluctua-
tions when expressed in terms of U(S,V, N). Stability against volume fluctua-

tions leads to P
— >0 (211)
(572)...
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which has the same sign as the stability conditions against volume fluctuations
when expressed in terms of U.
The stability condition for the enthalpy H(S, P, N) against entropy fluctua-

tions is given by
0?H
-— > 212
L 212

which has the same sign as the stability conditions against entropy fluctuations
when expressed in terms of U(S,V, N). Stability against pressure fluctuations

leads to 2%
— <0 (213)
(57)..,

which has the opposite sign as the stability conditions against volume fluctua-
tions when expressed in terms of U.

The Gibbs Free-Energy involves a double Legendre transform of U, so both
stability conditions have opposite signs. The condition for stability against
temperature fluctuations is expressed in terms of G(T, P, N) as

82G)
— <0 (214)
(57),.,

which has the opposite sign as the stability conditions against entropy fluctua-
tions when expressed in terms of U(S,V, N). Stability against pressure fluctu-

ations leads to the condition
82G>
— <0 (215)
(57)..,

which has the opposite sign as the stability condition against volume fluctua-
tions when expressed in terms of U.

The stability against volume fluctuations of a system held at constant tem-
perature is expressed in terms of the second derivative of the Helmholtz Free-

Energy as
62F>
—— >0 (216)
(3V2 T,N
This can be related to the inequality
2 2 2 2
0°U o0°U > o0°U (217)
A SN 052 VN oSOV )

describing the stability condition obtained the energy minimum principle. This
can be proved by noting that the infinitesimal change in F' shows that

O0%F OP
Z - - == 21
(aW)T,N (aV)T,N (218)
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The derivative of P with respect to V at constant T can be expressed as a

Jacobian

ov?2

(2

)T,N

d(P,T)
oV, T)

(219)

Since we wish to express the inequality in terms of the energy, one should change
variables from V and T to S and V. This can be achieved using the properties

of the Jacobian

oF
V2 TN

oT

(o7)...

7).

(&v2)
V2 )1

o(P,

(P, T) 9(5,V)

~A(S,V) a(V,T)

On using the antisymmetric nature of the Jacobian one can recognize that the
second factor is a derivative of S with respect to T, with V' being held constant

a(P,T) A(V,S)
a(S,V) a(V,T)
oS

)

e, .

ar
o5

), (

aP
v

(220)

y

(221)

where the expression for the Jacobian has been used to obtain the last line. On
recognizing that P and T are the energy intensive parameters, one can write

O*F [0S
(7)., = ar
[0S
_ (8T

_ (o8
To\aT

)V,N
)V,N
)V,N

0

oS
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where the last line has been obtained by using the analyticity of U. Finally, one

can write
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which relates the stability condition against volume fluctuations at constant T
to the stability condition for fluctuations in S and V.

Homework:

Prove the stability condition
el dG 092G \*
= il — > 224
<8T2)P (aPQ)T (8T8P> =0 (224)

Physical Consequences of Stability

The convexity of F' with respect to V' has been shown to lead to the condition

62F> <8P>
— = - >0 (225)
<8V2 T,N V) rn
which can be expressed as
0*F 1
e = >0 226
(8V2 ) T.N V kp — ( )

Hence, the isothermal compressibility k7 defined by

aP
= - _ >
K 14 <6V)T >0 (227)

must always be positive. Likewise, the concavity of F' with respect to T' leads
to the stability condition
Cy >0 (228)

that the specific heat at constant volume Cy must always be positive.

Another consequence of thermodynamic stability is that a thermodynamic
system which is composed of parts that are free to move with respect to each
other, will become unstable if the temperature is negative. The entropy of the
a-th component of the system is a function of the internal energy, that is U,

2
minus the kinetic energy 5 2. Since the entropies are additive, the total entropy
is given by

2
s =3 5, (Ua - 27:;:) (229)

but is subject to the constraint that the total momentum is conserved

Yop, - F (230)
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The entropy has to be maximized subject to the constraint. This can be per-
formed by using Lagrange’s method of undetermined multipliers. Thus, ® is to
be maximized with respect to P, where

2
p
® = Sa| Uy — == A 231
Ea; [ ( 2ma> "a pa] (231)
Maximizing ® w.r.t. p_ leads to the equation
0S,\ P
0 = - - A
<8Ua> Mg ta
1p
= - = == A 232
T mq A (232)

which leads to the velocities of each component being the same. Thus, no inde-
pendent internal macroscopic linear motions are allowed in an equilibrium state.

For the stationary state to be stable against the momentum fluctuations of
the a-th part, one requires that

1
me T

<0 (233)
Therefore, stability against break-up of the system requires that 7' > 0.
Homework:

Prove the two equalities
2

Cp —Cy =TV E (234)
RT
and o
RS \%4
o 2V 235
Hence, prove that the stability conditions imply the inequalities
Cp >2Cy 20 (236)
and
kp > ks > 0 (237)

The above conditions for stability are necessary but not sufficient to establish
that the equilibrium is completely stable, since a state may decrease its entropy
when there are infinitesimally small fluctuations in its macroscopic parameters,
but its entropy may increase if the deviations of the parameters have large
values. Such states are known as metastable states. A system which is in a
metastable state will remain there until a sufficiently large fluctuation occurs
that will take the system into a new state that is more stable.
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Figure 7: A curve of the internal energy U(X) versus an internal variable X for
a system which exhibits a stable and a metastable state.

3 Foundations of Statistical Mechanics

Statistical Mechanics provides us with:

(i) A basis for the first-principles calculations of thermodynamic quantities and
transport coefficients of matter in terms of the dynamics of its microscopic con-
stituents.

(ii) A physical significance for entropy.

3.1 Phase Space

In general, phase space I' is the space of a set of ordered numbers which de-
scribes the microscopic states of a many-particle system. For a classical system,
one can describe the state of a system by a set of continuously varying variables
corresponding to the generalized momenta and generalized coordinates of each
particle. However, for quantum systems, the Heisenberg uncertainty principle
forbids one to know the momentum and position of any single particle precisely.
In this case, the quantum states of a particle can be proscribed by specifying
the eigenvalues of a mutually commuting set of operators representing physical
observables. The eigenvalues can be either continuous or discrete. Thus, the
phase space for a quantum system can either consist of a set of discrete numbers
or can consist of a set of continuous numbers, as in the classical case.

Classical Phase Space

A microscopic state of a classical system of particles can be described by
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proscribing all the microscopic coordinates and momenta describing the inter-
nal degrees of freedom.

For a classical system of N particles moving in a three-dimensional space,
the state of one particle, at any instant of time, can be specified by proscribing
the values of the three coordinates (¢, g2, ¢3) and the values of the three canon-
ically conjugate momenta (p1, pa, ps).

The state of the many-particle system, at one instant of time, is proscribed
by specifying the values of 3N coordinates ¢;, (i € {1,2,3,...3N}) and the val-
ues of 3N canonically conjugate momenta p;, (i € {1,2,3,...3N}). The space
composed of the ordered set of 6/N components of the coordinates and momenta
is the phase space of the N particle system. This phase space has 6N dimensions.

Distinguishable Particles

For distinguishable particles for which each particle can be given a unique
label, each point in phase space represents a unique microscopic state.

Indistinguishable Particles

By contrast, for indistinguishable particles it is not admissible to label par-
ticles. The material is invariant under all permutations of the sets of labels
assigned to each of the N particles. There are N! such permutations for the N
particle system, and each one of these N! permutations can be built by succes-
sively permuting the two sets of (six) labels assigned to pairs of particles. To be
sure, the permutation of a particle described by the values of the ordered set of
variables {q1, g2, ¢3, 1,2, 3} and a second particle described by the values of
the ordered set {qu, g5, g6, Pa, P5, P6 } 1S achieved by the interchange of the values
{a1,62,93,p1,p2,03} <> {q4,05, 46, P4, P5,p6}. Any of these N! permutations of
the sets of labels assigned the IV particles, has the action of transforming one
point in phase space to a different point. Since it is not permissable to label
indistinguishable particles, the resulting N! different points in phase space must
represent the same physical state.

The Number of Microscopic States.

Given the correspondence between points in phase space and microscopic
states of the system, it is useful to introduce a measure of the number of micro-
scopic states of a system Np. One such measure is proportional to the volume of
accessible phase space. Consider an infinitesimal volume element of phase space,
defined by the conditions that the generalized momenta p; lie in the intervals
given by

Pi+Ap; >p; > P; (238)
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and the coordinates ¢; are restricted to the intervals
Qi+Ag>q > Q (239)

for all ¢. This infinitesimal volume element AT is given by

AT = ﬁ (Api Aqi> (240)

i=1
The infinitesimal volume element of phase space AT has dimensions of Ap?™N Ag3¥.
To turn this into a dimensionless quantity, one has to divide by a quantity with

Ap

[p]

Aq

_ 5

[a]

Figure 8: An infinitesimal hyper-cubic volume of phase space AT’ = Ap

SNAq:SN.

dimensions of (Action)*". Although, any quantity with dimensions of the ac-
tion would do, it is convenient, to use 2 w & as the measure for the action. With
this particular choice, the dimensionless measure of the volume of phase space

is given by
3N
= 1 241
(27 h)3N 1_[1 ( 2w h ) (241)

i=
The identification of & with Planck’s constant is convenient since it allows one to
make a connection with the number of quantum states, within the quasi-classical
limit. The Heisenberg uncertainty principle dictates that the uncertainty in the
momentum and position of a single-particle (wave-packet) state cannot be de-
termined to better than Ap; Ag; > 2 7 h. Hence, it appears to be reasonable to
define the volume of phase space occupied by a single-particle state as ( 2 pi h)3
and so the dimensionless measure for the number of states for a single-particle

system would be given by
3
Ap; Ag;
—_— 242
11 ( 27 h (242)
=1
and consequently, the measure of the distinct microscopic states is given by
3N

AT Ap; Ag;
Ne = (27 h)3N E( 27 h > (243)
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for a system of N distinguishable particles. If the particles are indistinguishable,
the number of distinct microscopic states Nr is defined as

AT

N = FraanEy

(244)
where we have divided by N! which is the number of permutations of the N
sets of particle labels.

3.2 Trajectories in Phase Space

As time evolves, the system is also expected to evolve with time. For a classical
system, the time evolution of the coordinates and momenta are governed by
Hamilton’s equations of motion, and the initial point in phase space will map
out a trajectory in the 6 N dimensional phase space. A closed system, where no
time-dependent external fields are present, the Hamiltonian is a function of the
set of 3N generalized momenta and the 3N generalized coordinates H ({p;, q;})
and has no explicit time dependence. The rate of change of {p;,q;} where
i€{1,2,3,...3N} are given by the set of Hamilton’s equations of motion

dp; O0H
= () H = -
dt {p }pPB 9
dqi OH
R O H = 24
di {a.H}prs + op; (245)

where P.B. denotes the Poisson Bracket. The Poisson Bracket of two quantities
A and B is defined as the antisymmetric quantity

3N
0A 0B 0B 0A (246)
dq; Op; dq; Op;

{A,B}pp =)

i=1

The trajectory originating form a specific point in phase space will be given
by the solution of Hamilton’s equations of motion, where the initial conditions
correspond to the values of the 6N variables at the initial point.

Example: Motion of a single particle in One-Dimension.

A particle of mass m moving in one dimension in the presence of a potential
energy V(g) is described by the Hamiltonian

H = — + V(g (247)
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The motion of the particle is described Hamilton’s equations of motion which
simply reduce to the form

a _ 9V

at dq

dq D

-~ _ £ 24
dt m (248)

as is expected.

The time dependence of any physical quantity A({p;, ¢;} : t) can be evaluated
by evaluating it on the trajectory followed in phase space I'. Hamilton’s equa-
tion of motion have the consequence that the total derivative of any quantity
A({pi, ¢} : t) can be found from the Poisson Bracket equation of motion
dA ‘iN: ( dg; A dp; 9A ) 0A
dt it 9g; © dt Op: ol

=1

%(dH@A dH&A) 0A

~ \ dpi 9q; dg; Op; ot
0A
= {4 Hirs + 5 (249)

The first term describes the implicit time dependence of A and the second term
describes its explicit time dependence.

If a quantity B has no explicit time dependence and the Poisson Bracket of
B and H are zero, then B is conserved.

dB 0B
E - { B ’ H }PB + E
= {B, H}ps
= 0 (250)

where the first two lines follow from our stated assumptions. Since the total
derivative governs the change of B as the system flows through phase space, B
is conserved. As an example, since our Hamiltonian does not explicitly depend
on time, the Poisson Bracket equation of motion shows that the total derivative
of the Hamiltonian w.r.t. time is zero. Explicitly, the equation of motion for H
is given by

dH oH
R
= {H, H}rs
0 (251)
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where the second line follows from the absence of any explicit time dependence
and the last line follows from the antisymmetric nature of the Poisson Bracket.
Hence, the energy is a constant of motion for our closed system. That is, the
energy is constant over the trajectory traversed in phase space.

[r]

[d]

Figure 9: A microscopic state of macroscopic system is described point in phase
space and, as it evolves, maps out a very complex trajectory which is governed
by Hamilton’s equations of motion.

The equations of motion allows us to follow the time evolution of a point in
phase space, i.e. the evolution of the microscopic state of the system. The tra-
jectory in phase space may be extremely complicated and rapidly varying. For
example in a collision between two neutral molecules, the change in momentum
almost exclusively occurs when the separation between the two molecules is of
the order of the molecular size. This should be compared with the length scale
over which the momentum of each the pair of molecules is constant, which is
given by the ratio of the molecular size divided by the distance travelled by a
molecule between its successive collisions (i.e. the mean free path). This ra-
tio is usually quite large for dilute gasses. If these distances are scaled by the
molecular velocities, one concludes that the momentum of the particles changes
rapidly at the collisions and so the trajectory in phase space changes abruptly.
The same distance ratio also implies that the particular form of a trajectory
is extremely sensitive to the initial conditions, since a small change in initial
conditions determines whether or not a particular collision will occur. The sen-
sitivity to initial conditions and the complexity of the trajectories in phase space
prohibit both analytic solution and also numerical solution for realistic materi-
als. Numerical solution is prohibited due to the enormity of the requirements
for storing the initial conditions, let alone for implementing the numerical solu-
tion of the equations of motion. Despite the complexity of trajectories in phase
space, and their sensitivity to initial conditions, the trajectories do have some
important common features.

The trajectory of a closed system cannot intersect with itself. This is a
consequence of Hamilton’s equations of motion completely specifying the future
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motion of a system, if the set of initial conditions are given and since H has no
explicit time dependence. Thus, a trajectory cannot cross itself, since if there
was then Hamilton’s equations would lead to an indeterminacy at the point of
intersection. That is, there would be two possible solutions of Hamilton’s equa-
tions of motion, if the systems initial conditions placed it at the crossing point.
This is not possible. However, it is possible that a trajectory closes up on itself
and forms a closed orbit.

Secondly, the trajectories only occupy a portion of phase space for which the
constants of motion are equal to their initial values.

3.3 Conserved Quantities and Accessible Phase Space

If a system has a set of conserved quantities, then the trajectory followed by
the system is restricted to a generalized “surface” in the 6N dimensional phase
space, on which the conserved quantities take on their initial values. The set
of points on the generalized “surface” is known as the accessible phase space I',.

For a classical system where only the energy is conserved and has the initial
value F, the points in the accessible phase space is given by the set of points
{pi, ¢;} that satisfy the equation

H({pi,¢;}) = E (252)

or if the energy is only known to within an uncertainty of AF, then the accessible
phase space is given by the set of points that satisfy the inequality

E + AE > H({pi7Qi}) > F (253)

Example: A One-Dimensional Classical Harmonic Oscillator

The Hamiltonian for a particle of mass m constrained to move in one dimen-
sion, subject to a harmonic restoring force, is described by the Hamiltonian

2 2
p mwy o

H = —
2m+ 2

(254)

The phase space I' of this system corresponds to the entire two-dimensional
plane (p, q). If the energy is known to lie in an interval of width AE around E,
then the accessible phase space I', is determined by

2

f e L (255)

»?
FE AE > —
+ 2m 2
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The “surfaces” of constant energy® are in the form of ellipses in phase space,
with semi-major and semi-minor axes given by the turning points

(256)

Pmaxz =

2mFE

2 F
max — 257
q \/mwg (257)

The ellipse encloses an area of phase space which is given by

E

T Pmazx 9maz = 2 wio (258)

and

Therefore, the accessible phase space I', forms an area enclosed between two
ellipses, one ellipse with energy E+ AE and another with energy E. Thus, the

Figure 10: The accessible area of phase space of a one-dimensional Harmonic
oscillator is the area enclosed by the two ellipses.

area of accessible phase space is found as

r, — 2x2F (259)
wo

On diving by 2 m h we can turn I'y into a measure of the number of microscopic
states accessible to the system Np, we find
AE

Nr = 2
T o (260)

This is a measure of the number of different states accessible to the system, and
can be interpreted quantum mechanically as the number of different quantum
states which correspond to the energy within the accuracy AFE that has been
specified. The result Nr is just the uncertainty in the number of quanta in the
system.

4In this case the “volume” of phase space is an infinite two-dimensional area and, if the
energy is specified precisely, the “area” of accessible phase space is a line.

]



In the most general case where there are several other conserved quantities
B;({pi,¢:}) (say there are M in number) which have specific values B, the ac-
cessible phase space will consist of the points in phase space where the “surfaces”
B; = Bj({pi,q:}) corresponding to the conserved quantities intersect. That is,
the accessible phase space corresponds to the points which are consistent with
the values of all the M conserved quantities B;

E = H({pi,a})
B, Bj({Pi; ai}) (261)

for all j € 1,2,... M. In all cases, the physical trajectories of the system are
restricted to move within the accessible region of phase space.

3.4 Macroscopic Measurements and Time Averages

The measurement of thermodynamic quantities usually represents a relatively
slow process when compared to microscopic time scales. Furthermore, the mea-
surement involves the participation of many of the systems degrees of freedom.
This implies that a macroscopic measurement of a quantity A corresponds to a
time-average of a quantity A({p;,q;}) over a trajectory in phase space, over a
long period of time. Furthermore, the quantity A({p;,¢;}) must involve many
degrees of freedom of the system. For a long period of time 7', the macroscopic
quantity is given by

T
A= [ aageo.aon (262)

where A({p;(t),q;(t)}) varies with time, as the microscopic state changes with
time. That is, the set of momenta and coordinates {p;(t), ¢;(t)} are considered
to be implicit functions of time and are obtained by solving Hamilton’s equa-
tions using the initial data.

As an example, consider the pressure on a container wall which encloses a
dilute gas. The pressure P is defined as the force per unit area. The force F' is
averaged over a time long compared with the time between molecular collisions
with the wall. The force is is given by the rate of change of momentum of the
molecules impinging on the wall. The force due to a molecular collision occurs
over the time-scale which corresponds to the time in which the molecule is in
close proximity to the wall. On introducing a short-ranged interaction between
the particle and the wall, one finds that the instantaneous force exerted on the

wall is given by
dV (g:
Fy(t) = < dc(lzs))

(263)

q3(t)
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where V(g3) is a short-ranged potential due to the interaction of the particle
with the wall. Therefore, the instantaneous pressure is given by

_ ENJ Vv (gsi)
A dQSv
where A is the area of the wall. The instantaneous pressure would have the

appearance of a sparse sequence of delta-like functions. The thermodynamic
pressure is given by the time-average over an interval T in which many collisions

occur
1 T
P = = dt P(t
T/ ("

dV Q31
/ Zl dqi’n

This result is of the form that we are considering. If the time average is over a
long enough time interval, the result should be representative of the equilibrium
state in which P does not change with time.

(264)

q3i(t)

(265)
q3i(t)

The process of time averaging over long intervals is extremely convenient
since it circumvents the question of what microscopic initial conditions should
be used. For sufficiently long times, the same average would be obtained for
many point on the trajectory. Thus, the long time average is roughly equiva-
lent to an average with a statistical distribution of microscopic initial conditions.

3.5 Ensembles and Averages over Phase Space

The time-average of any quantity over the trajectory in phase space can be
replaced by an average over phase space, in which the different volumes are
weighted with a distribution function p({p;,¢;} : t). The distribution function
may dependent on the point of phase space {p;, ¢}, and may also depend on
the time t.

Conceptually, the averaging over phase space may be envisaged by introduc-
ing an ensemble composed of a very large number of identical systems each of
which have the same set of values for their measured conserved quantities and
all systems must represent the same macroscopic equilibrium state. Although
the different systems making up the ensemble correspond to the same macro-
scopic equilibrium state, the systems may correspond to different microstates.
The concept of “Ensemble Averaging” was first introduced by Maxwell in 1879
and developed more fully by Gibbs in 1909.

There are infinitely many possible choices of ensembles, one trivial example
is that each system in the ensemble corresponds to the same initial microstate.
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Another example corresponds to taking all the different points of a trajectory
of one microscopic state as the initial states of the ensemble. A frequently used
ensemble corresponds to distributing the probability density equally over all
points in phase space compatible with the measured quantities of the macro-
scopic state.

The Probability Distribution Function

The probability distribution function p({p;,¢;} : t) could, in principle, be
measured by measuring the microstates of the systems composing an ensemble
at time ¢ and determining the relative number of systems which are found in
microstates in the volume dI' of phase space around the point {p;,¢;}. In the
limit that the number of systems in the ensemble goes to infinity, this ratio
reduces to a probability. The probability dp(t) is expected to be proportional
to the volume of phase space dI'. Therefore, we expect that

dp(t) = p({pi,q} :t) dT (266)

where p({p;,¢;} : t) is the probability distribution function. The probability
distribution function is only finite for the accessible volume of phase space. Since
probabilities are non-negative, then so is the probability distribution function.
Furthermore, since the probabilities are defined to be normalized to unity, the
probability distribution function must also be normalized

1 = / dp(t)

= / dl' p({pi.qi} : t) (267)

for all times t. For a macroscopic system, the integration over dI' may be re-
stricted to the volume of available phase space with any loss of generality.

Ensemble Averages

Once p({p;,¢;} : t) has been determined, the measured value of any physical
quantity A({p;,¢;} : t) of a system in a macroscopic state at time ¢ can then be
represented by an ensemble average. The ensemble average is the average over
phase space weighted by the probability distribution function

Aty = / dr A({pi, a:} 1) p({pirai} : 1) (268)

If all the different points of a trajectory of one microscopic state is taken to
define the initial states of the ensemble, the the ensemble averages will coincide
with the long-time average for the microscopic state. At the other extreme, if
each system in the ensemble corresponds to the same initial microstate, then
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the ensemble average of a quantity at any time ¢ will simply correspond to the
value of the quantity for the microstate at time ¢.

The fundamental problem of statistical mechanics is to find the probabil-
ity distribution function for the ensemble that describes measurements on the
macroscopic equilibrium states of physical systems most closely. We shall ex-
amine the equations that determine the time-dependence of the probability dis-
tribution function in the next section.

3.6 Liouville’s Theorem

Liouville’s Theorem concerns how the probability distribution function for find-
ing our N-particle system in some volume element of phase space at time ¢
varies with time.

Since the probability is normalized and since the states of a system evolve
on continuous trajectories in phase space, the probability density must satisfy a
continuity equation. Consider a volume element dI" of phase space, the number
of systems in the ensemble that occupy this volume element is proportional to

p({pi,qi} : 1) d (269)

and the increase of the number of systems in this volume element that occurs
in the time interval dt is proportional to

(ottmadstdn = pllpad o) ) 0 = Lollmad o) drde (210
where we have used the Taylor expansion to obtain the right hand side of the
equation. Due to the continuous nature of the trajectories, the increase in the
number of trajectories in the volume must be due to system trajectories which
cross the surface of our 6 N-dimensional volume. That is, the net increase must
be due to an excess of the flow across the bounding surfaces into the volume
over the flow out of the volume.

Consider the infinitesimal volume of phase space dI" where the i-th coor-
dinate is restricted to be between ¢; and ¢; + Ag; and the i-th generalized
momentum is restricted to be between p; and p; + Ap;. The volume element dI"
is given by

3N
dl = H ( Ag; Ap; ) (271)
i=1
The pair of opposite surfaces defined by the coordinates ¢; and ¢; + Ag; have
6N — 1 dimensions and have an area given by

3N 3N
IT 24 ]] 2w (272)
J=1,j#i j=1
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PTAR;

dg/dt
Pj
0 0;tAq;

Figure 11: An infinitesimal hyper-cubic element of phase of dimensions AI' =
H?ivl Aq;Ap;. In time interval dt, the probability density within a distance szj
perpendicular to the bounding surface at ¢; is swept into the volume.

Trajectories which enter or leave the volume element dI’ must cross one of its
6N boundaries.

Flow In Across a Surface

All the systems of the ensemble in microstates within a distance ¢; dt behind
the surface at g; will enter dI" in time dt. That is, the ensemble systems in the
volume Hj’fl iz A ]_[5’51 Ap; ¢;({pi, ¢;}) dt will enter dI in the time interval
dt. The number of systems in this volume is proportional to

3N 3N
II 24 I 2p; dt a({pi.ai}) p({pirai} - 1) (273)
j=Liti =l

Flow Out Across a Surface

All the systems in the ensemble with microstates that are within a distance
¢; dt behind the surface at ¢; + Ag; will leave dI' in time dt. The number of
systems in this volume is proportional to

3N 3N
II 24 I 2p; dt a({pi g + Aai}) p({pi @i + Agi} : 1) (274)
=1, =1

where the velocity and density must be evaluated at the position of the second
surface.

The Net Flow into the Volume

The net flow into dI' from a pair of coordinate surfaces is given by the
difference of the flow crossing the coordinate surface entering the volume and
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the flow crossing the opposite surface thereby leaving the volume

H Ag; H Ap; dt (qz {pisai}) p({pisai} 1) — @({pisai + Aai}) p({pi, @ + Agi} t))

Jj= 1J¢1N .
~ - H H Apj dt 5~ (ql({puqz}) p({pi,qi}:t)> (275)

where we have Taylor expanded in powers of Ag;. Likewise, the net flow into
dl’ from the pair of momentum surfaces at p; and p; + Ap; is given by

3N 3N
[T 2¢; I 2w at (pi({pivqi}) p{pi,ait 1) — pil{pi + Api,ai}) p({pi + Api ¢i} < 1) >
Jj=1 j‘Lj#i

H Ag, H Ayt (il o{pia)+ ) ) (276)

On summing over all the 6N surfaces, one finds that the net increase of the
number of ensemble systems in the volume dI' that occurs in time dt due to
their flowing across all its boundaries is proportional to

_ H Ag, H 8oyt [ (s ok 200 ) + 5 (el oty 1)) |
(277)

The Continuity Equation

On equating the net increase of the probability in the infinitesimal volume
element with the net probability flowing into the volume, one can cancel the
factors of dt and dI'. Hence, one finds that the probability density satisfies the
linear partial differential equation

g’;)—i—gzjv:{aa(h(q'iP)-i-ai(Pi/))}:O (278)

i=1
On expanding the derivatives of the products one obtains
3N

at+Z[ aq—i-apip—l-pzapi 0 (279)

The above expression simplifies on using Hamilton’s equations of motion

oH
. 2
i o, (280)
oH
S 281
Pi 94, (281)
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so one obtains

d9¢; 0*H
0¢; B 0q;0p; (282)
opi 02H
Op; - Op;0¢; (283)

On substituting these two relations in the equation of motion for p, the pair of
second-order derivatives cancel and one finally obtains Liouville’s equation

dp | X[ 9p . Op
o, i i = 284
at+;[qaqi+p8pi] 0 (284)

That is, the total derivative of p vanishes

dp dp A . Op
_ ) : _— 285
dt ot + ; ¢ 8qi TP api ( )

The total derivative is the derivative of p evaluated on the trajectory followed
by the system. Hence, p is constant along the trajectory. Therefore, Liouville’s
theorem states that p flows like an incompressible fluid.

@
p(GOP0OD ™ @

p({g;(t),pi(t)})

Figure 12: The time evolution of an inhomogeneous probability density
p({q:,p;}) satisfies a continuity equation.

On substituting Hamilton’s equations for the expressions for ¢; and p; in
Liouville’s theorem, one recovers the Poisson Bracket equation of motion for p

do _ Op N~ [OH Do O Op
dt 9t = | 9 0q;  Oqi Op;
dp
e H =0 286
at—i_{p7 }PB (250

60



which is in a form suitable for Canonical Quantization, in which case p and
H should be replaced by operators and the Poisson Bracket by a commutator
times an imaginary number.

Liouville’s theorem is automatically satisfied for any p which has no explicit
t-dependence and can be expressed in terms of the constants of motion. Specif-
ically, when p is initially uniform over the accessible phase space, Liouville’s
theorem ensures that it will remain constant. To be sure, if the distribution
satisfies

dp .
=0 V 287
o, i (287)
and 9
p .
= 2
a4, 0 Vi (288)

for all points {p;,¢;} within the accessible volume of phase space (defined by
H({p;,q;}) = F and any other relevant conservation laws) then Liouville’s the-
orem yields that

) (289)

Example: A Particle in a One-Dimensional Boz.

We shall consider an example that illustrates how a probability density thins
and folds as time evolves. The example also shows that for sufficiently large
times, the probability distribution is finely divided and distributed over the vol-
ume of accessible phase space.

We shall consider an ensemble of systems. Each system is composed of a
single particle that is confined in a one-dimensional box of length L. When the
particle is not in contact with the walls, the Hamiltonian reduces to

H(p,q) = 7 (290)

2m

The energies of the systems in the ensemble are bounded by
E + AE > H(p,q) > E (291)
which restricts the momenta to the two intervals
DPmaz > P > Pmin  and — DPmin > P > — Dmax (292)

The coordinates are restricted to the interval

- >q > — = (293)
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Thus, the volume of accessible phase space consists of two two-dimensional
strips.

The probability distribution p(p, g : t) evolves according to Liouville’s theo-

rem op OH dp OH 0
op ot op o dp
ot " ap aq  oqg ap  ° (294)

which for volumes contained within the spatial boundaries reduces to

dp p Op
— — — =0 295
ot m 0q (295)
This equation has the general solution
pt
ppq:t) = A(Q - m) B(p) (296)

which is valid everywhere except at the locations of the walls. In the general
solution A and B are arbitrary functions which must be fixed by the boundary
conditions.

‘We shall adopt the initial condition that the probability distribution function
has the form
p(p,q:0) = 6(q) B(p) (297)
which initially confines all the particles in the ensemble to the center ¢ = 0.
The momentum distribution function B(p) is evenly distributed over the allowed
range
1

B(p) = 9 ( DPmaz — Pmin ) [e(ppmam) - G(pfpmin) + ®(p+pmam) - ®(p+pmin):|
(298)

For sufficiently short times, short enough so that the particles in the ensemble
have not yet made contact with the walls, the solution is of the form

p(p,q:t) = 5(q - :lt) B(p) (299)

which has the form of two segments of a line. The slope of the line in phase
space is given by m/t. For small times the segments are almost vertical, but the
slope increases as t increases. The increase in slope is caused by the dispersion of
the velocities, and causes the length of the line to increase. The increase in the
length of the line does not affect the normalization, which is solely determined
by B(p). At a time T some particles in the ensemble will first strike the walls,
that is the line segments in available phase space will extend to ¢ = + % This

first happens when
Lm
T = 300
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pmln

-L/2 L/2

“Prmin

“Prmax

Figure 13: The regions where the probability density for an ensemble of systems
composed of a particle in a box is non-zero, at short times, is shown by the solid
portion of the blue line. The slope of the line is caused by the dispersion in
the velocities. The accessible phase space is enclosed by the red dashed lines
between ppae and ppin, and a similar region in the lower half space.

For times greater than 77 some of the ensemble’s particles will be reflected from
the walls. The solution of Liouville’s equation can be found by the method of im-

p

pmax

Pmin

-L/2 | L/2
'pmin

“Prmax

Figure 14: The regions where the probability density for an ensemble of particles
in boxes is non-zero, for times slightly greater than the times of the first collision,
is shown by the solid portion of the blue line. The two small line segments
in the upper left-hand and lower right-hand portion of accessible phase space
represents the region of the probability density for systems where the particle
has been reflected.

ages. That is, the reflected portion of the probability density can be thought of
as originating from identical systems with identical initial conditions except that
they are obtained by spatially reflecting our system at its boundaries ¢ = =+ %
The reflection requires that B(p) — B(—p) in the image. The probability dis-
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tribution emanating from these other systems will enter the volume of available
our available phase space at time T} which will represent the reflected portion of
the probability distribution function. The probability distribution that leaves

p

o]

Figure 15: The extended phase space produced by reflecting the central area
across its boundaries. In this extended system, the reflected probability density
is simply represented by the free evolution of the initial probabilities of the
image systems.

our system, represents the reflected portion of the probability distribution for
the neighboring systems. Thus, we are mentally extending the region of ac-
cessible phase space in the spatial direction. The solution just after the first
reflection has occurred, but for times before any system has experienced two
reflections is given by

p(p,q:t) = i 5(q—nL—:lt>B(p) (301)

n=-—1

where ¢ is restricted to the interval % > qg > — % The folding of the
distribution does not affect its normalization.

For larger times, for which any system in the ensemble has undergone mul-
tiple reflections, the set of systems must be periodically continued along the
spatial axis. That is, we must consider multiple images of our system. The
probability distribution valid at any time obviously has the form

o

sy = Y o(a-np - Li)Be (302

n=—oo
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Figure 16: The regions where the probability density for a particle in a box
is non-zero, for large times, is shown by the solid blue lines. For large times,
particles in the ensemble have experienced different numbers of collisions and is
spread over many line segments.

where ¢ is still restricted to the interval of length L. The probability distri-
bution is non-zero on a set of parallel line segments with slope m/t. The line
segments are separated by a “distance” ( m L )/t along the momentum direc-
tion. For sufficiently large times, the slope of the lines will be small and they
will be closely spaced. In conclusion, for sufficiently large times, we have shown
that the probability distribution will be finely divided and spread throughout
the volume of accessible phase space.

The Time Dependence of Averages

Liouville’s theorem shows that the time dependence of any quantity A({p1,¢;})
(with no explicit ¢ dependence) also follows from the Poisson Bracket equations.
This can be seen by first multiplying Liouville’s equation by A({p1,¢;}) and then
integrating over phase space.

0 = [ar Ao P ./drA{ph%}>{p,ff}PB (303)

The derivatives of p w.r.t the variables {p;, ¢;} that occur in the Poisson Bracket
term can be removed by integrating by parts. That is, on noting that p vanishes
on the boundaries of the integration, then integration by parts yields

0= [arag Z/”[w<A$)_£XA$>MM)
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The derivatives of the products can be expanded to yield

op X A OH PH  0A OH 9H
arA - dr AL R g 9
/ o~ / g [ g o " q0p  Opi Oai Opidas

(305)
The terms proportional to the second derivative of the Hamiltonian cancel,
leading to

dA dp
— = dl A —
dt / ot

3N 0A OH  0A OH
S far,[ 240 oo
= 0q; Op; Op; 0g;

/de{A,H}PB (306)

which equates the time-derivative of the average of A with the average of the
Poisson Brackets.

The above equation has the consequence that for a macroscopic equilibrium
state the condition that the average of any quantity A that has no explicit
t-dependence should be independent of time

dA Jdp
— = [dl — A =
- / = 0 (307)

where the entire volume of the integration is fixed. (Note that in this expression,
the total derivative has a different meaning from before since the integration
volume element is considered as being held fixed.) The requirement of the time-
independence of any quantity A in equilibrium necessitates that the Poisson
Bracket of p and H must vanish. This can be achieved if p only depends on H
and any other conserved quantities.

3.7 The Ergodic Hypothesis

In proving Liouville’s theorem, we noted that

di;,  O°H
0q; B 0q;0p; (308)
i 02H
Op; T 0p;0¢q; (309)

This has the consequence that if one follows the flow of the systems of the
ensemble with microstates contained in a specific volume of phase space dI" at
time ¢ then at time ¢’ the set of microstates will have evolved to occupy a volume
of phase space dI" such that

dr = dr’ (310)
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This can be seen by considering the product of the canonically conjugate pairs
of infinitesimal momenta and coordinates at time ¢

dp; dg; (311)

At time ¢ + dt the time evolution will have mapped the ends of these intervals
onto new intervals such that the lengths of the new intervals are given by

dp, = dp; <1 + gﬁz dt> (312)
and
dg, = dg; (1 + gg dt> (313)
Therefore, the product of the new intervals is given by
dp; dg; [1 + (gz + giz > dt + O(dtz)} (314)
which since 9, op . a1
94 opi

leaves the product invariant, to first-order in dt. Hence, since
3N
dr’ = [ dp dd; (316)
i=1

the size of the volume element occupied by the microstates is invariant, i.e.
dl’ = dI’. This does not imply that the shape of the volume elements remains
unchanged, in fact they will become progressively distorted as time evolves. For
most systems for which the trajectories are very sensitive to the initial condi-
tions, the volume elements will be stretched and folded, resulting in the volume
being finely divided and distributed over the accessible phase space.

The initial formulation of the Ergodic Hypothesis was introduced by Boltz-
mann® in 1871. A modified form of the hypothesis asserts that if the volume of
accessible phase space is finite, then given a sufficiently long time interval, the
trajectories of the microstates initially contained in a volume element dI' will
come arbitrarily close to every point in accessible phase space. If this hypothesis
is true, then a long-time average of an ensemble containing states initially in dI"
will be practically equivalent to an average over the entire volume of accessible
phase space with a suitable probability density. That is, the Ergodic Hypothesis
leads one to expect that the equation

T
A = %/O dt A({pi(t),a:(t)}) = /dF Alpi,ai}) p(pisaiy)  (317)

5L. Boltzmann, “Einige allgemeninen Sitze iiber das Warmegleichgewicht”, Wien Ber. 63,
670-711 (1871).
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holds for some p({p;, ¢;}) (the Ergodic Distribution) at sufficiently large times T'.
The Ergodic Theorem.

The Ergodic Theorem (due to J. von Neumann®, and then improved on by
Birkhoff” in the 1930’s) states that the time-average of a quantity A along a
trajectory that is initially located at any point in phase space, then in the limit
as the time goes to infinity one has:

(i) the time-average converges to a limit.

(ii) that limit is equal to the weighted average of the quantity over accessible
phase space. That is, the trajectory emanating from any initial point resembles
the whole of the accessible phase space.

The Ergodic Theorem has been proved for collisions of hard spheres and for
motion on the geodesics on surfaces with constant negative curvature. Ergod-
icity can also be demonstrated for systems through computer simulations. The
Ergodic Theorem has similar implications as a weaker theorem which is known
as the Poincaré Recurrence Theorem.

Poincaré’s Recurrence Theorem

The Poincaré Recurrence Theorem® states that most systems will, after a
sufficiently long time, return to a state very close to their initial states. The
Poincaré Recurrence Time Tg is the time interval that has elapsed between the
initial time and the time when the systems recur. The theorem was first proved
by Henri Poincaré in 1890.

The proof is based on the two facts:

(i) The phase trajectories of a closed system do not intersect.
(ii) The infinitesimal volume of a phase space is conserved under time evolution.

Consider an arbitrarily small neighbourhood around any initial point in ac-
cessible phase space and follow the volume’s trajectory as the microstates evolve
with time. The volume “sweeps out” a tube in phase space as it moves. The
tube can never cross the regions that have been already “swept out”, since tra-
jectories in phase space do not intersect. Hence, as the accessible phase space is
a compact manifold, the total volume available for future motion without recur-
rence will decrease as the time increases. If the tube has not already returned to

6J. von Neumann, ”Physical Applications of the Ergodic Hypothesis”, Proc. Natl. Acad.
Sci. 18, 263-266,(1932).

7G.D. Birkhoff, ” Proof of the ergodic theorem”, Proc. Natl. Acad. Sci. 17, 656-660 (1930).

8H. Poincaré, ”Sur les courbes définies par une équation différentielle”, Oeuvres, 1, Paris,
(1892).
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Figure 17: A schematic description of Poincaré’s Recurrence Theorem. Under
time-evolution, a region AI' of phase space sweeps out a trajectory in phase
space. At each instant of time, the region occupies an equal volume of the
accessible phase space I'y, so that AT' = ATV = AI”. After a time Ty, the
trajectory of the region will come arbitrarily close to the initial region.

the initial neighborhood (in which case recurrence has already occurred), then
since the total volume of accessible phase space is finite, in a finite time Tk all
the volume of accessible phase space must be exhausted. At that time, the only
possibility is that the phase tube returns to the neighbourhood of the initial
point.

Quod Erat Demonstrandum (QED).

Thus, the trajectory comes arbitrarily close to itself at a later time Tg. If
the trajectories don’t repeat and form closed orbits they must densely fill out
all the available phase space. However, if Poincaré recurrence occurs before
the entire volume of available phase space is swept out, some of it may remain
unvisited. Liouville’s theorem implies that the density of trajectories is uniform
in the volume of accessible phase space that is visited. The Recurrence Time
Tg is expected to be extremely larger than the time scale for any macroscopic
measurement, in which case the Recurrence Theorem cannot be used to justify
replacing time averages with ensemble averages.

A simple example of the Ergodic Theorem is given by the One-dimensional
Harmonic Oscillator. The Double-Well Potential exhibits a region where ergod-
icity applies, but for low energies the motion may become constrained to one
well in which case ergodicity does not apply.

If the Ergodic Theorem holds then, for sufficiently large times Tg, the time-
average of any quantity A
_ 1 Tr

A== dt A({pi(t), ¢i(t)}) (318)
R Jo
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represents the measured value of a macroscopic quantity and the trajectory
passes arbitrarily close to every point in phase space. If the system’s trajectory
dwells in the volume of phase space AT for time At, then the ratio

At
— 319
= (319)
has a definite limit which defines the probability that, if the system is observed
at some instant of time, it will be found to have a microscopic state in AT'.

There are a number of systems which are known not to obey the Ergodic
Hypothesis. These include integrable systems, or nearly integrable systems. An
integrable system has a number of conservation laws B; equal to half the number
of dimensions of phase space. Furthermore, each pair of conserved quantities
must be in involution

{ Bi, B; }PB =0 (320)

These sets of conservation laws reduce the trajectory of an integrable system
to motion on a 3N-dimensional surface embedded in the 6 N-dimensional phase
space. Furthermore, due to the involution condition, the normals to the surface
of constant B; lay in the surface and define a coordinate grid on the surface
which does not have a singularity. The singularities of coordinate grids define
the topology of the surface. For example, a coordinate grid on the surface of
a sphere has two singularities (one at each pole), whereas a coordinate grid on
a doughnut does not. The trajectories of an integrable system are confined to
surfaces that have the topology of 3/N-dimensional tori. Different initial condi-
tions will lead to different tori that are nested within phase space. The motion
on the torus can be separated into 3N different types of periodic modes. Since
these modes have different frequencies the motion is quasi-periodic. It is the
separability of the coordinates that makes integrability a very special property.
The very existence of 3N conserved quantities implies that most of the con-
served quantities are microscopic and their values are not directly measurable
by macroscopic means. Hence, they should not be considered as restricting the
available phase space for the macroscopic state. Thus, it should be no surprise
that integrable systems are generally considered to be non-ergodic.

Ezample: Circular Billiards

A simple example of an integrable system is given by the circular billiard.
In this case, a particle is free to move within a circular area of the plane. The
particle is confined to the area of radius R since it is specularly reflected by the
perimeter. The spatial paths followed by the particle consists of a succession
of cords. Whenever a cord meets the perimeter, the angle o between the cord
and the perimeter’s tangent is the same for each reflection. The phase space is
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Figure 18: The basic geometry of the scattering for circular billiards.

four-dimensional. However, there are two constant of motion, the energy E and
the angular momentum p,. The angle ¢ satisfies the equation of motion

Py
321
- (321)
The radial motion is described by the pair of equations
. Dr
ro= —
m
2
)y £ — Vdé(r—R 322
b= 2 = Vo d(r—R) (322)

where V) — co. The second equation can be integrated once w.r.t. ¢ by using
an integrating factor of p, on the left and m 7 on the right, which introduces
a constant of motion which is the (conserved) energy. The remaining integra-
tion w.r.t. ¢ leads to the solution for r(¢). From this one sees that the radial
coordinate r(t) performs anharmonic oscillations between the turning point at
a

PR (323)

vV 2FE
where 0 < a < R, and the radius R. The ratio of the period for a 2 w
rotation of ¢ to the period of the radial motion may not be a rational number.
Hence, in general the motion is quasi-periodic. Also since the turning point
a is a constant, the paths in the space of Cartesian coordinates are obviously
excluded from a circular region of radius a centered on the origin.

When a system does not have 3N conserved quantities, the system is non-
integrable. The trajectories have much fewer restrictions and extend to higher
dimensions in phase space. The trajectories are more sensitive to the initial
conditions, so the trajectories are inevitably chaotic.
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Figure 19: A spatial path traced out by the billiard ball over a long time interval.

The Kolmogorov-Arnold-Moser (KAM) theorem indicates that there is a
specific criterion which separates ergodic from non-ergodic behaviour.

The trajectories of an integrable system are confined to a doughnut-shaped
surface in phase space, an invariant torus. If the integrable system is subjected
to different initial conditions, its trajectories in phase space will trace out differ-
ent invariant tori. Inspection of the coordinates of an integrable system shows
that the motion is quasi-periodic. The KAM theorem specifies the maximum
magnitude of a small non-linear perturbation acting an a system (which when
non-perturbed is integrable) for which the quasi-periodic character of the orbits
is still retained. For larger magnitudes of the perturbation, some invariant tori
are destroyed and the orbits become chaotic so ergodicity can be expected to
hold. The KAM Theorem was first outlined by Andrey Kolmogorov® in 1954.
It was rigorously proved and extended by Vladimir Arnol’d!? (1963) and by
Jiirgen Moser!! (1962).

3.8 Equal a priori Probabilities

The Hypothesis of Equal a priori Probabilities was an assumption assigns equal
probabilities to equal volumes of phase space. This hypothesis, first introduced
by Boltzmann, assumes that the probability density for ensemble averaging over
phase space is uniform. The hypothesis is based on the assumption that dynam-
ics does not preferentially bias some volume elements of available phase space

9A.N. Kolmogorov, ”On Conservation of Conditionally Periodic Motions for a Small
Change in Hamilton’s Function.” Dokl. Akad. Nauk SSSR 98, 527-530, (1954).

10V 1. Arnol’d, ” Proof of a Theorem of A. N. Kolmogorov on the Preservation of Condition-
ally Periodic Motions under a Small Perturbation of the Hamiltonian.” Uspehi Mat. Nauk
18, 13-40, (1963).

11J. Moser, ”On Invariant Curves of Area-Preserving Mappings of an Annulus.” Nachr.
Akad. Wiss. Gottingen Math.-Phys. Kl. II, 1-20, (1962).
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dl’ of other elements with equal volumes. This hypothesis is consistent with
Liouville’s theorem which ensures that an initially uniform probability distri-
bution will remain uniform at all later times. The Equal a priori Hypothesis is
equivalent to assuming that the in many consecutive rolling a dice, that each of
the six faces of a dice will have an equal probability of appearing.

If the Ergodic Hypothesis holds then, for sufficiently large times Tg, the
time-average of any quantity A

_ 1 Tr

A= & dt A({pi(t), :(t)}) (324)
R Jo

represents the measured value of a macroscopic quantity and the trajectory

passes arbitrarily close to every point in phase space. If the system’s trajectory

dwells in the volume of phase space AI" for time At, then the ratio

At
Tr
has a definite limit which defines the probability that, if the system is observed
at some instant of time, it will be found to have a microscopic state in AI.
However, the Hypothesis of Equal a priori Probabilities assigns the probability

density p for a system to be found in the volume AL of accessible phase space
to a constant value given by the normalization condition

(325)

p= — (326)

where T', is the entire volume of accessible phase space. The requirement of
the equality of the time-average and ensemble average requires that the two

probabilities must be equal
At AT
T Ta
Hence, the Ergodic Hypothesis when combined with the Hypothesis of Equal a
priori probabilities requires that the trajectory must spend equal times in equal

volumes of phase space.

(327)

Ezample: The One-Dimensional Harmonic Oscillator.

We shall show that for the one-dimensional harmonic oscillator that the time
At spent in some volume AI' = Ap Agq of its two-dimensional phase space is
proportional to the volume. That is, the trajectory spends equal time in equal
volumes.

The Hamiltonian is expressed as as

2 2

p M wi o
398

oM T g ¢ (328)

H(p,q) =
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The equations of motion have the form

dp

x = M W2 q

dq P

9 _ P 2
dt M (329)

The equations of motion for the one-dimensional Harmonic Oscillator can be
integrated to yield

p(t) = MuwyAcos(wot + ¢)
qt) = Asin(wot + ¢) (330)

where the amplitude A and initial phase ¢ are constants of integration. The
Hamiltonian is a constant of motion, and the accessible phase space is given by

E + AE > H(p,q) > E (331)

which leads to the constraint on the amplitude

2
E + AE > @/ﬁ > AE (332)

From the solution one finds that the orbits are closed and form ellipses in phase

Figure 20: A typical trajectory for the one-dimensional Classical Harmonic
Oscillator is shown in blue. The initial phase ¢ is assumed to be unknown.
The energy is known to within AFE so the accessible phase space ', is the area
enclosed between the two ellipses.

space, which pass arbitrary close to every point in accessible phase space. The
Poincaré recurrence time T is given by
2
Tp = 27 (333)
Wo
Consider an element of phase space AI' = Ap Ag where Aq < Ap. The
trajectory will spend a time At in this volume element where
Aq
| q |
Ag M

At =
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Now, the extent of the volume of phase space at (p, ¢) is determined from the

energy spread
A
AE = % + M w?qAq (335)
Since we have assumed that Ag < Ap, the spread in energy is related to Ap

via

|p|Ap
AE = ——
% (336)
On substituting for M /p into the expression for At we obtain
Aq Ap
At = 337
N (337)

However, as we have already shown, AE is related to the volume of accessible
phase space T', via

AFE
'y, =27 — (338)
wo
Therefore,
A
s o Al ()
Fa wo
AT
= T
T R (339)
Hence, we have shown that
p
E+AE Prax
AD Al
O
q

Figure 21: The trajectory crosses an element AT of accessible phase space with
a narrow width Agq in time At, the height Ap of the element is determined form
the uncertainty in the energy AFE.
At AT
Tr  Ta
which shows that the trajectory spends equal times in equal volumes of phase
space.

(340)

This relation is independent of the assumed shape of the volume element
since if we considered a volume for which Ag > Ap then At is given by
Ap
[P |

Ap

= — = 341
MaE 4] (341

At
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However, in this case the extent of the volume of accessible phase space at the
point (p, q) is determined from the energy spread

AE = M Wi | q| Aq (342)
Therefore, one has
Agq Ap
At = 4
AL (343)

which, on relating AFE to the volume of accessible phase space I, leads to the
same relation
At AT
TR B Fa
This shows the result probably does not depend on the specific shape of the
volume of accessible phase space A T.

(344)

This example also illustrates how the average of a property of a system
with unknown initial conditions phases (in this case the initial phase ¢) can be
thought of either as a time average or as an ensemble average.

The hypothesis of equal a priori probabilities does provide a reasonable ba-
sis for calculating the equilibrium thermodynamic properties of a large number
of physical systems. This anecdotal evidence provides justification for its use.
However, one is lead to suspect that p is not really uniform but instead is finely
dispersed throughout the volume of accessible phase space. In our discussion of
the Micro-Canonical Ensemble and everything that follows from it. we shall be
assuming that the Hypothesis of Equal a priori Probabilities is valid.

3.9 The Physical Significance of Entropy

A system can only make a transition from one macroscopic equilibrium state
to another if the external conditions are changed. A change in external con-
ditions, without supplying energy to the system, can be achieved by removing
a constraint on the system. The removal of a constraint usually results in an
increase in Nr the number of microscopic states available to the system. It is
convenient to introduce a measure of the number of Np which is extensive, or
additive. Since Nr is multiplicative, In Nt is additive and represents a measure
of the number of microscopic states corresponding to the macroscopic equilib-
rium state. The removal of a constraint has the effect that In Nr increases, as
does the thermodynamic entropy. Therefore, this argument suggest that the
entropy may be defined by

S = kB In NF (345)

in which case, the entropy is a measure of the dispersivity of the distribution of
microscopic states. The factor of kg (Boltzmann’s constant) is required to give
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Table 1: Percentage frequency of occurrence of the letters in English language
texts.

a b C d e
8.17 | 1.49 | 2.78 | 4.25 | 12.70

f g h i j
223 | 2.01 | 6.09 | 697 | 0.15
k 1 m n o
0.77 | 4.02 | 241 | 6.75 | 7.51
P q r S t
1.93 | 0.09 | 5.99 | 6.33 | 9.06
u v w X y

276 | 098 | 2.36 | 0.15 | 1.97
7 - - - -

0.07 - - - -

the entropy the same dimensions as the thermodynamic entropy.
Information Theory

Shannnon'? has rigorously proved that the information content S of a prob-
ability distribution function of a random process with M possible outcomes is
given by

M
S = — Z p; Inp; (346)
i=1
where p; is the probability of the i-th outcome.

Consider sending a message consisting of an ordered string of N values of
the possible outcomes. The outcomes can be considered similar to the letters
of an alphabet in which case the message is a word containing N letters. Like
languages, the letters don’t occur with equal frequency, for example in English
language texts the letter e appears most frequently, and those who play the
game “scrabble” know that the letters ¢ and z occur very infrequently.

The total possible number of messages of length N is just M. However,
not all messages occur with equal probability, since if the outcome ¢ occurs
with a small probability p; messages in which the outcome i occurs a significant
number of times have very small probabilities of appearing. In the analogy with
words of IV letters, some allowed words occur so infrequently that they are never
listed in a dictionary.

12C.E. Shannon, “A Mathematical Theory of Communication.” Bell System Tech. J., 27,
379- 423, 623656, (1948).
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A typical message of length N could be expected to contain the outcome
1 an average of N; = Np; times. Hence, one can determine the approximate
number of times N; each outcome 7 will occur in a typical message. Since the
N; are fixed, the set of typical messages merely differ in the order that these
outcomes are listed. The number of these typical messages Dy can be found
from the number of different ways of ordering the outcomes

N!
Hij\; N;!

Hence, the dictionary of typical N-character messages (N-letter words) con-
tains Dy entries. We could index each message in the dictionary by a number.
Suppose we wish to transmit a message, instead of transmitting the string of
characters of the message we could transmit the index which specifies the place
it has in the dictionary. If we were to transmit this index using a binary code,
then allowing for all possible messages, one would have to transmit a string
binary digits of length given by

Dy = (347)

Q

N!
logy D~ log, ()
vail Ny!

M
- N Z p;i logy p; (348)

i=1

Q

where the last line has been obtained by using Stirling’s formula (valid for
large Np;). For an uniform probability distribution, this number would be just
N logy, M. The difference in these numbers, divided by NV is the information
content of the probability distribution function. Shannon’s Theorem proves this
rigorously.

The Entropy

We shall describe the entropy of a macroscopic state as a phase space average

S = —kp /dF p In(p Tp) (349)

where the factor of I'y has been introduced to make the argument of the loga-
rithm dimensionless. It is convenient to express I'g for a system of N indistin-
guishable particles moving in a three-dimensional space as

Iy = Nl (27 h)N (350)

since the introduction of this factor and the use of the equal a priori hypothesis
results in the expression

S = kg InNp (351)
if one identifies the number of accessible microstates as
r,
Np = — 352
v = (32)
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A different choice of 'y will result in the entropy being defined up to an additive
constant.

The Entropy and Equilibrium States

The assumption of equal a priori probabilities is only a simplification of the
widely held belief that a system’s physical trajectory follows an intricate path
which changes rapidly and is finely spread across the volume of accessible phase
space. The corresponding physical distribution function will evolve with respect
to time, according to Liouville’s theorem. If p is expected to describe an equi-

librium state S should not evolve.

We shall show that entropy defined by

S(t) = — kg /dF po{pi,q:} : t) mp({pi,qi} :t) — kg InTy (353)

is time independent. The last term is an additive constant added to make the
argument of the logarithm dimensionless and has no affect on our deliberations.
The time derivative of the entropy is given by

as ap ap
= kB/dFZ)(lanrl) (354)

Using Liouville’s theorem reduces this to

Ccll—f kB/dF{p,H}(lnp-i-l)

3N
dp OH op OH

— FE _— = — — 1

k5 /d {3171: 0¢; 0¢; 51%‘] (lnp+ )

- (355)

The terms linear in the derivatives of p can be transformed into factors of p, by
integrating by parts. This yields

ds Al o ( oH o ( oH
dar kB/dF;p[api<5qi(lnp+l>)3qi(8pi<lnp+l)>}

since the boundary terms vanish. On expanding the derivatives of the terms in
the round parentheses, one finds that some terms cancel

ds 92H OH dp
- =k b | p——— (1 1 - £
dt P / [p apz' a% ( np ) * 3% 3]%
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P dq; Op; Op; 0g;
OH 0p 0H Jp
- T | == £ _ = 2P
ks / d [ 0q; Op; Opi 8qzl (857)

which on integrating by parts yields

s N 92 H O2H
dat ks /dF; [ B p<3pi5qz‘> * p(apia%')]

= 0 (358)

Hence, the entropy of a state with a time-dependent probability density is con-
stant.

From the above discussion, it is clear that the entropy of a system can
only change if the Hamiltonian of the system is modified, such as by removing
an external constraint. A removal of an external constraint will increase the
volume of phase space to I}, . Furthermore, the assumption of equal a prior
probabilities implies that in the final equilibrium state the probability density
o' will be uniformly spread over the increased available phase space. From the
normalization condition

- / dr' (359)
one finds that in the final state, the probability distribution function is given by

1
P':F

a

(360)

Since the entropy is given by

S = —kp /drpln(pro> (361)

where T'g is constant and since I, > T',, the entropy will have increased by an
amount given by

F/
AS = kp In (r) (362)

a

as expected from thermodynamics.

Ezxample: Joule Free FExpansion
We shall consider the Joule Free Expansion of an ideal gas. The gas is ini-

tially enclosed by a container of volume V, but the a valve is opened so that the
gas can expand into an adjacent chamber which initially contained a vacuum.
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The volume available to the gas in the final state is V’/. Since the adjacent
chamber is empty, no work is done in the expansion.

The Hamiltonian for an idea gas can be represented by

3N
H=Y i (363)
pt 2m

so the sum of the squares of the is restricted by E. The volume of accessible
phase space is given by

3N

T, :ﬁ{/dpi /dqi}ci(E—Z 2%) (364)

=1

The integrations for the spatial coordinates separates from the integration over
the momenta. The integration over the three spatial coordinates for each particle
produces a factor of the volume. The integration over the momenta will produce
a result which depends on the energy f(E) which is independent of the volume.
Hence, the expression for the available phase space has the form

I, = VN f(E) (365)
On recognizing that the particles are indistinguishable, one finds that the en-

tropy is given by

r
S k‘B HFO

= Nkp WV + kg mf(E) — kg mnN! — Nkgln(27h)
(366)

where I'j is the measure of phase space that is used to define a single microscopic
state. Thus, the change in entropy is given by

V/
AS = Nkp In <V) (367)

The same result may be obtained from thermodynamics. Starting from the
expression for infinitesimal change of the internal energy

dU = TdS — PdV +udN (368)
and recognizing that Joule Free expansion is a process for which
dU = 0
dN = 0 (369)
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Therefore, one has

(370)

(371)

P
dS = —=dV
T
and on using the equation of state for the ideal gas P V = N kp T one finds
av

which integrates to yield

V/
AS = N kg In <V>

(372)

Hence, the expression for the change in entropy derived by using Statistical Me-
chanics is in agreement with the expression derived by using Thermodynamics.
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4 The Micro-Canonical Ensemble

4.1 Classical Harmonic Oscillators

Consider a set of IV classical harmonic oscillators described by the Hamiltonian
H

H—dEN: P, mwiq (373)
_izl 2m 2

The above Hamiltonian may be adopted as a model of the vibrational motion
of the atoms in a solid. However, it is being assumed that the vibrations of the
atoms are independent and are harmonic and all the oscillators have the same
frequency. Furthermore, our treatment will be based on classical mechanics.

We shall consider the system in the Micro-Canonical Ensemble, where the
energy is determined to within an uncertainty AFE

E>H>FE - AE (374)

The volume of accessible phase space ', is given by the integral

r, — ﬁ { /qui /C:dpi} {@(E—H) _O(E-AE-H)| (375)

where O(z) is the Heaviside step function. On transforming the coordinates to

pi = m wo ¢;, the Hamiltonian can be written in the form
A
H = m {P% + ]512} (376)

=1

so the accessible phase space is defined by the inequalities
dN
2mE>Z{p?+ﬁf]>2m(EAE) (377)
i=1

SO

-

i=1

Thus, the area of accessible phase space is proportional to the volume enclosed
between two 2d N-dimensional hyperspheres of radii v/2 m E and \/ 2m (E — AFE).
Therefore, we need to evaluate the volume enclosed by a hypersphere.

The Volume of a d-dimensional Hypersphere.
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The volume of a d-dimensional hypersphere of radius R has the form
Va(R) = C R? (379)

where C' is a constant that depends on the dimensionality d. The constant can
be determined by comparing two methods of evaluating the integral Iy, given

by
o0 o) o) d
I; = / dxy / dzs ... / dxzg exp[ — Z x?] (380)
— 00 — 00 — o0

i=1
In a d-dimensional Cartesian coordinate system, the integral can be evaluated
as a product of d identical integrals

o o 4])
{7}

= T

(381)

Alternatively, one may evaluate the integral in hyperspherical polar coordinates
as

oo
I; = Sy / dr i1 exp[ - 7“2} (382)
0
where the radial coordinate is defined by
r? =Y a? (383)
i=1

and Sy is the surface area of a d-dimensional unit sphere. This integral can be
re-written in term of the variable ¢ = 72 as

I, = %/ at tT exp[—t] (384)
0

The integration is evaluated as

o = %) (385)
where I'(n + 1) = nl! is the factorial function. On equating the above two
expressions, one obtains the equality

d
%ird) = (386)

Hence, we find that the surface area of a unit d-dimensional sphere, Sy, is given
by

vl

™

I°(

Sy = 2 (387)

ol

)
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Using this, one finds that the volume of a d-dimensional sphere of radius R is
given by

R
Va(R) = Sd/ dr 471
0
1
Sa = R

d
™

vl

Rd

SN

r

—~

ol

)
d
T2

Il
=y
ISH

ol
=
—~
[SlfSW
N

iR

iRl N
Jr
=

R¢ (388)

pas}

which is our final result.
The Volume of Accessible Phase Space

The volume of accessible phase space I', is proportional to the volume en-

closed by two 2d N-dimensional hyperspheres of radius v 2 m E and \/ 2m (E
Using the above results, one finds

TN ( 1 )dN|:(2mE)dN_(2m(E—AE))dN (389)

Lo = T(dN + 1) \'m wo
1 dN
<m w()) (390)

is the Jacobian for the coordinate transformations. The number of accessible
microstates Nr is then defined as

Iy
(27 h 4N

r(d]\}+1) (ni())d]v [1 - (1 - A;ym] (391)

The second factor in the square brackets is extremely small when compared to
unity since the term in the parenthesis is less than unity and the exponent is
extremely large. Therefore, it can be neglected

1 B dN
Np =~ T(dN +1) <hw0> (392)

where the factor of

Nr =

This implies that, for sufficiently high dimensions, the volume of the hyper-
sphere is the same as the volume of the hypershell.
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Derivation of Stirling’s Approximation

The Gamma function is defined by the integral

C(n+1) = /Ooodx " exp{ - x] (393)

which, for integer n coincides with n!. This can be verified by repeated integra-
tion by parts

'n+1) = / dxx"exp{a:]
0
—/0 dzx”%ex {—x]
= —x"exp[—x} —|—n/ dz 2"~ 1 exp[—x}
0 0

= n/ de 2"t exp{x]
0

n T'(n)

(394)
which together with
(1) :/Ooodm exp[—x} =1 (395)
leads to the evaluation of the integral as
F'n+1) = /Ooodxx" exp{:c} = nl (396)
for integer n.

Stirling’s approximation to Inn! can be obtained by evaluating the integral
using the method of steepest descents.

n!:/ dxexp{x Jrnlnx} (397)
0

The extremal value of x = x. is found from equating the derivative of the
exponent to zero

—14+ 2 =0 (398)
Te
This yields . = n. On expanding the integrand to second order in (z — z. ),

one has

n! = dr exp| — z. + nlnz. | exp| — — (& — z.) (399)
0 c
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On extending the lower limit of the integration to —oo, one obtains the approx-
imation

n! = [mdx exp[ -z + nlnzc} exp[ - 27;% (z — xc)Z]
2 2
= 2T % exp[ -z, +n lnxc} (400)
n
This is expected to be valid for sufficiently large n. On setting z. = n, one

has
n! \/mexp[—n —|—nlnn] (401)
Stirling’s approximation is obtained by taking the logarithm, which yields
lnn!:nlnn—n+%ln(27rn) (402)

Stirling’s approximation will be used frequently throughout this course.
The Entropy

The entropy S is given by
S = kB In NF

= dNkg <E> — kg In(dN)! (403)
h wo

The logarithm of N! can be approximated for large N by Stirling’s approxima-
tion. This can be quickly re-derived by noting that

InN! = nN + In(N—1) + In(N —2) + In2 + Inl (404)

For large N, the sum on the right hand side can be approximated by an integral

N
InN! = / dr Inz
0

N
~ z(lnzx — 1 )‘
0
~ N(lnN — 1) (405)
which results in Stirling’s approximation
InN! = N(InN — 1) (406)

Using Stirling’s approximation in the expression for the entropy S, one obtains

E
S(E,N) = dN kg ln(hw> — kpdN (In(dN) — 1)
0
C dANkp I (—E )+ kpaN (407)
- BTN R w B
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which shows that the entropy is an extensive monotonically increasing function
of E. This is the fundamental relation. In the Micro-Canonical Ensemble, the
energy E is the thermodynamic energy U.

The temperature is defined by the derivative

1 oS

— = (== 4

T <8U)N (408)
which yields

1 d N kg

— = 2B 4

T i (409)

Hence, we find that the internal energy U is given by
U=dNkgT (410)

which shows that each degree of freedom carries the thermodynamic energy
kp T. The specific heat at constant volume is then found as

Cy = dN kg (411)

which is Dulong and Petit’s law'3. Dulong and Petit’s law describes the high-
temperature specific heat of solids quite well, but fails at low temperatures
where the quantum mechanical nature of the solid manifests itself.

4.2 An Ideal Gas of Indistinguishable Particles

The Hamiltonian for an ideal gas is written as the sum of the kinetic energies

AN o
H = P (412)
; 2m
=1
The gas is contained in a volume V with linear dimensions L, such that
vV =114 (413)

where d is the number of dimensions of space. In the Micro-Canonical Ensemble,
the energy is constrained to an interval of width AE accorsing to the inequality

E>H >FE - AFE (414)

The volume of accessible phase space I', is given by the multiple integral

r, = ﬁ { /OL dq; /O; dpi} {@(E—H) — ©(E-AE—H) | (415)

13A-T. Petit and P.-L. Dulong, “Recherches sur quelques points importants de la Théorie
de la Chaleur”, Annales de Chimie et de Physique 10, 395-413 (1819).
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The integration over the coordinates can be performed, leading to the expression

dN o

r, = H{L/oo dpi}[@(EH) G(EAEH)]

i=1

LN ﬁl { /z dpi} [G(EH) - @(EAEH)}

_ N ﬁl { /O; dpi} [@(E—H) - @(E—AE—H)} (416)

The step functions constrain the momenta such that

AN
2mE > Y pl >2m(E - AE) (417)

i=1
Thus, the integration over the momenta is equal to the volume contained be-

tween two dN-dimensional hyperspheres of radiiv 2 m F and \/ 2m(E — AE) .
Using the expressions for the volume of a dN dimensional hypersphere

aN
w2

Van(R) = ————— RW (418)
P +1)
which yields
dN dN dN
Tz 2 AE \ 2
r, = vV 2mE 1- (1 - ==
e CmF) -0 )
=3 E2 d NAE
= YN _T (2mE> <1—e [— ])(419
T+ 1) S By )
Since i NAE
the volume of accessible phase space is given by
o -
T2
r, = V¥N ———— (2mE 421
. o (2mF) (421)

However, for an ideal gas of identical particles, we have to take into account that
specifying all the momenta p; and coordinates g; of the IV particles provides us
with too much information. Since the N particles are identical, we cannot dis-
tinguish between two points of phase space that differ only by the interchange of
identical particles. There are N! points corresponding to the different labelings
of the particles. These N! points represent the same microstates of the system.
To only account for the different microstates, one must divide the volume of
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accessible phase space by N!. Hence, the number of microscopic states Nr is
given by

r
N, - e
r N' (27 h )N
anN
VN mE \?
TN ) <27th) (422)
The entropy S is given by the expression
S = kB In Nra
VN mE &2
= kpl
B H[N! T(Z +1) <2wh2) }
VN mE\?
[ (25) ] -
On using Stirling’s formulae
InN! = N(InN — 1) (424)

valid for large N, one finds

1% dN mFE d
= N | — — 1 _— N - N 42
S kg n(N) =+ 5 kg 11(271'712 d2 ) + kg + 5 kg ( 5)

or

S = Nkp 1n[(]‘\/[> (%)d} + (d;FQ)NkB (426)

On identifying E with U, the thermodynamic energy, one has the fundamental
relation S(U,V, N) from which all thermodynamic quantities can be obtained.

The intensive quantities can be obtained by taking the appropriate deriva-
tives. For example, the temperature is found from

1 aS
Y e (427)
T ou VN
which yields
1 d N kp
T~ 20 (428)
Hence, we have recovered the equation of state for an ideal gas
d N
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Likewise, the pressure is given by

P oS
- (2= 430
r = (57 ) 30
which yields
P N kp
— = 431
which is the ideal gas law. The chemical potential x is found from
I a8
_ 2 _ (= 432
r = (%), 6

which yields

o K m U g _d+2 d + 2
r | () (orrw) | - (55w (7))

(433)
Since U P
7]
dN ~— 2 (434)
one has .
n VY (ks TV
(5] e
This can be re-written as
% — kg mP + f(T) (436)

where P is the pressure and f(T") is a function of only the temperature 7'

On substituting the equation of state
dN

into the expression for the entropy, one finds

d
% m kg T\ ? d + 2
This is the Sackur-Tetrode formula for the entropy of an ideal gas.
A= h (439)

(27 mkgT)?

The SackurTetrode equation was derived independently by Hugo Martin Tetrode
and Otto Sackur, using Maxwell-Boltzmann statistics in 1912.
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Note that the factor )
(27mkpT)2 (440)

has the character of an average thermal momentum of a molecule. We can define
A via b
A= : (441)
(27mkpT)z
as a thermal de Broglie wave length associated with the molecule. The entropy
can be re-written as

S = Nk In {V} 4 (d * 2) N kp (442)

N M 2

which shows that the entropy S is essentially determined by the ratio of the
volume per particle to the volume A% associated with the thermal de Broglie
wavelength. The classical description is approximately valid in the limit

— > 1 443
where the uncertainties in particle positions are negligible compared with the
average separation of the particles. When the above inequality does not apply,
quantum effects become important.

The Momentum Distribution of an atom in an Ideal Gas

The probability that a particle has momentum of magnitude |p| can be ob-
tained using the Micro-Canonical Ensemble. The probability is found from the
probability distribution by integrating over the coordinates of all the particles
and integrating over all the momenta of the other particles. Thus, we find the
momentum probability distribution function P(|p|) via

= g o} Lo
X {@<2mE - df:;ﬁ) - ®<2m(E— AE) — dzN:pfﬂ

i=1 i=1

(444)

which is evaluated as

d(N—1)

AN 2mE — |B\2 ’
Pp) = — otz * D ( )

d

m DA 4 1) (2 E)
m
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dnN-1) |pl? ]

dN gexp|:— 2 2mE
27
<2mE)

(dN >g exp[ _dN - Ipf ] (445)

vl

Q

4dTmmkE 2 2mFE

Which is the desired result. On using the thermodynamic relation for the energy

one obtains the Maxwell distribution
_d
2

P(pl) = <2ﬂkaT>

which is properly normalized.

4.3 Spin One-half Particles

A system of spin one-half particles is described by a discrete not continuous
phase space. The discreteness, is due to the discrete nature of the quantum
mechanical eigenvalues.

AEE A

i=1 i=2 i=3 i=4 i=N-1  i=N

Figure 22: A set of N spins, in the presence of a uniform applied magnetic field
H? directed along the z-axis. The spins are quantized along the z-direction, so
their S* components are given by +7/2.

Consider a set of N spin one-half particles, in an applied magnetic field. The
particles may be either aligned parallel or anti-parallel to the applied magnetic
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field H*. The Hamiltonian describing the spins is given by

N
H = —gup ) S H (448)
i=1
where S* = £ % If one defines the total magnetic moment as
N
M* =gup ) 5 (449)

one finds that the energy is determined by the magnetization via
H = — M* H? (450)

Therefore, if the energy has a fixed value E, the accessible microstates are
determined by the fixed value of the magnetization M?*. We shall introduce the
dimensionless magnetization as

m = M?/ug (451)

Hence, for a fixed energy there are (N 4+m)/2 spin-up particles and (N —m)/2
spin-down particles. The number of ways of selecting (N + m)/2 particles out
of N particles as being spin up is given by

N!

(NQm)!

since there are N ways of selecting the first particle as being spin up, (N — 1)
ways of selecting the second particle as being spin up, etc. This process continues
until the (N +m)/2 spin-up particle is chosen and this can be selected in (N +
1—(N+m)/2) ways. Since the number of choices is multiplicative, the product
of the number of choices give the result above. However, not all of these choices
lead to independent microstates. Interchanges of the (IN+m)/2 spin up particles
between themselves lead to identical microstates. There are ((N +m)/2)! such
interchanges. The total number of discrete microstates with magnetization m
is found by diving the above result by ((N +m)/2)!. The end result is Nt given
by

(452)

=) (=)

S = kB IIINF (454)

Nr =

(453)

The entropy S is found from
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which is evaluated as

N!

) ()

N N
— kg N — kg 1n< ;m)' ~ kg ln<2m>'

S = kB In

— ks N N — kg (N;m) 1n<N;m> — kg (NQm) ln<N2m>

(455)

where we have used Stirling’s approximation in the last line. Hence, the entropy
has been expressed in terms of n and m or equivalently in terms of £ and N,

This is the fundamental relation, from which we may derive all thermodynamic
quantities.

o -
X ~
—
£
w 1y
13
05
L 0.5 0.5 1
_l L
-1 -0.5 0 0.5 1 N
E/NpgH E/NpgH

Figure 23: The entropy S(FE) as a function of entropy E for a model of a system
of spins in a magnetic field is shown in (a). Since the energy is bounded from
above, the entropy is not a monotonically increasing function of E. This has the

consequence that T can become negative when there is population inversion, as
is indicated in (b).

On identifying the fixed energy with the thermodynamic energy, one may
use the definition of temperature

% _ <§5>N (456)

_ oS am

- (), (&)
_ a8 1
- <8m>N up H,
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(457)

Therefore, one has

up H? 1 N+m 1 N-—m
= —1In — —In
kg T 2 2 2
1 N+m
5 n (N — m) (458)
This can be exponentiated to yield
2 up H*? N+m
2RB 27 | 4
exp[ i T ] (N—m) (459)
which can be solved for m as
. exp[22 0] — ]
m = 2 up H?
exp[ikB —] + 1
pps H*
= N h 4
tan ( p T ) ( 60)

Hence, the magnetization is an odd function of H? and saturates for large fields
and low temperatures at + N. Finally, we obtain the expression for the thermal
average of the internal energy

HZ
U = — N up H? tanh L5 (461)
kg T

which vanishes as the square of the field H? in the limit of zero applied field,
since the Hamiltonian is linear in H* and since the magnetization is expected
to vanish linearly as H? vanishes.

Zero Applied Field

We shall now determine the magnetization probability distribution function
in the limit of zero applied magnetic field. The spins of the particles may either
be aligned parallel or anti-parallel to the axis of quantization. There are a total
of 2V possible microstates. Hence, for zero applied field

Np = 2V (462)

Since all microstates are assumed to occur with equal probabilities, the proba-
bility of finding a system with magnetization m is given by

1 N!

" () ()

e
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which is normalized to unity. On using the more accurate form of Stirling’s
approximation that we found using the method of steepest descents

InN! = In(27#N) + NInN — N

N~ N~

ln(27r)+(N+%)lnN—N (464)

in In P(m), one obtains

1 1
InP(m) = —N1n2751n(27r)+(]\7+§)1n]\7
N + 1 m N m
- 1+ ——)In=(1+ —
7 ! SRR
N + 1 m N m
— — —— ) In— (1 - = 465
7 ! SR N) ()
On expanding in powers of m, the expression simplifies to
1 1 2
WPm) ~ -3 WN - o In(27) + 2 - 2m—N + ... (466)

Hence, one finds that the magnetization probability distribution function P(m)
is approximated by a Gaussian distribution

Pm) ~ FLN exp[ - QmH (467)

Therefore, the most probable value of the magnetization is m = 0 and the
width of the distribution is given by v/N. This is small compared with the
total range of the possible magnetization which is 2 N. Most of the microstates
correspond to zero magnetization. This can be seen as total number of available
microstates is given by

2N (468)

and since the number of states with zero magnetization is given by

N! 2 N
N2 (N2 T NV a N

(469)

Thus, this implies that, for H* = 0, the relative size of the fluctuations in the
magnetization is small.

4.4 The Einstein Model of a Crystalline Solid

The Einstein Model of a crystalline solid considers the normal modes of vibra-
tions of the lattice to be quantized, and it assumes that the frequencies of the
all the normal modes are identical and equal to wg. It is a reasonable approx-
imation for the optical phonon modes in a solid. For a solid with N unit cells,
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Figure 24: The exact probability distribution P(m) of the magnetic moment
m for a system of IV spins, and the approximate Gaussian distribution. After
scaling m with the size of the system N, the width of the distribution decreases
on increasing N.

where there are p atoms per unit cell, one expects there to be N’ = 3(p—1)N
optic modes. The remaining 3N modes are expected to be acoustic modes.

Consider a set of N/ quantum mechanical harmonic oscillators in the Micro-
Canonical Ensemble. Each oscillator has the same frequency wgy. The total
energy F is given by the sum of the energies of each individual quantum oscil-

lator
N’ 1
E:Z}hw()(ni—kz) (470)

where n; is the number of quanta in the i-th oscillator. The possible values of
n; are the set of 0, 1, 2, ..., co. The last term in the round parenthesis is the
zero-point energy of the i-th oscillator.

If we subtract the zero-point energy for each quantum oscillator, then the en-
ergy F... available to distribute amongst the N’ quantum mechanical harmonic
oscillators is given by

Buowe = E — N’ (E;O) (471)

The excitation energy F... is to be distributed amongst the N’ quantum oscil-
lators

N/
Eezc = Z th Uz (472)
=1
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The total number of quanta ) available to the entire system is given by

Beae _ doni=Q (473)

which acts as a restriction on the possible sets of values of n;. Each possible
distribution of the @) quanta is described by a set of integer values, {n;}, which
uniquely describes a microstate of the system. In any allowed microstate the
values of {n;} are restricted so that the number of quanta add up to Q.

There are (Q quanta which must be distributed between the N’ oscillators.
We shall count all the possible ways of distributing the ) quanta among the
N’ oscillators. Let us consider each oscillator as a box and each quanta as a
marble. Eventually, the marbles are to be considered as being indistinguishable,
so interchanging any number of marbles will lead to the same configuration. We
shall temporarily suspend this assumption and instead assume that the marbles
could be tagged. Later, we shall restore the assumption of indistinguishability.

n,=0 n,=1 ny=0 n,=3 ng=1 ng=2

Figure 25: One microscopic state of a system in which @ quanta have been
distributed amongst N’ oscillators (@ = 7, N’ = 6).

The Number of Distinguishable Ways

The number of ways of putting @ marbles in N’ boxes can be found by
arranging the boxes in a row. In this case, a box shares a common wall with
its neighboring boxes so there are N’ + 1 walls for the N’ boxes. If one con-
siders both the walls and marbles as being distinguishable objects, then in any
distribution of the marbles in the boxes there are Q + N’ + 1 objects in a row.
If there are n; marbles between two consecutive walls, then that box contains
n; marbles. If there are two consecutive walls in a distribution, then that box
is empty. However, the first object and the last object are always walls, so
really there are only Q + N’ —1 objects that can be re-arranged. Therefore, the
total number of orderings can be found from the number of ways of arranging
Q@ + N’ — 1 objects in a row. This can be done in

(Q+N'—1)! (474)
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number of ways. This happens since there are Q + N’ — 1 ways of selecting the
first object. After the first object has been chosen, there are Q + N’ — 2 objects
that remain to be selected, so there are only Q + N’ — 2 ways of selecting the
second object. Likewise, there are Q + N’ — 3 ways of choosing the third object,
and this continues until only the last object is unselected, in which case there
is only one possible way of choosing the last object. The number of possible
arrangements is given by the product of the number of ways of making each
independent choice. Thus, we have found that there are (Q + N’ — 1)! possible
ways of sequencing or ordering (Q + N’ — 1) distinguishable objects.

The Number of Indistinguishable Ways

We do need to consider the walls as being indistinguishable and also the
marbles should be considered as indistinguishable. If we permute the indistin-
guishable walls amongst themselves, the ordering that results is identical to the
initial ordering. There are (N’ —1)! ways of permuting the N/ —1 walls amongst
themselves. Hence, we should divide by (N’ — 1)! to only count the number of
orderings made by placing the marbles between indistinguishable walls. Like-
wise, if one permutes the ) indistinguishable marbles, it leads to an identical
ordering, and there are Q! such permutations. So we have over-counted the
number of orderings by !, and hence we also need to divide our result by a fac-
tor of Q!. Therefore, the total number of inequivalent ways Nr of distributing
QQ indistinguishable marbles in N’ boxes is given by

(N'+Q—1)!
(N =1 Q!

This is equal to the total number of microstates N consistent with having a
total number of quanta @ distributed amongst N’ oscillators.

Np = (475)

The Entropy

In the Micro-Canonical ensemble, the entropy S is given by the logarithm
of the number of accessible microstates Nt

S = kg In Np (476)

On substituting the expression for Nr, one obtains

_ (N'+Q—1)!
s = b )
= kp {ln(N'—&—Q—l)! — In(N' —1)! — InQ! (477)

On using Stirling’s approximation

mN! ~ N(In N — 1) (478)
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valid for large N, for all three terms, after some cancellation one has
S~ kg | (N+Q-1) n(N'+Q—1) — (N'=1) In(N' = 1) —Q InQ | (479)

which is valid for large Q and N’. Tt should be recalled that Q = (Eeze/h wo),
so S is a function of the total energy E. The above relation between the entropy
and the total energy is the same as the relation between the entropy and the ther-
modynamic energy U. The expression for S in terms of U is the “Fundamental
Relation” for the thermodynamics of the model.

0 1 2 3 4

Figure 26: The entropy S(FE) versus the dimensionless excitation energy, for the
Einstein model for the specific heat a solid.

We shall now consider the system to be in thermal equilibrium with a thermal
reservoir held at temperature T'. The temperature is defined by

; _ (gi)}\] (480)

() (ar)

= kg |:1H(N/+Q1) — IHQ:| <gg)
kg

= {ln(NW—Q—l)—an}

which yields

NI~

th

= ks ln<Nl+Q_1>

h(JJO Q
k‘B ho.)() ( N — 1) + Ue:L’c

= 1 481
h wo n( Uecze (8)
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where it is now understood that the energy is the thermodynamic value U that
is determined by 7. On multiplying by 7 wo/kp and then exponentiating the
equation, one finds

h wo hOJQ(N/—l)-i-UCwC
= 482
P |: kB T :l ( Uexc ( )
or on multiplying through by Uc,.
h
Usze exp [ o } = hwo (N — 1) + Uspe (483)
kg T
This equation can be solved to yield Ue;. as a function of T
h N -1
Uexc - 0 E’Lw ) (484)
eXp[ ﬁ] -1

We can neglect the term 1 compared with N’ since, in our derivation we have
assumed that N’ is very large. Since

NI
Uewe = Y hwy (485)
i=1

we have found that the thermodynamic average number of quanta 7 of energy
hwp in each quantum mechanical harmonic oscillator is given by

1
m = (486)
exp| kF;on ] -1

If we were to include the zero point energy, then the total thermodynamic energy

is given by
T 1
n; =
2
N/

th 2
(eXp[h“"’]—l +1)
=1 kp T

B h wo (exp[ ;?Bw%] + 1)

2 exp| kzw‘%] -1

h wo h wo
= N’ h 4
5 cot (2 . T) (487)

N/
h wo

d
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i

7N

I
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The specific heat of the Einstein model can be found from

o - (%) s
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Figure 27: The specific heat of diamond compared with the results of the Ein-
stein Model. The parameter O = & wy/kp is a characteristic temperature
that has been assigned the value ©p = 1320 K. [After A. Einstein, Ann. Physik
22, 180-190 (1907).]

which yields

howo )’ exp| 1244 |
Cy = N'k ( ) 2 489
v PA\kpT) (exp] hag ] — 1) (489)

The specific heat tends to N'kp for temperatures kg T' > & wy, as is expected
classically. However, at low temperatures, defined by kg T' < & wy, the specific
heat falls to zero exponentially

Cv o~ Nk (1) i 490
v = B m €xXp _kBT ( )

Therefore, the specific heat vanishes in the limit 7' — 0 in accordance with
Nernst’s law. However, the specific heat of most materials deviate from the
prediction of the Einstein model at low temperatures.

4.5 Vacancies in a Crystal

Consider a crystal composed of N identical atoms arranged in a periodic lat-
tice. If an atom is on a proper atomic site, then it has an energy which we
shall define to have a constant value denoted by — e. If an atom moves to
an interstitial site, it has an energy of zero. This is because it may diffuse to
the surface and escape from the crystal. Alternatively, the excitation energy
required to unbind an atom from its site and, thereby create a vacancy is given
by €. We are considering the number of vacancies to be much smaller than
the number of lattice sites, so that we can neglect the possibility that two va-
cancies sit on neighboring lattice sites, so we can neglect any effects of their
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Figure 28: A schematic depiction of a crystalline solid composed of N atoms
which contains N, vacancies.

interactions. The number of possible vacancies n; on the single lattice site i, is
restricted to have values zero or one. That is, there either is a vacancy or there
is not. Also, we should note that the total number of vacancies is not conserved.

Let us consider a lattice with N, vacancies. This state has an energy which
is greater than the energy of a perfect lattice by the amount U = N, e. We
should note that the vacancies are indistinguishable, since if we permute them,
the resulting state is identical. The number of distinct ways of distributing N,
indistinguishable vacancies on N lattice sites is given by

A = (NU! (NN!— N, )!) (491)

This is just the number of ways of choosing the lattice sites for N, distinguish-
able vacancies N!/(N — N,)!, divided by the number of permutations of the
vacancies N,!. Dividing by N,! then just counts the vacancies as if they were
indistinguishable.

In the Micro-Canonical Ensemble, the entropy is given by
S = ]{?B In NF (492)

which on using Stirling’s approximation, yields
S ~ kp| NlnN — N,ln N, — (N — N,) In( N — N, ) |(493)
which is a function of U since U = N, e.

The energy can be expressed in terms of temperature, by using the relation
1 oS
— = (== 494
r = (), “s4)
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since the entropy is a function of energy. This yields

1 (05 (0N,
T ~ \oN,) \oU

— ko | (N = Ny -, | (G

ou

_ kB{ln(N—Nv) —1an}

€

kp N — N,

After multiplying by €¢/kp and exponentiating, the expression can be inverted
to give the number of vacancies

N

Ny = ———————
exp[m} + 1

(496)

which shows that the average number of thermally excited vacancies on a site
is given by
N, 1
o (497)
N eXp[kB = + 1

The thermodynamic energy U at a temperature 7' is given by the expression

N
g (498)
expl=7] + 1

At low temperatures, € > kg T, this reduces to zero exponentially.

€
U=N - 499
€ exp [ i T ] (499)
At high temperatures (where the approximate model is not valid) half the lat-
tice sites would host vacancies.

The specific heat due to the formation of vacancies is given by the expression

2
€ 2 €
= N sech
C kp <2 o T) sec <2 . T) (500)

which vanishes exponentially at low T as is characteristic of systems with exci-
tation gaps in their excitation spectra. At high temperatures, the specific heat
vanishes as the inverse square of 7', characteristic of a system with an energy
spectrum bounded from above. This form of the specific heat is known as a
Schottky anomaly or Schottky peak. The above expression has been derived
from the configurational entropy of the vacancies. In real materials, there will
also be a vibrational entropy since vacancies will cause local phonon modes to
form.
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Figure 29: The Schottky specific heat versus temperature of a model of vacancies
in a crystalline solid composed of N atoms.

5 The Canonical Ensemble

The Canonical Ensemble describes a closed system that is divided into two
parts, each with a fixed number of particles and fixed volumes. However, the
two subsystems can exchange energy with each other. One subsystem is the
system which is the focus of our interest. The second subsystem is assumed to
be much larger than the system of interest and is known as the environment.
The properties of the environment will not be of direct interest and its main
role will be to act as a thermal reservoir which absorbs or supplies energy to
the system of interest. The distribution function for the subsystem of interest
can be derived from the Micro-Canonical Probability Distribution Function for
the total system.

5.1 The Boltzmann Distribution Function

The total energy of the complete system Erp is partitioned into the energy of
our subsystem E and that of the thermal reservoir Er

Er = Eg + E (501)

where the interaction energy between the system and the environment has been
assumed to be negligible. The infinitesimal volume element of total phase space
dI'r is also assumed to be factorizable in terms of the products of the volume
elements of the thermal reservoir dI' g with the volume element of our subsystem
dl'. This assumes that every degree of freedom for the total system can be
uniquely assigned either to the thermal reservoir or to the system of interest.
Hence, we assume that

dl'y = dl'g dl’ (502)
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The probability dpr of finding the total system in the volume element of phase
space dI' is described by the constant Micro-Canonical Distribution Function

anc

de = Pmec dl'g dT’ (503)

The probability dp for finding the subsystem in the phase space volume element
dI' associated with the energy H = F is found by integrating over all the
phase space of the reservoir, consistent with the reservoir having the energy
Hr = Epr — FE. Hence,

dp = pme Tr(Er — E) dT (504)

where I'r(Er — E) is the volume of phase space accessible to the reservoir.
However, the entropy of the reservoir is related to the volume of its accessible
phase space via

FR(ET - E) = FR,O exp |: SR(ET - E)/kB :| (505)

where I'g o is the volume of phase space associated with one microscopic state of
the reservoir. Hence, the probability density for the system of interest is given
by
dp

(dF) = pme IR0 €Xp { Sr(Er — E)/kB } (506)
where p,,c is just a constant. The energy of our subsystem E is much smaller
than the energy of total system, Er since the energy is extensive and the thermal
reservoir is much larger than our subsystem. Hence, it is reasonable to assume
that the reservoir’s entropy can be Taylor expanded in powers of E and also
that the second and higher-order terms can be neglected. That is

ISr(E)

Sr(Er — E) = Sr(ET) — “OE

E + .. (507)

Er

but one recognizes that the derivative of the reservoir’s entropy w.r.t. energy is
defined as the inverse of the temperature T' of the thermal reservoir

OSRr(E)
oF

Er

1
7 (508)

Hence, the probability distribution function p. for finding the system in some
region of its phase space, as described in the Canonical Ensemble, depends on
the energy of the system FE via

(fgﬂ) I'o = pmeT'ro Ty exp [ SR(ET)/kB] exp[ ~ 8 E]
= gow| - o8] (509)
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where Z is a constant and I'g is the volume of phase space of the system which
is used to define a single microscopic state. The factor pp,. I'ro I'o is a di-
mensionless constant which is independent of the specific point of the system’s
phase space, as is the first exponential factor. It is to be recalled that the region
of phase space dI" under consideration corresponds to a specific value of the sys-
tem’s energy F, hence one can express the Canonical Probability Distribution
Function as

pellpad) To = 7 exv| = 8 Hilpia) (510

which depends on the point {p;,¢;} of the system’s phase space only via the
value of the system’s Hamiltonian H ({p;, ¢;}). The dimensionless normalization
constant Z is known as the Canonical Partition Function. The normalization

condition
- [ (%)
[ octpa)
— = = exp[ - B H({pi7Qi})] (511)

can be used to express the Canonical Partition Function Z as a weighted integral
over the entire phase space of our system

= /% exp[ - ﬁH({pi>Qi}):| (512)

where the weighting function depends exponentially on the Hamiltonian H.
Hence, in the Canonical Ensemble, the only property of the environment that
actually appears in the distribution function is the temperature T'. The distri-
bution function p.({p;,¢;}) is known as the Boltzmann Distribution Function.
In the Canonical Ensemble, averages of quantities A({p;,¢;}) belonging solely
to the system are evaluated as

—/—Am%Mm—ﬁmmm> (513)

where the range of integration runs over all the phase space of our system,
irrespective of the energy of the element of phase space. In the Canonical Dis-
tribution Function, the factor that depends exponentially on the Hamiltonian
replaces the restriction used in the Micro-Canonical Ensemble where integration
only runs over regions of phase space which corresponds to a fixed value of the
energy F.

The Relation between the Canonical Partition Function and the Helmholtz
Free-Energy

108



If the partition function is known, it can be used directly to yield the ther-
modynamic properties of the system. This follows once the partition function
has been related to the Helmholtz Free-Energy F(T,V, N) of our system via

Zexp{ﬂF} (514)

This identification can be made by recalling that the partition function is re-
lated to the Micro-Canonical Distribution Function p,,. and the entropy of the
thermal reservoir with energy Er via

% = FT,Ci Pmec €XP |: SR(ET)/kB :|
= % exp [ Sr(ET)/kB } (515)

where the products of the volumes of phase space representing one microscopic
state of the reservoir I'p o and one microscopic state of the subsystem I'y has
been assumed to be related to the volume of phase space I'7 representing one
microscopic state of the total system by the equation I'ro I'v = I'r. The
second line follows from the relation between the Micro-Canonical Distribution
Function of the total system with the entropy evaluated at Epr. However, for
the total system, one has

I'ro _
W = exp[ — ST(ET)/]CB

_ exp[ ~ (Sp(Br-U) + SU))/ks (516)

where we have used the fact that the thermodynamic value of the entropy is
extensive and the thermodynamic entropy of the subsystem is evaluated at
the thermodynamic value of its energy U. (One expects from consideration of
the maximization of the entropy that the thermodynamic energy U should be
equal to the most probable value of the energy. However, as we shall show, the
thermodynamic energy also coincides with the average energy E.) On combining
the above two expressions, one finds that

1
7 = o]~ (Sn(Br-0) = SalEr) + SO))ka | 61D
which on Taylor expanding the first term in the exponent in powers of the

relatively small average energy of the system U yields
1

7 = exp[ﬁ U — S(U)/kB] (518)

where the higher-order terms in the expansion have been assumed negligible.
Since the Helmholtz Free-Energy of the system is described as a Legendre trans-
formation of the system’s energy U(S,V, N)

F =U — TS(U) (519)
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then F is a function of the variables (T, V, N). Hence, since recognizes that the
Canonical Partition Function is related to the Helmholtz Free-Energy F of the
subsystem of interest via

Z:exp[—ﬁF} (520)

it is also a function of the variable (T, V| N). For thermodynamic calculations,
it is more convenient to recast the above relation into the form

F=—kgT InZ (521)

The Equality between the Average and the Thermodynamic Energies.

The above analysis is completed by identifying the thermodynamic energy
U with the average energy E. First we shall note that within the Canonical
Ensemble, the average energy E is defined as

- % /% H({pi gi}) exp[ _ ﬁH({pi.Qi}):| (522)

which can be re-written as a logarithmic derivative of Z w.r.t. [, since the
numerator of the integrand is recognized as the derivative of Z w.r.t. g

B o= g [E ew-sutan] )

= - (523)

However, In Z is also related to the value of the Helmholtz Free-Energy F', so
one has

= 0
E = 55 (8F)
oF
= F+ 855
oF
- F+TS (524)

where F' is the Helmholtz Free-Energy of thermodynamics and the thermody-
namic entropy S has been introduced via

110



Hence, since the Free-Energy and the thermodynamic energy are related via
F =U—TS, one finds that o
E=U (526)

This shows the thermodynamic energy U coincides with the average energy E
when calculated in the Canonical Ensemble.

5.2 The Equipartition Theorem

5.3 The Ideal Gas

An ideal gas of N particles moving in a d-dimensional space is described by the
Hamiltonian

dN
Hy = Y i (527)
N 2m

i=1
and the particles are constrained to move within a hypercubic volume with lin-
ear dimensions L.

The partition function Zy is given by

1 dN oo L
o = srrzem W [ [ oafow| = o] o

Since the Hamiltonian is the sum of independent terms, the expression for Zx
can be expressed as a product of dN terms

1 i > Bp:l [
In = N!(Qﬂh)dNil:[l{/—oodpiexp{_ Qm} /0 d%}
1 N2 m\?
= N(27h)W H{< 8 ) L}

- o { (457) 2}

dN

VN (mkg T\ °
_ 2
N!<27rh2) (529)

On introducing the thermal de Broglie wave length A, via
h

A = i (530)
(27mkpT)z

Zy = % (;)N (531)

one finds
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Thermodynamic quantities can be obtained by recalling that the Helmholtz
Free-Energy is given by
F = —/{JBT hlZN (532)

and by using Stirling’s approximation

InN!' = N InN — N (533)
which yields
F— -NkyThL (534)
- BL AN M
One can find all other thermodynamic functions from F'. Thus, one can obtain
the entropy from
oF
S = -\ = (535)
)y
* % d
e
S = Nkg ln(N)\d)+2Nk:B (536)

which is the Sackur-Tetrode formula.

It is quite simple to show that the chemical potential u is given by

N M

p = kpT In (537)

The condition under which the classical description is a expected to be a rea-
sonable approximation is given by

Hence, we discover that the classical approximation is expected to be valid
whenever

exp[ - 5,1} > 1 (539)

5.4 The Entropy of Mixing

The entropy of mixing is associated with the factor of N! needed to describe the
microstates available to a gas of identical particles. This factor is required to
make the entropy extensive so that on changing scale by a factor of s we have

S(sE,sV,sN) = s S(E,V,N) (540)

The N! is also needed to make the expression for the chemical potential inten-
sive.

Consider a container partitioned off into two volumes V; and V5. The
containers hold N; and N5 gas molecules respectively, and assume that the
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molecules have the same masses and the gasses are kept at the same temper-
ature (or average energy per particle). Then consider removing the partition.
If the gas molecules in the two containers are indistinguishable, then in the
Micro-Canonical Ensemble the entropy of the final state is given by

Ly
Sindis = kp In [( Ni + No )l (27 h)di+N2) } (541)

which corresponds to dividing the enlarged accessible phase space I'; by a factor
of ( N1 + N3 )! to avoid over-counting the number of microstates. Equivalently,
in the Canonical Ensemble the partition function Z is given by

N1+N2
(Vl + Vs )
I
(542)

(N1 + Nyl

Zindis =

However, if the molecules are distinguishable, the accessible phase space of the
final state is the same as that for indistinguishable particles. However, it should
be divided by N;! Ns! corresponding to the number of permutations of like
molecules. In this case, the final state entropy is given by the expression

L'y
Sdis = kB In |:( Nll N2‘) (27rh)d(N1+N2) :| (543)

Ni1+N2
(Vl + V2>
5X

(NN,

Since in this case the final state consists of a mixture of distinct gasses, the en-
tropy of the mixture must be larger than the entropy of the mixture of identical
gasses. That is, it is expected that work would have to be expended to separate
the distinct molecules. The entropy of mixing is defined as

or equivalently

Zdis =

(544)

Smim = Sindis - Sdis (545)

and since I', are identical, it is found to be given by

Smiz = ]{iB hl( N1 + N2 )' - kB ln( N1' NQ')
= (N1 + N2 ) kB ln( N1 + Nz) - N1 kBIIlNl - N2 kBlnNg
N1 N2
= —Nikpln————+ — Nokpln ———
PR N, T PPN N,
Ny Ny No

= — (N1 + N2 ) kg

No

which has a form reminiscent of Shannon’s entropy.
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5.5 The Einstein Model of a Crystalline Solid

We shall revisit the Einstein model of a Crystalline Solid, in the Canonical
Ensemble. The Hamiltonian of N’ harmonic oscillators with frequency wq takes

the form
. N 1
H:iz_;hwo(m+2> (547)

in the number operator representation. The set of possible eigenvalues of n; are
the integer values 0, 1, 2, 3, ..., co. In this occupation number representation,
the partition function Zy- is given by the trace

Znt Trace eXp[ - B IA{}

N
Traceexp[—,é’Zhwo(ni—i—;)] (548)
i=1

where the Trace is the sum over all the set of quantum numbers n; for each
oscillator. Hence, on recognizing that the resulting expression involves the sum
of a geometric series, we have

N’ oo
Iy = H{ > exp[—ﬁhwo(ni—f—

=1 n; =0
N’ B h wo
B exp[ — F52 |
o H { 1 — exp[—ﬁhwo]}

=1
Bhuw 17V
2

N =

[ 2 sinh (549)

where each normal mode gives rise to an identical factor. The Free-Energy is
given by

h
F=NbksT < 2 sinh% ) (550)
The entropy S is found from
oF
= — | = 1
s o (o) -
which yields
- F ’ h wo 5 h wo
S = T + N 5T coth 5 (552)
However, since FF = U — T S, one finds the internal energy U is given by
h h
U= N ;"0 coth 2 2“’0 (553)

This result is the same as that which was previously found using the Micro-
Canonical Ensemble.

114



5.6 Vacancies in a Crystal

The Hamiltonian describing vacancies in a crystal can be described by

N

Hy =Y en (554)

=1

where the number of vacancies on site ¢ is defined by n;. The number of vacancies
at site ¢ only n; has two possible values of unity or zero, since there either is a
vacancy or there is not. The partition function Zy is given by

Zn = Trace exp[ - g HN} (555)

which is evaluated as

N = Traceexp{ BZeni]

i=1

N
= Trace H exp[ — Be nl] (556)

i=1

The Trace runs over all the set of possible values of n; for each oscillator. Thus

N
Trace H{ exp[ — 567%] }
i=1

ZN

N
(1+exp[—66]) (557)
which leads to the expression for the Free-Energy
F:—NkBTln(l-i-exp[—b’e]) (558)

Hence, from thermodynamics, one finds that the energy U is given by

exp[ — 8 €]
1 + exp[— B €]
1

U = Ne

which is identical to the expression that was found using the Micro-Canonical
Ensemble.
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5.7 Quantum Spins in a Magnetic Field

Consider a set of NV quantum spins with magnitude S. We shall set h = 1 for
convenience. The spins interact with a magnetic field H* through the Zeeman
interaction

Hip = = Y gup H* S; (560)

i=1

where the S’f have eigenvalues m; where S > m > —S.

Sice the spins do not interact with themselves, the partition function factor-
izes as

Z

{ ZS: eXp[BguBHzmHN

m=—S

{eXp{ﬁguBHz(SJré)} _exp[_BQMBHZ(S+§):|}N
eXp{ﬁgﬂBHzé} _eXp[_BQMBHZé}
sinh[ﬂguBHZ(5+§)] N
= { } (561)
sinh[ﬁguBHZ%]
The Free-Energy is given by
F = —kgT InZz (562)
which is evaluated as
1 1
F = —Nk;BTlnsinh{ﬁguBHz(S—&—Q)]—l—Nk:BTlnsinh[ﬁg,uBHz2}
(563)
This can be expressed as
F = —Ng,uBSHZ—NkBTln<1—exp[—ﬁguBHz(25+1)]>
—|—Nk:BTln<1—eXp[—ﬁg,uBHz}> (564)

Using thermodynamics, one can obtain the entropy. At high temperatures, the

entropy saturates at
S = kg In(2S + 1) (565)

From the entropy and F', one can find the energy U which is given by

2 2
(566)

U = NguBHZ(;coth[ﬁg,uBHzl]—(S—&-;)coth[BgMBHZ(S—&-l)])
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The internal energy saturates at
U= —-NgugS H* (567)

in the low temperature limit, T — 0 where the spins are completely aligned
with the field. The internal energy vanishes in the high temperature limit, where
the different spin orientations have equal probabilities.

Homework:

Determine the magnetization M?* defined by

oF

M? = — 568

(i) -
and the susceptibility x*# which is defined as
oM*

2E = 569

e = (5) (569

Find the zero field limit of the susceptibility.

5.8 Interacting Ising Spin One-half Systems

Consider a one-dimensional array of spins interacting via the Ising Hamilto-
nian'* given by

H = -3 JS S (570)

The operator S has 2 possible eigenvalues which are —%, % The interaction
J couples the z-components of N — 1 pairs of nearest neighbor spins. We shall
assume that the interaction J has a positive value, so that the lowest energy
configuration is ferromagnetic in which all the spins are aligned parallel to each

other.
The partition function is given by

Z = Traceexp{—ﬁf]]

N-1
Trace H { exp {ﬂ J S? S'Z-ZH } } (571)
i=1

which is the product of factors arising from each sequential pair-wise interaction.
The factors exp[ 8 J S7 S7,, ] arising from an interaction can be re-written as

o 1 28782 J
exp[BJSf iZ—Q—l:l = <2+FL2+1>6XP[+ﬂ4}

14E, Ising, “Beitrag zur Theorie des Ferromagnetismus”, Z. Phys. 31, 253-258, (1925).
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1 28787, J h?
+<2_712>6Xp[_64

JR 4 4. J n?
= [coshﬁ 7 + ?Sf S sinhﬁll}
(572)
since they are to be evaluated on the space where S7? Sﬁ_1 = =+ Z—Q. Thus

B J h?

- = } (573)

N—-1 2
J h 4 .. A
Z = Trace H { cosh b + — 57 S7,, sinh
i=1
The trace can be evaluated as a sum over all possible values of the spin eigen-

values
h

Trace = ﬁ { Z } (574)

=1 " sp=-4%

The trace runs over all the 2V possible microstates of the system. The trace can

be evaluated, by noting that the summand in the expression for the partition

function only contains one factor which depends on S

B Jh? 4 B Jh?
4 4

cosh + 7z 5% 8% sinh

(575)
The terms odd in S7 cancel when taking the trace. Hence, the trace over S7
contributes a multiplicative factor of

2
2 coshﬁjh

(576)

to the partition function, where the factor of two comes from the two spin
directions. After the trace over S{ has been performed, only the factor

J h? 4 . . J h?
b +?S§S§ sinhﬁ

cosh (577)

depends on S35. On taking the trace over S3, the last term in this factor vanishes

and the trace contributes a second multiplicative factor of cosh B {1 " to Z. Bach
of the N — 1 interactions contributes a factor of

2
2 coshﬂjh

(578)

to the partition function. The trace over the last spin, produces a multiplicative
factor of 2 to Z. Hence, the partition function is given by

(579)

2 \ N—1
7 = 2(2 coshﬁjh )
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The Free-Energy F' is given by

F = —kgT InZ (580)
which is evaluated as
B Jn
F = —-—NkgTln2 — (N — 1) kg T Incosh (581)
The entropy S is found from
OF
S =—-|= 582
(5) (552
which yields
B J h? B J h? B J h?
S = NkpIn2+ (N —1)kp Incosh —(N-1)kp tanh 1
(583)

The entropy is seen to reach the value N kp In2 appropriate to non-interacting
spins in the limit 8 — 0 and reaches the value of kgIn2 in the limit 7" — 0.
The internal energy U is found from the relation

F=U-TS (584)

as
2 2
U = f(Nfl)%tanhﬂ{Lh

The energy vanishes in the limit 8 — 0 and saturates to the minimal value of
- (N -1)J %2 appropriate to the ( N — 1) pair-wise interaction between
completely aligned spins in the low temperature limit 7" — 0. Hence, the ground
state is two-fold degenerate and corresponds to minimizing the energy by the
spins aligning so that either they are all up or they are all down. While at high
temperatures, the system is dominated by the entropy which is maximized by
randomizing the spin directions.

(585)

5.9 Density of States of Elementary Excitations

Consider normal modes of excitation that extend throughout the a hypercubic
volume V' = L% If the excitations satisfy an isotropic dispersion relation of
the form

hw = hw(k) (586)

where w(k) is a monotonically increasing function of k, then this relation can
be inverted to yield
k= kw) (587)




Since the normal modes are confined to the system, the normal modes wave
functions must vanish on the walls of the system at x; = 0 and x; = L, for
1=1,2,...,d. If the wave functions have the form

Y,(r) = L) sink . r (588)

VvV

for each polarization «, the allowed wave vectors satisfy the d-boundary condi-
tions

for positive integer values of n;. Thus, the allowed values of k are quantized
and can be represented by a vector n in n-space

n = Lk (590)

T

which has positive integer components ny , ny , n3, ... , ng. In n-space, each
normal mode with polarization « is represented by a point with positive inte-
ger coordinates. Therefore, the normal modes per polarization form a lattice
of points arranged on a hyper-cubic lattice with lattice spacing unity. In the
segment composed of positive integers, there is one normal mode for each unit
volume of the lattice.

n,

/ (1Y) \

Figure 30: A pictorial representation of n-space in two-dimensions. Each state
corresponds to a point (ni,ny) for positive integer values of the n’s. In the
positive quadrant, there is one state per unit area. The states with energy less
than F are located in an area of the positive quadrant enclosed by a circular
arc of radius r given by r = Lk(E)/x.
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Due to the monotonic nature of w(k), the number of excitations, per polar-
ization, with energies less than w, N(w), is given by the number of lattice points
n which satisfy the inequality

n| < (591)
m
or more explicitly
Lk
() (592)
s
Since the segment of n-space with positive integers,
ny Z 0
ng 2
ng—1 2
ng > (593)

is a fraction of 2% of the entire volume of n-space, the number of normal modes
with energy less than w is given by 2—1d of the volume enclosed by a radius
L k(w)

r= T (594)

where we have recalled that there is one normal mode for each unit cell in n-
space and that each cell has a volume 1¢. Hence, on dividing the expression for
the volume of a hypersphere of radius by 2%, one finds

_ % (L;ET‘”))d (505)

This assumes that no points lie on the bounding surface of the hypersphere, or
if they do their numbers are negligible. The surface area of a unit dimensional
hypersphere is given by

St = 5 (596)
d d
Nw) = 2(17;(3‘)/ <k2(°;)) (597)
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The number of excitations, per polarization, with energy less that i w can be
expressed as an integral of the density of states p(w), per polarization, defined

= Zk: 6<w - w(k)) (598)

as
w

dw' p(w

L.
Fopdo )
Xk: @(w - wk)) (599)

where © is the Heaviside step function. The step function restricts the sum-
mation to the number of normal modes with frequencies less than w, which are
counted with weight unity. Thus, the density of states per polarization can be
found from N(w) by taking the derivative w.r.t. w

d

pw) = — N(w) (600)

Hence, we find that the density of states can be represented by

o (59)

plw) =

(601)

The total density of states is given by the sum of the density of states for each
polarization.

Homework:
Find the density of states for particles moving in a three-dimensional space

obeying the dispersion relation

w=ck" forn > 0 (602)

5.10 The Debye Model of a Crystalline Solid

Consider a crystalline solid consisting of N atoms on a d-dimensional lattice.
The model considers the lattice vibrations as being isotropic sound waves. The
sound waves are characterized by their wave vectors k and by their polarizations.
The vibrational modes consist of N longitudinal modes and (d—1)N transverse
modes. The dispersion relations for the modes will be denoted by wq (k). The
Hamiltonian is given by

= 3 hwa®) (nga + 3) (603)
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where ny o is a integer quantum number.

The partition function Z is given by
Z = H{ Z }exp[—BZhwa(k)(nk@ ;)}
k,a ng,o=0 k,a
- T X ew| - pne® (e + 5]
k,a nﬁ’azo
B expl = 1 85 walh) ]
) y{ ] | oo

(oo}

N | =

where we have performed the sum over a geometric series. The Free-Energy F
is given by

F = —kgT InZ

- kBTZIn{exp[—k;ﬁhwa(k)] - exp[—;ﬁhwa(k)}]
k,a

= k:BT/ dwp(w)ln{exp[Jr;ﬂhw]exp[;ﬂhw]]

— 00

/Oo dw p(w) [52“’ + k:BTln(l - exp[ﬁhw])] (605)

— 00

where we have introduced the density of states p(w) via

pw) = Y H(w — wia) (606)
k,a

Since the density of states from the different polarizations is additive, one has

V Sq 1 (d—1) a1
= - 607
) = o (g + ) o
where the dispersion relation for the longitudinal modes is given by w = c¢p k

and the dispersion relation for the (d—1) transverse modes is given by w = cr k.

Since the lattice vibrations are only defined by the motion of point particles
arranged on a lattice, there is an upper limit on the wave vectors k and, hence,
a maximum frequency. The maximum frequency wp is determined from the
condition that the total number of normal modes is dN. Thus,

/OWD p(w) = dN (608)

which yields

V S, 1@ 4
d(27r)d(c%+ Z )waN (609)
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Figure 31: The density of states for the Debye model of a three-dimensional
solid containing N atoms, with an upper cut-off frequency wp.

Hence, we may write the density of states as

(610)

for wp > w > 0, ad is zero otherwise.

Th