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In this paper we present a novel treatment of the inspection-system design problem when inspection is unreliable and subject to
classification errors. Our approach, based on the theory of Error-Correcting Codes (ECC), leads to the development of a Self-
Correcting Inspection (SCI) decision rule that does not require complete knowledge of inspection error probabilities. We show that
the proposed rule assures correct classification, if the number of inspection errors is less than a certain number. We analyze the
performance of the SCI decision rule under different inspection situations, including some situations that are uncommon in the
field of error-correcting codes. Then, we show how the underlying mathematical structure can be applied to determine the number
of inspections and the level of inspection reliability in order to minimize the sum of inspection-related costs. The practical
contribution of this work lies in that it expands the ability of the designer of inspection systems to deal with cases where there is
very little or no information regarding the reliability of the inspection operations.

1. Introduction and literature review

Inspections are performed in virtually every production
system. Their purpose is to verify that the production
operations were carried out properly and that the pro-
duction output meets the expectations of the customer.
Inspection operations can often be seen as procedures
used to classify a product unit into two or more classes
according to its conformance to a given set of require-
ments. There is a large body of evidence, e.g., see Raz and
Thomas (1990), pointing to the fact that inspection
operations can be unreliable, resulting in classification
errors. These errors have both cost and quality impli-
cations. One common approach to deal with inspection
errors is to introduce redundancy into the inspection
procedure by carrying out multiple inspections – either
identical or unique – on each product unit and to base the
classification decision on their combined results.
A significant amount of research has been devoted to the

problem of optimal design of multiple inspection systems
subject to errors. Some of the earlier work in this area was
surveyed by Raz and Thomas (1990). Moskowitz and Tsai
(1988) presented a model for a two-stage sequential
screening procedure based on correlated variables. Their

model can be used to calculate the acceptance ratio and the
average outgoing quality for given levels of inspection
errors at the two stages. Later on, Moskowitz et al. (1991)
developed a procedure for selecting the parameters of an
inspection plan that optimizes a cost function reflecting
inspection risk preferences and inspection misclassifica-
tion. Moskowitz et al. (1993) expanded this work to in-
clude a multiple-stage screening model that controls the
maximum as well as the average misclassification error.
The papers mentioned so far deal with the inspection of
multiple items drawn from a single lot or process. In cer-
tain cases multiple inspections are carried out on each in-
dividual item, which brings up the issue of determining the
disposition of each item based on the results of all the
inspections. Some typical areas of application where this
situation occurs include the manufacture of gear cases, as
reported by Raz and Bousum (1990), and assembly of
circuit boards, as studied by Chevalier and Wein (1997).
Another application, that of wafer inspection in a FAB, is
discussed in Section 4.1.
Chen and Chung (1994) addressed the issue of deter-

mining the optimal specification levels to optimize net
profit while considering inspection error. Hong and
Elsayed (1999) followed this line of research and developed
a model for determining jointly the economically optimal
process mean and specification limit under inspection
measurement error. Tang and Schneider (1988) developed*Corresponding author
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a model for determining the level of inspection error that
will minimize the sum of inspection and disposition costs.
The research published so far relating to inspection

errors has assumed that the inspection error probabilities
are known or can be accurately estimated. Such estima-
tion, however, is not always possible, especially when new
types of inspection technologies are applied or when in-
spection is too expensive to allow experimentation to
estimate error probabilities. Moreover, most of the re-
search related to inspection errors deals with lot accep-
tance, where the acceptance/rejection decision is based on
multiple identical inspections carried out on a sample
drawn from the lot. Here we consider a different situa-
tion, where a number of inspections, not necessarily
identical, are applied to each product unit, which is to be
classified into two or more classes.
In this paper we present a novel treatment of the in-

spection-system design problem. Our approach is based
on an analogy between inspection operations and mes-
sage transmission through communications channels. A
related mathematical isomorphism is defined in Ben-Gal
and Levitin (1998, 1999). Particularly, we establish an
analogy between codewords (a vector of symbols which
constitutes a message) and vectors of inspection results
(elements of the vector represent the result of various
inspections carried out on a single part) and apply some
known results from the theory of Error-Correcting Codes
(ECC), which are widely used in the design of informa-
tion transmission systems. However, and in contrast to
the prevailing literature on communication channels, our
method deals also with cases where the vector set of in-
spection results does not have a special mathematical
structure (such as forming a linear subspace as is the case
with linear codes) and with situations when inspection
errors are not independent and identically distributed.
Based on ECC theory, we develop a decision rule for
classifying items that does not require knowledge of the
inspection error probabilities. Moreover, our decision
rule assures correct classification, as long as the number
of inspection errors does not exceed a given threshold.
The practical contribution of the work presented here

lies in that it expands the ability of the designer of in-
spection systems to deal with cases where there is very little
or no information regarding the reliability of the inspec-
tion operations. Furthermore, the solution presented here
is also applicable to situations when classification deci-
sions are made upon different inspections applied to a
single part type. A key practical advantage of our ap-
proach is that the decision rule is very simple to implement,
in that it involves straightforward calculations.
This paper is organized as follows. In Section 2 we

draw the analogy between an unreliable inspection pro-
cess and the transmission of a message via a noisy
communication channel. This section also contains our
notation and definitions. In Section 3 we present the re-
quired theoretical background and analyze the perfor-

mance of our decision rule. This is done by deriving
probabilistic expressions for the various outcomes of the
inspection procedure. In Section 4 we analyze the per-
formance of the decision rule under different inspection
conditions. Section 5 shows how the decision rule can be
applied to the design of inspection procedures. We
conclude with some suggestions for further work in
Section 6.

2. Unreliable inspection and noisy communication
channels

2.1. The analogy

Consider a Product Unit (PU) that belongs to a certain
quality class. For instance, it could be ‘‘acceptable’’, ‘‘not
acceptable’’, or ‘‘second rate’’. Initially we do not know
to which quality class the PU belongs. In order to cor-
rectly classify the PU, it is subjected to a set of Inspection
Operations (IOs), which may all be identical. A particular
IO might be based on detecting the presence or absence of
certain attributes, or might include measurement on a
continuous or discrete scale. In any case, the outcome of
each IO is binary: ‘‘0’’ or ‘‘1’’, denoting, for example,
whether the PU passes or fails the IO, or whether the IO
measure is above or below a certain threshold. The re-
sults of the set of inspections on a single PU can be
represented by a vector, where the ith component in the
vector represents the outcome of the ith IO. There is a
mapping from the set of error-free result vectors (called
valid vectors) to the set of quality classes. Often, however,
the IOs are not perfectly reliable. Each IO may involve
two types of errors: reporting a ‘‘0’’ results when a ‘‘1’’
should have been reported and vice versa. For this reason,
the set of IOs often includes otherwise redundant tests
whose purpose is to help detect inspection errors and
classify PUs. The issue at hand is how to classify the PUs.
Consider now a message that needs to be transmitted

from a source to a receiver by a communications channel.
In order to increase the reliability of the transmission, the
message is encoded by a finite set of codewords. Each
codeword is, in fact, a vector of binary symbols, say ‘‘0’’s
and ‘‘1’’s. Transmission noise in the communications
channel might corrupt (transform) some of the symbols.
As a result, the received vector may differ from the ini-
tially transmitted codeword. The receiver faces the pro-
blem of correctly decoding the received vector. If the
received vector is not one of the codewords, then the
receiver detects that an error has occurred during
the transmission, and can try to correct it, that is, to
associate it with one of the codewords.
An analogy between the inspection process and mes-

sage transmission can be drawn as shown in Fig. 1. The
source of the coded message is analogous to the quality
class of the PU that is being inspected. The transmission
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of a codeword through a communication channel corre-
sponds to the inspection operations performed on the
PU. The receiver of the codeword is regarded as the de-
cision-maker that classifies the PU. The PU belongs to
one of a number of predetermined quality classes, e.g.,
conforming, nonconforming and partially conforming.
Any valid vector, which belongs to the set of error-free
inspection results, can be mapped to one of these classes.
This vector is analogous to the binary codeword trans-
mitted by the channel source. The result vector that
contains the actual results of all inspections corresponds
to the received vector in the communication channel.
Thus, a perfectly reliable inspection procedure is iso-

morphic to a perfectly reliable communication channel,
where the received vectors (result vectors) are identical to
the codewords (valid vectors), guaranteeing a correct
decoding of the message (classification of the PU) by the
receiver (decision-maker). However, if the transmission
(inspection) is subject to noise (errors), then the received
vectors (result vectors) may be different from the code-
words (valid vectors). In such a case, the received vectors
(result vectors) have to be decoded, that is, associated
with one of the codewords (valid vectors) and then in-
terpreted (classified) accordingly.

2.2. Notation, assumptions and definitions

The following notation will be used throughout the pa-
per.

n ¼D number of Inspection Operations (IOs) that are
carried out on each PU;

M ¼D number of valid vectors (classes);
cj ¼D a valid vector cj = ðc1j ; c2j ; . . . ; cnj Þ, j ¼1; 2; . . . ;M ;

valid vectors contain the error-free inspection re-
sults that would have been obtained under per-
fectly reliable inspections;

C ¼D the set of all valid vectors, C ¼ fc1; c2; . . . ; cMg;
ĉck ¼D a binary vector of inspection results carried out on

a given product unit in the presence of inspection
errors, ĉck ¼ ĉc1k ; ĉc

2
k ; . . . ; ĉc

n
k

� �
; k ¼ 1; 2 . . . ; 2n;

ĈC ¼D the set of all binary vectors of length n (forming a
binary vector space of dimension n) where
ĈC ¼ fĉc1; ĉc2; . . . ; ĉc2ng. Note that C � ĈC;

qj ¼D the a priori probability that a given PU’s error-free
result vector is cj;

pij ¼
D
the unknown probability of an inspection error in
the ith IO when the error-free result vector is cj.

We assume that inspection errors are mutually inde-
pendent Bernoulli random events. We also assume that
pij < 0:5 for all i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ;M , which
means that, for each and every IO, a correct result is more
likely than an erroneous one. An important special case,
called the equierror case, occurs when errors in each IO
are independent of the product class and the inspection
error probabilities are identical. That is, pij ¼ p for all
i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ;M (in ECC terms these
assumptions are known as the memory less binary sym-
metric channel assumptions). We further assume for the
equierror case that qj ¼ 1=M for all j ¼ 1; . . . ;M . Al-
though the equierror case does not always occur in
practice, it is a reasonable assumption requiring the least
amount of information when probability estimates are
not available. For the sake of readability, the subscripts
on the vectors, cj,ĉck, and their respective elements will be
omitted when discussing general properties.
We now define the Self-Correcting Inspection (SCI)

decision rule. The SCI rule either associates (i.e., corrects)
the vector ĉc 2 ĈC with a vector c 2 C, or determines that
the inspection error cannot be corrected. For example,
consider the case of six identical IOs, where there are only
two valid vectors: c1 ¼ ð0; 0; 0; 0; 0; 0Þ corresponding to a
conforming PU, and c2 = ð1; 1; 1; 1; 1; 1Þ corresponding

Fig. 1. Analogy between the inspection process and the transmission of coded messages via a communication channel.

Self-correcting inspection 531



to a nonconforming PU. The set of all binary vectors ĈC

contains result vectors that reflect the presence of in-
spection errors, i.e., vectors that carry both ‘‘1’’ and ‘‘0’’
values. If the result of the IOs is ð0; 0; 1; 0; 0; 1Þ and we
assume that at most two inspection errors have occurred,
then we can classify the unit as conforming, regardless
of probability of an inspection error (by the majority
vote rule). As we shall see in Section 4.2, the proposed
SCI decision rule does, indeed, associate ð0; 0; 1; 0; 0; 1Þ
with c1.

3. Performance analysis of the SCI decision rule

The following analysis is based on the theory of Error-
Correcting Codes (ECC) and on the performance analysis
of linear-block codes (for further information see, for
example, Peterson and Weldon (1972), Lin and Costello
(1983) and Wicker (1995). Certain modifications have
been made to apply ECC performance analysis to unre-
liable inspection procedures, where the valid vectors do
not necessarily form a special algebraic structure (which
is often the case with codewords). Moreover, and in
contrast to the memoryless binary symmetric channel as-
sumptions, we do not assume that the probabilities of
inspection errors are constant or independent of the class
of the PU. We start with some known ECC definitions.

Definition 1. The Hamming distance, dH, between two
(binary) vectors of equal length v1 and v2, expressed
by dHðv1; v2Þ, is equal to the number of vector elements
(symbols) in which they differ. For example, the
Hamming distance between (10011) and (10101) is
equal to two since their third and fourth symbols are
different.

Definition 2. The distance, d, of a set of valid vectors C is
the minimum Hamming distance between any two valid
vectors from C. Thus,

d ¼ min
ci;cj2C

dH ci; cj
� �

; ci 6¼ cj:

Definition 3. Theerror-correctioncapabilityofa setofvalid
vectors C is given by the parameter t ¼ bðd 
 1Þ=2c. It has
been proven (Wicker, 1995) that given a setCwith distance
d, the ECC decoding procedure can correct up to t errors.

Observation 1: Following the analogy presented above,
given a set C with distance d, one can assure correct
classification of PUs, if the number of inspection errors
does not exceed the error-correction capability t.

Definition 4. An error vector, e ¼ e1; . . . ; en
� �

is a binary
vector where

ei ¼
0 if the ith IO is error-free,
1 if the ith IO has been modified
by an inspection error.

8<
:

Of course, the value of the error vector is unknown to the
decision-maker.

Definition 5. The weight of a vector v, denoted by w(v), is
the number of non-zero elements in the vector (in binary
vectors it is simply the number of ‘‘1’’s symbols). For
example, wð100110Þ ¼ 3.
Under the additive noise model presented in Fig. 2,

each result vector ĉc can be considered as the sum modulo
2 (denoted by �) of a valid result vector c and an error
vector e. Thus, the reliability of the inspection process
determines the likelihood that each of the 2n possible
error vectors e occurs. This model enables us to find the
likelihood of an inspection error by calculating the
probability that an error vector e corrupts a valid vector c

changing it to ĉc, where ĉc ¼ c � e.

3.1. The self-correcting inspection (SCI) decision rule

In this section we develop the rationale for our decision
rule, which we call the Self-Correcting Inspection (SCI)
decision rule. The decision process operates as follows.
Once the inspections are carried out and the result vector

Fig. 2. The additive noise model for an inspection process.

532 Ben-Gal et al.



becomes known, we examine the result vector and deter-
mine whether or not it is valid. If the result vector is valid,
then we classify the PU accordingly. If the result vector is
invalid, then we conclude that one or more inspection er-
rors have occurred, i.e., that the error vector e associated
with this particular PU contains at least one ‘‘1’’ symbol.
This step of determining the existence of errors in the result
vector is called error detection. An error vector is unde-
tectable if andonly if it causes the result vector to look like a
valid vector other than the error-free result vector. Hence,
given a valid vector cj, there areM 
 1 valid vectors other
than cj and thusM 
 1 undetectable error vectors.
Once an error is detected, knowledge about the struc-

ture of C can be applied to determine which of the valid
vectors has apparently been corrupted. Specifically, our
rule selects the valid vector that is closest to the result
vector in terms of its Hamming distance. This step is re-
ferred to as error-correction. If the minimal distance valid
vector is not unique, then we say that the result vector is
unclassifiable.
We define D ĉcð Þ as the classification function. This

function returns the identifier of the valid vector associ-
ated with the result vector ĉc. The decision rule can be
stated as follows where:

y ¼ argmin
x

f ðxÞ if f ðyÞ ¼ min
x

f ðxÞ

D ĉcð Þ ¼
argmin
1
j
M

dH cj; ĉc
� �

if the minimum is unique,

0 otherwise, and we say that
ĉc is unclassifiable.

8><
>:

Note that the SCI decision rule does not depend on any
estimates of inspection error probabilities, nor does it de-
pend on the probability distribution of the result vectors.
However, using the results from maximum a posteriori
decoder theory it can be shown (Wicker, 1995), that for the
equierror case when no result vectors are unclassifiable, the
SCI decision rule maximizes, over all non-randomized
decision rules, the probability of correctly classifying the
PUs. The reason is that the closest valid vector in terms of
the Hamming distance is the valid vector cj that maximizes
the a posteriori decoding probability,

Prfc ¼ cjjĉckg:
Thus, classifying by minimizing the Hamming distance is
equivalent to classifying by maximizing the a posteriori
probability. It should be noted that if there are unclas-
sifiable vectors, ĉc, then the result still holds if we let D ĉcð Þ
be identified with one of the multiple vectors that satisfy

argmin
1
j
M

dH ĉcj; ĉc
� �

:

3.2. Error detection performance

We now describe the possible events associated with the
additive noise model and derive their respective proba-

bilities. These events and their respective notation are
presented in Fig. 3 and are characterized by the following
relations:

PN þ PU þ PD ¼ 1;
PD ¼ PC þ PNC;

PNC ¼ PE þ PF:

ð1Þ

We now develop expressions for the probabilities of the
various events. The probability that an error vector e will
occur when the error-free result vector is cj is denoted by
Pj eð Þ and is equal to

Pj eð Þ ¼
Yn
i¼1

eipij þ 1
 ei
� �

1
 pij
� 	h i

: ð2Þ

Note that for the equierror case P eð Þ ¼ pwðeÞ 1
 pð Þn
wðeÞ.
The probability that no inspection errors occurred in any
of the n IOs, PN, is given by

PN ¼
Xm
j¼1

qjPjð0Þ ¼
Xm
j¼1

qj
Yn
i¼1

1
 pij
� 	

; ð3Þ

where 0 denotes the error-free vector ð0; 0; . . . ; 0Þ. For the
equierror case PN ¼ 1
 pð Þn. The probability that one or
more inspection errors have occurred is 1
 PN. This is
also an upper bound on PD – the probability of detecting
an inspection error (see Equation (1)), i.e.,

PD 
 1
 PN: ð4Þ
For a set C with distance d, one can detect all error

vectors caused by up to d 
 1 inspection errors (since
undetectable error vectors are those that cause valid
vectors to look like other valid vectors). Consequently,
the probability of an undetectable error, PU, is bounded
above by the probability of having d or more inspection
errors. Hence, for the equierror case,

PU 

Xn
j¼d

n

j


 �
p j 1
 pð Þn
j

¼ 1

Xd
1
j¼0

n

j


 �
p j 1
 pð Þn
j: ð5Þ

Fig. 3. Possible events for the additive noise model.
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The bound on PD which is given in Equation (4) is
usually good if M � 2n. However, in this case, the bound
on PU, found in Equation (5), is not tight. The reason is
that if the valid vectors are sparsely distributed in the
results space, then it is highly unlikely that an arbitrary
error vector will yield an inspection result that coincides
with another valid vector.
An alternative bound on PU, for the equierror case,

results from the fact that there are exactly M 
 1 error
vectors with weight not less than d that result in other
valid vectors, thus,

PU 
 M 
 1ð Þpd 1
 pð Þn
d : ð6Þ
Given the set of all valid vectors, C, one can obtain exact
expressions for the probabilities of detectable and unde-
tectable errors. For any pair of valid vectors ci; cj 2 C,
ci 6¼ cj let us define w(i; j) as the weight of the error vector
e ¼ ci � cj that causes ci to look like cj, i.e., wði; jÞ
¼ dH(ci; cj)¼ w(ci � cj). We shall denote by PU cj

� �
the

probability of having an undetectable error when the
error-free result vector is cj. Then we obtain the following

PU cj
� �

¼
X
i6¼j

Pj ci � cj
� �

; ð7Þ

where for the equierror case,

PU cj
� �X

i 6¼j

pwði;jÞ 1
 pð Þn
wði;jÞ: ð8Þ

Thus, the probability of an undetectable error is as fol-
lows,

PU ¼
XM
j¼1

qjPU cj
� �

: ð9Þ

The probability of having a detectable error is now cal-
culated by

PD ¼ 1
 PN 
 PU: ð10Þ

3.3. Error-correction performance

From Observation 1 we note that the SCI decision rule is
guaranteed to correctly classify the PUs if the number of
inspection errors is less than t ¼ b d 
 1ð Þ=2c.
Note that the SCI decision rule classifies PUs by se-

lecting the valid vector, which is the closest to the result
vector in terms of the Hamming distance, even if this
distance is larger than t (in ECC this is known as the
complete decoders). Accordingly, the probability of
having at least one inspection error and a correct classi-
fication, PC, is bounded from below, for the equierror
case, by

PC �
Xt

j¼1

n
j


 �
p j 1
 pð Þn
j: ð11Þ

This bound becomes tighter, as the probability of an in-
spection error, p, gets smaller, that is when

p j 1
 pð Þn
j� p jþ1 1
 pð Þn
 jþ1ð Þ:

An exact expression for PC can be obtained if we are
willing to examine all vectors in ĈC. In this case, PC can be
written as

PC ¼
X
j

qj
X

ĉc2ĈCnC D ĉcð Þ¼jj

Pj cj � ĉc
� �

; ð12Þ

where ĈCnC is the set of elements in ĈC which are not in C

and the notation j should be read ‘‘such that’’. The sum is
taken over the set ĈCnC since the probability of correctly
classifying a valid vector is accounted for in PN. The
probability of a detectable non-correctable error, PNC, is
defined as the probability that a detectable error has oc-
curred but has not been properly corrected. Thus,

PNC ¼ PD 
 PC: ð13Þ
The probability of detecting an inspection error and

having a classification error, PE, is bounded from above
by the probability of having an error vector of weight
greater than t. For the equierror case, this probability is:

PE 

Xn
j¼tþ1

n

j


 �
p j 1
 pð Þn
j¼ 1


Xt

j¼0

n

j


 �
p j 1
 pð Þn
j:

ð14Þ
The same bound can be applied to the probability of a

classification failure, PF. A classification failure occurs
when the identity of the closest valid vector is not unique.
An exact expression for PF can be found by summing, for
each unclassifiable vector, the ways by which it can be
obtained,

PF ¼
X

ĉc2ĈC D ĉcð Þ¼0j

X
j

qjPj ĉc � cj
� �

: ð15Þ

Now, the probability of an erroneous classification, i.e.,
the probability of a detectable non-correctable error that
yields an incorrect classification of the PU, is given by

PE ¼ PNC 
 PF: ð16Þ
Note that if errors occurred in the IOs such that the result
vector is a valid vector, then the classification will be in-
correct, but we do not include this case in the probability
PE. Table 1 summarizes the different inspection events
and their associated classification outcomes.
Finally, the probability of correct classification of a PU

is given by

PCC ¼ PN þ PC; ð17Þ
while the probability of not having a correct classification
is given by

PUC ¼ PU þ PNC ¼ PU þ PE þ PF: ð18Þ
When inspection is relatively cheap (e.g., in the case of

automated inspection) it might be reasonable to re-
inspect all PUs that are unclassifiable. Doing so and
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assuming that the system has no memory, the new prob-
abilities of the inspection events are as follows:

P 0
N ¼ PN= 1
 PFð Þ; P 0

U ¼ PU= 1
 PFð Þ;
P 0
D ¼ 1
 P 0

N 
 P 0
U; P

0
C ¼ PC= 1
 PFð Þ;

P 0
NC ¼ PNC= 1
 PFð Þ; PE ¼ PE= 1
 PFð Þ and P 0

F ¼ 0:
ð19Þ

4. Analysis of SCI cases

The performance analysis presented in this section is
based on the equierror assumption. This assumption re-
quires the least amount of information about the error
characteristics of the IOs and follows directly from the
principle of maximum entropy (Cover and Thomas,
1991). As experience with the inspection system accu-
mulates, more information about the error characteristics
of the IOs may become available. A performance analysis
could then be carried out along the same lines as pre-
sented here, but with more accurate inspection error
probability estimates. Then, for example, the SCI rule can
implement a weighted Hamming distance to maintain the
one-to-one correspondence between the distance and the
a posteriori decoding probability.
We begin with the least restrictive case, where C is an

arbitrary set of valid vectors. Following this, we consider
the case where C forms a linear vector space (equivalent
to linear-block codes). This situation is less practical since
the IOs cannot always be selected such that their error-
free result vectors form a linear vector space. However, if
such selection is possible, then certain results of linear-
block codes can be applied to further analyze the cor-
rection and detection ability of the SCI decision rule.

4.1. The set of valid vectors is an arbitrary set

To illustrate the application of the SCI decision rule when
the valid vectors constitutes an arbitrary set, we present a

real-life example taken from the inspection of wafers in a
FAB. In the deposition chamber, wafers pass through the
lithography module to undergo three operations: (i) de-
position; (ii) print; and (iii) development. Occasionally,
the process goes out of control and when it does there are
three equally probable causes: (i) a general deposition
problem; (ii) a contamination (hot spot) problem; or (iii)
a stepper problem. Defective wafers are subjected to a
series of five inspections to determine the cause of the
problem (because of the system’s reliable nature and the
high intensity of system monitoring, it is assumed that
only one problem occurs at a time). The inspections are
called: (i) overlay (checking whether the different layers
are properly positioned one above the other); (ii) layer
thickness (measuring the photo resist material); (iii) crit-
ical dimensions; (iv) defect macro; and (v) defect micro.
Each of the possible causes of defects has its own ‘sig-
nature’ in terms of error-free inspection results. If there is
a general deposition problem, then the wafer should fail
inspections (ii) and (iii), but pass the rest (result vector c1
= (01100)). If there is a contamination problem, then the
wafer should fail all but the third test (result vector c2 =
(11011)). Finally, if there is a stepper problem, then the
part should fail the first inspection and pass all the others
(result vector c3 = (10000)). Given this scenario, there are
three valid vectors M ¼ 3ð Þ. Since the IOs are binary,
generally two IOs log2 3d e ¼ 2ð Þ are required in order to
classify the PUs (in this example the first and second in-
spections would suffice). However, if we use only two
inspections, then the minimum distance between valid
vectors is one, and any inspection error can result in
misclassification or failure to classify. Increasing the
number of IOs increases the distances between valid
vectors and allows the SCI decision rule to correct in-
spection errors. We thus obtain: w 1; 2ð Þ ¼ 4, w 1; 3ð Þ ¼
w 2; 3ð Þ ¼ 3, d ¼ 3 and t ¼ 3
 1ð Þ=2b c ¼ 1.
The performance of the SCI decision rule can be in-

vestigated by generating error vectors systematically,
adding them to the error-free valid vectors and checking
whether the result vectors are still closer to the original
valid vector. The results are shown in Table 2. It appears
that only the five error vectors with weight one can be
corrected for all the valid vectors. Eight other error vec-
tors, each with weight two, can also be corrected for one
of the valid vectors. Other error vectors cannot be cor-
rected by the SCI decision rule, since the result vectors are
closer to other valid vectors or are unclassifiable. For
example, consider the weight two error vector e ¼
00011ð Þ. Note that dH c1 � e; c1ð Þ ¼ dH c1 � e; c2ð Þ ¼ 2,
resulting in classification failure. Similarly, note that
dH c3 � e; c3ð Þ ¼ 2 whereas dH c3 � e; c2ð Þ ¼ 1, resulting in
a classification error.
It is possible to identify the probabilities of the various

events either by using the expressions developed in Sec-
tion 3 or by turning directly to Table 2. The probability
that the result vector is error-free is given by (3), namely

Table 1. Inspection events and their outcomes

Event Notation Equation Classification

1 No errors PN (3) correct
2 Undetectable

errors
PU (9) incorrect

3 Detectable
errors

PD (10) depends

3.1 Correctable
errors

PC (12) correct

3.2 Non-correctable
errors

PNC (13) depends

3.2.1 Failure to
classify

PF (15) none

3.2.2 Erroneous
classification

PE (16) incorrect

Self-correcting inspection 535



PN ¼ 1
 pð Þ5. The probability that an error vector
modifies the result vector to look like another valid vector
is given by (8) and (9) as

PU ¼
X3
i¼1

1
3

X
j6¼i

pw i;jð Þ 1
 pð Þn
w i;jð Þ

¼ 1
3 2p

4 1
 pð Þ þ 4p3 1
 pð Þ2
h i

: ð20Þ

The probability of detecting an error is given by (10),
PD ¼ 1
 PN 
 PU. Using (12) we have

PC ¼ 5p 1
 pð Þ4 þ 1
3½8p

2 1
 pð Þ3�: ð21Þ

The probability of a detectable, non-correctable error is
given by (13), PNC ¼ PD 
 PC. The probability of classi-
fication failure, PF, is given by (15) and is equal to

PF ¼ 1
3½9p

2 1
 pð Þ3 þ 7p3 1
 pð Þ2þ p4 1
 pð Þ þ p5�:
ð22Þ

The probability of erroneous classification, is given in
(16), and is equal to

PE ¼ 1
3½18p

2 1
 pð Þ3 þ 22p3 1
 pð Þ2þ 12p4 1
 pð Þ þ p5�
ð23Þ

The probability of a correct classification, PCC, and the
probability of not having a correct classification, PUC, are
obtained by (17) and (18), respectively.

4.2. The set of valid vectors forms a linear vector space

Additional ECC applications are available for the case
where the valid vectors that belong to C form a linear
vector space. This happens when we are able to select the
IOs such that the valid vectors form a linear subspace of
ĈC. In such a case, one can apply classification methods
based on known linear-block codes results (Lin and
Costello, 1983; Wicker, 1995).

Table 2. Inspection result vectors (for the sake of clarity we have omitted the vector parentheses)

Error vectors Pj(e) Error-free result
vector is c1 ¼ 01100

Error-free result
vector is c2 ¼ 11011

Error-free result
vector is c3 ¼ 10000

ĉc cD ĉcð Þ ĉc cD ĉcð Þ ĉc cD ĉcð Þ

00000 1
 pð Þ5 01100 01100 N 11011 11011 N 10000 10000 N
00001 p 1
 pð Þ4 01101 01100 C 11010 11011 C 10001 10000 C
00010 p 1
 pð Þ4 01110 01100 C 11001 11011 C 10010 10000 C
00011 p2 1
 pð Þ3 01111 – F 11000 10000 E 10011 11011 E
00100 p 1
 pð Þ4 01000 01100 C 11111 11011 C 10100 10000 C
00101 p2 1
 pð Þ3 01001 – F 11110 – F 10101 10000 C
00110 p2 1
 pð Þ3 01010 – F 11101 – F 10110 10000 C
00111 p3 1
 pð Þ2 01011 11011 E 11100 01100 E 10111 11011 E
01000 p 1
 pð Þ4 00100 01100 C 10011 11011 C 11000 10000 C
01001 p2 1
 pð Þ3 00101 01100 C 10010 10000 E 11001 11011 E
01010 p2 1
 pð Þ3 00110 01100 C 10001 10000 E 11010 11011 E
01011 p3 1
 pð Þ2 00111 – F 10000 10000 U 11011 11011 U
01100 p2 1
 pð Þ3 00000 10000 E 10111 11011 C 11100 01100 E
01101 p3 1
 pð Þ2 00001 10000 E 10110 10000 E 11101 – F
01110 p3 1
 pð Þ2 00010 10000 E 10101 10000 E 11110 – F
01111 p4 1
 pð Þ 00011 11011 E 10100 10000 E 11111 11011 E
10000 p 1
 pð Þ4 11100 01100 C 01011 11011 C 00000 10000 C
10001 p2 1
 pð Þ3 11101 – F 01010 – F 00001 10000 C
10010 p2 1
 pð Þ3 11110 – F 01001 – F 00010 10000 C
10011 p3 1
 pð Þ2 11111 11011 E 01000 01100 E 00011 11011 E
10100 p2 1
 pð Þ3 11000 10000 E 01111 – F 00100 01100 E
10101 p3 1
 pð Þ2 11001 11011 E 01110 01100 E 00101 01100 E
10110 p3 1
 pð Þ2 11010 11011 E 01101 01100 E 00110 01100 E
10111 p4 1
 pð Þ 11011 11011 U 01100 01100 U 00111 – F
11000 p2 1
 pð Þ3 10100 10000 E 00011 11011 C 01000 01100 E
11001 p3 1
 pð Þ2 10101 10000 E 00010 10000 E 01001 – F
11010 p3 1
 pð Þ2 10110 10000 E 00001 10000 E 01010 – F
11011 p4 1
 pð Þ 10111 11011 E 00000 10000 E 01011 11011 E
11100 p3 1
 pð Þ2 10000 10000 U 00111 – F 01100 01100 U
11101 p4 1
 pð Þ 10001 10000 E 00110 01100 E 01101 01100 E
11110 p4 1
 pð Þ 10010 10000 E 00101 01100 E 01110 01100 E
11111 p5 1
 pð Þ 10011 11011 E 00100 01100 E 01111 – F

N – no errors; U – undetectable errors; C – correctable errors; E – erroneous classification; F – failure to classify.

536 Ben-Gal et al.



The main advantage of C having such a special struc-
ture lies in the fact that there is no need to enumerate all
the error vectors, as done in (7), (12) and (15). The un-
detectable error vectors are the valid vectors themselves,
since each and every linear combination of valid vectors
results in a valid vector. Likewise, the undetectable error
vectors are independent of the result vector (Wicker,
1995). Therefore, it follows that if the weights of the
vectors in C are known, one can obtain exact and simple
expressions for the probability of an undetectable error
PU, given in (9), and the probability of having inspection
error(s) and a correct classification, PC, given in (12). In
particular, letting Aj be the number of valid vectors of
weight j, then

PU ¼
Xn
j¼d

Ajp j 1
 pð Þn
j: ð24Þ

Let al be the number of error vectors of weight l that
can be corrected. Note that due to the fact that the valid
vectors form a linear vector space, if an error vector
renders a correct classification for one valid vector, then it
does so for all valid vectors. Thus we have:

PC ¼
Xt

j¼1

n
j


 �
p j 1
 pð Þn
j þ

Xn
l¼tþ1

alpl 1
 pð Þn
l: ð25Þ

The simplest case in which C forms a linear vector
space is the equierror case when each PU goes through n
identical inspections. Since the outcome of each inspec-
tion is binary, a PU can be in one of two possible classes:
either it conforms to all n inspections (a ‘‘conforming’’
unit), or it does not conform to all of them (a ‘‘non-
conforming’’ unit). The set of valid vectors, C, contains
the ‘all-zeros’ vector and the ‘all-ones’ vector. In partic-
ular, the inspection parameters are d ¼ n, t ¼ n
 1ð Þ=2b c,
M ¼ 2, and the weight distribution is A0 ¼ 1, An ¼ 1 and
Ai ¼ 0; i ¼ 1, . . . , n
 1. The probability that a result
vector is error-free is given by (3), namely PN ¼ 1
 pð Þn.
There is one instance in which we will not be able to
detect the occurrence of inspection errors: when all n
inspections provide incorrect results. The probability
of such an event is given by (9) or alternatively by (24)
as

PU ¼ pn: ð26Þ
The probability of having a detectable error is obtained

by (10), i.e.,

PD ¼ 1
 1
 pð Þn 
 pn: ð27Þ
Note that this is the probability that the error vector
weight is between one and n
 1. The probability of a
correctable error, given by (12), is in fact the probability
that the weight of the error vector is between one and
t ¼ n
 1ð Þ=2b c, i.e.,

PC ¼
Xt

j¼1

n
j


 �
p j 1
 pð Þn
j: ð28Þ

The probability of a detectable non-correctable error,
given by (13), is in fact the probability that the weight of
the error vector is between t þ 1 to n
 1, i.e.,

PNC ¼ 1
 1
 pð Þn 
 pn½ � 

Xt

j¼1

n

j


 �
p j 1
 pð Þn
j

¼
Xn
1
j¼tþ1

n

j


 �
p j 1
 pð Þn
j: ð29Þ

The probability of an erroneous classification, PE, is in
fact the probability that the result vector is within a dis-
tance of one to t from the other valid vector, i.e.,

PE ¼
Xt

k¼1

n
k


 �
pn
k 1
 pð Þk: ð30Þ

The probability of classification failure, PF, can be
obtained using (1) or by noting that it is in fact the
probability that the result vector falls exactly within a
Hamming distance of t þ 1 from both valid vectors. Thus,

PF ¼
Xn
1
j¼tþ1

n

j


 �
p j 1
 pð Þn
j



Xt

k¼1

n

k


 �
pn
k 1
 pð Þk;

¼
n

n=2


 �
pn=2 1
 pð Þn=2 n even,

0 n odd.

8<
:

ð31Þ

Note that a classification failure can occur only if there
is an even number of inspections. When the number of
inspections is odd, PF ¼ 0. This leads us to the following
(apparently) paradoxical observation.

Observation 2: Using the identical binary inspection
procedure, reducing the number of IOs can actually
improve the SCI performance. Decreasing the number of
inspections by one (and sometimes even by a larger odd
number) from an even number of inspections causes the
probability of not having a correct classification, PUC,
(18), to decrease and hence, the probability of having a
correct classification, PCC, to increase.

Observation 2 is demonstrated graphically in Fig. 4,
where we plot PUC against the number of inspections for
p ¼ 0:3. This observation can be explained intuitively by
examining what happens when the number of IOs is de-
creased by one from an even number, n, to an odd
number, n
 1. First, let us look at the disposition deci-
sion that would have been obtained from the n
 1 IOs. If
the majority of the n
 1 IOs indicate acceptance or re-
jection by a margin greater than one, then the nth IO
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cannot change the decision, and consequently its removal
will have no effect. The same is true if the majority of the
n
 1 inspections indicate acceptance or rejection by a
margin of exactly one and the result of the nth inspection
coincides with this majority. However, if the n
 1 IOs
indicate acceptance (rejection) by a margin of only one
and the nth IO indicates rejection (acceptance) – i.e., has a
different indication from the majority of the n
 1 IOs –
then the nth inspection changes the decision to failure to
classify. If the PU is non-conforming (conforming) then
the removal of the nth IO will change the decision from
failure to classify to an incorrect classification, which has
no affect on the probability of incorrect classification. On
the other hand, if the PU is indeed conforming (non-
conforming) then the removal of the nth IO will change
the decision from failure to classify to a correct classifi-
cation! In summary, in all cases the removal of the nth IO
does not prevent us from classifying the PU correctly and
in one situation allows us to correctly classify a PU that
we would otherwise deem to be unclassifiable.
The counterintuitive outcome of Observation 2, as

shown by the discussion above, is based on the fact that
we do not classify a PU when the number of IOs
indicating rejection is equal to the number indicating
acceptance. There are two obvious alternatives for deal-
ing with a classification failure. The first is to determine
the disposition of the part arbitrarily or randomly. With
this policy one can show that there is no difference be-
tween the probability of a correct classification when
using n
 1 or n inspections (where n is an even number).
The second alternative is to repeat the entire inspection
set. This indeed solves the counterintuitive outcome
above (if n is even, n inspections are better than n
 1),
but a similar, albeit reversed, counterintuitive outcome
results. Namely, for any even number n, the probability
of a correct classification is always higher with n inspec-
tions rather than with nþ 1 inspections. The analysis is
similar to that of Observation 2 and is thus omitted.
Another case where C forms a linear vector space oc-

curs when all the valid vectors are identical to the code-
words of a known linear-block code. In such a case,
additional results from ECC theory become applicable to

the classification problem. For the sake of compactness,
we omit this discussion.

5. Optimal design of inspection systems operating under
the SCI decision rule

In this section we demonstrate how the probabilistic ex-
pressions that were derived for the various outcomes of the
SCI decision rule can be used as building blocks in
inspection-related design problems. In particular, we will
show how we can determine the number of IOs and
the individual inspection reliability level for inspections
that are to operate under the SCI decision rule. As stated
earlier, the application of the SCI decision rule does not
require knowledge of the actual inspection error proba-
bilities. However, in order to proceed with the optimiza-
tion we need to make some assumptions regarding the
inspection error probabilities. In the following we will as-
sume the equierror case as the least restrictive assumption.
We first address the problem of finding the optimal

number of IOs in order to minimize costs. We are con-
cerned with two costs: the direct inspection cost, F i nð Þ,
and the misclassification cost, F e n; pð Þ, and we wish to
minimize their sum, denoted by TC. In general, F i nð Þ
increases with n and F e n; pð Þ decreases with n. The
problem can thus be stated as follows:

TC� ¼ min
n

TC ¼ min
n

F i nð Þ þ F e n; pð Þ
� �

: ð32Þ

We further assume:

F i nð Þ ¼ nCI – a linear cost function in n – where CI is
the unit inspection cost.

F e n; pð Þ ¼ PUC � CP, where CP is the misclassification
cost per unit.

Note that based on Observation 2 we will always choose n
to be odd. Accordingly, and using (18), (26) and (29), the
objective function becomes

TC� ¼ min
n n oddj

nCI þ PUC � CPf g

¼ min
njn odd

nCI þ CP pnþ
Xn
1

j¼ nþ1ð Þ=2

n

j


 �
p j 1
 pÞn
j� 3

5
2
4

9=
;: ð33Þ

8<
:

Equation (33) can be optimized numerically for a given
inspection error probability p and cost constants CI
and CP. Figure 5 presents the total cost (TC) as a function
of odd numbers of IOs, where p ¼ 0:3, and CI ¼ 1.
Three different misclassification costs are considered:
CP ¼ 55; 80; and 120. The optimal solutions and costs are,
respectively, (n ¼ 7; TC� ¼ 13:93), (n ¼ 9; TC� ¼ 16:9) and
(n ¼ 11; TC� ¼ 20:38).
The second design issue that we address is determining

the desired inspection reliability level, as represented by
the probability of inspection error p. The approach is
illustrated using the example from Section 4.1. Recall that

Fig. 4. The probability of not having a correct classification,
PUC, plotted as a function of the number of IOs, p ¼ 0:3 and
n ¼ 3; 4; 5; . . . ; 60.
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each valid vector points to one of three possible produc-
tion problems. Here we assume the equierror case; how-
ever, we will assume some prior knowledge about the
distribution of the production problems. In particular,
the c1 vector, which is associated with a general deposi-
tion problem, appears with probability 0.7 and can be
repaired for a cost of Cg dollars per unit. The c2 vector,
which is associated with a contamination problem, ap-
pears with probability 0.2 and has a rework cost of Cc
dollars per unit. The c3 vector, which is associated with a
stepper problem, appears with probability 0.1 and has a
rework cost of Cs dollars per unit. Each non-conforming
unit that is mistakenly shipped to the customer generates
a failure cost (penalty) of Cf dollars. In addition, there is a
cost, Cr, associated with increasing the reliability of the
inspection equipment that is used by the IOs. For the sake
of simplicity, we assume that the reliability cost function
is linear and is given by 1
 pð ÞCr dollars per unit. All
other costs are assumed to be negligible. Table 3 presents
the costs of the different inspection outcomes.
Expected costs are obtained from Table 3 by multi-

plying the last two columns – the cost column by the
classification-probability column. This simple optimiza-
tion problem can be formulated and solved if the cost

constants are known. For example, with the cost con-
stants Cg ¼ 1, Cc ¼ 1, Cs ¼ 3, Cf ¼ 10, and Cr ¼ 7, the
following optimization problem is obtained:

min
p

TC ¼ min
p
½classification costs + reliability cost�

¼ min
p
½8:2
 7p þ 29:7p2 
 47:6p3

þ 37:8p4 
 11:2p5�: ð34Þ
Using standard techniques the optimal solution is
(p� ¼ 0:185, TC� ¼ 7:66 per unit).

6. Concluding remarks

In this paper we have introduced a novel approach for
dealing with inspection subject to errors. This approach,
based on the theory of Error-Correcting Codes (ECC),
leads to the development of a Self-Correcting Inspection
(SCI) decision rule that does not require knowledge of
individual inspection error probabilities. The main part of
the paper was devoted to the analysis of the performance
of the SCI decision rule under certain basic assumptions.
We believe that this work could be extended in a number
of ways. First, it will be worthwhile to develop probability
expression for the cases when the inspection error prob-
abilities are not symmetric and vary across IOs. It will also
be interesting to develop expressions for nonbinary IOs.
We predict that most of these expressions will be mathe-
matically complicated, and that it should be worthwhile to
look for results from communications theory in order to
facilitate the development. An important issue to be
studied is the sensitivity of the classification decision, and
of other system parameters such as total cost and overall
classification reliability, to the various simplifying as-
sumptions that were made to facilitate the mathematical
treatment. A potential research direction is to consider
cases where the error probabilities are known to be un-
equal, possibly using a weighted Hamming distance to
maximize the a posteriori probability of correct classifi-
cation. Overall, we believe that the analogy between
communications theory and inspection is worthwhile re-
searching and can lead to new and effective solutions to
practical problems, as illustrated in our example.

Acknowledgements

The authors would like to acknowledge Mr Itay Rosen-
feld for his helpful comments regarding the wafer exam-
ple given in Section 4.1. This research was performed in
part, while Yale Herer was at the Department of Indus-
trial Engineering, Tel Aviv University.

References

Ben-Gal, I. and Levitin, L. (1998) Bounds on code distance
and efficient fractional factorial experiments, in Proceedings of

Fig. 5. The total cost (TC) as a function of an odd number of
IOs, where p ¼ 0:3, CP ¼ 1 and n ¼ 1; 3; . . . ; 39. Three different
misclassification costs are considered: CP ¼ 55 (bottom line);
CP ¼ 80 (middle line) and CP ¼ 120 (bold line).

Table 3. Analysis of the example from Section 4.1

Valid
vector cj

Classification
decision cDðĉcÞ
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