

Battery Waste Management Life Cycle Assessment

Final Report for Publication

18 October 2006

Delivering sustainable solutions in a more competitive world

Defra

Battery Waste Management Life Cycle Assessment

Final Report for Publication

18 October 2006

Prepared by: Karen Fisher, Erika Wallén, Pieter Paul Laenen and Michael Collins

For and on behalf of								
Environmental Resources Management								
Approved by: Simon Aumônier								
Signed:								
Position: Partner								
Date: 18 October 2006								

This report has been prepared by Environmental Resources Management the trading name of Environmental Resources Management Limited, with all reasonable skill, care and diligence within the terms of the Contract with the client, incorporating our General Terms and Conditions of Business and taking account of the resources devoted to it by agreement with the client.

We disclaim any responsibility to the client and others in respect of any matters outside the scope of the above.

This report is confidential to the client and we accept no responsibility of whatsoever nature to third parties to whom this report, or any part thereof, is made known. Any such party relies on the report at their own risk.

CONTENTS

1	BATTERY WASTE MANAGEMENT LIFE CYCLE ASSESSMENT	1
1.1	Acknowledgements	1
1.2	INTRODUCTION	1
1.3	ISO 14040: GOAL AND SCOPE REQUIREMENTS	2
1.4	GOAL OF STUDY	2
1.5	FUNCTION AND FUNCTIONAL UNIT	3
1.6	Systems to be Studied	5
1.7	COLLECTION SCENARIOS	6
1.8	Recycling Scenarios	17
1.9	Residual Waste Management System	27
1.10	IMPLEMENTATION SCENARIOS	28
1.11	System Boundaries	28
1.12	ALLOCATION PROCEDURES	35
1.13	INVENTORY ANALYSIS	35
1.14	IMPACT ASSESSMENT	35
1.15	Sensitivity Analysis	38
1.16	DATA REQUIREMENTS	39
1.17	Key Assumptions and Limitations	40
1.18	CRITICAL REVIEW	40
2	INVENTORY ANALYSIS: LIFE CYCLE INVENTORY DATA	42
2.1	Collection Systems	42
2.2	BATTERY MATERIAL COMPOSITION	55
2.3	Recycling Systems	58
2.4	Residual Waste Management	72
2.5	Secondary Datasets	73
2.6	IMPLEMENTATION SYSTEMS	84
3	LIFE CYCLE INVENTORY ANALYSIS: RESULTS	85
4	LIFE CYCLE IMPACT ASSESSMENT	96
5	SENSITIVITY ANALYSIS	109
5.1	BATTERY WASTE ARISINGS	109
5.2	COLLECTION TARGETS	110
5.3	DIRECTIVE IMPLEMENTATION YEAR	111
5.4	DISPOSAL ASSUMPTIONS	112
5.5	INSTITUTIONAL COLLECTION POINTS	113
5.6	ELECTRICITY INPUT TO RECYCLING	114
6	FINANCIAL COSTS	116

6.1	COLLECTION COSTS	116
6.2	Sorting Costs	119
6.3	RECYCLING COSTS	120
6.4	DISPOSAL COSTS	122
6.5	TOTAL COSTS FOR IMPLEMENTATION SCENARIOS	124
6.6	EVALUATING THE EXTERNAL COST OF ENVIRONMENTAL IMPACTS	127
7	CONCLUSIONS	130

8 REFERENCES

133

ANNEXES

ANNEX A	UK Battery Collection Schemes
ANNEX B	Impact Assessment Method (Includes Characterisation Factors)
ANNEX C	Assessment of Alternative Growth Scenarios
ANNEX D	Inventories
ANNEX E	Critical Review
ANNEX F	ERM Response to Critical Review

Executive Summary

1.1 INTRODUCTION

At the end of 2004, the EU Council of Ministers reached agreement on a draft *Directive on Batteries and Accumulators*. This Common Position text includes a number of requirements:

- a partial ban on portable nickel-cadmium batteries (with some exclusions);
- a collection target of 25% of all spent portable batteries 4 years after transposition of the Directive;
- a collection target of 45% of all spent portable batteries 8 years after transposition of the Directive; and
- recycling targets for collected portable batteries of between 50% and 75%.

The aim of this study is to inform readers of the costs and benefits of various options for implementing these collection and recycling requirements in the UK. The study uses a life cycle assessment (LCA) approach with a subsequent economic valuation of the options. The LCA methods undertaken comply with those laid down in international standards (ISO14040).

The study has been commissioned by the UK Department for Environment Food and Rural Affairs (Defra). Its intended purpose is to assist policy by estimating the financial cost of different collection and recycling routes and to estimate the environmental return for that expenditure. Findings will be used to inform the development of a regulatory impact assessment (RIA) for the implementation of the proposed Directive in the UK.

The study, in accordance with the international standard for LCA, ISO14040, has been critically reviewed by a third party, Dr Anders Schmidt from FORCE Technology.

1.2 COMPARING SCENARIOS FOR DIRECTIVE IMPLEMENTATION

To compare options for implementing the proposed Batteries Directive, the study considered the environmental impacts associated with the management of forecast consumer portable battery waste arisings in the UK between 2006 and 2030. This included the collection and recycling of all portable battery chemistries, with the exception of industrial and automotive batteries.

The scope of the assessment has included the collection, sorting, recycling and residual waste management of the waste batteries. Impacts relating to the production and use of batteries were excluded from the study. Therefore, the options compared differ only in method of collection and subsequent treatment or recycling. Three collection scenarios were assessed, as follows:

- **Collection Scenario 1** where kerbside collection schemes are favoured;
- **Collection Scenario 2** where CA site collection schemes are favoured; and
- **Collection Scenario 3** where bring receptacle collection schemes, located in business/school/public/WEEE dismantler premises, are favoured.

These were matched with three scenarios describing the main alternative options for recycling alkaline and saline batteries (these account for more that 80% of battery sales in the UK) which were as follows:

- **Recycling Scenario 1** UK provision of hydrometallurgical recycling;
- **Recycling Scenario 2** UK and EU provision of hydrometallurgical recycling (50:50); and
- **Recycling Scenario 3** EU provision of pyrometallurgical recycling.

In combination, a total of nine implementation scenarios were created (for example collection scenario 1 plus recycling scenario 1 etc.). These were compared with a tenth, baseline, scenario that assumed all batteries are managed as residual waste (89% landfill, 11% incineration).

For each scenario, all of the materials, chemicals and energy consumed during the manufacture of collection containers, sorting of batteries into separate chemistries and processing for recycling or disposal were identified, together with all of the emissions to the environment at each stage. All these 'flows' were quantified and traced back to the extraction of raw materials that were required to supply them. For example, polymer materials used in collection containers were linked to the impacts associated with crude oil extraction. Any 'avoided' flows resulting from the recovery of metals in recycling processes (and reducing the need for virgin metals production) were also quantified.

Figure 1.1 shows the system that was studied for each implementation scenario.

The total flows of each substance were compiled for each stage of the life cycle and used to assess the environmental impacts of each system. For example, flows of methane, carbon dioxide and other greenhouse gases were aggregated for each system in total. Internationally agreed equivalents that quantify the relative global warming effect of each gas were then used to assess the overall global warming impact of each implementation scenario. This 'impact assessment' was carried out for a number of categories of environmental impact, for which there are well-described methods: abiotic resource depletion; global warming; ozone layer depletion; human, aquatic and terrestrial toxicity; acidification; and eutrophication.

Key players in the battery waste management industry provided data on the materials and energy requirements of collection, sorting and recycling operations shown in *Figure 1.1* (including materials recovery). Published life cycle inventory data were, in turn, used to describe the production (and avoided production) of these material and energy inputs. It is acknowledged

that a key limitation of the study was the use of secondary data in this way. However, it was not within the scope of the project to collect primary data for these processes. The increasing age of secondary data suggest a need for a Europe wide programme to maintain and to improve LCI data for use in studies such as this.

Figure 1.1System Boundary of Scenarios

1.3 THE STUDY FINDINGS

The study shows that increasing recycling of batteries is beneficial to the environment, due to the recovery of metals and avoidance of virgin metal production. However, it is achieved at significant financial cost when compared with disposal.

Table 1.1 displays the net environmental benefit associated with implementation scenarios (1-9), over and above the baseline scenario (10). *Table 1.2* displays the waste management and average environmental and social costs that have been estimated for each implementation scenario.

Estimates show that implementation of the proposed Directive will result in a significant increase in battery waste management costs, with some savings in

the financial costs quantified for environmental and social aspects ⁽¹⁾. At the same time, the CO₂ savings that can be achieved amount to between 198kg and 248kg CO₂-equivalents avoided per tonne of battery waste arisings, in comparison with current management.

Table 1.1Environmental Benefit of Implementation Scenarios (net Benefit in
Comparison with Baseline)

		Global	Ozone layer		Fresh water			
Implementation	Abiotic	warming	depletion	Human	aquatic	Terrestrial		Eutro-
Scenario	depletion	(GWP100)	(ODP)	toxicity	ecotoxicity	ecotoxicity	Acidification	phication
Unit	t Sb eq	t CO2 eq	t CFC-11 eq	t 1,4-DB eq	T 1,4-DB eq	t 1,4-DB eq	t SO ₂ eq	t PO4- eq
Scenario 1	1751	133,764	26	1,908,108	2,224,908	26,750	1659	310
Scenario 2	1894	153,764	24	1,914,538	2,224,775	26,762	1718	310
Scenario 3	1525	135,064	16	2,051,248	2,240,745	261,128	2152	309
Scenario 4	1744	133,164	26	1,908,028	2,224,885	26,697	1654	310
Scenario 5	1887	153,164	23	1,914,458	2,224,752	26,760	1713	310
Scenario 6	1518	134,464	16	2,051,168	2,240,722	261,125	2147	308
Scenario 7	1672	123,044	25	1,902,468	2,223,758	26,656	1620	306
Scenario 8	1815	143,044	22	1,908,898	2,223,625	26,719	1679	306
Scenario 9	1446	124,344	15	2,045,608	2,239,595	261,085	2113	305

Note: all the scenarios show a net benefit over the baseline for all environmental impacts.

. ..

Table 1.2	Total Financial Costs of Implementation Scenarios	

. . .

Scenario	Waste		Environmental		
	Managemen	t	and Social		
	Costs		Costs		Total Scenario
	(Million £)	Coverage	(Million £)	Coverage	Cost (Million £)
Scenario 1	235.2		-34.6	Effect of NOx, SO ₂ , NMVOC	200.6
Scenario 2	235.2		-35.4	and particulate emissions on	199.8
Scenario 3 Scenario 4 Scenario 5 Scenario 6 Scenario 7 Scenario 8 Scenario 9	235.2 235.2 235.2 235.2 233.5 233.5 233.5	Collection, sorting and recycling service charges. Landfill and incineration gate fees	-30.5 -34.5 -35.4 -30.5 -33.9 -34.7 -30.1	human health (human toxicity). Climate change costs of carbon (CO_2 and CH_4 emissions only). Abiotic depletion, ozone depletion, aquatic ecotoxicity, acidification (with the exception of damage to buildings) and eutrophication impacts have	204.7 200.7 199.8 204.7 199.6 198.8 203.4
Scenario 10	28.1		1.8	not been quantified.	29.9

We found that the relative performance of different scenarios is mainly dictated by the choice of recycling scenario. Scenarios sharing the same recycling scenario (eg scenarios 1, 4 and 7) show more similarity in profile than those with the same collection scenario (eg scenarios 1, 2 and 3). Different recycling scenarios are favoured in each impact category, with no clear overall high performer.

Although making relatively little contribution in terms of overall benefit/burden, it is evident that scenarios utilising collection scenario 3

(1) It should be noted, however, that a number of external benefits associated implementation scenarios have not been quantified in terms of financial cost.

perform relatively less well than those utilising collection scenarios 1 and 2 in the majority of impact categories. This is predominantly due to additional fuel consumption and CO_2 emissions through the collection transportation network.

1.4 CRITICAL REVIEW SUMMARY

Dr Schmidt in his critical review (*Annex E*) concluded the following:

- 'The methods employed for the study are consistent with the international standards ISO 14040ff;
- The methods considered for the study are scientifically valid and reflect the international state of the art for LCA;
- Considering the goals of the study, the used data are justified to be adequate, appropriate and consistent;
- The consistency of the interpretations with regard to the goals and the limitations of the study is regarded to be fully fulfilled;
- The report is certified to have a good transparency and consistency; and
- Overall the critical review concludes that the study is in accordance with the requirements of the international standards ISO 14040ff.'

Main Report

1 BATTERY WASTE MANAGEMENT LIFE CYCLE ASSESSMENT

1.1 ACKNOWLEDGEMENTS

ERM would like to thank the following organisations for their help in collating data and information for this study: Batrec; Campine; Citron; G&P Batteries; Indaver Relight; Recupyl; SNAM and Valdi. Their contribution to the project has been invaluable in compiling the most up-to-date information for current battery collection and recycling processes.

1.2 INTRODUCTION

The European Commission adopted the proposed *Directive on Batteries and Accumulators* in November 2003. In response to these proposals, the Dutch presidency put forward a number of revisions in September 2004. Shortly afterwards, an extended impact assessment report was produced to support the Presidency's proposals.

Subsequently, at the end of 2004, the EU Council of Ministers reached political agreement on the draft Directive. This Common Position text includes a number of requirements:

- a partial ban on portable nickel-cadmium batteries with some exclusions;
- a collection target of 25% of all spent portable batteries 4 years after transposition of the Directive;
- a collection target of 45% of all spent portable batteries 8 years after transposition of the Directive; and
- recycling targets for collected portable batteries of between 50% and 75%.

These proposals will now be returned to the European Parliament for its second reading.

The objective of this study is to inform readers of the costs and benefits of various options for implementing these collection and recycling requirements in the UK. The study uses a life-cycle assessment (LCA) approach with a subsequent economic valuation of the options (*Section 6*).

A monetary valuation assessment was conducted, using up-to-date monetary valuation techniques to assess each of the implementation scenarios developed.

Due to uncertainties associated with battery arisings, with the collection and recycling routes that will be developed, and with the implementation dates for the Directive, a number of scenarios have been examined and sensitivity analyses conducted. The assessment of the scenarios and the sensitivity analyses provide information on the environmental benefits that will be achieved through implementation of the Directive.

1.3 ISO 14040: GOAL AND SCOPE REQUIREMENTS

Clear specification of goal and scope is of paramount importance for the credibility and successful conclusion of an LCA study.

The scope determines the method that will be used to collect and to collate data, to produce life cycle inventories, to conduct the impact assessment and to compare the different options.

In order to conform with ISO14041, the goal and scope of the study needs to address the following issues:

- the goal of the LCA study;
- the functions of the product systems;
- the functional unit;
- the systems to be studied;
- systems boundaries and reasoning for any excluded life cycle stages;
- allocation procedures;
- the format of the inventory and subsequent inventory analysis;
- types of impact and impact assessment method and subsequent interpretation to be employed;
- data and data quality requirements;
- assumptions;
- limitations;
- type of critical review; and
- type and format of the report required for the study.

It is the nature of LCA studies that, as they progress, the scope of the study may need to change as information becomes available.

1.4 GOAL OF STUDY

The international standard for LCA, ISO 14041, requires that the goal of an LCA study shall unambiguously state the intended application, the reasons for carrying out the study and the intended audience.

This study has been commissioned by the UK Department for Environment Food and Rural Affairs (Defra). Its intended purpose is to assist policy by estimating the financial cost of different collection and recycling routes and to estimate the environmental return for that expenditure. Findings will be used to inform the development of a regulatory impact assessment (RIA) for the implementation of the proposed *Directive on Batteries and Accumulators* in the UK.

The goal of the study is therefore twofold:

- 1. to determine the environmental impacts associated with the UK meeting the collection and recycling targets in the proposed *Directive on Batteries and Accumulators,* and to compare these with the impacts that would occur if batteries were disposed via residual waste management routes in the UK (ie if they were not collected for recycling); and
- 2. to estimate the financial cost of alternative scenarios for implementing the requirements of the proposed Directive.

Results will be used to inform policy makers of the consumption of resources and releases to the environment that result from different collection and recycling processes and the scale of benefits associated with recyclate produced.

The timeframe for the study to reflect is 25 years from 2006. However, the study will not consider changes in the design and operation of technologies over this period. The results of the study will reflect the performance technologies and designs that are currently in operation for the processing of batteries.

1.5 FUNCTION AND FUNCTIONAL UNIT

The function of systems assessed was the management of consumer portable battery waste arisings in the UK between 2006 and 2030.

The scope of the assessment has included the collection and recycling of portable battery waste arisings, including rechargeables and NiCds. Industrial and automotive batteries were not included in the scope of the study.

Battery Type	Typical Use	Class	2003	2003 % by
			Weight	Weight
			(Tonnes)	
Silver Oxide (AgO)	Cameras, pocket calculators	Primary	5	0.02%
Zinc Air (ZnO)	Hearing aids and pocket paging devices	Primary	12	0.05%
Lithium Manganese (LiMn)	Pocket calculators	Primary	11	0.04%
Lithium (Li)	Photographic equipment, remote controls and electronics	Primary	107	0.43%
Zinc Carbon (ZnC)	Torches, toys, clocks, flashing warning-lamps	Primary	4628	18.62%
Alkaline Manganese (AlMn)	Radios, torches, cassette players, cameras, toys	Primary	14,899	59.96%
Lithium Ion (Li-ion)	Cellular phones, lap- and palm- tops	Secondary	1064	4.28%
Nickel Cadmium (NiCd)	Emergency lighting	Secondary	1024	4.12%
Nickel Cadmium (NiCd)	Cordless phones, power tools	Secondary	1261	5.07%
Nickel Metal Hydride (NiMH)	Cellular and cordless phones	Secondary	1300	5.23%
Lead Acid (PbA)	Hobby applications	Secondary	538	2.17%
Total			24,850	

Table 1.1Battery Sales 2003

1.5.1 Predicted Battery Arisings

Predicting battery sales, and subsequently future waste arisings, can not be carried out with absolute precision because of uncertainty in the sources of data. Hence the absolute results are open to debate. For the purposes of this study, we have maintained 2003 levels of battery sales (*Table 1.1*, the most recent complete set of sales figures) and tested in sensitivity analysis different growth rates in battery sales and the reduction in NiCd battery use that may result from increased policy pressure for their replacement.

The battery sales data for 2003 were obtained from various sources. The main source of sales data for primary batteries in the UK was the British Battery Manufacturer's Association (BBMA). The main source of sales data for secondary batteries was EU sales data from Recharge. No UK data were available for secondary batteries. Therefore, a UK estimate was obtained by using 80% of the German data (based on the difference in population between the UK and Germany). This was done for the lithium-ion, nickel metal hydride and lead acid chemistries.

For the nickel cadmium power tool category, an estimate of sales was made by taking 17% of EU sales, again provided by Recharge. The nickel cadmium sales for emergency lightning were based on an estimate provided by ICEL for 2004 (Industry Committee for Emergency Lightning) and the average weight per unit by Recharge. In order to estimate the 2003 sales figure, the range of sales between 2001 and 2004 provided by Recharge for emergency lightning was used.

Total battery sales and waste arisings between 2006 and 2030 are therefore 621,259 tonnes.

1.5.2 Directive Implementation

We have assumed that the proposed Battery Directive will be implemented in 2008. This means that the 25% collection target for portable battery waste arisings will need to be met in 2012, and the 45% collection target will need to be met in 2016. It has been assumed that the collection rates from 2006 on will increase linearly up to the 25% target in 2012. Between the 2012 and 2016 target we have also assumed a linear increase in collection rate. Once the 2016 target is achieved, the 45% rate will be maintained until 2030. Based on the assumptions above with regard to battery sales growth and collection rate development, the UK will collect an aggregate 35.2% of portable battery waste arisings between 2006 and 2030.

Variations on the Battery Directive implementation year and in target levels were assessed through sensitivity analysis. By modelling variations in the quantity of batteries collected we were able to test variations in implementation, target years and collection targets.

Waste Battery Management Scenarios

We modelled a total of nine implementation scenarios combining three different collection mixes and three different recycling mixes.

These nine scenarios were assessed for the period 2006 to 2030. The collection levels were assumed to increase linearly from 2006 to 2012 and from 2012 to 2016, with no increases assumed post 2016. A linear relationship was applied as there is no evidence to suggest an alternative rate of change. These nine scenarios were compared with a tenth scenario, the baseline scenario, that assumed the Directive is not implemented and that batteries are disposed of as part of the MSW stream.

The composition and quantity of battery waste arisings was the same for all scenarios.

1.6 SYSTEMS TO BE STUDIED

The systems compared differ in method of collection and the management routes assumed for collected consumer portable batteries. We developed three collection scenarios which were matched with three different recycling scenarios – creating a total of nine implementation scenarios. These were compared with a tenth scenario that assumes all batteries are managed as residual waste.

1.6.1 Life Cycle Stages Included

The scope of the assessment has included the collection, sorting, recycling and residual waste management of the battery arisings identified in *Section 1.5*. To this end, the study addressed flows to and from the environment from the point of battery collection to the ultimate fate of recycled or disposed batteries and secondary products. Flows relating to the production and use of batteries were excluded from the study as the assessment of these life cycle stages is beyond the scope and requirements of the study's goal.

The environmental burdens (inputs and outputs) associated with each life cycle stage were quantified and an 'offset' benefit was attributed to the recovery of secondary materials as a result of recycling processes. The recovery of materials has environmental benefits through offsetting the requirement for virgin materials. An estimation of the magnitude of this benefit was made by quantifying the avoided burdens (input and outputs) of producing an equivalent quantity of virgin material.

An overview of the life cycle stages included in the assessment is shown in *Figure 1.1* and *Section 1.11* provides further detail of the key processes contributing to each.

1.7 COLLECTION SCENARIOS

Different combinations of battery collection methods were needed as there is limited knowledge as to how batteries will be collected in the UK to meet the targets. In the UK and Europe there are examples of battery collection being undertaken by three main routes: through deposit at civic amenity (CA) sites; via retailer/institutional take back and through kerbside collection. Unlike the UK, where kerbside is considered the most favoured route for batteries, based on limited experience, mainland Europe shows a preference for CA type recycling centres and collection points in public buildings and retail points.

Table 1.2 to *Table 1.6* detail the three collection scenarios assessed:

- **Collection Scenario 1** where kerbside collection schemes are favoured;
- Collection Scenario 2 where CA site collection schemes are favoured; and
- **Collection Scenario 3** where bring receptacle collection schemes, located in business/school/public/WEEE dismantler premises, are favoured.

In determining realistic collection scenarios, we split the battery arisings by battery chemistries and application. Collection routes for each battery type were based on the nature of the battery use and the attitude of consumers to recycling, with kerbside recycling being the most preferred, due to ease of use and the minimal effort required to achieve separation. All of the collection scenarios included a mix of collection routes, described in more detail in *Section 1.7.1*:

- **Collection Route 1** involves collection from households through a bin or bag system by a local authority;
- **Collection Route 2** involves the collection of batteries from battery collection bins provided at CA sites/household waste recycling centres and bring sites;
- **Collection Route 3** involves collection from retail stores, schools or public buildings, business premises and WEEE dismantlers;
- **Collection Route 4** involves the collection of batteries via the postal system through return envelopes; and
- **Collection Route 5** involves the collection of batteries used in emergency lighting from facility maintenance companies. These batteries are officially classed as consumer batteries and latest data suggest that these represent a significant proportion (around a third) of the weight of all secondary batteries. We believe that these will be mainly discarded as business-to-business WEEE and will, in practice, be removed by a maintenance contractor. As a result, a fifth collection route has been included in the tables below.

Battery Type	Typical Use	Class	Format	Collection Drivers	Collect. Route 1	Collect. Route 2	Collect. Route 3	Collect. Route 4	Collect. Route 5
Silver Oxide (AgO) Zinc Air (ZnO) Lithium Manganese (LiMa)	Cameras, pocket calculators Hearing aids and pocket paging devices Pocket calculators	Primary Primary Primary	Button Button Button	Infrequent change. Very small batteries. Some specialist change. Products are expected to out-last battery. A proportion of consumers are likely to take the battery to a retail outlet to obtain replacement. Due to the size and nature of the batteries consumers may not treat as with other household waste.	15%	5%	80%	0%	0%
Lithium (Li) Zinc Carbon (ZnC) Alkaline Manganese (AlMn)	Photographic equipment, remote controls and electronics Torches, toys, clocks, flashing warning-lamps Radios, torches, cassette players, cameras, toys	Primary Primary Primary	Portable Portable Portable	Frequent change. Small batteries. Routine change. Products are expected to out-last battery. Consumer is likely to change in use and regularly, disposal choice by consumer is likely to mimic other recyclable household waste.	60%	10%	30%	0%	0%
Lithium Ion (Li-ion) Nickel Cadmium (NiCd) Nickel Metal Hydride (NiMH) Lead Acid	Cellular phones, lap- and palm-tops Cordless phones, power tools Cellular and cordless phones	Secondary Secondary Secondary	Portable Portable Portable	Infrequent/No change. Medium/Large in size. A proportion of these batteries will be collected as WEEE, through WEEE collection schemes, and extracted by WEEE dismantlers. Consumers are expected to see these batteries as distinct and requiring instruction and specialist disposal through provision of specific collection modes.	45%	10%	40%	5%	0%
(PbA) Nickel Cadmium (NiCd)	Emergency lighting	Secondary	Portable	Infrequent/No Change. Batteries will be collected through removal or maintenance of the lighting.	0%	0%	0%	0%	100%

Table 1.2 Collection Scenario 1: High Collection Route 1 (Proportion of Batteries Collected to be Collected via Each Route)

Battery Type	Typical Use	Class	Format	Collection Drivers	Collect. Route 1	Collect. Route 2	Collect. Route 3	Collect. Route 4	Collect. Route 5
Silver Oxide (AgO) Zinc Air (ZnO)	Cameras, pocket calculators Hearing aids and pocket paging devices	Primary Primary	Button Button	Infrequent change. Very small batteries. Some specialist change. Products are expected to out-last battery. A proportion of consumers are likely to take the battery to a retail outlet to obtain	5%	15%	80%	0%	0%
Lithium Manganese (LiMn)	Pocket calculators	Primary	Button	replacement. Due to the size and nature of the batteries consumers may not treat as with other household waste.					÷,-
Lithium (Li)	Photographic equipment, remote controls and electronics	Primary	Portable	Frequent change. Small batteries Routine change. Products are					
Zinc Carbon (ZnC)	Torches, toys, clocks, flashing warning-lamps	Primary	Portable	and regularly, disposal choice by consumer is likely to mimic other recyclable household waste	10%	60%	30%	0%	0%
Alkaline Manganese (AlMn)	Radios, torches, cassette players, cameras, toys	Primary	Portable	oner recyclade nouschold wase.					
Lithium Ion (Li-ion)	Cellular phones, lap- and palm-tops	Secondary	Portable	Infrequent/No.change_Medium/Large in size_A proportion of					
Nickel Cadmium (NiCd)	Cordless phones, power tools	Secondary	Portable	these batteries will be collected as WEEE, through WEEE collection schemes, and extracted by WEEE dismantlers.	10%	45%	40%	5%	0%
Nickel Metal Hydride (NiMH)	Cellular and cordless phones	Secondary	Portable	requiring instruction and specialist disposal through provision of specific collection modes.	10 %	43 %	40 %	5 /6	0 /0
Lead Acid (PbA)	Hobby applications	Secondary	Portable						
Nickel Cadmium (NiCd)	Emergency lighting	Secondary	Portable	Infrequent/No Change. Batteries will be collected through removal or maintenance of the lighting.	0%	0%	0%	0%	100%

Table 1.3 Collection Scenario 2: High Collection Route 2 (Proportion of Batteries Collected to be Collected via Each Route)

Battery Type	Typical Use	Class	Format	Collection Drivers	Collect. Route 1	Collect. Route 2	Collect. Route 3	Collect. Route 4	Collect. Route 5
Silver Oxide (AgO) Zinc Air (ZnO) Lithium	Cameras, pocket calculators Hearing aids and pocket paging devices	Primary Primary Primary	Button Button	Infrequent change. Very small batteries. Some specialist change. Products are expected to out-last battery. A proportion of consumers are likely to take the battery to a retail outlet to obtain replacement. Due to the size and nature of the batteries consumers may not treat as with other bounded waste	5%	5%	90%	0%	0%
(LiMn)	rocket calculators	Filliary	Dutton	consumers may not treat as with other nousehold waste.					
Lithium (Li)	Photographic equipment, remote controls and electronics	Primary	Portable	Frequent change. Small batteries. Routine change. Products are					
Zinc Carbon (ZnC)	Torches, toys, clocks, flashing warning-lamps	Primary	Portable	and regularly, disposal choice by consumer is likely to mimic	30%	10%	60%	0%	0%
Alkaline Manganese	Radios, torches, cassette players, cameras, toys	Primary	Portable	other recyclable nousenoid waste.					
Lithium Ion (Li-ion)	Cellular phones, lap- and palm-tops	Secondary	Portable	Infraquent/No change Medium/Large in size A propertion of					
Nickel Cadmium (NiCd)	Cordless phones, power tools	Secondary	Portable	Infrequent/ No change. Medium/ Large in size. A proportion of these batteries will be collected as WEEE, through WEEE collection schemes, and extracted by WEEE dismantlers.	2004	10%	65%	5%	0%
Nickel Metal Hydride (NiMH)	Cellular and cordless phones	Secondary	Portable	requiring instruction and specialist disposal through provision of specific collection modes.	20 %				
Lead Acid (PbA)	Hobby applications	Secondary	Portable						
Nickel Cadmium (NiCd)	Emergency lighting	Secondary	Portable	Infrequent/No Change. Batteries will be collected through removal or maintenance of the lighting.	0%	0%	0%	0%	100%

Table 1.4 Collection Scenario 3: High Collection Route 3 (Proportion of Batteries Collected to be Collected via Each Route)

Battery Type	Typical Use	Class	Format	Collection Route 1	Collection Route 2	Collection Route 3	Collection Route 4	Collection Route 5
				(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
Silver Oxide (AgO)	Cameras, pocket calculators	Primary	Button	7	2	39	0	0
Zinc Air (ZnO)	Hearing aids and pocket paging devices	Primary	Button	16	5	86	0	0
Lithium Manganese (LiMn)	Pocket calculators	Primary	Button	15	5	79	0	0
Lithium (Li)	Photographic equipment, remote controls and electronics	Primary	Portable	565	94	283	0	0
Zinc Carbon (ZnC)	Torches, toys, clocks, flashing warning-lamps	Primary	Portable	24,435	4072	12,217	0	0
Alkaline Manganese (AlMn)	Radios, torches, cassette players, cameras, toys	Primary	Portable	78,668	13,111	39,334	0	0
Lithium Ion (Li-ion)	Cellular phones, lap- and palm-tops	Secondary	Portable	4214	937	3746	468	0
Nickel Cadmium (NiCd)	Cordless phones, power tools	Secondary	Portable	4994	1110	4439	555	0
Nickel Metal Hydride (NiMH)	Cellular and cordless phones	Secondary	Portable	5148	1144	4576	572	0
Lead Acid (PbA)	Hobby applications	Secondary	Portable	2132	474	1895	237	0
Nickel Cadmium (NiCd)	Emergency lighting	Secondary	Portable	0	0	0	0	9009
Total				120,194	20,955	66,693	1832	9009

Table 1.5Collection Scenario 1: High Collection Route 1 (Tonnage of Batteries Collected via Each Route over 25-Year Period)

Battery Type	Typical Use	Class	Format	Collection Route 1	Collection Route 2	Collection Route 3	Collection Route 4	Collection Route 5
				(tollics)	(toffics)	(tollics)	(tollics)	(tollics)
Silver Oxide (AgO)	Cameras, pocket calculators	Primary	Button	2	7	39	0	0
Zinc Air (ZnO)	Hearing aids and pocket paging devices	Primary	Button	5	16	86	0	0
Lithium Manganese (LiMn)	Pocket calculators	Primary	Button	5	15	79	0	0
Lithium (Li)	Photographic equipment, remote controls and electronics	Primary	Portable	94	565	283	0	0
Zinc Carbon (ZnC)	Torches, toys, clocks, flashing warning-lamps	Primary	Portable	4072	24,435	12,217	0	0
Alkaline Manganese (AlMn)	Radios, torches, cassette players, cameras, toys	Primary	Portable	13,111	78,668	39,334	0	0
Lithium Ion (Li-ion)	Cellular phones, lap- and palm-tops	Secondary	Portable	937	4214	3746	468	0
Nickel Cadmium (NiCd)	Cordless phones, power tools	Secondary	Portable	1110	4994	4439	555	0
Nickel Metal Hydride (NiMH)	Cellular and cordless phones	Secondary	Portable	1144	5148	4576	572	0
Lead Acid (PbA)	Hobby applications	Secondary	Portable	474	2132	1895	237	0
Nickel Cadmium (NiCd)	Emergency lighting	Secondary	Portable	0	0	0	0	9009
Total				20,955	120,194	66,693	1832	9009

Table 1.6 Collection Scenario 2: High Collection Route 2 (Tonnage of Batteries Collected via Each Route over 25-Year Period)

Battery Type	Typical Use	Class	Format	Collection Route 1	Collection Route 2	Collection Route 3	Collection Route 4	Collection Route 5
				(tolines)	(tolines)	(tolines)	(tolines)	(tolines)
Silver Oxide (AgO)	Cameras, pocket calculators	Primary	Button	2	2	44	0	0
Zinc Air (ZnO)	Hearing aids and pocket paging devices	Primary	Button	5	5	97	0	0
Lithium Manganese (LiMn)	Pocket calculators	Primary	Button	5	5	88	0	0
Lithium (Li)	Photographic equipment, remote controls and electronics	Primary	Portable	283	94	565	0	0
Zinc Carbon (ZnC)	Torches, toys, clocks, flashing warning-lamps	Primary	Portable	12,217	4072	24,435	0	0
Alkaline Manganese (AlMn)	Radios, torches, cassette players, cameras, toys	Primary	Portable	39,334	13,111	78,668	0	0
Lithium Ion (Li-ion)	Cellular phones, lap- and palm-tops	Secondary	Portable	1873	937	6087	468	0
Nickel Cadmium (NiCd)	Cordless phones, power tools	Secondary	Portable	2219	1110	7213	555	0
Nickel Metal Hydride (NiMH)	Cellular and cordless phones	Secondary	Portable	2288	1144	7436	572	0
Lead Acid (PbA)	Hobby applications	Secondary	Portable	947	474	3079	237	0
Nickel Cadmium (NiCd)	Emergency lighting	Secondary	Portable	0	0	0	0	9009
Total				59,175	20,955	127,713	1832	9009

 Table 1.7 Collection Scenario 3: High Collection Route 3 (Tonnage of Batteries Collected via Each Route over 25-Year Period)

1.7.1 *Collection Routes*

We investigated the details of a number of UK battery collection schemes (see *Annex A*) in order to develop models of collection activities for each of the collection scenarios. Details of the collection routes were developed in conjunction with G & P Batteries, the UK market leader in the collection and management of waste batteries, and these were supplemented with additional information from current practitioners where appropriate.

Consideration was given to future developments in battery collection, including expansion of collection networks and the potential to optimise bulking and sorting systems. Other UK battery collection companies, Loddon Holdings and Bleep Batteries, were also contacted for further information, verification of collection routes and discussion of future developments. As such, it is considered that the collection routes outlined below provide a reasonable characterisation of UK practices over the study period.

Collection Route 1

Collection Route 1 involves collection from households through a bin or bag system by a local authority. Householders can generally place their waste batteries in a plastic bag, or other receptacle, in their usual kerbside collection box, or bag. These will be collected as part of the kerbside recyclables round, emptied into a separate compartment in the refuse collection vehicle (RCV) and transported to a central depot. A typical collection round will visit between 800 and 1800 households.

At the depot, batteries are stockpiled in one-tonne polyethylene bins, until they reach capacity and collection by a battery waste management specialist is arranged.

The batteries are collected from centralised depots as part of an optimised collection network, using a fleet of articulated lorries. Each lorry contains an on-board, diesel-powered forklift that manoeuvres bins to load the lorries. Batteries are transported to a sorting plant located centrally. An average collection round is approximately 250 miles, with all vehicles collecting to capacity.

Collection Route 2

Collection Route 2 involves the collection of batteries from battery collection bins provided at CA sites/household waste recycling centres and bring sites. There are two types of collection bin provided on sites:

- polyethylene cylinders for non-lead acid batteries; and
- polyethylene bins for lead acid batteries.

Typically, one of each container type is provided per site and collections by battery waste management specialists are made as and when required.

The batteries are collected from sites as part of an optimised collection network, using a fleet of articulated lorries. Non-lead acid batteries from the cylinders are emptied into one-tonne bins on the lorry, using a manuallypowered sack truck. Lead acid battery bins are loaded using on-board forklifts. The batteries are then transported to a sorting plant located centrally. An average collection round is approximately 250 miles, with all vehicles collecting to capacity.

Collection Route 3

Collection Route 3 involves collection from retail stores, schools or public buildings, business premises and WEEE dismantlers. Potentially a number of containers are used for this collection route:

- polycarbonate tubes;
- polypropylene sacks (primarily for consolidation); and
- polyethylene cylinders.

Collections from sites gathering smaller quantities of batteries such as these are made by transit van, typically making numerous collections in one area over a period and delivering its payload of approximate one tonne to a satellite site for consolidation each day. Tubes and sacks are emptied into one-tonne bins in the transit vehicle, which are deposited at the satellite storage sites. Larger, articulated lorries will pick up the batteries for delivery to a centrally-located sorting plant when an appropriate tonnage has been consolidated.

A typical transit collection route is approximately 100 miles, and satellite sites are planned to be an average distance of approximately 250 miles from centrally-located sorting plants. They will be established as and when required.

As with collection routes 1 and 2, all vehicles collect to capacity and transport networks are optimised to enable economic efficiency.

Collection Route 4

Collection Route 4 involves the collection of batteries via the postal system through return envelopes. Few batteries are currently collected via this route in the UK. Most battery manufacturers provide a FREEPOST address and will consolidate posted batteries at a central depot. The modelling of this collection route assumed that the delivery of batteries to the central depot, via the postal system, is equivalent to personal travel and has therefore been excluded from the assessment. At the depot, batteries are consolidated in one-tonne polyethylene bins, until they reach capacity and collection by a battery waste management specialist is arranged.

The batteries are collected from centralised depots as part of an optimised collection network, using a fleet of articulated lorries. Each lorry contains an on-board, diesel-powered forklift that manoeuvres bins to load the lorries. Batteries are transported to a sorting plant centrally located. An average collection round is approximately 250 miles, with all vehicles collecting to capacity.

Collection Route 5

Collection Route 5 involves the collection of batteries used in emergency lighting from facility maintenance companies. Batteries are tested periodically and replaced as and when required. Spent batteries are consolidated in a centralised depot, typically in a one-tonne polyethylene bin, until they reach capacity and collection by a battery waste management specialist is arranged.

The batteries are collected from centralised depots as part of an optimised collection network, using a fleet of articulated lorries. Each lorry contains an on-board, diesel-powered forklift that manoeuvres bins to load the lorries. Batteries are transported to a sorting plant located centrally. An average collection round is approximately 250 miles, with all vehicles collecting to capacity.

1.7.2 Collection Points

Scenarios were modelled on the basis that:

- there are 197 coordinating waste authorities in the UK ⁽¹⁾, each of which could potentially introduce a kerbside collection of batteries;
- there are currently 1065 CA sites in the UK ⁽²⁾ that could potentially collect waste batteries;
- it is likely that up to 69,500 institutional points (retail outlets, schools etc.) could operate as battery collection points;
- there are 73 postal depots in the UK ⁽³⁾ that could act as consolidation points for postal collection systems; and
- there are in the region of 50 lighting maintenance companies operating in the UK ⁽⁴⁾. Each is likely to recover NiCd batteries through emergency lighting maintenance and provide for their consolidation and collection.

A full list of assumptions regarding the number of schemes that will be required to meet the Directive's targets under each of the collection scenarios can be found in *Section 2,* Inventory Analysis.

(1) Network Recycling
 (2) Network Recycling
 (3) Royal Mail
 (4) Kellysearch

ENVIRONMENTAL RESOURCES MANAGEMENT

1.7.3 Sorting Plant Operations

At the sorting plant, batteries are unloaded, using an on-site forklift, and are passed on to a warehouse for sorting. Currently all sorting is manual, but an increasing degree of automation is expected, with an associated increase in throughput. This is likely to be in the form of a conveyor, running at approximately 2.4 kWh per tonne of batteries sorted. Any further level of automation is not considered to be cost-effective, in terms of the rate of return that is achievable.

Following manual sorting, batteries are stockpiled in one-tonne polyethylene bins until an economic unit for transportation to recycling facilities has been collected. When this quantity has been reached, bins are loaded onto vehicles using on-site forklifts. Recycling destinations differ according to battery chemistry and recycling scenario, as detailed in *Section 1.8*.

All vehicles leaving the sorting plant must pass through a wheel wash prior to exiting the site. The water recovered from this washing process is dosed with sodium hydroxide to neutralise acidic residues that may have leached from lead acid batteries ⁽¹⁾.

The processes that will be modelled as part of the sorting plant's operations are shown in *Figure 1.2*

Figure 1.2 Sorting Plant Operations

Source: G&P Batteries

1.8 RECYCLING SCENARIOS

1.8.1 *Current Recycling Routes*

There two main categories of recycling route that can achieve a greater than 50% recycling rate, the hydrometallurgical process route, where metals are recovered via chemical methods, and the pyrometallurgical process route,

(1) Only a proportion of this process was allocated to the sorting of the portable consumer batteries that are considered under the scope of this study, based on the ratio between the quantity of post consumer lead acid batteries handled and the total quantity of lead acid batteries handled on site over the same time period.

where a furnace is used to recover the metals. These processes are described further in *Section 1.8.4*.

With the exception of silver oxide and lead acid batteries, there is currently no battery recycling capacity in the UK. The main recycling routes currently used are shown in *Table 1.8. Table 1.8* further shows that UK compliance with the Directive is reliant on the recycling of ZnC and AlMn batteries, as these contribute 79% of portable battery sales.

Battery Type	% of 2003 Current Recycling Route		
	Sales		
Silver Oxide (AgO)	0.02%	Mercury distillation and silver recovery UK	
Zinc Air (ZnO)	0.05%	Pyrometallurgical and Hydrometallurgical EU	
Lithium Manganese	0.04%	Cryogenic North America. Pyrometallurgical and	
(LiMn)		Hydrometallurgical processes recently developed	
		in Europe	
Lithium (Li)	0.43%	Cryogenic North America. Pyrometallurgical and	
		Hydrometallurgical processes recently developed	
		in Europe	
Zinc Carbon (ZnC)	18.62%	Pyrometallurgical and Hydrometallurgical EU	
Alkaline Manganese	59.96%	Pyrometallurgical and Hydrometallurgical EU	
(AlMn)			
Lithium Ion (Li-ion)	4.28%	Cryogenic North America. Pyrometallurgical and	
		Hydrometallurgical processes recently developed	
		in Europe	
Nickel Cadmium (NiCd)	9.19%	Pyrometallurgical EU	
Nickel Metal Hydride	5.23%	Pyrometallurgical EU	
(NiMH)			
Lead Acid (PbA)	2.17%	Pyrometallurgical UK	

Table 1.8Current Battery Recycling Routes

1.8.2 Future Developments

Currently the significant market unknown is whether the UK will develop its own capacity to reprocess waste batteries or whether they will continue to be exported for reprocessing via the routes shown in *Table 1.8*.

G&P Batteries is currently developing a hydrometallurgical recycling process for ZnC, ZnO and AlMn portable batteries in the UK. This process is described further in *Section 1.8.4*.

For the other battery types, it is unlikely that the routes identified will change as the quantities of these batteries are small and economies of scale would suggest that further provision in the UK is unlikely.

1.8.3 Scenario Development

Three recycling scenarios were developed, based on considerations of available recycling processes, current recycling routes and potential future

developments, as discussed above. The scenarios that were assessed are as follows:

- 1. UK provision of hydrometallurgical recycling for ZnO, ZnC and AlMn batteries;
- 2. UK and EU provision of hydrometallurgical recycling (50:50) for ZnO, ZnC and AlMn batteries; and
- 3. EU provision of pyrometallurgical processing for ZnO, ZnC and AlMn batteries.

These three scenarios provide an indication of the significance of recycling route choice for 80% of battery arisings and the significance of transport postsorting.

1.8.4 Recycling Processes

Battery recycling processes can be broadly grouped into the following categories, according to process methodology:

- hydrometallurgical;
- pyrometallurgical; and
- mercury distillation.

There are a number of specific processes that fall within these categories, as summarised in *Table 1.9*.

Company/	Location	Process Category	Batteries Types Treated
Processor			
Recupyl	EU	Hydrometallurgical	AlMn, ZnC, ZnO, Li, LiMn, Li-ion
G&P	UK	Hydrometallurgical	AlMn, ZnC, ZnO
		(mechanical stage only)	
Citron	EU	Pyrometallurgical	AlMn, ZnC, ZnO
Batrec	EU	Pyrometallurgical	AlMn, AnC, ZnO, Li, LiMn, Li-ion
Valdi	EU	Pyrometallurgical	AlMn, ZnC, ZnO
Indaver	EU	Mercury distillation	AgO
Relight			
SNAM	EU	Pyrometallurgical and	NiCd, NiMH
		mercury distillation	
Campine	EU	Pyrometallurgical	PbA

Table 1.9Battery Recycling Processors

Data were collected for each of these processes, with the aim of generating an average dataset for each battery type and process category, where possible. These form the basis of the recycling scenarios modelled during the assessment. Where data for a specific battery type/process category are sufficiently different so as to prevent averaging, the most complete dataset available was used.

Further details of each recycling process can be found in the following sections.

Hydrometallurgical Processes (AlMn, ZnC, ZnO, Li-ion Batteries)

Hydrometallurgy refers to the aqueous processing of metals. Hydrometallurgical processing of waste batteries involves a mechanical step and a chemical step. In the mechanical phase, the batteries are shredded in order to separate the metals, paper, plastic and the black mass. The black mass is further chemically processed to produce a solution, which undergoes electrolysis, or other treatment, in order to separate out the dissolved metals.

There are several EU companies currently carrying out hydrometallurgical processing of AlMn, ZnC and ZnO batteries. Recupyl (France) ⁽¹⁾, Eurodieuze (France) and Revatech (Belgium) and have also developed a process that can treat Li-ion batteries.

In the UK, G&P Batteries has recently commissioned a facility that has capacity to carry out the mechanical step of the Recupyl process for AlMn, ZnC and ZnO batteries.

Both Recupyl and G&P have participated in this study by providing data for their recycling processes.

Recupyl (AlMn, ZnC and ZnO Batteries)

Recupyl is a development process company located outside Grenoble, France. Different types of patents for recycling of special wastes have been developed by Recupyl. They have patented their alkaline and saline (AlMn, ZnC, ZnO) battery recycling process, called the RECUPYLTM process. The process uses hydrometallurgy for processing batches of mixed batteries and the Recupyl industrial recycling plant is authorised to handle all kinds of used battery. The process is shown diagrammatically in *Figure 1.3*.

Figure 1.3 Recupyl Recycling Process

(1) Recupyl is a development process company and does not recycle on a commercial basis.

Initially, batteries are sorted by size and shredded. The mechanical treatment step that follows sifts and magnetically separates steel, paper and plastics from the shredded batteries, leaving a 'black mass'. The black mass is subsequently treated with acid, resulting in a Zn/Mn solution and the separation of mercury and other (non ferrous) metals. Two alternative steps can then be used to purify the ZnMn solution. Using the traditional electrolysis step, zinc is separated from manganese using acid and electricity. Another, newly developed, purification step enables the separation of zinc and manganese salts.

The flexibility of the Recupyl process allows for various end products, the relative production of which is determined by local demand. The three different end products are:

- zinc manganese solution via chemical treatment;
- zinc and manganese oxide via electrolysis; and
- zinc and manganese salts via the 'new' process step.

Recupyl (Li-ion Batteries)

A variant of the Recupyl process, called Valibat, is used to recycle Li-ion batteries. This process includes treating the batteries with inert gas once they are shredded. The products obtained include lithium salts and a number of metals. The process is shown diagrammatically in *Figure 1.4*.

Figure 1.4 Recupyl's Valibat Process for Recycling Lithium Batteries

G&P Batteries (AlMn, ZnC and ZnO Batteries)

G&P Batteries is a battery collection company based in Darlaston in the West Midlands, and is the first company to have started recycling alkaline and saline (AlMn, ZnC, ZnO) batteries in the UK. They have obtained a patent from Recupyl to carry out the mechanical treatment stage of the Recupyl process (*Figure 1.3*), which produces black mass, scrap iron, paper, plastic and other, non-ferrous metals.

The black mass product is still currently exported to Europe for further processing. However, the intention is that G&P will have a complete recycling facility, including the chemical stages of the hydrometallurgical process, once UK demand for manganese and zinc compounds has been established.

Pyrometallurgy (AlMn, ZnC, ZnO, NiMH, NiCd and Li-ion Batteries)

Pyrometallurgy uses high temperatures to transform metals. There is no generic method for recycling batteries pyrometallurgically and each of the existing methods is unique. For alkaline and saline batteries (AlMn, ZnC, ZnO), Batrec (Switzerland), Citron (France) and Valdi (France) carry out a pyrometallurgic process. Batrec has also developed a pyrometallurgic process that can treat Li-ion batteries. For NiCd and NiMH secondary batteries, SNAM (France) apply a high temperature process to recover cadmium and other metals. Similarly, Campine (Belgium) uses a high temperature process to recover lead from lead acid batteries.

Batrec, Citron, Valdi, SNAM and Campine have all participated in this study by providing data for their recycling processes.

Batrec (AlMn, ZnC, ZnO Batteries)

The core business of the Swiss company Batrec is the recycling of used batteries and materials containing heavy metals. Their recycling process is based on a pyrolysis plant and is shown diagrammatically in *Figure 1.5*.

Figure 1.5 Batrec Recycling Process

AlMn, ZnC, and ZnO batteries are manually sorted before being fed into a shaft furnace, where they are pyrolised at temperatures of up to 700° C.

In the furnace, water and mercury are vaporised and pass into the afterburner, together with carbonised organic components (paper, plastic, cardboard etc). The exhaust gases are then led into the exhaust gas purification plant. Here, gases are washed with circulating water. Solid materials are washed out and mercury condenses in metallic form.

The metallic components arising through pyrolysis are passed to the induction furnace, where they are reduced through smelting at a temperature of 1500° C. Iron and manganese remain in the melt and combine to form ferromanganese. Zinc vaporises and is recovered in the zinc condenser.

Batrec (Li-ion Batteries)

Batrec use an alternative process to treat Li-ion batteries, where the main safety concern is to render the highly flammable batteries inert. The process is shown diagrammatically in *Figure 1.6*.

The Li-ion batteries are fed to a crushing unit, where they are crushed in a controlled atmosphere. The released lithium is neutralised and other products (chrome-nickel steel, cobalt, non-ferrous metals, manganese oxide and plastic) are separated in a multistage separating plant.

Figure 1.6 Batrec's Recycling Process for Lithium Batteries

Citron (AlMn, ZnC and ZnO Batteries)

Citron's battery recycling facility is based in Rogersville, near La Havre in France. The plant recovers metals from alkaline and saline (AlMn, ZnC, ZnO) household batteries, automobile shredding residues, hydroxide sludges, grinding sludges and catalysts.

These waste streams are processed in a patented pyrometallurgical process called OxyreducerTM. This process can extract metals from all types of waste containing heavy metals. In 2003, 71,000 tonnes were recycled at the plant, of which 4400 tonnes were alkaline and saline batteries (approximately 6%) ⁽¹⁾. The process is shown diagrammatically in *Figure 1.7*.

(1) http://www.citron.ch/e/e2/documents/RAPPORTF.pdf

Batteries are sorted and fed into Oxyreducer, a rotary hearth furnace where zinc, mercury, organic materials and salts are vaporised. These gaseous emissions pass on to the waste gas treatment plant, where a number of processes occur:

- oxidised zinc is settled out in a gravity chamber as a concentrate of zinc hydroxide;
- mercury is washed from the gaseous emission and discharged directly out of the water sumps as mercury-containing sludges. These are then further treated in the mercury extraction furnace, to yield mercury;
- all organic materials, such as paper and plastics, are completely oxidised in the Oxyreducer and over 50 % of the yielded energy is recovered. This energy is used to dry the zinc hydroxide sludges; and
- evaporated salts are washed out in the gas treatment system. They are reduced mainly to sodium chloride (NaCl) and potassium chloride (KCl) and leave the plant with the treated waste water.

Iron and manganese are not evaporated due to their high boiling points. These metals are discharged together with the carbon electrodes. The manganese oxide (MnO_2) is screened and sold for different applications, and the ferrous metals are sold as scrap. The carbon electrodes are re-introduced into the process as a reducing agent.

Valdi (AlMn, ZnC and ZnO Batteries)

Valdi is a France-based recycling company, specialising in refining ferrous alloys and recycling alkaline and saline batteries. A pyrometallurgical process is used for battery recycling, shown diagrammatically in *Figure 1.8*.

Figure 1.8 Valdi Recycling Process

Batteries are ground and dried in a mechanical pre-treatment stage before being fed in to an arc furnace. At high temperatures, ferromanagese is obtained from the furnace and is cast into ingots. This process also produces a slag and gaseous emissions. The gases are treated with active carbon to yield zinc oxide dust.

SNAM (NiCd and NiMH Batteries)

Société Nouvelle d'Affinage des Métaux (SNAM) is a recycling company with facilities based in Lyon and Viviez, France. The company processes portable and industrial NiCd and NiMH batteries, cadmium-containing waste (powders, slag, etc.) and other streams containing cadmium. The processes used to recycle NiCd and NiMH batteries are shown diagrammatically in *Figure 1.9*.

Figure 1.9 SNAM Process for Recycling NiCd and NiMH Batteries

Firstly, power packs are dismantled, separating the cells from the plastic cover. The cells are, together with other portable rechargeable batteries, transferred into a static pyrolysis reactor. At a temperature of $500^{\circ}C^{(1)}$, the waste batteries are held in the reactor for 16 hours.

(1) At this temperature, no cadmium is released.
Traces of mercury, present as a consequence of incomplete sorting of the battery feedstock, evaporate in the pyrolysis reactor. Active carbon is used for its removal, and is the only additive to the process.

The treatment of NiMH batteries ends at this stage, and the residues of ferronickel that are yielded are used in steel production.

The treatment of NiCd batteries involves an additional step. After pyrolysis, residues are placed in steel distillation ovens, which are tightly sealed off. Each batch is electrically heated at 900°C for 16 hours and is subsequently cooled for eight hours. At these temperatures, a combination of distillation of metallic cadmium and sublimation of cadmium-oxides and –hydroxides takes place. Cadmium is condensed from the gaseous phase and is further purified, by means of continuous distillation.

Campine (Lead Acid Batteries)

Campine is a leading non-ferrous metal reprocessor, based in Belgium. At the Campine reprocessing site, spent lead acid batteries are shredded in a covered storage area and escaping sulphuric acid is captured in a pit. The acid is pumped through a filter press and is stored in tanks. This recovered acid is then collected on a regular basis and transported for re-use.

The shredded lead acid batteries are mixed with other materials before passing to the furnace (coke, iron scraps, limestone and reusable slags from the process itself). The plastic casing of the batteries (predominantly polypropylene) is also added, as it serves as both a fuel and a reducing agent. The mix is sent to furnace in batches and melted at a temperature of 1200-1300°C.

The main outputs from the furnace are lead (86-87% pure and in need of refining to remove antimony and calcium), slags (approximately 78% of which can be re-used in the lead furnace as carrier material and the remainder of which is sent to landfill) and waste gases.

Waste gases are quenched, filtered and cooled with cold air, which prevents the formation of dioxins. Any carbon-containing air emissions are completely oxidised in the after-burner.

The lead refinery step involves the removal of antimony and calcium through oxidation. The oxide that is formed is removed by mechanical means.

Mercury Distillation and Silver Recovery (Button Cells)

During mercury distillation processes, mercury is recovered from mercurycontaining wastes. Button cells, mercuric oxide cells in particular, are just one of the waste types that undergo mercury distillation. The process is a vacuum-based thermal treatment, during which mercury vaporises. At a reduced temperature, the mercury then condenses, producing mercury in its metallic form.

This process is carried out by Indaver Relight (Belgium), Duclos (France) and Citron (France). Data for have been obtained from Indaver Relight.

Indaver Relight (Button cells)

Indaver Relight, located in Flanders, Belgium, carries out a mercury distillation, as shown in *Figure 1.10*. The distillation unit can process a number of mercury containing waste streams, such as fluorescent lamps, thermometers, dentist's amalgam, mercury switches and button cells.

Figure 1.10 Indaver Relight Mercury Distillation Process

Around 200 kg of button cells are processed in each batch. Cells are firstly shredded and placed in the distillation unit. The temperature in the unit is raised to 600°C, at which the mercury is vaporised and becomes gaseous. The unit is continuously washed with nitrogen to remove the gases, which pass into the afterburn chamber. Here, a mixture of oxygen and air is injected and mixed with the gases at a temperature of 800°C. At this temperature, all organic substances are combusted.

Mercury is recovered from the waste gases via condensation at -6°C and the remaining gases are filtered via active carbon. The duration of the process is between 24 and 40 hours in total. The remaining residue is then available for further processing to recover the silver.

The residue is mixed with other silver bearing materials and the resultant mix is combined with lead and fluxes and charged into a shaft furnace. A lead/silver alloy with a silver purity of about 50% is produced. The lead is removed by preferential oxidation, to produce high grade silver (98+%) and lead oxide.

1.9 Residual Waste Management System

The baseline system assumes the collection of batteries as MSW for residual disposal, with no collection or recycling. In 2003-2004, 11% of residual MSW was incinerated with energy recovery and 89% was disposed to landfill

(*Environment Agency*). This split between landfilling and incineration is assumed to be constant for residual waste over the next 25 years.

1.10 IMPLEMENTATION SCENARIOS

Combining the three collection and three recycling scenarios described above results in a total of nine 'implementation' scenarios that were studied:

- 1. Collection Scenario 1 with Recycling Scenario 1
- 2. Collection Scenario 1 with Recycling Scenario 2
- 3. Collection Scenario 1 with Recycling Scenario 3
- 4. Collection Scenario 2 with Recycling Scenario 1
- 5. Collection Scenario 2 with Recycling Scenario 2
- 6. Collection Scenario 2 with Recycling Scenario 3
- 7. Collection Scenario 3 with Recycling Scenario 1
- 8. Collection Scenario 3 with Recycling Scenario 2
- 9. Collection Scenario 3 with Recycling Scenario 3

The tenth Scenario is the baseline scenario which involves batteries being disposed as residual waste.

The following section describes the system boundaries for each of the scenarios studied.

1.11 System Boundaries

System boundaries define the life cycle stages and unit processes studied, and the environmental releases (eg carbon dioxide, methane etc.) and inputs (eg coal reserves, iron ore etc.) included in an LCA. System boundaries should be defined in such a manner that the inputs and outputs from the system are elemental flows ⁽¹⁾.

The aim of the study was to include all significant processes, tracing material and energy flows to the point where material and energy are extracted from, or emitted to, the natural environment.

The study aimed to be representative of expected battery collection and recycling systems in the UK between 2006 and 2030. We reflected the UK situation by assessing the average collection and recycling scenarios described in *Sections 1.7* and *1.8*. These scenarios take into account current UK practices, as well considering likely future developments in battery collection and recycling. This, unavoidably, involves prediction. The key assumptions

⁽¹⁾ An elemental flow is material or energy entering the system being studied, which has been drawn from the environment without previous human transformation, or it is a material or energy leaving the system being studied, which is discarded into the environment.

made, for example concerning transportation routes, were examined for their influence on their results during sensitivity analysis.

The study addressed flows to and from the environment for each implementation scenario, from the point of battery collection. Flows relating to the production and use of batteries were excluded from the study as the assessment of these life cycle stages is beyond the scope and requirements of the study's goal.

The diagrams shown in *Figure 1.11* to *Figure 1.14* detail the processes that were included in the assessment of each implementation scenario and the baseline scenario. The environmental burdens (inputs and outputs) associated with all of these activities have been quantified and a benefit has been attributed to the displacement of primary materials through recycling, where this occurs and on a mass-for-mass basis.

In short, inventories and impacts profiles generated for each of the implementation systems assessed represent the balance of impacts and benefits associated with:

- battery collection (container materials manufacture and processing, transport requirements);
- battery sorting (energy/fuel requirements of sorting process);
- battery transportation to reprocessor;
- battery recycling (process material and energy/fuel requirements);
- avoided burdens through the recovery of secondary materials and displaced production of equivalent quantities of primary material; and
- management of residual batteries and other wastes (via landfill or incineration).

Figure 1.11 Outline System Diagram: Implementation Scenario 1, 2 & 3

Figure 1.12 Outline System Diagram: Implementation Scenario 4, 5 & 6

Figure 1.13 Outline System Diagram: Implementation Scenario 7, 8 & 9

Figure 1.14 Outline System Diagram: Baseline Scenario 10

1.11.1 Temporal, Spatial and Technological Boundaries

The geographical coverage of the study was the collection of batteries within the UK and the recycling of these batteries within the UK and Europe. The location of recycling was determined by current recycling locations and planned recycling capacity within the UK. The temporal scope of the study was the collection of battery wastes between 2006 and 2030, however the data that were used to reflect collection and reprocessing activities were selected to represent technology currently in use.

A further discussion of data and quality requirements is presented in *Section 1.16*.

1.11.2 Capital Equipment

All equipment necessary for any process involved in the collection and recycling of batteries is referred to as capital equipment. Examples of capital equipment include collection vehicles and process equipment, eg boilers, fans, pumps, pipes etc.

Capital equipment for recycling processes and energy systems was excluded from the study boundary. The majority of the LCI data used to model impacts associated with other processes include capital burdens. However, on analysis of these datasets it was found that capital burdens contributed an insignificant proportion of the total impact.

All collection containers were considered to be consumables, as opposed to capital burdens, and were included in the scope of the assessment.

In the UK, G&P Batteries have just built a dedicated plant for battery recycling, and recycling at this plant is included in this study. The initial environmental impact for the construction of this plant is likely to be significant (as with the construction of buildings in general). However, for the envisaged life time of the plant, the impact per processed tonne of batteries will be insignificant. The impact from the plant construction is excluded from the scope of the study.

1.11.3 Workforce Burdens

It is not common practice when conducting LCAs to include an assessment of human labour burdens, due to difficulties in allocation, drawing boundaries, obtaining data and differentiating between labour and capital equipment.

We have excluded human labour as being outside the scope and resources of this project.

1.12 ALLOCATION PROCEDURES

Some processes may yield more than one product and they may also recycle intermediate products or raw materials. When this occurs, the LCA study has to allocate material and energy flows, as well as environmental releases, to the different products in a logical and reasonable manner.

Where the need for allocation presented itself, then the inputs and outputs of the inter-related processes was apportioned in a manner that reflected the underlying physical relationships between them. There are certain circumstances where this is not appropriate or possible when carrying out an LCA study. In such cases, alternative allocation methods were documented in the inventory analysis.

1.13 INVENTORY ANALYSIS

Inventory analysis involves data collection and calculation procedures to quantify the relevant inputs and outputs of a system.

Data sources included both specific and representative data. Specific data relating to battery collection and recycling scenarios were collected. Proprietary life cycle databases were used for common processes, materials, transport steps and electricity generation. Where data were missing, estimates based on literature and previous studies were made. All data gaps and substitutions were recorded.

For each of the implementation systems assessed, inventories of all environmental flows to and from the environment were produced. The inventories that were generated provide data on hundreds of internal and elemental flows for each implementation scenario. As such, these inventories are annexed and summary inventory data for the ten scenarios is provided.

1.14 IMPACT ASSESSMENT

The impact assessment phase of an LCA assigns the results of the inventory analysis to different impact categories. The following steps are mandatory:

- selection of impact categories and characterisation models;
- classification the assignment of LCI results; and
- characterisation the calculation of inventory burdens' potential contribution to impacts.

Selection of appropriate impact categories is an important step in an LCA. We assessed the contribution of each system to the following impact indicators, which we believe address the breadth of environmental issues and for which

thorough methodologies have been developed. The study employed the problem oriented approach for the impact assessment, which focuses on:

- depletion of abiotic resources;
- global warming;
- ozone layer depletion;
- human toxicity;
- aquatic and terrestrial toxicity measures;
- acidification; and
- eutrophication.

Resource depletion: is an important concern because it is considered impossible to sustain current rates of economic growth given the associated consumption of resources. Many of the resources that drive our economies are limited (non-renewable) and will therefore one day be exhausted, if we continue to use them at current rates. An indication of resource depletion is provided by considering the proportion of the available resource (in years) for each raw material consumed by the activities in question, and summing their contributions to depletion of known stocks, giving a measure of total depletion in years. Raw materials extracted that contribute to resource depletion are aggregated according to their impact on resource depletion compared with antimony reserves as a reference.

Global warming: human activities have altered the chemical composition of the atmosphere through the build-up of greenhouse gases, primarily carbon dioxide, methane, and nitrous oxide. As the world becomes more industrialised, the higher concentration of these gases increases the heat trapping capability of the earth's atmosphere. As a result, temperatures and sea levels are rising annually. Gases contributing to the greenhouse effect are aggregated according to their impact on radiative warming compared to carbon dioxide as the reference gas.

Ozone layer depletion: ozone is a naturally occurring gas that filters out the sun's ultraviolet (UV) radiation in the stratosphere. Its depletion is caused by the release of chlorofluorocarbons (CFCs) and other ozone-depleting substances into the atmosphere. Over exposure to UV rays can lead to skin cancer, cataracts, and weakened immune systems. For gases that contribute to the depletion of the ozone layer (eg chlorofluorocarbons), ozone depletion potentials have been developed using CFC-11 as a reference substance.

Human toxicity: the anthropogenic release of chemical compounds to the environment is a major environmental concern due to the potential for harm to humans and the natural environment. For this reason, methods have been developed which estimate the potential harm that may result from emissions of chemical compounds to the environment. The impact assessment method used in this tool is based on calculated human toxicity *potentials* and is not related to *actual* impact. These Human Toxicity Potentials (HTP) are a calculated index that reflect the potential harm of a unit of chemical released

into the environment. Characterisation factors, expressed as HTPs, are calculated with USES-LCA, describing fate, exposure and effects of toxic substances for an infinite time horizon. For each toxic substance, HTPs are expressed as 1,4-dichlorobenzene equivalents/kg emission.

Eco-toxicity: is the potential for substances released to the environment through human activities to exert toxic effects on organisms within the natural environment. Eco-toxicity potentials for the aquatic and terrestrial environments are calculated with USES-LCA, describing fate, exposure and effects of toxic substances. Characterisation factors are expressed as 1,4-dichlorobenzene equivalents/ kg emission.

Acidification: is the process whereby air pollution, mainly ammonia, sulphur dioxide and nitrogen oxides, results in the deposition of acid substances. 'Acid rain' is best known for the damage it causes to forests and lakes. Less well known are the many ways it affects freshwater and coastal ecosystems, soils and even ancient historical monuments. The heavy metals whose release into groundwater these acids facilitate are also not well studied. Gases contributing to air acidification are aggregated according to their acidification potential. These potentials have been developed for potentially acidifying gases such as SO₂, NOx, HCl, HF and NH₃ on the basis of the number of hydrogen ions that can be produced per mole of a substance, using SO₂ as the reference substance.

Eutrophication: the overloading of seas, lakes, rivers and streams with nutrients (particularly nitrogen and phosphorus) can result in a series of adverse effects known collectively as eutrophication. Phosphorus is the key nutrient for eutrophication in freshwater and nitrate is the key substance for saltwater. Those substances that have the potential for causing nutrification are aggregated using nutrification potentials, which are a measure of the capacity to form biomass compared to phosphate (PO₄).

For some impact categories, particularly human toxicity and aquatic and terrestrial eco-toxicity, a number of simplifying assumptions were made in the modelling used to derive characterisation factors. As a result, their adequacy in representing impacts is still the subject of some scientific discussion. However, they are still widely used and we therefore included them in the assessment as issues of interest, accompanied by caveats describing their deficiencies. The impact assessment reflects potential, not actual, impacts and it takes no account of the local receiving environment.

The method that was used is that developed and advocated by CML (Centre for Environmental Science, Leiden University) and which is incorporated into the SimaPro⁽¹⁾ LCA software tool. The version contained in the software is based on the CML spreadsheet version 2.02 (September 2001), as published on the CML web site.

(1) PRé Consultants by Plotterweg 12 3821 BB Amersfoort The Netherlands

The method used for each impact category for classification and characterisation is described in *Annex B*.

According to ISO 14042, the following additional steps may be included in impact assessment, but are not mandatory:

- normalisation;
- grouping;
- weighting; and
- valuation.

None of these were performed in the study, instead, and in a separate exercise, ERM conducted monetary valuation assessment using up-to-date monetary valuation techniques to assess each of the implementation scenarios. This drew upon the report prepared for Defra by Enviros Consulting Ltd. and EFTEC ⁽¹⁾.

1.15 SENSITIVITY ANALYSIS

Key variables and assumptions were tested to determine their influence on the results of the inventory analysis and the impact assessment.

Key areas that were identified for sensitivity analysis included battery waste arisings, NiCd battery displacement, collection targets and Directive implementation years. Due to the permutations associated with battery arisings, collection levels and recycling routes, sensitivity analysis formed a significant proportion of the work for this study.

Sensitivities included:

- 1. battery sales growth in line with treasury economic growth predictions;
- 2. displacement of NiCd batteries with NiMH batteries;
- 3. increases in proposed collection targets (30% in 2012 and 50% in 2016; 35% in 2012 and 55% in 2016; 40% in 2012 and 60% in 2016);
- 4. collection and recycling levels in line with proposed voluntary agreement levels (23.5% collection from 2012 to 2030); and
- 5. key collection target years brought forward by 2 years.

Conclusions made in the study drew on both the primary results for the systems assessed and on the variations that result through the sensitivity analysis.

^{(1) &#}x27;Valuation of external costs and benefits to health and environment of waste management options' (2004)

1.16 DATA REQUIREMENTS

In addition to collecting data describing the collection and recycling operations assessed, the following were identified as key elements for which inventory data were required:

- electricity generation;
- container materials production;
- container manufacture;
- offset material production; and
- vehicle operation.

1.16.1 Data Quality Requirements

Primary versus secondary data

It was considered a requirement of the study that primary data relating to the collection, sorting and reprocessing of waste batteries be collected. However, it was not within the scope of the study to collect primary data relating to the production of ancillary and offset primary materials, or for energy production and residual waste management systems. As such, secondary data were sourced, using the following hierarchy of preferred sources:

- 1. existing, critically reviewed life cycle data from published studies or from proprietary packages;
- 2. estimates based on other data sources, such as books, publications, internet sources etc; and
- 3. substitute data, for example substituting materials with similar manufacturing processes.

Time-related coverage

All primary data collected were sought to be representative of current UK or EU practices, as appropriate (2003/04 data collected as the latest available at the time of study).

All secondary data were sought to be less than 15 years in age.

Geographical coverage

The geographical coverage of the study was the collection and recycling of batteries according to expected UK practice between 2006 and 2030.

Some recycling processes occur outside the UK and, in these cases, the technologies assessed were sought to be representative of the countries in which they are located.

Secondary data were sought to be representative for Europe, except for electricity used in the recycling processes. The electricity mix should

represent the country where the process is located. If certain processes, such as mining of metals, do not take place in Europe, global data was sought.

Technology coverage

For primary data, current UK or EU practices were sought. Primary data relating to the performance of plant currently processing batteries, and that are considered likely management routes for UK batteries, were required. For secondary data, technologies representative/indicative of European conditions were used.

It was not within the scope of the study to consider in any detail the potential for future change in technology.

Representativeness

The data used were considered to be representative for the system if geographical coverage, time period and technology coverage requirements, as defined above, were met.

1.17 KEY ASSUMPTIONS AND LIMITATIONS

All assumptions and limitations were recorded and are reported in this study report. All key assumptions were tested through sensitivity analysis. For example, the assumption made as to year-on-year increases in battery collection levels influences the results, and so was examined in more detail.

A key limitation of the study was the use of secondary data to quantify the avoided burdens of primary material production through recycling, and the associated assumption that these presented a reasonable representation of overall recycling benefits. However, it was not possible within the scope of the study to collect alternative data for these processes. The increasing age of secondary data and limitations found with regard to meta data suggest a need for a Europe-wide programme to maintain and improve LCI data for use in studies such as this. The value of LCA going forward is dependent on the quality and availability of secondary data.

The potential for future changes in technology is not included in the scope of the study. It is likely that recycling processes for batteries will become more efficient over time, which potentially will lead to a decrease in environmental impact. However, it was not possible within the scope of this study to investigate potential technological improvement. The level of technology is assumed to be steady for the time coverage of the study.

1.18 CRITICAL REVIEW

In accordance with ISO14040, the study was peer reviewed by an external reviewer. In accordance with the standard, the reviewer addressed the issues

below and provided a review report. This report, together with ERMs response, can be found in *Annex E*.

For the goal and scope:

• Review of the scope of the study to ensure it is consistent with the goal of the study and that both are consistent with ISO 14041

For the inventory:

- Review of the inventory for transparency and consistency with the goal and scope and ISO14041; and
- Check data validation and that the data used are consistent with the system boundaries (we do not expect the reviewer to check data and calculations, other than samples).

For the impact assessment:

• Review of the impact assessment for appropriateness and conformity to ISO14042.

For the draft final report:

• Review of the report for consistency with reporting guidelines in ISO 14040.

Inventory analysis involves data collection and calculation procedures to quantify the relevant inputs to, and outputs from, a system. For each of the implementation systems assessed, inventories of significant environmental flows to and from the environment, and internal material and energy flows, were produced.

Data sources included both primary and secondary data. Primary data relating to battery collection and recycling process inputs and outputs were sourced. Secondary data from life cycle databases were used for common processes, materials, transport steps and electricity generation.

Sections 2.1 to 2.4 describe the assumptions, data and inventories used to generate the life cycle inventories for each collection, recycling and implementation scenario. *Section* 2.5 provides further detail of the all secondary datasets used in the assessment, together with an evaluation of their quality and appropriateness for use.

2.1 COLLECTION SYSTEMS

A number of key assumptions were required to determine the number of collection points and containers that were required to meet the needs of the three collection scenarios under assessment:

- Collection Scenario 1 where kerbside collection schemes are favoured;
- Collection Scenario 2 where CA site collection schemes are favoured; and
- **Collection Scenario 3** where bring receptacle collection schemes, located in institutional premises (business/school/public/WEEE dismantlers etc.), are favoured.

The methods used to make these estimates are documented below. The following sections also describe the data and assumptions used to model these scenarios with regard to the manufacture of containers, transport of batteries to bulking and sorting points, sorting plant operations and onwards transport to recycling facilities.

2.1.1 *Collection Points*

Collection points fall into five categories, in accordance with the five possible routes for battery collection and consolidation. The estimated maximum number of each collection point available in the UK over the study period was discussed in *Section 1.7.2* and is summarised in *Table 2.1*.

Collection Route	Collection Point	Estimated	Source
1	Waste authority bulking point for kerbside collection	197	Number of coordinating waste authorities in the UK taken from: Cameron-Beaumont, Bridgewater & Seabrook (2004). <i>National Assessment of Civic Amenity Sites: Civic Amenity Sites</i> <i>in the UK – Current Status.</i> Future West, Network Recycling. Chapter 2.2, Current CA Site Provision. It was assumed that each authority will operate one bulking point/transfer station for the consolidation of kerbside collected materials.
2	Civic Amenity (CA) site	1065	Number of civic amenity sites in the UK taken from: Cameron-Beaumont, Bridgewater & Seabrook (2004). <i>National Assessment of Civic Amenity Sites: Civic Amenity Sites</i> <i>in the UK – Current Status.</i> Future West, Network Recycling. Chapter 2.2, Current CA Site Provision. It was assumed that each CA site will potentially house a collection point. Alternatively, local Authorities may use bring sites for the collection of household batteries. As such, the number of collection points assumed for this collection route may have been underestimated. There will be some overlap with collection route 3, however, as bring sites may be located at supermarkets, or other institutional points, and so it is considered that the potential for underestimation is not significant.
3	Institutional bring site, eg school, electrical equipment retailer, supermarket, hospital	69,500	Estimate based on the relative number of institutional points and performance of collection systems in Belgium (Bebat) and the Netherlands (Stibat). The Belgium system houses a network of 19,500 schools, shops and other institutional sites for its approximate 10.4 million population (0.0019 sites/head) and generates a collection rate of 56%. The Dutch system supports a network of 10,710 sites at schools and shops for its approximate 16.3 million population (0.00068 sites/head) and generates a collection rate of 37%. The number of sites/head required to achieve a 45% collection rate via both of these systems was calculated (in Belgium = (0.0019/56)*45, in the Netherlands = (0.00068/37)*45). An average of these was taken and multiplied by UK population (59.6 million, ONS 2003 estimate) to result in an estimated number of institutional sites for the UK.
4	Mail sorting centre	73	Royal Mail operates 73 Inward Mail Centres, through which all incoming mail must pass. It was assumed that these will act as a consolidation points for the collection of batteries via the postal system.

Collection Route	Collection Point	Estimated No. in UK	Source
5	Lighting maintenance operator bulking site	50	An internet search through Kelly's Industrial Product and Service Information Service (http://www.kellysearch.com) was performed with criteria set to retrieve facilities and emergency lighting maintenance providers. In excess of 50 were listed but many were small companies, without focus on maintenance provision. Approximately 50 provided either facilities maintenance to businesses, or had particular focus on emergency lighting service and maintenance provision. It was assumed that each would collect and consolidate spent batteries when performing routine maintenance and inspections of emergency lighting fittings.

It was assumed that, throughout the study period, each of the postal and maintenance collection points will be used for battery consolidation. The postal system is an interdependent network of collection, sorting and delivery centres and, as such, a collection point would be required at each regional sorting centre to enable a UK-wide postal scheme to operate.

It is a mandatory requirement for employers to carry out routine inspection and maintenance of emergency lighting fittings, under Work Place Regulations 1997 and Employers Guide, Fire and Safety 1999. Maintenance operators are then required to dispose of them in a safe manner, in general through a licensed distribution office. This maintenance system operates independently of the proposed Directive's collection targets and so it was assumed that each maintenance company will house a consolidation/collection point.

For kerbside, CA and institutional collection routes, an estimate of the number of schemes/collection points required to meet the proposed collection targets was made. This was determined by:

- Calculating the potential arisings of batteries per person each year, a function of waste battery arisings ⁽¹⁾, coupled with the high participation and capture rates required to achieve a 45% collection rate ⁽²⁾.
- Maximum proportion of waste batteries to be collected via each route was then factored in ⁽³⁾, resulting in a maximum amounted potentially collected for that route.
- Multiplied by the average number of people served by a collection point ⁽⁴⁾ to determine the maximum amount of batteries potentially collected via each kerbside, CA and institutional collection point each year.

⁽¹⁾ Based on 2003 battery sales data, detailed in Table 1.1 of the Goal and Scope

^{(2) 70%} participation and 70% capture were assumed (totalling 49%), allowing for the unlikelihood that 100% capture will be achieved.

⁽³⁾ based on the battery collection scenarios described in Section 1.6 of the Goal and Scope

⁽⁴⁾ assuming an even distribution of population and collection points

This process is summarised in *Figure 2.1*.

The number of collection points required to fulfil the collection requirements of each scenario (detailed in *Tables 1.2 to 1.7*) was then determined by dividing the required quantity by the maximum quantity collected at each point. The results of this exercise are shown in *Table 2.2*.

	No. Ke	rbside Col	lection	No. CA	Collection	n Points	No. In	stitutional	Collection
		Points						Points	
Scenario	1	2	3	1	2	3	1	2	3
Year									
2006	14	3	7	14	78	14	2645	2645	5066
2007	29	5	14	27	155	27	5291	5291	10,131
2008	43	8	21	41	233	41	7936	7936	15,197
2009	57	10	28	54	310	54	10,581	10,581	20,262
2010	72	13	35	68	388	68	13,227	13,227	25,328
2011	86	15	42	81	466	81	15,872	15,872	30,394
2012	101	18	49	95	543	95	18,517	18,517	35,459
2013	121	21	59	114	652	114	22,221	22,221	42,551
2014	141	25	69	133	761	133	25,924	25,924	49,643
2015	161	28	79	152	869	152	29,628	29,628	56,735
2016	181	32	89	171	978	171	33,331	33,331	63,827
2017	181	32	89	171	978	171	33,331	33,331	63,827
2018	181	32	89	171	978	171	33,331	33,331	63,827
2019	181	32	89	171	978	171	33,331	33,331	63,827
2020	181	32	89	171	978	171	33,331	33,331	63,827
2021	181	32	89	171	978	171	33,331	33,331	63,827
2022	181	32	89	171	978	171	33,331	33,331	63,827
2023	181	32	89	171	978	171	33,331	33,331	63,827
2024	181	32	89	171	978	171	33,331	33,331	63,827
2025	181	32	89	171	978	171	33,331	33,331	63,827
2026	181	32	89	171	978	171	33,331	33,331	63,827
2027	181	32	89	171	978	171	33,331	33,331	63,827
2028	181	32	89	171	978	171	33,331	33,331	63,827
2029	181	32	89	171	978	171	33,331	33,331	63,827
2030	181	32	89	171	978	171	33,331	33,331	63,826

Table 2.2Number of Collection Points Required to Meet Directive Targets over Study
Period

Figure 2.1 Assumptions Regarding the Number of Batteries Potentially Collected via each Collection Route/Year

Note: 70% participation and 70% capture rates were assumed to calculate battery arisings/person/year

2.1.2 Collection Containers Requirements

G&P Batteries, the UK market leaders in battery waste management, were consulted in order to determine the number/type of containers needed to fulfil capacity requirements at each collection point, and for each collection route. This information is summarised in *Table 2.3*. For further information on collection container specifications, refer to *Table 2.5*.

Collection									
Route	Collection Point		C	ollection	contai	ners or	ı site		Comments
		Mini	Mid	Large	Cylin	Sack	Large	Small	
		tube	tube	tube	-der		bin	bin	
									Up to 33t/year/site collected, max collection freq = 12/year.
	Kerbside bulking								Thus 3 large bins/site
1	point						3		required
									1 cylinder plus consolidation bin/site (approx 10% small
2	CA site				1		0.9	0.1	bins where space limited)
3	Institutional site	0.25	0.3	0.3	0.15	1			1 receptacle plus consolidation sack/site. Receptacle requirement split according to % likelihood of use
4	Mail centre						0.9	0.1	1 consolidation bin/site (approx 10% small bins where space limited)
	Maintenan a halling								1 consolidation bin/site
F	Maintenance bulking						0.0	0.1	(approx 10% small bins where
Э	point						0.9	0.1	space is limited)

Table 2.3On-site Collection Container Requirements

Each collection container is assumed to have an average lifespan of four years. This figure has been determined by G&P Batteries on the basis of past experience.

By multiplying the number of collection points required over the study period (*Table 2.2*) by the collection container requirements at each site (*Table 2.3*), it was possible to determine the total number of collection containers needed at collection points over the 25-year study period. Totals for each scenario are shown in *Table 2.4*. These take into account the assumed four year lifespan of each container.

	Number Required for Collection
Container Type	Scenario (at Collection Points)
Scenario 1	
Mini tube	40,738
Mid tube	48,886
Large tube	48,886
Cylinder	25,276
Sack	81,476
Large bin	4096
Small bin	160
Total	249,518
Scenario ?	
Mini tube	40 738
Mid tube	48 886
Large tube	48 886
Cylinder	29 224
Sack	81 476
Large hin	5458
Small bin	555
Total	255,223
Comario 2	
Stenurio 5	79 010
Mid tube	70,010 02 612
Ivilu tube	93,012 02,612
Carlindor	75,012 47,640
Cylinder	47,040
Sack	156,020
Large bin	2/49
Small bin	160
Total	471,803

Table 2.4 Collection Scenario Container Requirements (at Collection Points)

The large, one-tonne collection bins ('large bin') form a key part of the collection systems and are used not only for on-site consolidation, but also for transporting, sorting and storing batteries. These bins are therefore re-used many times over their four-year lifespan were allocated in the study to reflect this.

The number of times bins are reused is dependent on the number of bins that are pooled in the collection system. This figure is, in turn, dependent on the number of tonnes that are required to be collected each day, as a bin is required to transport each tonne of batteries collected. One-tonne bins will also be kept in stock at the sorting plant for sorting and storage operations (approx 20 per chemistry ⁽¹⁾) and a number of bins will be located at recycling facilities (approx 20 per chemistry ⁽²⁾), awaiting pick-up. On this basis, and assuming that each bin has an approximate 4 year lifespan, it was estimated that 129 tonnes of batteries would be managed by each bin in the pool. This

(1) Michael Green, pers comm.(2) Michael Green, pers comm.

allocation was applied to the use of one-tonne bins for transport, sorting and storage purposes.

Such an allocation is not required for other collection containers, and onetonne bins located at collection points, as it was assumed that they remain at the collection point for four years before being replaced.

2.1.3 Collection Container Manufacturing

Container manufacturers were contacted in order to determine the quantities and types of materials used to manufacture the collection containers, together with the production processes used. These data are summarised in *Table 2.5*. The Life Cycle Inventory (LCI) data used to model the manufacture of containers are detailed in *Table 2.6*.

Table 2.5Collection Container Specifications

	Compatible	Average Capacity	Empty Weight		
Container	Batteries	(kg)	(kg)	Material Composition	Key Manufacturing process/es
Mini tube	Non-PbA	5	0.7	Polycarbonate (approx 60%), ABS (approx 40%)	Polycarbonate tube extrusion, moulding of ABS base parts
Mid tube	Non-PbA	20	1.5	Polycarbonate (approx 80%), ABS (approx 20%)	Polycarbonate tube extrusion, moulding of ABS base parts
Large tube	Non-PbA	40	8.2	Steel (approx 85%), Polycarbonate (approx 15%)	Polycarbonate tube extrusion, moulding of steel base parts
Cylinder	Non-PbA	80	7.1	Polyethylene (6.5kg) (approx 10% with a steel inner (6kg))	Rota moulding from polyethylene powder
Sack	Non-PbA	40	0.3	Woven polypropylene	Polypropylene extrusion followed by weaving
Large bin	All	1000	45	High density polyethylene	Injection moulding
Small bin	All	500	19	High density polyethylene	Injection moulding

Container	Inventory Data Input	Quantity	Inventory	Time	Geographic	Comment
Container	mventory Data mpat	Quality	Data Source	coverage	Coverage	Comment
Mini Tube	Polycarbonate (PC)	0.4 kg	Ecoinvent	1992-1996	Europe	-
	Extrusion, plastic pipes	0.40 kg	Ecoinvent	1993-1997	Europe	Extrusion of PC tube. Includes estimated process efficiency
	ABS Injection moulding	0.2 kg 0.201 kg	Ecoinvent Ecoinvent	1995 1993-1997	Europe Europe	- Moulding of ABS base parts. Includes estimated process efficiency
Mid Tube	Polycarbonate	1.2 kg	Ecoinvent	1992-1996	Europe	-
	Extrusion, plastic pipes	1.21 kg	Ecoinvent	1993-1997	Europe	Extrusion of PC tube. Includes estimated process efficiency
	ABS	0.3 kg	Ecoinvent	1995	Europe	-
	Injection moulding	0.30 kg	Ecoinvent	1993-1997	Europe	Moulding of ABS base parts. Includes estimated process efficiency
Large Tube	Polycarbonate	0.95 kg	Ecoinvent	1992-1996	Europe	-
	Extrusion, plastic pipes	0.90 kg	Ecoinvent	1993-1997	Europe	Extrusion of PC tube. Includes estimated process efficiency
	Steel, low alloyed	6.8 kg	Ecoinvent	2001	Europe	-
	Forging steel	6.8 kg	Kemna	1989	Europe	Moulding of steel base parts.
Cylinder	Polyethylene, HDPE	6.5 kg	Ecoinvent	1993	Europe	-
	Blow moulding	6.52 kg	Ecoinvent	1993-1997	Europe	Substitute for rota moulding as most similar plastics processing method in terms of energy demand. Includes estimated process efficiency
	Steel, low alloyed	0.6 kg	Ecoinvent	2001	Europe	-
	Electroplating steel with zinc	0.34 m ²	Idemat	1994	Europe	Steel inner specifications = 86cm x 36cm
	Cold transforming steel	0.6 kg	Kemna	1989	Europe	Machining of rolled steel to produce bucket. Electricity requirement only.
Sack	Polypropylene	0.3 kg	Ecoinvent	1992-1993	Europe	-
	Extrusion, plastic film	0.31 kg	Ecoinvent	1993-1997	Europe	Extrusion of polypropylene film. Includes estimated process efficiency

Table 2.6Life Cycle Inventory Data for Collection Containers

Container	Inventory Data Input	Quantity	Inventory Data Source	Time coverage	Geographic Coverage	Comment
Large Bin	Polyethylene, HDPE	45 kg	Ecoinvent	1992-1993	Europe	-
	Injection moulding	45.27 kg	Ecoinvent	1993-1997	Europe	Moulding of bin. Includes estimated process efficiency
Small Bin	Polyethylene, HDPE	19 kg	Ecoinvent	1992-1993	Europe	-
	Injection moulding	19.11 kg	Ecoinvent	1993-1997	Europe	Moulding of bin. Includes estimated process efficiency

Refer to Section 2.5 for further description of secondary datasets

2.1.4 Collection Container Maintenance

G&P Batteries further supplied data regarding typical maintenance requirements for collection containers, both at collection points and at depot or sorting plant. This information is summarised in *Table 2.7*.

Table 2.7 Collection Container Maintenance Requirements

Container	Maintenance	Life Cycle Inventory Data	Inventory Data
	Requirements		Source
Mini tube	None	-	-
Mid tube	None	-	-
Large tube	None	-	-
Cylinder	Occasional manual wash, 1 x year	Soap - 5g per wash	Ecoinvent (1992- 1995, Europe)
		Tap water – 5kg per wash	Ecoinvent (2000, Europe)
Sack	None	-	-
Large bin	Mechanical wash at sorting plant every use	Soap - 5g per wash	Ecoinvent (1992- 1995, Europe)
		Tap water – 5kg per wash	Ecoinvent (2000, Europe)
Small bin	Mechanical wash at sorting plant every use	Soap - 5g per wash	Ecoinvent (1992- 1995, Europe)
		Tap water – 5kg per wash	Ecoinvent (2000, Europe)

Refer to Section 2.5 for further description of secondary datasets

2.1.5 Transport to Depot/Sorting Plant

G&P Batteries were also contacted to provide estimated average transport distances for each collection route. These take into consideration the optimisation of collection routes to minimise costs and the likely future expansion of UK collection networks to a hub-spoke based system as collection tonnages increase. It is assumed that collection trucks will operate to 50% capacity, travelling out empty and returning full.

A summary of the estimated transport requirements for each collection route is provided in *Table 2.8*. Distances refer to the distance batteries travel from the point at which they enter the collection system to the point at which they reach the central sorting plant. The delivery of batteries via the postal system and via maintenance operators is assumed to be equivalent to personal travel and is excluded from the assessment. The LCI data used to model transport requirements are detailed in *Table 2.11*.

Collection Route	Refuse Collection Vehicle (km/tonne)	Transit Van (km)	Articulated lorry – (km)	Packing Requirements
1	1.5		400	1 x large bin per tonne batteries
2			400	1 x large bin per tonne batteries
3		161	400	1 x large bin per tonne batteries
4			400	1 x large bin per tonne batteries
5			400	1 x large bin per tonne batteries

Table 2.8Transport from Collection to Sorting Plants

2.1.6 Sorting Plant

Table 2.9 details the inputs and outputs for the G&P Batteries sorting plant, the largest waste battery sorting plant in the UK. Data take into account the future development of this process, in terms of levels of process automation. Currently sorting is predominantly manual, but with increasing throughput, automation is likely to be introduced in order to increase efficiency. The process will remain predominantly manual, however, as research has shown that automation can only be increased to a certain level before increased rates of sorting error become prohibitive ⁽¹⁾. It has been assumed that a conveyer will be introduced early in the study period, to address increased tonnages collected.

The water treatment step of sorting plant operations (see *Figure 1.2*) has been excluded from the assessment as it is required predominantly for the treatment of effluent resulting from industrial PbA battery washings. PbA batteries arising through hobby applications are likely to comprise <1% of the PbA batteries being sorted at plant. As such, the impacts associated with this process in relation to the study scope are assumed to be minimal.

(1) Michael Green, pers comm.

INPUTS	Inventory	Quantity	Unit	Outputs	Inventory	Quantity	Unit
	Data/Source				Data/Source		
Feedstock				Output Product			
Mixed waste	-	1	tonne	Sorted batteries	-	1	tonne
batteries							
Container/packaging				Container/packaging			
Polyethylene	See Table 1.6	1.25	kg*	Polyethylene	See Table 1.6	1.25	kg*
(large bin)				(large bin)			
Water Consumption				Solid Wastes			
Mains water	Tap Water	0.47	kg	Negligible general wa	ste and unidentifiab	le hazardoı	ıs
(washing)	(Ecoinvent,			waste (<1%)			
	Europe, 2000)						
Electricity				Water emissions			
consumption							
Grid electricity	Electricity	2.4	kWh	Wastewater to sewer	Wastewater to	0.47	kg
(conveyor)	MV (DI HALA I				sewage treatment		
	(BUWAL, CB 2005)				CH 2000)		
	GD, 2003)				Сп, 2000)		
Fuel consumption				Gaseous emissions			
Diesel (forklift)	Diesel	0.17	litres	NOx	-	0.0039	kg
	(Ecoinvent,						
	Europe, 1989-						
	2000)						
				PM10	-	0.00025	kg
				CO	-	0.0024	kg
				NMVOC	-	0.00077	kg
				SO_2	-	0.00029	кg
				CO_2	-	0.46	кg
				Dioxins and Furans	-	neglig	gible

Table 2.9Sorting Plant: Input/Output Data per Tonne of Batteries

* This figure takes into account the reuse of containers throughout the collection system

Refer to Section 2.5 for further description of secondary datasets

2.1.7 Transport to Recycling Plant

The final step in each collection system is the transport of sorted batteries from the sorting plant to recycling facilities. Average distances to recycling facilities were calculated for each recycling scenario, using web-based route mapping tools ⁽¹⁾, and are shown in *Table 2.10*, together with assumed packaging and vehicle requirements. The LCI data used to model transportation are detailed in *Table 2.11*.

(1) www.multimap.com

Battery Type	Destination: Recycling Scenario 1	Destination: Recycling Scenario 2	Destination: Recycling Scenario 3	Vehicle used	Additional Packing Requirements
Alkaline and saline (AlMn, ZnC, ZnO)	UK (10km)	50% UK (10km), 50% France (1250km)	Switzerland (1200km)	25-tonne truck (haulier) for transport to continent, 15-tonne truck for transport to dedicated facility in UK	None
Primary Lithium (Li, LiMn)	Switzerland (1200km)	Switzerland (1200km)	Switzerland (1200km)	25-tonne truck (to transport 15t batteries) - (haulier)	10 tonnes sand
Li-ion	50% France (1250km), 50% Switzerland (1200km)	50% France (1250km), 50% Switzerland (1200km)	50% France (1250km), 50% Switzerland (1200km)	25-tonne truck (haulier)	None
NiCd, NiMH	France (1250km)	France (1250km)	France (1250km)	25-tonne truck (haulier)	None
AgO	UK (150km)	UK (150km)	UK (150km)	25-tonne truck (haulier)	None
PbA	UK (150km)	UK (150km)	UK (150km)	25-tonne truck (haulier)	None

Table 2.10Transport to Recycling Facilities

Table 2.11Life Cycle Inventory Data for Transportation

Vehicle	Inventory Data	Inventory	Age of	Geographic	Comment
		Data Source	Data	Coverage	
Refuse Collection Vehicle	RCV, 21 tonne	Ecoinvent	2005	Switzerland/	Adapted with Euro IV
				Europe	emissions standards
Transit van	Van, 3.5 tonne	Ecoinvent	2005	Switzerland/	Adapted with Euro IV
				Europe	emissions standards
15-tonne truck	Lorry, 15 tonne	Ecoinvent	2005	Switzerland/	Adapted with Euro IV
				Europe	emissions standards
25-tonne truck	Lorry, 25 tonne	Ecoinvent	2005	Switzerland/	Adapted with Euro IV
				Europe	emissions standards

Refer to Section 2.5 for further description of secondary datasets

2.1.8 Inventory Compilation

An inventory for each collection scenario was compiled by combining collection container requirements, transportation to sorting plant, sorting plant operations and onward transport to recycling facilities.

2.2 BATTERY MATERIAL COMPOSITION

The assumed composition of collected batteries is detailed in *Table 2.12* to *Table 2.23*. These have important implications in particular for the fate of materials on disposal (discussed further in *Section 2.4*).

Primary Batteries

Table 2.12Alkaline Manganese Battery Composition

Component	Percentage
Iron & Steel	24.8%
Manganese	22.3%
Nickel	0.5%
Zinc	14.9%
Other metals	1.3%
Alkali	5.4%
Carbon	3.7%
Paper	1.0%
Plastics	2.2%
Water	10.1%
Other non metals	14.0%

Table 2.13Zinc Carbon Battery Composition

Component	Percentage
Iron & Steel	16.8%
Manganese	15.0%
Lead	0.1%
Zinc	19.4%
Other metals	0.8%
Alkali	6.0%
Carbon	9.2%
Paper	0.7%
Plastics	4.0%
Water	12.3%
Other non metals	15.2%

Table 2.14Mercuric Oxide (button) Battery Composition

Components	Percentage
Iron steel	37%
Mercury	31%
Manganese	1%
Nickel	1%
Zinc	14%
КОН	2%
Carbon	1%
Plastics	3%
Water	3%
Other material	7%

Table 2.15Zinc Air (button) Battery Composition

Components	Percentage
Iron & Steel	42%
Mercury	1%
Zinc	35%
Alkali	4%
Carbon	1%
Plastics	4%
Water	10%
Other non metals	3%

Table 2.16Lithium (button) Battery Composition

Components	Percentage
Iron & Steel	60%
Lithium	3%
Manganese	18%
Nickel	1%
Carbon	2%
Plastics	3%
Other non metals	13%

Table 2.17Alkaline (button) Battery Composition

Components	Percentage
Iron & Steel	37%
Mercury	0.6%
Manganese	23%
Nickel	1%
Zinc	11%
Alkali	2%
Carbon	2%
Plastics	6%
Water	6%
Other non metals	14%

Table 2.18Silver Oxide (button) Battery Composition

Components	Percentage
Silver	31%
Iron & Steel	42%
Mercury	0.4%
Manganese	2%
Nickel	2%
Zinc	9%
Other metals	4%
Alkali	1%
Carbon	0.5%
Plastics	2%
Water	2%
Other non metals	4%

Components	Percentage
Iron & Steel	50%
Lithium	2%
Manganese	19%
Nickel	1%
Carbon	2%
Plastics	7%
Other non metals	19%

Table 2.19Lithium Manganese Battery Composition

Secondary Batteries

Table 2.20Nickel Cadmium Battery Composition

Components	Percentage
Cadmium	15.0%
Iron & Steel	35.0%
Nickel	22.0%
Alkali	2.0%
Plastics	10.0%
Water	5.0%
Other non metals	11.0%

Table 2.21Nickel Metal Hydride Battery Composition

Components	Percentage
Cobalt	4.0%
Iron & Steel	20.0%
Manganese	1.0%
Nickel	35.0%
Zinc	1.0%
Other metals	10.0%
Alkali	4.0%
Plastics	9.0%
Water	8.0%
Other non metals	8.0%

Table 2.22Lithium Ion Battery Composition

Components	Percentage
Iron & Steel	22.0%
Aluminium	5.0%
Cobalt	18.0%
Lithium	3.0%
Other metals	11.0%
Carbon	13.0%
Other non metals	28.0%

Table 2.23Lead Acid Battery Composition

Components	Percentage
Lead	65%
Other metals	4%
H2SO4	16%
Plastics	10%
Other material	5%

2.3 RECYCLING SYSTEMS

The following sections describe the data and assumptions used to model the processing requirements of the three recycling scenarios, as detailed in *Table 2.24*.

Table 2.24Recycling Scenario Summary

Battery Type	Recycling Scenario 1	Recycling Scenario 2	Recycling Scenario 3
AlMn, ZnC, ZnO	UK	UK and EU	EU pyrometallurgical
	hydrometallurgical	hydrometallurgical	
Li-ion	EU hydro- and	EU hydro- and	EU hydro- and
	pyrometallurgical	pyrometallurgical	pyrometallurgical
Lithium primary (Li, LiMn)	EU pyrometallurgical	EU pyrometallurgical	EU pyrometallurgical
NiMH, NiCd	EU pyrometallurgical	EU pyrometallurgical	EU pyrometallurgical
AgO (button cells)	UK mercury	UK mercury	UK mercury
0 . ,	distillation/	distillation/	distillation/
	electrolysis	electrolysis	electrolysis
PbA	UK pyrometallurgical	UK pyrometallurgical	UK pyrometallurgical

Information regarding recycling systems for different battery chemistries was obtained from various recyclers, by means of questionnaires and personal contact with individual processors.

2.3.1 Alkaline and Saline Batteries (AlMn, ZnC, ZnO)

In general, alkaline and saline battery recycling processes treat a mixture of waste batteries, such that ERM was unable to allocate inputs and emissions to the specific battery chemistries. Two options were presented:

- 1. to use combined data, representative of recycling processes for mixed alkaline and saline batteries; or
- 2. to allocate inputs and outputs to specific chemistries based on the composition of each.

The latter option is limited, as the battery composition data available to ERM are generic and, as such, are not directly related to the composition of batteries

undergoing treatment. This makes allocation ineffectual and so the former option was employed.

Hydrometallurgical Processing

Data for the hydrometallurgical processing of alkaline and saline batteries were obtained from Recupyl (France), and are representative of 2004 production. *Table 2.25* details the inputs and outputs per tonne of batteries recycled for this process.

The same inputs and outputs were assumed for hydrometallurgical processing in the UK, as G&P Batteries, the only UK company to process waste batteries, have obtained a patent from Recupyl to carry out the mechanical treatment stage of their process. Black mass resulting from this will then be transported to other plant in Europe for further treatment. With increasing tonnages requiring treatment in the UK, G&P are likely to expand the treatment facility to incorporate further treatment of the black mass in the UK.

			Data	
			Ouality	
Flow	Quantity	Unit	Indicator	Inventory Data/Source
INPUTS				
Raw material inputs				
Waste batteries	1000	kg		-
				284.2 kg of 100% Sulphuric Acid (assumed
H ₂ SO ₄ (92%)	168	1		density 1.83 kg/l). Ecoinvent, Europe, 2000
H ₂ O ₂ (30%)	126	1		75.6 kg of 50% Hydrogen Peroxide (assumed density 1 kg/l). Ecoinvent, Europe, 1995
Antifoam	0.86	1		0.8645 kg generic organic chemicals (assumed density 1 kg/l). Ecoinvent, global average, 2000
Electricity consumption				
5 1				Grid Electricity, Medium Voltage,
Electricity, national grid				UK/France. Derived from BUWAL data,
(UK/France)	959.4	kWh	М	2002.
Water consumption				
Industrial water. Use in				Tap Water, used as substitute for mains
waste gas treatment	569.61	1	M/C	water. Ecoinvent, Europe, 2000
OUTPUTS				
Product output				
Zinc - to non ferrous				
metals industry/		_		Zinc, for coating. Ecoinvent, Europe, 1994-
galvanisation	205	kg	М	2003

Table 2.25Hydrometallurgical Processing of Alkaline and Saline Batteries:Input/Output Data per Tonne of Batteries

			Data	
			Quality	
Flow	Quantity	Unit	Indicator	Inventory Data/Source
Manganese dioxide - to				
non ferrous metals		_		
industry	317	kg		228 kg Manganese. Ecoinvent, Europe,
- of which pure manganese	228	kg	М	2003
Iron and steel - to steel				Recycling iron and steel. Ecoinvent,
production	180	kg	М	Europe, 2002
1		0		1
Emissions to air				
NH ₃	0.005	kg	М	-
Dust	0.0015	kø	М	-
Hg + Cd	0.00003	kø	M	-
Acid	0.000084	ko	M	_
He Os water	29.61	ka	C	
$T_{12}, O_2, water$	0.00001216	kg	м	-
	0.00001510	ĸg	101	-
O_2				-
Emissions to water (sewer)				
Solid suspension	0.0119	kg	М	-
Но	0.0000028	kø	М	-
Cd	0.000007	kø	М	-
Zn	0.0028	ko	M	_
Mn	0.00224	ka	M	_
Water + Acid (recycled	0.00224	ĸg	11/1	-
within process)	768	ka	М	Roused within process
within process)	700	ĸg	IVI	Reused within process
				Sewage treatment at wastewater treatment
Water release	99	ko	М	plant class 3 Ecoinvent Switzerland 2000
· · uter release		8		
Solid wastes				
Paper/plastic to	120	kσ	М	Packaging paper/mixed plastics to sanitary
landfill/incineration	120	кg	111	landfill/municipal incineration. Econyent
landini / incineration				Switzerland 1005
				Switzenand, 1995
Residue of leaching	97	kσ	М	Waste disposal in residual material landfill
(chemical treatment) to	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N 6	101	process -specific burdens only Econyent
landfill				Switzerland 1005
lanulli				JWILZEIIAIIU, 177J
Mixed heavy metals to	10	kσ		Waste disposal in residual material landfill
disposal	10	* 6		process _specific hurdens only Econyent
alopoour				Switzerland 1905
				ownzenanu, 1770

Source: Recupyl. M = measured, C = calculated, E = estimated

Refer to Section 2.5 for further description of secondary datasets

There is a discrepancy of approximately 7 % between the raw material inputs and process outputs provided and, for this process, input exceeds output. The data have been checked by Recupyl and confirmed as representative for the processing of one tonne of batteries. The difference in mass between process inputs and outputs is considered to be due to the water content in alkaline and saline batteries (*Table 2.12* and *Table 2.13* show alkaline and saline batteries to have a water content of approximately 10%).

Pyrometallurgical Processing

Data for the pyrometallurgical recycling of alkaline and saline batteries were obtained from three recyclers: Batrec (Switzerland); Citron (France); and Valdi (France). It was not possible to obtain specific data for the recycling of batteries at the Citron plant, however, and batteries make only approximately 5 % of the total waste treated. As such, the data were not considered to be representative of battery recycling processes and were not included in the assessment.

The most complete data were obtained from Batrec and so this dataset was used to model the potential impacts associated with the recycling of alkaline and saline batteries via the pyrometallurgical route. *Table 2.26* details inputs and outputs for the Batrec recycling process. The data are representative of plant activities in 2004.

Data for the Valdi pyrometallurgical process was used in the sensitivity analyses to determine the significance of this choice.

Table 2.26Pyrometallurgical Processing of Alkaline and Saline Batteries: Input/Output
Data per Tonne of Batteries

			Data	
			Quality	
Flow	Quantity	Unit	Indicator	Inventory Data/Source
INPUTS				· · · · · · · · · · · · · · · · · · ·
Raw material inputs				
Waste batteries, alkaline				
and saline batteries	1000	kg		-
		U		
Electricity consumption				
с ,				Grid Electricity, Medium Voltage,
Electricity, national grid				Switzerland. Derived from BUWAL
(Switzerland)	1690	kWh	М	data, 2002.
Fuel usage				
0				Light fuel oil. Ecoinvent,
Fuel oil for pyrolysis	58	kg	М	Switzerland, 2000
r y y y		0		
				Propane/butane. Ecoinvent,
Propane for safety burner	6	kø	М	Switzerland, 2000
	, i i i i i i i i i i i i i i i i i i i	0		
Water consumption				
Process water - mains	400	1	М	Tap Water, used as substitute for
supply	100	-		mains water. Ecoinvent, EU, 2000
Cooling water - main	1000	1	М	Tap Water, used as substitute for
supply	1000	1		mains water Econvent FU 2000
Supply				hund water. Econwert, EC, 2000
OUTPUTS				
oeners				
Product output				
Ferromanganese (55% Fe	290	kσ	М	Ferromanganese Ecoinvent
remaingunese (55 % re,	200	~ 8	141	renomingunese. Leonivent,
			Data	
--------------------------------	------------	------	-----------	---------------------------------------
			Quality	
Flow	Quantity	Unit	Indicator	Inventory Data/Source
40% Mn, 5% Cu & Ni) to				Europe, 1994-2003
cast iron foundry				
-				Zinc, for coating. Ecoinvent, Europe,
Zinc to metal market	200	kg	М	1994-2003
				Mercury, liquid. Ecoinvent, global
Mercury to metal market	0.3	kg	М	average, 2000
Emissions to air (process gas)				
Cd	0.000006	kg	М	-
СО	0.52	kg	М	-
HCl	0.0004	kg	М	-
Hg	0.000001	kg	М	-
HF	0.0004	kg	М	-
N ₂ O	0.82	kg	М	-
Particulates	0.001	kg	М	-
Pb	0.00008	kg	М	-
SO ₂	0.001	kg	М	-
Zn	0.0002	kg	М	-
Emissions to water (sewer)				
Zn	0.0000035	kg	М	-
Cd	6E-09	kg	М	-
Hg	3E-09	kg	М	-
CN	0.00000001	kg	М	-
F	0.00018	kg	М	-
Cl (from electrolyte)	44	kg	С	-
K (from electrolyte)	50	kg	С	-
				Sewage treatment at wastewater
				treatment plant, class 3. Ecoinvent,
Water to sewer	1400	1	С	Switzerland, 2000
Solid wastes				
				Disposal of inert waste to in inert
				landfill. Ecoinvent, Switzerland,
Slags to landfill	146	kg	М	1995.

Source: Batrec. M = measured, C = calculated, E = estimated

Refer to Section 2.5 for further description of secondary datasets

There is a discrepancy of approximately 27% between raw material inputs and process outputs provided and, for this process, input exceeds output. The data have been checked by Batrec and confirmed as representative for the processing of one tonne of batteries. The difference in mass between process inputs and outputs is considered to be due to the water, paper, plastics and carbon content of input batteries. Water and carbon each comprise 10% of the battery composition and both are released during the pyrolysis process. Furthermore, taking account of the oxidation of paper (1%) and plastics (2%) in the process, this reduces overall mass discrepancy to 4%. This is considered to be reasonable within the likely variation in composition of input batteries.

2.3.2 Lithium Batteries (Li-ion, Li, LiMn)

Lithium batteries can alternatively be classified as primary (Li and LiMn) or secondary (Li-ion) cells. Secondary, Li-ion batteries can be treated via both hydrometallurgic and pyrometallurgic process routes, whereas technology currently only exists that can process primary lithium batteries via the pyrometallurgical route.

Hydrometallurgical Processing (Li-ion)

A variant of the Recupyl process, Valibat, is available for recycling Li-ion batteries via the hydrometallurgical route. Data for this process were obtained from Recupyl (France), and represent recycling activities during 2004. *Table 2.27* details the inputs and outputs for the Valibat recycling process.

Table 2.27Hydrometallurgical Processing of Li-ion Batteries: Input/Output Data per
Tonne of Batteries

			Data	
			Ouality	
Flow	Quantity	Unit	Indicator	Inventory Data/Source
INPUTS	Qualitity	Unit	malcutor	Inventory Duty Source
Raw material inputs				
Waste batteries	1	tonne		
Trable butteries	1	tornic		Generic inorganic chemicals
Reagent	25	kσ		Ecoinvent, global average, 2000
Reugent	20	~ 6		Econtrent, grobal average, 2000
Electricity consumption				
Electricity concumption				Grid Electricity, Medium Voltage
Electricity, national grid				France Derived from BUWAL data
(France)	140	kWh	М	2002
(indice)	110	KUU	111	2002.
Water consumption				
				Tap Water, used as substitute for
Industrial water	0.72	m ³	М	mains water Econvent FU 2000
industrial water	0.72		111	mants water. Econvent, EC, 2000
				213.2 kg of 100% Sulphuric Acid
				(assumed density 1.83 kg/l)
$H_{2}SO_{4}(92\%)$	126	1	М	Econvent Europe 2000
112004 (9270)	120	1	111	Leonivent, Europe, 2000
Lime	116	ka	М	Hydrated lime Ecoinvent FU 2000
Linte	110	ĸg	111	Tryurated line. Econtvent, EO, 2000
OUTPUTS				
0011015				
Product output				
Cobalt salt (as $C_2(O3)$ to	340	kσ		180kg Cobalt Ecoinvent global
cobalt producer	$(C_0 = 180)$	ko	М	average 2000
cobult producer	(00 100)	N 5	111	average, 2000
Lithium salt (as Li_2CO_2) to	198	kσ	М	198 kg LipCO ₂ (production in South
lithium producer	$(I_i = 30)$	ko	111	America) FSU 2000
nunum producer	(Li 50)	кg		America). 190, 2000.
Iron and steel to steel				Recycling iron and steel Ecoinvent
industry	165	ka	М	Furope 2002
industry	105	ĸg	111	Ешоре, 2002
Non-ferrous metals to				Recycling aluminium Ecoinvent
reprocessor	150	ka	М	Furope 2002
10000001	150	~ B	141	Europe, 2002

ENVIRONMENTAL RESOURCES MANAGEMENT

			D (
			Data	
	0	.	Quality	D (10
Flow	Quantity	Unit	Indicator	Inventory Data/Source
Emissions to air				
SO ₂	4.5	g	Μ	-
VOC	2.5	g	М	-
Emissions to water (sewer)				
Solid suspension	12	g	М	-
Chemical oxygen	30	g	М	-
Total hydrocarbon	0.01	g	М	-
Cu+Co+Ni	0.05	g	М	-
Fluoride	0.03	g	М	-
		0		Sewage treatment at wastewater
				treatment plant, class 3. Ecoinvent,
Water to sewer	337	kg	М	Switzerland, 2000
		0		
Solid wastes				
Paper and plastic to				Recycling paper/mixed plastic.
refining	130	kg	М	Ecoinvent, Switzerland, 1995
0		0		
				Disposal of inert waste to in inert
				landfill. Ecoinvent, Switzerland,
Residue to landfill	202	kσ	М	1995
		8		
				Disposal of gypsum to in inert
Gypsum (as $CaSO_4$, H_2O)				landfill Ecoinvent Switzerland
to landfill	339	kσ	М	1995
io minimi	557	~ 6	111	1770.

Source: Recupyl. M = measured, C = calculated, E = estimated

Refer to Section 2.5 for further description of secondary datasets

There is a discrepancy of approximately 13% between raw material inputs and process outputs provided and, for this process, output exceeds input. The data have been checked by Recupyl and confirmed as representative for the processing of one tonne of batteries. The difference in mass between process inputs and outputs is considered to be due to water use within the process. Apart from the direct emission to sewer, the water input ends up in various output fractions, such as cobalt salts, lithium salts, residues and gypsum.

Pyrometallurgical Processing (Li-ion, Li, LiMn)

Pyrometallurgical lithium battery recycling processes treat a mixture of waste lithium batteries, such that ERM was unable to allocate inputs and emissions to the specific battery chemistries. A similar limitation to the allocation of flows to specific chemistries resulted in combined datasets being modelled for lithium batteries via the pyrometallurgical route.

Data for the pyrometallurgical recycling of lithium batteries were obtained from Batrec and are representative of recycling in 2004. *Table 2.28* details the inputs and outputs for the Batrec lithium battery recycling process.

			Data	
			Quality	
Flow	Quantity	Unit	Indicator	Inventory Data/Source
INPUTS				
Raw material inputs				
Waste batteries:	1000	kg		-
		U		210 kg 50% NaOH. Ecoinvent,
NaOH (30 %)	350	kg	С	Europe, 2000
Electricite construction				
Electricity consumption				Grid Electricity Medium Voltage
Electricity, national grid				Switzerland. Derived from BUWAL
(Switzerland)	800	kWh	С	data, 2002.
Water consumption				Top Mator used as substitute for
supply	1000	1	C	mains water Econvent, EU 2000
supply	1000	-	e	
OUTPUTS				
Product output				Recycling iron and steel Ecoinwort
Steel to steel industry	270	kσ	C	Europe, 2002
Steer to steer industry	270	~ 8	e	Lutope, 2002
				74.9 kg Cobalt (60% cobalt oxide,
Co-Powder (cobalt oxide				assuming Co content of $C_0O_2 = 65\%$
60% and carbon 40%) to	100	1. ~	C	(stoichiometric calculation).
cobait industry	192	кg	C	Econvent, global average, 2000
				Primary aluminium avoided
Non ferrous metals to				Recycling Aluminium. Ecoinvent,
metal industry	240	kg	С	Europe, 2002
				content of $M_p O_2 = 63\%$ (stoichiometric
M _n O ₂ -powder to recycler	10	kg	С	calculation). Ecoinvent, Europe, 2003
		0		
Emissions to air	0.000	1	MIC	
Dust	0.208	kg ka	M/C M/C	-
502	0.040	кg	WI/C	-
Emissions to water				
				Sewage treatment at wastewater
T 47	1000			treatment plant, class 3. Ecoinvent,
Water to sewer	1000	l ka		Switzerland, 2000
Cl	40 40	ng kg		-
		0		
Solid wastes				
				Mixed plastics to municipal
Plastics to incinerator	200	ka	C	incineration. Ecoinvent, Switzerland,
	200	ъg	C	1775

Table 2.28Pyrometallurgical Processing of Lithium Batteries: Input/Output Data per
Tonne of Batteries

Source: Batrec. M = measured, C = calculated, E = estimated

Refer to Section 2.5 for further description of secondary datasets

There is a discrepancy of approximately 9% between raw material inputs and process outputs provided and, for this process, input exceeds output. The data have been checked by Batrec and confirmed as representative for the processing of one tonne of batteries. The difference in mass between process inputs and outputs is considered to be due to losses of salts and oxygen, which leave the system with the waste water and the waste gas scrubber.

2.3.3 NiCd and NiMH Batteries

NiCd and NiMH batteries are most commonly recycled via pyrometallurgy. Data for the pyrometallurgical recycling of NiCd and NiMH batteries were obtained from SNAM and are representative of plant activities in 2003.

Table 2.29 and *Table 2.30* detail inputs to and outputs from the SNAM NiCd and NiMH recycling processes.

Table 2.29Pyrometallurgical Processing of NiCd Batteries: Input/Output Data per
Tonne of Batteries

			Data	
			Ouality	
Flow	Ouantity	Unit	Indicator	Inventory Data/Source
INPUTS	~)			
Raw material inputs				
NiCd batteries	1	tonne		-
				Carbon black, used as substitute for
Active carbon	1.67	kg	С	active carbon. ETH, Europe, 1994
Electricity consumption				
T				Grid Electricity, Medium Voltage,
Electricity, national grid	4 = 4 =	1 7 4 71	6	France. Derived from BUWAL data,
(France)	1545	kWh	C	2002.
Fuel usage				
Natural gas and propage	170.6	kσ	C	Propane/butane_used as substitute for
for heating and pyrolysis	170.0	кg	C	natural gas and propane. Ecoinvent.
				Switzerland, 2000
Water consumption				
Process water (surface)	240	kg	С	Tap Water, used as substitute for mains
				water. Ecoinvent, Europe, 2000
OUTPUTS				
Product output				
Pure cadmium for use in	105.4	1	C	Codmission Idemat EU 1000 1004
industrial batteries	155.4	кg	C	Cadmium. Idemat, EO, 1990-1994
Nickel-Iron residues to				Recycling iron and steel Econvent
stainless steel producer	543	kσ	C	Furope 2002
stuffieds steer producer	010	~ 8	C	Europe, 2002
Emissions to air				
NOx	0.47	kg	М	-
SO ₂	0.016	kg	М	-

ENVIRONMENTAL RESOURCES MANAGEMENT

			Data	
			Ouality	
Flow	Quantity	Unit	Indicator	Inventory Data/Source
VOC	1.003	kg	М	-
Dust – total	10	g	С	-
Cd	0.682	g	С	-
Hg	0.582	g	С	-
Emissions to water (sewer)				
				Sewage treatment at wastewater
				treatment plant, class 3. Ecoinvent,
Water to sewer	240	kg	С	Switzerland, 2000
BOD	8.5	g	Μ	-
COD	26	g	М	-
Suspended solids	1.24	g	М	-
Oil & grease	2	g	М	-
Heavy metals: Cd + Ni	0.062	g	М	-
Zinc	0.01	g	М	-
Solid wastes				
				Sewage treatment at wastewater
				treatment plant, class 3, used as proxy
				for neutralisation process. Ecoinvent,
KOH to neutralisation	44.8	kg	С	Switzerland, 2000
				Mixed plastics to sanitary landfill.
Plastic waste to landfill	147	kg	С	Ecoinvent, Switzerland, 1995
				Recycling iron and steel. Ecoinvent,
Iron residues to recycling	62	kg	С	Europe, 2004

Source: SNAM. M = measured, C = calculated, E = estimated

Refer to Section 2.5 for further description of secondary datasets

There is a discrepancy of approximately 7% between raw material inputs and process outputs provided. For this process, input exceeds output. The data have been checked by SNAM and confirmed as representative for the processing of one tonne of batteries. The difference in mass between process inputs and outputs is considered to be due to the water content of nickel cadmium batteries (approximately 5%, *Table 2.20*), which evaporates in the process. The loss of this water reduces the mass discrepancy to 2%, considered to be reasonable within the likely variation in composition of input batteries.

			Data	
			Quality	
Flow	Quantity	Unit	Indicator	Inventory Data/Source
INPUTS				
Raw material inputs				
NiMH batteries	1	tonne		-
				Carbon black, used as substitute for
Active carbon	1.67	kg	С	active carbon. ETH, Europe, 1994
Electricity consumption				
Electricity, national grid	310	kWh	С	Grid Electricity, Medium Voltage,
(France)				France. Derived from BUWAL data, 2002.
Fuel usage				
Natural gas and	94.7	kg	С	Propane/butane, used as substitute for
propane used in		U		natural gas and propane. Ecoinvent,
pyrolysis				Switzerland, 2000
Water consumption				
Process water (surface)	240	kg	С	Tap Water, used as substitute for mains
				water. Ecoinvent, Europe, 2000
OUTPUTS				
Product output				
Nickel-Cobalt-Iron	730	kg	С	
residues to stainless		0		Recycling iron and steel. Ecoinvent,
steel producer				Europe, 2002
Emissions to air				
NOx	0.47	kg	М	-
SO_2	0.016	kg	М	-
VOC	1.003	kg	М	-
Dust - total	4.89	g	С	-
Hg	0.53	g	С	-
Emissions to water				
				Sewage treatment at wastewater
				treatment plant, class 3. Ecoinvent,
Water to sewer	240	kg		Switzerland, 2000
BOD	8.5	g	M	-
COD	26	g	M	-
Suspended solids	1.24	g	M	-
Oil & grease	2	g	M	-
Theavy metals: Cd + N1	0.062	g g	M	-
	0.01	Б	TAT	
Solid wastes				
Plastic to landfill	147	kσ	C	Mixed plastics to sanitary landfill. Ecoinvent, Switzerland, 1995
	1.0	<u>**6</u>		

Table 2.30Pyrometallurgical Processing of NiMH Batteries: Input/Output Data per
Tonne of Batteries

Source: SNAM. M = measured, C = calculated, E = estimated Refer to *Section 2.5* for further description of secondary datasets There is a discrepancy of approximately 12 % between raw material inputs and process outputs provided. For this process, input exceeds output. The data have been checked by SNAM and confirmed as representative for the processing of one tonne of batteries. The difference in mass between process inputs and outputs is considered to be due to the water content of nickel metal hydride batteries (approximately 8%, *Table 2.21*), which evaporates in the process. The loss of this water reduces the mass discrepancy to approximately 4%, considered to be reasonable within the likely variation in composition of input batteries.

2.3.4 AgO Batteries

Data for the recycling of AgO batteries could not be obtained from current processors in the UK. In general, AgO batteries are treated through undergoing a mercury decontamination process, with residues then sent for silver extraction.

Data for the mercury distillation step of battery (button cell) recycling were obtained from Indaver Relight in Belgium and are representative of processing in 2004. These data were used as a proxy for the mercury decontamination of AgO button cells and are shown in *Table 2.31*. The quantities of mercury and residues recovered from the process have been scaled according the average mercury content of AgO batteries (0.4%, *Table 2.18*). Mercury emissions to air were provided in terms of concentration in exhaust gases. The total quantity of gaseous emissions could not be determined, however and so it was assumed that 1% of the input mercury content would be released as gaseous emissions ⁽¹⁾.

Silver recovery is most commonly undertaken using an electrolytic process, where the silver is recovered from solution by electroplating it on a cathode. Data for this electrolytic step could not be obtained and so substitute data, describing the material and energy requirements for the electrowinning of zinc from ore were used to represent this process ⁽²⁾. The use of substitute data in this case is unlikely to have a significant impact on results, due to the relatively small quantity of AgO batteries under study (0.02% by weight).

Table 2.31 details the inputs and outputs for the mercury decontamination and electrolysis stages of AgO battery recycling.

⁽¹⁾ ERM estimate.

^{(2) 3200} kWh/tonne of Zinc. Norgate, T. E. & Rankin, W. J (2002). An Environmental Assessment of Lead and Zinc Production Processes. *Proceedings, Green Processing 2002, International Conference on the Sustainable Processing of Minerals, May 2002, pp 177-184.* <u>http://www.minerals.csiro.au/sd/CSIRO_Paper_LCA_PbZn.pdf</u>. This was scaled to reflect the average silver content of AgO batteries (31%, *Table 2.18*)

			Data	
Flow	Quantity	Unit	Quality Indicator	Inventory Data/Source
Mercury Distillation*	Qualitity	Cint	malcutor	Inventory Duty Source
INPUTS				
D				
Raw material inputs	1	tonno	М	
Mercuric oxide batteries	1	tome	1 v1	- 0.188 kg Nitrogen, assuming
				density 1.25 kg/m ³ . ETH,
Nitrogen gas	0.15	M ³	С	Europe, 1994
				0.214 kg Ouwgon accuming
				density 1.43 kg/m ³ ETH.
Oxygen	0.15	m ³	С	Europe, 1994
				-
				Carbon black, used as substitute
Active carbon	3	σ	C	for active carbon. E1H, Furope1994
	0	8	C	Latoperssi
Electricity consumption				
				Grid Electricity, Medium
Electricity, Grid	75	kWh	C	BUWAL data 2002
Electricity) onta		RUII	C	2000 mil anta, 2002.
OUTPUTS				
Product output				
				Mercury, liquid. Ecoinvent,
Mercury	3.96	kg	C	global average, 2000
Residues to silver recovery	996	кд	C	n/a
Emissions to air				
Mercury	0.04	kg	Е	-
Silver Decovery				
(Electrolysis)**				
INPUTS				
T1				Grid Electricity, Medium
National Grid	992	kWh	F/C	BLIWAL data 2002
	,, <u>,</u>	RUII	L/ C	<i>b</i> o ((1)) <i>d d d d d d d d d d</i>
OUTPUTS				
Product output				
				Assumed platinum group metals
Silver	310	kg	E/C	Ecoinvent, global average, 2002
		-		
Wastes				TA7
				waste disposal in residual material landfill process –
				specific burdens only.
Residues to landfill	682	kg	E/C	Ecoinvent, Switzerland, 1995
* Indaver Relight. ** Norgate,	TE and Ran	kin, WJ (2002).	

Table 2.31Mercury Distillation and Electrolysis of AgO Batteries: Input/Output Data
per Tonne of Batteries

M = measured, C = calculated, E = estimated

Refer to Section 2.5 for further description of secondary datasets

2.3.5 *PbA Batteries*

Data for the recycling of lead acid batteries were obtained from Campine and are representative of plant activities in 2004.

Table 2.32 details inputs to and outputs from the Campine lead acid recycling process.

			Data	
		.	Quality	
Flow	Quantity	Unit	Indicator	Inventory Data/Source
INFUIS				
Raw material inputs				
Lead acid batteries	1000	kg		-
Limestone	5.8	kg		Limestone, milled. Ecoinvent, Switzerland, 2002
Iron scrap	4.0	kg		Iron scrap. Ecoinvent, Europe, 2002
NaOH	350	kg	С	50% NaOH. Ecoinvent, Europe, 2000
Sodium nitrate	0.4	kg	С	Generic inorganic chemicals. Ecoinvent, global average, 2000
Sulphur	0.9	kg		Sulphur. BUWAL, Europe, 1998
Iron chloride	0.9	kg		Iron (III) chloride (30%). Ecoinvent,
Slag	150	kg		Reused from process
Electricity consumption Electricity	35.2	kWh		Grid Electricity, Medium Voltage, GB. Derived from BUWAL data, 2002.
Fuel usage				
Natural gas	16.2	kg		Natural Gas. BUWAL, Europe, 1996
Coke	20.0	kg		Petroleum coke, used as substitute for coke. Ecoinvent, Europe, 1980-2000
Water consumption				
Process water	770	kg	С	Treated rainwater, reused through process
OUTUTS				
Product outputs				
Lead to processor	650	kg		Lead. Ecoinvent, Europe, 1994-2003
Flue dust for internal reuse	13.6	kg		Reused in process
Return slag for internal reuse	150	kg		Reused in process
Sulphuric acid for internal reuse	71.0	kg		Sulphuric acid. Ecoinvent, Europe, 2000

Table 2.32Lead Acid

ENVIRONMENTAL RESOURCES MANAGEMENT

			Data Quality	
Flow	Quantity	Unit	Indicator	Inventory Data/Source
Emissions to air				
SO ₂	7.1	kg		-
CO ₂ (fuel combustion)	500	kg		-
Pb	0.00127	kg		-
Sb	0.0000056	kg		-
Solid waste				
Excess slag to landfill	44.0	kg		Disposal of inert waste to in inert landfill. Ecoinvent, Switzerland, 1995.

Source: European Commission. M = measured, C = calculated, E = estimated

Refer to Section 2.5 for further description of secondary datasets

There is a discrepancy of approximately 8% between raw material inputs and process outputs provided. For this process, input exceeds output. The data have been checked by Campine and confirmed as representative for the processing of one tonne of batteries. As with the pyrometallurgical processing of alkaline and saline batteries, the difference in mass between process inputs and outputs is considered to be due to the presence of plastic and other combustible materials in the input batteries. Plastics comprise approximately 10% of the battery material content (*Table 2.23*). Taking account of the oxidation of these materials in the process (and assuming an ash content of around 10%) reduces the discrepancy to approximately 2%. This is considered to be reasonable within the likely variation in composition of input batteries.

2.3.6 Life Cycle Inventory Compilation

Each of the datasets presented in *Table 2.24* to *Table 2.32* relates to the inputs and outputs associated with the processing of one tonne of waste batteries of a specific chemistry, or group of chemistries. Appropriate datasets were multiplied by the total numbers of batteries collected over the study period, as applicable, to generate an inventory for each recycling scenario.

2.4 RESIDUAL WASTE MANAGEMENT

In 2003/2004, 11% of residual MSW in the UK was incinerated with energy recovery and 89% was landfilled (*Environment Agency*).

The disposal of batteries in MSW to landfill or incineration is seen as a route for the metals they contain to be released to the environment, although there are limited data on their fate. It is the potential emission of heavy metals from battery wastes that is of greatest environmental concern. Process control of landfills and incinerators, alongside mineralization mechanisms in landfills, limit the quantity of metals that are released to the environment.

The *WISARD* software tool requires the specification of waste on the basis of the components of municipal waste. We have therefore designated carbon

and paper components (see *Table 2.12* to *Table 2.23*) as being biodegradable waste and the remainder as being non-degradable.

Although no specific data is available describing the leaching potential of the heavy metals in spent batteries, we have assumed that 5% of these metals in batteries are leached to the environment, the remainder remaining locked in landfills either as non-compromised batteries or as mineralised compounds resistant to leaching.

For the incineration of batteries MSW, we have used LCI data, supplied by the Environment Agency and describing a modern MSW EfW plant. As with the landfill inventories, we have not been able to allocate the emissions to air that arise from the incineration of a tonne of MSW to the spent batteries it contains. However, we have amended heavy metals and CO₂ emissions to reflect battery composition.

We have assumed that 0.5% of the heavy metals in batteries are emitted to air from the EfW plant and the remaining 99.5% are removed through flue gas treatment and bottom ash. We have assumed that EfW residues are disposed to landfill. We have assumed that 2.5% of the heavy metal content landfilled is leached to water, lower than that for raw MSW as the residues are considered to be more inert. No energy recovery benefit has been attributed to batteries contained in EfW as they are considered to be of low calorific value.

The modelling described above has required a number of subjective assumptions but is aimed to estimate the impact from disposal. It takes into account the potential for battery components to escape to the environment, but also reflects the view that batteries pose limited potential to pollute the environment through MSW management in the UK.

2.5 SECONDARY DATASETS

Secondary data have been used for common processes, materials, transport steps and electricity generation. The key life cycle databases used to describe these processes were:

- Ecoinvent (updated, version 1.2) Ecoinvent is a peer-reviewed database, containing life cycle inventory data for over 2500 processes in the energy, transport, building materials, chemicals, paper/board, agriculture and waste management sectors. It aims to provide a set of unified and generic LCI data of high quality. The data are mainly investigated for Swiss and Western European conditions;
- **ETH (ETH-ESU 96)** The ETH database contains inventory data for the Swiss and Western European energy supply situation, including raw material production, production of intermediate, auxiliary and working materials, supply of transport and waste treatment services, construction of infrastructure and energy conversion and transmission.

The data relate to Swiss and Western European production and are often used to approximate an average European situation;

- **BUWAL (BUWAL 250)** Inventory of packaging materials for the Swiss Packaging Institute, made by EMPA. The inventory includes emissions from raw material production, energy production, production of intermediate and auxiliary materials, transport and material production processes. Energy systems are based on ETH data, without capital goods; and
- **IDEMAT (IDEMAT 2001)** This database was developed at Delft University of Technology, department of industrial design engineering, under the IDEMAT project. The focus is on the production of materials and data are mostly original (not taken from other LCA databases), deriving from a wide variety of sources.

When selecting which database to use, a hierarchy has been followed, with the aim of using the most complete and up-to-date information. Databases were selected in the order:

- 1. Ecoinvent;
- 2. ETH;
- 3. BUWAL; and
- 4. IDEMAT.

A move down the hierarchy was instigated where no appropriate LCI data were available for the material of concern. For secondary data relating to electricity production, the BUWAL database was the preferred source, as it does not include capital burdens for electricity generation.

Generic datasets relate predominantly to Western European process technologies and, as such, will confer some differences from equivalent UK systems. Assuming that technologies will not differ, the most significant difference is likely to be with respect to energy mix. It was not possible within the scope of the assessment to manipulate all datasets used to represent UK electricity mix (or French/Swiss mix, as appropriate). However, care has been taken that direct inputs of electricity, for example to sorting and recycling processes, reflect appropriate geographies. Further, it is reasonable to consider that a number of the ancillary material and fuel inputs to processes, for which generic data have been used, will be produced across Europe and, as such, average European or global technologies are applicable.

Details of all secondary datasets used in the assessment are summarised in *Table 2.33* to *Table 2.36*. Commentary on their quality and representativeness for the assessment is further provided in *Section 2.5.1*.

Fuel/Energy Source	Database	Geography	Year	Technology	Reference
Diesel	Ecoinvent	Europe	1989-2000	Average technology	Ecoinvent-Report No. 6
Electricity MV - mix	BUWAL	Great Britain		Average technology	BUWAL 250 for energy production, ERM internal for energy mix
Grid Electricity, Medium Voltage	BUWAL	France		Average technology	BUWAL 250 for energy production, ERM internal for energy mix
Grid Electricity, Medium Voltage	BUWAL	Switzerland		Average technology	BUWAL 250 for energy production, ERM internal for energy mix
Grid Electricity, Medium Voltage	BUWAL	UK/France		Average technology	BUWAL 250 for energy production, ERM internal for energy mix
Light fuel oil	Ecoinvent	Switzerland	2000	Average technology	Ecoinvent-Report No. 6
Natural Gas	BUWAL	Europe	1996 -	Average technology	BUWAL 250 for energy production, ERM internal for energy mix
Petroleum coke, used as substitute for coke	Ecoinvent	Europe	1980-2000	Average technology	Ecoinvent-Report No. 6
Propane/butane	Ecoinvent	Switzerland	1980-2000	Average technology	Ecoinvent-Report No. 6

Table 2.33Datasets used to Model Fuel/Energy Production Processes

Material/Process	Database	Geography	Year	Technology	Reference
				Production by emulsion polymerization	1
ABS plastic	Ecoinvent	Europe	1995	out of its three monomers	Ecoinvent-Report No. 11
Cold transforming steel	Kemna	W Europe	1989	Average technology	KEMNA (1) 1981
Electroplating steel with zinc	Idemat	W Europe	1994	Mixed technology	SPIN Galvanic Treatment 1992
Forging steel	Kemna	W Europe	1989	Average technology	KEMNA (1) 1981
Polycarbonate (PC)	Ecoinvent	Europe	1992-1996	Representative for European production	Ecoinvent-Report No.
Polyethylene, HDPE	Ecoinvent	Europe	1992-1993	Polymerization out of ethylene under normal pressure and temperature.	Ecoinvent-Report No. 11
Polypropylene	Ecoinvent	Europe	1992-1993	Polymerization out of propylene.	Ecoinvent-Report No. 11
Soap	Ecoinvent	Europe	1992-1995	Average technology for the production of soap out of a blend of fatty acids from palm and coconut oil, representing typical European production mix in the mid 90s.	Ecoinvent-Report No. 12
Steel, low alloyed	Ecoinvent	Europe	2001	EU technology mix	Ecoinvent-Report No. 10
Tap water	Ecoinvent	Europe	2000	Example of a waterworks in Switzerland.	Ecoinvent-Report No. 8
Blow moulding	Ecoinvent	Europe	1993-1997	Present technologies.	Ecoinvent-Report No. 11
Extrusion, plastic film	Ecoinvent	Europe	1993-1997	Present technologies.	Ecoinvent-Report No. 11
Extrusion, plastic pipes	Ecoinvent	Europe	1993-1997	Present technologies.	Ecoinvent-Report No. 11
Injection moulding	Ecoinvent	Europe	1993-1997	Present technologies.	Ecoinvent-Report No. 11

Table 2.34Datasets used to Model Other Collection Scenario Inputs

Material/Process	Database	Geography	Year	Technology	Reference
Sewage treatment at wastewater	Ecoinvent	Switzerland	2000	Specific to the technology mix	Ecoinvent-Report No. 13
treatment plant, class 3				encountered in Switzerland in 2000.	
				Well applicable to modern treatment	
				practices in Europe, North America or	
				Japan.	
				For vehicle operation all technologies	
				are included in the average data. Road	
				construction comprises bitumen and	
				concrete roads. For the manufacturing	
Transport by lorry (15 tonne, 25 tonne),		Switzerland/		of vehicles, the data reflects current	
RCV (21 tonne) and van (3.5 tonne)	Ecoinvent	Europe	2005	modern technologies	Ecoinvent-Report No. 14

Table 2.35Datasets used to Model Recycling Process Inputs

Material/Process	Database	Geography	Year	Technology	Reference
Carbon black	ETH	Europe	1990-1994	Average technology.	ETH-ESU (1996)
Generic inorganic chemicals	Ecoinvent	Global	2000	Present technology for the production of several inorganic chemicals	Ecoinvent-Report No. 8
Generic organic chemicals	Ecoinvent	Global	2000	Based on information from two chemical plant sites in Germany.	Ecoinvent-Report No. 8
Hydrogen Peroxide	Ecoinvent	Europe	1995	Average technology.	Ecoinvent-Report No. 8
Iron (III) chloride (30%).	Ecoinvent	Switzerland	1995-2001	Inventory refers to technology used for production in Switzerland.	Ecoinvent-Report No. 8
Iron scrap	Ecoinvent	Europe	2002	Assumed technology of medium sized plant.	Ecoinvent-Report No. 10
Limestone, milled	Ecoinvent	Switzerland	2000-2002	High technical level.	Ecoinvent-Report No. 7
NaOH	Ecoinvent	Europe	2000	Present state of technology used in Europe.	Ecoinvent-Report No. 8
Nitrogen Oxygen	ETH ETH	Europe Europe	1994 1994	Average technology. Average technology.	ETH-ESU (1996) ETH-ESU (1996)

Material/Process	Database	Geography	Year	Technology	Reference
Sulphur	BUWAL	Europe	1998	Average technology.	BUWAL 250 (1996)
Sulphuric Acid	Ecoinvent	Europe	2000	Mix of average and state-of-the-art.	Ecoinvent-Report No. 8
Tap water	Ecoinvent	Europe	2000	Example of a waterworks in Switzerland.	Ecoinvent-Report No. 8
Disposal of gypsum to in inert landfill	Ecoinvent	Switzerland	1995	Landfill with renaturation after closure. 50% of the sites feature a base seal and leachate collection system. Well applicable to modern treatment practices in Europe, North America or Japan.	Ecoinvent-Report No. 13
	Turin und		1005	Landfill with renaturation after closure. 50% of the sites feature a base seal and leachate collection system. Well applicable to modern treatment practices in Europe, North America	Factor of Based NL 12
Disposal of mert waste to in mert landnii	Econvent	Switzeriand.	1995	Average Swiss MSWI plants in 2000 with electrostatic precipitator for fly ash (ESP), wet flue gas scrubber and 29.4% SNCR , 32.2% SCR- high dust , 24.6% SCR-low dust -DeNOx facilities and 13.8% without Denox (by burnt waste, according to Swiss average). Well applicable to modern treatment practices in	Econvent-keport No. 15
Mixed plastics to municipal incineration	Ecoinvent	Switzerland.	1995	Europe, North America or Japan.	Ecoinvent-Report No. 13
Packaging paper/mixed plastics to sanitary landfill/municipal incineration	Ecoinvent	Switzerland.	1995	Average Swiss MSWI plants in 2000. Well applicable to modern treatment practices in Europe, North America or Japan.	Ecoinvent-Report No. 13
Sewage treatment at wastewater treatment plant, class 3	Ecoinvent	Switzerland.	2000	Specific to the technology mix encountered in Switzerland in 2000. Well applicable to modern treatment practices in Europe, North America or Japan.	Ecoinvent-Report No. 13
Waste disposal in residual material landfill, process -specific burdens only	Ecoinvent	Switzerland	1995	Landfill with renaturation after closure. 50% of the sites feature a base seal and leachate collection system.	Ecoinvent-Report No. 13

Material	Database	Geography	Year	Technology	Reference
Cadmium	Idemat	Europe	1990-1994	Average technology for Cadmium production	Metals and minerals (1989); Metal resources (1983)
				Data approximated with data from nickel mining and benefication. For further treatment the process "reduction of oxides" is approximated by stoechiometric calculation - assuming a yield of 95% - and approximations for energy consumption from other chemical plants. No emissions are assumed for this	
Cobalt	Ecoinvent	Global	2000	treatment process. In South Africa an electric arc furnace with a Søderberg electrode system and a Pierce- Smith-Converter is used. Sulphur dioxide in the off-gas is recovered producing sulphuric acid. The separation of non ferrous metals is done hydrometallurgically, the refining by	Ecoinvent-Report No. 11
Copper, primary, from platinum group metal production in South Africa	Ecoinvent	South Africa	1995-2002	selective precipitation. Although electricity production in South Africa is mainly coal based, the UCTE production mix is inventoried.	Ecoinvent-Report No. 10
Ferromanganese	Ecoinvent	Europe	1994-2003	The ore is processed in blast furnaces (20%), electric arc furnaces without flux (27%), electric arc furnaces with calcareous flux (53%).	Ecoinvent-Report No. 10
Lead	Ecoinvent	Europe	1994-2003	A mix of 56% direct smelting and 44% sinter/blast furnace (ISP) is chosen. For emission control 56% improved and 44% limited control is chosen.	Ecoinvent-Report No. 10
Li ₂ CO ₃	ESU	South America	2000	No information provided in reference source	Life Cycle Inventory and Assessment of the Energy Use and CO_2 Emissions for Lithium and Lithium Compounds (2000), ESUservices

Table 2.36Datasets used to Model Offset/Avoided Material Production

Material	Database	Geography	Year	Technology	Reference
				The metal is won by electrolysis (assumption:	
				25%) and electrothermic processes	
				(assumption: 75%). No detailed information	
Manganese	Ecoinvent	Europe	2003	available, mainly based on rough estimates.	Ecoinvent-Report No. 10
				Data approximated with data from lime	
				mining, crushing and milling plus estimation	
				of the additional furnace operation step, based	
				on information in literature and own	
Mercury, liquid	Ecoinvent	Global	2000	assumptions.	Ecoinvent-Report No. 8
				Average technology for the aluminium	
				recycled/consumed in Europe. Includes	
				collecting, sorting and preparing of post	
				consumer aluminium scrap. Offset includes	
				cast aluminium ingot production, transport of	
	T • •	F	2002	materials to the plant and the disposal of	
Recycling aluminium	Econvent	Europe	2002	wastes.	Econvent-Report No. 10
				Assumed technology of medium sized plant	
				for recycling. Collecting of new and old iron	
				scrap, transport to scrap-yard, sorting and	
				pressing to blocks. Offset iron produced by	
Recycling iron and steel	Ecoinvent	Europe	2002	blast furnace process.	Ecoinvent-Report No. 10
				Considers the average technology used in	
Sulphuric Acid	Ecoinvent	Europe	2000	European sulphuric acid production plants.	Ecoinvent-Report No. 8
				A mix of 80% hydrometallurgical and 20%	
				pyrometallurgical production is chosen. For	
				emission control 80% improved and 20%	
Zinc, for coating	Ecoinvent	Europe	1994-2003	limited control is chosen.	Ecoinvent-Report No. 10

2.5.1 Data Quality Assessment

Primary and secondary data quality has been assessed, using the data quality requirements defined in *Section 1.16.1*. *Table 2.37* shows the results of this assessment. A tick indicates that the dataset meets the requirements set out in *Section 1.16.1*. A cross indicates that it does not.

The majority of primary and secondary datasets used fulfil data quality requirements for temporal, geographical and technology coverage. Since representativeness is a combination of these three, this criterion is, for the most part, also fulfilled. It has been difficult to assess generic LCI databases with regards to completeness and precision as the databases used generally did not contain enough specific information to allow evaluation at this level.

The following materials did not fulfil all data quality requirements. However, each has been reviewed with regard to its suitability for use:

- steel production (input to collection container manufacture);
- cold transforming/forging steel (input to collection container manufacture);
- tap water production (input to sorting plant and recycling processes);
- generic chemicals production (input to recycling processes);
- iron (III) chloride production (input to recycling processes);
- light fuel oil (input to pyrometallurgical processing);
- propane/butane (input to pyrometallurgical processing);
- disposal of gypsum in inert landfill (waste from recycling processes);
- waste disposal in residual material landfill (waste from recycling processes);
- cobalt production (offset material process);
- copper production (offset material process); and
- mercury production (offset material process).

A number of other processes were difficult to assess, due to lack of information.

In the absence of more specific data, these datasets were deemed appropriate for use as a surrogate. Wherever data or assumptions were found to be significant, they have been addressed in sensitivity analysis. However, analysis of results found these datasets not to contribute significantly.

Activity/Data Category	Primary/Secondary Dataset	Geographical coverage	Time-related coverage	Technology coverage	Representativeness
	• •	<u> </u>		~	
Collection activities including		,			
physical parameters of bins	Primary data				
Collection Inputs/Outputs	Secondary datasets				
	ABS plastic	\checkmark	\checkmark	No information	() – incomplete information
	Cold transforming steel	\checkmark	Х	\checkmark	X
	Electroplating steel with zinc	\checkmark	\checkmark	\checkmark	\checkmark
	Forging steel	\checkmark	Х	\checkmark	Х
	Polycarbonate		\checkmark	\checkmark	\checkmark
	Polvethylene, HDPE	\checkmark	\checkmark	No information	() – incomplete information
	Polypropylene	\checkmark	\checkmark	No information	$(\sqrt{)}$ – incomplete information
	Soap		\checkmark	\checkmark	
	Steel, low alloyed		\checkmark	\checkmark	\checkmark
	Tap water		\checkmark	Х	Х
	Blow moulding		\checkmark	\checkmark	\checkmark
	Extrusion, plastic film		\checkmark	\checkmark	\checkmark
	Extrusion, plastic pipes		\checkmark	\checkmark	\checkmark
	Injection moulding	\checkmark	\checkmark	\checkmark	\checkmark
	Sewage treatment at wastewater treatment plant	\checkmark	\checkmark	\checkmark	\checkmark
	Lorry, 15 tonne		\checkmark	\checkmark	\checkmark
	Lorry, 25 tonne		\checkmark	\checkmark	\checkmark
	RCV, 21 tonne		\checkmark	\checkmark	\checkmark
	Van, 3.5 tonne	\checkmark		\checkmark	\checkmark
Recycling Processes	Primary data	\checkmark	\checkmark	\checkmark	\checkmark
Recycling Process Inputs/Outputs	Secondary datasets				
, , , , , , , , , , , , , , , , , , ,	Carbon black	\checkmark	\checkmark		\checkmark
	Generic inorganic chemicals	X			X
	Generic organic chemicals	X		X	х
	Hydrogen Peroxide		V		
	Iron (III) chloride (30%).	X		X	X
	Iron scrap				\checkmark
	Limestone, milled	X	V		X
	NaOH		√		√ √

Table 2.37Data Quality Assessment of Primary and Secondary Data

		Geographical	Time-related	Technology	
Activity/Data Category	Primary/Secondary Dataset	coverage	coverage	coverage	Representativeness
	Nitrogen				\checkmark
	Oxygen	\checkmark	\checkmark	\checkmark	\checkmark
	Sulphur	\checkmark	\checkmark	\checkmark	\checkmark
	Sulphuric Acid	\checkmark	\checkmark	\checkmark	\checkmark
	Tap water	\checkmark	\checkmark	Х	Х
	Disposal of gypsum to in inert landfill	Х	\checkmark	No information	Х
	Disposal of inert waste to in inert landfill	\checkmark	\checkmark	No information	() – incomplete information
	Mixed plastics to municipal incineration	\checkmark	\checkmark	No information	() – incomplete information
	Packaging paper/mixed plastics to sanitary				
	landfill/municipal incineration	\checkmark	\checkmark	Х	Х
	Sewage treatment at wastewater treatment plant	\checkmark	\checkmark	\checkmark	\checkmark
	Waste disposal in residual material landfill	Х	\checkmark	Х	Х
Offset Materials	Secondary datasets				
	Cadmium	\checkmark	\checkmark	\checkmark	\checkmark
	Cobalt	Х	\checkmark	No information	Х
	Copper, primary, from platinum group metal				
	production in South Africa	South Africa	\checkmark	No information	() – incomplete information
	Ferromanganese	\checkmark	\checkmark	No information	() – incomplete information
	Lead	\checkmark	\checkmark	No information	() – incomplete information
		South			-
	Li ₂ CO ₃	America	\checkmark	No information	() – incomplete information
	Manganese	\checkmark	\checkmark	No information	$(\sqrt{)}$ – incomplete information
	Mercury, liquid	Х	\checkmark	No information	X
	Recycling aluminium	\checkmark	\checkmark	\checkmark	\checkmark
	Recycling iron and steel	\checkmark	\checkmark	\checkmark	\checkmark
	Sulphuric Acid	\checkmark	\checkmark	\checkmark	\checkmark
	Zinc, for coating	\checkmark	\checkmark	\checkmark	\checkmark
Energy systems	Secondary datasets				
	Diesel	\checkmark	\checkmark	\checkmark	\checkmark
	Grid Electricity, Medium Voltage	\checkmark	\checkmark	\checkmark	\checkmark
	Light fuel oil	Х	\checkmark	\checkmark	Х
	Natural Gas	\checkmark	\checkmark	\checkmark	\checkmark
	Petroleum coke, used as substitute for coke	\checkmark	\checkmark	\checkmark	\checkmark
	Propane/butane	Х	\checkmark	\checkmark	Х

 $\sqrt{-}$ dataset meets the requirements set out in *Section 1.16.1*. X – dataset does not meet the requirements set out in *Section 1.16.1*

2.6 IMPLEMENTATION SYSTEMS

Combining inventories for the three collection and three recycling scenarios described above resulted in the generation of life cycle inventories for the nine implementation scenarios assessed:

- **Implementation Scenario 1** Collection Scenario 1 with Recycling Scenario 1;
- Implementation Scenario 2 Collection Scenario 1 with Recycling Scenario 2;
- Implementation Scenario 3 Collection Scenario 1 with Recycling Scenario 3;
- Implementation Scenario 4 Collection Scenario 2 with Recycling Scenario 1;
- Implementation Scenario 5 Collection Scenario 2 with Recycling Scenario 2;
- Implementation Scenario 6 Collection Scenario 2 with Recycling Scenario 3;
- Implementation Scenario 7 Collection Scenario 3 with Recycling Scenario 1;
- Implementation Scenario 8 Collection Scenario 3 with Recycling Scenario 2; and
- Implementation Scenario 9 Collection Scenario 3 with Recycling Scenario 3.

The 10th Scenario is the baseline scenario, which involves batteries being disposed as residual waste.

3

The inventories that have been generated provide information on hundreds of internal and elemental flows for each implementation system. Complete inventories of all environmental interventions (material inputs and emissions to air, water and soil) are presented in *Annex D*.

A number of flows have been analysed in further detail. These were selected following impact assessment. Results were analysed to investigate the key contributors, in terms of both impact and benefit, to each impact category. Those flows contributing the most to overall environmental impacts in each category have been included in the summary tables presented below.

Analyses of these selected interventions show that, with the exception of a small number of flows (eg methane, oil and gas for some scenarios), each of the implementation scenarios, 1-9, result in an overall reduction in materials consumption and pollutant emissions, through offset benefits associated with materials recycling.

Methane emissions arise predominantly through the landfill of the biodegradable fraction of waste batteries and electricity generation processes (with coal or gas feedstock). Scenarios 1, 4 and 7 emit a relatively higher quantity of methane over the study period due to recycling processing capacity being located entirely in the UK and dependent on UK grid electricity, with its relatively higher proportion of coal and gas in the production mix. This also has an influence on flows of natural gas, such that scenarios 1, 4 and 7 consume significantly higher quantities of this fossil fuel than other scenarios, through electricity generation and input to processing.

Flows of oil are influenced predominantly by transport requirements. Those scenarios whereby batteries are transported to France (2, 5 and 8) or Switzerland (3, 6 and 9) for processing result in increased fuel, and therefore oil, consumption.

Emissions of heavy metals to air, water and soil arise mainly from the disposal of residual batteries and, predominantly in the case of lead and mercury, are further reduced through metals recovery (and avoiding the burdens of primary metal production).

The relative contribution of alternative elements of scenario life cycles is investigated further during impact assessment. However, it is clear that the relative performance of scenarios is predominantly dictated by alternative recycling scenarios, as collection scenarios contribute relatively less to the flows analysed, and sorting and disposal requirements are the same for each scenario.

Emission	Unit	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6	Scenario 7	Scenario 8	Scenario 9	Scenario 10
Coal	kg	-6.6E+07	-7.8E+07	-5.6E+07	-6.6E+07	-7.8E+07	-5.6E+07	-6.5E+07	-7.7E+07	-5.5E+07	463000
Gas	kg	865000	-2380000	-5660000	968000	-2280000	-5560000	1330000	-1920000	-5200000	521000
Oil	kg	974000	5830000	20400000	1180000	6040000	20600000	3750000	8600000	23200000	1740000
Cadmium, in ore	kg	-2860000	-2860000	-2860000	-2860000	-2860000	-2860000	-2860000	-2860000	-2860000	x
Lead, in ore	kg	-7770000	-7690000	-7610000	-7770000	-7690000	-7610000	-7760000	-7680000	-7600000	1830
Zinc, in ore	kg	-5.6E+07	-5.6E+07	-5.4E+07	-5.6E+07	-5.6E+07	-5.4E+07	-5.6E+07	-5.6E+07	-5.4E+07	183
CO ₂	kg	-7.2E+07	-9E+07	-8.3E+07	-7.1E+07	-9E+07	-8.3E+07	-6.2E+07	-8E+07	-7.3E+07	43300000
CH ₄	kg	907000	794000	449000	907000	794000	449000	908000	795000	450000	675000
NOx	kg	-845000	-849000	-631000	-842000	-847000	-629000	-826000	-830000	-613000	166000
SOx	kg	-813000	-868000	-1320000	-810000	-865000	-1320000	-790000	-844000	-1300000	45200
NH ₃	kg	-73000	-72600	-68600	-73000	-72600	-68600	-72700	-72300	-68200	773
Cd (air)	kg	2880	2880	2880	2880	2880	2880	2880	2880	2880	4710
Ni (air)	kg	9120	9100	9060	9120	9100	9060	9120	9110	9070	14200
Pb (air)	kg	-20800	-20800	-20100	-20800	-20800	-20100	-20800	-20800	-20100	4900
Co (air)	kg	2160	2160	2160	2160	2160	2160	2160	2160	2160	3350
Hg (air)	kg	-819	-820	-9100	-819	-820	-9100	-819	-819	-9100	2.94
Cd (water/soil)	kg	254000	255000	255000	254000	255000	255000	255000	255000	255000	405000
Ni (water/soil)	kg	791000	791000	792000	791000	791000	792000	791000	791000	792000	1220000
Pb (water/soil)	kg	222000	222000	220000	222000	222000	220000	222000	222000	220000	422000
Co (water/soil)	kg	187000	187000	186000	187000	187000	186000	187000	187000	186000	288000
Hg (water/soil)	kg	-5.4	-3.51	20.1	-5.35	-3.45	20.2	-4.8	-2.9	20.7	262
PAH (water/soil)	kg	-3090	-3080	-3240	-3090	-3080	-3240	-3080	-3080	-3240	1.19
Phosphate (water)	kg	76600	75800	75600	76600	75800	75700	77100	76300	76100	122000

Table 3.1Inventory Analysis of Selected Flows - Comparison between Implementation Scenarios

		Total (all life	Collection	Collection		Recycling	Recycling	
Emission	Unit	cycle stages)	(container use)	(transport)	Sorting	(process)	(transport)	Disposal
Coal	kg	-6.6E+07	538000	1590000	136000	-6.9E+07	347000	300000
Gas	kg	865000	416000	662000	72900	-820000	197000	337000
Oil	kg	974000	555000	7780000	136000	-1.1E+07	2560000	1130000
Cadmium, in	kg	-2860000	-6.7E-12	-7.2E-10	2.45E-11	-2860000	1.8E-10	x
ore								
Lead, in ore	kg	-7770000	268	120000	35.3	-7940000	44700	1190
Zinc, in ore	kg	-5.6E+07	402	2870	9.33	-5.6E+07	1290	118
CO ₂	kg	-7.2E+07	2440000	25100000	608000	-1.4E+08	7930000	28100000
CH ₄	kg	907000	198	28.8	896	469000	15.4	437000
NOx	kg	-845000	8990	90400	3360	-1090000	37000	108000
SOx	kg	-813000	10300	42200	2200	-908000	10600	29300
NH ₃	kg	-73000	85.3	930	3.74	-74900	282	501
Cd (air)	kg	2880	0.0347	1.63	0.00496	-174	0.387	3050
Ni (air)	kg	9120	1.17	11.6	0.236	-107	2.59	9210
Pb (air)	kg	-20800	2.14	38.9	0.064	-24000	12.9	3170
Co (air)	kg	2160	0.339	0.832	0.00742	-10.2	0.148	2170
Hg (air)	kg	-819	0.527	0.988	0.0384	-823	0.364	1.91
Cd (water/soil)	kg	254000	2.45	128	0.0585	-7920	47.6	262000
Ni (water/soil)	kg	791000	112	152	1.28	-2400	44.6	793000
Pb (water/soil)	kg	222000	8.94	864	1.32	-53000	321	273000
Co (water/soil)	kg	187000	23.4	22.7	0.164	188	4.9	186000
Hg (water/soil)	kg	-5.4	0.384	2.74	0.0237	-179	1.01	170
PAH		-3090	0.45	2.7	0.0203	-3090	0.796	0.769
(water/soil)	kg							
Phosphate		76600	396	490	13.8	-3820	172	79300
(water)	kg							

Table 3.2Inventory Analysis of Selected Flows - Implementation Scenario 1

		Total (all life	Collection	Collection		Recycling	Recycling	Disposal
Emission	Unit	cycle stages)	(container use)	(transport)	Sorting	(process)	(transport)	
Coal	kg	-7.8E+07	538000	1590000	136000	-8.1E+07	1020000	300000
Gas	kg	-2380000	416000	662000	72900	-4440000	577000	337000
Oil	kg	5830000	555000	7780000	136000	-1.1E+07	7500000	1130000
Cadmium, in	kg	-2860000	2.12E-10	-8E-10	1.37E-11	-2860000	-7.1E-10	7.28E-14
ore								
Lead, in ore	kg	-7690000	268	120000	35.3	-7940000	130000	1190
Zinc, in ore	kg	-5.6E+07	402	2870	9.33	-5.6E+07	3820	118
CO ₂	kg	-9E+07	2440000	25100000	608000	-1.7E+08	23200000	28100000
CH ₄	kg	794000	198	28.8	896	356000	27.5	437000
NOx	kg	-849000	8990	90400	3360	-1170000	108000	108000
SOx	kg	-868000	10300	42200	2200	-983000	31000	29300
NH_3	kg	-72600	85.3	930	3.74	-75000	823	501
Cd (air)	kg	2880	0.0347	1.63	0.00496	-175	1.13	3050
Ni (air)	kg	9100	1.17	11.6	0.236	-124	7.6	9210
Pb (air)	kg	-20800	2.14	38.9	0.064	-24000	37.4	3170
Co (air)	kg	2160	0.339	0.832	0.00742	-10.2	0.433	2170
Hg (air)	kg	-820	0.527	0.988	0.0384	-824	1.07	1.91
Cd (water/soil)	kg	255000	2.45	128	0.0585	-7930	138	262000
Ni (water/soil)	kg	791000	112	152	1.28	-2490	131	793000
Pb (water/soil)	kg	222000	8.94	864	1.32	-53000	932	273000
Co (water/soil)	kg	187000	23.4	22.7	0.164	188	14.4	186000
Hg (water/soil)	kg	-3.51	0.384	2.74	0.0237	-179	2.95	170
PAH		-3080	0.45	2.7	0.0203	-3090	2.33	0.769
(water/soil)	kg							
Phosphate		75800	396	490	13.8	-4980	505	79300
(water)	kg							

Table 3.3Inventory Analysis of Selected Flows - Implementation Scenario 2

		Total (all life	Collection	Collection		Recycling	Recycling	Disposal
Emission	Unit	cycle stages)	(container use)	(transport)	Sorting	(process)	(transport)	
Coal	kg	-5.6E+07	538000	1590000	136000	-6E+07	1630000	300000
Gas	kg	-5660000	416000	662000	72900	-8080000	926000	337000
Oil	kg	20400000	555000	7780000	136000	-1190000	12000000	1130000
Cadmium, in	kg	-2860000	-3.1E-10	-4.4E-09	-1E-10	-2860000	-8.3E-09	x
ore								
Lead, in ore	kg	-7610000	268	120000	35.3	-7940000	208000	1190
Zinc, in ore	kg	-5.4E+07	402	2870	9.33	-5.4E+07	6130	118
CO ₂	kg	-8.3E+07	2440000	25100000	608000	-1.8E+08	37300000	28100000
CH ₄	kg	449000	198	28.8	896	10900	38.6	437000
NOx	kg	-631000	8990	90400	3360	-1020000	174000	108000
SOx	kg	-1320000	10300	42200	2200	-1460000	49700	29300
NH ₃	kg	-68600	85.3	930	3.74	-71400	1320	501
Cd (air)	kg	2880	0.0347	1.63	0.00496	-175	1.81	3050
Ni (air)	kg	9060	1.17	11.6	0.236	-171	12.2	9210
Pb (air)	kg	-20100	2.14	38.9	0.064	-23400	59.9	3170
Co (air)	kg	2160	0.339	0.832	0.00742	-10.6	0.695	2170
Hg (air)	kg	-9100	0.527	0.988	0.0384	-9110	1.71	1.91
Cd (water/soil)	kg	255000	2.45	128	0.0585	-8050	222	262000
Ni (water/soil)	kg	792000	112	152	1.28	-1670	210	793000
Pb (water/soil)	kg	220000	8.94	864	1.32	-55600	1490	273000
Co (water/soil)	kg	186000	23.4	22.7	0.164	-76.1	23.1	186000
Hg (water/soil)	kg	20.1	0.384	2.74	0.0237	-157	4.73	170
PAH		-3240	0.45	2.7	0.0203	-3250	3.74	0.769
(water/soil)	kg							
Phosphate		75600	396	490	13.8	-5410	811	79300
(water)	kg							

Table 3.4Inventory Analysis of Selected Flows - Implementation Scenario 3

		Total (all life	Collection	Collection		Recycling	Recycling	Disposal
Emission	Unit	cycle stages)	(container use)	(transport)	Sorting	(process)	(transport)	
Coal	kg	-6.6E+07	589000	1640000	136000	-6.9E+07	347000	300000
Gas	kg	968000	468000	712000	72900	-820000	197000	337000
Oil	kg	1180000	668000	7880000	136000	-1.1E+07	2560000	1130000
Cadmium, in	kg	-2860000	6.32E-11	3E-10	6.71E-13	-2860000	-1.5E-10	х
ore								
Lead, in ore	kg	-7770000	302	120000	35.3	-7940000	44700	1190
Zinc, in ore	kg	-5.6E+07	462	2870	9.33	-5.6E+07	1290	118
CO ₂	kg	-7.1E+07	2730000	25300000	608000	-1.4E+08	7930000	28100000
CH ₄	kg	907000	212	31.2	896	469000	15.4	437000
NOx	kg	-842000	10200	91300	3360	-1090000	37000	108000
SOx	kg	-810000	12000	43700	2200	-908000	10600	29300
NH ₃	kg	-73000	88.8	933	3.74	-74900	282	501
Cd (air)	kg	2880	0.0376	1.63	0.00496	-174	0.387	3050
Ni (air)	kg	9120	1.24	11.6	0.236	-107	2.59	9210
Pb (air)	kg	-20800	2.19	38.9	0.064	-24000	12.9	3170
Co (air)	kg	2160	0.348	0.837	0.00742	-10.2	0.148	2170
Hg (air)	kg	-819	0.565	1.02	0.0384	-823	0.364	1.91
Cd (water/soil)	kg	254000	2.51	128	0.0585	-7920	47.6	262000
Ni (water/soil)	kg	791000	113	153	1.28	-2400	44.6	793000
Pb (water/soil)	kg	222000	9.52	865	1.32	-53000	321	273000
Co (water/soil)	kg	187000	23.7	22.8	0.164	188	4.9	186000
Hg (water/soil)	kg	-5.35	0.414	2.77	0.0237	-179	1.01	170
PAH		-3090	0.456	2.7	0.0203	-3090	0.796	0.769
(water/soil)	kg							
Phosphate		76600	426	493	13.8	-3820	172	79300
(water)	kg							

Table 3.5Inventory Analysis of Selected Flows - Implementation Scenario 4

		Total (all life	Collection	Collection		Recycling	Recycling	Disposal
Emission	Unit	cycle stages)	(container use)	(transport)	Sorting	(process)	(transport)	
Coal	kg	-7.8E+07	589000	1640000	136000	-8.1E+07	1020000	300000
Gas	kg	-2280000	468000	712000	72900	-4440000	577000	337000
Oil	kg	6040000	668000	7880000	136000	-1.1E+07	7500000	1130000
Cadmium, in	kg	-2860000	1.64E-10	1.05E-09	2.57E-11	-2860000	1.5E-09	-6.8E-15
ore								
Lead, in ore	kg	-7690000	302	120000	35.3	-7940000	130000	1190
Zinc, in ore	kg	-5.6E+07	462	2870	9.33	-5.6E+07	3820	118
CO ₂	kg	-9E+07	2730000	25300000	608000	-1.7E+08	23200000	28100000
CH ₄	kg	794000	212	31.2	896	356000	27.5	437000
NOx	kg	-847000	10200	91300	3360	-1170000	108000	108000
SOx	kg	-865000	12000	43700	2200	-983000	31000	29300
NH_3	kg	-72600	88.8	933	3.74	-75000	823	501
Cd (air)	kg	2880	0.0376	1.63	0.00496	-175	1.13	3050
Ni (air)	kg	9100	1.24	11.6	0.236	-124	7.6	9210
Pb (air)	kg	-20800	2.19	38.9	0.064	-24000	37.4	3170
Co (air)	kg	2160	0.348	0.837	0.00742	-10.2	0.433	2170
Hg (air)	kg	-820	0.565	1.02	0.0384	-824	1.07	1.91
Cd (water/soil)	kg	255000	2.51	128	0.0585	-7930	138	262000
Ni (water/soil)	kg	791000	113	153	1.28	-2490	131	793000
Pb (water/soil)	kg	222000	9.52	865	1.32	-53000	932	273000
Co (water/soil)	kg	187000	23.7	22.8	0.164	188	14.4	186000
Hg (water/soil)	kg	-3.45	0.414	2.77	0.0237	-179	2.95	170
PAH		-3080	0.456	2.7	0.0203	-3090	2.33	0.769
(water/soil)	kg							
Phosphate		75800	426	493	13.8	-4980	505	79300
(water)	kg							

Table 3.6Inventory Analysis of Selected Flows - Implementation Scenario 5

		Total (all life	Collection	Collection		Recycling	Recycling	Disposal
Emission	Unit	cycle stages)	(container use)	(transport)	Sorting	(process)	(transport)	
Coal	kg	-5.6E+07	589000	1640000	136000	-6E+07	1630000	300000
Gas	kg	-5560000	468000	712000	72900	-8080000	926000	337000
Oil	kg	20600000	668000	7880000	136000	-1190000	12000000	1130000
Cadmium, in	kg	-2860000	-8.3E-11	-4.7E-09	-6.9E-11	-2860000	-5.2E-09	x
ore								
Lead, in ore	kg	-7610000	302	120000	35.3	-7940000	208000	1190
Zinc, in ore	kg	-5.4E+07	462	2870	9.33	-5.4E+07	6130	118
CO ₂	kg	-8.3E+07	2730000	25300000	608000	-1.8E+08	37300000	28100000
CH ₄	kg	449000	212	31.2	896	10900	38.6	437000
NOx	kg	-629000	10200	91300	3360	-1020000	174000	108000
SOx	kg	-1320000	12000	43700	2200	-1460000	49700	29300
NH ₃	kg	-68600	88.8	933	3.74	-71400	1320	501
Cd (air)	kg	2880	0.0376	1.63	0.00496	-175	1.81	3050
Ni (air)	kg	9060	1.24	11.6	0.236	-171	12.2	9210
Pb (air)	kg	-20100	2.19	38.9	0.064	-23400	59.9	3170
Co (air)	kg	2160	0.348	0.837	0.00742	-10.6	0.695	2170
Hg (air)	kg	-9100	0.565	1.02	0.0384	-9110	1.71	1.91
Cd (water/soil)	kg	255000	2.51	128	0.0585	-8050	222	262000
Ni (water/soil)	kg	792000	113	153	1.28	-1670	210	793000
Pb (water/soil)	kg	220000	9.52	865	1.32	-55600	1490	273000
Co (water/soil)	kg	186000	23.7	22.8	0.164	-76.1	23.1	186000
Hg (water/soil)	kg	20.2	0.414	2.77	0.0237	-157	4.73	170
PAH		-3240	0.456	2.7	0.0203	-3250	3.74	0.769
(water/soil)	kg							
Phosphate	-	75700	426	493	13.8	-5410	811	79300
(water)	kg							

Table 3.7Inventory Analysis of Selected Flows - Implementation Scenario 6

		Total (all life	Collection	Collection		Recycling	Recycling	Disposal
Emission	Unit	cycle stages)	(container use)	(transport)	Sorting	(process)	(transport)	
Coal	kg	-6.5E+07	911000	2390000	136000	-6.9E+07	347000	300000
Gas	kg	1330000	662000	877000	72900	-820000	197000	337000
Oil	kg	3750000	779000	10300000	136000	-1.1E+07	2560000	1130000
Cadmium, in	kg	-2860000	1.14E-10	6.94E-10	1.54E-11	-2860000	1.12E-10	x
ore								
Lead, in ore	kg	-7760000	413	128000	35.3	-7940000	44700	1190
Zinc, in ore	kg	-5.6E+07	737	3580	9.33	-5.6E+07	1290	118
CO ₂	kg	-6.2E+07	3970000	33800000	608000	-1.4E+08	7930000	28100000
CH ₄	kg	908000	369	40.5	896	469000	15.4	437000
NOx	kg	-826000	14300	104000	3360	-1090000	37000	108000
SOx	kg	-790000	15700	60500	2200	-908000	10600	29300
NH ₃	kg	-72700	156	1210	3.74	-74900	282	501
Cd (air)	kg	2880	0.0598	2.37	0.00496	-174	0.387	3050
Ni (air)	kg	9120	2.08	17.6	0.236	-107	2.59	9210
Pb (air)	kg	-20800	4	46.9	0.064	-24000	12.9	3170
Co (air)	kg	2160	0.633	1.33	0.00742	-10.2	0.148	2170
Hg (air)	kg	-819	0.918	1.24	0.0384	-823	0.364	1.91
Cd (water/soil)	kg	255000	4.55	137	0.0585	-7920	47.6	262000
Ni (water/soil)	kg	791000	213	216	1.28	-2400	44.6	793000
Pb (water/soil)	kg	222000	15.7	926	1.32	-53000	321	273000
Co (water/soil)	kg	187000	44.3	35.1	0.164	188	4.9	186000
Hg (water/soil)	kg	-4.8	0.665	3.06	0.0237	-179	1.01	170
PAH		-3080	0.852	3.78	0.0203	-3090	0.796	0.769
(water/soil)	kg							
Phosphate		77100	742	649	13.8	-3820	172	79300
(water)	kg							

Table 3.8Inventory Analysis of Selected Flows - Implementation Scenario 7

		Total (all life	Collection	Collection		Recycling	Recycling	Disposal
Emission	Unit	cycle stages)	(container use)	(transport)	Sorting	(process)	(transport)	
Coal	kg	-7.7E+07	911000	2390000	136000	-8.1E+07	1020000	300000
Gas	kg	-1920000	662000	877000	72900	-4440000	577000	337000
Oil	kg	8600000	779000	10300000	136000	-1.1E+07	7500000	1130000
Cadmium, in	kg	-2860000	3.33E-11	-1.6E-09	7.13E-12	-2860000	-5E-10	-1.5E-13
ore								
Lead, in ore	kg	-7680000	413	128000	35.3	-7940000	130000	1190
Zinc, in ore	kg	-5.6E+07	737	3580	9.33	-5.6E+07	3820	118
CO ₂	kg	-8E+07	3970000	33800000	608000	-1.7E+08	23200000	28100000
CH ₄	kg	795000	369	40.5	896	356000	27.5	437000
NOx	kg	-830000	14300	104000	3360	-1170000	108000	108000
SOx	kg	-844000	15700	60500	2200	-983000	31000	29300
NH ₃	kg	-72300	156	1210	3.74	-75000	823	501
Cd (air)	kg	2880	0.0598	2.37	0.00496	-175	1.13	3050
Ni (air)	kg	9110	2.08	17.6	0.236	-124	7.6	9210
Pb (air)	kg	-20800	4	46.9	0.064	-24000	37.4	3170
Co (air)	kg	2160	0.633	1.33	0.00742	-10.2	0.433	2170
Hg (air)	kg	-819	0.918	1.24	0.0384	-824	1.07	1.91
Cd (water/soil)	kg	255000	4.55	137	0.0585	-7930	138	262000
Ni (water/soil)	kg	791000	213	216	1.28	-2490	131	793000
Pb (water/soil)	kg	222000	15.7	926	1.32	-53000	932	273000
Co (water/soil)	kg	187000	44.3	35.1	0.164	188	14.4	186000
Hg (water/soil)	kg	-2.9	0.665	3.06	0.0237	-179	2.95	170
PAH		-3080	0.852	3.78	0.0203	-3090	2.33	0.769
(water/soil)	kg							
Phosphate	-	76300	742	649	13.8	-4980	505	79300
(water)	kg							

Table 3.9Inventory Analysis of Selected Flows - Implementation Scenario 8

		Total (all life	Collection	Collection		Recycling	Recycling	Disposal
Emission	Unit	cycle stages)	(container use)	(transport)	Sorting	(process)	(transport)	
Coal	kg	-5.5E+07	911000	2390000	136000	-6E+07	1630000	300000
Gas	kg	-5200000	662000	877000	72900	-8080000	926000	337000
Oil	kg	23200000	779000	10300000	136000	-1190000	12000000	1130000
Cadmium, in	kg	-2860000	1.15E-10	-3.9E-09	1.33E-12	-2860000	-4.2E-09	x
ore								
Lead, in ore	kg	-7600000	413	128000	35.3	-7940000	208000	1190
Zinc, in ore	kg	-5.4E+07	737	3580	9.33	-5.4E+07	6130	118
CO ₂	kg	-7.3E+07	3970000	33800000	608000	-1.8E+08	37300000	28100000
CH ₄	kg	450000	369	40.5	896	10900	38.6	437000
NOx	kg	-613000	14300	104000	3360	-1020000	174000	108000
SOx	kg	-1300000	15700	60500	2200	-1460000	49700	29300
NH_3	kg	-68200	156	1210	3.74	-71400	1320	501
Cd (air)	kg	2880	0.0598	2.37	0.00496	-175	1.81	3050
Ni (air)	kg	9070	2.08	17.6	0.236	-171	12.2	9210
Pb (air)	kg	-20100	4	46.9	0.064	-23400	59.9	3170
Co (air)	kg	2160	0.633	1.33	0.00742	-10.6	0.695	2170
Hg (air)	kg	-9100	0.918	1.24	0.0384	-9110	1.71	1.91
Cd (water/soil)	kg	255000	4.55	137	0.0585	-8050	222	262000
Ni (water/soil)	kg	792000	213	216	1.28	-1670	210	793000
Pb (water/soil)	kg	220000	15.7	926	1.32	-55600	1490	273000
Co (water/soil)	kg	186000	44.3	35.1	0.164	-76.1	23.1	186000
Hg (water/soil)	kg	20.7	0.665	3.06	0.0237	-157	4.73	170
PAH		-3240	0.852	3.78	0.0203	-3250	3.74	0.769
(water/soil)	kg							
Phosphate		76100	742	649	13.8	-5410	811	79300
(water)	kg							

Table 3.10Inventory Analysis of Selected Flows - Implementation Scenario 9

4

Table 4.1 details impact assessment results for the ten implementation scenarios. The contribution of individual life cycle stages to the total for each implementation scenario is further presented in *Table 4.2* to *Table 4.10*.

Analyses show that implementation scenarios 1-9 present opportunities for overall benefit in the categories: abiotic depletion; global warming potential; human toxicity; terrestrial ecotoxicity; and acidification, through offset benefits associated with materials recycling. The scenarios also show reduced impacts in comparison with the baseline (scenario 10) for the categories ozone layer depletion, freshwater ecotoxicity and eutrophication.

Relative performance is again predominantly dictated by the recycling scenario chosen, as combinations with equivalent recycling components (eg 1, 4 and 7) show more similarity in profile than those with equivalent collection components (eg 1, 2 and 3). Different recycling scenarios are favoured in each impact category, with no clear overall high performer.

Further analysis of the processes contributing to the potential impacts and benefits in each category shows that the majority of benefits occur as a result of avoiding the need to produce virgin materials, in particular metals. Given the predominance of zinc carbon and alkaline manganese chemistries among collected batteries, it follows that the avoided impacts of raw material extraction, energy and fuel consumption and transport during primary zinc and manganese production contribute the greatest benefit to all impact categories.

The greatest burdens in categories occur as a result of fuel and electricity inputs to recycling processes (this is true for abiotic depletion, global warming potential and acidification) and through disposal of residual batteries (this is the case for ozone layer depletion, the toxicity categories and eutrophication).

The majority of differences between potential impacts and benefits for alternative implementation scenarios result from the following two key factors.

- The relative quantity of zinc and manganese recovered from the recycling of alkaline and saline batteries. *Table 2.25* and *Table 2.26* show that comparable quantities of zinc are recovered from pyrometallurgical and hydrometallurgical processing, but that less manganese is recovered from the pyrometallurgical process (recovered as ferromanganese). As a result, for the majority of categories, less offset burden is awarded.
- The fuel/energy requirements of the recycling facility, location of recycling facilities and associated energy mix. Recycling scenarios 1, 2 and 3 differ in terms of the location at which batteries are processed. Scenario

1 assumes UK recycling, scenario 2 models the impact of sending 50% of alkaline and saline batteries to France for processing and scenario 3 assumes these batteries are processed in Switzerland (where current pyrometallurgical capacity exists). The electricity mix in the UK comprises a high proportion of coal and gas-derived energy, compared to a high proportion of nuclear in France and hydro-electric power in Switzerland. The generation of electricity via nuclear and hydro-electric power has relatively lower environmental burdens across a number or impact categories as fewer resources are consumed in the process.

The balance of importance between these factors differs between impact categories.

As an example, with respect to global warming potential results for scenarios 1 to 9 are dominated by the avoided impacts of primary zinc and manganese/ ferromanganese production. These are greater than the impacts associated with battery collection, sorting, transport, disposal and energy consumption during processing, such that an overall benefit is seen. Results show implementation scenarios utilising recycling scenario 2 (scenarios 2, 5 and 8) to perform favourably. Despite an increase in greenhouse gases from battery transport to France, this scenario is favoured due to significantly reduced burdens of consuming 50% of electricity generated according to the average (and current) French mix (44,800,000 kg CO₂-eq compared to 89,100,000 kg CO₂-eq where all electricity input to alkaline and saline battery recycling is from the UK).

Implementation scenarios utilising recycling scenario 3 (scenarios 3, 6 and 9) perform relatively well in the global warming category, again due to the importance of electricity generation and the low burdens associated with the hydro-dominated Swiss generation mix. However, the reduced recovery of manganese from this process results in these scenarios performing less well than might be expected in this impact category.

The baseline scenario (10) shows an overall impact across all categories, as the burdens of waste treatment (landfill and incineration) are incurred and no offset benefits of avoided materials are awarded. For the toxicity categories, these burdens come predominantly in the form of releases of heavy metals to the environment. For other categories, such as global warming potential, the landfill of biodegradable elements of the waste batteries (paper etc) and the incineration of waste batteries generates significant burden.

Although making relatively little contribution in terms of overall benefit/burden, it is evident that scenarios utilising collection scenario 3 perform relatively less well than those utilising collection scenarios 1 and 2 in the majority of impact categories. For example, with respect to global warming potential, implementation scenario 7 (collection scenario 3, recycling scenario 1) delivers significantly less benefit over the 25-year period than implementation scenarios 1 and 4 (collection scenarios 1 and 2 respectively,
recycling scenario 1). Further analysis of results shows that this is predominantly due to additional fuel consumption and CO_2 emissions through the collection transportation network.

ENVIRONMENTAL RESOURCES MANAGEMENT

Impact											
Category	Unit	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6	Scenario 7	Scenario 8	Scenario 9	Scenario 10
abiotic	kg Sb eq										
depletion		-1698230	-1841130	-1472130	-1691030	-1833930	-1464930	-1619130	-1762030	-1393030	53200
global warming	kg CO ₂										
(GWP100)	eq	-86864000.0	-106864000	-88164000	-86264000	-106264000	-87564000	-76144000	-96144000	-77444000	46900000
ozone layer	kg CFC-										
depletion	11 eq										
(ODP)		5	7	15	5	8	15	6	9	16	31
human toxicity	kg 1,4-										
	DB eq	-48108000	-54538000	-191248000	-48028000	-54458000	-191168000	-42468000	-48898000	-185608000	1860000000
fresh water	kg 1,4-										
aquatic ecotox.	DB eq	3725092300	3725225300	3709255300	3725115300	3725248300	3709278300	3726242300	3726375300	3710405300	5950000000
terrestrial	kg 1,4-										
ecotoxicity	DB eq	-23050390	-23062290	-257428190	-22996690	-23059590	-257425490	-22956290	-23019190	-257385090	3700000
acidification	kg SO ₂										
	eq	-1519970	-1578970	-2012570	-1515070	-1574070	-2007670	-1481070	-1540070	-1973670	139000
eutrophication	kg PO ₄										
	eq	133507	133897	135297	133797	134187	135587	137647	138037	139437	444000

TT 11 44				T 1 1 1	· ·
1 anio 4 1	1 110 1 11010 11111000	· Accoccinont _ I `om	namean hotznoon	Immiomontation	Sconatioe
1 11 11 11 11		1336331116111 - CUIII			SUCHAILOS
				1	

			Collection							
		Total (all life	(container	Collection	Collection		Recycling	Recycling	Recycling	
Impact Category	Unit	cycle stages)	use)	(transport)	(total)	Sorting	(transport)	(process)	(total)	Disposal
abiotic depletion	kg Sb eq	-1698230	28000	192000	220000	6370	60900	-2020000	-1959100	34500
	%	100%	-2%	-11%	-13%	-0.4%	-4%	119%	115%	-2%
global warming	kg CO2 eq									
(GWP100)		-86864000	2590000	26200000	28790000	646000	8300000	-155000000	-146700000	30400000
	%	100%	-3%	-30%	-33%	-0.7%	-10%	178%	169%	-35%
ozone layer depletion	kg CFC-11									
(ODP)	eq	5	0.2	4	4	0.1	1	-21	-19	20
	%	100%	4%	80%	84%	1%	28%	-423%	-395%	411%
human toxicity	kg 1,4 - DB									
	eq	-48108000	1660000	8260000	9920000	112000	1860000	-1260000000	-1258140000	1200000000
	%	100%	-3.5%	-17%	-21%	-0.2%	-4%	2619%	2615%	-2494%
fresh water aquatic	kg 1,4-DB									
ecotox.	eq	3725092300	630000	1860000	2490000	15300	587000	-128000000	-127413000	3850000000
	%	100%	0.0%	0%	0.1%	0.0004%	0.0%	-3%	-3%	103%
terrestrial ecotoxicity	kg 1,4-DB									
	eq	-23050390	19200	19200	38400	2010	19200	-25500000	-25480800	2390000
	%	100%	-0.1%	-0.1%	-0.2%	-0.01%	-0.1%	111%	111%	-10%
acidification	kg SO2 eq	-1519970	17000	97300	114300	4330	31600	-1760000	-1728400	89800
	%	100%	-1%	-6%	-8%	-0.3%	-2%	116%	114%	-6%
eutrophication	kg PO ₄									
	eq	133507	1820	15300	17120	477	5910	-178000	-172090	288000
	%	100%	1%	11%	13%	0.4%	4%	-133%	-129%	216%

Table 4.2Impact Profile - Implementation Scenario 1

			Collection							
		Total (all life	(container	Collection	Collection		Recycling	Recycling	Recycling	
Impact Category	Unit	cycle stages)	use)	(transport)	(total)	Sorting	(transport)	(process)	(total)	Disposal
abiotic depletion	kg Sb eq	-1841130	28000	192000	220000	6370	178000	-2280000	-2102000	34500
	%	100%	-2%	-10%	-12%	-0.3%	-10%	124%	114%	-2%
global warming	kg CO2 eq									
(GWP100)		-106864000	2590000	26200000	28790000	646000	24300000	-191000000	-166700000	30400000
	%	100%	-2%	-25%	-27%	-1%	-23%	179%	156%	-28%
ozone layer depletion	kg CFC-11									
(ODP)	eq	7	0.2	4	4	0.1	4	-21	-17	20
	%	100%	2%	53%	56%	1%	55%	-284%	-229%	274%
human toxicity	kg 1,4-DB									
	eq	-54538000	1660000	8260000	9920000	112000	5430000	-1270000000	-1264570000	1200000000
	%	100%	-3%	-15%	-18%	-0.2%	-10%	2329%	2319%	-2200%
fresh water aquatic	kg 1,4-DB									
ecotox.	eq	3725225300	630000	1860000	2490000	15300	1720000	-129000000	-127280000	3850000000
	%	100%	0.02%	0.0%	0.1%	0.0004%	0.05%	-3%	-3%	103%
terrestrial ecotoxicity	kg 1,4-DB									
	eq	-23062290	19200	70200	89400	2010	56300	-25600000	-25543700	2390000
	%	100%	-0.1%	-0.3%	-0.4%	-0.01%	-0.2%	111%	111%	-10%
acidification	kg SO2 eq	-1578970	17000	97300	114300	4330	92600	-1880000	-1787400	89800
	%	100%	-1%	-6%	-7%	-0.3%	-6%	119%	113%	-6%
eutrophication	kg PO ₄									
	eq	133897	1820	15300	17120	477	17300	-189000	-171700	288000
	%	100%	1%	11%	13%	0.4%	13%	-141%	-128%	215%

Table 4.3Impact Profile - Implementation Scenario 2

			Collection							
		Total (all life	(container	Collection	Collection		Recycling	Recycling	Recycling	
Impact Category	Unit	cycle stages)	use)	(transport)	(total)	Sorting	(transport)	(process)	(total)	Disposal
abiotic depletion	kg Sb eq	-1472130	28000	192000	220000	6370	287000	-2020000	-1733000	34500
	%	100%	-2%	-13%	-15%	0%	-19%	137%	118%	-2%
global warming	kg CO2 eq									
(GWP100)		-88164000	2590000	26200000	28790000	646000	3900000	-187000000	-148000000	30400000
	%	100%	-3%	-30%	-33%	-1%	-44%	212%	168%	-34%
ozone layer depletion	kg CFC-11									
(ODP)	eq	15	0.2	4	4	0.1	7	-16	-9	20
	%	100%	1%	26%	28%	0.5%	44%	-107%	-63%	135%
human toxicity	kg 1,4-DB									
	eq	-191248000	1660000	8260000	9920000	112000	8720000	-141000000	-1401280000	1200000000
	%	100%	-1%	-4%	-5%	-0.1%	-5%	737%	733%	-627%
fresh water aquatic	kg 1,4-DB									
ecotox.	eq	3709255300	630000	1860000	2490000	15300	2750000	-146000000	-143250000	3850000000
	%	100%	0.02%	0.1%	0.1%	0.0004%	0.1%	-4%	-4%	104%
terrestrial ecotoxicity	kg 1,4 - DB									
	eq	-257428190	19200	70200	89400	2010	90400	-260000000	-259909600	2390000
	%	100%	-0.01%	-0.03%	-0.03%	-0.001%	0.0%	101%	101%	-1%
acidification	kg PO4									
	eq	-2012570	17000	97300	114300	4330	149000	-2370000	-2221000	89800
	%	100%	-1%	-5%	-6%	-0.2%	-7%	118%	110%	-4%
eutrophication	kg PO4									
	eq	135297	1820	15300	17120	477	27700	-198000	-170300	288000
	%	100%	1%	11%	13%	0.4%	20%	-146%	-126%	213%

Table 4.4Impact Profile - Implementation Scenario 3

			Collection							
		Total (all life	(container	Collection	Collection		Recycling	Recycling	Recycling	
Impact Category	Unit	cycle stages)	use)	(transport)	(total)	Sorting	(transport)	(process)	(total)	Disposal
abiotic depletion	kg Sb eq	-1691030	32200	195000	227200	6370	60900	-2020000	-1959100	34500
	%	100%	-2%	-12%	-13%	0%	-4%	119%	116%	-2%
global warming	kg CO2 eq									
(GWP100)		-86264000	2890000	26500000	29390000	646000	8300000	-155000000	-146700000	30400000
	%	100%	-3%	-31%	-34%	-1%	-10%	180%	170%	-35%
ozone layer depletion	kg CFC-11									
(ODP)	eq	5	0.2	4	4	0.1	1	-21	-19	20
	%	100%	4%	79%	83%	1%	28%	-410%	-382%	398%
human toxicity	kg 1,4-DB									
	eq	-48028000	1710000	8290000	10000000	112000	1860000	-1260000000	-1258140000	1200000000
	%	100%	-4%	-17%	-21%	-0.2%	-4%	2623%	2620%	-2499%
fresh water aquatic	kg 1,4 - DB									
ecotox.	eq	3725115300	643000	1870000	2513000	15300	587000	-128000000	-127413000	3850000000
	%	100%	0.02%	0.1%	0.1%	0.0004%	0.02%	-3%	-3%	103%
terrestrial ecotoxicity	kg 1,4 - DB									
	eq	-22996690	20700	71400	92100	2010	19200	-25500000	-25480800	2390000
	%	100%	-0.1%	-0.3%	-0.4%	-0.01%	-0.1%	111%	111%	-10%
acidification	kg SO2 eq	-1515070	19600	99600	119200	4330	31600	-1760000	-1728400	89800
	%	100%	-1%	-7%	-8%	-0.3%	-2%	116%	114%	-6%
eutrophication	kg PO ₄									
	eq	133797	2010	15400	17410	477	5910	-178000	-172090	288000
	%	100%	2%	12%	13%	0.4%	4%	-133%	-129%	215%

Table 4.5Impact Profile - Implementation Scenario 4

			Collection							
		Total (all life	(container	Collection	Collection		Recycling	Recycling	Recycling	
Impact Category	Unit	cycle stages)	use)	(transport)	(total)	Sorting	(transport)	(process)	(total)	Disposal
abiotic depletion	kg Sb eq	-1833930	32200	195000	227200	6370	178000	-2280000	-2102000	34500
	%	100%	-2%	-11%	-12%	-0.3%	-10%	124%	115%	-2%
global warming	kg CO2 eq									
(GWP100)		-106264000	2890000	26500000	29390000	646000	24300000	-191000000	-166700000	30400000
	%	100%	-3%	-25%	-28%	-1%	-23%	180%	157%	-29%
ozone layer depletion	kg CFC-11									
(ODP)	eq	8	0.2	4	4	0.1	4	-21	-17	20
	%	100%	3%	53%	56%	1%	54%	-278%	-224%	267%
human toxicity	kg 1,4 - DB									
	eq	-54458000	1710000	8290000	10000000	112000	5430000	-1270000000	-1264570000	1200000000
	%	100%	-3%	-15%	-18%	-0.2%	-10%	2332%	2322%	-2204%
fresh water aquatic	kg 1,4-DB									
ecotox.	eq	3725248300	643000	1870000	2513000	15300	1720000	-129000000	-127280000	3850000000
	%	100%	0.02%	0.1%	0.1%	0.0004%	0.05%	-3%	-3%	103%
terrestrial ecotoxicity	kg 1,4-DB									
	eq	-23059590	20700	71400	92100	2010	56300	-25600000	-25543700	2390000
	%	100%	-0.1%	-0.3%	-0.4%	-0.01%	-0.2%	111%	111%	-10%
acidification	kg SO2 eq	-1574070	19600	99600	119200	4330	92600	-1880000	-1787400	89800
	%	100%	-1%	-6%	-8%	-0.3%	-6%	119%	114%	-6%
eutrophication	kg PO ₄									
	eq	134187	2010	15400	17410	477	17300	-189000	-171700	288000
	%	100%	1%	11%	13%	0.4%	13%	-141%	-128%	215%

Table 4.6Impact Profile - Implementation Scenario 5

			Collection							
		Total (all life	(container	Collection	Collection		Recycling	Recycling	Recycling	
Impact Category	Unit	cycle stages)	use)	(transport)	(total)	Sorting	(transport)	(process)	(total)	Disposal
abiotic depletion	kg Sb eq	-1464930	32200	195000	227200	6370	287000	-2020000	-1733000	34500
	%	100%	-2%	-13%	-16%	-0.4%	-20%	138%	118%	-2%
global warming	kg CO2 eq									
(GWP100)		-87564000	2890000	26500000	29390000	646000	3900000	-187000000	-148000000	30400000
	%	100%	-3%	-30%	-34%	-1%	-45%	214%	169%	-35%
ozone layer depletion	kg CFC-11									
(ODP)	eq	15	0.2	4	4	0.1	7	-16	-9	20
	%	100%	1%	27%	28%	0.5%	43%	-106%	-63%	134%
human toxicity	kg 1,4-DB									
	eq	-191168000	1710000	8290000	10000000	112000	8720000	-141000000	-1401280000	1200000000
	%	100%	-1%	-4%	-5%	-0.1%	-5%	738%	733%	-628%
fresh water aquatic	kg 1,4 - DB									
ecotox.	eq	3709278300	643000	1870000	2513000	15300	2750000	-146000000	-143250000	3850000000
	%	100%	0.02%	0.1%	0.1%	0.0004%	0.1%	-4%	-4%	104%
terrestrial ecotoxicity	kg 1,4 - DB									
	eq	-257425490	20700	71400	92100	2010	90400	-260000000	-259909600	2390000
	%	100%	-0.01%	-0.03%	-0.04%	-0.001%	-0.04%	101%	101%	-1%
acidification	kg SO2 eq	-2007670	19600	99600	119200	4330	149000	-2370000	-2221000	89800
	%	100%	-1%	-5%	-6%	-0.2%	-7%	118%	111%	-4%
eutrophication	kg PO ₄									
	eq	135587	2010	15400	17410	477	27700	-198000	-170300	288000
	%	100%	1%	11%	13%	0.4%	20%	-146%	-126%	212%

Table 4.7Impact Profile - Implementation Scenario 6

			Collection							
		Total (all life	(container	Collection	Collection		Recycling	Recycling	Recycling	
Impact Category	Unit	cycle stages)	use)	(transport)	(total)	Sorting	(transport)	(process)	(total)	Disposal
abiotic depletion	kg Sb eq	-1619130	43100	256000	299100	6370	60900	-2020000	-1959100	34500
	%	100%	-3%	-16%	-18%	-0.4%	-4%	125%	121%	-2%
global warming	kg CO ₂ eq									
(GWP100)		-76144000	4210000	35300000	39510000	646000	8300000	-155000000	-146700000	30400000
	%	100%	-6%	-46%	-52%	-1%	-11%	204%	193%	-40%
ozone layer depletion	kg CFC-11									
(ODP)	eq	6	0.2	5	5	0.1	1	-21	-19	20
	%	100%	3%	83%	86%	1%	23%	-339%	-317%	330%
human toxicity	kg 1,4-DB									
	eq	-42468000	3060000	12500000	15560000	112000	1860000	-1260000000	-1258140000	1200000000
	%	100%	-7%	-29%	-37%	-0.3%	-4%	2967%	2963%	-2826%
fresh water aquatic	kg 1,4 - DB									
ecotox.	eq	3726242300	1180000	2460000	3640000	15300	587000	-128000000	-127413000	3850000000
	%	100%	0.03%	0.1%	0.1%	0.0004%	0.02%	-3%	-3%	103%
terrestrial ecotoxicity	kg 1,4 - DB									
	eq	-22956290	33300	99200	132500	2010	19200	-25500000	-25480800	2390000
	%	100%	-0.1%	-0.4%	-0.6%	-0.01%	-0.1%	111%	111%	-10%
acidification	kg SO2 eq	-1481070	26200	127000	153200	4330	31600	-1760000	-1728400	89800
	%	100%	-2%	-9%	-10%	-0.3%	-2%	119%	117%	-6%
eutrophication	kg PO ₄									
	eq	137647	3060	18200	21260	477	5910	-178000	-172090	288000
	%	100%	2%	13%	15%	0.3%	4%	-129%	-125%	209%

Table 4.8Impact Profile - Implementation Scenario 7

			Collection							
		Total (all life	(container	Collection	Collection		Recycling	Recycling	Recycling	
Impact Category	Unit	cycle stages)	use)	(transport)	(total)	Sorting	(transport)	(process)	(total)	Disposal
abiotic depletion	kg Sb eq	-1762030	43100	256000	299100	6370	178000	-2280000	-2102000	34500
	%	100%	-2%	-15%	-17%	-0.4%	-10%	129%	119%	-2%
global warming	kg CO2 eq									
(GWP100)		-96144000	4210000	35300000	39510000	646000	24300000	-191000000	-166700000	30400000
	%	100%	-4%	-37%	-41%	-1%	-25%	199%	173%	-32%
ozone layer depletion	kg CFC-11									
(ODP)	eq	9	0.2	5	5	0.1	4	-21	-17	20
	%	100%	2%	59%	61%	1%	47%	-244%	-197%	235%
human toxicity	kg 1,4-DB									
	eq	-48898000	3060000	12500000	15560000	112000	5430000	-1270000000	-1264570000	1200000000
	%	100%	-6%	-26%	-32%	-0.2%	-11%	2597%	2586%	-2454%
fresh water aquatic	kg 1,4 - DB									
ecotox.	eq	3726375300	1180000	2460000	3640000	15300	1720000	-129000000	-127280000	3850000000
	%	100%	0.03%	0.1%	0.1%	0.0004%	0.05%	-3%	-3%	103%
terrestrial ecotoxicity	kg 1,4 - DB									
	eq	-23019190	33300	99200	132500	2010	56300	-25600000	-25543700	2390000
	%	100%	-0.1%	-0.4%	-0.6%	-0.01%	-0.2%	111%	111%	-10%
acidification	kg SO2 eq	-1540070	26200	127000	153200	4330	92600	-1880000	-1787400	89800
	%	100%	-2%	-8%	-10%	-0.3%	-6%	122%	116%	-6%
eutrophication	kg PO ₄									
	eq	138037	3060	18200	21260	477	17300	-189000	-171700	288000
	%	100%	2%	13%	15%	0.3%	13%	-137%	-124%	209%

Table 4.9Impact Profile - Implementation Scenario 8

			Collection							
		Total (all life	(container	Collection	Collection		Recycling	Recycling	Recycling	
Impact Category	Unit	cycle stages)	use)	(transport)	(total)	Sorting	(transport)	(process)	(total)	Disposal
abiotic depletion	kg Sb eq	-1393030	43100	256000	299100	6370	287000	-2020000	-1733000	34500
	%	100%	-3%	-18%	-21%	-0.5%	-21%	145%	124%	-2%
global warming	kg CO2 eq									
(GWP100)		-77444000	4210000	35300000	39510000	646000	3900000	-187000000	-148000000	30400000
	%	100%	-5%	-46%	-51%	-1%	-50%	241%	191%	-39%
ozone layer depletion	kg CFC-11									
(ODP)	eq	16	0.2	5	5	0.1	7	-16	-9	20
	%	100%	1%	31%	33%	0.4%	41%	-99%	-59%	126%
human toxicity	kg 1,4-DB									
-	eq	-185608000	3060000	12500000	15560000	112000	8720000	-141000000	-1401280000	120000000
	%	100%	-2%	-7%	-8%	-0.1%	-5%	760%	755%	-647%
fresh water aquatic	kg 1,4-DB									
ecotox.	eq	3710405300	1180000	2460000	3640000	15300	2750000	-146000000	-143250000	3850000000
	%	100%	0.0%	0.1%	0.1%	0.0%	0.1%	-4%	-4%	104%
terrestrial ecotoxicity	kg 1,4-DB									
	eq	-257385090	33300	99200	132500	2010	90400	-260000000	-259909600	2390000
	%	100%	-0.01%	-0.04%	-0.1%	-0.001%	-0.04%	101%	101%	-1%
acidification	kg SO ₂ eq	-1973670	26200	127000	153200	4330	149000	-2370000	-2221000	89800
	%	100%	-1%	-6%	-8%	-0.2%	-8%	120%	113%	-5%
eutrophication	kg PO ₄									
	eq	139437	3060	18200	21260	477	27700	-198000	-170300	288000
	%	100%	2%	13%	15%	0.3%	20%	-142%	-122%	207%

Table 4.10Impact Profile - Implementation Scenario 9

SENSITIVITY ANALYSIS

5

The section describes the sensitivity analyses undertaken as part of the study. Sensitivity analysis is a process whereby key input parameters about which there may be uncertainty, or for which a range of values may exist, are tested.

Key areas that have been identified for sensitivity analysis include battery waste arisings, collection targets and Directive implementation years. Sensitivity analyses were also carried out in order to investigate the impact of assumptions regarding the number of institution collection points utilised in collection route 3.

5.1 **BATTERY WASTE ARISINGS**

Battery waste arisings were assumed to remain static over the 25-year assessment period. Sensitivity analyses were carried out to:

- investigate the implications of a growth in battery sales, and thus waste arisings, in line with treasury economic growth predictions ⁽¹⁾; and
- investigate the implications of a growth in battery arisings in line with economic predictions, and assuming that the market for NiCd batteries remains static due to increased policy pressure for their replacement and sales of NiMH increase to fill the market gap.

Figure 5.1 shows the impact of this change on the impact profile of implementation scenario 1. A growth in battery arisings increases the environmental impact in three of the studied categories: ozone layer depletion; fresh water ecotoxicity; and eutrophication.

In five of the categories (abiotic depletion, global warming potential, human toxicity, terrestrial ecotoxicity and acidification), battery growth appears to yield a decrease in environmental impact. This is explained by the benefits that occur from recycling, and avoiding the need to produce virgin materials. It is important to stress that only the waste management part of the battery's life cycle is included in this study, however. If the whole life cycle was investigated, including the production of the battery, the result of the comparison would be that the environmental impact increases as the battery arisings increase.

The difference between the two investigated battery arisings scenarios is insignificant for most categories. The biggest difference is seen in the abiotic depletion category, where the use of NiCd batteries compares favourably to

^{(1) 2.1%} in 2005, increasing to 2.7% in 2008 and 2.6% in 2009 (http://www.hm-

treasury.gov.uk/media/0CA/24/forecasts_ukeconomy_310805.pdf). A rate of 2.6% growth per annum was then assumed for the period 2009 to 2030.

the use of NiMH batteries. Again this is explained by the avoided production of virgin materials. For NiCd batteries, recycling is assumed to offset cadmium, and for NiMH the offset used is production of iron and steel (see *Table 2.29*). The production of cadmium has a higher contribution to abiotic depletion than the production of iron and steel.

A full analysis of the environmental and cost implications of a further two alternative growth predictions was carried out to inform Regulatory Impact Assessment evaluations (growth in waste battery arisings at a constant rate of 2.5% and growth in line with historic trends for individual chemistries). Results of this analysis are presented in *Annex C*.

5.2 COLLECTION TARGETS

Sensitivity analyses were carried out to investigate the implications of an increase in the proposed collection targets on the impact profile of implementation scenarios. Three alternative collection targets were assessed:

- 1. 30% in 2012 and 50% in 2016;
- 2. 35% in 2012 and 55% in 2016; and
- 3. 40% in 2012 and 60% in 2016.

A scenario with collection and recycling levels in line with proposed voluntary agreement levels was also assessed. This modelled the implications of the UK reaching a collection level of 23.5% in 2012 and continuing to

achieve this collection rate year-on-year for the remainder of the study period (2013-2030).

Figure 5.2 shows the impact of these alternative rates of collection. For all impact categories, an increase in collection rates results in an improved environmental profile. Conversely, the scenario modelling voluntary agreement rates shows that a decrease in collection rates results in increased environmental impact.

Figure 5.2 Comparing the Impact of Alternative Collection Rates on the Impact Profile for Implementation Scenario 1

5.3 DIRECTIVE IMPLEMENTATION YEAR

The assessment of scenarios assumes that the proposed Battery Directive will be implemented in 2008, the 25% collection target is met in 2012 and the 45% collection target is met in 2016. Sensitivity analyses were carried to investigate the impact in implementation scenarios should the implementation year be moved forward to 2006 or postponed to 2010.

Figure 5.3 shows that environmental impact decreases if the implementation year is moved forward, and increases if the implementation year is postponed. This is relevant for all the investigated environmental impact categories.

5.4 DISPOSAL ASSUMPTIONS

There is no definitive evidence that allows us to accurately reflect the transfer of battery components to the environment, our current assumption is that a maximum of 5% of battery heavy metal components are released to the environment through disposal operations. Should it be proved that this is an underestimate then the environmental impacts assessed for landfilling wastes, in particular the toxicity impacts, would be higher and would increase proportionally with the increased metal emission. As all the implementation scenarios perform better than the baseline for toxicity impacts then we can expect the benefit of recycling to increase the greater the proportion of the metals that escape to the environment. Similarly, if metals are released to the environment at a lower rate, the relative benefits of recycling would decrease.

The assessment awards no offset benefit of energy recovery to battery incineration, as the paper, plastic and carbon components are not in a great enough quantity to provide a calorific value above 8MJ/kg, a level at which waste can be considered a useful fuel. However, there is enough uncertainty with uncharacterised material in the batteries that would suggest this level could be achieved. Sensitivity analyses were carried out to investigate the impact of assuming an offset benefit of recovering 2.12MJ of electricity ⁽¹⁾ through the incineration of 1kg of batteries (energy recovery benefit of the MSW incinerator modelled). *Figure 5.4* shows the impact of this assumption.

(1) Offset inventory: marginal electricity assumed

The assumption to include an offset for generated electricity results in lower environmental impact for all the included environmental impact categories. This is valid for both of the assessed scenarios.

5.5 INSTITUTIONAL COLLECTION POINTS

For the purposes of modelling collection route 3, 69,500 institutional bring sites (schools, supermarkets, electrical equipment retailers etc.) were assumed to be operational across the UK. Sensitivity analyses were carried out to test this assumption, by alternatively modelling a 50% increase and a 50% decrease in the number of sites.

Figure 5.5 shows the impact of this change on the impact profile of implementation scenario 7 ⁽¹⁾. The minimal change in profile shows that the number of bring sites modelled has a very limited impact on the results. As mentioned previously, it is the fuel and electricity input to the recycling processes, the disposal of residual batteries, and the materials avoided through recycling that dominate the results.

⁽¹⁾ This scenario was chosen for analysis as it is based on collection scenario 3, which utilises a high proportion of collection route 3.

5.6 ELECTRICITY INPUT TO RECYCLING

Life cycle inventory analysis and impact assessment highlighted the strong influence that the fuel/energy requirements of recycling facilities, the location of recycling facilities and associated energy mix had on comparative results between scenarios. A sensitivity analysis was carried out to investigate the scale of this influence and impact on results should the increasing demands of plant be supplied by the marginal energy source. It was assumed that marginal electricity across Europe would derive from combined cycle gas turbine (CCGT) plant.

Figure 5.6 shows the impact of this change on the impact profile of implementation scenario 3 ⁽¹⁾. The main differences are seen in the impact categories abiotic depletion and global warming. The Swiss geography and electricity mix assumed for pyrometallurgical processing of alkaline and saline batteries in recycling (and implementation) scenario 3 is comprised a high proportion of hydro power. Hydro power has a very low impact on abiotic resource depletion and global warming, compared to electricity generated from gas.

⁽¹⁾ This scenario was chosen for analysis as it is based on recycling scenario 3, which was found to perform favourably in a number of categories as a result of processing in Switzerland, with its high proportion of hydro-derived power in grid electricity mix.

An estimation of the financial costs of implementing each scenario was made as an additional element of the study. This included both an assessment of indicative collection and recycling costs and an evaluation of the potential environmental impacts associated with each scenario.

A problem commonly associated with data on the financial costs of waste management activities is the acquisition of detailed, reliable and up-to-date information, and the necessity of relying on small and dated data sets in forecasting future costs. In addition, some technologies are not as well established as others, resulting in additional difficulties in making accurate cost predictions. All assumptions made in calculating cost estimates are outlined in the following sections.

6.1 COLLECTION COSTS

Collection costs vary depending on the tonnage of batteries that can be collected within an operational time period. This is, in turn, dependent on both the size and frequency of collections made. Battery collection volumes increase significantly over the study time period (2006 - 2030) and so it was assumed that collection costs will decrease at a similar rate.

ERM estimates of current collection charges, based on discussions with industry, are shown in *Table 6.1*, together with assumptions regarding how collection costs may change over the study period.

Table 6.1	Collection		
	Ouantity	Current	Estimated Cha

Quantity	Current	Estimated Charge/Tonne with Increased Collection Tonnages
Collected	Charge/	
	Tonne	
<0.5 tonnes	£200	It is envisaged that collections from sites gathering smaller quantities of batteries will be by small vehicles, making numerous collections in one area over a time period and delivering its approximate one tonne payload to a regional depot for consolidation each day. As tonnages increase, the network of depots will expand and the number of collections made/day will increase, reducing the cost of collection. With this infrastructure in place, up to 20-30 collections could be made per day, significantly reducing collection costs to an estimated £25/tonne. It was assumed that this point would be reached in 2016 when the 45% collection rate is achieved. Intermediate collection costs of £100/tonne and £50/tonne have been set for 2012 and 2014 respectively, when collection rates of 25% and 35% are reached.
0.5 – 1 tonne	£125	It was assumed that collections from sites consolidating an intermediate quantity of batteries would be made using the optimised network of regional depots as described above. For this reason, the same decrease in collection costs over time has been assumed: $\pounds 100/$ tonne from 2012; $\pounds 50$ from 2014; and $\pounds 25/$ tonne from 2016.
>1 tonne	£75	No change. It was assumed that collections of more than one tonne are unlikely to be collected via the network of regional depots as transit vans have a restricted payload.

The quantity of batteries to be collected via each collection route for each of the study's collection scenarios was discussed in *Section 1.6* and is summarised in *Table 6.2*. This further details the average size of collection that was assumed for each collection route.

Collection Route	Tonnes Collected over 25-vear Period	Average Collection Size
1 – Kerbside collection, consolidation at MRF/transfer station	Scenario 1 – 120,194 Scenario 2 – 20,955 Scenario 3 – 59,175	Calculations presented in <i>Section 2.1</i> involved a quantification of the quantity of batteries collected via each kerbside collection point per year. This figure was calculated to be in excess of 33t (<i>Figure 1.1</i>). Collections are unlikely to be made to a given site more than once/month and so it was estimated that approximately 3 tonnes (ie > 1 tonne) of batteries would be collected at any one time via this collection route.
2 – CA site	Scenario 1 – 20,955 Scenario 2 – 120,194 Scenario 3 – 20,955	It was assumed that one tonne of batteries would be consolidated at a CA site before a collection is made. Collections of household batteries are also likely to be made in conjunction with car batteries that are commonly collected at CA sites across the UK. Although these batteries fall outside the scope of this study, the likely combined collection of household and car batteries impacts on collection costs, as greater tonnages will be collected. As a result, it was assumed that collections made via this route will fall into the category, '> 1 tonne', with associated collection costs.
3 – Institutional bring site, eg supermarket, school, retailer	Scenario 1 – 66,693 Scenario 2 – 66,693 Scenario 3 – 127,713	Collections made via this route are likely to be small in tonnage and have been assumed to fall into the category '<0.5 tonnes', with associated collection costs.
4 – Postal return, consolidation at Royal Mail sorting depot	Scenario 1 - 1832 Scenario 2 - 1832 Scenario 3 - 1832	It was assumed that one tonne of batteries would be consolidated at a Royal Mail sorting depot before a collection is made. Depots are likely to house a single, one-tonne bin and so collections in excess one one-tonne are unlikely, however. Collections via this route have therefore been assumed to fall into the category '05 -1 tonne', with associated collection costs.
5 – Emergency Lighting refurbishment, consolidation at maintenance operator bulking site	Scenario 1 – 9009 Scenario 2 – 9009 Scenario 3 – 9009	It was assumed that one tonne of batteries would be consolidated at a maintenance operator bulking site before a collection is made. Sites are likely to house a single, one-tonne bin and so collections in excess of one-tonne are unlikely. Collections via this route have therefore been assumed to fall into the category '05 -1 tonne', with associated collection costs.

Estimated costs for each collection scenario were quantified by applying the collection costs listed in *Table 6.1* to the quantity of batteries detailed in *Table 6.2*. Results are shown in *Table 6.3*.

	Collection	Collection	Collection
	Scenario 1 Costs	Scenario 2 Costs	Scenario 3 Costs
Year	(Million £)	(Million £)	(Million £)
2006	0.1	0.1	0.1
2007	0.2	0.2	0.3
2008	0.3	0.3	0.4
2009	0.4	0.4	0.5
2010	0.5	0.5	0.7
2011	0.6	0.6	0.8
2012	0.5	0.5	0.6
2013	0.6	0.6	0.7
2014	0.6	0.6	0.5
2015	0.7	0.7	0.6
2016	0.6	0.6	0.5
2017	0.6	0.6	0.5
2018	0.6	0.6	0.5
2019	0.6	0.6	0.5
2020	0.6	0.6	0.5
2021	0.6	0.6	0.5
2022	0.6	0.6	0.5
2023	0.6	0.6	0.5
2024	0.6	0.6	0.5
2025	0.6	0.6	0.5
2026	0.6	0.6	0.5
2027	0.6	0.6	0.5
2028	0.6	0.6	0.5
2029	0.6	0.6	0.5
2030	0.6	0.6	0.5
Total	14.1	14.1	12.4

6.2 SORTING COSTS

Manual sorting constitutes a labour-intensive element of the waste management life cycle and discussions with industry representatives suggest costs in the order of £0.50 per kg of mixed batteries. It was assumed that batteries arising via each of the collection routes will require sorting, with the exception of collection route 5, through which only NiCds from emergency lighting are collected. The cost of sorting was assumed to remain the same throughout the study period as sorting practices are unlikely to change significantly. Sorting charges are equivalent for each scenario, 1-9, as the same quantity of batteries are collected and require sorting. Total costs are shown in *Table 6.4*.

The implications of the 'producer responsibility' nature of the proposed Directive are such that there is significant incentive for manufacturers to introduce measures to simplify sorting and thus reduce costs. For example, design considerations could potentially ease consumer identification of alternative battery chemistries and allow a degree of pre-sorting. *Table 6.10* examines the cost implications of such mechanisms reducing sorting costs by 50%.

	Sorting Costs - All Sc	enarios
Year	(Million £)	
2006	0.4	
2007	0.9	
2008	1.3	
2009	1.7	
2010	2.1	
2011	2.6	
2012	3.0	
2013	3.6	
2014	4.2	
2015	4.8	
2016	5.4	
2017	5.4	
2018	5.4	
2019	5.4	
2020	5.4	
2021	5.4	
2022	5.4	
2023	5.4	
2024	5.4	
2025	5.4	
2026	5.4	
2027	5.4	
2028	5.4	
2029	5.4	
2030	5.4	
Total	104.8	

6.3 RECYCLING COSTS

Scenario recycling costs have been determined on the basis of the charges likely to made by a collection service provider. These include both gate fees for recycling facilities and the costs of logistical arrangements, together with service provision charges. The sale of secondary materials is embodied in the gate fee element of these costs, as is the capital costs associated with the development of new facilities. It has been assumed that these are borne by the service provider and are thus incorporated in the calculation of the gate fee, together with operating costs and profit.

In a similar way to collection costs, recycling costs are likely to decrease with increasing volumes of batteries collected, through economies of scale. ERM estimates of current recycling charges, based on discussions with industry, are shown in *Table 6.5*. The estimated costs of recycling should battery volumes increase are also indicated. These have been approximated, based on known economies of scale and a consideration of how metal markets might develop.

It should be noted that uncertainties surrounding changes in metal markets and thus sale of secondary materials are such that the costs presented in *Table 6.5* can only represent broad estimates.

Table 6.5Recycling Charges

Battery Type	Current Charge/Tonne	Potential Charge/Tonne at Increased
	-	Collection Volume
AgO	Zero (can be a rebate)	No change
ZnC	£850*	£600 at 1000 tonnes, £400 at 5000 tonnes*
AlMn	£850*	£600 at 1000 tonnes, £400 at 5000 tonnes*
ZnO	£850*	£600 at 1000 tonnes, £400 at 5000 tonnes*
Li-ion	Zero (can be a rebate)	No change
LiMn	£2050**	Would only start to decrease if >100 tonnes are collected (not required for implementation)
Li	£2050**	Would only start to decrease if >100 tonnes are collected (not required for implementation)
NiCd (dry)	£570	No change
NiMH	£250	At 1000 tonnes could reach zero charge
PbA	Zero (can be a rebate)	No change

* These figures are independent of recycling scenario as they represent a service charge estimated by industry representatives and are not significantly influenced by the different gate fees incurred by recycling processes. Any future economies of scale are also assumed to have similar influence on each recycling route.

** Gate fee only. Does not include transport and other logistical costs.

Estimated recycling costs were quantified by applying the costs listed in *Table 6.5* to the quantity of batteries handled throughout the study period. Results are shown in *Table 6.6*.

					Primary			
		7.0	4 13 6	7.0		NCI		
	AgO/	ZnO	AlMn	ZnC	$(L_{1}, L_{1}Mn)$	NiCa	N1MH	TF (1
Voor	Li-iony PDA	(Million C)	(Million C)	(Million C)	Kecyc.	(Million C)	(Million C)	1 otal
		(Million £)						
2006	n/a	0.0004	0.5	0.1	0.02	0.05	0.01	0.7
2007	n/a	0.001	0.6	0.3	0.03	0.1	0.02	1.1
2008	n/a	0.001	1.0	0.4	0.05	0.1	0.03	1.6
2009	n/a	0.001	1.3	0.6	0.07	0.2	0.05	2.1
2010	n/a	0.002	1.6	0.7	0.09	0.2	0.1	2.7
2011	n/a	0.002	1.9	0.8	0.10	0.3	0.1	3.2
2012	n/a	0.003	2.2	0.7	0.12	0.3	0.1	3.5
2013	n/a	0.003	2.7	0.8	0.15	0.4	0.1	4.2
2014	n/a	0.004	2.1	1.0	0.17	0.5	0.1	3.8
2015	n/a	0.004	2.4	1.1	0.19	0.5	0.1	4.3
2016	n/a	0.005	2.7	1.2	0.22	0.6	0.1	4.9
2017	n/a	0.005	2.7	1.2	0.22	0.6	0.1	4.9
2018	n/a	0.005	2.7	1.2	0.22	0.6	0.1	4.9
2019	n/a	0.005	2.7	1.2	0.22	0.6	0.1	4.9
2020	n/a	0.005	2.7	1.2	0.22	0.6	0.1	4.9
2021	n/a	0.005	2.7	1.2	0.22	0.6	0.1	4.9
2022	n/a	0.005	2.7	1.2	0.22	0.6	0.1	4.9
2023	n/a	0.005	2.7	1.2	0.22	0.6	0.1	4.9
2024	n/a	0.005	2.7	1.2	0.22	0.6	0.1	4.9
2025	n/a	0.005	2.7	1.2	0.22	0.6	0.1	4.9
2026	n/a	0.005	2.7	1.2	0.22	0.6	0.1	4.9
2027	n/a	0.005	2.7	1.2	0.22	0.6	0.1	4.9
2028	n/a	0.005	2.7	1.2	0.22	0.6	0.1	4.9
2029	n/a	0.005	2.7	1.2	0.22	0.6	0.1	4.9
2030	n/a	0.005	2.7	1.2	0.22	0.6	0.1	4.9
	-							
Total	n/a	0.1	56.5	25.3	4.26	11.5	2.9	100.4

Table 6.6 Estimated Scenario Recycling Costs (all Recycling Scenarios)

6.4 DISPOSAL COSTS

Average costs for the disposal of municipal solid waste via landfill (£12.29/tonne disposal fee ⁽¹⁾, plus landfill tax increasing to £35/tonne by 2011) and incineration (£42/tonne ⁽²⁾) were used to model the financial costs associated with the disposal of batteries not separately collected. Total costs for each implementation scenario, 1 – 9, are the same, as the same quantity of batteries is collected, and the same disposed. These are presented in *Table 6.7* and are compared with the total disposal costs for the baseline, 'do nothing' scenario (10) in *Table 6.8*.

(1) Costs for Municipal Waste Management in the EU (2002). Eunomia Research & Consulting.
(2) EfW: A Good Practice Guide (2003). The Chartered Institute of Waste Management.

	Landfill Costs	Incineration Costs	Total Disposal
Year	(Million £)	(Million £)	Cost (Million £)
2006	0.7	0.1	0.8
2007	0.7	0.1	0.9
2008	0.8	0.1	0.9
2009	0.8	0.1	0.9
2010	0.8	0.1	0.9
2011	0.8	0.1	0.9
2012	0.8	0.1	0.9
2013	0.7	0.1	0.8
2014	0.7	0.1	0.8
2015	0.6	0.1	0.7
2016	0.6	0.1	0.6
2017	0.6	0.1	0.6
2018	0.6	0.1	0.6
2019	0.6	0.1	0.6
2020	0.6	0.1	0.6
2021	0.6	0.1	0.6
2022	0.6	0.1	0.6
2023	0.6	0.1	0.6
2024	0.6	0.1	0.6
2025	0.6	0.1	0.6
2026	0.6	0.1	0.6
2027	0.6	0.1	0.6
2028	0.6	0.1	0.6
2029	0.6	0.1	0.6
2030	0.6	0.1	0.6
Total	16.1	1.9	18.0

Table 6.8Estimated Disposal Costs (Baseline Scenario 10)

Total Disposal Cost
(Million £) for Baseline
Scenario 10
0.9
0.9
1.0
1.1
1.1
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2

	Total Disposal Cost (Million £) for Baseline
Year	Scenario 10
2026	1.2
2027	1.2
2028	1.2
2029	1.2
2030	1.2
Total	28.1

6.5 TOTAL COSTS FOR IMPLEMENTATION SCENARIOS

Collection, sorting and recycling costs were combined to calculate a total cost for each implementation scenario, as shown in *Table 6.9*. The potential impact of a reduction in sorting costs, as discussed in *Section 6.2*, is further shown in *Table 6.10*.

	Implementation									
Year	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6	Scenario 7	Scenario 8	Scenario 9	Scenario 10
2006	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	0.9
2007	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	0.9
2008	4.0	4.0	4.0	4.0	4.0	4.0	4.1	4.1	4.1	1.0
2009	5.1	5.1	5.1	5.1	5.1	5.1	5.2	5.2	5.2	1.0
2010	6.2	6.2	6.2	6.2	6.2	6.2	6.3	6.3	6.3	1.1
2011	7.2	7.2	7.2	7.2	7.2	7.2	7.4	7.4	7.4	1.2
2012	7.8	7.8	7.8	7.8	7.8	7.8	7.8	7.8	7.8	1.2
2013	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	1.2
2014	9.2	9.2	9.2	9.2	9.2	9.2	9.2	9.2	9.2	1.2
2015	10.4	10.4	10.4	10.4	10.4	10.4	10.3	10.3	10.3	1.2
2016	11.4	11.4	11.4	11.4	11.4	11.4	11.3	11.3	11.3	1.2
2017	11.4	11.4	11.4	11.4	11.4	11.4	11.3	11.3	11.3	1.2
2018	11.4	11.4	11.4	11.4	11.4	11.4	11.3	11.3	11.3	1.2
2019	11.4	11.4	11.4	11.4	11.4	11.4	11.3	11.3	11.3	1.2
2020	11.4	11.4	11.4	11.4	11.4	11.4	11.3	11.3	11.3	1.2
2021	11.4	11.4	11.4	11.4	11.4	11.4	11.3	11.3	11.3	1.2
2022	11.4	11.4	11.4	11.4	11.4	11.4	11.3	11.3	11.3	1.2
2023	11.4	11.4	11.4	11.4	11.4	11.4	11.3	11.3	11.3	1.2
2024	11.4	11.4	11.4	11.4	11.4	11.4	11.3	11.3	11.3	1.2
2025	11.4	11.4	11.4	11.4	11.4	11.4	11.3	11.3	11.3	1.2
2026	11.4	11.4	11.4	11.4	11.4	11.4	11.3	11.3	11.3	1.2
2027	11.4	11.4	11.4	11.4	11.4	11.4	11.3	11.3	11.3	1.2
2028	11.4	11.4	11.4	11.4	11.4	11.4	11.3	11.3	11.3	1.2
2029	11.4	11.4	11.4	11.4	11.4	11.4	11.3	11.3	11.3	1.2
2030	11.4	11.4	11.4	11.4	11.4	11.4	11.3	11.3	11.3	1.2
Total										
(Mill £)	235.23	235.23	235.23	235.23	235.23	235.23	233.50	233.50	233.50	28.1

Table 6.9Total Implementation Scenario Collection, Sorting, Recycling and Disposal Costs

Table 6.10	Total Implementation Scenario Collection, Sorting, Recycling and Disposal Costs with 50% Reduction in Sorting Costs	
------------	---	--

	Implementation									
Year	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6	Scenario 7	Scenario 8	Scenario 9	Scenario 10
2006	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	0.9
2007	2.5	2.5	2.5	2.5	2.5	2.5	2.6	2.6	2.6	0.9
2008	3.4	3.4	3.4	3.4	3.4	3.4	3.5	3.5	3.5	1.0
2009	4.3	4.3	4.3	4.3	4.3	4.3	4.4	4.4	4.4	1.0
2010	5.1	5.1	5.1	5.1	5.1	5.1	5.3	5.3	5.3	1.1
2011	6.0	6.0	6.0	6.0	6.0	6.0	6.2	6.2	6.2	1.2
2012	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	1.2
2013	7.3	7.3	7.3	7.3	7.3	7.3	7.4	7.4	7.4	1.2
2014	7.1	7.1	7.1	7.1	7.1	7.1	7.1	7.1	7.1	1.2
2015	8.0	8.0	8.0	8.0	8.0	8.0	7.9	7.9	7.9	1.2
2016	8.7	8.7	8.7	8.7	8.7	8.7	8.6	8.6	8.6	1.2
2017	8.7	8.7	8.7	8.7	8.7	8.7	8.6	8.6	8.6	1.2
2018	8.7	8.7	8.7	8.7	8.7	8.7	8.6	8.6	8.6	1.2
2019	8.7	8.7	8.7	8.7	8.7	8.7	8.6	8.6	8.6	1.2
2020	8.7	8.7	8.7	8.7	8.7	8.7	8.6	8.6	8.6	1.2
2021	8.7	8.7	8.7	8.7	8.7	8.7	8.6	8.6	8.6	1.2
2022	8.7	8.7	8.7	8.7	8.7	8.7	8.6	8.6	8.6	1.2
2023	8.7	8.7	8.7	8.7	8.7	8.7	8.6	8.6	8.6	1.2
2024	8.7	8.7	8.7	8.7	8.7	8.7	8.6	8.6	8.6	1.2
2025	8.7	8.7	8.7	8.7	8.7	8.7	8.6	8.6	8.6	1.2
2026	8.7	8.7	8.7	8.7	8.7	8.7	8.6	8.6	8.6	1.2
2027	8.7	8.7	8.7	8.7	8.7	8.7	8.6	8.6	8.6	1.2
2028	8.7	8.7	8.7	8.7	8.7	8.7	8.6	8.6	8.6	1.2
2029	8.7	8.7	8.7	8.7	8.7	8.7	8.6	8.6	8.6	1.2
2030	8.7	8.7	8.7	8.7	8.7	8.7	8.6	8.6	8.6	1.2
Total										
(Mill £)	182.81	182.81	182.81	182.81	182.81	182.81	181.08	181.08	181.08	28.1

6.6 EVALUATING THE EXTERNAL COST OF ENVIRONMENTAL IMPACTS

An estimation of the financial cost of the potential environmental damage associated with implementing each of the scenarios was made using environmental costs factors per tonne of pollutant. These have been estimated through Defra research into the health effects of waste management ⁽¹⁾ (*Table 6.11*). Comparative results for each implementation scenario are shown in *Table 6.12* to *Table 6.14*.

Pollutant	Cost Factor (Central Low	Cost Factor (Central High	Cost Factor (Average Estimate)	Coverage	Source
Particulates (PM ₁₀)	£5257.3/tonne	£33 166.7/ tonne	£19 212/ tonne	Health effects only	Average cost/tonne for mobile (transport) and stationary (waste management, electricity supply) sources calculated from Defra figures
NOx	£163.5/ tonne	£1037.5/ tonne	£600.5/ tonne	Health effects only	Average cost/tonne for mobile (transport) and stationary (waste management, electricity supply) sources calculated from Defra figures
SO ₂	£643/ tonne	£2941/ tonne	£1792/ tonne	Effects on health and materials	Defra health effects report
VOC (except methane)	£263/ tonne	£665/ tonne	£464/ tonne	Health effects and crop damage	Defra health effects report
CO ₂	£16/ tonne	£49/ tonne	£27/ tonne	Climate change only	Calculated directly from estimates relating to the social cost of carbon. 2000 estimates (£35/tonne, £70/tonne and £140/tonne for respective estimates) have been increased by £1/tonne carbon/year, based on Defra recommendations. An average cost/tonne carbon dioxide was taken for the period 2006-2030.
CH4	£340/ tonne	£1020/ tonne	£566/ tonne	Climate change only	Calculated as derived CO ₂ factors multiplied by the global warming potential (GWP) of methane, = 21 (IPCC, 2001). An average cost/tonne methane was taken for the period 2006- 2030.

Table 6.11Cost Factors

Notes overleaf

(1) Valuation of external costs and benefits to health and environment of waste management options (2004). Prepared for Defra by Enviros Consulting Ltd. and EFTEC. To be updated December 2005 (interim values used).

Notes from Table:

- 1. Numbers relate to costs for emissions that occur in the UK (this is not the case for the study, we have assumed the cost values to be the same across Europe)
- 2. Values for NO_X and SO₂ include secondary particulate (PM_{10}) formation (nitrates and sulphates)
- 3. Values for VOC include ozone formation and effects
- 4. Values for NO_X do NOT include ozone formation and effects
- 5. The analysis assumes no threshold of effects
- 6. Future life years lost have been discounted using agreed 1.5% discount rate
- 7. Central low assumes £3100 for death brought forward and £31500 per life year lost, with future life years discounted (1.5%).
- 8. Central high assumes £110000 for death brought forward and £65000 per life year lost, with future life years discounted (1.5%)
- 9. All chronic mortality impacts use original $PM_{2.5}$ functions for PM_{10} pollution data.
- 10. External costs of air pollution vary according to a variety of environmental factors, including overall levels of pollution, geographic location of emission sources, height of emission source, local and regional population density, meteorology and so on. These numbers take these issues into account to a certain degree only.
- 11. The numbers exclude several categories of impact. They are therefore a sub-total of overall costs. The key areas excluded are:
- Effects of NO_X on ozone formation (note ozone effects from NO_X could positive as well as negative, due to issues with local NO + ozone reactions, and regional precursor levels)
- Effects on ecosystems (acidification, eutrophication, etc)
- Effects on cultural or historic buildings from air pollution
- Chronic mortality health effects from PM₁₀ on children
- Chronic morbidity health effects from PM₁₀
- Morbidity and mortality health effects from chronic (long-term) exposure to ozone
- Change in visibility (visual range)
- Effects of ozone on materials, particularly rubber
- Non-ozone effects on agriculture

Pollutant	Unit	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6	Scenario 7	Scenario 8	Scenario 9	Scenario 10
NOx	Million £	-0.85	-0.86	-0.63	-0.85	-0.86	-0.63	-0.84	-0.84	-0.61	0.21
SO_2	Million £	-3.07	-3.01	-4.08	-3.06	-3.00	-4.07	-3.00	-2.94	-4.01	0.02
NMVOC	Million £	-0.09	-0.08	-0.06	-0.09	-0.08	-0.05	-0.09	-0.07	-0.05	0.02
Particulates	Million £	-52.10	-52.70	-44.00	-52.10	-52.60	-44.00	-51.60	-52.20	-43.60	0.82
CO ₂	Million £	-4.22	-5.11	-4.31	-4.20	-5.09	-4.29	-3.72	-4.61	-3.82	1.49
CH_4	Million £	0.71	0.59	0.46	0.71	0.59	0.46	0.71	0.59	0.46	0.69
Total	Million £	-59.63	-61.17	-52.62	-59.60	-61.04	-52.59	-58.54	-60.07	-51.63	3.24

Table 6.12Cost of Pollutant Emissions - Central High Estimate

Table 6.13Cost of Pollutant Emissions - Central Low Estimate

Pollutant	Unit	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6	Scenario 7	Scenario 8	Scenario 9	Scenario 10
NOx	Million £	-0.14	-0.14	-0.10	-0.13	-0.14	-0.10	-0.13	-0.13	-0.10	0.03
SO_2	Million £	-0.67	-0.66	-0.89	-0.67	-0.66	-0.89	-0.66	-0.64	-0.88	0.00
NMVOC	Million £	-0.04	-0.03	-0.02	-0.04	-0.03	-0.02	-0.03	-0.03	-0.02	0.01
Particulates	Million £	-8.25	-8.35	-6.98	-8.25	-8.34	-6.98	-8.18	-8.28	-6.91	0.13
CO ₂	Million £	-1.38	-1.67	-1.41	-1.37	-1.66	-1.40	-1.22	-1.51	-1.25	0.49
CH_4	Million £	0.24	0.20	0.15	0.24	0.20	0.15	0.24	0.20	0.15	0.23
Total	Million £	-10.24	-10.65	-9.25	-10.23	-10.63	-9.24	-9.99	-10.40	-9.00	0.89

Table 6.14Cost of Pollutant Emissions - Average Estimate

Pollutant	Unit	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6	Scenario 7	Scenario 8	Scenario 9	Scenario 10
NOx	Million £	-0.49	-0.50	-0.37	-0.49	-0.50	-0.37	-0.48	-0.49	-0.36	0.12
SO_2	Million £	-1.87	-1.83	-2.48	-1.86	-1.83	-2.48	-1.83	-1.79	-2.44	0.01
NMVOC	Million £	-0.07	-0.06	-0.04	-0.07	-0.06	-0.04	-0.06	-0.05	-0.03	0.01
Particulates	Million £	-30.20	-30.50	-25.50	-30.20	-30.50	-25.50	-29.90	-30.20	-25.30	0.48
CO ₂	Million £	-2.33	-2.82	-2.38	-2.31	-2.80	-2.36	-2.05	-2.54	-2.10	0.82
CH ₄	Million £	0.39	0.33	0.25	0.39	0.33	0.25	0.39	0.33	0.26	0.38
Total	Million £	-34.57	-35.38	-30.51	-34.54	-35.35	-30.49	-33.93	-34.74	-29.97	1.82

The assessment shows that there is a net environmental benefit associated with the implementation of the proposed Directive on batteries and accumulators when compared with disposal (implementation scenario 10). *Table 7.1* displays the net environmental benefit associated with implementation scenarios (1-9), over and above the baseline scenario (10).

Little difference is shown between scenarios 1-9, in terms of net environmental benefit. However, it is evident that scenarios utilising collection scenario 3 perform relatively less well than those utilising collection scenarios 1 and 2 in the majority of impact categories. This is evident through comparison of implementation scenarios with equivalent recycling scenarios, but alternative collection scenarios. For example, scenarios 1 and 4 (recycling scenario 1, collection scenarios 1 and 2 respectively) show a higher net environmental benefit than scenario 7 (recycling scenario 1, collection scenario 3). Further analysis of results showed this to be predominantly related to additional CO₂ emissions through the collection transportation network ⁽¹⁾.

			ozone		fresh			
Compris	abiotic	global warming	depletion	human	water aquatic	terrestrial	acidification	autrophisation
Scenario	depietion	(GWI 100)	kg CEC	kg14 DB	kg14 DB	kg 1 4 DB	actuitication	eutrophication
Unit	kg Sb eq	kg CO ₂ eq	11 eq	eq	eq	eq	kg SO ₂ eq	kg PO ₄ eq
Implementation								
Scenario 1	1751430	133764000	26	1908108000	2224907700	26750390	1658970	310493
Implementation								
Scenario 2	1894330	153764000	24	1914538000	2224774700	26762290	1717970	310103
Implementation								
Scenario 3	1525330	135064000	16	2051248000	2240744700	261128190	2151570	308703
Implementation								
Scenario 4	1744230	133164000	26	1908028000	2224884700	26696690	1654070	310203
Implementation								
Scenario 5	1887130	153164000	23	1914458000	2224751700	26759590	1713070	309813
Implementation								
Scenario 6	1518130	134464000	16	2051168000	2240721700	261125490	2146670	308413
Implementation								
Scenario 7	1672330	123044000	25	1902468000	2223757700	26656290	1620070	306353
Implementation								
Scenario 8	1815230	143044000	22	1908898000	2223624700	26719190	1679070	305963
Implementation								
Scenario 9	1446230	124344000	15	2045608000	2239594700	261085090	2112670	304563

Table 7.1Environmental Benefit of Implementation Scenarios (net Benefit in
Comparison with Baseline)

(1) Sensitivity analysis, presented in Section 5.4.5, further showed that the assumed number of institution collection points, and thus the number of collection container required at sites, had little influence on results.

130

All implementation scenarios show a significant benefit for toxicity emissions when compared with disposal (implementation scenario 10). This is a result of avoiding virgin material production and emissions from waste disposal. Further, all scenarios show aquatic toxicity impacts that are approximately proportional to the tonnage of batteries sent for disposal. This impact is a result of the assumptions with regard to the proportion of heavy metals that are released to the environment from batteries in the residual waste stream.

The CO₂ savings that can be achieved through implementation of the battery Directive amount to between 198kg and 248kg CO₂-equivalents avoided per tonne of battery waste arisings ⁽¹⁾ (this reflects a recycling rate of 35.2% over the 25 years). The benefit is attributable to offset materials and is therefore reliant on markets for products from recycling being achieved.

Table 7.2 displays the waste management and average environmental and social costs that have been estimated for each implementation scenario. Estimates show that implementation of the proposed Directive will result in a significant increase in battery waste management costs, with some savings in the financial costs quantified for environmental and social aspects. It should be noted, however, that a number of external benefits associated implementation scenarios have not been quantified in terms of financial cost.

Scenario	Waste		Environmental		
	Management		and Social		
	Costs		Costs (Million		Total Scenario
	(Million £)	Coverage	£)	Coverage	Cost (Million £)
				Effect of NOx, SO ₂ ,	
Implementation Scenario 1	235.2		-34.6	NMVOC and	200.6
				particulate	
Implementation Scenario 2	235.2		-35.4	emissions on	199.8
				human health	
Implementation Scenario 3	235.2		-30.5	(human toxicity).	204.7
				Climate change	
Implementation Scenario 4	235.2	Collection, sorting	-34.5	costs of carbon	200.7
		and recycling		(CO ₂ and CH ₄	
Implementation Scenario 5	235.2	service charges.	-35.4	emissions only).	199.8
		Landfill and		Abiotic depletion,	
Implementation Scenario 6	235.2	incineration gate	-30.5	ozone depletion,	204.7
		fees		aquatic ecotoxicity,	
Implementation Scenario 7	233.5		-33.9	acidification (with	199.6
				the exception of	
Implementation Scenario 8	233.5		-34.7	damage to	198.8
				buildings) and	
Implementation Scenario 9	233.5		-30.1	eutrophication	203.4
				impacts have not	
Implementation Scenario 10	28.1		1.8	been quantified.	29.9

Table 7.2Total Financial Costs of Implementation Scenarios

(1) Net benefit in comparison with baseline

Sensitivity analysis shows that earlier implementation of the Directive (brought forward two years) will increase the benefit to the environment but will cost an additional £17 million (based on implementation scenario 1).

The study shows that increasing recycling of batteries is beneficial to the environment. However, it is achieved at significant financial cost when compared with disposal.

A key limitation of the study was the use of secondary data to quantify the avoided burdens of primary material production through recycling. The increasing age of secondary data and limitations found with regard to meta data suggest a need for a Europe wide programme to maintain and improve LCI data for use in studies such as this.

8 REFERENCES

BUWAL 250. "Oekoinventare für Verpackungen", Schriftenreihe Umwelt Nr. 250, part 1+2, second edition, (German language), BUWAL, Bern, CH.

Ecoinvent-Report No. 6. Jungbluth N. (2003) Erdöl. In: Sachbilanzen von Energiesystemen: Grundlagen für den ökologischen Vergleich von Energiesystemen und den Einbezug von Energiesystemen in Ökobilanzen für die Schweiz (ed. Dones R.). Final report ecoinvent 2000 No. 6, Paul Scherrer Institut Villigen, Swiss Centre for Life Cycle Inventories, Duebendorf, CH.

Ecoinvent-Report No. 7. Kellenberger D., Althaus H.-J. and Jungbluth N. (2004) Life Cycle Inventories of Building Products. Final report ecoinvent 2000 No. 7, Swiss Centre for Life Cycle Inventories, Duebendorf, CH.

Ecoinvent-Report No. 8. Althaus H.-J., Chudacoff M., Hischier R., Jungbluth N., Primas A. and Osses M. (2004) Life Cycle Inventories of Chemicals. Final report ecoinvent 2000 No. 8, Swiss Centre for Life Cycle Inventories, Duebendorf, CH.

Ecoinvent-Report No. 10. Althaus H.-J., Blaser S., Classen M., Jungbluth N. (2004) Life Cycle Inventories of Metals. Final report ecoinvent 2000 No. 10, Swiss Centre for Life Cycle Inventories, Duebendorf, CH.

Ecoinvent-Report No. 11. Hischier R. (2004) Life Cycle Inventories of Packaging and Graphical Paper. Final report ecoinvent 2000 No. 11, Swiss Centre for Life Cycle Inventories, Duebendorf, CH.

Ecoinvent-Report No. 12. Zah R., Hischier R. (2004) Life Cycle Inventories of Detergents. Final report ecoinvent 2000 No. 12, Swiss Centre for Life Cycle Inventories, Duebendorf, CH.

Ecoinvent-Report No. 13. Doka G. (2003) Life Cycle Inventories of Waste Treatment Services. Final report ecoinvent 2000 No. 13, EMPA St. Gallen, Swiss Centre for Life Cycle Inventories, Duebendorf, CH.

Ecoinvent-Report No. 14. Spielmann M., Kägi T. and Tietje O. (2004) Life Cycle Inventories of Transport Services. Final report ecoinvent 2000 No. 14, Swiss Centre for Life Cycle Inventories, Duebendorf, CH.

ETH-ESU (1996). Frischknecht et al (1996), Ökoinventare von Energiesystemen, ETH Zurich/PSI Villigen, 3rd edition, ENET, Bern, CH.

KEMNA (1) 1981. Energiebewust ontwerpen. Kemna, RBJ. (1981). Energiebewust ontwerpen, Delft, Netherlands.
Metals and minerals (1989), Metal resources (1983). Available in the IDEMAT database. Data collection from various sources supervised by Dr. Han Remmerswaal, Faculty of Industrial Design Engineering, Delft Technical University, The Netherlands.

SPIN Galvanic Treatment 1992. Galvanische bewerkingen, SPIN rapport, RIVM, Bilthoven, Netherlands.

Annex A

UK Battery Collection Schemes

A1.1 UK BATTERY COLLECTION SCHEMES

ERM investigated the details of the following collection services to inform the development of the collection models outlined in the Goal and Scope document:

- The Bristol scheme (one year trial) saw batteries collected in paper bags through an existing multi material black box service operated for 160,000 households in the BS1 – BS16 area. The batteries had been sent for reprocessing at Avonmouth-based Britannia Zinc until February 2003 when the plant closed down. This left the UK with no remaining plants where battery recycling could be carried out, so a new deal was brokered with Wolverhampton-based G&P Batteries which saw the batteries sent to France for recycling.
- Bath and North East Somerset offer collection services for waste batteries as part of the council's existing multi-material kerbside recycling service. The council's waste management contractor ECT Recycling collect the batteries via the green box scheme, which are then sent to France for reprocessing.
- Barnet's kerbside recycling scheme collects all types of batteries. ECT Recycling collect the batteries.
- West Sussex county council has opened battery recycling points at 11 of its household waste recycling centres which are run by Viridor Waste Management. Each site is expected to take in 200-300kg of household batteries per year with householders placing these in 40kg capacity collection containers. Batteries from all the sites are then tipped into three larger containers at a Viridor site. These are then collected three times a year by battery reprocess or G&P Batteries Ltd and will be taken to the company's new facility at West Bromwich.
- In a similar scheme, Suffolk county council has introduced battery recycling containers at 18 civic amenity sites across the county. The sites are again run by Viridor Waste Management, who, in the same way, bulk the batteries in one-tonne bins at a central site, prior to collection by G&P Batteries.
- Lancashire Waste Partnership has introduced a household batteryrecycling scheme for primary schools; 100 primary schools have been given two collections tubes in which to collect the used batteries in. These tubes hold approx 400 household batteries, the batteries will be collected every half term and recycled.
- Onyx, in partnership with Sheffield city council, has introduced battery facilities at the city's five household waste recycling centres, which will then be sent to G&P Batteries for recycling.

- G&P Batteries has been entering agreements with various cities and companies across the UK to collect batteries. As well as Sheffield and Bristol, G&P also has agreements with Bedford, Gloucester and parts of London, among others.
- Some regional based retailers have set up schemes, although these are few and far between. Businesses can contact RABBITT Recycling or G&P Batteries for further information on collections for recycling.
- Rechargeable batteries can also be recycled once they have reached the end of their useful lives. REBAT was set up in 1998 to manage and collect the main types of portable rechargeable batteries in the UK.

Annex B

Impact Assessment Method (Includes Characterisation Factors)

INTRODUCTION

Extracted From Simapro

Name CML 2 baseline 2000 ERM Correction Acidification: NOx attributed a CF factor

Comment This method is an update from the CML 1992 method. This version is based on the spreadsheet version 2.02 (September 2001) as published on the CML web site and replaces the preliminary version.

The CML 2 baseline method elaborates the problem-oriented (midpoint) approach. The CML Guide provides a list of impact assessment categories grouped intoA: Obligatory impact categories (Category indicators used in most LCAs)B: Additional impact categories (operational indicators exist, but are not often included in LCA studies)

C: Other impact categories (no operational indicators available, therefore impossible to include quantitatively in LCA)

In case several methods are available for obligatory impact categories, a baseline indicator is selected, based on the principle of best available practice. These baseline indicators are category indicators at "midpoint level" (problem oriented approach)". Baseline indicators are recommended for simplified studies. The guide provides guidelines for inclusion of other methods and impact category indicators in case of detailed studies and extended studies.

Only baseline indicators are available in the CML method in SimaPro (based on CML Excel spreadsheet with characterisation and normalisation factors). In general, these indicators do not deviate from the ones in the spreadsheet. In case the spreadsheet contained synonyms of substance names already available in the substance list of the SimaPro database, the existing names are used. A distinction is made for emissions to agricultural soil and industrial soil, indicated with respectively (agr.) or (ind.) behind substance names emitted to soil. Emissions to seawater are indicated with (sea), while emissions to fresh water have no addition behind their substance name (we assume that all emissions to water in existing process records are emissions to fresh water).

Depletion of abiotic resources

This impact category indicator is related to extraction of minerals and fossil fuels due to inputs in the system. The Abiotic Depletion Factor (ADF) is determined for each extraction of minerals and fossil fuels (kg antimony equivalents/kg extraction) based on concentration reserves and rate of deaccumulation.

Climate change

The characterisation model as developed by the Intergovernmental Panel on Climate Change (IPCC) is selected for development of characterisation factors. Factors are expressed as Global Warming Potential for time horizon 100 years (GWP100), in kg carbon dioxide/kg emission.

Stratospheric Ozone depletion

The characterisation model is developed by the World Meteorological Organisation (WMO) and defines ozone depletion potential of different gasses (kg CFC-11 equivalent/ kg emission).

Human toxicity

Characterisation factors, expressed as Human Toxicity Potentials (HTP), are calculated with USES-LCA, describing fate, exposure and effects of toxic substances for an infinite time horizon. For each toxic substance HTP's are expressed as 1,4-dichlorobenzene equivalents/kg emission.

Fresh-water aquatic eco-toxicity

Eco-toxicity Potential (FAETP) are calculated with USES-LCA, describing fate, exposure and effects of toxic substances. Characterisation factors are expressed as 1,4-dichlorobenzene equivalents/ kg emission.

Marine aquatic ecotoxicity

Marine eco-toxicity refers to impacts of toxic substances on marine ecosystems (see description fresh water toxicity).

Terrestrial ecotoxicity

This category refers to impacts of toxic substances on terrestrial ecosystems (see description fresh water toxicity).

Photo-oxidant formation

Photochemical Ozone Creation Potential (POCP) (also known as summer smog) for emission of substances to air is calculated with the UNECE Trajectory model (including fate), and expressed in kg ethylene equivalents/kg emission. Acidification

Acidification Potentials (AP) is expressed as kg SO2 equivalents/ kg emission.

Eutrophication

Nutrification potential (NP) is based on the stoichiometric procedure of Heijungs (1992), and expressed as kg PO4 equivalents/ kg emission. Normalisation

For each baseline indicator, normalisation scores are calculated for the reference situations: the world in 1990, Europe in 1995 and the Netherlands in 1997. Normalisation data are described in the report: Huijbregts et al LCA normalisation data for the Netherlands (1997/1998), Western Europe (1995) and the World (1990 and 1995).

Grouping and weighting

Grouping and weighting are considered to be optional step. No *baseline recommended rules or values are given for these steps.* Based on the reports:

"Life Cycle Assessment. An operational Guide to ISO Standards" Centre of Environmental Science (CML), Leiden University, the Netherlands. Download from http://www.leidenuniv.nl/cml/lca2/index.html.

May 01 Characterisation for sum parameters metals added. October 2001 Version 2.02 update.

B1.1 *ABIOTIC DEPLETION*

Impact category	Abiotic resource depletion	kg Sb eq	
Raw	aluminium (in ore)	kg	0.00000001
Raw	argon	kg	0.000000471
Raw	bauxite	kg	2.1E-09
Raw	chromium (in ore)	kg	0.000858
Raw	chromium (ore)	kg	0.000257522
Raw	coal	kg	0.0134
Raw	coal ETH	kg	0.0134
Raw	coal FAL	kg	0.0134
Raw	cobalt (in ore)	kg	0.0000262
Raw	copper (in ore)	kg	0.00194
Raw	copper (ore)	kg	2.19642E-05
Raw	crude oil	kg	0.0201
Raw	crude oil (feedstock)	kg	0.0201
Raw	crude oil ETH	ko	0.0201
Raw	crude oil FAL	kg	0.0201
Raw	crude oil IDEMAT	kg	0.0201
Raw	energy from coal	MI	0.000457
Raw	energy from lignite	MI	0.000671
Raw	energy from natural gas	MI	0.000534
Raw	energy from oil	MI	0 00049
Raw	iron (in ore)	ka	8 43E-08
Raw	iron (ore)	ka	0.00000048
Raw	lead (in ore)	ka	0.000000040
Raw	lead (ore)	ka	0.000676957
Raw	lignite	ka	0.000070
Raw	lignite FTH	ka	0.00671
Raw	magnesium (in ore)	ka	3 73E-09
Raw	manganese (in ore)	ka	0.0000138
Raw	manganese (ore)	ka	0.0000150
Raw	margarese (ore)	ka	0.000002
Raw	molyhdono (in oro)	kg	0.0217
Raw	molybdene (in ore)	kg	2 16646E 05
Raw	natural gas	kg	0.0225
Raw	natural gas (feedstock)	m3	0.0187
Raw	natural gas (vol)	m3	0.0187
Raw	natural gas (VOI)	m3	0.0187
Raw	natural gas EAL	ha	0.0137
Raw	nickel (in ore)	kg	0.0223
Raw	nickel (mole)	kg	1 61204E 06
Raw	nalladium (in oro)	kg	0.222
Raw	panadium (in ore)	kg	1 20
Raw		kg lea	2 12E 09
Raw	K	kg	2 00E 11
Raw	silver	kg	2.77111
Raw	aulphur	kg	0.000258
Raw	tin (in oro)	kg	0.000338
Raw	tin (more)	kg	0.000
Daw	uranium (in ara)	ka	0.00000000
Raw	uranium EAT	Ng ka	0.00287
Raw	zing (in oro)	Ng ka	0.00287
Raw	zinc (more)	Ng ka	3 0/01/05/05
Daw	polonium (in oro)	ka	4 70E+14
Raw	lownton	Ng ka	4./9E+14
Naw	мурюп	кg	20.9

Impact category	Abiotic resource depletion	kg Sb eq	
Raw	protactinium (in ore)	kg	9770000
Raw	radon	kg	1.2E+20
Raw	xenon	kg	17500
Raw	radium (in ore)	kg	23600000
Raw	calcium (Ca)	kg	7.08E-10
Raw	actinium (in ore)	kg	6.33E+13
Raw	thulium (in ore)	kg	0.0000831
Raw	vanadium (in ore)	kg	0.00000116
Raw	erbium (in ore)	kg	0.00000244
Raw	praseodymium (in ore)	kg	0.00000285
Raw	holmium (in ore)	kg	0.0000231
Raw	lutatium (in ara)	kg	0.0000133
Raw	hiemuth (in ore)	kg	0.0000786
Raw	E	kg	0.0731
Raw	thorium (in oro)	kg	0.00000290
Raw	lanthanum (in ore)	kg	2 13E-08
Raw	thallium (in ore)	ka	0.0000505
Raw	iridium (in ore)	ko	32.3
Raw	rubidium (in ore)	kø	2.36E-09
Raw	arsenic (in ore)	kø	0.00917
Raw	osmium (in ore)	kø	14.4
Raw	ruthenium (in ore)	kø	32.3
Raw	cadmium (in ore)	kø	0.33
Raw	vtterbium (in ore)	kg	0.00000213
Raw	Na	kg	8.24E-11
Raw	hafnium (in ore)	kg	0.00000867
Raw	tantalum (in ore)	kg	0.0000677
Raw	gadolinium (in ore)	kg	0.000000657
Raw	neon	kg	0.325
Raw	lithium (in ore)	kg	0.00000923
Raw	strontium (in ore)	kg	0.00000112
Raw	cesium (in ore)	kg	0.0000191
Raw	dysprosium (in ore)	kg	0.00000213
Raw	antimony (in ore)	kg	1
Raw	gallium (in ore)	kg	0.000000103
Raw	samarium (in ore)	kg	0.000000532
Raw	terbium (in ore)	kg	0.0000236
Raw	boron (in ore)	kg	0.00467
Raw	indium (in ore)	kg	0.00903
Raw	phosphor (in ore)	kg	0.0000844
Raw	helium	kg	148
Raw	germanium (in ore)	kg	0.00000147
Raw	titanium (in ore)	kg	0.00000044
Raw	scandium (in ore)	kg	3.96E-08
Raw	harium (in ora)	kg	1.06E 10
Raw	tollorium (in oro)	kg	1.00E-10
Raw	selenium (in ore)	kg	0.475
Raw	I	ka	0.427
Raw	neodymium (in ore)	ka	1 94F-17
Raw	Cl	ko	4.86E-08
Raw	zirconium (in ore)	kø	0.0000186
Raw	bervllium (in ore)	kg	0.0000319
Raw	vttrium (in ore)	kg	0.000000334
Raw	tungsten (in ore)	kg	0.0117
Raw	gold (in ore)	kg	89.5
Raw	cerium (in ore)	kg	5.32E-09
Raw	Br	kg	0.00667
Raw	natural gas (feedstock) FAL	kg	0.0225
Raw	crude oil (feedstock) FAL	kg	0.0201
Raw	coal (feedstock) FAL	kg	0.0134
Raw	uranium (in ore) ETH	kg	0.00287
Raw	rhodium (in ore)	kg	32.3
Raw	rhenium (in ore)	kg	0.766

B1.2 GLOBAL WARMING POTENTIAL

Impact catogory	Global warming (GWP100)	ka CO2 oa	
	1 1 1 trichloroethane	kg CO2 eq	110
Δir	CEC-14	kg	6500
Air	CEC-11	kg	4000
Air	CEC-113	kg	4000 5000
Air	CFC-114	kg	9300
Air	CFC-115	ka	9300
Air	CEC-116	kg	9200
Air	CEC-12	kg	8500
Air	CEC-13	kg	11700
Air	CO2	kg	11700
Air	CO2 (fossil)	ka	1
Air	dichloromethane	kg	9
Air	HALON-1301	ka	5600
Air	HCEC-123	kg	93
Air	HCEC-124	ka	480
Air	HCFC-141b	kg	630
Air	HCEC-142b	ka	2000
Air	HCFC-22	kg	1700
Air	HCEC-225ca	ka	170
Air	HCFC-225cb	ka	530
Air	HFC-125	kg	2800
Air	HFC-134	kg	1000
Air	HFC-134a	kg	1300
Air	HFC-143	kg	300
Air	HFC-143a	kg	3800
Air	HFC-152a	kg	140
Air	HFC-227ea	kg	2900
Air	HFC-23	ka	11700
Air	HFC-236fa	kg	6300
Air	HFC-245ca	kğ	560

Impact category	Global warming (GWP100)	kg CO2 eq	
Air	HFC-32	kg	650
Air	HFC-41	kg	13000
Air	HFC-4310mee	kg	1300
Air	methane	kg	21
Air	N2O	kg	310
Air	perfluorbutane	kg	7000
Air	, perfluorcyclobutane	kg	8700
Air	perfluorhexane	kg	7400
Air	perfluorpentane	kg	7500
Air	perfluorpropane	kg	7000
Air	SF6	kg	23900
Air	tetrachloromethane	kg	1400
Air	trichloromethane	kg	4

B1.3 OZONE LAYER DEPLETION

Impact category	Ozone layer depletion (ODP)	kg CFC-11 eq	
Air	1,1,1-trichloroethane	kg	0.11
Air	CFC-11	kg	1
Air	CFC-113	kg	0.9
Air	CFC-114	kg	0.85
Air	CFC-115	kg	0.4
Air	CFC-12	kg	0.82
Air	HALON-1201	kg	1.4
Air	HALON-1202	kg	1.25
Air	HALON-1211	kg	5.1
Air	HALON-1301	kg	12
Air	HALON-2311	kg	0.14
Air	HALON-2401	kg	0.25
Air	HALON-2402	kg	7
Air	HCFC-123	kg	0.012
Air	HCFC-124	kg	0.026
Air	HCFC-141b	kg	0.086
Air	HCFC-142b	kg	0.043
Air	HCFC-22	kg	0.034
Air	HCFC-225ca	kg	0.017
Air	HCFC-225cb	kg	0.017
Air	methyl bromide	kġ	0.37
Air	methyl chloride	kġ	0.02
Air	tetrachloromethane	kġ	1.2

B1.4 HUMAN TOXICITY

Impact category	x Human toxicity	kg 1,4-DB eq	
Air	1,1,1-trichloroethane	kg	16
Air	1,2,3-trichlorobenzene	kġ	130
Air	1,2,4-trichlorobenzene	kg	120
Air	1,2-dichloroethane	kg	6.8
Air	1,3,5-trichlorobenzene	kg	120
Air	1,3-butadiene	kg	2200
Air	2,4,6-trichlorophenol	kg	14000
Air	2,4-D	kg	6.6
Air	acrolein	kg	57
Air	acrylonitrile	kg	3400
Air	Aldrin	kg	19
Air	ammonia	kg	0.1
Air	As	kg	350000
Air	Atrazine	kg	4.5
Air	Azinphos-methyl	kg	14
Air	Ва	kg	760
Air	Be	kg	230000
Air	Bentazon	kg	2.1
Air	benzene	kg	1900
Air	benzylchloride	kg	3500
Air	Carbendazim	kg	19
Air	Cd	kg	150000
Air	cobalt	kg	17000
Air	Cr (III)	kg	650
Air	Cr (VI)	kg	3400000
Air	CS2	kg	2.4
Air	Cu	kg	4300
Air	di(2-ethylhexyl)phthalate	kg	2.6
Air	dibutylphthalate	kg	25
Air	dichloromethane	kg	2
Air	Dichlorvos	kg	100
AIr	Dielarin	кg	13000
Air	dioxin (TEQ)	kg	190000000
AIr	Diuron	кд	210
AIr		кд	160
AIr	dust (PM10)	кд	0.82
AIr	ethene	кд	0.64
AIr	ethylbenzene	кд	0.97
AIr	ethylene oxide	кg	14000
All	Fenun-acetate	кg	2200
All	lormaldenyde	kg	0.83
All	H25	кg	0.22
All	HCI boowy motolo	kg	0.0 1624
All	herebergen	kg	2200000
All		kg	3200000
All	На	kg	2900
Air	m valene	kg	0000
Δir	Malathion	ka	0.027
Air	Macaprop	ka	0.035
Air	Motoboozthiozurop	ka	7 1
Air	motols	ka	1.1
Air	Motomitron	ka	1034
Air	mothyl bromido	ka	0.00
Air	Movinfos	ka	300
All	Mo	kg	1
All	IVIO	ĸġ	5400

ENVIRONMENTAL RESOURCES MANAGEMENT

Impact category	x Human toxicity	kg 1,4-DB eq	
Air	naphthalene	kg	8.1
Air	NO2	ka	1.2
Air	NOx (as NO2)	kg	1.2
Air	o-xylene	kg	0.12
Air Air	p-xylene	kg	0.043
Air	Pb	kg	470
Air	pentachlorophenol	kg	5.1
Air	phenol	kg	0.52
Air	propyleneoxide	ka	1300
Air	Sb	kg	6700
Air	Se	kg	48000
Air	Simazine	kg	33
Air	SO2	ka	0.096
Air	styrene	kg	0.047
Air	tetrachloroethene	kg	5.5
Alf Air	Thiram	kg	220
Air	TI	kg	430000
Air	toluene	kg	0.33
Air	trichloroethene	kg	34
Air	Trifluralin	ka	17
Air	V	kg	6200
Air	vinyl chloride	kg	84
Air Wator	Zn 1.2.3 trichlorobonzono	kg	100
Water	1.2.4-trichlorobenzene	ka	120
Water	1,2-dichloroethane	kg	28
Water	1,3,5-trichlorobenzene	kg	120
Water	1,3-butadiene	kg	7000
Water	2.4-D	ka	3.5
Water	acrylonitrile	kg	7100
Water	Aldrin	kg	6000
Water	As	kg	950
Water	Azinphos-methyl	kg	4.0
Water	Ba	kg	630
Water	Be	kg	14000
Water	Bentazon	kg	0.73
Water	benzene benzylchloride	kg ka	1800
Water	Carbendazim	kg	2.5
Water	Cd	kg	23
Water	Co	kg	97
Water		kg	2.1
Water	Cu	kg	1.3
Water	di(2-ethylhexyl)phthalate	kg	0.91
Water	dibutylphthalate	kg	0.54
Water	Dichlonyos	kg	1.8
Water	Dieldrin	kg	45000
Water	dioxins (TEQ)	kg	86000000
Water	Diuron	kg	53
Water	ethyl benzene	kg	59 0.83
Water	ethylene oxide	kg	11000
Water	formaldehyde	kg	0.037
Water	hexachlorobenzene	kg	5600000
Water	Hg Malathion	kg	1400
Water	Mecoprop	kg	200
Water	metallic ions	kg	3.511
Water	Metamitron	kg	0.16
Water	Mo	kg ka	5500
Water	Ni	kg	330
Water	PAH's	kg	280000
Water	Pb	kg	12
Water	phenol	kg	0.049
Water	propylene oxide	kğ	2600
Water	Sb	kg	5100
Water	Se	kg	56000
Water	Sn	ka	0.017
Water	styrene	kg	0.085
Water	tetrachloroethene	kg	5.7
Water	tetrachloromethane	kg	220
Water	toluene	ka	0.3
Water	trichloroethene	kg	33
Water	trichloromethane	kg	13
Water	I rifluralin	kg	97
Water	vinvl chloride	ka	140
Water	Zn	kğ	0.58
Soil	1,2,3-trichlorobenzene (ind.)	kg	54
5011 Soil	1,2,4-trichlorobenzene (ind.)	кg	43
Soil	1.3.5-trichlorobenzene (ind.)	ka	5.7
Soil	1,3-butadiene (ind.)	kg	2200
Soil	2,4,6-trichlorophenol (ind.)	kg	170
Soll	2,4-D (agr.)	kg	47
Soil	Aldrin (agr.)	ry ka	4700
Soil	As (ind.)	kğ	1000
Soil	Atrazine (agr.)	kg	21
Soil	Azinphos-methyl (agr.)	kg ka	39
Soil	benzene (ind.)	ka	1600
Soil	benzylchloride (ind.)	kğ	490

Impact category	x Human toxicity	kg 1,4-DB eq	140
Soil	Cd (agr.)	kg	20000
Soil	Cd (ind.)	kg	67
Soil	Cr (III) (Ind.) Cr (VI) (ind.)	kg ka	300 500
Soil	Cu (ind.)	kg	1.3
Soil	di(2- ethylbexyl)phthalate(ind)	kg	0.0052
Soil	dibutylphthalate (ind.)	kg	0.013
Soil	dichloromethane (ind.)	kg	1.3
Soil	Dieldrin (agr.)	kg kg	7600
Soil	dioxin (TEQ) (ind.)	kg	1000000
Soil	Diuron (agr.)	kg	1300
Soil	ethylene oxide (ind.)	kg	4600
Soil	formaldehyde (ind.)	kg	0.019
501	gamma-HCH (Lindane)	kg	490
Soil	hexachlorobenzene (ind.)	kg	1300000
Soil	Hg (ind.)	kg	1100
Soil	Mecoprop (agr.)	kg	740
Soil	Metamitron (agr.)	kg	6.5
Soil	Mevintos (agr.)	kg	5.7
Soil	Pb (ind.)	kg	290
Soil	pentachlorophenol (ind.)	kg	0.039
Soil	Simazine (agr.)	kg ka	210
Soil	styrene (ind.)	kg	0.018
Soil	tetrachloroethene (ind.)	kg	5.2
Soil	Thiram (agr.)	kg	7.9
Soil	toluene (ind.)	kg	0.21
Soil	trichloroethene (ind.)	kg ka	32 10
Soil	vinyl chloride (ind.)	kg	83
Soil	Zn (ind.)	kg	0.42
Soil	pnenoi (agr.) Bentazon (ind.)	kg ka	0.16
Water	Fentin chloride (sea)	kg	12
Water	dihexylphthalate	kg	14000
Soil	Iprodione (ind.)	kg	0.0032
Water	Fentin acetate	kg	880
Soil	Metolachlor (Ind.)	kg	0.11
Water	Aldicarb	kg	61
Soil	Fenitrothion (ind.)	kg	0.32
Water	carbon disulfide	kg kg	2.4
Water	Dichlorvos (sea)	kg	0.0023
Soil	1,3,5-trichlorobenzene (agr.)	kg ka	69 8 3
Air	Propachlor	kg	12
Soil	Captan (agr.)	kg	0.097
Soil	2.4-dichlorophenol (ind.)	kg ka	0.039
Air	Parathion-ethyl	kg	3.3
Soil	styrene (agr.)	kg	0.48
Water	m-xylene	kg	0.34
Water	Parathion-methyl	kg	100
Water	Trichlorfon Demeton (agr.)	kg ka	0.37
Water	Cypermethrin	kg	5.5
Soil	ethylene (ind.)	kg	0.62
Water	Acephate (sea)	kg ka	0.00051
Soil	1,3-dichlorobenzene (agr.)	kg	250
Soil	benzylchloride (agr.)	kg	5500
Air	tributvltinoxide	kg ka	7500
Water	Pirimicarb (sea)	kg	0.0013
Water	Methomyl dimethylphthalate	kg ka	3.3 7.2
Air	hexachloro-1,3-butadiene	kg	79000
Soil	As (agr.)	kg	32000
5011	2,3,4,6-tetrachiorophenoi (ind.)	kg	1.6
Water	Dinoseb (sea)	kg	0.63
Water	Folpet (sea)	kg	0.31
Water	o-xylene (sea)	kg	0.026
Soil	anilazine (agr.)	kg	0.08
Soil	disodecylphthalate (agr.)	kg	110
Water	Anilazine	kg	0.24
Water	Metobromuron	kg	8
Water	Aldicarb (sea)	kg	0.24
Soil	carbon disulfide (ind.)	kġ	2.2
Water	Oxamyl Chlorovrinbos (sea)	kg	0.36
Soil	Metazachlor (ind.)	kg	0.16
Air	2-chlorophenol	kg	22
vvater Air	rentnion (sea) Tolclophos-methyl	ky ka	0.46 0.06
Soil	pentachlorobenzene (ind.)	kg	140
Air	dihexylphthalate	kg	7000
Soil	Chlorpyriphos (ind.)	kg	0.14
Soil	Parathion-ethyl (agr.)	kg	2.9
Soil	Cyanazine (ind.)	kg	0.35
Air	Carbaryl	kg	3.2

Impact category	x Human toxicity	kg 1,4-DB eq	54
Water	Pyrazopnos (agr.) hexachloro-1.3-butadiene	кg ka	51 80000
Soil	benzene (agr.)	kg	15000
Water	Chlordane (sea)	kg	1200
Water	Dimethoate (sea)	kg	0.0033
Soil	dioxin (TEQ) (agr.)	ka	1300000000
Water	Carbaryl	kg	4.7
Soil	Desmetryn (agr.)	kg	650
Water	Bifenthrin (sea)	kg	0.75
Water	Heptenophos (sea)	ka	0.0023
Soil	Dinoseb (ind.)	kg	97
Air	cypermethrin	kg	170
Soil	Heptenophos (ind.)	kg	0.02
Soil	Malathion (ind)	ka	0.00095
Soil	para-xylene (agr.)	kg	3
Water	1,4-dichlorobenzene (sea)	kg	0.47
Soil	acrolein (ind.)	kg	17
All Water	Glyphosate	kg	0.0031
Water	2,3,4,6-tetrachlorophenol	kg	0.26
	(sea)	0	
Water	1,2,3-trichlorobenzene (sea)	kg	62
Soil	Chlorothalonil (ind.)	kg	1
Soil	Methabenzthiazuron (ind.)	ka	0.36
Water	1,2-dichlorobenzene (sea)	kg	4.1
Soil	naphtalene (ind.)	kg	1.6
Vvater	2,4-D (sea) Diposeb (agr.)	kg	0.000067
Soil	diisooctvlphthalate (ind.)	ka	0.052
Soil	methylbromide (ind.)	kg	260
Water	Demeton	kg	720
Soil	Aldicarb (agr.)	kg	510
Air	Hentenophos	kg	23
Soil	Folpet (ind.)	kg	1.5
Air	Chlorpropham	kg	0.34
Water	2,4-dichlorophenol (sea)	kg	0.065
Soil	Acephate (agr.)	kg	1.2
Soil	1,1,1-trichloroethane (agr.)	kg	16
Soil	chlorobenzene (agr.)	kg	7.1
Water	Triazophos	kg	320
Soil	dinexylphthalate (ind.)	kg	14 6800
Water	Sb (sea)	ka	8600
Soil	Fenthion (agr.)	kg	30
Water	Oxamyl (sea)	kg	0.000014
Water	Fenthion	kg	93
Water	Bentazon (sea)	ka	0.0022
Water	Fentin hydroxide (sea)	kg	4.1
Air	1,2,4,5-tetrachlorobenzene	kg	35
Water	Cu (sea)	kg	5.9
Water	1.2.3.5-tetrachlorobenzene	ka	0.055
Water	Iprodione	kg	0.18
Water	Éthoprophos	kg	1800
Water	diisodecylphthalate (sea)	kg	3.2
Air	dinoseb	kg	3600
Soil	2,4,5-T (ind.)	kg	0.18
Soil	Methomyl (ind.)	kg	0.69
Soil	Triazophos (agr.)	kg	1200
Soil	Cyromazine (agr.)	kg	280
Soil	Thiram (ind.)	kg	0.25
Water	Co (sea)	kg	60
Soil	ethylbenzene (ind.)	kg	0.5
vvater	propylene oxide (sea)	kg	10
Water	Dichlorprop (sea)	kg	0.097
Water	thallium	kg	230000
Water	Chlorothalonil (sea)	kg	0.45
vvaler Air	3-chloroaniline	ry ka	1.6 17000
Soil	bifenthrin (ind.)	kg	0.3
Water	tetrachloromethane (sea)	kg	170
Water	4-chloroaniline (sea)	kg	4
Vvater Air	Chlorovrinhos	kg ka	31
Soil	ethylene (agr.)	kg	0.78
Soil	pentachloronitrobenzene	kg	72
Coll	(agr.)	la s	10
Soil	anthracene (ind.)	kq	0.02
Air	Parathion-methyl	kg	53
Air	Lindane	kg	610
water Water	trichloroethene (sea)	kg	14
Soil	Heptachlor (and)	ka	0.29
Soil	Dimethoate (agr.)	kg	320
Water	Glyphosate (sea)	kg	0.000015
vvater	3,4-dichloroaniline (sea)	kg	1.5
Soil	Dichlorprop (ind.)	ing ka	0.26
Soil	1,4-dichlorobenzene (ind.)	kġ	0.74
Soil	Chlordane (agr.)	kg	2800
vvater	Linuron (sea)	kg	0.65
Soil	toluene (agr.)	ka	55 0.35
Water	styrene (sea)	kg	0.01
Air	Oxamyl	kg	1.4
vvater	Unioridazon (sea)	ку	0.0021

Impact category	x Human toxicity	kg 1,4-DB eq	
Water	Ethoprophos (sea)	kg kg	4.5 13
Soil	phenol (ind.)	kg	0.006
Air	Chlordane	kg ka	1.7 6700
Soil	Fentin acetate (agr.)	kg	72
Water	Metamitron (sea)	kg	0.000032
Air	Permethrin	kg	0.85
Soil	Pyrazophos (ind.)	kg	1.2
Air	4-chloroaniline	kg	260
Soil	thallium (agr.)	kg	2000000
Air Water	Acephate	kg ka	3.1 5.6
Air	Metolachlor	kg	2.6
Water	benzylchloride (sea) Ethoprophos (agr.)	kg ka	55 5700
Air	Deltamethrin	kg	1.6
Soil	anilazine (ind.)	kg	0.0003
Soil	Coumaphos (agr.)	kg	11000
Water	Permethrin (sea)	kg	0.26
Air Water	1.2-dichloroethane (sea)	kg ka	0.072
Soil	tetrachloromethane (agr.)	kg	220
Soil Water	tributyltinoxide (ind.)	kg	43
Water	dioxins (TEQ) (sea)	kg	42000000
Water	naphtalene (sea)	kg	0.19
Soil	dibutylphthalate (agr.)	kg	1.3
Air	Ethoprophos	kg	1100
Soil	diethylphthalate (ind.) Pirimicarb (ind.)	kg ka	0.0033
Water	Metazachlor (sea)	kg	0.0024
Air Water	Dichlorprop	kg	1.1
Water	p-xylene	kg	0.35
Water	butylbenzylphthalate (sea)	kg	0.00085
Water	Chlordane	kg	740
Water	Cd (sea)	kg	100
Soil	acrylonitrile (agr.)	kg ka	490000 2400
Soil	butylbenzylphthalate (ind.)	kg	0.0018
Water	Thiram (sea) Endrin (ind.)	kg	0.00066
Water	methyl-mercury (sea)	kg	88000
Soil	Carbendazim (ind.)	kg	0.43
Water	ethylene oxide (sea)	kg	540
Soil	Propoxur (agr.)	kg	270
Water	Deltamethrin (sea)	kg kg	34 0.033
Water	benzene (sea)	kg	210
Soil	antimony (agr.) diisooctylphthalate (agr.)	kg ka	8900 32
Soil	Dieldrin (ind.)	kg	1500
Water	dioctylphthalate (sea)	kg	1.3
Air	Pyrazophos	kg	25
Air	Triazophos	kg	210
Soil	dioctylphthalate (agr.)	kg	8.6
Soil	Oxamyl (ind.)	kg	0.068
Soil	pentachlorophenol (agr.)	kg ka	0.15
Soil	Chloridazon (ind.)	kg	0.02
Water	Endosulfan (sea)	kg	0.042
Soil	Atrazine (ind.)	kg	0.88
Soil	Pb (agr.)	kg	3300
Water	Chlorfenvinphos (sea)	kg	3.8
Soil	Metamitron (ind.)	kg	0.012
Water	o-xvlene	kg ka	3400000
Water	Fenitrothion (sea)	kg	0.09
Water	Coumaphos (sea)	kg	220 750
Soil	PAH (carcinogenic) (agr.)	kg	71000
Soil	Cyanazine (agr.)	kg	24
Soil	ethylbenzene (agr.)	kg	0.75
Soil	hexachloro-1,3-butadiene	kg	30000
Soil	(agr.) Azinphos-methyl (ind.)	ka	0.099
Air	butylbenzylphthalate	kg	10
Water	I ri-allate (sea) pentachlorophenol (sea)	kg ka	1.2 0.14
Water	Mecoprop (sea)	kg	0.84
Soil Water	dimethylphthalate (ind.)	kg ka	0.27
	(sea)		50
Water	Methabenzthiazuron (sea)	kg ka	0.0082
Soil	Aldicarb (ind.)	kg	13
Air	pentachloronitrobenzene	kg ka	190
3011	(ind.)	ĸy	35000
Soil	hexachlorobenzene (agr.)	kg	33000000
Soil	vanadium (ind.) bifenthrin (agr.)	кg ka	1700 29
Soil	trichloroethene (agr.)	kg	32
Soll Water	DDT (agr.) Captafol (sea)	kg ka	270 9.7
		5	5.1

Impact category	x Human toxicity	kg 1,4-DB eq	0.0014
Soil	Deltamethrin (ind.)	kg kg	0.0014
Water	phthalic anhydride	kg	0.00011
Soil Water	1,2-dichloroethane (agr.)	kg	1300
Soil	Cu (agr.)	ka	94
Water	dimethylphthalate (sea)	kg	0.0084
Soil	Benomyl (ind.)	kg	0.0011
Soil	1,2,3,4-tetrachlorobenzene	kg	23 80
	(agr.)	0	
Air Water	diazinon Folpet	kg	59 8.6
Soil	Cr (III) (agr.)	kg	5100
Air	2,3,4,6-tetrachlorophenol	kg	290
Soil	Chloridazon (agr.)	kg	2.2
Water	Parathion-methyl (sea)	kg	0.54
Air	methomyl	kg	6.2
Water	Propoxur meta-xylene (ind)	kg	1.3
Water	Deltamethrin	kg	2.8
Soil	Dimethoate (ind.)	kg	3
Water	1-chloro-4-nitrobenzene	kg	220
Water	methylbromide	kg	300
Water	PAH (sea)	kg	29000
Soil	Chlorothalonil (agr.)	kg ka	3.8 0.94
Water	1,2,4-trichlorobenzene (sea)	kg	56
Water	1,3-dichlorobenzene	kg	74
Water	thallium (sea)	ka	290000
Water	Dinoseb	kg	160
Air	anthracene Movintos (200)	kg	0.52
Soil	Triazophos (ind.)	kg ka	0.0018
Water	Isoproturon	kg	13
Water	tributyltinoxide (sea)	kg	55
Water	HF (sea)	kg	3600
Water	Azinphos-methyl (sea)	kg	0.0057
Air	Bifenthrin	kg	19
Soil	Aldrin (ind.)	kg	160
Water	diethylphthalate (sea)	kg	0.00057
Water	2,4,5-T	kg	1.9
Water	Cypermethrin (sea)	kg	0.026
Soil	trichloromethane (agr.)	kg	14
Water	I richlorfon (sea) Mecoprop (ind.)	kg ka	0.000031
Air	Iprodione	kg	0.28
Water	Chlorpyriphos	kg	44
Soil	Chlordane (ind)	kg ka	0.43
Soil	3-chloroaniline (agr.)	kg	30000
Soil	Ni (agr.)	kg	2700
Water	Lindane	kg ka	1.5 830
Soil	1,2,3-trichlorobenzene (agr.)	kg	56
Soil	tin (agr.)	kg	13
Water	Captaiol Cr (VI) (sea)	ka	17
Water	Chlorfenvinphos	kg	810
Air	tri-allate	kg	9.7
Air	pentachlorobenzene	ka	410
Air	2,4,5-T	kg	0.89
Soil	selenium (ind.)	kg	28000
Water	dibutylphthalate (sea)	kg	0.003
Water	Cr (III) (sea)	kg	10
Air	chlorobenzene Fentin chloride (agr.)	kg	9.2 130
Soil	Simazine (ind.)	kg	2.2
Soil	1,2,3,5-tetrachlorobenzene	kġ	14
Soil	(INC.) methylbromide (agr.)	ka	260
Water	Parathion-ethyl (sea)	kg	0.18
Soil	Pirimicarb (agr.)	kg	26
Soil	1 2 4-trichlorobenzene (agr.)	kg ka	53 42
Water	trichloromethane (sea)	kg	6
Air	Captafol Bropachler (ind.)	kg	87
Air	Endrin	kg	1200
Soil	Fentin chloride (ind.)	kg	13
Soil	thallium (ind.) Fentin bydroxide	kg	120000
Soil	1,2,3,5-tetrachlorobenzene	kg	180
A :	(agr.)	1	
Air Soil	Desmetryn Iprodione (agr.)	kg ka	95 1 8
Air	Pirimicarb	kġ	3.4
Air	MCPA	kg	15
Soil	dioctylphthalate (ind)	ny ka	5.8 0.0088
Water	1-chloro-4-nitrobenzene	kğ	1700
Water	vinyl chloride (sea)	kg	43
Soil	gamma-HCH (Lindane)	kg	52
	(ind.)	-	
Soll	butylbenzylphthalate (agr.)	кg	0.31
Soil	Isoproturon (ind.)	kg	2.8
Soil	Captafol (agr.)	kg	960

Impact category	x Human toxicity	kg 1,4-DB eq	
Water	phenol (sea)	kg	0.00008
Water	diisooctylphthalate	ka	18
Soil	antimony (ind.)	kg	2600
Water	Captan (sea)	kg	0.0000054
Water	Cyromazine (sea)	kg	0.0026
Air	3,4-dichloroaniline	kg	220
Soil	Trichlorfon (agr.)	kg	0.070
Soil	Chlorpyriphos (agr.)	ka	14
Soil	Desmetryn (ind.)	kg	2.9
Water	pentachloronitrobenzene	kg	46
0.1	(sea)		
Soil	2,4,5-trichlorophenol (ind.)	kg	2.9
Water	1 2 3 5-tetrachlorobenzene	kg	25
- Taloi	(sea)		20
Air	dioctylphthalate	kg	19
Air	1,2,3,4-tetrachlorobenzene	kg	50
Water	I rifluralin (sea)	kg	6
Soil	Diazinon (agr.)	kg	7.3 120
Soil	methyl-mercury (agr.)	ka	20000
Air	1,2-dichlorobenzene	kg	9.1
Water	Be (sea)	kg	16000
Soil	di(2-ethylhexyl)phthalate	kg	1.8
	(agr.)		
Air	Metazachlor	kg	6.8 1 4
Water	HF	ka	3600
Water	Tolclophos-methyl (sea)	kg	0.065
Soil	Chlorpropham (ind.)	kg	0.081
Soil	Co (ind.)	kg	59
Water	Metazachlor	kg	1.7
Soll	Curemozine	kg	9.2
Water	1.3.5-trichlorobenzene (sea)	ka	54
Soil	Dinoterb (agr.)	ka	0.36
Air	Disulfothon	kg	290
Water	phthalic anhydride (sea)	kg	0.0000001
Soil	methyl-mercury (ind.)	kg	11000
Soil	I olclophos-methyl (ind.)	kg	0.04
Water	Chlorothalonil	kg	50 67
Water	Pirimicarb	ka	1.7
Water	formaldehyde (sea)	kg	0.000028
Soil	Linuron (agr.)	kg	170
Soil	1-chloro-4-nitrobenzene	kg	22000
Wator	(agr.)	ka	45
Soil	tributyltinoxide (agr.)	kg	290
Water	Azinphos-ethyl (sea)	ka	1.6
Water	Chloridazon	kg	0.14
Water	Phoxim	kg	12
Air	Captan	kg	0.59
Soil	Phoxim (agr.)	kg	25
Water	2 4 5-T (sea)	ka	0.0054
Soil	beryllium (ind.)	ka	7000
Soil	Carbaryl (agr.)	kg	21
Soil	Captan (ind.)	kg	0.00011
Soil	beryllium (agr.)	kg	13000
Soil	meta-xylene (agr.)	kg	3.8
Water	Endinin (Sea) Motolachlor	kg	1600
Water	Aldrin (sea)	kg	780
Soil	tetrachloroethene (agr.)	kg	6.4
Water	Se (sea)	kg	63000
Air	Chlorothalonil	kg	8.4
Soil	Propachlor (agr.)	kg	15
AIr	Cyromazine Parathion-othyl (ind.)	kg	38
Water	ethene	kg	0.65
Water	1,1,1-trichloroethane (sea)	kg	9.6
Soil	ortho-xylene (agr.)	kg	5
Air	Propoxur	kg	37
Air	Fenitrothion	kg	5.9
water	ui(z-eiriyinexyi)phthalate	ĸy	0.04
Water	(sea) Carbendazim (sea)	ka	0.002
Soil	Heptenophos (agr.)	kq	3.4
Air	Linuron	kg	14
Soil	Endosulfan (ind.)	kg	0.016
Soil	Coumaphos (ind.)	kg	1600
Soil	Phtalic anhydride (ind.)	kg	0.00000066
All Water	acrylonitrile (sea)	kg	640 51
Water	Coumaphos	ka	10000
Soil	Cr (VI) (agr.)	kg	8500
Water	hexachloro-1,3-butadiene	kg	39000
	(sea)		
Soil	I rifluarin (ind.)	kg	0.68
SUII Water	Zineh (sea)	kg	1.8
Water	Bifenthrin	ng ka	0.00082 QR
Water	Simazine (sea)	kq	0.016
Air	Aldicarb	kg	72
Soil	Cypermethrin (agr.)	kg	5200
Water	3,4-dichloroaniline	kg	130
Water	Disulfothon (sea)	kg	1.5
SUII Air	parium (ind.) cvanazine	kg	320
Soil	Tri-allate (ind)	ka	0.36
Soil	1,2,3,4-tetrachlorobenzene	kg	5.2
	(ind.)	-	0.2
Water	Metolachlor (sea)	kg	0.00085
Soll	Phtalic anhydride (agr.)	кg	0.01

Impact category	x Human toxicity	kg 1,4-DB eq	
Water Air	Linuron Chlorfenvinnhos	kg ka	110 270
Water	Acephate	kg	2.1
Water	Tolclophos-methyl	kg	1
Soil	1,2,4,5-tetrachlorobenzene	kg	84
Water	(agi.) m-xvlene (sea)	ka	0.01
Soil	1,3-dichlorobenzene (ind.)	kg	50
Water	Endosulfan	kg	17
Soli Air	Benomyl	kg ka	89 0.021
Soil	DNOC (ind.)	kg	2.8
Air	Chloridazon	kg	0.013
Water	Carbofuran (sea)	kg	0.21
Soil	Zn (agr.)	ka	400 64
Air	Folpet	kg	2
Soil	Chlorfenvinphos (agr.)	kg	1200
Water	2-chlorophenol (sea)	kg ka	0.35
Water	Benomyl (sea)	kg	0.00024
Air	Azinphos-ethyl	kg	200
Soll Air	Methabenzthiazuron (agr.)	kg	51
Water	cyanazine	kg	6
Water	2-chlorophenol	kg	70
Soil	Endosulfan (agr.)	kg	0.26
Soil	Azinphos-ethyl (ind.)	kg ka	310 6.9
Water	Zn (sea)	kg	3.2
Air	methyl-mercury	kg	58000
Soll	Diazinon (ind.)	kg	3.2
Water	acrolein	ka	59
Water	anthracene	kg	2.1
Air	Phoxim	kg	0.97
Air Soil	1,4-dichlorobenzene Chlorfenvinnhos (ind.)	kg	1
Soil	Trifluarin (agr.)	kg	120
Soil	hydrogen fluoride (agr.)	kg	1800
Water	Ba (sea)	kg	800
5011 Soil	Fentin bydroxide (ind.)	kg kg	0.021
Air	zineb	kg	4.8
Soil	2,3,4,6-tetrachlorophenol	kg	31
Mator	(agr.)	ka	0.3
Water	MCPA	kg ka	0.3
Water	2,3,4,6-tetrachlorophenol	kg	35
Soil	3,4-dichloroaniline (agr.)	kg	1700
Water Soil	DDT selenium (agr.)	kg ka	29000
Water	Malathion (sea)	kg	0.00084
Soil	2,4-D (ind.)	kg	0.72
Soil	PAH (carcinogenic) (ind.)	kg	2700
Soil	Cvromazine (ind.)	kg ka	3400
Water	chlorobenzene	kg	9.1
Soil	Carbofuran (ind.)	kg	8
Water	Heptachlor (sea)	kg	43
Water	Atrazine (sea)	ka	0.018
Soil	naphtalene (agr.)	kg	4.8
Soil	pentachlorobenzene (agr.)	kg	4500
Water	Sn (sea) Propachlor	kg ka	0.11
Water	1,3-butadiene (sea)	kg	450
Water	2,4,5-trichlorophenol (sea)	kg	0.61
Air	dinoterb	kg	170
Water	DNOC (sea)	kg ka	410
Water	Propachlor (sea)	kg	0.0026
Soil	Carbofuran (agr.)	kg	1400
Water	Fentin chloride	kg	860
Water	Fenitrothion	ka	22
Soil	Disulfoton (ind.)	kg	2
Soil	Fenitrothion (agr.)	kg	12
Soli Air	2 4-dichlorophenol	kg ka	79 95
Soil	Carbaryl (ind.)	kg	0.15
Air	diisodecylphthalate	kg	46
Soil	anthracene (agr.)	kg	0.51
Water	2.4.6-trichlorophenol (sea)	ka	47
Soil	Permethrin (agr.)	kg	11
Soil	ethylene oxide (agr.)	kg	110000
Water	MCPA (sea)	kg	0.037
Air	Isoproturon	ka	130
Water	Disulfothon	kg	340
Soil	dichloromethane (agr.)	kg	2.4
Sull Water	ulisodecylphthalate (ind.)	ку ka	0.038
Water	Propoxur (sea)	kg	0.00039
Water	Diuron (sea)	kg	0.19
Soil	Parathion-methyl (agr.)	kg	24
Water	dioctylphthalate	ry ka	24 6.3
Soil	Isoproturon (agr.)	kg	960
Soil	formaldehyde (agr.)	kg	2.3
50ll Water	Methomyl (agr.)	кg	43
Water	Heptenophos	ry ka	1.7
Soil	hydrogen fluoride (ind.)	kg	1800
Soil	dihexylphthalate (agr.)	kg	1200
Soil	2,4,5-T (agr.)	kg	5.8

Impact category	x Human toxicity	kg 1,4-DB eq	
Water	pentachlorobenzene	kg	1200
Soil	ortho-yylene (ind.)	kg ka	0.0
Soil	Hentachlor (ind.)	ka	4.4
Soil	Glyphosate (agr.)	ka	0.015
Water	Dimethoate	ka	18
Water	As (sea)	kg	2400
Water	3-chloroaniline	kg	3500
Soil	1,2,4,5-tetrachlorobenzene (ind.)	kg	5.4
Water	p-xylene (sea)	kg	0.013
Water	acrolein (sea)	kg	0.8
Water	Benomyl	kg	0.14
Soil	lin (ind.)	kg ka	0.52
Soil	Oxydemethon-methyl (agr.)	ka	610
Soil	1.4-dichlorobenzene (agr.)	ka	2.9
Soil	dimethylphthalate (agr.)	kg	28
Water	tetrachloroethene (sea)	kg	2.8
Water	Carbaryl (sea)	kg	0.0019
Air	dimethylphthalate	kg	210
Water	Desmetryn (sea)	kg	0.12
Air	Demeton	kg	/1
Soil	Ethoprophos (ind)	kg ka	380
Water	Azinphos-ethyl	ka	460
Water	chlorobenzene (sea)	ka	5.2
Soil	1,1,1-trichloroethane (ind.)	kg	16
Soil	Chlorpropham (agr.)	kg	2.1
Water	dichloromethane (sea)	kg	0.3
Air	Carbofuran	kg	200
Air	dimethoate	kg	44
Alf	Endosulian	Kg ka	6.7
3011	(ind.)		400
Soil	4-chloroaniline (agr.)	kg	35000
Water	Dipotorb	Kg ka	0.029
Soil	2 4 5-trichlorophenol (agr.)	ka	2.0
Soil	1.3-butadiene (agr.)	ka	3100
Soil	Metobromuron (agr.)	kg	410
Water	1,1,1-trichloroethane	kg	16
Soil	pentachloronitrobenzene (ind.)	kg	4.3
Water	Lindane (sea)	kg	6.1
Water	Chlorpropham	kg	1
Water	tributyltinoxide	kg	3400
S0II Water	Nio (Ind.) Diazinon	kg ka	3100
Water	Captan	ka	0.0053
Soil	Hg (agr.)	ka	5900
Water	cyanazine (sea)	kg	0.0096
Soil	vinyl chloride (agr.)	kg	520
Soil	Cypermethrin (ind.)	kg	1.8
Water	Fentin acetate (sea)	kg	4.1
Water	dinexylphthalate (sea)	kg	370
Water	1 2-dichlorobenzene	kg ka	20
Water	1.2.4.5-tetrachlorobenzene	ka	30
	(sea)	5	
Air	Heptachlor	kg	40
Soil	Phoxim (ind.)	kg	0.38
Water	Dieldrin (sea)	kg	5500
Soll	Metobromuron (ind.)	kg	1.9
Soil	Pyrazophos (sea) Deltamethrin (agr.)	kg ka	0.23
Soil	Mo (agr.)	ka	6200
Water	Endrin	kg	6000
Air	Trichlorfon	kg	4.4
Soil	2,4,6-trichlorophenol (agr.)	kg	1800
Water	Carbofuran	kg	56
All		kg ka	63
Soil	acrolein (agr.)	ry ka	2900
Soil	MCPA (ind.)	kg	0.97
Water	carbon disulfide (sea)	kg	0.48
Water	Dinoterb (sea)	kg	0.0029
Water	Oxydemethon-methyl (sea)	kg	0.01
Water	2,4-dichlorophenol	kg	16
SUII	Disultoton (agr.)	kg	1/0
Air	dust (PM10) stationary	ry ka	0.82
Water	butylbenzylphthalate	kg	0.086
		-	

B1.5 FRESH WATER AQUATIC ECOTOXICITY

Impact category	x Fresh water aquatic ecotox.	kg 1,4-DB eq	
Air	1,1,1-trichloroethane	kg	0.00012
Air	1,2,3-trichlorobenzene	kg	0.0085
Air	1,2,4-trichlorobenzene	kg	0.0099
Air	1,2-dichloroethane	kg	0.00012
Air	1,3,5-trichlorobenzene	kg	0.016
Air	1,3-butadiene	kg	0.0000033
Air	2,4,6-trichlorophenol	kg	5.9
Air	2,4-D	kg	39
Air	acrolein	kg	520
Air	acrylonitrile	kg	0.41
Air	Aldrin	kg	2.7
Air	As	kg	50
Air	Atrazine	kg	360
Air	Azinphos-methyl	kg	420
Air	Ba	kg	43
Air	Be	kg	17000

Impact category	x Fresh water aquatic	kg 1,4-DB eq	
Air	Bentazon	ka	5.6
Air	benzene	kg	0.000084
Air	benzo(a)anthracene	kg	42
Air	benzvlchloride	kg ka	0.76
Air	Carbendazim	kg	3000
Air	Cd	kg	290
Air	Codalt Cr (III)	kg ka	640 1.9
Air	Cr (VI)	kg	7.7
Air	CS2	kg	0.033
Air	di(2-ethylhexyl)phthalate	ka	0.35
Air	dibutylphthalate	kg	0.56
Air	dichloromethane	kg	0.000033
Air	Dieldrin	kg ka	200
Air	dioxin (TEQ)	kg	2100000
Air	Diuron	kg	530
Air	ethene	kg	1.4E-11
Air	ethylbenzene	kg	0.00013
Air	ethylene oxide Fentin-acetate	kg ka	0.099
Air	fluoranthene	kg	18
Air	formaldehyde	kg	8.3
Air	heavy metals	kg ka	21.43
Air	HF	kg	4.6
Air	Hg	kg	320
Air	Malathion	kg ka	1800
Air	Mecoprop	kg	37
Air	Metabenzthiazuron	kg	70
Air	Metamitron	kg ka	21.43 0.93
Air	methyl bromide	kg	0.033
Air	Mevinfos	kg ka	9300
Air	naphthalene	ka	97 0.5
Air	Ni	kg	630
Air	o-xylene	kg ka	0.000093
Air	PAH's	kg	170
Air	Pb	kg	2.4
Air	pentachlorophenol	kg ka	11
Air	phthalic acid anhydride	kg	0.0082
Air	propyleneoxide	kg	0.037
Air	Sb	kg ka	3.7 550
Air	Simazine	kg	2100
Air	Sn	kg ka	2.5
Air	tetrachloroethene	kg ka	0.000051
Air	tetrachloromethane	kg	0.00025
Air	Thiram	kg ka	2700
Air	toluene	kg	0.00007
Air	trichloroethene	kg	0.000038
Air	trichloromethane	kg ka	0.000095
Air	V	kg	1700
Air	vinyl chloride	kg	0.0000029
Air Water	Zn 1.2.3-trichlorobenzene	kg ka	18
Water	1,2,4-trichlorobenzene	kg	3.5
Water	1,2-dichloroethane	kg ka	0.023
Water	1.3-butadiene	ka	3
Water	2,4,6-trichlorophenol	kg	290
Water	2,4-D	kg ka	400
Water	Aldrin	kg	12000
Water	As	kg	210
Water	Atrazine Azinphos-methyl	kg ka	52000
Water	Ba	kg	230
Water	Be	kg	91000
Water	bentazon	kg ka	0.091
Water	benzo(a)anthracene	kg	110000
Water	benzo(a)pyrene	kg ka	250000
Water	Carbendazim	ka	38000
Water	Cd	kg	1500
Water	Co Cr (III)	kg ka	3400
Water	Cr (VI)	kg	28
Water	Cu	kg	1200
vvater Water	ui(∠-etnyinexyi)phthalate dibutylphthalate	kg ka	79 79
Water	dichloromethane	kg	0.012
Water	Dichlorvos	kg	120000
Water	dioxins (TEQ)	ry ka	79000 17000000
Water	Diuron	kg	9400
Water	DNOC othyl bonzono	kg ka	110
Water	ethylene oxide	kg	0.55 9.8
Water	fluoranthene	kg	13000
Water	tormaldehyde	kg ka	280
Water	Hg	kg	1700
Water	Malathion	kg	210000
vvaler	wecoprop	ĸġ	380

Impact category	x Fresh water aquatic	kg 1,4-DB eq	
Water	ecotox. metallic ions	ka	3 659
Water	Metamitron	kg	23
Water	Mevinfos	kg	590000
Water Water	Mo	kg	480
Water	PAH's	kg	28000
Water	Pb	kg	9.6
Water	pentachlorophenol	kg	710
Water	propylene oxide	ka	240
Water	Sb	kg	20
Water	Se	kg	2900
Water	Simazine	kg ka	27000
Water	styrene	kg	0.44
Water	tetrachloroethene	kg	0.7
water Water	Thiram	kg	98000
Water	toluene	kg	0.29
Water	trichloroethene	kg	0.097
Water	Trichloromethane	kg	0.042
Water	V	kg	9000
Water	vinyl chloride	kg	0.028
Water	Zn	kg	92
Soil	1 2 4-trichlorobenzene (ind.)	ka	0.03
Soil	1,2-dichloroethane (ind.)	kg	0.00075
Soil	1,3,5-trichlorobenzene (ind.)	kg	0.066
Soil	2.4.6-trichlorophenol (ind.)	kg ka	0.000057
Soil	2,4-D (agr.)	kg	29
Soil	acrylonitrile (ind.)	kg	8.1
Soil	Aldrin (agr.)	kg	280
Soil	Atrazine (agr.)	kg	340
Soil	Azinphos-methyl (agr.)	kg	190
Soil	Bentazon (agr.)	kg	8.3
Soil	benzo(a)pyrene (ind.)	ka	530
Soil	benzylchloride (ind.)	kg	3.2
Soil	Carbendazim (agr.)	kg	2000
Soil	Cd (agr.)	kg	780 780
Soil	Cr (III) (ind.)	kg	5.3
Soil	Cr (VI) (ind.)	kg	21
Soil	Cu (ind.)	kg	590
0011	ethylhexyl)phthalate(ind)	kg	0.000
Soil	dibutylphthalate (ind.)	kg	0.31
Soil	dichloromethane (ind.)	kg	0.00016
Soil	Dieldrin (agr.)	ka	600
Soil	dioxin (TEQ) (ind.)	kg	490000
Soil	Diuron (agr.)	kg	350
Soil	ethylene oxide (ind)	kg	0.98
Soil	fluoranthene (ind.)	kg	76
Soil	formaldehyde (ind.)	kg	44
Soil	gamma-HCH (Lindane)	kg	97
Soil	hexachlorobenzene (ind.)	kg	4.3
Soil	Hg (ind.)	kg	850
Soil	Malathion (agr.)	kg	160
Soil	Metamitron (agr.)	ka	0.41
Soil	Mevinfos (agr.)	kg	350
Soil	Ni (ind.)	kg	1700
Soil	pentachlorophenol (ind.)	kg	0.5 1.3
Soil	propylene oxide (ind.)	kg	0.48
Soil	Simazine (agr.)	kg	2300
Soil	styrene (Ind.) tetrachloroethene (ind.)	kg	0.0026
Soil	tetrachloromethane (ind.)	kg	0.00056
Soil	Thiram (agr.)	kg	690
Soil	toluene (Ind.)	kg	0.0011
Soil	trichloromethane (ind.)	kg	0.00040
Soil	vinyl chloride (ind.)	kg	0.000064
Soil	Zn (ind.)	kg	48
Soil	Bentazon (ind.)	ka	3.5 11
Water	Fentin chloride (sea)	kg	18
Water	dihexylphthalate	kg	110
Soil	Iprodione (ind.)	ka	1400
Water	Fentin acetate	kğ	270000
Soil	Metolachlor (ind.)	kg	5800
Water	Aldicarb	ry ka	440000
Soil	Fenitrothion (ind.)	kg	3000
Air	DDT	kg	320
vvater Water	carbon disulfide Dichloryos (sea)	кg ka	110 0.011
Soil	1,3,5-trichlorobenzene (aar.)	kg	0.054
Soil	2-chlorophenol (agr.)	kg	7.9
Air Soil	Propachlor Captan (acr.)	kg	20
Water	toluene (sea)	kg	0.0000083
Soil	2,4-dichlorophenol (ind.)	kġ	9.2
Air	Parathion-ethyl	kg	2800
Soil	barium (agr.)	ny ka	0.0015
Water	m-xylene	kğ	0.6
Water	Parathion-methyl	kg	290000

Impact category	x Fresh water aquatic	kg 1,4-DB eq	
Water	Trichlorfon	kg	410000
Soil	Demeton (agr.)	kg	800
Water	Cypermethrin ethylene (ind)	kg	7900000 1 1E-09
Water	1,4-dichlorobenzene	kg	1.12.00
Water	Acephate (sea)	kg	0.0000006
Soil	1,3-dichlorobenzene (agr.)	kg ka	0.018
Soil	Oxamyl (agr.)	kg	30
Air	tributyltinoxide	kg	7700
Water	Methomyl	kg	140000
Water	dimethylphthalate	kg	3.1
Air	hexachloro-1,3-butadiene	kg	46
Soil	As (agr.) 2.3.4.6-tetrachlorophenol	kg ka	130
	(ind.)		
Water	Dinoseb (sea)	kg	0.11
Soil	Metazachlor (agr.)	ka	3.9
Water	o-xylene (sea)	kg	0.000015
Soil	anilazine (agr.)	kg	0.21
Soil	Dichlorvos (ind.)	kg	300
Water	Anilazine	kg	1100
Water	Metobromuron	kg	430
Water	Aldicarb (sea)	ka	0.12
Soil	carbon disulfide (ind.)	kg	0.34
Water	Oxamyl Chlorpyrinhoa (acc)	kg	650
Soil	Metazachlor (ind.)	ka	0.23
Air	2-chlorophenol	kg	13
Water	Fenthion (sea)	kg	0.26
Soil	pentachlorobenzene (ind.)	kg ka	0.15
Air	dihexylphthalate	kg	0.5
Soil	MCPA (agr.)	kg	0.46
Soil	Parathion-ethyl (agr.)	kg ka	500
Soil	Cyanazine (ind.)	kg	3000
Soil	Glyphosate (ind.)	kg	3.7
Air Soil	Carbaryl Pyrazophos (agr.)	kg ka	110 250
Water	hexachloro-1,3-butadiene	kg	45000
Air	phenanthrene	kg	1.3
Soil	benzene (agr.) chrysene (ind.)	kg ka	0.00072
Water	Chlordane (sea)	kg	31
Water	Dimethoate (sea)	kg	0.0000074
vvater	lprodione (sea) dioxin (TEO) (agr.)	kg ka	3.8E-09 120000
Soil	phenanthrene (ind.)	kg	1.2
Water	Carbaryl	kg	4500
Soll Water	Desmetryn (agr.) fluoranthene (sea)	kg ka	3 0.87
Water	Bifenthrin (sea)	kg	0.055
Water	1,2,3,4-tetrachlorobenzene	kg	16
vvater Soil	Heptenophos (sea) Dinoseb (ind.)	kg ka	0.0013
Air	cypermethrin	kg	84000
Soil	Heptenophos (ind.)	kg	120
Air Soil	1-chloro-4-nitrobenzene Malathion (ind.)	kg	11 650
Soil	para-xylene (agr.)	kg	0.0014
Water	1,4-dichlorobenzene (sea)	kg	0.0011
Air Soil	chrysene acrolein (ind)	kg ka	39 45000
Air	Glyphosate	kg	22
Water	Glyphosate	kg	1400
vvater	2,3,4,6-tetrachiorophenol (sea)	кg	0.0013
Water	1,2,3-trichlorobenzene (sea)	kg	0.0039
Soil	Chlorothalonil (ind.)	kg	3.7
Soil	Methabenzthiazuron (ind.)	kg	140
Water	1,2-dichlorobenzene (sea)	kg	0.0013
Soil	naphtalene (ind.)	kg	12 1 1E-10
Soil	Dinoseb (agr.)	kg	20000
Soil	diisooctylphthalate (ind.)	kg	0.0025
Soil	methylbromide (ind.)	kg	0.14
Soil	Aldicarb (agr.)	kg	96000
Soil	Endrin (agr.)	kg	21000
Air	Heptenophos Folgot (ind.)	kg	120
Air	Chlorpropham	kg	2.3
Water	2,4-dichlorophenol (sea)	kg	0.00029
Soil	Diuron (ind.) Acephate (agr.)	kg ka	1100 51
Soil	1,1,1-trichloroethane (agr.)	kg	0.00037
Soil	chlorobenzene (agr.)	kg	0.0032
Water	I riazophos	kg ka	170000
Water	Mo (sea)	kg	6.6E-19
Soil	fluoranthene (agr.)	kg	19
water Soil	Sb (sea) Fenthion (agr.)	kg ka	7.6E-21
Water	Oxamyl (sea)	kg	0.00000045
Water	Fenthion	kg	910000
water Water	ethene (sea) Bentazon (sea)	kg ka	1E-12 7 4E-00
Water	Fentin hydroxide (sea)	kg	0.029
Air	1,2,4,5-tetrachlorobenzene	kg	0.073
vvalei	Gu (sea)	ĸy	4.1E-20

Impact category	x Fresh water aquatic	kg 1,4-DB eq	
Soil	Mevinfos (ind.)	ka	1500
Soil	chrysene (agr.)	kg	74
Water	1,2,3,5-tetrachlorobenzene	kg	14
Water	Iprodione Ethoprophos	kg	160
Water	diisodecvlphthalate (sea)	ka	0.038
Water	methyl-mercury	kg	39000
Air	dinoseb	kg	10000
Soil	2,4,5-1 (Ind.) Methomyl (ind.)	kg ka	28000
Soil	Triazophos (agr.)	kg	5800
Water	diisodecylphthalate	kg	86
Soil	Cyromazine (agr.)	kg	6500
50II Water		kg ka	4400 1 2E-18
Soil	ethylbenzene (ind.)	kg	0.0018
Water	propylene oxide (sea)	kg	0.00044
Soil	vanadium (agr.)	kg	4700
Water	Dichlorprop (sea)	kg	1.6E-12 19000
Water	thallium	ka	8000
Water	Chlorothalonil (sea)	kg	0.14
Water	Triazophos (sea)	kg	0.079
Alf Wator	3-chioroaniline	kg kg	100
Soil	bifenthrin (ind.)	ka	410
Water	tetrachloromethane (sea)	kg	0.00019
Water	4-chloroaniline (sea)	kg	0.011
Vvater Soil	Parathion-ethyl	kg	1200000
Air	Chlorpyriphos	ka	520
Soil	ethylene (agr.)	kg	1.1E-09
Soil	pentachloronitrobenzene	kg	15
Soil	(agr.) Folget (agr.)	ka	4500
Soil	anthracene (ind.)	kg	320
Air	Parathion-methyl	kg	990
Air	Lindane	kg	52
Water	trichloroethene (sea)	kg ka	0.000016
Soil	Heptachlor (agr.)	ka	2.3
Soil	Dimethoate (agr.)	kg	8.9
Water	Glyphosate (sea)	kġ	2.1E-11
Vvater Soil	3,4-dichloroaniline (sea)	kg	0.0012
Soil	Metolachlor (agr.)	ka	1900
Soil	Dichlorprop (ind.)	kg	0.051
Soil	1,4-dichlorobenzene (ind.)	kg	0.014
50II Water	Linuron (sea)	kg ka	94
Air	Metobromuron	kg	49
Soil	toluene (agr.)	kg	0.0011
Water	styrene (sea)	kg	0.00001
All Water	Chloridazon (sea)	kg ka	0 0035
Soil	Dichlorprop (agr.)	kg	0.013
Water	Ethoprophos (sea)	kg	1
Soil	phenol (ind.)	kg	13
Air	Chlordane	kg ka	270
Soil	Fentin acetate (agr.)	kg	380
Water	Metamitron (sea)	kg	6.8E-10
Water	Methabenzthiazuron	kg	1100
Soil	Pyrazophos (ind.)	ka	990
Soil	4-chloroaniline (ind.)	kg	490
Air	4-chloroaniline	kg	2
50II Air	Acephate	kg ka	4200
Water	naphtalene	kg	660
Air	Metolachlor	kg	1500
Water	benzylchloride (sea)	kg	0.011
Air	Deltamethrin	ka	1800
Soil	anilazine (ind.)	kg	0.86
Soil	Dinoterb (ind.)	kg	1300
Soil	Coumaphos (agr.)	kg	1000000
Air	anilazine	ka	10
Water	1,2-dichloroethane (sea)	kg	0.00088
Soil	tetrachloromethane (agr.)	kg	0.00056
Soil Water	tributyltinoxide (ind.)	kg	4200 5 65-23
Water	dioxins (TEQ) (sea)	ka	130000
Water	naphtalene (sea)	kg	0.011
Soil	Propoxur (ind.)	kg	54000
50II Air	Ethoprophos	kg ka	2400
Soil	diethylphthalate (ind.)	kg	0.63
Soil	Pirimicarb (ind.)	kg	5200
Water	Metazachlor (sea)	kg	0.000003
Water	3-chloroaniline (sea)	ka	0.099 0.000037
Water	p-xylene	kg	0.55
Water	butylbenzylphthalate (sea)	kg	0.000032
Water	V (sea)	kg	2.4E-18
Water	Chiordane Cd (sea)	ka ka	90000 2 5E-20
Soil	acrylonitrile (agr.)	kg	6.5
Soil	Co (agr.)	kġ	1700
Soll	butylbenzylphthalate (ind.)	kg	0.1
Soil	Endrin (ind.)	ka	0.026
Water	benzo(ghi)perylene	kg	52000
Water	methyl-mercury (sea)	kġ	160
Soll	Carbendazim (ind.)	кq	6100

Impact category	x Fresh water aquatic	kg 1,4-DB eq	
Air	2,4,5-trichlorophenol	kg	15
Water	ethylene oxide (sea)	kg	0.0038
Soil	Propoxur (agr.)	kg	20000
Water	Dol (sea) Deltamethrin (sea)	ka	3.2
Water	benzene (sea)	kg	0.0000092
Soil	antimony (agr.)	kg	10
Soil	disooctylphthalate (agr.)	kg	0.00062
Water	dioctylphthalate (sea)	ka	0.00014
Water	Chlorpropham (sea)	kg	0.000028
Air	Pyrazophos	kg	180
Air	I riazopnos Oxydemethon-methyl	kg ka	3300 2400
Soil	dioctylphthalate (agr.)	kg	0.000042
Soil	Oxamyl (ind.)	kg	120
Soil	pentachlorophenol (agr.)	kg	0.33
Soil	Chloridazon (ind.)	ka	2400
Water	Endosulfan (sea)	kg	0.021
Soil	propylene oxide (agr.)	kg	0.42
Soil	Atrazine (ind.)	kg	930
Soil	2.4-dichlorophenol (agr.)	ka	2.5
Water	benzo(k)fluoranthrene	kg	1200000
Water	Chlorfenvinphos (sea)	kg	0.000056
Soil	Metamitron (ind.)	kg	1.5
Water	o-xvlene	ka	0.56
Water	Fenitrothion (sea)	kg	0.0099
Water	Coumaphos (sea)	kg	110
Water	Ni (sea)	kg ka	6.1E-19
3011	(agr.)	ĸġ	90
Soil	PAH (carcinogenic) (agr.)	kg	58
Soil	Cyanazine (agr.)	kg	810
Soil	ZINED (agr.)	kg ka	370 0.0018
Soil	hexachloro-1,3-butadiene	kg	70
	(agr.)	•	
Soil	Azinphos-methyl (ind.)	kg	800
Alf Water	Tri-allate (sea)	kg ka	0.4
Water	pentachlorophenol (sea)	kg	0.000012
Water	Mecoprop (sea)	kg	3.8E-10
Soil	dimethylphthalate (ind.)	kg	0.029
vvater	(sea)	кg	0.038
Water	Methabenzthiazuron (sea)	kg	0.000092
Soil	Tolclophos-methyl (agr.)	kg	3.1
Soil	Aldicarb (ind.)	kg	96000
Soil	hexachloro-1.3-butadiene	kg ka	47 84
	(ind.)		01
Soil	hexachlorobenzene (agr.)	kg	3.2
Soil	vanadium (ind.)	kg	4700
Soil	trichloroethene (agr.)	kg ka	0 00046
Soil	DDT (agr.)	kg	87
Water	Captafol (sea)	kg	0.00005
Water	Methomyl (sea)	kg	0.0085
Water	phthalic anhydride	kg ka	90
Soil	1,2-dichloroethane (agr.)	kg	0.00075
Water	diethylphthalate	kg	34
Soil	Cu (agr.)	kg	590
Soil	Benomyl (ind)	kg ka	0.0000038
Water	Permethrin	kg	5000000
Soil	1,2,3,4-tetrachlorobenzene	kg	0.028
۸:-	(agr.)	1.0	220
Air	indeno[1.2.3-cd]pyrene	кg ka	230
Water	Folpet	kg	82000
Soil	Cr (III) (agr.)	kg	5.3
Air	2,3,4,6-tetrachlorophenol	kg	80
Soil	Chioridazon (agr.)	kg ka	1.8
Soil	Fentin hydroxide (agr.)	kg	380
Water	Parathion-methyl (sea)	kg	0.12
Air	methomyl	kg	14000
Soil	meta-xylene (ind)	kg ka	260000
Water	Deltamethrin	kg	650000
Soil	Dimethoate (ind.)	kg	28
Water	1-chloro-4-nitrobenzene	kg	1.9
Water	methylbromide	kg	19
Water	PAH (sea)	kg	0.12
Soil	Oxydemethon-methyl (ind.)	kg	3600
Water	1.2.4-trichlorohenzene (sea)	ka	1 0 0044
Water	1,3-dichlorobenzene	kg	1.2
Soil	benzo[k]fluoranthrene (agr.)	kg	5200
Soil	3,4-dichloroaniline (ind.)	kg	4000
Water	Dinoseb	ka	7.9E-18 320000
Air	anthracene	kg	140
Water	Mevinfos (sea)	kg	0.000069
Soll Water	I riazophos (ind.)	kg	19000
Water	tributyltinoxide (sea)	ka	1900
Water	1,3-dichlorobenzene (sea)	kg	0.0011
Water	HF (sea)	kg	0.0022
vvater Air	Azınphos-methyl (sea) Bifenthrin	kg	0.00011
7.41	Dionum	' '9	620

Impact category	x Fresh water aquatic	kg 1,4-DB eq	
Air	diethvlphthalate	ka	0.42
Soil	Aldrin (ind.)	kg	290
Water	diethylphthalate (sea)	kg	0.000079
Water	2,4,5-1 Hg (sea)	ka	6.8
Water	Cypermethrin (sea)	kg	2.4
Soil	trichloromethane (agr.)	kg	0.00047
Soil	Mecoprop (ind.)	kg ka	0.0000053
Air	Iprodione	kg	2.8
Water	Chlorpyriphos	kg	640000
Soil	Chlordane (ind)	kg ka	4.0 370
Soil	3-chloroaniline (agr.)	kg	74
Soil	Ni (agr.)	kg	1700
Soli Water	Fentnion (ind.)	kg ka	14000
Soil	1,2,3-trichlorobenzene (agr.)	kg	0.023
Soil	tin (agr.)	kg	6.9
Water	Captatol Cr (VI) (sea)	kg	540000 3 5E-22
Soil	benzo[a]anthracene (ind.)	kg	250
Water	Chlorfenvinphos	kg	1100
Water	Indeno[1,2,3-cd]pyrene	kg	0.00074
Air	tri-allate	kg	61
Soil	Trichlorfon (ind.)	kg	18000
Air	2 4 5-T	kg	0.37
Soil	selenium (ind.)	kg	1500
Air	1,2,3,5-tetrachlorobenzene	kg	0.073
Water	dibutylphthalate (sea)	kg	0.000029 8.8E-23
Water	benzo(a)pyrene (sea)	kg	0.28
Air	chlorobenzene	kg	0.00047
Soil	Fentin chloride (agr.)	kg	250
Water	chrysene (sea)	kg	0.26
Soil	1,2,3,5-tetrachlorobenzene	kg	0.19
Soil	(ind.)	ka	0.14
Water	Parathion-ethyl (sea)	ka	0.14
Soil	Pirimicarb (agr.)	kg	1700
Water	Pyrazophos	kg	49000
Water	trichloromethane (sea)	ka	0.02
Air	Captafol	kg	20000
Soil	Propachlor (ind.)	kg	64 1100
Soil	Fentin chloride (ind.)	ka	990
Soil	thallium (ind.)	kg	4200
Air	Fentin hydroxide	kg	4200
501	(agr.)	ĸg	0.083
Air	Desmetryn	kg	6.8
Soil	Iprodione (agr.)	kg	0.23
Air	MCPA	kg ka	2400
Soil	Tri-allate (agr.)	kg	50
Soil	dioctylphthalate (ind.)	kg	0.00017
Water	vinvl chloride (sea)	ka	0.0000014
Water	Fentin hydroxide	kg	270000
Soil	gamma-HCH (Lindane)	kg	370
Soil	(ind.) butvlbenzvlphthalate (agr.)	ka	0.025
Air	coumaphos	kg	240000
Soil	Isoproturon (ind.)	kg	400
Water	phenol (sea)	ka	0.000017
Water	Diazinon (sea)	kg	0.064
Water	diisooctylphthalate	kg	21
Water	Captan (sea)	kg ka	0.0000065
Water	Cyromazine (sea)	kg	0.0000081
Air	3,4-dichloroaniline	kg	1700
Soil	Trichlorfon (agr.)	kg ka	3300
Soil	Chlorpyriphos (agr.)	kg	360
Soil	Desmetryn (ind.)	kg	11
Water	pentachloronitrobenzene	kg	11
Soil	2,4,5-trichlorophenol (ind.)	kg	99
Water	Anilazine (sea)	kg	0.00000011
vvater	(sea)	кg	0.03
Air	dioctylphthalate	kg	0.016
Air	1,2,3,4-tetrachlorobenzene	kg	0.1
Soil	1.2-dichlorobenzene (agr.)	ny ka	1.8 0.019
Soil	Diazinon (agr.)	kġ	1300
Soil	methyl-mercury (agr.)	kg	19000
Water	i,z-uichioropenzene Be (sea)	ny ka	0.0029 1 6F-16
Soil	di(2-ethylhexyl)phthalate	kg	0.0015
A :-	(agr.)	len.	
Air Soil	vietazachior 2-chlorophenol (ind)	кy ka	7.4 31
Water	HF	kg	19
Water	Tolclophos-methyl (sea)	kg	0.029
Soil	Chiorpropham (Ind.) Co (ind.)	ny ka	ษ์.4 1700
Water	Metazachlor	kg	150
Soil	Fentin acetate (ind.)	kg	1500
Water	1,3,5-trichlorobenzene (sea)	kg	26000

Impact category	x Fresh water aquatic	kg 1,4-DB eq	
Soil	Dinoterb (agr.)	kg	330
Air	Disulfothon	kg	27
Water	phthalic anhydride (sea)	kg	4.6E-11
Soil	Tolclophos-methyl (ind.)	kg ka	9.2
Water	Desmetryn	kg	190
Water	Chlorothalonil	kg	370
Water	Pirimicarb formaldehyde (sea)	kg ka	36000
Soil	Linuron (agr.)	kg	690
Soil	1-chloro-4-nitrobenzene	kg	150
Watar	(agr.)	1.0	1000
Soil	z,4,5-thchiorophenoi tributyltinoxide (agr.)	kg ka	1100
Water	Azinphos-ethyl (sea)	kg	0.041
Water	Chloridazon	kg	31
Water Air	Phoxim Captan	kg ka	2600
Soil	Phoxim (agr.)	kg	4.4
Water	Tri-allate	kg	49000
Air	benzo(k)fluoranthrene	kg	3900
Soil	2,4,5-1 (sea) beryllium (ind.)	ka	46000
Soil	Carbaryl (agr.)	kg	23
Soil	Captan (ind.)	kg	4.7
Soil	beryllium (agr.)	kg	46000
Water	Endrin (sea)	kg	6.1
Water	Metolachlor	kg	38000
Water	Aldrin (sea)	kg	1.3
Water	Se (sea)	kg ka	0.0022 7 4F-18
Air	Chlorothalonil	kg	2.5
Soil	Propachlor (agr.)	kg	17
Air	cyromazine	kg	3500
Water	ethene	ka	0.022
Water	1,1,1-trichloroethane (sea)	kg	0.000071
Soil	ortho-xylene (agr.)	kg	0.0025
Air	Propoxur Fenitrothion	kg ka	25000
Water	di(2-ethvlhexvl)phthalate	ka	0.0016
	(sea)	5	
Water	Carbendazim (sea)	kg	0.00000024
Soli Air	Heptenopnos (agr.)	kg ka	31 40
Soil	Endosulfan (ind.)	kg	9
Soil	Coumaphos (ind.)	kg	3100000
Soil	Phtalic anhydride (ind.)	kg	0.000031
Water	acrylonitrile (sea)	kg ka	0.006
Water	Coumaphos	kg	20000000
Soil	Cr (VI) (agr.)	kg	21
Water	hexachloro-1,3-butadiene	кg	23
Soil	Trifluarin (ind.)	kg	160
Soil	DDT (ind.)	kg	340
Water	Zineb (sea)	kg	0.0036
Water	Simazine (sea)	kg ka	240000
Air	Aldicarb	kg	51000
Soil	Cypermethrin (agr.)	kg	200000
Water	3,4-dichloroaniline	kg	19000
Soil	barium (ind.)	kg ka	110
Air	cyanazine	kg	1900
Soil	Tri-allate (ind.)	kg	200
Soil	1,2,3,4-tetrachlorobenzene	kg	0.1
Water	Metolachlor (sea)	ka	0.07
Soil	Phtalic anhydride (agr.)	kg	0.000048
Water	Linuron	kg	31000
Alf Water	Acenhate	kg ka	32 1100
Water	Tolclophos-methyl	kg	500
Soil	1,2,4,5-tetrachlorobenzene	kg	0.025
Wator	(agr.)	ka	0 000072
Soil	1.3-dichlorobenzene (ind.)	ka	0.000072
Water	Endosulfan	kg	28000
Soil	Demeton (ind.)	kg	2600
Alf Water	Benomyl	kg ka	30
Soil	DNOC (ind.)	kg	4.5
Air	Chloridazon	kg	0.026
Water	Carbofuran (sea)	kg	0.00018
Soil	Zn (agr.)	ka	230
Air	Folpet	kg	410
Soil	Chlorfenvinphos (agr.)	kg	16
water	1,2,4,5-tetrachiorobenzene	ky ka	13 0.0067
Water	Benomyl (sea)	kg	0.00000089
Air	Azinphos-ethyl	kg	290
Soil	Methabenzthiazuron (agr.)	kg	44
Water	r,3-aichiofobenzeñe cvanazine	ny ka	0.0024
Water	2-chlorophenol	kg	1600
Soil	Endosulfan (agr.)	kg	2.2
AII Soil	allsooctylphthalate	кg ka	0.12
Water	Zn (sea)	kg	1.8E-21
Air	methyl-mercury	kġ	7300
Soil	Diazinon (ind.)	kg	4600
Water	antinacene (sea) acrolein	kg	250000

Impact category	x Fresh water aquatic	kg 1,4-DB eq	
Water	anthracene	kg	57000
Air	Phoxim	kg	0.44
Soil	Chlorfenvinphos (ind.)	kg	0.0024
Soil	Trifluarin (agr.)	kg	40
Soil Water	hydrogen fluoride (agr.) Ba (sea)	kg ka	9.4 2.4E-19
Soil	Permethrin (ind.)	kg	3700
Soil	Fentin hydroxide (ind.)	kg	1500
Soil	2,3,4,6-tetrachlorophenol	kg	32
W/oton	(agr.)	len.	0.017
Water	MCPA	kg	0.017
Water	2,3,4,6-tetrachlorophenol	kg	5200
Soil Water	3,4-dichloroaniline (agr.)	kg ka	1800 29000
Soil	selenium (agr.)	kg	1500
Water	Malathion (sea)	kg ka	0.018
Soil	PAH (carcinogenic) (ind.)	kg	230
Water	Heptachlor	kg	18000
Water	indeno[1,2,3-cd]pyrene	kg	77000
Water	chlorobenzene	kg	0.36
Soil	benzo(a)pyrene (agr.)	kg ka	1800
Water	Heptachlor (sea)	kg	0.039
Water	Oxydemethon-methyl Atrazine (sea)	kg ka	70000
Soil	naphtalene (agr.)	kg	3.8
Soil	pentachlorobenzene (agr.)	kg	0.59
Water	Propachlor	kg	1200
Water	1,3-butadiene (sea)	kg	0.00000056
Air	dinoterb	kg ka	2900
Water	pentachlorobenzene (sea)	kg	0.24
Water Water	DNOC (sea) Propachlor (sea)	kg ka	0.000000021
Soil	Carbofuran (agr.)	kg	580
Water	Fentin chloride	kg	170000
Water	Fenitrothion	kg	240000
Soil	Disulfoton (ind.)	kg	290
Soil	benzo[ghi]perylene (ind.)	kg	240
Soil	Captafol (ind.)	kg	83000
Air Water	2,4-dichlorophenol phenanthrene (sea)	kg ka	1.4 0.058
Soil	Carbaryl (ind.)	kg	120
Air Soil	diisodecylphthalate	kg ka	0.56
Soil	1,2-dichlorobenzene (ind.)	kg	0.019
Water	2,4,6-trichlorophenol (sea)	kg	0.00024
Soil	ethylene oxide (agr.)	kg	0.79
Water	MCPA (sea)	kg	5.3E-13
Vvater Air	pentachioronitrobenzene Isoproturon	kg ka	4000 190
Water	Disulfothon	kg	64000
Air Soil	benzo(ghi)perylene	kg ka	44 0.00016
Soil	diisodecylphthalate (ind.)	kg	0.018
Water	ethyl benzene (sea)	kg	0.0000094
Water	Diuron (sea)	kg	0.0012
Soil	Parathion-methyl (agr.)	kg	1100
Water	Dichlorprop	kg	5.3
Water	dioctylphthalate	kg	2.8
Soil	Isoproturon (agr.) formaldebyde (agr.)	kg ka	170 15
Soil	Methomyl (agr.)	kg	14000
Water	Zineb Hentenophos	kg ka	28000 22000
Soil	hydrogen fluoride (ind.)	kg	9.4
Soil	dihexylphthalate (agr.)	kg	0.018
Soil	indeno[1,2,3-cd]pyrene	kg	360
	(ind.)		- /
vvater Soil	chlorobenzene (ind.)	kg ka	51 0.0032
Soil	ortho-xylene (ind.)	kg	0.0025
Soil	Heptachlor (ind.) Glyphosate (agr.)	kg ka	8.9 0.92
Water	Dimethoate	kg	170
Water	As (sea)	kg	3.8E-20
Soil	1,2,4,5-tetrachlorobenzene	kg	0.09
Wotor	(ind.)	ka	0.00004
Water	acrolein (sea)	kg	0.00001
Water	benzo(a)anthracene (sea)	kg	1.1
vvater Soil	benomyi tin (ind.)	kg	6800 6.9
Soil	para-xylene (ind.)	kg	0.0014
Soil	Oxydemethon-methyl (agr.)	kg ka	970 0.014
Soil	dimethylphthalate (agr.)	kğ	0.0074
Water Water	tetrachloroethene (sea)	kg ka	0.0002
Air	dimethylphthalate	kg	0.052
Water	Desmetryn (sea) Demeton	kg ka	0.0000041
Soil	carbon disulfide (agr.)	kg	0.34

Impact category	x Fresh water aquatic ecotox.	kg 1,4-DB eq	
Soil	Ethoprophos (ind.)	ka	30000
Water	Azinphos-ethyl	ka	270000
Water	chlorobenzene (sea)	ka	0.00026
Soil	1 1 1-trichloroethane (ind)	ka	0.00020
Soil	Chlorpropham (agr.)	kg	1.8
Wator	dichloromothana (soa)	kg	0.00005
Air	Corbofuron	kg	0.000005
A.:-	dimetheate	kg	900
All		kg	13
All	Endosulian	кg	45
Soli	(ind.)	kg	150
Soil	4-chloroaniline (agr.)	kg	170
Water	Isoproturon (sea)	kg	0.000029
Water	Dinoterb	kg	230000
Soil	phenanthrene (agr.)	kg	0.29
Soil	2,4,5-trichlorophenol (agr.)	kg	28
Soil	1,3-butadiene (agr.)	kg	0.000057
Soil	Metobromuron (agr.)	kg	95
Water	1,1,1-trichloroethane	kg	0.11
Soil	pentachloronitrobenzene (ind.)	kg	58
Water	Lindane (sea)	kg	0.11
Water	Chlorpropham	kg	83
Water	tributyltinoxide	kg	450000
Soil	Mo (ind.)	kg	260
Water	Diazinon	ka	110000
Water	Captan	kg	2100
Soil	Hg (agr.)	kg	850
Water	cvanazine (sea)	kg	0.0000025
Soil	vinvl chloride (agr.)	ka	0.000064
Soil	Cypermethrin (ind.)	kg	690000
Water	Eentin acetate (sea)	ka	0.087
Water	dihexylphthalate (sea)	kg	0.011
Water	methylbromide (sea)	ka	0.0023
Water	1.2-dichlorobenzene	kg	0.0020
Water	1.2.4.5-totrachlorohonzono	kg	0.020
valor	(sea)	ĸġ	0.023
Air	Heptachlor	ka	1.4
Soil	Phoxim (ind.)	kg	7.9
Water	Dieldrin (sea)	ka	16
Soil	Metobromuron (ind.)	ka	95
Water	Pyrazophos (sea)	ka	0.0023
Soil	Deltamethrin (agr.)	kg	0.0023
Soil	Mo (agr.)	kg	24
Wator	Endrin	kg	700000
Air	Trichlorfon	kg	13000
Soil	2.4.6 triphlorophonol (ogr.)	kg	1.2
30II Wotor	2,4,0-tricritoroprienti (agr.)	kg	12000
Air	Eanthian	kg	13000
Motor		kg	2300
vvalei Soil	4-chioroaniline	kg	3100
Soli	ACIDIEITI (agr.)	ky	45000
SUII	IVICEA (ING.)	кg	1.7
water	carbon disulfide (sea)	kg	0.0065
water	Dinuterb (sea)	ĸg	0.042
vvater	Oxydemethon-methyl (sea)	кg	0.0003
vvater	2,4-aichlorophenol	кg	170
Soil	Disultoton (agr.)	kg	72
Water	butylbenzylphthalate	kg	76

B1.6 TERRESTRIAL ECOTOXICITY

Impact category	x Terrestrial ecotoxicity	kg 1,4-DB eq	
Air	1,1,1-trichloroethane	kg	0.00018
Air	1,2,3-trichlorobenzene	kg	0.075
Air	1,2,4-trichlorobenzene	kg	0.0088
Air	1,2-dichloroethane	kg	0.000026
Air	1,3,5-trichlorobenzene	kg	0.0019
Air	1,3-butadiene	kg	0.00000023
Air	2,4,6-trichlorophenol	kg	0.32
Air	2,4-D	kg	0.6
Air	acrolein	kg	16
Air	acrylonitrile	kg	0.008
Air	Aldrin	kg	0.014
Air	As	kg	1600
Air	Atrazine	kg	2
Air	Azinphos-methyl	kg	0.19
Air	Ва	kg	4.9
Air	Ве	ka	1800
Air	Bentazon	kg	0.25
Air	benzene	kg	0.000016
Air	benzo(a)anthracene	ka	0.23
Air	benzo(a)pyrene	kg	0.24
Air	benzvlchloride	ka	0.0017
Air	Carbendazim	kg	20
Air	Cd	kg	81
Air	cobalt	kg	110
Air	Cr (III)	kg	3000
Air	Cr (VI)	kg	3000
Air	CS2	kg	0.0051
Air	Cu	kg	7
Air	di(2-ethylhexyl)phthalate	kg	0.00022
Air	dibutylphthalate	kg	0.0039
Air	dichloromethane	kg	0.0000043
Air	Dichlorvos	kg	9.8
Air	Dieldrin	ka	1.1
Air	dioxin (TEQ)	kg	12000
Air	Diuron	kg	8.7
Air	DNOC	ka	0.24
Air	ethene	kg	1.3E-12
Air	ethylbenzene	ka	0.0000014
Air	ethylene oxide	ka	0.0025
Air	Fentin-acetate	kg	5.3
Air	fluoranthene	kğ	0.018

mpact category	x Terrestrial ecotoxicity	kg 1,4-DB eq	
Air Air	formaldenyde heavy metals	kg ka	0.94 48.93
Air	hexachlorobenzene	kg	0.26
Air	HF	kg	0.0029
Alf Air	Hg m-yylene	kg	28000
Air	Malathion	kg	0.00000000
Air	Mecoprop	kg	1.8
Air Air	Metabenzthiazuron	kg	0.45 48 93
Air	Metamitron	kg	0.019
Air	methyl bromide	kg	0.013
Air	Mevinfos	kg	43
Air	naphthalene	kg ka	0.00082
Air	Ni	kg	120
Air	o-xylene	kg	0.0000013
Air	P-xylene PAH's	kg ka	0.00000053
Air	Pb	kg	16
Air	pentachlorophenol	kg	2.3
Alf Air	phenol phthalic acid anhydride	kg	0.0033
Air	propyleneoxide	kg	0.0015
Air	Sb	kg	0.61
Air Air	Se Simazine	kg	53
Air	Sn	kg	14
Air	styrene	kg	0.0000014
Air	tetrachloroethene	kg	0.0081
Air	Thiram	ka	32
Air	ТІ	kg	340
Air	toluene	kg	0.000016
Air	trichloromethane	kg ka	0.000047
Air	Trifluralin	kg	0.017
Air	V	kg	670
AIF Air	vinyl chloride Zn	kg	0.0000026
Nater	1,2,3-trichlorobenzene	kg	0.073
Vater	1,2,4-trichlorobenzene	kg	0.0085
Nater Nator	1,2-dichloroethane	kg	0.000026
Nater	1,3-butadiene	kg	0.00000021
Nater	2,4,6-trichlorophenol	kg	0.00067
Nater	2,4-D	kg	9.3E-10
Nater	Aldrin	kg ka	0.0039
Water	As	kg	1E-17
Nater Notor	Atrazine	kg	0.00076
Nater	Azinphos-methyl Ba	kg ka	5.1E-19
Water	Be	kg	3.3E-16
Nater	Bentazon	kg	0.0000018
/vater Nater	benzene benzo(a)anthracene	kg ka	0.000014
Vater	benzo(a)pyrene	kg	0.0025
Nater	benzylchloride	kg	0.00083
Nater Nater	Carbendazim	kg	0.000000063 1.4E-20
Vater	Co	kg	2.7E-18
Vater	Cr (III)	kg	2.3E-19
Nater Nator	Cr (VI)	kg	2.3E-19
Vater	di(2-ethylhexyl)phthalate	kg	0.0000066
Vater	dibutylphthalate	kg	0.000013
Nater Nator	dichloromethane Dichloryos	kg	0.0000039
Nater	Dieldrin	kg	0.26
Vater	dioxins (TEQ)	kg	590
Nater Notor	Diuron	kg	0.0017
Nater	ethvl benzene	ka	0.0000085
Vater	ethylene oxide	kg	0.0018
Nater Notor	fluoranthene	kg	0.0049
Nater	hexachlorobenzene	ka	0.0016
Water	Hg	kg	930
Nater	Malathion	kg	0.000011
/vater Nater	metallic ions	kg ka	0.000000011 5 754E-21
Vater	Metamitron	kg	8.5E-10
Nater	Mevinfos	kg	0.000023
/vater Nater	Ni	kg	2.3E-18 1F-18
Vater	PAH's	kg	0.0021
Nater	Pb	kg	4.8E-22
water Nater	pentachiorophenol	кy ka	0.00032
Water	propylene oxide	kg	0.00065
Water	Sb	kg	1.7E-20
/vater Nater	Se Simazine	kg ka	1.6E-17
Water	Sn	kg	7.9E-22
Nater	styrene	kg	0.00000013
Nater Nator	tetrachloroethene	kg	0.0079
Water	Thiram	kg	0.0047
Nater	toluene	kg	0.000014
Nater Nater	trichloroethene	kg	0.0000046
Water	Trifluralin	ka	0.000039 0.013
Water	V	kġ	1E-17
Nater Nater	vinyl chloride	kg	0.0000026
Soil	1,2,3-trichlorobenzene (ind.)	kg	2.5E-21 8
		-	

1

Impact category	x Terrestrial ecotoxicity	kg 1,4-DB eq	0.00
Soil	1,2,4-trichlorobenzene (ind.)	kg ka	0.99
Soil	1,3,5-trichlorobenzene (ind.)	kg	0.22
Soil	1,3-butadiene (ind.)	kg	0.00031
Soil	2,4,6-inchiorophenoi (ind.) 2,4-D (agr.)	kg ka	0.68
Soil	acrylonitrile (ind.)	kg	2.1
Soil	Aldrin (agr.)	kg	20
Soil	Atrazine (agr.)	kg	6.6
Soil	Azinphos-methyl (agr.)	kġ	0.97
Soil Soil	Bentazon (agr.)	kg ka	0.59
Soil	benzo(a)pyrene (ind.)	kg	23
Soil	benzylchloride (ind.)	kg	0.71
Soil Soil	Carbendazim (agr.)	kg ka	49 170
Soil	Cd (ind.)	kg	170
Soil	Cr (III) (ind.)	kg	6300
Soil	Cr (VI) (ind.)	kg ka	6300 14
Soil	di(2-	kg	0.0014
0.11	ethylhexyl)phthalate(ind)	-	
Soil	dibutyiphthalate (Ind.)	kg ka	0.023
Soil	Dichlorvos (agr.)	kg	200
Soil	Dieldrin (agr.)	kġ	110
Soil	dioxin (TEQ) (ind.)	kg ka	27000
Soil	DNOC (agr.)	kg	0.52
Soil	ethylene oxide (ind.)	kġ	0.19
Soil	fluoranthene (ind.)	kg	2.3
Soil	gamma-HCH (Lindane)	kg	23
	(agr.)		
Soll	nexachlorobenzene (ind.) Ha (ind.)	kg ka	3
Soil	Malathion (agr.)	ka	0.076
Soil	Mecoprop (agr.)	kg	4.7
Soil	Metamitron (agr.)	kg	0.042
Soil	Ni (ind.)	ka	240
Soil	Pb (ind.)	kğ	33
Soil	pentachlorophenol (ind.)	kg	4.8
Soil	Simazine (agr.)	ka	29
Soil	styrene (ind.)	kg	0.0012
Soil	tetrachloroethene (ind.)	kg	0.3
Soil	Thiram (agr.)	ka	51
Soil	toluene (ind.)	kg	0.019
Soil	trichloroethene (ind.)	kg	0.0021
Soil	vinvl chloride (ind.)	kg ka	0.0016
Soil	Zn (ind.)	kg	25
Soil	phenol (agr.)	kg	0.045
50ll Water	Bentazon (Ind.) Fentin chloride (sea)	kg ka	0.5
Water	dihexylphthalate	kg	0.00026
Soil	Zineb (ind.)	kg	15
Soll Water	Iprodione (ind.) Fentin acetate	kg ka	0.3 0.0061
Soil	Metolachlor (ind.)	kg	0.41
Soil	diethylphthalate (agr.)	kg	2.1
vvater Soil	Aldicarb Fenitrothion (ind.)	kg ka	0.19 81
Air	DDT	kg	19
Water	carbon disulfide	kg	0.0048
Soil	1.3.5-trichlorobenzene (agr.)	kg ka	0.00022
Soil	2-chlorophenol (agr.)	kg	0.38
Air	Propachlor	kg	0.54
50ll Water	Captan (agr.) toluene (sea)	kg ka	0.041
Soil	2,4-dichlorophenol (ind.)	kg	0.54
Air	Parathion-ethyl	kg	1.1
Soil	barium (agr.)	ka	0.0014
Water	m-xylene	kg	0.0000006
Water	Parathion-methyl	kg	0.034
Soil	Demeton (agr.)	kg ka	0.0007
Water	Cypermethrin	kg	16
Soil	ethylene (ind.)	kg	2.3E-09
Water	Acephate (sea)	ka	5.3E-10
Soil	1,3-dichlorobenzene (agr.)	kg	0.062
Soil	benzylchloride (agr.)	kg	0.8
Air	tributyltinoxide	kg ka	5.9 17
Water	Pirimicarb (sea)	kg	0.000017
Water	Methomyl	kg	0.0022
Air	hexachloro-1.3-butadiene	kg	0.00037 4.2
Soil	As (agr.)	kġ	3300
Soil	2,3,4,6-tetrachlorophenol	kg	0.97
Water	Dinoseb (sea)	ka	0 001
Water	Folpet (sea)	kğ	0.074
Soil Water	Metazachlor (agr.)	kg	0.17
Soil	anilazine (agr.)	kg	0.0000021
Soil	diisodecylphthalate (agr.)	kg	0.004
Soil	Dichlorvos (ind.)	kg	200
Water	Metobromuron	ng ka	0.0000005
Soil	Azinphos-ethyl (agr.)	kġ	220

mpact category	x Terrestrial ecotoxicity	kg 1,4-DB eq	0.0040
vvater Soil	carbon disulfide (ind.)	kg ka	0.0048
Water	Oxamyl	kg	0.0000071
Water	Chlorpyriphos (sea)	kg ka	0.000057
Air	2-chlorophenol	ka	0.15
Water	Fenthion (sea)	kg	0.0017
Air Soil	Tolclophos-methyl	kg ka	0.00034
Air	dihexylphthalate	kg	0.00078
Soil	MCPA (agr.)	kg	0.094
Soil	Chlorpyriphos (ind.)	kg ka	17
Soil	Cvanazine (ind.)	ka	63
Soil	Glyphosate (ind.)	kg	0.096
Air	Carbaryl	kg ka	0.063
Water	hexachloro-1.3-butadiene	ka	30
Air	phenanthrene	kg	0.00014
Soil	benzene (agr.)	kg ka	0.0034
Water	Chlordane (sea)	ka	4.5
Water	Dimethoate (sea)	kg	0.0000018
Water	Iprodione (sea)	kg	1.5E-10
Soil	phenanthrene (ind.)	ka	0.037
Water	Carbaryl	kg	0.00000026
Soil	Desmetryn (agr.)	kg	2.9
Water	Bifenthrin (sea)	ka	0.00059
Water	1,2,3,4-tetrachlorobenzene	kg	0.0093
Water	Heptenophos (sea)	kg	0.000024
Air	cypermethrin	kg	420 8900
Soil	Heptenophos (ind.)	kg	16
Air Soil	1-chloro-4-nitrobenzene Malathion (ind.)	kg	0.54
Soil	para-xvlene (agr.)	ka	0.0015
Water	1,4-dichlorobenzene (sea)	kg	0.0057
Air	chrysene	kg ka	0.22
Air	Glyphosate	ka	0.047
Water	Glyphosate	kg	2.2E-11
Water	2,3,4,6-tetrachlorophenol	kg	0.0000052
Water	(sea) 1.2.3-trichlorobenzene (sea)	ka	0.035
Soil	Chlorothalonil (ind.)	kg	0.61
Soil	Acephate (ind.)	kg	1.3
Water	1,2-dichlorobenzene (sea)	ka	0.00024
Soil	naphtalene (ind.)	kg	2.6
Water	2,4-D (sea) Diposob (agr.)	kg ka	1.8E-12
Soil	diisooctylphthalate (ind.)	kg	0.00055
Soil	methylbromide (ind.)	kg	0.37
Water	Demeton Aldicarb (agr.)	kg ka	0.012
Soil	Endrin (agr.)	kg	4200
Air	Heptenophos	kg	2.2
Soil	Folpet (ind.)	kg ka	78
Water	2,4-dichlorophenol (sea)	kg	0.0000062
Soil	Diuron (ind.)	kg	19
Soil	Acephate (agr.)	kg ka	1.7
Soil	chlorobenzene (agr.)	ka	0.12
Water	Triazophos	kg	0.039
Soil Water	dihexylphthalate (ind.)	kg ka	0.0073 2 95-18
Soil	fluoranthene (agr.)	kg	2.3
Water	Sb (sea)	kg	3E-20
50II Water	Penthion (agr.)	kg ka	0.00000023
Water	Fenthion	kg	0.088
Water	ethene (sea)	kg	9.9E-14
water Water	Eentazon (sea) Fentin hydroxide (sea)	kg ka	3.3E-10 0.000038
Air	1,2,4,5-tetrachlorobenzene	kg	0.24
Water	Cu (sea)	kg	2.5E-20
soll Soil	ivievintos (ind.) chrysene (agr.)	ку ka	90 ⊿ 6
Water	1,2,3,5-tetrachlorobenzene	kg	0.17
Water	Iprodione	kg	0.00000044
Water Water	Ethoprophos diisodecylohthalate (sea)	kg ka	0.24 0.000064
Water	methyl-mercury	kg	930
Air	dinoseb	kg	97
Soil	Z,4,5-1 (Ind.) Methomyl (ind.)	kg ka	220
Soil	Triazophos (agr.)	kg	250
Water Soil	disodecylphthalate	kg ka	0.00038
Soil	Thiram (ind.)	kg	81
Water	Co (sea)	kg	4.9E-18
Soil Water	ethylbenzene (ind.)	kg ka	0.0019
Soil	vanadium (agr.)	kg	1400
Water	Dichlorprop (sea)	kg	1.1E-14
water Water	cnrysene thallium	кg ka	0.0084
Water	Chlorothalonil (sea)	kg	0.00038
Water	Triazophos (sea)	kg	0.00084
Air Water	3-chloroaniline	кg ka	0.47 0.0006
Soil	bifenthrin (ind.)	kg	83
Water	tetrachloromethane (sea)	kg ka	0.00036
	01101001111110 (300)	199	0.000080

Impact category	x Terrestrial ecotoxicity	kg 1,4-DB eq	0.0004
Water	Parathion-ethyl	kg ka	0.0031 31
Air	Chlorpyriphos	kg	0.13
Soil	ethylene (agr.)	kg	2.3E-09
Soil	pentachloronitrobenzene	kg	2.7
Soil	Folpet (agr.)	kg	110
Soil	anthracene (ind.)	kg	8.8
Air	Parathion-methyl	kg ka	5.7
Water	trichloroethene (sea)	kg	0.0000019
Water	Phoxim (sea)	kg	0.0013
Soil	Heptachlor (agr.)	kg	5.5
Water	Glyphosate (sea)	kg	4.4E-14
Water	3,4-dichloroaniline (sea)	kg	0.0000067
Soil	benzo[ghi]perylene (agr.) Metolachlor (agr.)	kg	8.3
Soil	Dichlorprop (ind.)	kg	0.0014
Soil	1,4-dichlorobenzene (ind.)	kġ	1
Soil	Chlordane (agr.)	kg	74
Air	Metobromuron	ka	0.99
Soil	toluene (agr.)	kg	0.019
Water	styrene (sea)	kg	0.00000027
Water	Chloridazon (sea)	ka	0.000064
Soil	Dichlorprop (agr.)	kg	0.0014
Water	Ethoprophos (sea)	kg	0.0072
Soil	Parathion-methyl (ind.)	ka	79
Air	Chlordane	kg	2.2
Soil	Fentin acetate (agr.)	kg	12
Water	Methabenzthiazuron	kg ka	0.00002
Air	Permethrin	kg	26
Soil	Pyrazophos (ind.)	kg	29
Air	4-chloroaniline	кg ka	0.016
Soil	thallium (agr.)	kg	700
Air	Acephate	kg	0.69
Air	naphtaiene Metolachlor	кg ka	0.00049
Water	benzylchloride (sea)	kg	0.000025
Soil	Ethoprophos (agr.)	kg	270
Air Soil	Deltamethrin anilazine (ind)	kg ka	0.76
Soil	Dinoterb (ind.)	kg	9.9
Soil	Coumaphos (agr.)	kg	16000
VVater Air	Permethrin (sea)	kg	0.017
Water	1,2-dichloroethane (sea)	kg	0.00002
Soil	tetrachloromethane (agr.)	kg	0.0021
Soil Water	tributyltinoxide (ind.)	kg	37 4 6E-21
Water	dioxins (TEQ) (sea)	kg	830
Water	naphtalene (sea)	kg	0.000019
Soil	Propoxur (ind.)	kg	1300
Air	Ethoprophos	kg	17
Soil	diethylphthalate (ind.)	kg	2.1
Soil	Pirimicarb (ind.)	kg ka	94
Air	Dichlorprop	kg	0.00068
Water	3-chloroaniline (sea)	kg	0.00000017
Water	p-xylene butylbenzylphthalate (sea)	kg	0.0000049
Water	V (sea)	kg	2.2E-17
Water	Chlordane	kg	0.097
Water	Cd (sea)	kg	1.1E-19 2.5
Soil	Co (agr.)	kg	220
Soil	butylbenzylphthalate (ind.)	kg	0.01
Water	I hıram (sea) Endrin (ind.)	kg	0.00031
Water	benzo(ghi)perylene	kg	0.00043
Water	methyl-mercury (sea)	kġ	7600
Soil	Carbendazim (ind.)	kg	38
Water	ethylene oxide (sea)	kg	0.000097
Soil	Propoxur (agr.)	kg	1800
Water	DDT (sea)	kg	0.96
Water	benzene (sea)	kg	0.000017
Soil	antimony (agr.)	kg	1.3
Soil	dilsooctylphthalate (agr.) Dieldrin (ind.)	kg ka	0.00055
Water	dioctylphthalate (sea)	kg	0.00000088
Water	Chlorpropham (sea)	kg	0.00000045
Air	Pyrazophos Triazophos	kg ka	2.3 34
Air	Oxydemethon-methyl	kg	41
Soil	dioctylphthalate (agr.)	kg	0.000048
Soil	Oxamyi (INd.)	кg ka	6 1 8
Soil	Linuron (ind.)	kg	0
Soil	Chloridazon (ind.)	kg	0.68
vvater Soil	⊏naosuitan (sea) propylene oxide (aar.)	кg ka	0.000016 14
Soil	Atrazine (ind.)	kg	4.4
Soil	Pb (agr.)	kg	33
Water	∠,4-uichiorophenol (agr.) benzo(k)fluoranthrene	ng ka	0.59 0.21
Water	Chlorfenvinphos (sea)	kg	0.00000086
Soil	Metamitron (ind.)	kg	0.038
Water	o-xylene	ry kg	0.24 0.0000012

Impact category	x Terrestrial ecotoxicity	kg 1,4-DB eq	0.000084
Water	Coumaphos (sea)	kg	0.000084
Water	Ni (sea)	kg	2.6E-18
Soil	indeno[1,2,3-cd]pyrene	kg	13
Soil	PAH (carcinogenic) (agr.)	kg	6.3
Soil	Cyanazine (agr.)	kg	69
Soil	Zineb (agr.) ethylbenzene (agr.)	kg ka	16 0.0019
Soil	hexachloro-1,3-butadiene	kg	53
	(agr.)		
Air	Azinphos-methyl (Ind.)	kg ka	0.0013
Water	Tri-allate (sea)	kg	0.00013
Water	pentachlorophenol (sea)	kg	0.0000026
Water	Mecoprop (sea) dimethylphthalate (ind)	kg ka	1.8E-11 1 4
Water	1,2,3,4-tetrachlorobenzene	kg	0.0037
10/-1	(sea)	l.e.	0.000000
Vvater	Tolclophos-methyl (agr.)	kg ka	0.000006
Soil	Aldicarb (ind.)	kg	4200
Air	pentachloronitrobenzene	kg	0.12
5011	(ind.)	кд	47
Soil	hexachlorobenzene (agr.)	kg	3.5
Soil	vanadium (ind.)	kg	1400
Soil	trichloroethene (agr.)	kg ka	0.0021
Soil	DDT (agr.)	kg	60
Water	Captafol (sea)	kg	0.00000016
Soil	Deltamethrin (ind.)	ka	8.5
Water	phthalic anhydride	kg	1.2E-10
Soil	1,2-dichloroethane (agr.)	kg	0.0017
Soil	Cu (agr.)	kg ka	0.0056
Water	dimethylphthalate (sea)	kg	0.0000047
Soil	Benomyl (ind.)	kg	3.5
Soil	1.2.3.4-tetrachlorobenzene	kg ka	0.39
	(agr.)		
Air	diazinon	kg	0.29
Air Water	Folpet	kg ka	0.8
Soil	Cr (III) (agr.)	kg	6300
Air	2,3,4,6-tetrachlorophenol	kg	0.31
Soil	benzo[k]fluoranthrene (ind)	kg ka	0.9
Soil	Fentin hydroxide (agr.)	kg	12
Water	Parathion-methyl (sea)	kg	0.00071
Water	Propoxur	kg ka	0.00031
Soil	meta-xylene (ind.)	kg	0.003
Water	Deltamethrin	kg	0.032
Water	1-chloro-4-nitrobenzene	kg ka	0.62
	(sea)	5	
Water	methylbromide	kg	0.011
Soil	Oxydemethon-methyl (ind.)	kg	85
Soil	Chlorothalonil (agr.)	kg	0.68
Water	1,2,4-trichlorobenzene (sea)	kg	0.004
Soil	benzo[k]fluoranthrene (agr.)	kg	390
Soil	3,4-dichloroaniline (ind.)	kg	18
Water	thallium (sea) Dinoseb	kg	4.2E-17
Air	anthracene	kg	0.032
Water	Mevinfos (sea)	kg	0.0000032
Soil Water	l riazophos (ind.)	kg	200
Water	tributyltinoxide (sea)	kg	0.0069
Water	1,3-dichlorobenzene (sea)	kg	0.0002
Water	HF (Sea) Azinnhos-methyl (sea)	kg ka	0.000045
Air	Bifenthrin	kg	8.8
Air	diethylphthalate	kg	0.53
Water	diethylphthalate (sea)	kg ka	20 0.0001
Water	2,4,5-T	kg	0.00000036
Water	Hg (sea)	kg	7600
Water	Cypermethrin (sea) trichloromethane (agr.)	kg ka	0.25
Water	Trichlorfon (sea)	kg	0.00000048
Soil	Mecoprop (ind.)	kg	3.3
Alf Water	Chlorpyriphos	kg ka	0.11
Soil	Benomyl (agr.)	kg	3.5
Soil	Chlordane (ind.)	kg	73
Soil	Ni (agr.)	kg	240
Soil	Fenthion (ind.)	kg	280
vvater Soil	Lindane	кg	0.16
Soil	tin (agr.)	kg	9.3 30
Water	Captafol	kg	0.00000019
vvater Soil	UF (VI) (Sea) benzo[a]anthracene (ind)	кg ka	2E-18
Water	Chlorfenvinphos	kg	0.000046
Water	indeno[1,2,3-cd]pyrene	kg	0.0000041
Air	(sea) tri-allate	ka	0 0060
Soil	Trichlorfon (ind.)	kg	2600
Air	pentachlorobenzene	kg	0.039
Soil	selenium (ind.)	kg	110

Impact category	x Terrestrial ecotoxicity	kg 1,4-DB eq	0.40
Water	dibutylphthalate (sea)	kg	0.18 0.00000021
Water	Cr (III) (sea)	kg	2E-18
Water	benzo(a)pyrene (sea)	kg	0.0008
Soil	Fentin chloride (agr.)	кg ka	0.00073
Soil	Simazine (ind.)	kg	21
Water	chrysene (sea)	kg	0.0016
Soll	1,2,3,5-tetrachlorobenzene	кg	12
Soil	methylbromide (agr.)	kg	0.36
Water	Parathion-ethyl (sea)	kg	0.000082
Soll	Pirimicarb (agr.)	kg	120
Soil	1,2,4-trichlorobenzene (agr.)	kg	1.2
Water	trichloromethane (sea)	kg	0.000019
Air	Captafol Propachlar (ind.)	kg	5.9
Air	Endrin	ka	2.3
Soil	Fentin chloride (ind.)	kg	11
Soil	thallium (ind.)	kg	700
Air	Fentin hydroxide	kg	5.5
0011	(agr.)	ĸġ	15
Air	Desmetryn	kg	1.2
Soil	Iprodione (agr.)	kg	0.14
Air	MCPA	кg ka	46 0.043
Soil	Tri-allate (agr.)	kg	1.3
Soil	dioctylphthalate (ind.)	kg	0.000048
Water	1-chloro-4-nitrobenzene	kg	0.44
Water	Fentin hydroxide	ka	0.0021
Soil	gamma-HCH (Lindane)	kg	22
Call	(ind.)	len.	0.01
Air	coumaphos	кg ka	1000
Soil	Isoproturon (ind.)	kg	4.6
Soil	Captafol (agr.)	kg	28
Water	phenol (sea)	kg	0.00000038
Water	diisooctvlphthalate	ka	0.000082
Soil	antimony (ind.)	kg	1.3
Water	Captan (sea)	kg	9.4E-10
Vvater Air	Cyromazine (sea)	kg	0.00000073
Water	Metobromuron (sea)	kg	0.000038
Soil	Trichlorfon (agr.)	kg	1900
Soil	Chlorpyriphos (agr.)	kg	17
S0II Water	pentachloronitrobenzene	кg ka	2.0
Water -	(sea)	Ng	0.020
Soil	2,4,5-trichlorophenol (ind.)	kg	3.9
Water	Anilazine (sea)	kg	7E-10
Walei	(sea)	ĸġ	0.074
Air	dioctylphthalate	kg	0.0000098
Air	1,2,3,4-tetrachlorobenzene	kg	0.0099
Vvater	I rifluralin (sea) 1.2-dichlorobenzene (agr.)	kg	0.003
Soil	Diazinon (agr.)	kg	12
Soil	methyl-mercury (agr.)	kg	56000
Air	1,2-dichlorobenzene	kg	0.00053
Soil	di(2-ethylbexyl)phthalate	ka	0.0014
	(agr.)		0.0011
Air	Metazachlor	kg	0.074
Soil	2-chlorophenol (ind.)	kg	0.37
Water	Tolclophos-methyl (sea)	kg	0.000043
Soil	Chlorpropham (ind.)	kg	0.12
Soil	Co (ind.)	kg	220
Vvater	Metazachlor Fentin acetate (ind.)	kg	0.0000014
Water	Cyromazine	kg	0.0000019
Water	1,3,5-trichlorobenzene (sea)	kg	0.00083
Soil	Dinoterb (agr.)	kg	9.9
Water	phthalic anhydride (sea)	кg ka	2.8E-12
Soil	methyl-mercury (ind.)	kg	56000
Soil	Tolclophos-methyl (ind.)	kg	1.5
Water	Desmetryn	kg	0.000036
Water	Pirimicarb	kg	0.00093
Water	formaldehyde (sea)	kg	0.000024
Soil	Linuron (agr.)	kg	21
3011	(agr)	ку	17
Water	2,4,5-trichlorophenol	kg	0.061
Soil	tributyltinoxide (agr.)	kg	37
vvater Water	Azinphos-ethyl (sea)	кg ka	0.00034
Water	Phoxim	kg	0.015
Air	Captan	kg	0.024
Soil	Phoxim (agr.)	kg	4.7
Air	benzo(k)fluoranthrene	kg	0.0027
Water	2,4,5-T (sea)	kg	6.4E-11
Soil	beryllium (ind.)	kg	3600
Soil	Carbaryl (agr.)	кg ka	0.11
Soil	beryllium (aar.)	kg	3600
Soil	meta-xylene (agr.)	kg	0.003
Water	Endrin (sea)	kg	0.38
vvater Water	Netolachior	кg ka	0.00021
Soil	tetrachloroethene (agr.)	kg	0.3

Impact category	x Terrestrial ecotoxicity	kg 1,4-DB eq	
Water	Se (sea)	kg ka	1.8E-17
Soil	Propachlor (agr.)	ka	2.5
Air	cyromazine	kg	310
Soil	Parathion-ethyl (ind.)	kg	17
Water	ethene	kg	1.1E-12
Soil	ortho-xylene (agr.)	ka	0.0034
Air	Propoxur	kg	700
Air	Fenitrothion	kg	21
Water	di(2-ethylhexyl)phthalate	kg	0.0000096
Mator	(sea) Carbondazim (soa)	ka	1 6E-10
Soil	Heptenophos (agr.)	ka	1.02-10
Air	Linuron	kg	0.2
Soil	Endosulfan (ind.)	kg	2.8
Soil	Coumaphos (ind.)	kg	12000
5011 Air	Finalic annyonde (Ind.)	kg ka	0.00042
Water	acrylonitrile (sea)	ka	0.00012
Water	Coumaphos	kg	6
Soil	Cr (VI) (agr.)	kg	6300
Water	hexachloro-1,3-butadiene	kg	2.1
Soil	(sea) Trifluarin (ind.)	ka	34
Soil	DDT (ind.)	kg	59
Water	Zineb (sea)	kg	0.000028
Water	Bifenthrin	kg	0.021
vvater Air	Aldicarb	kg ka	2000
Soil	Cypermethrin (agr.)	kg	90000
Water	3,4-dichloroaniline	kg	0.00076
Water	Disulfothon (sea)	kg	0.000021
SOII	barium (ind.)	kg	10
Soil	Tri-allate (ind)	ka	13
Soil	1,2,3,4-tetrachlorobenzene	kg	0.77
	(ind.)	•	
Water	Metolachlor (sea)	kg	0.0000054
5011 Mater	Linuron	kg ka	0.0026
Air	Chlorfenvinphos	ka	0.49
Water	Acephate	kg	0.00000022
Water	Tolclophos-methyl	kg	0.00032
Soil	1,2,4,5-tetrachlorobenzene	kg	19
Water	(agr.) m-xylene (sea)	ka	0.0000011
Soil	1,3-dichlorobenzene (ind.)	kg	0.062
Water	Endosulfan	kg	0.0018
Soil	Demeton (ind.)	kg	49
Alf Water	Benomyi benzo(k)fluoranthrene (sea)	kg kg	0.47
Soil	DNOC (ind.)	kg	0.49
Air	Chloridazon	kg	0.00046
Water	Carbofuran (sea)	kg	0.0000061
Soll	3-chloroaniline (ind.)	kg	1.2
Air	Folpet	ka	1.7
Soil	Chlorfenvinphos (agr.)	kg	1.3
Water	1,2,4,5-tetrachlorobenzene	kg	0.23
Water	2-chlorophenol (sea)	kg	0.000027
Air	Azinnhos-ethyl	ka	1.42-09
Soil	Methabenzthiazuron (agr.)	kg	1.1
Air	1,3-dichlorobenzene	kg	0.00044
Water	cyanazine	kg	0.0000022
vvater	2-chlorophenol Endosulfan (agr.)	kg	0.0013
Air	diisooctylphthalate	ka	0.00011
Soil	Azinphos-ethyl (ind.)	kg	72
Water	Zn (sea)	kg	1.9E-20
Air	Methyl-mercury	kg	28000
Water	anthracene (sea)	ka	0.004
Water	acrolein	kg	5.8
Water	anthracene	kg	0.02
Air	Phoxim 1.4 diableschanzene	kg	0.017
All Soil	Chlorfenvinnbos (ind)	kg ka	1.2
Soil	Trifluarin (agr.)	kg	35
Soil	hydrogen fluoride (agr.)	kg	0.006
Water	Ba (sea)	kg	6.6E-19
Soil	Permethrin (ind.)	kg	250
Air	zineb	ka	7.2
Soil	2,3,4,6-tetrachlorophenol	kg	1
	(agr.)		
Water	Demeton (sea)	kg	0.00023
Water	2 3 4 6-tetrachlorophenol	ka	0.0017
Soil	3,4-dichloroaniline (agr.)	kg	26
Water	DDT	kg	0.31
Soll	selenium (agr.)	kg	110
Soil	2.4-D (ind.)	ka	0.000002
Soil	PAH (carcinogenic) (ind.)	kg	6.3
Water	Heptachlor	kg	0.00053
Soil	Cyromazine (ind.)	kg	630
Water	chlorobenzene	ka	0.0000062 0.00072
Soil	Carbofuran (ind.)	kg	5.9
Soil	benzo(a)pyrene (agr.)	kg	23
Water	Heptachlor (sea)	kg	0.000024
Water	Atrazine (sea)	ka	0.00046
Soil	naphtalene (agr.)	kg	3.1
Soil	pentachlorobenzene (agr.)	kg	2.1

Impact category	x Terrestrial ecotoxicity	kg '	1,4-DB eq
Water	Sn (sea) Bronachlar	kg	7.2E-21
Water	1.3-butadiene (sea)	кg ka	0.00081
Water	2,4,5-trichlorophenol (sea)	kg	0.00091
Air	dinoterb	kĝ	3.4
Water	pentachlorobenzene (sea)	kg	0.026
Water	DNOC (sea) Propachlor (sea)	kg kg	1.5E-09 0.000013
Soil	Carbofuran (agr.)	kg	7.5
Water	Fentin chloride	kġ	0.092
Water	diisooctylphthalate (sea)	kg	0.0000035
Soil	Disulfoton (ind.)	kg kg	0.0047
Soil	Fenitrothion (agr.)	ka	83
Soil	benzo[ghi]perylene (ind.)	kg	8.3
Soil	Captafol (ind.)	kg	22
Alf Water	2,4-dichlorophenol	kg	0.03
Soil	Carbaryl (ind.)	kg	0.14
Air	diisodecylphthalate	kĝ	0.00092
Soil	anthracene (agr.)	kg	8.9
Soll	1,2-dichlorobenzene (ind.)	kg	0.054
Soil	Permethrin (agr.)	ka	250
Soil	ethylene oxide (agr.)	kg	0.22
Water	MCPA (sea)	kg	2.2E-14
Water	pentachloronitrobenzene	kg	0.05
Water	Disulfothon	ka	2.3
Air	benzo(ghi)perylene	kg	0.2
Soil	dichloromethane (agr.)	kg	0.00025
Soil	disodecylphthalate (ind.)	kg	0.004
Water	Propoxur (sea)	ka	0.0000032
Water	Diuron (sea)	kg	0.000032
Soil	Parathion-methyl (agr.)	kg	81
Water	benzo(ghi)perylene (sea)	kg	0.00025
Water	dioctylphthalate	kg kg	6.1E-12 0.00000013
Soil	Isoproturon (agr.)	kg	6.4
Soil	formaldehyde (agr.)	kğ	5.8
Soil	Methomyl (agr.)	kg	300
Water	Zineb	kg	0.0013
Soil	hydrogen fluoride (ind.)	ka	0.006
Soil	dihexylphthalate (agr.)	kg	0.0073
Soil	2,4,5-T (agr.)	kg	0.74
Soil	indeno[1,2,3-cd]pyrene	kg	13
Water	pentachlorobenzene	ka	0.038
Soil	chlorobenzene (ind.)	kg	0.12
Soil	ortho-xylene (ind.)	kg	0.0034
Soil	Heptachlor (ind.)	kg	5.3
Water	Dimethoate	ka	0.000012
Water	As (sea)	kg	3E-17
Water	3-chloroaniline	kg	0.0000094
Soil	1,2,4,5-tetrachlorobenzene	kg	17
Water	p-xylene (sea)	ka	0.0000089
Water	acrolein (sea)	kg	0.16
Water	benzo(a)anthracene (sea)	kg	0.0062
Water	Benomyl	kg	0.00000082
Soil	nara-xylene (ind)	ka	0.0015
Soil	Oxydemethon-methyl (agr.)	kg	92
Soil	1,4-dichlorobenzene (agr.)	kġ	1
Soil	dimethylphthalate (agr.)	kg	1.4
Water	Carbaryl (sea)	ka	0.004 1.1E-09
Air	dimethylphthalate	kg	0.64
Water	Desmetryn (sea)	kġ	0.00000075
Air	Demeton	kg	0.3
Soil	Ethoprophos (ind)	ka	1.0 190
Water	Azinphos-ethyl	kg	0.021
Water	chlorobenzene (sea)	kġ	0.00041
Soil	1,1,1-trichloroethane (ind.)	kg	0.0015
Water	dichloromethane (sea)	кg ka	0.13
Air	Carbofuran	kg	3
Air	dimethoate	kġ	0.3
Air	Endosulfan	kg	0.036
3011	(ind)	ĸġ	17
Soil	4-chloroaniline (agr.)	kg	16
Water	Isoproturon (sea)	kġ	0.0000038
vvater Soil	DINOTERD	kg	0.013
Soil	2.4.5-trichlorophenol (anr.)	ka	0.037
Soil	1,3-butadiene (agr.)	kg	0.00031
Soil	Metobromuron (agr.)	kg	2.2
water Soil	1,1,1-trichloroethane	kg	0.00018
001	(ind.)	ĸу	2.6
Water	Lindane (sea)	kg	0.0039
Water	Chlorpropham	kg	0.000025
vvater Soil	tributyltinoxide	kg	0.11
Water	Diazinon	ka	0 0041
Water	Captan	kg	0.000000062
Soil	Hg (agr.)	kg	56000
vvater Soil	cyanazine (sea)	kg	0.0000004
Soil	Cypermethrin (ind)	ka	78000
Water	Fentin acetate (sea)	kg	0.00011
Water	dihexylphthalate (sea)	kg	0.000017

Impact category	x Terrestrial ecotoxicity	kg 1,4-DB eq	
Water	methylbromide (sea)	kg	0.00091
Water	1,2-dichlorobenzene	kg	0.00052
Water	1,2,4,5-tetrachlorobenzene (sea)	kġ	0.095
Air	Heptachlor	kg	0.00088
Soil	Phoxim (ind.)	kg	3.8
Water	Dieldrin (sea)	kg	0.1
Soil	Metobromuron (ind.)	kg	2.2
Water	Pyrazophos (sea)	kg	0.000029
Soil	Deltamethrin (agr.)	kg	8.5
Soil	Mo (agr.)	kg	36
Water	Endrin	kg	0.35
Air	Trichlorfon	kg	1200
Soil	2,4,6-trichlorophenol (agr.)	kg	0.7
Water	Carbofuran	kg	0.000035
Air	Fenthion	kg	16
Water	4-chloroaniline	kg	0.0036
Soil	acrolein (agr.)	kg	7000
Soil	MCPA (ind.)	kg	0.086
Water	carbon disulfide (sea)	kg	0.001
Water	Dinoterb (sea)	kg	0.000051
Water	Oxydemethon-methyl (sea)	kg	0.0000052
Water	2,4-dichlorophenol	kg	0.00096
Soil	Disulfoton (agr.)	kg	11
Water	butylbenzylphthalate	kg	0.000066

B1.7 PHOTOCHEMICAL OXIDATION

I		L 0010	
Impact category	1 1 1-trichloroethane	kg C2H2	0 000
Air	1.2.3-trimethylbenzene	ka	1.27
Air	1,2,4-trimethylbenzene	kg	1.28
Air	1,3,5-trimethylbenzene	kg	1.38
Air	1,3-butadiene	kg	0.85
Air	1-butene	kg	1.08
Air	1-butoxy propanol	kg	0.463
All	1-methoxy-2-propagol	kg ka	0.874
Air	1-pentene	ka	0.977
Air	2,2-dimethylbutane	kg	0.241
Air	2,3-dimethylbutane	kg	0.541
Air	2-butoxyethanol	kg	0.483
Air	2-ethoxyethanol	kg	0.386
Air	2-methoxyethanol	kg	0.307
Air	2-methyl-1-butene	ka	0.469
Air	2-methyl-2-butanol	ka	0.228
Air	2-methyl-2-butene	kg	0.842
Air	2-methyl hexane	kg	0.411
Air	2-methyl pentane	kg	0.42
Air	3,5-diethyltoluene	kg	1.3
Alf	3,5-dimethylethylbenzene	kg ka	1.32
Air	3-methyl-1-butene	ka	0.433
Air	3-methyl-2-butanol	kg	0.406
Air	3-methyl hexane	kg	0.364
Air	3-methyl pentane	kg	0.479
Air	3-pentanol	kg	0.595
Air	acetaldenyde	kg	0.641
Air	acetone	kg	0.097
Air	benzaldehvde	ka	-0.092
Air	benzene	kg	0.22
Air	butane	kg	0.352
Air	CO	kg	0.027
Air	cyclohexane	kg	0.29
Alf	cyclohexanore	kg ka	0.518
Air	decane	ka	0.384
Air	diacetone alcohol	kg	0.307
Air	dichloromethane	kg	0.068
Air	diethyl ether	kg	0.445
Air	dimethyl ether	kg	0.189
Air	ethane	kg kg	0.357
Air	ethanol	ka	0.399
Air	ethene	kg	1
Air	ethyl t-butyl ether	kg	0.244
Air	ethylacetate	kg	0.209
Air	ethylbenzene	kg	0.73
Air	ethype	kg	0.373
Air	formaldehvde	ka	0.52
Air	formic acid	kg	0.032
Air	heptane	kg	0.494
Air	hexane	kg	0.482
Air	i-butane	kg	0.307
Air	i-butyraldebyde	kg	0.30
Air	i-propyl acetate	ka	0.211
Air	i-propyl benzene	kg	0.5
Air	isoprene	kg	1.09
Air	isopropanol	kg	0.188
Air	m-ethyl toluene	kg	1.02
All	mothano	kg	1.1
Air	methanol	ka	0.000
Air	methyl acetate	kg	0.059
Air	methyl chloride	kg	0.005
Air	methyl formate	kg	0.027
Air	methyl i-propyl ketone	kg	0.49
Air	methyl t-butyl ether	кg	0.175

ENVIRONMENTAL RESOURCES MANAGEMENT

Air methyl Ebutyl ketone kg 0.323 Air NO kg 0.173 Air NO kg 0.427 Air NO2 kg 0.028 Air norane kg 0.414 Air o-ethyl toluene kg 0.433 Air o-ethyl toluene kg 0.453 Air o-ctane kg 0.453 Air p-ctyl toluene kg 0.906 Air pentana kg 0.765 Air pentana kg 0.395 Air propane kg 0.176 Air propane kg 0.275 Air s-butanol kg 0.44 Air s-butanol kg 0.063 Air totatae kg 0.048 Air totatae kg 0.029 Air totatae kg 0.289 Air <tdtotactatae< td=""> kg</tdtotactatae<>	Impact category	Photochemical oxidation	kg C2H2	
Air neopentane kg 0.173 Air NO2 kg 0.427 Air NO2 kg 0.028 Air nomane kg 0.414 Air o-thyl foluene kg 0.889 Air o-xylene kg 0.453 Air o-xylene kg 0.453 Air p-thyl foluene kg 0.765 Air penthyl Expland kg 0.765 Air pentane kg 0.395 Air propane kg 0.476 Air propane kg 0.476 Air s-butpl acetate kg 0.275 Air SO2 kg 0.048 Air styrene kg 0.164 Air titacchloroethene kg 0.239 Air titacchloroethene kg 0.239 Air toluene kg 0.239 Air tichloroethene </td <td>Air</td> <td>methyl t-butyl ketone</td> <td>kg</td> <td>0.323</td>	Air	methyl t-butyl ketone	kg	0.323
Air NO kg -0.427 Air nonane kg 0.028 Air nonane kg 0.414 Air o-ethyl toluene kg 0.414 Air o-ethyl toluene kg 0.433 Air p-ethyl toluene kg 0.453 Air p-ethyl toluene kg 0.906 Air pentanal kg 0.765 Air pentane kg 0.395 Air pentane kg 0.176 Air propene kg 0.414 Air s-butanol kg 0.427 Air SO2 kg 0.048 Air SUP actate kg 0.14 Air t-butyl acetate kg 0.29 Air tothoroethene kg 0.023 Air tothoroethene kg 0.233 Air tothoroethene kg 0.259 Air tothor	Air	neopentane	kg	0.173
Air NO2 kg 0.028 Air o-ethyl toluene kg 0.414 Air o-ethyl toluene kg 0.439 Air o-axylene kg 0.433 Air p-ethyl toluene kg 0.4633 Air p-ethyl toluene kg 0.765 Air pentanal kg 0.395 Air pentanal kg 0.395 Air pentanal kg 0.395 Air pentanal kg 0.476 Air pentanal kg 0.438 Air pentanal kg 0.44 Air propane kg 0.44 Air propane kg 0.44 Air Styrene kg 0.438 Air styrene kg 0.029 Air t-butyl acetate kg 0.023 Air thichoronethane kg 0.235 Air thichoro	Air	NO	kg	-0.427
Air nonane kg 0.414 Air o-stylene kg 0.898 Air o-stylene kg 0.433 Air p-stylene kg 0.433 Air p-stylene kg 0.433 Air p-stylene kg 0.765 Air pentane kg 0.395 Air propane kg 0.176 Air propane kg 0.476 Air s-butanol kg 0.44 Air s-butyl acetate kg 0.44 Air SO2 kg 0.048 Air toutyl acetate kg 0.023 Air toutyl acetate kg 0.023 Air toutyl acetate kg 0.023 Air toutyl acetate kg 0.23 Air toutyl acetate kg 0.23 Air toluene kg 0.23 Air toluene	Air	NO2	kg	0.028
Air o-thylene kg 0.888 Air o-tane kg 0.453 Air p-thyl toluene kg 0.453 Air p-thyl toluene kg 0.453 Air p-thyl toluene kg 0.765 Air pentanal kg 0.395 Air pentane kg 0.395 Air propane kg 0.176 Air sbutanol kg 0.275 Air s-butyl acetate kg 0.144 Air sbutyl acetate kg 0.043 Air toutyl acetate kg 0.029 Air toutyl acetate kg 0.023 Air tetrachloroethene kg 0.233 Air tichloroethene kg 0.23 Air tichloroethene kg 0.23 Air tichloroethene kg 0.427 Air tichloroethene kg 0.427	Air	nonane	kg	0.414
Air o-xylene kg 1.1 Air p-ethyl toluene kg 0.453 Air p-stylene kg 0.906 Air p-stylene kg 0.765 Air pentanal kg 0.395 Air pentane kg 0.376 Air propene kg 0.176 Air propene kg 0.43 Air s-butanol kg 0.44 Air s-butyl acetate kg 0.44 Air SO2 kg 0.048 Air t-butyl acetate kg 0.023 Air tetrachloroethene kg 0.63 Air toluene kg 0.029 Air trichloroethene kg 0.269 Air trichloroethene kg 0.269 Air toluene kg 0.269 Air tolutanol kg 0.373 Air tolstoro	Air	o-ethyl toluene	kg	0.898
Air octane kg 0.453 Air p-ethyl toluene kg 1 Air pentanal kg 0.765 Air pentane kg 0.395 Air pentane kg 0.395 Air propane kg 0.176 Air propane kg 0.41 Air s-butlanol kg 0.42 Air s-butlacetate kg 0.43 Air SO2 kg 0.048 Air styrene kg 0.053 Air totanol kg 0.053 Air tetrachloroethene kg 0.023 Air toluene kg 0.023 Air trichloroethene kg 0.235 Air trichloroethene kg 0.235 Air trichloroethene kg 0.223 Air trichloroethene kg 0.269 Air tobutyraid	Air	o-xylene	kg	1.1
Air p-ethyl toluene kg 0.906 Air pentanal kg 0.765 Air pentane kg 0.395 Air pentane kg 0.395 Air pentane kg 0.176 Air propene kg 0.176 Air s-butyl acetate kg 0.275 Air SO2 kg 0.048 Air SO2 kg 0.14 Air t-butyl acetate kg 0.129 Air tracholocethene kg 0.029 Air toluene kg 0.023 Air toluene kg 0.023 Air toluene kg 0.233 Air thichloroethene kg 0.229 Air toluene kg 0.229 Air toluoroethane kg 0.223 Air toluoroethane kg 0.226 Air tobutyladelydy	Air	octane	kg	0.453
Air p-xylene kg 1 Air pentanal kg 0.765 Air pentane kg 0.335 Air propane kg 0.176 Air propane kg 0.176 Air propane kg 0.44 Air s-butyl acetate kg 0.275 Air Sol2 kg 0.048 Air styrene kg 0.146 Air t-butanol kg 0.053 Air tetrachloroethene kg 0.053 Air tetrachloroethene kg 0.029 Air tichoroethane kg 0.33 Air tichoroethane kg 0.599 Air tichoroethane kg 0.289 Air tichoroethane kg 0.269 Air ticholoroethene kg 0.275 Air ticholoroethene kg 0.279 Air	Air	p-ethyl toluene	kg	0.906
Air pentanal kg 0.765 Air pentane kg 0.395 Air propane kg 0.176 Air propene kg 0.476 Air s-butyl acetate kg 0.275 Air SO2 kg 0.048 Air SO2 kg 0.048 Air SO2 kg 0.14 Air SO2 kg 0.048 Air t-butyl acetate kg 0.053 Air tetrachloroethene kg 0.029 Air tetrachloroethene kg 0.029 Air toluene kg 0.233 Air thexan-3-one kg 0.226 Air -butyl acetate kg 0.269 Air cis-dichloroethene kg 0.427 Air dimethyl carbonate kg 0.427 Air disopropylether kg 0.337 Air	Air	p-xylene	kg	1
Air pentane kg 0.385 Air propane kg 0.176 Air propene kg 0.176 Air s-butanol kg 0.475 Air s-butanol kg 0.275 Air s-butanol kg 0.048 Air styrene kg 0.048 Air styrene kg 0.146 Air t-butyl acetate kg 0.053 Air tetrachloroethene kg 0.029 Air tir toluene kg 0.335 Air tetrachloroethene kg 0.023 Air trichloroethene kg 0.23 Air trichloroethene kg 0.269 Air 1-butyl acetate kg 0.262 Air cis-2-pentene kg 0.425 Air cis-dichloroethene kg 0.425 Air disopropylethe kg 0.425 <td>Air</td> <td>pentanal</td> <td>kg</td> <td>0.765</td>	Air	pentanal	kg	0.765
Air propane kg 0.176 Air propene kg 1.12 Air s-butlacetate kg 0.275 Air s-butylacetate kg 0.275 Air SO2 kg 0.048 Air SO2 kg 0.14 Air t-butylacetate kg 0.161 Air t-butylacetate kg 0.053 Air tetrachloroethene kg 0.053 Air tetrachloroethene kg 0.33 Air trichloroethene kg 0.226 Air trichloromethane kg 0.223 Air trichloromethane kg 0.223 Air trichloroethene kg 0.226 Air tichloroethene kg 0.425 Air discichloroethene kg 0.425 Air discichloroethene kg 0.425 Air discichloroethene kg 0.425	Air	pentane	kg	0.395
Air propene kg 1.12 Air s-butanol kg 0.4 Air s-butyl acetate kg 0.275 Air SO2 kg 0.048 Air SO2 kg 0.048 Air styrene kg 0.14 Air t-butyl acetate kg 0.053 Air t-butyl acetate kg 0.029 Air tetrachloroethene kg 0.029 Air trichloroethene kg 0.23 Air trichloroethene kg 0.23 Air hexan-3-one kg 0.269 Air 1-butyl acetate kg 0.269 Air cis-dichloroethene kg 0.427 Air cis-dichloroethene kg 0.25 Air cis-dichloroethene kg 0.427 Air disopropylene glycol kg 0.427 Air butyraldehyde kg 0.33	Air	propane	kg	0.176
Air s-butpl acetate kg 0.4 Air s-butyl acetate kg 0.275 Air SO2 kg 0.048 Air styrene kg 0.106 Air t-butpl acetate kg 0.053 Air t-butyl acetate kg 0.054 Air tetrachloroethene kg 0.029 Air tetrachloroethene kg 0.64 Air trichloromethane kg 0.269 Air trichloromethane kg 0.269 Air hexan-3-one kg 0.269 Air 1-butyl acetate kg 0.269 Air cis-dchloroethene kg 0.427 Air dimethyl carbonate kg 0.427 Air butyraldehyde kg 0.373 Air butyraldehyde kg 0.373 Air propylene glycol kg 0.373 Air propanoic acid kg <	Air	propene	kg	1.12
Air s-butyl acetate kg 0.275 Air SO2 kg 0.048 Air Styrene kg 0.106 Air t-butanol kg 0.053 Air t-butyl acetate kg 0.053 Air toluene kg 0.64 Air trichloroethene kg 0.33 Air trichloroethene kg 0.259 Air trichloroethene kg 0.269 Air hexan-3-one kg 0.599 Air 1-butyl acetate kg 0.62 Air 1-butyl acetate kg 0.427 Air cis-dichloroethene kg 0.427 Air cis-dichloroethene kg 0.427 Air butyraldehyde kg 0.427 Air butyraldehyde kg 0.373 Air butyraldehyde kg 0.457 Air botyraldehyde kg 0.457	Air	s-butanol	kg	0.4
Air SO2 kg 0.048 Air styrene kg 0.114 Air t-butanol kg 0.053 Air t-butyl acetate kg 0.053 Air tetrachloroethene kg 0.029 Air tetrachloroethene kg 0.33 Air trichloromethane kg 0.229 Air trichloromethane kg 0.229 Air trichloromethane kg 0.229 Air totkanol kg 0.229 Air totkanol kg 0.229 Air cis-2-pentene kg 0.429 Air cis-dichloroethene kg 0.429 Air cis-dichloroethene kg 0.429 Air dimethyl carbonate kg 0.425 Air dimethyl carbonate kg 0.373 Air propylene glycol kg 0.373 Air propylene glycol kg <td< td=""><td>Air</td><td>s-butyl acetate</td><td>kg</td><td>0.275</td></td<>	Air	s-butyl acetate	kg	0.275
Air styrene kg 0.14 Air t-butanol kg 0.106 Air t-butyl acetate kg 0.029 Air tetrachloroethene kg 0.63 Air toluene kg 0.63 Air toluene kg 0.33 Air trichloroethene kg 0.29 Air trichloroethene kg 0.269 Air hexan-3-one kg 0.269 Air cis-2-pentene kg 0.429 Air 1-butyl acetate kg 0.62 Air cis-dichloroethene kg 0.427 Air cis-dichloroethene kg 0.427 Air butyraldehyde kg 0.795 Air butyraldehyde kg 0.373 Air butyraldehyde kg 0.378 Air propylene glycol kg 0.457 Air hexan-2-one kg 0.455	Air	SO2	kg	0.048
Air t-butpl acetate kg 0.106 Air t-butyl acetate kg 0.053 Air tetrachloroethene kg 0.64 Air trichloroethene kg 0.33 Air trichloromethane kg 0.33 Air hexan-3-one kg 0.599 Air 1-butyl acetate kg 0.62 Air 1-butyl acetate kg 0.62 Air 1-butyl acetate kg 0.62 Air cis-dichloroethene kg 0.427 Air cis-dichloroethene kg 0.427 Air dimethyl carbonate kg 0.427 Air butyraldehyde kg 0.373 Air butyraldehyde kg 0.373 Air propylene glycol kg 0.373 Air hexan-2-one kg 0.457 Air trans-2-pentene kg 0.405 Air trans-2-bexene kg<	Air	styrene	kg	0.14
Air t-butyl acetate kg 0.053 Air tetrachloroethene kg 0.029 Air toluene kg 0.33 Air trichloroethene kg 0.33 Air trichloromethane kg 0.229 Air trichloromethane kg 0.229 Air trichloromethane kg 0.269 Air 1-butyl acetate kg 0.269 Air cis-2-pentene kg 0.427 Air cis-2-pentene kg 0.427 Air dimethyl carbonate kg 0.447 Air dimethyl carbonate kg 0.373 Air butyraldehyde kg 0.373 Air propylene glycol kg 0.373 Air propylene glycol kg 0.373 Air propylene glycol kg 0.373 Air propylene kg 0.373 0.405 Air disoporpylether <td< td=""><td>Air</td><td>t-butanol</td><td>kg</td><td>0.106</td></td<>	Air	t-butanol	kg	0.106
Airtetrachloroethenekg 0.029 Airtoluenekg 0.64 Airtrichloroethenekg 0.33 Airtrichloroethenekg 0.023 Airhexan-3-onekg 0.599 Air1-butyl acetatekg 0.269 Air1-butyl acetatekg 0.629 Air1-butyl acetatekg 0.629 Air1-butyl acetatekg 0.621 Air1-butyl acetatekg 0.625 Airdimethyl carbonatekg 0.447 Airdimethyl carbonatekg 0.795 Air2-butanonekg 0.373 Air2-butanonekg 0.373 Airhexan-2-onekg 0.398 Airisopenyletherkg 0.445 Airisopentanekg 0.398 Airtrans-2-pentenekg 0.398 Airtrans-2-pentenekg 0.405 Airpropanoic acidkg 0.405 Airtrans-2-butenekg 0.414 Airditehylketonekg 0.425 Airditehylketonekg 0.425 Airditehylketonekg 0.398 Airtrans-2-butenekg 0.398 Airtrans-2-betenekg 0.384 Airtrans-2-betenekg 0.384 Airtrans-2-betenekg 0.561 Airtrans-2-betenekg 0.561	Air	t-butyl acetate	kg	0.053
Air toluene kg 0.64 Air trichloroethene kg 0.33 Air trichloromethane kg 0.023 Air hexan-3-one kg 0.599 Air 1-butyl acetate kg 0.263 Air 1-butyl acetate kg 0.62 Air 1-butyl acetate kg 0.62 Air cis-dichloroethene kg 0.427 Air cis-dichloroethene kg 0.427 Air butyraldehyde kg 0.373 Air 2-butanone kg 0.373 Air propylene glycol kg 0.373 Air hexan-2-one kg 0.398 Air tisopentane kg 0.457 Air diisopropylether kg 0.405 Air propanoic acid kg 0.405 Air trans-2-butene kg 0.414 Air trans-2-butene kg 0.	Air	tetrachloroethene	kg	0.029
Airtrichloroethenekg0.33Airtrichloromethanekg0.023Airhexan-3-onekg0.599Air1-butyl acetatekg0.269Aircis-2-pentenekg0.62Aircis-2-bentenekg0.447Aircis-dichloroethenekg0.447Airdimethyl carbonatekg0.795Air2-butanonekg0.373Airpropylene glycolkg0.373Airpropylene glycolkg0.373Airdisopropyletherkg0.373Airpropylene glycolkg0.373Airpropylene glycolkg0.373Airdisopropyletherkg0.388Airtrans-2-pentenekg0.398Airtrans-2-butenekg0.405Airdisopropyletherkg0.414Airtrans-2-butenekg0.414Air1-propyl acetatekg0.414Air1-propyl acetatekg0.384Airtrans-2-butenekg0.384Air1-undecanekg0.384Airtrans-2-hexenekg0.384Airtrans-2-hexenekg0.384Airtrans-2-hexenekg0.384Airtrans-2-hexenekg0.392Airtrans-2-hexenekg0.561Airtrans-2-hexenekg0.561Airtran	Air	toluene	kg	0.64
Air trichloromethane kg 0.023 Air hexan-3-one kg 0.599 Air 1-butyl acetate kg 0.269 Air 1-butyl acetate kg 0.269 Air cis-2-pentene kg 0.421 Air 1-butanol kg 0.623 Air cis-dichloroethene kg 0.427 Air dimethyl carbonate kg 0.425 Air butyraldehyde kg 0.025 Air butyraldehyde kg 0.373 Air propylene glycol kg 0.374 Air hexan-2-one kg 0.398 Air trans-2-pentene kg 0.405 Air trans-2-pentene kg 0.405 Air propanoic acid kg 0.405 Air propanoic acid kg 0.4114 Air trans-2-butene kg 0.426 Air diethylketone kg	Air	trichloroethene	kg	0.33
Air hexan-3-one kg 0.599 Air 1-butyl acetate kg 0.269 Air cis-2-pentene kg 0.62 Air 1-butanol kg 0.62 Air cis-dichloroethene kg 0.447 Air cis-dichloroethene kg 0.795 Air butyraldehyde kg 0.373 Air butyraldehyde kg 0.373 Air 2-butanone kg 0.373 Air hexan-2-one kg 0.373 Air diisopropylether kg 0.398 Air trans-2-pentene kg 0.405 Air trans-2-pentene kg 0.405 Air propanoic acid kg 0.405 Air propanoic acid kg 0.405 Air trans-2-butene kg 0.414 Air trans-2-butene kg 0.282 Air dimethoxy methane kg <td< td=""><td>Air</td><td>trichloromethane</td><td>kg</td><td>0.023</td></td<>	Air	trichloromethane	kg	0.023
Air1-butyl acetatekg0.269Aircis-2-pentenekg1.12Air1-butanolkg0.62Aircis-dichloroethenekg0.447Airdimethyl carbonatekg0.255Airdimethyl carbonatekg0.373Airpropylene glycolkg0.373Airpropylene glycolkg0.373Airdisopropyletherkg0.398Airtrans-2-pentenekg0.398Airtrans-2-pentenekg0.308Airtrans-2-pentenekg0.308Airtrans-2-pentenekg0.405Airdisopropyletherkg0.405Aircis-2-hexenekg0.115Aircis-2-hexenekg0.414Air1-propyl acetatekg0.282Air1-propyl acetatekg0.384Air1-undecanekg0.384Airtrans-2-hexenekg0.368Air1-propanolkg0.561Air1-propanolkg0.561Airtrans-2-hexenekg0.561Air1-propanolkg0.561Air1-propanolkg0.561Air1-propanolkg0.561Air1-propanolkg0.561Air1-propanolkg0.561Air1-propoleklenekg0.561Air1-propoleklenekg	Air	hexan-3-one	kg	0.599
Air cis-2-pentene kg 1.12 Air 1-butanol kg 0.62 Air cis-dichloroethene kg 0.447 Air dimethyl carbonate kg 0.025 Air butyraldehyde kg 0.795 Air butyraldehyde kg 0.373 Air propylene glycol kg 0.375 Air hexan-2-one kg 0.398 Air trans-2-pentene kg 0.398 Air trans-2-pentene kg 0.398 Air trans-2-pentene kg 0.457 Air trans-2-pentene kg 0.405 Air propanoic acid kg 0.405 Air propanoic acid kg 0.405 Air propanoic acid kg 0.4114 Air cis-2-bexene kg 0.282 Air diethylketone kg 0.282 Air dimethoxy methane kg	Air	1-butyl acetate	kg	0.269
Air 1-butanol kg 0.62 Air cis-dichloroethene kg 0.447 Air dimethyl carbonate kg 0.025 Air butyraldehyde kg 0.795 Air 2-butanone kg 0.373 Air 2-butanone kg 0.373 Air propylene glycol kg 0.572 Air hexan-2-one kg 0.398 Air diisopropylether kg 0.398 Air trans-2-pentene kg 0.405 Air isopentane kg 0.405 Air propanoic acid kg 0.405 Air propanoic acid kg 0.405 Air trans-2-butene kg 0.405 Air trans-2-butene kg 0.405 Air trans-2-butene kg 0.282 Air dimethoxy methane kg 0.282 Air dimethoxy methane kg <t< td=""><td>Air</td><td>cis-2-pentene</td><td>kg</td><td>1.12</td></t<>	Air	cis-2-pentene	kg	1.12
Air cis-dichloroethene kg 0.447 Air dimethyl carbonate kg 0.025 Air butyraldehyde kg 0.373 Air propylene glycol kg 0.373 Air bexan-2-one kg 0.398 Air trans-2-pentene kg 0.398 Air trans-2-pentene kg 0.405 Air trans-2-pentene kg 0.405 Air propanoic acid kg 0.15 Air cis-2-hexene kg 0.16 Air trans-2-butene kg 0.414 Air 1-propyl acetate kg 0.384 Air 1-udecane kg 0.384 Air trans-2-hexene kg 0.384 Air trans-2-hexene kg	Air	1-butanol	kg	0.62
Air dimethyl carbonate kg 0.025 Air butyraldehyde kg 0.795 Air 2-butanone kg 0.373 Air propylene glycol kg 0.457 Air hexan-2-one kg 0.373 Air hexan-2-one kg 0.398 Air trans-2-pentene kg 0.398 Air trans-2-pentene kg 0.457 Air trans-2-pentene kg 0.405 Air propanoic acid kg 0.405 Air propanoic acid kg 0.415 Air trans-2-butene kg 0.115 Air trans-2-butene kg 0.414 Air diethylketone kg 0.282 Air dimethoxy methane kg 0.384 Air 1-undecane kg 0.548 Air trans-2-hexene kg 0.548 Air trans-2-hexene kg <td< td=""><td>Air</td><td>cis-dichloroethene</td><td>kg</td><td>0.447</td></td<>	Air	cis-dichloroethene	kg	0.447
Air butyraldehyde kg 0.795 Air 2-butanone kg 0.373 Air propylene glycol kg 0.457 Air hexan-2-one kg 0.572 Air disopropylether kg 0.398 Air disopropylether kg 0.398 Air disopropylether kg 0.405 Air disopropylether kg 0.398 Air trans-2-pentene kg 0.405 Air propanoic acid kg 0.405 Air propanoic acid kg 0.15 Air trans-2-butene kg 0.414 Air trans-2-butene kg 0.282 Air dimethoxy methane kg 0.282 Air 1-undecane kg 0.384 Air 1-undecane kg 0.384 Air trans-2-hexene kg 0.561 Air trans-2-hexene kg 0.	Air	dimethyl carbonate	kg	0.025
Air 2-butanoné kg 0.373 Air propylene glycol kg 0.457 Air hexan-2-one kg 0.572 Air diisopropylether kg 0.398 Air trans-2-pentene kg 0.398 Air trans-2-pentene kg 0.398 Air trans-2-pentene kg 0.405 Air propanoic acid kg 0.405 Air propanoic acid kg 0.15 Air cis-2-hexene kg 1.07 Air diethylketone kg 0.414 Air 1-propyl acetate kg 0.282 Air 1-undecane kg 0.384 Air trans-2-hexene kg 0.384 Air trans-2-hexene kg 0.384 Air trans-2-hexene kg 0.392 Air trans-2-hexene kg 0.392 Air trans-2-hexene kg 0.	Air	butyraldehyde	kg	0.795
Air propylene glycol kg 0.457 Air hexan-2-one kg 0.572 Air disopropylether kg 0.398 Air trans-2-pentene kg 0.398 Air trans-2-pentene kg 0.405 Air isopentane kg 0.405 Air propanoic acid kg 0.115 Air cis-2-hexene kg 1.07 Air trans-2-butene kg 0.414 Air diethylketone kg 0.282 Air diethylketone kg 0.282 Air dimethoxy methane kg 0.282 Air 1-undecane kg 0.384 Air 1-undecane kg 0.548 Air trans-2-hexene kg 0.548 Air trans-2-hexene kg 0.551 Air trans-2-hexene kg 0.561 Air trans-dichloroethene kg 0	Air	2-butanone	kg	0.373
Air hexan-2-one kg 0.572 Air diisopropylether kg 0.398 Air trans-2-pentene kg 0.405 Air isopentane kg 0.405 Air propanoic acid kg 0.15 Air propanoic acid kg 0.15 Air cis-2-hexene kg 1.13 Air diethylketone kg 0.282 Air dimethoxy methane kg 0.282 Air dimethoxy methane kg 0.282 Air dimethoxy methane kg 0.384 Air 1-undecane kg 0.384 Air trans-2-hexene kg 0.561 Air trans-2-hexene kg 0.392 Air trans-2-hexene kg 0.561 Air trans-dichloroethene kg 0.561 Air 1-propanol kg 0.627 Air 1-propolene kg 0	Air	propylene glycol	kg	0.457
Air diisopropylether kg 0.398 Air trans-2-pentene kg 1.12 Air isopentane kg 0.405 Air propanoic acid kg 0.15 Air cis-2-bexene kg 0.15 Air cis-2-bexene kg 1.07 Air diethylketone kg 0.414 Air 1-propyl acetate kg 0.282 Air diethylketone kg 0.384 Air 1-undecane kg 0.384 Air trans-2-bexene kg 0.384 Air trans-2-hexene kg 0.384 Air trans-2-hexene kg 0.548 Air trans-2-hexene kg 0.392 Air trans-2-hexene kg 0.364 Air trans-dichloroethene kg 0.362 Air 1-propanol kg 0.561 Air 1-propyl benzene kg 0.62	Air	hexan-2-one	kg	0.572
Air trans-2-pentene kg 1.12 Air isopentane kg 0.405 Air propanoic acid kg 0.15 Air cis-2-hexene kg 1.07 Air trans-2-butene kg 0.415 Air trans-2-butene kg 0.414 Air diethylketone kg 0.282 Air dimethoxy methane kg 0.282 Air dimethoxy methane kg 0.384 Air 1-undecane kg 0.548 Air trans-2-hexene kg 0.548 Air trans-dichloroethene kg 0.548 Air trans-dichloroethene kg 0.561 Air trans-dichloroethene kg 0.627 Air i-butene kg 0.626 Air propionaldehyde kg 0.636 Air propionaldehyde kg 0.798	Air	diisopropylether	kg	0.398
Air isopentane kg 0.405 Air propanoic acid kg 0.15 Air cis-2-hexene kg 1.07 Air trans-2-butene kg 1.13 Air diethylketone kg 0.414 Air diethylketone kg 0.282 Air dimethoxy methane kg 0.384 Air 1-undecane kg 0.384 Air trans-2-bexene kg 0.548 Air trans-2-hexene kg 0.392 Air trans-dichloroethene kg 0.392 Air trans-dichloroethene kg 0.361 Air 1-propanol kg 0.561 Air 1-propanol kg 0.562 Air 1-propanol kg 0.627 Air 1-propanol kg 0.627 Air 1-propyl benzene kg 0.627 Air 1-propyl benzene kg 0.798 </td <td>Air</td> <td>trans-2-pentene</td> <td>kg</td> <td>1.12</td>	Air	trans-2-pentene	kg	1.12
Air propanoic acid kg 0.15 Air cis-2-bexene kg 1.07 Air trans-2-butene kg 1.13 Air diethylketone kg 0.414 Air 1-propyl acetate kg 0.282 Air diethylketone kg 0.282 Air 1-undecane kg 0.384 Air trans-2-bexene kg 0.384 Air trans-2-bexene kg 0.548 Air trans-2-bexene kg 0.384 Air trans-dichloroethene kg 0.392 Air 1-propanol kg 0.3661 Air 1-propanol kg 0.627 Air 1-propinal kg 0.627 0.627 Air 1-propinaldehyde kg 0.6263 Air propionaldehyde kg 0.798 Air cis-2-butene kg 0.798	Air	isopentane	kg	0.405
Air cis-2-hexene kg 1.07 Air trans-2-butene kg 1.13 Air diethylketone kg 0.414 Air 1-propyl acetate kg 0.282 Air dimethoxy methane kg 0.384 Air 1-undecane kg 0.384 Air trans-2-hexene kg 0.548 Air trans-2-hexene kg 0.548 Air trans-dichloroethene kg 0.561 Air 1-propanol kg 0.561 Air 1-propanol kg 0.627 Air 1-propinaldehyde kg 0.636 Air propionaldehyde kg 0.798 Air cis-2-butene kg 0.798	Air	propanoic acid	kg	0.15
Air trans-2-butene kg 1.13 Air diethylketone kg 0.414 Air 1-propyl acetate kg 0.282 Air dimethoxy methane kg 0.16 Air 1-undecane kg 0.384 Air trans-2-bexene kg 0.548 Air trans-dichloroethene kg 0.392 Air trans-dichloroethene kg 0.561 Air 1-propanol kg 0.561 Air 1-propanol kg 0.562 Air 1-propanol kg 0.627 Air 1-propanol kg 0.627 Air 1-propanol kg 0.627 Air 1-propanol kg 0.627 Air 1-propublenzene kg 0.636 Air propionaldehyde kg 0.798 Air cis-2-butene kg 1.15	Air	cis-2-hexene	kg	1.07
Air diethylketone kg 0.414 Air 1-propyl acetate kg 0.282 Air dimethoxy methane kg 0.384 Air 1-undecane kg 0.384 Air trans-2-hexene kg 0.548 Air trans-2-hexene kg 0.384 Air trans-dichloroethene kg 0.392 Air trans-dichloroethene kg 0.3661 Air 1-propanol kg 0.627 Air 1-propinole kg 0.6261 Air 1-propinolekene kg 0.627 Air 1-propinolekene kg 0.627 Air 1-propinaldehyde kg 0.798 Air propionaldehyde kg 0.798 Air cis-2-butene kg 1.15	Air	trans-2-butene	kg	1.13
Air 1-propyl acetate kg 0.282 Air dimethoxy methane kg 0.16 Air 1-undecane kg 0.384 Air trans-2-hexene kg 0.548 Air methyl propyl ketone kg 0.548 Air trans-dichloroethene kg 0.392 Air 1-propanol kg 0.561 Air i-butene kg 0.627 Air 1-propanol kg 0.636 Air propionaldehyde kg 0.798 Air cis-2-butene kg 1.15	Air	diethylketone	ka	0.414
Air dimethoxy methane kg 0.16 Air 1-undecane kg 0.384 Air trans-2-hexene kg 0.384 Air trans-2-hexene kg 0.548 Air methyl propyl ketone kg 0.548 Air trans-dichloroethene kg 0.392 Air 1-propanol kg 0.561 Air i-butene kg 0.627 Air 1-propanolekge kg 0.636 Air propionaldehyde kg 0.798 Air propionaldehyde kg 1.15	Air	1-propyl acetate	kg	0.282
Air 1-undecane kg 0.384 Air trans-2-hexene kg 1.07 Air methyl propyl ketone kg 0.548 Air trans-dichloroethene kg 0.392 Air 1-propanol kg 0.361 Air 1-propanol kg 0.561 Air 1-propyl benzene kg 0.627 Air 1-propyl benzene kg 0.636 Air propionaldehyde kg 0.798 Air cis-2-butene kg 1.15	Air	dimethoxy methane	kg	0.16
Air trans-2-hexene kg 1.07 Air methyl propyl ketone kg 0.548 Air trans-dichloroethene kg 0.392 Air 1-propanol kg 0.561 Air i-butene kg 0.627 Air 1-propyl benzene kg 0.636 Air propionaldehyde kg 0.798 Air cis-2-butene kg 1.15	Air	1-undecane	ka	0.384
Air methyl propyl ketone kg 0.548 Air trans-dichloroethene kg 0.392 Air 1-propanol kg 0.561 Air i-butene kg 0.627 Air 1-propyl benzene kg 0.636 Air propionaldehyde kg 0.798 Air cis-2-butene kg 1.15	Air	trans-2-hexene	kg	1.07
Airtrans-dichloroethenekg0.392Air1-propanolkg0.561Airi-butenekg0.627Air1-propyl benzenekg0.636Airpropionaldehydekg0.798Aircis-2-butenekg1.15	Air	methyl propyl ketone	kg	0.548
Air 1-propanol kg 0.561 Air i-butene kg 0.627 Air 1-propyl benzene kg 0.636 Air propionaldehyde kg 0.798 Air cis-2-butene kg 1.15	Air	trans-dichloroethene	kg	0.392
Airi-butenekg0.627Air1-propyl benzenekg0.636Airpropionaldehydekg0.798Aircis-2-butenekg1.15	Air	1-propanol	kg	0.561
Air1-propyl benzenekg0.636Airpropionaldehydekg0.798Aircis-2-butenekg1.15	Air	i-butene	kg	0.627
Airpropionaldehydekg0.798Aircis-2-butenekg1.15	Air	1-propyl benzene	kg	0.636
Air cis-2-butene kg 1.15	Air	propionaldehyde	ka	0.798
	Air	cis-2-butene	kg	1.15

B1.8 ACIDIFICATION

Impact category	Acidification	kg SO2 eg	
Air	ammonia	kg	1.6
Air	NO2	kg	0.5
Air	NOx	kg	0.5
Air	NOx (as NO2)	kg	0.5
Air	SO2	kg	1.2
Air	SOx	kg	1.2
Air	SOx (as SO2)	kġ	1.2

B1.9 EUTROPHICATION

Impact category	Eutrophication	kg PO4 eq	
Air	ammonia	kg	0.35
Air	nitrates	kg	0.1
Air	NO	kg	0.2
Air	NO2	kg	0.13
Air	NOx (as NO2)	kg	0.13
Air	P	kg	3.06
Air	phosphate	kg	1
Water	COD	kg	0.022
Water	NH3	kg	0.35
Water	NH4+	kg	0.33
Water	nitrate	kg	0.1
Water	P2O5	kg	1.34
Water	phosphate	kg	1
Water	NH3 (sea)	kg	0.35
Soil	phosphor (ind.)	kg	3.06
Soil	nitrogen (ind.)	kg	0.42
Soil	phosphoric acid (ind.)	kg	0.97
Soil	ammonia (agr.)	kg	0.35
Soil	phosphate (ind.)	kg	1
Soil	ammonium (ind.)	kg	0.33
Water	phosphate (sea)	kg	1
Soil	ammonium (agr.)	kg	0.33
Soil	nitric acid (agr.)	kg	0.1
Soil	nitric acid (ind.)	kg	0.1
Water	COD (sea)	kg	0.022
Water	HNO3 (sea)	kg	0.1
Water	P	kg	3.06
Soil	ammonia (ind.)	kg	0.35
Soil	phosphoric acid (agr.)	kg	0.97
Water	phosphoric acid	kg	0.97
Water	nitrogen (sea)	kg	0.42
Water	nitrate (sea)	kg	0.1
Impact category	Eutrophication	kg PO4 eq	
-----------------	-----------------------	-----------	------
Soil	nitrate (ind.)	kg	0.1
Soil	nitrate (agr.)	kg	0.1
Water	NH4+ (sea)	kg	0.33
Water	phosphoric acid (sea)	kg	0.97
Soil	phosphor (agr.)	kg	3.06
Air	phosphoric acid	kg	0.97
Soil	phosphate (agr.)	kg	1
Water	nitrogen	kg	0.42
Soil	nitrogen (agr.)	kg	0.42
Water	P (sea)	kg	3.06
Air	ammonium	kg	0.33
Water	HNO3	kg	0.1
Air	HNO3	kġ	0.1
Water	nitrite	kg	0.1
Air	N2	kg	0.42
Water	P2O5 (sea)	kg	1.34
Air	P2O5	kg	1.34
Soil	P2O5 (ind.)	kġ	1.34
Soil	P2O5 (agr.)	kg	1.34
Water	nitrite (sea)	kġ	0.1

Annex C

Assessment of Alternative Growth Scenarios

C1

A full analysis of the environmental and cost implications of two alternative predictions for growth in battery waste arisings was carried out to inform Regulatory Impact Assessment evaluations. The two alternative growth scenarios were:

- 1. growth in battery waste arisings at a constant rate of 2.5% from 2003 onwards (reflecting a constant GDP growth rate of 2.5%); and
- 2. growth in battery waste arisings in line with historic trends for individual chemistries.

Resulting tonnages of batteries handled over the 25 year period are shown in *Table 1.1*. Assuming that the Battery Directive is implemented in 2008 and collection targets are achieved along the same projection as for the core analyses, resulting tonnages of batteries collected over the 25 year period are shown in *Table 1.2*.

Inventory analyses, impact and cost assessment results are subsequently presented. All calculations, assumptions and background data used to carry out this analysis are as reported in *Sections 1* and 2 of the main report.

C1.1 BATTERY ARISINGS AND COLLECTION

Battery Type	GDP Growth Scenario	Historic Growth Scenario
Silver Oxide (AgO)	163	88
Zinc Air (ZnO)	70	507
Lithium Manganese (LiMn)	572	614
Lithium (Li)	2682	4496
Zinc Carbon (ZnC)	127,774	66,788
Alkaline Manganese (AlMn)	529,394	577,341
Lithium Ion (Li-ion)	49,505	89,507
Nickel Cadmium (NiCd)	81,540	75,474
Nickel Metal Hydride (NiMH)	45,056	89,220
Lead Acid (PbA)	26,224	37,718
Total	862,950	941,753

Table 1.1Battery Arisings under Alternative Growth Scenarios (2006-2030)

Table 1.2Battery Collection under Alternative Growth Scenarios (2006-2030)

Battery Type	GDP Growth Scenario	Historic Growth Scenario
Silver Oxide (AgO)	59	30
Zinc Air (ZnO)	25	195
Lithium Manganese (LiMn)	207	223
Lithium (Li)	970	1675
Zinc Carbon (ZnC)	46,182	22,544
Alkaline Manganese (AlMn)	191,386	210,024
Lithium Ion (Li-ion)	17,897	33,446
Nickel Cadmium (NiCd)	29,478	27,120
Nickel Metal Hydride (NiMH)	16,289	33,456
Lead Acid (PbA)	9480	13,948
Total	311,972	342,661

C1.2 RESULTS OF ANALYSES

Life cycle inventory and impact assessment results for the alternative growth scenarios are presented in *Table 1.3* to *Table 1.10*, together with an estimation of collection, recycling and disposal costs and the external cost savings associated with reductions in pollutant emissions.

All calculations, assumptions and background data used to carry out analyses are consistent with those reported in *Sections 1* and 2 of the main report.

Emission	Unit	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6	Scenario 7	Scenario 8	Scenario 9	Scenario 10
Coal	kg	-9.8E+07	-1.1E+08	-8.4E+07	-9.8E+07	-1.1E+08	-8.4E+07	-9.6E+07	-1.1E+08	-8.2E+07	642000
Gas	kg	507000	-3970000	-8510000	648000	-3830000	-8370000	1140000	-3350000	-7880000	723000
Oil	kg	-7750	6700000	26900000	277000	6990000	27200000	3910000	10600000	30800000	2420000
Cadmium, in ore	kg	-4190000	-4190000	-4190000	-4190000	-4190000	-4190000	-4190000	-4190000	-4190000	x
Lead, in ore	kg	-1.6E+07	-1.6E+07	-1.5E+07	-1.6E+07	-1.6E+07	-1.5E+07	-1.6E+07	-1.6E+07	-1.5E+07	2550
Zinc, in ore	kg	-7.7E+07	-7.7E+07	-7.5E+07	-7.7E+07	-7.7E+07	-7.5E+07	-7.7E+07	-7.7E+07	-7.5E+07	254
CO ₂	kg	-1.2E+08	-1.4E+08	-1.3E+08	-1.2E+08	-1.4E+08	-1.3E+08	-1E+08	-1.3E+08	-1.2E+08	60200000
CH ₄	kg	1240000	1090000	611000	1240000	1090000	611000	1240000	1090000	611000	938000
NOx	kg	-1270000	-1270000	-974000	-1270000	-1270000	-972000	-1240000	-1250000	-948000	231000
SOx	kg	-1240000	-1310000	-1940000	-1230000	-1310000	-1940000	-1200000	-1280000	-1910000	62700
NH ₃	kg	-111000	-110000	-105000	-111000	-110000	-105000	-110000	-110000	-104000	1070
Cd (air)	kg	3930	3930	3930	3930	3930	3930	3930	3930	3930	6550
Ni (air)	kg	12500	12400	12400	12500	12400	12400	12500	12500	12400	19700
Pb (air)	kg	-29900	-29900	-28900	-29900	-29900	-28900	-29900	-29800	-28900	6800
Co (air)	kg	2960	2960	2960	2960	2960	2960	2960	2960	2960	4660
Hg (air)	kg	-1130	-1130	-12600	-1130	-1130	-12600	-1130	-1130	-12600	4.09
Cd (water/soil)	kg	343000	343000	343000	343000	343000	343000	343000	343000	343000	562000
Ni (water/soil)	kg	1080000	1080000	1080000	1080000	1080000	1080000	1080000	1080000	1080000	1700000
Pb (water/soil)	kg	269000	269000	267000	269000	269000	267000	269000	269000	267000	586000
Co (water/soil)	kg	255000	255000	255000	255000	255000	255000	255000	255000	255000	399000
Hg (water/soil)	kg	-93.6	-91	-58.4	-93.5	-90.9	-58.3	-92.8	-90.2	-57.5	364
PAH (water/soil)	kg	-4270	-4260	-4480	-4270	-4260	-4480	-4260	-4260	-4480	1.65
Phosphate (water)	kg	103000	102000	102000	103000	102000	102000	104000	102000	102000	170000

Table 1.3GDP Growth Scenario - Inventory Analysis of Selected Flows

Emission	Unit	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6	Scenario 7	Scenario 8	Scenario 9	Scenario 10
Coal	kg	-1.2E+08	-1.3E+08	-1.1E+08	-1.2E+08	-1.3E+08	-1.1E+08	-1.2E+08	-1.3E+08	-1E+08	701000
Gas	kg	-1070000	-5460000	-9910000	-922000	-5310000	-9760000	-400000	-4790000	-9240000	789000
Oil	kg	-2850000	3720000	23500000	-2550000	4020000	23800000	1400000	7970000	27700000	2640000
Cadmium, in ore	kg	-3860000	-3860000	-3860000	-3860000	-3860000	-3860000	-3860000	-3860000	-3860000	x
Lead, in ore	kg	-2.3E+07	2780								
Zinc, in ore	kg	-7.5E+07	-7.5E+07	-7.4E+07	-7.5E+07	-7.5E+07	-7.4E+07	-7.5E+07	-7.5E+07	-7.4E+07	277
CO ₂	kg	-1.6E+08	-1.9E+08	-1.8E+08	-1.6E+08	-1.9E+08	-1.8E+08	-1.5E+08	-1.7E+08	-1.6E+08	65700000
CH ₄	kg	1280000	1120000	655000	1280000	1120000	655000	1280000	1120000	655000	1020000
NOx	kg	-1500000	-1510000	-1210000	-1500000	-1500000	-1210000	-1470000	-1480000	-1190000	252000
SOx	kg	-1460000	-1530000	-2150000	-1450000	-1530000	-2150000	-1420000	-1500000	-2110000	68500
NH ₃	kg	-137000	-137000	-131000	-137000	-137000	-131000	-137000	-136000	-131000	1170
Cd (air)	kg	4270	4270	4270	4270	4270	4270	4270	4270	4270	7150
Ni (air)	kg	13500	13500	13500	13500	13500	13500	13600	13500	13500	21500
Pb (air)	kg	-30600	-30600	-29700	-30600	-30600	-29700	-30600	-30600	-29700	7420
Co (air)	kg	3220	3220	3220	3220	3220	3220	3220	3220	3220	5080
Hg (air)	kg	-1080	-1080	-12300	-1080	-1080	-12300	-1080	-1080	-12300	4.46
Cd (water/soil)	kg	367000	367000	367000	367000	367000	367000	367000	367000	367000	613000
Ni (water/soil)	kg	1180000	1180000	1180000	1180000	1180000	1180000	1180000	1180000	1180000	1850000
Pb (water/soil)	kg	250000	251000	248000	250000	251000	248000	250000	251000	248000	640000
Co (water/soil)	kg	278000	278000	277000	278000	278000	277000	278000	278000	277000	436000
Hg (water/soil)	kg	-208	-206	-174	-208	-206	-174	-207	-205	-173	397
PAH (water/soil)	kg	-4190	-4180	-4390	-4190	-4180	-4390	-4180	-4180	-4390	1.8
Phosphate (water)	kg	106000	105000	105000	106000	105000	105000	107000	106000	106000	186000

Table 1.4Historic Growth Scenario - Inventory Analysis of Selected Flows

Impact Category	Unit	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6	Scenario 7	Scenario 8	Scenario 9	Scenario 10
abiotic depletion	kg Sb eq	-2610000	-2800000	-2300000	-2590000	-2790000	-2280000	-2490000	-2690000	-2180000	73900
global warming (GWP100)	kg CO ₂ eq	-1.4E+08	-1.7E+08	-1.4E+08	-1.4E+08	-1.7E+08	-1.4E+08	-1.3E+08	-1.5E+08	-1.3E+08	65200000
ozone layer depletion (ODP)	kg CFC-11 eq	-1.44	1.91	12.2	-1.32	2.04	12.3	0.175	3.53	13.8	43
human toxicity	kg 1,4-DB eq	-1.5E+08	-1.6E+08	-3.5E+08	-1.5E+08	-1.6E+08	-3.5E+08	-1.5E+08	-1.5E+08	-3.4E+08	2.58E+09
fresh water aquatic ecotoxicity	kg 1,4-DB eq	5.08E+09	5.08E+09	5.05E+09	5.08E+09	5.08E+09	5.05E+09	5.08E+09	5.08E+09	5.06E+09	8.26E+09
terrestrial ecotoxicity	kg 1,4-DB eq	-3.2E+07	-3.2E+07	-3.6E+08	-3.2E+07	-3.2E+07	-3.6E+08	-3.2E+07	-3.2E+07	-3.6E+08	5130000
Acidification	kg SO ₂ eq	-2300000	-2390000	-2990000	-2290000	-2380000	-2980000	-2240000	-2330000	-2930000	192000
eutrophication	kg PO ₄ eq	136000	136000	138000	136000	137000	139000	141000	142000	144000	617000

Table 1.5GDP Growth Scenario - Life Cycle Impact Assessment

Impact Category	Unit	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6	Scenario 7	Scenario 8	Scenario 9	Scenario 10
abiotic depletion	kg Sb eq	-2940000	-3130000	-2630000	-2920000	-3120000	-2620000	-2810000	-3010000	-2510000	80600
global warming (GWP100)	kg CO ₂ eq	-2E+08	-2.2E+08	-2E+08	-1.9E+08	-2.2E+08	-2E+08	-1.8E+08	-2.1E+08	-1.8E+08	71100000
ozone layer depletion (ODP)	kg CFC-11 eq	-23.6	-20.3	-10.2	-23.4	-20.1	-10.1	-21.8	-18.5	-8.47	47
human toxicity	kg 1,4-DB eq	-2.3E+08	-2.3E+08	-4.2E+08	-2.3E+08	-2.3E+08	-4.2E+08	-2.2E+08	-2.2E+08	-4.1E+08	2.82E+09
fresh water aquatic ecotox.	kg 1,4-DB eq	5.49E+09	5.49E+09	5.47E+09	5.49E+09	5.49E+09	5.47E+09	5.49E+09	5.49E+09	5.47E+09	9.02E+09
terrestrial ecotoxicity	kg 1,4-DB eq	-3.1E+07	-3.1E+07	-3.5E+08	-3.1E+07	-3.1E+07	-3.5E+08	-3E+07	-3.1E+07	-3.5E+08	5600000
Acidification	kg SO ₂ eq	-2720000	-2810000	-3400000	-2710000	-2800000	-3390000	-2660000	-2750000	-3340000	210000
eutrophication	kg PO4 eq	82500	83000	85200	83000	83500	85700	88700	89200	91400	673000

Table 1.6Historic Growth Scenario - Life Cycle Impact Assessment

Year	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6	Scenario 7	Scenario 8	Scenario 9	Scenario 10
2006	2.1	2.1	2.1	2.1	2.1	2.1	2.2	2.2	2.2	0.9
2007	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	1.0
2008	4.4	4.4	4.4	4.4	4.4	4.4	4.5	4.5	4.5	1.1
2009	5.7	5.7	5.7	5.7	5.7	5.7	5.9	5.9	5.9	1.2
2010	7.1	7.1	7.1	7.1	7.1	7.1	7.2	7.2	7.2	1.3
2011	8.4	8.4	8.4	8.4	8.4	8.4	8.7	8.7	8.7	1.4
2012	9.3	9.3	9.3	9.3	9.3	9.3	9.4	9.4	9.4	1.4
2013	11.1	11.1	11.1	11.1	11.1	11.1	11.2	11.2	11.2	1.5
2014	11.5	11.5	11.5	11.5	11.5	11.5	11.4	11.4	11.4	1.5
2015	13.1	13.1	13.1	13.1	13.1	13.1	13.1	13.1	13.1	1.5
2016	14.8	14.8	14.8	14.8	14.8	14.8	14.5	14.5	14.5	1.6
2017	15.0	15.0	15.0	15.0	15.0	15.0	14.8	14.8	14.8	1.6
2018	15.3	15.3	15.3	15.3	15.3	15.3	15.1	15.1	15.1	1.6
2019	15.6	15.6	15.6	15.6	15.6	15.6	15.4	15.4	15.4	1.6
2020	15.9	15.9	15.9	15.9	15.9	15.9	15.7	15.7	15.7	1.7
2021	16.2	16.2	16.2	16.2	16.2	16.2	16.0	16.0	16.0	1.7
2022	16.5	16.5	16.5	16.5	16.5	16.5	16.3	16.3	16.3	1.7
2023	16.8	16.8	16.8	16.8	16.8	16.8	16.5	16.5	16.5	1.8
2024	17.1	17.1	17.1	17.1	17.1	17.1	16.8	16.8	16.8	1.8
2025	17.4	17.4	17.4	17.4	17.4	17.4	17.1	17.1	17.1	1.8
2026	17.6	17.6	17.6	17.6	17.6	17.6	17.4	17.4	17.4	1.9
2027	17.9	17.9	17.9	17.9	17.9	17.9	17.7	17.7	17.7	1.9
2028	18.2	18.2	18.2	18.2	18.2	18.2	18.0	18.0	18.0	1.9
2029	18.5	18.5	18.5	18.5	18.5	18.5	18.2	18.2	18.2	1.9
2030	18.8	18.8	18.8	18.8	18.8	18.8	18.5	18.5	18.5	2.0
Total (Mill £)	327.57	327.57	327.57	327.57	327.57	327.57	324.78	324.78	324.78	39.27

Table 1.7GDP Growth Scenario - Collection, Sorting, Recycling and Disposal Costs

Year	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6	Scenario 7	Scenario 8	Scenario 9	Scenario 10
2006	2.1	2.1	2.1	2.1	2.1	2.1	2.2	2.2	2.2	0.9
2007	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	1.0
2008	4.5	4.5	4.5	4.5	4.5	4.5	4.6	4.6	4.6	1.1
2009	5.8	5.8	5.8	5.8	5.8	5.8	5.9	5.9	5.9	1.2
2010	7.2	7.2	7.2	7.2	7.2	7.2	7.4	7.4	7.4	1.4
2011	8.6	8.6	8.6	8.6	8.6	8.6	8.9	8.9	8.9	1.5
2012	9.6	9.6	9.6	9.6	9.6	9.6	9.7	9.7	9.7	1.5
2013	11.5	11.5	11.5	11.5	11.5	11.5	11.6	11.6	11.6	1.6
2014	11.8	11.8	11.8	11.8	11.8	11.8	11.8	11.8	11.8	1.6
2015	13.6	13.6	13.6	13.6	13.6	13.6	13.5	13.5	13.5	1.6
2016	15.3	15.3	15.3	15.3	15.3	15.3	15.1	15.1	15.1	1.7
2017	15.7	15.7	15.7	15.7	15.7	15.7	15.5	15.5	15.5	1.7
2018	16.0	16.0	16.0	16.0	16.0	16.0	15.8	15.8	15.8	1.8
2019	16.4	16.4	16.4	16.4	16.4	16.4	16.2	16.2	16.2	1.8
2020	16.7	16.7	16.7	16.7	16.7	16.7	16.5	16.5	16.5	1.8
2021	17.1	17.1	17.1	17.1	17.1	17.1	16.9	16.9	16.9	1.9
2022	17.5	17.5	17.5	17.5	17.5	17.5	17.2	17.2	17.2	1.9
2023	17.8	17.8	17.8	17.8	17.8	17.8	17.6	17.6	17.6	2.0
2024	18.2	18.2	18.2	18.2	18.2	18.2	17.9	17.9	17.9	2.0
2025	18.5	18.5	18.5	18.5	18.5	18.5	18.3	18.3	18.3	2.0
2026	18.9	18.9	18.9	18.9	18.9	18.9	18.6	18.6	18.6	2.1
2027	19.2	19.2	19.2	19.2	19.2	19.2	19.0	19.0	19.0	2.1
2028	19.6	19.6	19.6	19.6	19.6	19.6	19.3	19.3	19.3	2.2
2029	20.0	20.0	20.0	20.0	20.0	20.0	19.7	19.7	19.7	2.2
2030	20.3	20.3	20.3	20.3	20.3	20.3	20.0	20.0	20.0	2.3
Total (Mill £)	345.28	345.28	345.28	345.28	345.28	345.28	342.16	342.16	342.16	42.93

Table 1.8Historic Growth Scenario - Collection, Sorting, Recycling and Disposal Costs

Pollutant	Unit	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6	Scenario 7	Scenario 8	Scenario 9	Scenario 10
NOx	Million £	-0.74	-0.75	-0.57	-0.74	-0.75	-0.57	-0.73	-0.73	-0.55	0.17
SO_2	Million £	-2.79	-2.74	-3.63	-2.78	-2.73	-3.63	-2.73	-2.68	-3.57	0.01
NMVOC	Million £	-0.10	-0.09	-0.06	-0.10	-0.08	-0.06	-0.09	-0.08	-0.05	0.02
Particulates	Million £	-43.50	-43.90	-37.10	-43.50	-43.90	-37.00	-43.10	-43.60	-36.70	0.66
CO ₂	Million £	-3.66	-4.33	-3.73	-3.64	-4.32	-3.71	-3.27	-3.95	-3.34	1.14
CH_4	Million £	0.54	0.45	0.35	0.54	0.45	0.35	0.54	0.45	0.35	0.53
Total	Million £	-50.26	-51.36	-44.74	-50.22	-51.33	-44.62	-49.38	-50.59	-43.87	2.53

 Table 1.9
 GDP Growth Scenario - Cost of Pollutant Emissions (Average Estimate)

 Table 1.10
 Historic Growth Scenario - Cost of Pollutant Emissions (Average Estimate)

Pollutant	Unit	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6	Scenario 7	Scenario 8	Scenario 9	Scenario 10
NOx	Million £	-0.88	-0.89	-0.71	-0.88	-0.88	-0.71	-0.87	-0.87	-0.69	0.18
SO ₂	Million £	-3.18	-3.13	-4.01	-3.18	-3.13	-4.01	-3.12	-3.07	-3.95	0.02
NMVOC	Million £	-0.12	-0.10	-0.08	-0.11	-0.10	-0.08	-0.11	-0.09	-0.07	0.02
Particulates	Million £	-49.30	-49.80	-43.00	-49.30	-49.80	-43.00	-48.90	-49.40	-42.60	0.72
CO ₂	Million £	-4.89	-5.56	-4.96	-4.87	-5.54	-4.94	-4.47	-5.14	-4.54	1.25
CH ₄	Million £	0.56	0.47	0.37	0.56	0.47	0.37	0.56	0.47	0.37	0.58
Total	Million £	-57.81	-59.01	-52.39	-57.79	-58.99	-52.36	-56.91	-58.10	-51.48	2.77

Annex D

Inventories

Table 1.1Inventories: Implementation Scenarios 1 to 9

Substance	Compartment	Unit	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6	Scenario 7	Scenario 8	Scenario 9
Additives	Raw	tn.lg	1.56	1.56	1.56	1.56	1.56	1.56	1.56	1.56	1.56
Aluminium, 24% in bauxite,	Raw	tn.lg	5520	5500	5630	5520	5500	5630	5510	5490	5610
11% in crude ore, in ground Anhydrite, in ground	Raw	oz	628	-5500	-5050	-5520	-5500	80.2	-3310	-3490	209
Barite, 15% in crude ore, in ground	Raw	kg	-17600	-121	56500	-17600	-72.2	56600	-4970	12500	69200
Barium, in ground	Raw	kg	-952	-952	-952	-952	-952	-952	-952	-952	-952
Baryte, in ground	Raw	kg	-2930	-2930	-2930	-2930	-2930	-2930	-2900	-2900	-2900
Basalt, in ground	Raw	tn.lg	-83.3	-81.7	-124	-83.2	-81.7	-124	-82.3	-80.8	-123
Bauxite, in ground	Raw	kg	-2060	-2060	-2060	-2060	-2060	-2060	-2030	-2030	-2030
Borax, in ground	Raw	oz	-12.9	24.9	-138	-12.8	25.1	-138	-8.95	28.9	-134
Cadmium, in ground	Raw	kton	-2.86	-2.86	-2.86	-2.86	-2.86	-2.86	-2.86	-2.86	-2.86
Calcite, in ground	Raw	kton	-35.4	-34.9	-31.3	-35.4	-34.9	-31.3	-35.2	-34.7	-31.1
Calcium sulfate, in ground	Raw	kg	667	667	667	667	667	667	667	667	667
Carbon dioxide, in air	Raw	tn.lg	-4560	-4520	-4200	-4530	-4490	-4170	-4450	-4410	-4090
Chromium ore, in ground	Raw	g	38.7	38.7	38.7	38.7	38.7	38.7	38.7	38.7	38.7
Chromium, 25.5 in chromite, 11.6% in crude ore, in ground	Raw	tn.sh	-1.96	-1.07	-21	-1.9	-1.02	-20.9	3.2	4.08	-15.8
Chromium, in ground	Raw	lb	-158	-158	-158	-190	-190	-190	-176	-176	-176
Chrysotile, in ground	Raw	oz	842	849	747	842	850	747	847	854	751
Cinnabar, in ground	Raw	kg	-243	-243	-66800	-243	-243	-66800	-243	-243	-66800
Clay, bentonite, in ground	Raw	tn.lg	-852	-845	-345	-852	-845	-345	-846	-839	-339
Clay, unspecified, in ground	Raw	kton	25.8	26	25.5	25.8	26	25.5	25.9	26.1	25.5
Coal, 18 MJ per kg, in ground	Raw	tn.lg	27900	15900	2560	27900	15900	2570	27900	16000	2580
Coal, 29.3 MJ per kg, in ground	Raw	tn.lg	-498	-498	-498	-498	-498	-498	-498	-498	-498
Coal, brown, 10 MJ per kg, in ground	Raw	tn.lg	1.29	1.29	1.29	1.29	1.29	1.29	1.29	1.29	1.29
Coal, brown, 8 MJ per kg, in ground	Raw	tn.lg	340	251	137	340	251	137	355	266	152
Coal, brown, in ground	Raw	tn.lg	-39100	-38800	-23200	-39100	-38800	-23200	-38600	-38300	-22700
Coal, hard, unspecified, in ground	Raw	tn.lg	-53700	-53400	-34200	-53700	-53300	-34100	-53200	-52900	-33600
Cobalt ore, in ground	Raw	mg	-393	-393	-393	-393	-393	-393	-393	-393	-393
Cobalt, in ground	Raw	kg	-1680000	-1680000	-1680000	-1680000	-1680000	-1680000	-1680000	-1680000	-1680000
Colemanite, in ground	Raw	lb	-901	-897	-739	-901	-897	-739	-895	-890	-732
Copper, 0.99% in sulfide, Cu 0.36% and Mo 8.2E-3% in	Raw	kg	-608	-457	-667	-607	-455	-666	-192	-40.6	-251
crude ore, in ground	D	1									
Copper, 1.18% in sulfide, Cu 0.39% and Mo 8.2E-3% in	Raw	kg	-3350	-2510	-3670	-3340	-2500	-3660	-1040	-200	-1360
crude ore, in ground											
Copper, 1.42% in sulfide, Cu 0.81% and Mo 8.2E-3% in	Raw	kg	-888	-665	-972	-886	-663	-971	-276	-53	-361
Copper, 2.19% in sulfide, Cu	Raw	kg	1110	2200	1020	4400	2200	1020	1050	2(2	1500
1.83% and Mo 8.2E-3% in crude ore in ground			-4410	-3300	-4830	-4400	-3290	-4820	-1370	-263	-1790
Copper, in ground	Raw	kg	-282	-282	-282	-282	-282	-282	-270	-270	-270
Cu, Cu 5.2E-2%, Pt 4.8E-4%, Pd	Raw	tn.lg									
2.0E-4%, Rh 2.4E-5%, Ni 3.7E- 2% in ore, in ground		U	-16.2	-16.2	-16.2	-16.2	-16.2	-16.2	-16.2	-16.2	-16.2
Diatomite, in ground	Raw	g	9.79	18.6	26	9.79	18.6	26	9.94	18.7	26.1
Dolomite, in ground	Raw	kg	-708000	-707000	-742000	-708000	-707000	-742000	-707000	-706000	-741000
Energy, from hydro power	Raw	TJ	-5.61	-5.61	-5.61	-5.61	-5.61	-5.61	-5.55	-5.55	-5.55
Energy, from uranium	Raw	TJ	-3.28	-3.28	-3.28	-3.28	-3.28	-3.28	-3.28	-3.28	-3.28
Energy, gross calorific value, in biomass	Raw	MWh	-14200	-14100	-13100	-14100	-14000	-13000	-13900	-13700	-12800
Energy, kinetic, flow, in wind	Raw	MWh	-7500	-7440	-4220	-7490	-7430	-4210	-7390	-7330	-4100
Energy, potential, stock, in barrage water	Raw	TJ	-897	-862	-126	-897	-862	-125	-892	-857	-120

Substance	Compartment	Unit	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6	Scenario 7	Scenario 8	Scenario 9
Energy, solar	Raw	GJ	-356	-351	-195	-356	-350	-194	-348	-342	-186
Energy, unspecified	Raw	MWh	-223	-223	-223	-223	-223	-223	-223	-223	-223
Feldspar, in ground	Raw	g	-34	-33.5	-31.2	-35	-34.5	-32.1	-34.5	-34	-31.7
Fluorine, 4.5% in apatite, 1% in	Raw	kg			1000						
crude ore, in ground		0	-1310	-1290	-1290	-1310	-1290	-1290	-1290	-1280	-1280
Fluorine, 4.5% in apatite, 3% in	Raw	kg	-572	-566	-564	-572	-566	-564	-566	-560	-558
crude ore, in ground	D	1	0,1	000	001	0,2	000	001	000	000	000
Fluorspar, 92%, in ground	Raw	kg	-39700	-39300	-38900	-39600	-39200	-38700	-39300	-38900	-38400
Gas, mine, off-gas, process,	Raw	кg	-7650	-7650	-7650	-7650	-7650	-7650	-7650	-7650	-7650
Gas, mine, off-gas, process,	Raw	m3									
coal mining/m3			-531000	-527000	-336000	-531000	-527000	-336000	-526000	-522000	-331000
Gas, natural, 30.3 MJ per kg, in	Raw	tn.lg	-65.6	-65.6	-65.6	-65.6	-65.6	-65.6	-63.8	-63.8	-63.8
ground	D		-05.0	-00.0	-05.0	-00.0	-00.0	-00.0	-00.0	-00.0	-05.0
Gas, natural, 35 MJ per m3, in	Kaw	m3	11400000	6270000	312000	11400000	6270000	313000	11500000	6280000	317000
Gas, natural, in ground	Raw	m3	-10100000	-9520000	-8260000	-9920000	-9380000	-8110000	-9420000	-8870000	-7610000
Gas, off-gas, oil production, in	Raw	m3	10100000	20000	0200000	<i>))</i> 20000	2000000	0110000	9120000	0070000	7010000
ground			-27100	-27100	-27100	-27100	-27100	-27100	-26900	-26900	-26900
Gas, petroleum, 35 MJ per m3,	Raw	m3	4050	4050	4050	4050	4050	4050	4050	4050	4050
in ground	D		1000	1000	1000	1000	1000	1000	1000	1000	1000
Granite, in ground	Raw	kg	277	303	325	390	417	439	337	364	386
Gravel, in ground	Raw	kton	-256	-232	-205	-256	-232	-205	-253	-229	-201
Gypsum, in ground	Raw	lb	486	515	401	490	518	404	498	527	413
Iron ore, in ground	Raw	kg	-15	-15	-15	-15	-15	-15	-15	-15	-15
Iron, 46% in ore, 25% in crude	Raw	tn.lg	-72600	-72000	-32300	-72600	-72000	-32300	-72100	-71600	-31900
ore, in ground	Party	to la	22 7		22 5		22 7	22 5		00 F	22.5
Vaclinita 24% in anda ara in	Raw	unig ka	-33.7	-33.7	-33.7	-33.7	-33.7	-33.7	-33.5	-33.5	-33.5
round	Kaw	кg	27700	27800	28500	28500	28600	29200	28600	28800	29400
Kieserite, 25% in crude ore, in	Raw	kg				4400		4400	1050	1050	4050
ground		U	-1110	-1110	-1110	-1100	-1100	-1100	-1050	-1050	-1050
Land use II-III	Raw	m2a	-2030000	-2030000	-2030000	-2030000	-2030000	-2030000	-2030000	-2030000	-2030000
Land use II-III, sea floor	Raw	m2a	4230	4230	4230	4230	4230	4230	4230	4230	4230
Land use II-IV	Raw	m2a	-1350000	-1350000	-1350000	-1350000	-1350000	-1350000	-1350000	-1350000	-1350000
Land use II-IV, sea floor	Raw	m2a	437	437	437	437	437	437	437	437	437
Land use III-IV	Raw	m2a	-83800	-83800	-83800	-83800	-83800	-83800	-83700	-83700	-83700
Land use IV-IV	Raw	m2a	-19000	-19000	-19000	-19000	-19000	-19000	-19000	-19000	-19000
Lead, 5%, in sulfide, Pb 2.97%	Raw	tn.lg									
and Zn 5.34% in crude ore, in			-7650	-7560	-7480	-7650	-7560	-7480	-7640	-7550	-7480
ground	D										
Lead, in ground	Raw	kg	-3260	-3260	-3260	-3260	-3260	-3260	-3260	-3260	-3260
Limestone, in ground	Raw	tn.lg	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3
Lithium, in ground	Raw	tn.lg	-949	-949	-949	-949	-949	-949	-949	-949	-949
Magnesite, 60% in crude ore,	Raw	kg	-7780	-855	5660	-7760	-834	5680	-2130	4790	11300
In ground Magnosium 0.13% in water	Raw	a	(07	(00	(04	(05	500	(01	507	E 00	502
Magnesium, 0.13% in water	Raw	g ~	-607	-600	-604	-605	-598	-601	-596	-588	-592
Manganese ore, in ground	Raw	g 1 1	22.6	22.6	22.6	22.6	22.6	22.6	22.6	22.6	22.6
sedimentary deposit, 14 2% in	Kaw	tn.ig	-90000	-90000	-70200	-90000	-90000	-70200	-90000	-90000	-70200
crude ore, in ground			20000	20000	70200	20000	20000	70200	20000	20000	70200
Manganese, in ground	Raw	lb	-114	-114	-114	-117	-117	-117	-116	-116	-116
Marl, in ground	Raw	kg	-67500	-67500	-67500	-67500	-67500	-67500	-66900	-66900	-66900
Methane	Raw	tn.lg	-18.9	-18.9	-18.9	-18.9	-18.9	-18.9	-18.8	-18.8	-18.8
Molybdenum, 0.010% in	Raw	kg									
sulfide, Mo 8.2E-3% and Cu			-81.9	-61.3	-89.7	-81.8	-61.2	-89.6	-25.5	-4.89	-33.3
1.83% in crude ore, in ground	_										
Molybdenum, 0.014% in	Raw	oz	411	208	450	410	207	450	109	24.6	167
0.81% in crude ore, in ground			-411	-308	-430	-410	-307	-450	-120	-24.0	-107
Molybdenum, 0.022% in	Raw	kg									
sulfide, Mo 8.2E-3% and Cu			936	1080	863	941	1080	869	2860	3000	2790
0.36% in crude ore, in ground	D										
Molybdenum, 0.025% in	Kaw	kg	40.0	22	44.0	40 7	01.0	44.0	10.0	0.55	417 4
0.39% in crude ore, in ground			-42.8	-32	-40.9	-42./	-31.9	-40.8	-13.3	-2.35	-17.4
Molybdenum, 0.11% in sulfide,	Raw	kg									
Mo 4.1E-2% and Cu 0.36% in		-	1890	2180	1740	1900	2190	1750	5770	6060	5620
crude ore, in ground	Dama										
wolybaenum, in ground	ĸaw	тg	-232	-232	-232	-232	-232	-232	-232	-232	-232

Substance	Compartment	Unit	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6	Scenario 7	Scenario 8	Scenario 9
Nickel, 1.13% in sulfide, Ni 0.76% and Cu 0.76% in crude	Raw	kg	46.6	48.1	61.8	46.8	48.3	62	237	239	252
ore, in ground Nickel, 1.98% in silicates,	Raw	tn.lg	-24.3	-18.9	-34.5	-24.2	-18.8	-34.3	-3.48	1.88	-13.6
1.04% in crude ore, in ground	Raw	lb	65 0	45 0	45 0	80.6	80.6	80.6	72.2	72.2	72.2
Occupation, arable	Raw	m2a	122000	-03.2 122000	-00.2 122000	-00.0	-00.0 122000	-00.0 122000	-73.5 122000	-73.3 12 2 000	-73.3 12 2 000
Occupation, arable, non-	Raw	m2a	-132000	-132000	-132000	-132000	-132000	-132000	-132000	-132000	-132000
irrigated			5150	7270	9780	5210	7330	9840	7360	9490	12000
Occupation, construction site	Raw	m2a	7810	8420	2040	7830	8440	2050	8280	8890	2500
Occupation, dump site	Raw	m2a	-7480000	-7460000	-6600000	-7470000	-7460000	-6600000	-7450000	-7440000	-6580000
Occupation, dump site,	Raw	m2a	-3470	-2390	1230	-3460	-2380	1240	-2530	-1450	2170
Occupation, forest	Raw	m2a	15.2	15.2	15.2	15.2	15.2	15.2	15.2	15.2	15.2
Occupation, forest, intensive	Raw	m2a	-2880000	-13.2	-10.2	-10.2	-2860000	-2880000	-2800000	-13.2	-10.2
Occupation, forest, intensive,	Raw	m2a	2000000	2000000	20,0000	20,0000	2000000	2000000	2000000	(120000	(2000000
normal			-6290000	-6230000	-6480000	-6260000	-6200000	-6460000	-6190000	-6130000	-6390000
Occupation, industrial area	Raw	m2a	-922000	-911000	-810000	-922000	-911000	-810000	-912000	-901000	-800000
Occupation, industrial area,	Raw	m2a	-26.7	-16.8	14.3	-26.6	-16.7	14.4	-19.3	-9.41	21.7
Occupation, industrial area,	Raw	m2a	-146000	-143000	-204000	-146000	-143000	-204000	-143000	-141000	-201000
Occupation, industrial area,	Raw	m2a	((800	(2500	7(700	((700	(2500	7(700	(5400	(2200	75200
vegetation	_		-00800	-65500	-76700	-66700	-63500	-76700	-65400	-62200	-75500
Occupation, mineral extraction site	Raw	m2a	-952000	-942000	-844000	-951000	-942000	-844000	-948000	-938000	-840000
fruit, intensive	Raw	m2a	9230	9460	9820	9340	9570	9930	9980	10200	10600
sclerophyllous	Kaw	m2a	8200	8690	6720	8200	8700	6720	8370	8870	6890
Occupation, traffic area	Raw	m2a	-39700	-39700	-39700	-39700	-39700	-39700	-39700	-39700	-39700
Occupation, traffic area, rail	Raw	m2a	-98200	-97300	-95100	-98200	-97300	-95100	-97800	-96900	-94700
Occupation, traffic area, rail	Raw	m2a	-109000	-108000	-105000	-109000	-108000	-105000	-108000	-107000	-105000
Occupation, traffic area, road	Raw	m2a	42(00	22(00	8220	42200	22200	7040	2420	17(00	21000
embankment Occupation, traffic area, road	Raw	m2a	-42600	-22600	-8320	-42200	-22200	-7940	-2420	632000	735000
network	Pow		549000	449000	551000	340000	449000	551000	332000	055000	755000
continuously built	Raw	iiiza	-10800	-10800	-10800	-10800	-10800	-10800	-10800	-10800	-10800
Occupation, urban, discontinuously built	Raw	m2a	20.8	23.1	30.1	21	23.3	30.3	23.8	26	33.1
Occupation, water bodies, artificial	Raw	m2a	-429000	-412000	-296000	-429000	-411000	-296000	-423000	-405000	-290000
Occupation, water courses, artificial	Raw	m2a	-927000	-920000	-854000	-927000	-920000	-854000	-923000	-916000	-850000
Oil, crude, 41 MJ per kg, in ground	Raw	tn.lg	450	450	450	450	450	450	450	450	450
Oil, crude, 42.6 MJ per kg, in	Raw	tn.lg	632	550	149	632	550	149	635	554	152
ground Oil, crude, 42.7 MJ per kg, in	Raw	tn.lg	(EE	(FE	6EE	(EE	6EE	(EE	(FF	6EE	6EE
ground	D		-655	-655	-655	-655	-655	-655	-655	-655	-655
Oil, crude, in ground	Raw	tn.lg	533	5390	20200	738	5600	20400	3260	8120	22900
Dalla dium in ground	Raw	oz	191	195	17.8	201	204	27	236	239	62.2
	Raw	ng	-369	-369	-369	-369	-369	-369	-369	-369	-369
2.4E-5%, Ni 3.7E-2%, Cu 5.2E- 2% in ore, in ground	Kaw	g	59.1	63	78.8	59.1	63	78.8	91.3	95.2	111
Pd, Pd 7.3E-4%, Pt 2.5E-4%, Rh 2.0E-5%, Ni 2.3E+0%, Cu	Raw	g	142	151	189	142	151	189	219	229	267
3.2E+0% in ore, in ground											
Peat, in ground	Raw	kg	-568	-529	-597	-504	-464	-533	-387	-347	-416
Phosphorus, 18% in apatite,	Raw	kg	-2320	-2290	-2270	-2320	-2290	-2270	-2280	-2260	-2240
Phosphorus, 18% in apatite,	Raw	kg	-5220	-5170	-5160	-5220	-5170	-5160	-5180	-5120	-5110
Phosphorus, in ground	Raw	kton	1.9	1.9	1.9	1.9	1.9	1.9	1.9	1.9	1.9
Platinum, in ground	Raw	mg	-425	-425	-425	-425	-425	-425	-425	-425	-425
Pt, Pt 2.5E-4%, Pd 7.3E-4%, Rh	Raw	g	-	1.05	4 5 4	-	4.05		1.00		0.51
3.2E+0% in ore, in ground			1.2	1.31	1.76	1.2	1.32	1.76	1.99	2.1	2.54
Pt, Pt 4.8E-4%, Pd 2.0E-4%, Rh	Raw	g	4.31	4.71	6.31	4.31	4.71	6.31	7.12	7.52	9.11
	Environm	1ENTAL R	ESOURCES MAN	JAGEMENT					DEFRA - BATI	ERY LCA	

D3

Substance	Compartment	Unit	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6	Scenario 7	Scenario 8	Scenario 9
2.4E-5%, Ni 3.7E-2%, Cu 5.2E-											
2% in ore, in ground	Raw	ka	202	202	222		202	222			200
$\frac{1}{2} \frac{1}{2} \frac{1}$	Raw	кg	323	323	323	323	323	323	323	323	323
7.3E-4%, Ni 2.3E+0%, Cu	Raw	g	1.35	1.44	1.8	1.35	1.44	1.8	2.09	2.18	2.54
3.2E+0% in ore, in ground											
Rh, Rh 2.4E-5%, Pt 4.8E-4%, Pd	Raw	g	1.00	4 51	E (1	4.00	4 51	F (4	(= 4	(00	5.05
2.0E-4%, INI 3.7E-2%, Cu 5.2E- 2% in ore, in ground			4.23	4.51	5.64	4.23	4.51	5.64	6.54	6.82	7.95
Rhenium, in crude ore, in	Raw	g	5 52	5.68	5 78	5 52	5.68	5 78	9.28	9.44	9.54
ground	D		5.52	5.00	5.70	5.52	5.00	5.70	9.20	9.44	9.54
Rhenium, in ground	Raw	mg	-321	-321	-321	-321	-321	-321	-321	-321	-321
Rutila in ground	Raw	mg	-394	-394	-394	-394	-394	-394	-394	-394	-394
Sand unspecified in ground	Raw	g ktop	-38.6	-38.2	-42.2	-38.3	-37.9	-41.9	-38.4	-37.9	-42
Shale in ground	Raw	lh	45.1	45.1	45.1	45.1	45.1	43.1	45.1	45.1	45.1
Silicon, in ground	Raw	σ	291	281	291	66.2	66.2	15.9	137	139	30.7 197
Silver, 0.01% in crude ore, in	Raw	ь ç	301	561	561	00.5	00.5	00.5	107	107	107
ground		0	-149	-146	-80.9	-148	-146	-80.7	-145	-142	-77.1
Silver, in ground	Raw	oz	-48.6	-48.6	-48.6	-48.6	-48.6	-48.6	-48.3	-48.3	-48.3
Sodium chloride, in ground	Raw	tn.lg	-18.7	29.1	-3.83	-11.3	36.5	3.61	148	196	163
Sodium sulphate, various	Raw	kg	-10600	-10500	-10700	-10600	-10500	-10700	-10600	-10400	-10600
Steel scrap	Raw	tn.lg	1 44	1 44	1 44	1 44	1 44	1 44	1 44	1 44	1 44
Stibnite, in ground	Raw	g	1.02	1.93	2.7	1.02	1.93	2.7	1.03	1.95	2.71
Sulfur dioxide, secondary	Raw	tn.lg	8.63	8.63	8.63	8.63	8.63	8.63	8.63	8.63	8.63
Sulfur, in ground	Raw	tn.lg	186	186	186	186	186	186	186	186	186
Sylvite, 25 % in sylvinite, in	Raw	kg	1870	1820	2280	1870	1820	2280	1600	1650	2 100
ground	D	1	-1670	-1850	-2200	-1670	-1850	-2200	-1090	-1650	-2100
Talc, in ground	Raw	kg	-1570	-1570	-1520	-1480	-1480	-1440	-1550	-1550	-1500
crude ore, in ground	Kaw	кg	-38.5	-30.5	-50.7	-38.5	-30.5	-50.7	-37.2	-29.3	-49.4
Tin, in ground	Raw	g	-767	-767	-767	-766	-766	-766	-761	-761	-761
TiO2, 45-60% in Ilmenite, in	Raw	kg	2 0300	10100	17500	20000	18700	17100	19200	17000	16400
ground	D	•	-20300	-19100	-17500	-20000	-10700	-17100	-19200	-17900	-10400
Transformation, from arable	Raw	m2	-1230	-1230	-1220	-1230	-1230	-1220	-1230	-1220	-1210
non-irrigated	Kaw	mz	9490	13400	18000	9600	13500	18200	13600	17500	22100
Transformation, from arable,	Raw	sq.yd	-433	-431	_441	-433	-431	-441	-432	-430	-440
non-irrigated, fallow	Party		100	101	111	100	101	111	102	100	110
site, inert material landfill	KdW	mz	-1610	-1520	-354	-1610	-1520	-353	-1590	-1500	-336
Transformation, from dump	Raw	m2	2470	2480	1480	2470	2480	1480	2490	2500	1/100
site, residual material landfill	Deeve	1	2470	2400	1400	2470	2400	1400	2490	2500	1490
site, sanitary landfill	Kaw	sq.ya	883	883	261	883	883	261	883	883	261
Transformation, from dump	Raw	sq.ft	251	254	0.02	251	254	10	355	258	12.7
site, slag compartment			551	554	9.93	551	554	10	333	338	15.7
Transformation, from forest	Raw	m2	-5120	-638	14000	-5110	-627	14000	-1930	2560	17200
extensive	Kaw	m2	-67400	-66900	-71000	-67100	-66600	-70700	-66100	-65600	-69700
Transformation, from	Raw	m2	262	278	174	262	278	174	277	272	169
industrial area			-203	-278	-1/4	-203	-276	-1/4	-277	-272	-100
Transformation, from industrial area, benthos	Raw	sq.1n	-518	-511	-471	-517	-509	-469	-509	-502	-462
Transformation, from	Raw	dm2	107	105	104	107	105	104	105	100	190
industrial area, built up	_		-187	-185	-184	-187	-185	-184	-185	-185	-182
Transformation, from	Raw	dm2	-318	-315	-314	-318	-315	-314	-315	-312	-311
Transformation, from mineral	Raw	m2	2/200	25500	24000	2(200	05500	24000	2(100	25/00	22000
extraction site			-26200	-25700	-24000	-26200	-25700	-24000	-26100	-25600	-23900
Transformation, from pasture	Raw	m2	-4330	-4160	-3640	-4330	-4150	-3640	-4250	-4080	-3560
Transformation, from pasture	Raw	sq.ft									100
and meadow, intensive			82.4	116	157	83.3	117	157	118	152	192
Transformation, from sea and ocean	Raw	m2	-3470	-2390	1230	-3460	-2380	1240	-2530	-1450	2170
Transformation, from shrub	Raw	m2		2 00-							
land, sclerophyllous		_	-4010	-3890	-4050	-4010	-3890	-4050	-3950	-3840	-4000
Transformation, from	Raw	m2	-170000	-161000	-139000	-170000	-161000	-139000	-168000	-159000	-137000
Transformation, to arable	Raw	m2	-3580	-3550	-2760	-3580	-3550	-2760	-3540	-3510	-2720

Substance	Compartment	Unit	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6	Scenario 7	Scenario 8	Scenario 9
Transformation, to arable, non- irrigated	Raw	m2	9500	13400	18100	9610	13500	18200	13600	17500	22200
Transformation, to arable, non- irrigated, fallow	Raw	m2	-417	-415	-426	-417	-415	-426	-416	-414	-425
Transformation, to dump site	Raw	m2	-58300	-58200	-51300	-58300	-58200	-51300	-58100	-58000	-51100
Transformation, to dump site, benthos	Raw	m2	-3470	-2390	1230	-3460	-2380	1240	-2530	-1450	2170
Transformation, to dump site, inert material landfill	Raw	m2	-1610	-1520	-354	-1610	-1520	-353	-1590	-1500	-336
Transformation, to dump site, residual material landfill	Raw	m2	2470	2480	1480	2470	2480	1480	2490	2500	1490
Transformation, to dump site, sanitary landfill	Raw	sq.yd	883	883	261	883	883	261	883	883	261
Transformation, to dump site, slag compartment	Raw	sq.ft	351	354	9.93	351	354	10	355	358	13.7
Transformation, to forest	Raw	m2	-20900	-20300	-19800	-20900	-20300	-19800	-20700	-20200	-19700
Transformation, to forest, intensive	Raw	m2	-19200	-19200	-19300	-19100	-19100	-19200	-18700	-18600	-18700
Transformation, to forest, intensive, normal	Raw	m2	-47300	-46800	-50800	-47100	-46600	-50600	-46600	-46100	-50000
Transformation, to heterogeneous, agricultural	Raw	m2	-241	-16.8	700	-241	-16.3	700	-91.5	133	850
Transformation, to industrial area	Raw	m2	-37000	-36900	-35400	-37000	-36900	-35400	-36900	-36900	-35300
Transformation, to industrial area, benthos	Raw	dm2	-270	-184	-142	-270	-184	-142	-232	-146	-104
Transformation, to industrial area, built up	Raw	m2	-3110	-3060	-4240	-3110	-3050	-4230	-3050	-3000	-4170
Transformation, to industrial area, vegetation	Raw	m2	-1400	-1340	-1580	-1400	-1330	-1580	-1370	-1300	-1550
Transformation, to mineral extraction site	Raw	m2	-85900	-75000	-49100	-85900	-75000	-49100	-81800	-70900	-45000
Transformation, to pasture and meadow	Raw	sq.ft	-799	-789	-721	-798	-788	-719	-787	-777	-708
Transformation, to permanent crop, fruit, intensive	Raw	sq.yd	184	189	196	186	191	198	199	204	211
Transformation, to sea and	Raw	sq.in	-518	-511	-471	-517	-509	-469	-509	-502	-462
Transformation, to shrub land,	Raw	m2	1640	1730	1340	1640	1740	1340	1670	1770	1380
Transformation, to traffic area,	Raw	m2	-229	-226	-221	-229	-226	-221	-228	-225	-220
Transformation, to traffic area,	Raw	m2	-251	-249	-243	-251	-249	-243	-250	-248	-242
Transformation, to traffic area,	Raw	m2	-618	-564	-564	-614	-561	-560	-507	-454	-453
Transformation, to traffic area,	Raw	m2	-161	103	1110	-161	103	1110	115	379	1390
Transformation, to unknown	Raw	m2	-710	-699	-488	-709	-699	-487	-701	-690	-479
Transformation, to urban, continuously built	Raw	ha	-23.8	-23.8	-23.8	-23.8	-23.8	-23.8	-23.8	-23.8	-23.8
Transformation, to urban, discontinuously built	Raw	dm2	41.5	46	60	41.9	46.3	60.4	47.4	51.8	65.9
Transformation, to water bodies, artificial	Raw	m2	-17400	-16000	-13600	-17400	-16000	-13600	-17200	-15700	-13400
Transformation, to water courses, artificial	Raw	m2	-11400	-11300	-10600	-11400	-11300	-10600	-11300	-11300	-10600
Ulexite, in ground	Raw	kg	461	462	467	461	462	467	896	896	901
Uranium ore, 1.11 GJ per kg, in ground	Raw	mg	156	156	156	180	180	180	294	294	294
Uranium, 451 GJ per kg, in ground	Raw	kg	1770	3230	4390	1770	3230	4390	1770	3230	4390
Uranium, 560 GJ per kg, in ground	Raw	g	79.3	79.3	79.3	79.3	79.3	79.3	79.3	79.3	79.3
Uranium, in ground	Raw	kg	-2040	-2010	-1180	-2030	-2010	-1180	-1990	-1970	-1140
Vermiculite, in ground	Raw	lb	26.7	27.2	82.1	26.7	27.2	82.1	27.2	27.6	82.5
Volume occupied, final repository for low-active	Raw	cuft	-149	-147	-86.2	-148	-147	-86.1	-146	-144	-83.2
radioactive waste Volume occupied, final repository for radioactive	Raw	gal*	-280	-277	-163	-280	-277	-163	-275	-271	-158
waste Volume occupied, reservoir	Raw	m3y	-2920000	-2860000	-1840000	-2920000	-2860000	-1840000	-2840000	-2780000	-1760000
Volume occupied, underground deposit	Raw	cu.yd	107	108	114	109	109	115	111	112	118

Substance	Compartment	Unit	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6	Scenario 7	Scenario 8	Scenario 9
Water, cooling, surface	Raw	Mtn	5.34	5.34	5.34	5.34	5.34	5.34	5.34	5.34	5.34
Water, cooling, unspecified natural origin/m3	Raw	m3	-2190000	-2130000	-2840000	-2180000	-2110000	-2820000	-2090000	-2030000	-2730000
Water, lake	Raw	m3	12600	12800	33000	12600	12800	33000	12800	13000	33200
Water, process, unspecified	Raw	kton	10.1	10.1	10.1	10.1	10.1	10.1	10.1	10.1	10.1
Water, river	Raw	m3	-2600000	-2580000	-2090000	-2590000	-2580000	-2090000	-2570000	-2560000	-2070000
Water, salt, ocean	Raw	m3	-137000	-134000	_79100	-136000	-134000	-78900	-133000	-131000	-75900
Water, salt, sole	Raw	m3	-137000	-10±000	632000	645000	-134000 642000	632000	643000	640000	630000
Water, turbine use, unspecified	Raw	m3	-9.09E+09	-9.07E+09	-8.67E+09	-9.09E+09	-9.06E+09	-8.67E+09	-9.06E+09	-9.03E+09	-8.63E+09
Water, unspecified natural	Raw	tn.lg	-294000	-294000	-294000	-294000	-294000	-294000	-291000	-291000	-291000
Water, unspecified natural	Raw	m3	1600000	1650000	-420000	1600000	1660000	-419000	1620000	1680000	-398000
Water, well, in ground	Raw	m3	-2520000	-2500000	-2360000	-2520000	-2500000	-2360000	-2510000	-2500000	-2350000
Wood, dry matter	Raw	kg	191	191	191	19.1	19.1	19.1	19.1	191	191
Wood, hard, standing	Raw	m3	-1430	-1420	-1050	-1420	-1410	-1040	-1390	-1380	-1010
Wood, soft, standing	Raw	m3	-1450	3580	-1000	3600	-1410	3700	3530	3500	-1010
Wood, unspecified.	Raw	tn sh	-5020	-5560	-5720	-5000	-5500	-5700	-5550	-5500	-5040
standing/kg	Raw	1	296	163	14.1	296	163	14.1	296	163	14.4
standing/m3	Raw	r ka	-51.7	-50.1	-64.4	-50.7	-49.2	-63.4	-3.6	-2.09	-16.3
Zeome, in ground	Raw	кg Iva	-11.6	-11.6	-11.6	-11.6	-11.6	-11.6	-11.4	-11.4	-11.4
and Pb 2.97% in crude ore, in ground	Kaw	кg	-55600000	-55600000	-54300000	-55600000	-55600000	-54300000	-55600000	-55600000	-54300000
Zinc, in ground	Raw	kg	314	314	314	364	364	364	597	597	597
Acenaphthene	Air	mg	-259	-257	-152	-259	-257	-152	-256	-254	-149
Acetaldehyde	Air	kg	263	264	268	263	264	268	264	264	268
Acetic acid	Air	kg	-294	-286	-313	-292	-284	-311	-288	-280	-307
Acetone	Air	lb	-129	-128	-106	-129	-128	-105	-127	-126	-104
Acrolein	Air	g	-34.8	-32.8	-22.8	-34.7	-32.7	-22.7	-33.7	-31.7	-21.7
Actinides, radioactive,	Air	Bq	-45.7	-45.2	-26.9	-45.6	-45.1	-26.9	-44.8	-44.4	-26.1
Aerosols, radioactive,	Air	kBq	-883	-874	-522	-882	-873	-521	-868	-859	-507
Alcohols unspecified	Air	ko	406	406	406	406	406	406	406	406	406
Aldebydes unspecified	Air	07	496	490	496	496	496	496	496	496	496
Aluminum	Air	λα	182000	182000	172000	192000	182000	172000	182000	182000	171000
Amoricium 2/1	Air	Ra	-183000	-183000	-1/2000	-183000	-183000	-1/2000	-182000	-182000	-1/1000
Ammonia	Air	bq ka	-29.9	-29.9	-29.9	-29.9	-29.9	-29.9	-29.9	-29.9	-29.9
Ammonium carbonato	Air	rg a	-73000	-72600	-68600	-73000	-72600	-68600	-72700	-72300	-68200
Antimony	All	g ka	-58	-56.7	-36.4	-57.8	-56.6	-36.3	-54.3	-53.1	-32.8
Antimony 124	All	Rg Ra	-6.36	-6.2	-5.94	-6.36	-6.2	-5.94	-6.13	-5.97	-5.71
Antimony-124	Air	Dq D-	-4.27	-3.88	-1.87	-4.27	-3.88	-1.86	-3.79	-3.4	-1.38
Anumony-125	Air	bq LBa	-40.2	-36.1	-15.1	-40.2	-36.1	-15	-35.2	-31.1	-10
Argon-41	Air	кbq	-519000	-514000	-292000	-518000	-513000	-291000	-510000	-505000	-283000
Arsenic	Air	кg 11-	-467	-467	-456	-467	-467	-456	-466	-465	-454
Darium	Air	ID D-	-88.6	-88.3	-79.3	-88.6	-88.3	-79.3	-88	-87.7	-78.7
Darium-140	Air	Бф	-2620	-2350	-982	-2610	-2350	-979	-2290	-2020	-654
Benzaldenyde	Air	g 1	-8.29	-7.33	-6.29	-8.29	-7.33	-6.29	-7.91	-6.95	-5.92
Benzene	Air	kg	228	336	676	234	342	682	977	1080	1420
Benzene, ethyl-	Air	kg	-2.69	3.94	25.3	-2.69	3.95	25.4	12.6	19.2	40.6
Benzene, hexachloro-	Air	g	10.1	14.8	7.6	10.1	14.8	7.61	14	18.6	11.5
Benzene, pentachloro-	Air	g	28.9	28.9	0.38	28.9	29	0.385	28.9	29	0.441
Benzo(a)pyrene	Air	oz	-448	-446	-403	-448	-446	-403	-446	-444	-401
Beryllium	Air	g	-331	-330	-322	-331	-330	-322	-328	-326	-319
Boron	Air	kg	-1380	-1370	-880	-1370	-1370	-879	-1360	-1350	-862
Bromine	Air	lb	-204	-203	-137	-204	-203	-137	-201	-200	-135
Butadiene	Air	g	991	991	991	173	173	173	488	488	488
Butane	Air	kg	-262	32.3	1040	-260	33.5	1040	-105	189	1190
Butene	Air	kg	1.36	7.99	27.2	2.15	8.77	28	4.56	11.2	30.4
Cadmium	Air	tn.lg	2.84	2.84	2.84	2.84	2.84	2.84	2.84	2.84	2.84
Calcium	Air	kg	-336	-333	-350	-335	-333	-350	-331	-329	-345
Carbon-14	Air	kBq	-3620000	-3570000	-2090000	-3620000	-3570000	-2090000	-3540000	-3500000	-2020000

Substance	Compartment	Unit	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6	Scenario 7	Scenario 8	Scenario 9
Carbon dioxide	Air	kton	83.3	49.9	11.1	83.3	49.9	11.1	83.4	50	11.2
Carbon dioxide, biogenic	Air	kton	14.3	14.3	4.73	14.3	14.3	4.74	14.4	14.4	4.79
Carbon dioxide, fossil	Air	kton	-169	-154	-99.1	-169	-154	-98.6	-159	-144	-89
Carbon disulfide	Air	kg	-61500	-61400	-60400	-61500	-61400	-60400	-61400	-61300	-60200
Carbon monoxide	Air	tn.lg	12.5	5.01	-3.82	12.5	5	-3.82	12.5	5.02	-3.81
Carbon monoxide, biogenic	Air	kg	-240000	-239000	-240000	-240000	-239000	-240000	-240000	-239000	-239000
Carbon monoxide, fossil	Air	tn.lg	-1680	-1620	-594	-1680	-1620	-594	-1620	-1570	-541
Cerium-141	Air	Ва	-1000	-1020	-074	-1000	-1020	-074	-1020	-1070	157
Cerium-144	Air	Ba	-055	-500	-230	-0.02	-500	-230	-555	-109	-137
Cesium-134	Air	Ba	-510	-516	-516	-516	-516	-516	-516	-510	-516
Cesium-137	Air	Ba	-11/0	-1160	-1150	-1170	-1100	-1150	-1160	-1160	-1140
Chlorino	Air	bq ka	-2/30	-2670	-2390	-2730	-2670	-2390	-2660	-2600	-2320
Chloroform	Air	Ng 07	-131	-125	-43.4	-131	-125	-43.5	-129	-123	-41
Chromium	Air	bz ka	-43.2	-43.2	-42.6	-43.2	-43.2	-42.6	-43.2	-43.1	-42.6
Chromium 51	All	кg Ра	-48.2	-45	-/1.2	-48	-44.8	-/1	-32.6	-29.4	-55.6
Chromium-51	Air	Бq	-46.1	-42	-20.7	-46.1	-41.9	-20.7	-41	-36.9	-15.6
Calcalit	Air	0Z	-63.5	-61.7	-83.8	-63.4	-61.5	-83.7	-50.4	-48.6	-70.7
	Air	m.ig	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13
Cobalt-5/	Air	твq	-2.63	-2.63	-2.63	-2.63	-2.63	-2.63	-2.63	-2.63	-2.63
Cobalt-58	Air	Вq	-100	-94.3	-64.7	-100	-94.2	-64.6	-93	-87.2	-57.6
Cobalt-60	Air	Вq	-565	-514	-253	-565	-514	-252	-503	-452	-190
Copper	Air	kg	-53.9	-44.8	-40.5	-53.8	-44.7	-40.4	-44	-34.9	-30.6
Cumene	Air	lb	-29.9	-25.8	-67.4	-27.1	-23	-64.7	-28	-24	-65.6
Curium-242	Air	μBq	-151	-151	-151	-151	-151	-151	-151	-151	-151
Curium-244	Air	mBq	-1.37	-1.37	-1.37	-1.37	-1.37	-1.37	-1.37	-1.37	-1.37
Curium alpha	Air	Bq	-47.4	-47.4	-47.4	-47.4	-47.4	-47.4	-47.4	-47.4	-47.4
Cyanide	Air	lb	118	118	5.98	118	118	6	118	119	6.62
Dinitrogen monoxide	Air	tn.lg	-6.54	-6.33	-4.82	-6.53	-6.32	-4.81	-6.12	-5.91	-4.4
Dioxins, measured as 2,3,7,8-	Air	mg	-745	-740	-587	-745	-740	-587	-741	-736	-583
tetrachlorodibenzo-p-dioxin	A :	ten la									
Ethane	Air	m.1g	-2.26	-2.14	-1.44	-2.25	-2.14	-1.43	-2.16	-2.05	-1.34
140	Air	кg	22.3	22.3	22.3	22.3	22.3	22.3	22.3	22.3	22.3
Ethane, 1,1,1,2-tetrafluoro-,	Air	lb	50.0			=				1.04	
HFC-134a			50.3	101	145	50.4	101	146	50.7	101	146
Ethane, 1,1,2-trichloro-1,2,2-	Air	kg	0	0	0	0	0	0	0	0	0
trifluoro-, CFC-113 Ethano, 1.2 dichloro	۸ i.e	115	00.1		101			05.4	04.0		100
Ethane, 1,2-dichloro 1122	All	10 ~	-83.1	-83	-101	-77.3	-77.2	-95.1	-84.2	-84	-102
tetrafluoro-, CFC-114	AIr	g	-884	-872	-528	-883	-871	-527	-865	-853	-510
Ethane, 2-chloro-1,1,1,2-	Air	kg	0	0	0	0	0	0	0	0	0
tetrafluoro-, HCFC-124			0	0	0	0	0	0	0	0	0
Ethane, dichloro-	Air	kg	85.5	85.5	85.5	85.5	85.5	85.5	85.5	85.5	85.5
Ethane, hexafluoro-, HFC-116	Air	lb	-162	-161	-161	-162	-161	-161	-161	-161	-160
Ethanol	Air	lb	-196	-195	-176	-196	-194	-176	-193	-192	-173
Ethene	Air	kg	-177	-160	-1.77	-176	-160	-1.19	-166	-150	8.77
Ethene, chloro-	Air	oz	-437	-434	-630	-390	-387	-582	-436	-433	-628
Ethene, tetrachloro-	Air	kg	40.7	40.7	40.7	40.7	40.7	40.7	40.7	40.7	40.7
Ethylene diamine	Air	g	-45.4	-45.3	-45.3	-45.3	-45.2	-45.2	-44.8	-44.8	-44.7
Ethylene oxide	Air	g	-765	-745	-926	-755	-734	-916	-749	-728	-910
Ethyne	Air	kg	-110	-110	-105	-110	-110	-105	-110	-110	-104
Fluoranthene	Air	mg	25.6	25.6	25.6	4.46	4.46	4.46	12.6	12.6	12.6
Fluoride	Air	g	459	459	459	459	459	459	459	459	459
Fluorine	Air	oz	-35.5	-30.2	-29.1	-32	-26.8	-25.7	-7.84	-2.57	-1.47
Fluosilicic acid	Air	lb	-189	-188	-188	-189	-188	-188	-189	-188	-187
Formaldehyde	Air	kg	-386	-381	-378	-385	-381	-378	-381	-377	-374
Heat, waste	Air	TJ	-2750	-2520	-1740	-2740	-2510	-1730	-2580	-2360	-1580
Helium	Air	kg	3.99	33	122	3.95	33	122	11.3	40.3	129
Heptane	Air	lb	-0.823	145	614	-0.837	145	614	73.9	220	689
Hexane	Air	kg	-289	-145	428	-288	-144	428	-204	-60.2	512
Hydrocarbons, aliphatic,	Air	g							0.0===		
alkanes, cyclic			-1.82	45	75.7	-1.44	45.4	76.1	-0.0577	46.8	77.4
Hydrocarbons, aliphatic,	Air	kg	-8130	-8040	-3130	-8120	-8030	-3120	-7750	-7660	-2750
aikanes, unspecified Hydrocarbons, aliphatic	Air	kσ	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
,		0	-10.9	-10.9	-10.9	-10.9	-10.9	-10.9	-10.8	-10.8	-10.8

Substance	Compartment	Unit	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6	Scenario 7	Scenario 8	Scenario 9
alkenes, unspecified											
Hydrocarbons, aliphatic,	Air	lb	-579	-575	-399	-579	-574	-398	-447	-443	-267
Hydrocarbons, aromatic	Air	kg	2910	2670	702	2940	2690	729	3020	2770	810
Hydrocarbons, chlorinated	Air	lb	115	115	98.7	121	121	105	192	192	176
Hydrocarbons, halogenated	Air	kg	178	178	178	178	178	178	178	178	178
Hydrocarbons, unspecified	Air	tn.lg	812	8.12	8.12	8.12	812	8.12	812	8.12	8.12
Hydrogen	Air	kg	-466	-444	-1010	-442	-420	-987	-321	-298	-865
Hydrogen-3, Tritium	Air	kBq	-21000000	-20800000	-12300000	-21000000	-20800000	-12300000	-20700000	-20400000	-11900000
Hydrogen chloride	Air	tn.sh	-1 21	-7.03	-9.46	-1 19	-7 01	-9 44	-1.02	-6.83	-9 27
Hydrogen fluoride	Air	kg	-2630	-3170	-2880	-2620	-3170	-2880	-2590	-3140	-2850
Hydrogen sulfide	Air	kg	-1060	-1050	-608	-1060	-1050	-607	-1050	-1040	-598
Iodine	Air	lb	-111	-110	-72 9	-111	-110	-72.8	-110	-109	-71.5
Iodine-129	Air	kBq	-3680	-3640	-2150	-3680	-3640	-2150	-3620	-3570	-2080
Iodine-131	Air	kBq	-204000	-202000	-114000	-204000	-202000	-114000	-201000	-199000	-111000
Iodine-133	Air	Bq	-3630	-3310	-1680	-3630	-3310	-1670	-3240	-2920	-1290
Iodine-135	Air	Bq	-761	-761	-761	-761	-761	-761	-761	-761	-761
Iron	Air	kg	-1890	-1890	-1670	-1890	-1890	-1670	-1880	-1880	-1660
Iron-59	Air	mBq	-59.7	-59.7	-59.7	-59.7	-59.7	-59.7	-59.7	-59.7	-59.7
Isocyanic acid	Air	oz	-574	-567	-344	-574	-566	-343	-563	-556	-333
Ketones, unspecified	Air	kg	59.5	59.5	59.5	59.5	59.5	59.5	59.5	59.5	59.5
Krypton-85	Air	kBa	-106000	-91200	604000	-104000	-89300	606000	-79200	-64200	631000
Krypton-85m	Air	kBa	-100000	59700	28800	63700	-05500	28800	58600	54500	23700
Krypton-87	Air	kBa	-05700	-37100	-14200	-00700	-27000	-14200	-26700	-25700	-12900
Krypton-88	Air	kBa	-20100	-31800	-19400	-33100	-27000	-14200	-31500	-30200	-12900
Krypton-89	Air	kBa	-6070	-51000	-19400	-6060	-51000	-19400	-5460	-30200	-1950
Lanthanum	Air	g	-65.3	-65.3	-2500	-65.3	-65.3	-2500	-64.9	-4970	-64.9
Lanthanum-140	Air	Ba	-00.5	-05.5	-05.5	-00.0	-00.5	-03.5	104.9	-04.9	-04.9
Lead	Air	tn.lø	20.5	-204 20.4	-07.5	20.5	204	-07.1	20.5	20.4	-09.0
Lead-210	Air	kBa	-20.5 26600	-20.4 26400	19900	-20.5 26600	-20.4 26400	19900	-20.0 26300	-20.4 26200	19600
m-Xvlene	Air	oz	-20000	-20-100	-43.5	-63.5	-20400	-15500	-20000	-20200	-17000
Magnesium	Air	kø	-00.0	-03.1	-40.0	-00.0	-02.9	-40.0	-02.2	-01.0	-42.1
Manganese	Air	tn.lø	-022	-021	-020	-022	-021	-020	-019	-010	-025
Manganese-54	Air	Ba	20.0	20.2	9 33	33.5 22.3	20.2	9.31	19.7	17.6	6 73
Mercaptans, unspecified	Air	kø	-22,5	-20.2	-9.55	-22.5	-20.2	-9.51	-19.7	-17.0	-0.75
Mercury	Air	kø	810	820	9100	810	820	0100	810	810	9100
Metals, unspecified	Air	tn.lø	-017	-020	-9100	-019	-020	-5100	837	-019	-5100
Methane	Air	tn.lg	680	569	442	680	569	442	680	569	443
Methane, biogenic	Air	kø	216000	216000	140	216000	216000	133	216000	216000	114
Methane,	Air	σ	210000	210000	-140	210000	210000	-155	210000	210000	-114
bromochlorodifluoro-, Halon 1211		0	-523	-515	-479	-521	-513	-477	-513	-505	-469
Methane, bromotrifluoro-, Halon 1301	Air	oz	7.09	14	34.7	7.08	14	34.7	10.3	17.2	37.9
Methane, chlorodifluoro-, HCFC-22	Air	kg	13.9	14	14.6	13.9	14	14.6	14	14	14.7
Methane, chlorotrifluoro-, CFC-13	Air	mg	-164	-164	-164	-164	-164	-164	-164	-164	-164
Methane, dichloro-, HCC-30	Air	g	-82.7	-82.6	-82.2	-82.7	-82.6	-82.2	-82.6	-82.6	-82.1
Methane, dichlorodifluoro-, CFC-12	Air	kg	19.6	19.6	19.3	19.7	19.7	19.4	19.6	19.6	19.3
Methane, dichlorofluoro-, HCFC-21	Air	g	-827	-827	-827	-827	-827	-827	-827	-827	-827
Methane, fossil	Air	tn.lg	-310	-290	-143	-309	-288	-141	-298	-278	-131
Methane, monochloro-, R-40	Air	mg	-24.7	-24.6	-21.3	-24.7	-24.6	-21.3	-24.6	-24.6	-21.2
Methane, tetrachloro-, CFC-10	Air	oz	-383	-383	-380	-383	-383	-380	-383	-383	-380
Methane, tetratluoro-, FC-14	Air	kg	-661	-659	-656	-661	-659	-656	-659	-657	-655
Methane, trichlorofluoro-, CFC-11	Air	g	-1.22	-1.22	-1.22	-1.22	-1.22	-1.22	-1.22	-1.22	-1.22
Methane, trifluoro-, HFC-23	Air	mg	-10.7	-10.3	12.7	-10.6	-10.2	12.7	-10.1	-9.68	13.3
Methanol	Air	kg	-132	-127	-167	-131	-126	-166	-118	-113	-153
Molybdenum	Air	oz	-111	-108	-127	-111	-108	-127	-107	-105	-124
Monoethanolamine	Air	oz	-207	-206	-229	-206	-204	-227	-196	-195	-218
Naphthalene	Aır	кg	-1.08	-1.08	-1.08	-1.08	-1.08	-1.08	-1.08	-1.08	-1.08

Substance	Compartment	Unit	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6	Scenario 7	Scenario 8	Scenario 9
Neptunium-237	Air	mBq	-1.56	-1.56	-1.56	-1.56	-1.56	-1.56	-1.56	-1.56	-1.56
Nickel	Air	tn.lg	8.97	8.96	8.92	8.97	8.96	8.92	8.98	8.97	8.92
Niobium-95	Air	Bq	-2.74	-2.49	-1.2	-2.74	-2.49	-1.2	-2.44	-2.18	-0.891
Nitrate	Air	oz	-287	-286	-269	-287	-286	-269	-286	-286	-268
Nitric oxide	Air	tn.lg	21.7	21.7	21.7	21.7	21.7	21.7	21.7	21.7	21.7
Nitrogen	Air	kg	-1.78E+11								
Nitrogen dioxide	Air	tn.lg	17.4	17.4	17.4	17.4	17.4	17.4	17.4	17.4	17.4
Nitrogen oxides	Air	tn.lg	-849	-853	-639	-847	-851	-637	-830	-834	-620
NMVOC, non-methane	Air	tn.lg									
volatile organic compounds, unspecified origin			-138	-119	-90.3	-137	-118	-89.1	-129	-110	-81
Noble gases, radioactive, unspecified	Air	kBq	-3.53E+10	-3.49E+10	-2.06E+10	-3.53E+10	-3.49E+10	-2.05E+10	-3.47E+10	-3.43E+10	-1.99E+10
unspecified	Air	kg	1.33	1.33	1.33	1.33	1.33	1.33	1.33	1.33	1.33
Ozopo	Air	ka	6.71	6.71	x	6.71	6.71	x	6.71	6.71	x
PAH polycyclic aromatic	Air	кg Ib	-1230	-1220	-764	-1230	-1220	-763	-1210	-1200	-743
hydrocarbons Paraffins	Air	ma	-753	-754	-725	-753	-754	-725	-750	-751	-723
Particulates	Air	tn la	-365	-358	-539	-365	-358	-538	-361	-354	-535
Particulates < 10 um	Air	ko	85.8	54.8	19.2	85.8	54.8	19.2	85.8	54.8	19.2
Particulates $< 10 \text{ um} (\text{mobile})$	Air	07	-903	-903	-903	-903	-903	-903	-903	-903	-903
Particulates, < 10 um (mobile)	Air	0Z	62.1	62.1	62.1	62.1	62.1	62.1	62.1	62.1	62.1
(stationary)	Air	ng ta sh	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5
Particulates, < 2.5 um	Air	tn.sn	-655	-649	-631	-655	-648	-631	-647	-641	-623
Particulates, > 10 um	Air	m.ig	-538	-533	-366	-538	-533	-365	-534	-530	-362
Particulates, > 10 um (process)	Air	kg	57.2	57.2	57.2	57.2	57.2	57.2	57.2	57.2	57.2
Particulates, > 2.5 um, and < 10um	Air	tn.lg	-519	-516	-408	-518	-515	-408	-516	-512	-405
Particulates, SPM	Air	кg	-571	-571	-571	-571	-571	-571	-571	-571	-571
Particulates, unspecified	Air	tn.ig	11.9	11.9	12.1	11.9	11.9	12.1	11.9	11.9	12.1
Pentane	Air	кg	-823	-440	781	-821	-438	783	-623	-240	981
Phenol	Air	oz	-567	-550	-902	-541	-524	-876	-554	-537	-889
Phenol, pentachioro-	Air	oz	-43.2	-42.8	-24.3	-43.1	-42.8	-24.2	-42.5	-42.1	-23.6
Phosphorus	Air	oz	-640	-638	-622	-640	-638	-621	-635	-632	-616
Phosphorus pentoxide	Air	mg	-216	-216	-216	-216	-216	-216	-216	-216	-216
Phosphorus, total	Air	g	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
Platinum	Air	mg	-624	-624	-623	-624	-624	-623	-450	-450	-449
Plutonium-238	Air	твq	-505	-499	-296	-504	-499	-295	-495	-490	-286
Plutonium-241	Air	вq	-2610	-2610	-2610	-2610	-2610	-2610	-2610	-2610	-2610
Plutonium-alpha	Air	Bq	-95.6	-95.6	-95.2	-95.6	-95.6	-95.1	-95.6	-95.6	-95.1
Polonium-210	Air	ква	-47300	-47100	-35600	-47300	-47000	-35600	-46800	-46600	-35100
Polychlorinated biphenyls	Air	g	-364	-356	-140	-364	-356	-140	-358	-349	-133
Potassium	Air	kg	-621	-618	-522	-620	-617	-521	-612	-609	-513
Potassium-40	Air	ква	-6340	-6310	-4970	-6340	-6310	-4970	-6290	-6260	-4920
Prometnium-14/	Air	Вq	-8.22E+16								
Propanal	Air	g 1	-8.04	-7.08	-6.04	-8.04	-7.08	-6.04	-7.67	-6.71	-5.67
Propane	Air	кg	-879	-581	482	-877	-579	484	-715	-417	646
Propene	Air	кg	-138	-122	-76.2	-136	-121	-74.7	-131	-115	-68.7
	Air	oz	-283	-280	-259	-282	-279	-258	-279	-276	-255
Propylene oxide	Air	OZ	62.6	129	188	62.6	129	188	64.4	131	190
Protactinium-234	Air	ква	-500	-494	-291	-499	-493	-290	-490	-483	-281
emitters	Air	ква	15700	29800	41600	15700	29800	41600	15900	30000	41900
unspecified	Air	ква	1.53E+11	2.8E+11	3.81E+11	1.53E+11	2.8E+11	3.81E+11	1.53E+11	2.8E+11	3.81E+11
Radium-226	Air	кра г.р.	-23000	-22700	-14500	-23000	-22700	-14500	-22600	-22300	-14100
Kadium-228	Air	ква	-14500	-14500	-13800	-14500	-14500	-13800	-14500	-14400	-13700
Kadon-220	Air	ква	-459	-459	-455	-459	-459	-455	-459	-458	-454
Kadon-222	Air	ква	-6.65E+10	-6.56E+10	-3.87E+10	-6.64E+10	-6.55E+10	-3.86E+10	-6.51E+10	-6.42E+10	-3.73E+10
Kuthenium-103	Air	mBq	-559	-504	-220	-558	-503	-219	-491	-436	-152
Kuthenium-106	Air	вq	-9450	-9450	-9450	-9450	-9450	-9450	-9450	-9450	-9450
Scandium	Air	g	-299	-299	-284	-299	-299	-284	-298	-298	-283

Substance	Compartment	Unit	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6	Scenario 7	Scenario 8	Scenario 9
Selenium	Air	oz	-413	-406	-331	-413	-405	-331	-401	-393	-318
Silicates, unspecified	Air	kg	-214	-214	-214	-214	-214	-214	-212	-212	-212
Silicon	Air	kg	-3310	-3300	-3470	-3310	-3300	-3470	-3290	-3290	-3460
Silicon tetrafluoride	Air	g	-39.5	-39.1	-39	-39.5	-391	-39	-39.1	-38.8	-38.6
Silver	Air	kg	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5
Silver-110	Air	Bq	-6.91	-6.36	-3 55	-6.9	-6.36	-3.54	-6.24	-5.69	-2.87
Sodium	Air	kg	-101	-96.8	-258	-101	-96.6	-257	-96.2	-91.9	-253
Sodium chlorate	Air	g	-646	-641	-628	-644	-639	-626	-633	-628	-615
Sodium dichromate	Air	lb	67.5	67.5	-0.398	67.5	67.5	-0.397	67.6	67.6	-0.367
Sodium formate	Air	g	-103	-102	-107	-103	-102	-107	-103	-102	-107
Soot	Air	tn.lg	-3.46	-3.46	-3.46	-3.46	-3.46	-3.46	-3.46	-3.46	-3.46
Strontium	Air	kg	-55.6	-55.4	-49.4	-55.5	-55.4	-49.4	-55.3	-55.1	-491
Strontium-89	Air	Bq	-2 77	-2 77	-2 77	-2 77	-2 77	-2 77	-2 77	-2 77	-2 77
Strontium-90	Air	Bq	-1560	-1560	-1560	-1560	-1560	-1560	-1560	-1560	-1560
Styrene	Air	g	-21	-20.8	-14.1	-21	-20.8	-14.1	-20.7	-20.6	-13.9
Sulfate	Air	kg	208000	208000	2170	208000	208000	2170	208000	208000	2190
Sulfur dioxide	Air	tn.lg	-1030	-1010	-1360	-1020	-1000	-1360	-1000	-983	-1340
Sulfur hexafluoride	Air	oz	-725	-719	-450	-724	-718	-449	-714	-708	-439
Sulfur oxides	Air	tn.lg	226	153	59.9	226	153	59.9	226	153	59.9
Sulfuric acid	Air	kg	-135	-135	-150	-135	-135	-150	-135	-135	-150
t-Butyl methyl ether	Air	lb	-135	-135	-130	-135	-135	-130	129	129	129
Tar	Air	mg	259	259	259	259	259	259	259	259	259
Technetium-99	Air	mBa	-66.4	-66.4	-66.4	-66.4	-66.4	-66.4	-66.4	-66.4	-66.4
Tellurium-123m	Air	Ва	-6.85	-6.85	-6.85	-6.85	-6.85	-6.85	-6.85	-6.85	-6.85
Thallium	Air	kg	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.03
Thorium	Air	σ	533	532	515	533	532	515	531	530	513
Thorium-228	Air	o kBa	-555	1830	1550	-555	-552	-515	1820	-550 1820	1530
Thorium-230	Air	kBa	-1030	-1050	-1350	-1030	1900	-1550	-1020	-1020	-1330
Thorium-232	Air	kBa	-1950	-1910	-1100	-1930	-1900	-1150	-1090	-1070	-1120
Thorium-234	Air	kBa	-1040	-1050	-1410 201	-1040	-1000	-1410 200	-1020	-1010	-1390
Tin	Air	kg	2.88	3.04	2 52	2.88	-493	2 52	-490	-403	2 98
Titanium	Air	kø	2.00 81.2	5.04 80.8	87.0	2.00 81.2	80.8	82.02	80.7	80.3	2.90
Toluene	Air	kg	-01.2	-00.0	-02.9	-01.2	-00.0	-02.9	1220	-00.5	1540
Uranium	Air	σ	586	585	570	586	585	570	584	583	568
Uranium-234	Air	o kBa	-500 5910	-505	-570	5900	5820	-570	5790	5710	-500
Uranium-235	Air	kBa	-5910	-5650 280	-5470	-5900	-5620	-5400	-5790	-5710	-5540
Uranium-238	Air	kBa	10900	10800	7290	10800	10800	7280	10700	10600	-139
Uranium alpha	Air	kBa	-10900 27300	-10000 26900	15900	27200	-10000 26900	15800	-10700 26700	-10000 26400	15300
Vanadium	Air	kø	-27300	-20900	-13900	-27200	-20900	-13000	-20700	-20400	-15500
VOC, volatile organic	Air	ko	-242	-237	-571	-242	-230	-370	-230	-230	-304
compounds		0	31700	31700	31700	31700	31700	31700	31700	31700	31700
water	Air	Mtn	5.4	5.4	5.39	5.4	5.4	5.39	5.4	5.4	5.39
Xenon-131m	Air	kBq	-127000	-122000	-63200	-127000	-122000	-63100	-120000	-115000	-56400
Xenon-133	Air	kBq	-4050000	-3860000	-2010000	-4040000	-3860000	-2010000	-3810000	-3620000	-1770000
Xenon-133m	Air	kBq	-19000	-18700	-10400	-19000	-18700	-10400	-18500	-18200	-9910
Xenon-135	Air	kBq	-1640000	-1570000	-810000	-1640000	-1570000	-808000	-1550000	-1470000	-713000
Xenon-135m	Air	kBq	-948000	-902000	-456000	-947000	-901000	-455000	-889000	-843000	-396000
Xenon-137	Air	kBq	-16500	-15100	-6850	-16400	-15100	-6830	-14800	-13400	-5180
Xenon-138	Air	kBq	-152000	-142000	-67800	-152000	-142000	-67600	-139000	-129000	-54800
Xylene	Air	kg	-106	-7.27	401	-105	-6.32	402	519	618	1030
Zinc	Air	tn.lg	-16.6	-16.5	-15.4	-16.6	-16.5	-15.4	-16.6	-16.5	-15.4
Zinc-65	Air	Bq	-111	-100	-46	-111	-100	-45.9	-98	-87.4	-33
Zirconium	Air	g	-223	-222	-106	-223	-222	-106	-222	-220	-104
Zirconium-95	Air	Bq	-101	-91.1	-37.9	-101	-91	-37.8	-88.7	-78.4	-25.2
Acenaphthene	Water	g	-0.333	1.33	6.63	-0.333	1.33	6.63	0.656	2.32	7.62
Acenaphthylene	Water	oz	-54.3	-54.3	-54.3	-54.3	-54.3	-54.3	-54.3	-54.3	-54.3
Acetic acid	Water	oz	-151	-138	-194	-149	-136	-192	-145	-132	-188
Acidity, unspecified	Water	tn.lg	3.89	3.9	3.86	3.9	3.91	3.87	3.91	3.91	3.87
Acids, unspecified	Water	g	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36
Actinides, radioactive,	Water	kBq	5070	E000	2400	E060	E000	2470	E0/0	E700	2270
unspecified	.		-5970	-5900	-3480	-5960	-5900	-3470	-5860	-5790	-3370
Aluminum	Water	tn.lg	386	369	228	386	369	228	388	371	231

Substance	Compartment	Unit	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6	Scenario 7	Scenario 8	Scenario 9
Americium-241	Water	Bq	-3930	-3930	-3930	-3930	-3930	-3930	-3930	-3930	-3930
Ammonia	Water	tn.lg	411	411	411	411	411	411	411	411	411
Ammonia, as N	Water	g	368	368	368	368	368	368	368	368	368
Ammonium, ion	Water	kg	33500	33700	13800	33500	33700	13800	33500	33700	13800
Antimony	Water	tn.lg	14.6	14.6	14.3	14.6	14.6	14.3	14.6	14.6	14.3
Antimony-122	Water	Bq	-1590	-1430	-620	-1590	-1430	-618	-1400	-1240	-425
Antimony-124	Water	kBq	-957	-941	-557	-956	-940	-556	-933	-918	-533
Antimony-125	Water	kBq	-859	-844	-515	-858	-844	-514	-838	-823	-494
AOX, Adsorbable Organic Halogen as Cl	Water	lb	-96	-95.5	-94	-95.1	-94.6	-93	-90.6	-90.1	-88.5
Arsenic, ion	Water	kg	-3270	-3270	-3010	-3270	-3270	-3010	-3260	-3260	-3000
Barite	Water	kg	-2970	-2290	-39.8	-2960	-2290	-33.7	-2380	-1710	550
Barium	Water	kg	5760	4460	1110	5770	4460	1110	5930	4630	1280
Barium-140	Water	Bq	-6830	-6140	-2580	-6820	-6130	-2570	-5980	-5280	-1720
Benzene	Water	oz	-447	316	477	-276	487	648	-28.5	735	896
Benzene, chloro-	Water	mg	-2.92	-2.92	-2.92	-2.92	-2.92	-2.92	-2.92	-2.92	-2.92
Benzene, ethyl-	Water	lb	-1.6	12.5	57.7	-1.6	12.5	57.7	6.82	21	66.1
Beryllium	Water	oz	2.47	6.46	-302	3.09	7.08	-301	9.73	13.7	-295
BOD5, Biological Oxygen Demand	Water	tn.lg	803	863	1060	803	863	1060	842	902	1100
Boron	Water	kg	24.9	47.7	929	28.3	51.2	933	65.6	88.4	970
Bromate	Water	kg	126	127	112	126	127	112	127	128	113
Bromine	Water	tn.lg	13.4	13.5	13.5	13.4	13.5	13.5	13.5	13.7	13.6
Butene	Water	oz	332	332	159	398	398	224	316	316	142
Cadmium-109	Water	mBq	-237	-237	-237	-237	-237	-237	-237	-237	-237
Cadmium, ion	Water	tn.lg	250	251	251	250	251	251	250	251	251
Calcium compounds, unspecified	Water	kg	-3960	-3960	-3960	-3960	-3960	-3960	-3940	-3940	-3940
Calcium, ion	Water	kton	-1.33	-1.31	-1.16	-1.33	-1.31	-1.16	-1.31	-1.3	-1.14
Carbon-14	Water	kBq	-199	-199	-199	-199	-199	-199	-199	-199	-199
Carbonate	Water	kg	3220	3220	2930	3220	3230	2940	6120	6130	5840
Carboxylic acids, unspecified	Water	kg	-371	729	4250	-371	730	4250	315	1420	4940
Cerium-141	Water	Bq	-2720	-2440	-1020	-2720	-2440	-1020	-2380	-2100	-679
Cerium-144	Water	kBq	-91	-90.9	-90.4	-91	-90.9	-90.4	-90.9	-90.8	-90.3
Cesium	Water	OZ	-2.31	7.11	37.2	-2.31	7.11	37.2	3.3	12.7	42.8
Cesium-134	Water	kBq	-1000	-994	-695	-1000	-993	-694	-989	-980	-681
Cesium-136	Water	Bq	-482	-433	-180	-481	-432	-180	-421	-372	-120
Cesium-137	Water	kBq	-689000	-681000	-402000	-688000	-680000	-401000	-676000	-668000	-389000
Chlorate	Water	kg	912	920	801	912	921	801	918	926	807
Chloride	Water	kton	1.21	1.3	9.25	1.21	1.3	9.25	1.38	1.47	9.41
Chlorinated solvents, unspecified	Water	kg	3.25	3.28	2.53	3.3	3.33	2.59	3.57	3.6	2.86
Chlorine	Water	oz	-316	-305	352	-314	-303	354	-301	-290	367
Chlorotorm	Water	oz	-500	-500	-500	-500	-500	-500	-500	-500	-500
Chromium	Water	kg	459	266	49.3	459	266	49.8	462	269	52.7
Chromium-51	Water	кВq	-924	-870	-462	-923	-869	-461	-856	-802	-394
	water	tn.lg	6.86	6.95	7.04	6.86	6.95	7.04	6.94	7.03	7.12
Chromium, ion	water	кg	393	396	142	393	396	142	395	397	143
Cobalt	water	tn.ig	184	184	183	184	184	183	184	184	183
Codalt-57	Water	кbq 1.р.	-15.3	-13.8	-5.75	-15.3	-13.8	-5.74	-13.4	-11.9	-3.83
Cobalt-58	Water	кbq 1.р.	-7260	-7010	-3980	-7260	-7000	-3970	-6920	-6670	-3640
Cobalt-60	Water	ква	-6510	-6290	-3900	-6500	-6280	-3900	-6220	-6000	-3610
Demand	Water	tn.lg	1320	1390	524	1320	1390	525	1370	1440	568
Copper, ion	Water	tn.ig	-5.7	-5.59	-8.92	-5.69	-5.59	-8.92	-5.64	-5.53	-8.86
Crude on	Water	кg 11-	-20.8	-20.8	-20.8	-20.8	-20.8	-20.8	-20.8	-20.8	-20.8
Curium almha	Water	ID Ba	-71.8	-62	-162	-65.2	-55.3	-155	-67.4	-57.6	-158
Curium aipna	water	Бq	-5220	-5220	-5220	-5220	-5220	-5220	-5220	-5220	-5220
Cyaniae	water	кg	-7120	-7080	-4240	-7120	-7080	-4240	-7080	-7040	-4200
Dichromate	water	OZ	-41.9	-41.1	-24.9	-41.8	-41.1	-24.8	-40.1	-39.3	-23.1
DOC, Dissolved Organic Carbon	Water	tn.lg	1670	1690	659	1670	1690	659	1680	1710	673
EDIA	vvater	шg	378	378	378	378	378	378	378	378	378

Substance	Compartment	Unit	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6	Scenario 7	Scenario 8	Scenario 9
Ethane, 1,1,1-trichloro-, HCFC-	Water	g	-1.45	-1.45	-1.45	-1.45	-1.45	-1.45	-1.45	-1.45	-1.45
140 Ethane 1.2-dichloro-	Water	07	042	040	0.41	042	940	0.41	040	040	0.41
Ethane chloro-	Water	σ	-843	-845	-841	-845	-842	-841	-842	-842	-841
Ethane, dichloro-	Water	5 9	-17.5	-17.5	-17.5	-17.5	-17.5	-17.5	-17.5	-17.5	-17.5
Ethane, hexachloro-	Water	5 mg	-13.0	-13.6	-15.0	-13.0	-13.0	-15.0	-15.5	-13.5	-15.5
Ethene	Water	oz	-515	-99.7	-515	-515	-515	-515	-515	-515	-515
Ethene, chloro-	Water	g	-100	-291	-035	-100	-290	-337	-285	-00.0	-329
Ethene, tetrachloro-	Water	g	-61.2	-61.2	-61.2	-61.2	-61.2	-61.2	-61.2	-61.2	-61.2
Ethene, trichloro-	Water	oz	-136	-136	-136	-136	-136	-136	-136	-136	-136
Ethylene diamine	Water	g	-110	-110	-110	-110	-110	-109	-109	-109	-108
Ethylene oxide	Water	g	-8.64	-8.58	-9.55	-8.56	-8.5	-9.47	-8.19	-8.13	-9.09
Fatty acids as C	Water	kton	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08
Fluoride	Water	tn.lg	8.27	8.39	7.91	8.27	8.39	7.92	8.34	8.46	7.99
Fluorine	Water	g	140	140	140	140	140	140	140	140	140
Fluosilicic acid	Water	lb	-340	-339	-338	-340	-339	-338	-339	-338	-337
Formaldehyde	Water	oz	-51.7	-42	-117	-47.3	-37.6	-112	-9.31	0.331	-74.5
Glutaraldehyde	Water	g	-371	-288	-9.42	-370	-287	-8.66	-298	-215	63.3
Heat, waste	Water	MWh	110000	111000	37400	110000	111000	37400	111000	112000	38300
Hydrazine	Water	mg	174	174	174	174	174	174	174	174	174
Hydrocarbons, aliphatic, alkanes, unspecified	Water	kg	-4.2	30.5	141	-4.19	30.5	141	16.5	51.2	162
Hydrocarbons, aliphatic, alkenes, unspecified	Water	g	408	408	408	408	408	408	410	410	410
Hydrocarbons, aliphatic, unsaturated	Water	oz	-28	85.1	446	-27.9	85.1	446	39.4	152	514
Hydrocarbons, aromatic	Water	kg	41.3	172	589	41.3	172	589	126	257	674
Hydrocarbons, chlorinated	Water	g	221	145	44.4	221	145	44.4	221	146	44.8
Hydrocarbons, unspecified	Water	kg	-477	-457	-474	-461	-441	-458	-376	-355	-372
Hydrogen	Water	kg	-19.6	-19.6	-19.6	-19.6	-19.6	-19.6	-19.6	-19.6	-19.6
Hydrogen-3, Tritium	Water	kBq	-1.58E+09	-1.56E+09	-923000000	-1.58E+09	-1.56E+09	-921000000	-1.55E+09	-1.53E+09	-894000000
Hydrogen peroxide	Water	kg	7800	7800	2.31	7800	7800	2.32	7800	7800	2.37
Hydrogen sulfide	Water	kg	1340	1340	361	1340	1340	361	1340	1340	362
Hydroxide	Water	oz	-89.2	-88.1	-49.3	-89.1	-87.9	-49.2	-87.3	-86.2	-47.5
Hypochlorite	Water	lb	-247	-245	-148	-246	-245	-148	-243	-242	-145
Hypochlorous acid	Water	oz	-603	-603	-603	-603	-603	-603	-596	-596	-596
Iodide	Water	kg	-9.85	16.9	104	-9.84	16.9	104	6.14	32.9	120
Iodine-129	Water	kBq	-569	-569	-569	-569	-569	-569	-569	-569	-569
Iodine-131	Water	kBq	-173	-170	-100	-173	-170	-99.8	-168	-165	-95
Iodine-133	Water	Bq	-4450	-4010	-1780	-4440	-4010	-1780	-3910	-3480	-1240
Iron	Water	tn.lg	47	41.3	34.9	47	41.3	34.9	47	41.3	34.9
Iron-59	Water	Bq	-1170	-1050	-438	-1170	-1050	-437	-1030	-906	-291
Iron, ion	Water	tn.lg	-121	-119	-81.3	-120	-119	-81.1	-118	-116	-78.6
Kjeldahl-N	Water	OZ	202	172	81.2	202	171	80.8	202	171	80.9
Krypton-85	Water	кВq	-14.1	-14.1	-14.1	-14.1	-14.1	-14.1	-14.1	-14.1	-14.1
Lanthanum-140	Water	Bq	-7240	-6500	-2710	-7230	-6490	-2700	-6330	-5590	-1800
Lead	Water	tn.lg	218	219	217	218	219	217	218	219	217
Lead-210	Water	ква	-22600	-22400	-19700	-22600	-22400	-19700	-22400	-22200	-19400
Lithium carbonate	Water	mg	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5
Magnesium	Water	tn.ig	226	228	208	226	228	208	228	230	210
Manganese	Water	kton	3.11	3.11	3.1	3.11	3.11	3.1	3.11	3.11	3.1
Manganese-54	Water	ква	-579	-563	-379	-578	-563	-379	-558	-543	-359
Mercury	Water	kg	-5.41	-3.51	20.1	-5.35	-3.45	20.1	-4.8	-2.9	20.7
Methana dishlara LICC 20	Water	m.ig	408	406	404	408	406	404	408	406	404
Methane, dichloro-, FICC-30	Water	0Z	-102	-8.97	292	-101	-8.76	292	-35.9	56.7	358
Methanel	Water	g	-93.6	-93.6	-93.6	-93.6	-93.6	-93.6	-93.6	-93.6	-93.6
Molyhdonum	Water	02 ka	-335	-328	-301	-333	-326	-299	-317	-310	-283
Molybuenum 00	Water	⊾g Ba	180	181	184	180	181	184	182	183	186
Morpholine	Water	рц а	-2500	-2240	-934	-2490	-2240	-932	-2180	-1930	-621
Nentunium-237	Water	Б Ва	1.85	1.85	1.85	1.85	1.85	1.85	1.85	1.85	1.85
Nickel ion	Water	tn la	-252	-252	-252	-252	-252	-252	-252	-252	-252
1 NICKCI/ 1011	vv atel	ung	778	778	779	778	778	779	778	778	779

Substance	Compartment	Unit	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6	Scenario 7	Scenario 8	Scenario 9
Niobium-95	Water	Bq	-69800	-68600	-45600	-69800	-68500	-45500	-68100	-66800	-43800
Nitrate	Water	tn.lg	38.2	38	15.9	38.2	38	15.9	38.4	38.2	16.1
Nitrilotriacetic acid	Water	kg	225	225	225	225	225	225	225	225	225
Nitrite	Water	kg	2070	2070	1240	2070	2070	1240	2070	2070	1240
Nitrogen	Water	kg	-7550	-7530	-7090	-7550	-7530	-7080	-7520	-7500	-7050
Nitrogen, organic bound	Water	kg	20900	20900	-3650	20900	20900	-3650	20900	21000	-3590
Nitrogen, total	Water	oz	176	-34.7	-827	176	-34.3	-826	192	-18.4	-811
NMVOC, non-methane	Water	kg									
volatile organic compounds,			15	15	15	15	15	15	15	15	15
unspecified origin Oils unspecified	Wator	tn la	100	100	11.6	100	100	11.6	110	00.0	22.0
PAH polycyclic aromatic	Water	unig ka	-122	-109	-44.6	-122	-109	-44.6	-112	-98.8	-33.9
hydrocarbons	water	кg	-3090	-3080	-3240	-3090	-3080	-3240	-3080	-3080	-3240
Paraffins	Water	g	-1.06	-1.04	-1.56	-1.06	-1.04	-1.56	-1.05	-1.03	-1.55
Phenol	Water	kg	4.42	29.2	103	5.82	30.7	105	26.1	50.9	125
Phenols, unspecified	Water	oz	283	234	97.3	283	234	97.3	283	234	97.3
Phosphate	Water	tn.lg	75.4	74.6	74.4	75.4	74.6	74.5	75.9	75.1	74.9
Phosphorus	Water	lb	-146	-141	-61.1	-145	-141	-60.5	-114	-110	-29.4
Phosphorus compounds,	Water	g	134	1 34	1 3/	1 3/	134	1 3/	1 3/	1 34	1 3/
unspecified	T47 4		1.54	1.54	1.54	1.54	1.54	1.54	1.54	1.54	1.54
Phosphorus pentoxide	Water	g	-6.4	-6.4	-6.4	-6.4	-6.4	-6.4	-6.4	-6.4	-6.4
Phosphorus, total	Water	g	-11	-11	-11	-11	-11	-11	-10.9	-10.9	-10.9
Phthalate, butyl-benzyl-	Water	mg	-2.33	-2.33	-2.33	-2.33	-2.33	-2.33	-2.33	-2.33	-2.33
Phthalate, dibutyl-	Water	mg	-157	-157	-157	-157	-157	-157	-157	-157	-157
Phthalate, dimethyl-	Water	g	-1.02	-1.02	-1.02	-1.02	-1.02	-1.02	-1.02	-1.02	-1.02
Phthalate, dioctyl-	Water	g	-2.1	-2.1	-2.1	-2.1	-2.1	-2.1	-2.1	-2.1	-2.1
Phthalate, p-dibutyl-	Water	μg	51.4	51.4	51.4	51.4	51.4	51.4	51.4	51.4	51.4
Phthalate, p-dimethyl-	Water	μg	324	324	324	324	324	324	324	324	324
Plutonium-241	Water	кВq	-389	-389	-389	-389	-389	-389	-389	-389	-389
Plutonium-alpha	Water	Bq	-15600	-15600	-15600	-15600	-15600	-15600	-15600	-15600	-15600
Polonium-210	Water	кВq	-30400	-30100	-27400	-30400	-30100	-27400	-30100	-29800	-27100
Potassium	Water	tn.lg	739	739	9200	739	739	9200	739	739	9200
Potassium-40	Water	кВq	-11600	-11500	-8090	-11600	-11500	-8080	-11400	-11300	-7950
Potassium, ion	Water	tn.lg	689	690	688	689	690	688	690	691	689
Propene	Water	oz	128	310	-405	257	438	-276	136	317	-398
Propylene oxide	Water	OZ	151	310	454	151	310	454	155	314	458
Protactinium-234	Water	kBq	-9260	-9140	-5390	-9250	-9130	-5380	-9070	-8950	-5200
Radioactive species,	Water	kBq	1.41E+09	2.57E+09	3.5E+09	1.41E+09	2.57E+09	3.5E+09	1.41E+09	2.57E+09	3.5E+09
Radioactive species, alpha emitters	Water	Bq	-44700	-44300	-44000	-44700	-44300	-44000	-44300	-43800	-43600
Radioactive species, from fission and activation	Water	Bq	232	232	232	232	232	232	232	232	232
Radioactive species, Nuclides, unspecified	Water	kBq	-3580000	-3540000	-2090000	-3580000	-3540000	-2080000	-3510000	-3470000	-2020000
Radium-224	Water	kBq	-3150	10200	52900	-3140	10200	52900	4810	18200	60800
Radium-226	Water	kBq	-5850000	-5750000	-3350000	-5840000	-5750000	-3340000	-5720000	-5620000	-3220000
Radium-228	Water	kBq	-6290	20400	106000	-6290	20400	106000	9610	36300	122000
Rubidium	Water	oz	-20.8	73.6	380	-20.7	73.6	380	35.6	130	436
Ruthenium	Water	g	30.3	30.3	30.3	30.3	30.3	30.3	30.3	30.3	30.3
Ruthenium-103	Water	Bq	-540	-486	-210	-539	-486	-210	-474	-420	-144
Ruthenium-106	Water	kBq	-945	-945	-945	-945	-945	-945	-945	-945	-945
Salts, unspecified	Water	kg	-169	-169	-169	-169	-169	-169	-116	-116	-116
Scandium	Water	lb	-77	-76.6	-57.6	-76.9	-76.5	-57.5	-76.2	-75.9	-56.9
Selenium	Water	kg	183	183	160	183	183	160	183	184	161
Silicon	Water	tn.lg	647	664	906	648	665	907	688	706	948
Silver	Water	kg	62.1	62.1	62.1	62.1	62.1	62.1	62.1	62.1	62.1
Silver-110	Water	kBq	-5260	-5040	-2750	-5250	-5030	-2740	-4970	-4750	-2460
Silver, ion	Water	tn.lg	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12
Sodium-24	Water	kBq	-20.1	-18.2	-8.31	-20.1	-18.2	-8.29	-17.8	-15.8	-5.94
Sodium formate	Water	g	-247	-246	-257	-247	-246	-257	-247	-246	-256
Sodium, ion	Water	kton	1.4	1.5	1.74	1.4	1.5	1.74	1.51	1.61	1.86
Solids, inorganic	Water	kg	-320000	-318000	-261000	-319000	-318000	-260000	-317000	-316000	-258000
Solved organics	Water	kg	-19.5	-19.5	-19.5	-19.4	-19.4	-19.4	-19.4	-19.4	-19.4

Substance	Compartment	Unit	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6	Scenario 7	Scenario 8	Scenario 9
Solved solids	Water	tn.sh	-19600	-19600	-20700	-19600	-19600	-20700	-19600	-19600	-20600
Solved substances	Water	kg	-1850	-1850	-1850	-1850	-1850	-1850	-1830	-1830	-1830
Solved substances, inorganic	Water	kg	190000	126000	47100	190000	126000	47100	190000	126000	47100
Strontium	Water	kg	-144	1480	5750	-142	1480	5750	837	2460	6730
Strontium-89	Water	kBa	-90.6	-86	-49.3	-90.5	-85.9	-493	-84.8	-80.2	-43.6
Strontium-90	Water	kBa	-5630000	-5580000	-3160000	-5630000	-5580000	-3150000	-5540000	-5490000	-3070000
Styrene	Water	mø	-5050000	-5560000	-5100000	-5050000	-5560000	-5150000	-5540000	-5490000	-5070000
Sulfate	Water	kton	-570	-570	-570	-570	-570	-570	-570	-570	-570
Sulfide	Water	07	-1.04	-1.01	-1.50	-1.04	-1.01	-1.50	-1.02	-1.0	-1.55
Sulfite	Water	115	-45.5	-/4.8	-20	-14.5	-43.6	11.2	-13.8	-43.2	11.7
Sulfur	Water	lo ka	-644	-639	-387	-643	-638	-386	-635	-630	-379
	water	Kg	-26.8	7.52	119	-26.7	7.58	119	1.6	35.9	147
	water	tn.ig	225	225	225	225	225	225	225	225	225
	water	oz	-62.8	-62.8	-62.8	-62.7	-62.7	-62.7	-62.4	-62.4	-62.4
Suspended solids, unspecified	Water	kg	26400	29400	-3590	26800	29800	-3180	29300	32300	-694
Suspended substances, unspecified	Water	tn.lg	25.8	24.7	21.2	25.8	24.7	21.2	25.8	24.7	21.2
t-Butyl methyl ether	Water	oz	56.2	70	65	56.2	70	65	83.3	97.1	92.2
Technetium-99	Water	kBq	-100	-100	-100	-100	-100	-100	-100	-100	-100
Technetium-99m	Water	kBq	-57.9	-52.1	-21.7	-57.9	-52	-21.7	-50.7	-44.9	-14.5
Tellurium-123m	Water	Bq	-104000	-103000	-62600	-104000	-102000	-62500	-102000	-101000	-60600
Tellurium-132	Water	Bq	-145	-130	-54.6	-145	-130	-54.5	-127	-112	-36.5
Thallium	Water	oz	662	663	30.9	663	663	31	664	664	32
Thorium-228	Water	kBq	-12800	40700	211000	-12800	40700	211000	19000	72500	243000
Thorium-230	Water	kBq	-1260000	-1250000	-735000	-1260000	-1250000	-734000	-1240000	-1220000	-709000
Thorium-232	Water	kBa	-1830	-1810	-1180	-1820	-1810	-1180	-1800	_1790	-1160
Thorium-234	Water	kBa	9260	9140	5390	9250	-1010	5380	9070	-17.50	5200
Tin. ion	Water	tn lo	-9200	-9140	-5590	-9250	-9150	-5560	-9070	-0950	-5200
Titanium ion	Water	ko	24000	22700	12.4	24000	22700	12.4	22800	22500	12.4
TOC Total Organic Carbon	Water	to la	-54000	-33700	-41100	-34000	-33700	-41100	-55800	-55500	-40800
Toluono	Water	ka	1660	16/0	632	1660	16/0	633	16/0	1690	646
Toluene	Water	кд	8.03	40.2	139	8.03	40.2	139	28.2	60.3	159
	water	g	-94.2	-94.2	-94.2	-94.1	-94.1	-94.1	-93.4	-93.4	-93.4
TributyItin compounds	Water	OZ	-569	-560	-468	-569	-559	-468	-563	-553	-462
Triethylene glycol	Water	кg	-6.38	-6.29	-5.21	-6.36	-6.27	-5.19	-6.26	-6.16	-5.08
Tungsten	Water	lb	-63.5	-63.1	-41.4	-63.4	-63	-41.3	-62.7	-62.3	-40.6
Undissolved substances	Water	kg	163	163	163	163	163	163	163	163	163
Uranium-234	Water	kBq	-11100	-11000	-6470	-11100	-11000	-6450	-10900	-10700	-6240
Uranium-235	Water	kBq	-18300	-18100	-10700	-18300	-18100	-10600	-18000	-17700	-10300
Uranium-238	Water	kBq	-39400	-38900	-26200	-39400	-38900	-26200	-38700	-38200	-25500
Uranium alpha	Water	kBq	-534000	-527000	-310000	-533000	-526000	-310000	-523000	-516000	-300000
Vanadium, ion	Water	kg	269	296	-261	270	296	-260	294	320	-237
VOC, volatile organic compounds as C	Water	oz	37.4	37.4	37.4	37.4	37.4	37.4	37.4	37.4	37.4
VOC, volatile organic	Water	kg	-46.2	47.5	356	-46.2	47.6	356	9.91	104	412
compounds, unspecified origin Waste water/m3	Water	m3	2520000	2520000	2520000	2520000	2520000	2520000	2520000	2520000	2520000
Xvlene	Water	kg	32.8	59.5	144	32.8	59.5	144	49.1	75.8	161
Yttrium-90	Water	Ba	4 72	4 72	4 72	4 72	4 72	4 72	4.72	1 72	4 72
Zinc-65	Water	kBa	-1.7 2	-1.72	97.6	-1.72	-1.72	-1.72	-1.72	200	-1.72
Zinc. ion	Water	kton	-230	-2.52	- 57.0	2.30	-2.51	- 27.5	-220	-200	-05.5
Zirconium-95	Water	Ba	11000	10700	0170	11000	10700	0170	10700	10400	2.41
Dust unspecified	Waste	a a	-11000	-10/00	-9170	-11000	-10/00	-9170	-10/00	-10400	-0000
Mineral waste	Waste	5 ka	24.7	24.7	24.7	14.0	14.0	14.0	20.7	20.7	20.7
Oil waste	Waste	to la	-/66	-/66	-766	-766	-/66	-/66	-/66	-766	-/66
Draduation waste not inort	Waste	tin.1g	-7.44	-7.44	-7.44	-7.44	-7.44	-7.44	-7.44	-7.44	-7.44
Class	Waste	1	-51.1	-51.1	-51.1	-50	-50	-50	-43.5	-43.5	-43.5
Slags	waste	кg	-270	-270	-270	-270	-270	-270	-270	-270	-270
vvaste, final, inert	vvaste	kton	-1.04	-1.04	-1.04	-1.04	-1.04	-1.04	-1.03	-1.03	-1.03
Waste, inorganic	Waste	g	148	148	148	25.8	25.8	25.8	72.8	72.8	72.8
Waste, nuclear, high active/m3	Waste	cu.in	-173	-173	-173	-173	-173	-173	-162	-162	-162
Waste, nuclear, low and	Waste	1	-669	-669	-669	-669	-669	-669	-657	-657	-657
medium active/m3 Zinc waste	Waste	ko	100	102	100	010	010	010	0.45	0.45	0.45
Aclonifen	Soil	тъ a	183	183	183	212	212	212	345	345	345
	5011	ъ	-2.14	6.06	12.6	-2.08	6.12	12.7	5.51	13.7	20.3

Substance	Compartment	Unit	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6	Scenario 7	Scenario 8	Scenario 9
Aluminum	Soil	kg	-129	-24.3	484	-129	-24	484	-54.2	50.3	558
Antimony	Soil	mg	-161	-160	-162	-161	-160	-162	-160	-160	-162
Arsenic	Soil	g	-52.5	-10.8	149	-52.4	-10.7	149	-22.8	18.9	179
Atrazine	Soil	g	-171	-17	-167	-171	-17	-167	-16.9	-16.8	-16.5
Barium	Soil	kg	-48.5	3 41	172	-48.4	3 52	172	-117	40.2	209
Bentazone	Soil	g	-1 09	3.08	6.42	-1.06	3.12	6.45	28	6.98	10.3
Boron	Soil	oz	-323	-282	-48.1	-323	-281	-47.7	-285	-243	-9.92
Cadmium	Soil	g	-525	289	411	157	-201	-17.7	-200	348	470
Calcium	Soil	6 kø	807	471	1600	801	169	1600	588	167	1900
Carbetamide	Soil	σ	1 22	-4/1	1000	-091	-407	1000	2 70	4.28	5 72
Carbon	Soil	6 ka	1.55	102	2010	1.00	120	4.20	2.79	4.20	2240
Chloride	Soil	ka	-190	07000	110000	-109	07900	110000	110000	141000	1(2000
Chlorothalonil	Soil	NG 07	75600	97900	72.2	75500	97600	119000	119000	141000	162000
Chromium	Soil	07	63.6 70.1	120	73.2	54	04./	/3./	104	67.3	76.3
Chromium VI	Soil	115	/2.1	139	223	/2.2	140	223	104	1/2	255
Cabalt	Soil	10 a	-102	-100	-59.8	-102	-100	-59.7	-97.6	-95.9	-55.5
Coppor	Soil	g	-24.7	-24.1	72.5	-24.6	-24.1	72.6	-23.9	-23.4	73.3
Copper	5011 C - 11	0Z	-830	-727	-241	-828	-726	-239	-755	-652	-166
Cypermetnrin	Soll	mg	79.1	112	150	80	113	151	113	146	184
Dinoseb	5011	g	490	495	564	493	499	568	514	519	588
Fenpicionil	Soil	g	70.9	71.9	82.1	71.4	72.4	82.6	74.5	75.5	85.8
Fluoride	Soil	lb	-79.7	-67.1	-2.58	-79.6	-67	-2.47	-68.7	-56.1	8.45
Glyphosate	Soil	oz	-170	-149	-127	-170	-149	-127	-133	-112	-90.2
Heat, waste	Soil	MWh	2400	2430	-397	2400	2430	-395	2500	2530	-296
Iron	Soil	kg	-12600	-12300	-9870	-12600	-12300	-9870	-12400	-12000	-9660
Lead	Soil	oz	39.9	64.8	105	39.9	64.8	105	50.3	75.2	116
Linuron	Soil	g	-16.6	46.9	97.6	-16.1	47.3	98.1	42.6	106	157
Magnesium	Soil	kg	-130	-46.6	304	-130	-46.3	304	-70.3	13.4	364
Mancozeb	Soil	oz	82.8	83.6	95.3	83.4	84.2	95.9	86.8	87.6	99.3
Manganese	Soil	lb	-89.5	-79.6	-15.1	-89.3	-79.4	-15	-81.7	-71.7	-7.31
Mercury	Soil	g	1.62	1.72	16.7	1.63	1.73	16.7	1.74	1.84	16.8
Metaldehyde	Soil	g	0.685	0.969	1.3	0.693	0.977	1.31	0.981	1.26	1.6
Metolachlor	Soil	oz	-4.76	11.4	24.4	-4.64	11.5	24.5	10.3	26.5	39.5
Metribuzin	Soil	g	82.5	83.3	95	83.1	83.9	95.6	86.5	87.3	99
Molybdenum	Soil	g	-1.67	-1.48	51.3	-1.65	-1.47	51.3	-1.42	-1.23	51.5
Napropamide	Soil	g	1.21	1.72	2.31	1.23	1.73	2.32	1.74	2.24	2.83
Nickel	Soil	oz	77.3	119	135	77.4	119	135	93.9	136	152
Nitrogen	Soil	g	-52.1	-52.1	-52.1	-52.1	-52.1	-52.1	-52.1	-52.1	-52.1
Oils, biogenic	Soil	kg	-142	-141	-154	-142	-140	-153	-141	-139	-152
Oils, unspecified	Soil	tn.sh	-11.2	3.1	49.6	-11.2	3.11	49.6	1.06	15.3	61.8
Orbencarb	Soil	g	445	450	513	448	453	516	467	471	534
Phosphorus	Soil	oz	-828	-640	178	-827	-638	180	-689	-500	318
Phosphorus, total	Soil	g	129	129	129	129	129	129	129	129	129
Pirimicarb	Soil	mg	-103	292	609	-100	295	612	266	662	978
Potassium	Soil	kg	-134	-96.4	56.8	-133	-96.2	57	-106	-69.1	84.2
Silicon	Soil	kg	-129	-117	285	-129	-116	285	-118	-106	296
Silver	Soil	g	30.2	34.9	11.3	30.2	34.9	11.3	30.3	35.1	11.5
Sodium	Soil	kg	177	258	962	18.3	259	963	278	518	1220
Strontium	Soil	oz	-34.4	2.64	123	-34.3	2 72	123	-8.2	28.8	149
Sulfur	Soil	kg	-64.2	-1 39	371	-64	-1 22	371	-194	43.5	416
Tebutam	Soil	g	-04.Z	-1.59	5.14	-0 1	-1,22	5.5	-17.4	-10.0 5 21	47
Teflubenzuron	Soil	g	5.07	4.07	5.40 6 22	2.71 5.52	4.1	5.5 4 27	4.11 5.74	5.51	6 50
Tin	Soil	o o	0.49	0.00	0.00	0.00	0.09	0.57	0.70	3.01	0.09
Titanium	Soil	0 07	21.1	21.0	200	21.1	21.0	200	21.0	22.1	200
Vanadium	Soil	σ	-89.1	-88.3	-56.8	-88.9	-88.1	-56.6	-87.6	-86.8	-55.3
Zinc	Soil	5 ka	-/2.3	-/1.6	-46.1	-/2.2	-/1.5	-45.9	-/1.1	-/0.5	-44.9
Zinc phosphido	Soil	rrg a	115	220	330	115	220	330	162	268	378
zane priospinice	5011	ъ	38.7	38.7	38.7	38.7	38.7	38.7	38.7	38.7	38.7

Table 1.2Inventory: Implementation Scenario 10

Substance	Compartment	Unit	Scenario 10
Additives	Raw Material	tn lo	2.41
Aluminium, 24% in bauxite, 11% in crude ore, in ground	Raw Material	tn.lg	2.33
Anhydrite, in ground	Raw Material	g	56.2
Barite, 15% in crude ore, in ground	Raw Material	tn.lg	2.16
Barium, in ground	Raw Material	kg	362
Baryte, in ground	Raw Material	kg	12.2
Basalt, in ground	Raw Material	tn.lg	1.15
Bauxite, in ground	Raw Material	kg	95.6
Borax, in ground	Raw Material	g	37.5
Calcite, in ground	Raw Material	kton	9.75
Calcium sulfate, in ground	Raw Material	tn.lg	1.01
Carbon dioxide, in air	Raw Material	tn.lg	38.6
Chromium ore, in ground	Raw Material	g	59.7
Chromium, 25.5 in chromite, 11.6% in crude ore, in ground	Raw Material	tn.lg	1.08
Chromium, in ground	Raw Material	g	82.7
Chrysotile, in ground	Raw Material	g	468
Cinnabar, in ground	Raw Material	g	43
Clay, bentonite, in ground	Raw Material	tn.lg	9.94
Clay, unspecified, in ground	Raw Material	kton	54.8
Coal, 18 MJ per kg, in ground	Raw Material	tn.lg	47.8
Coal, 29.3 MJ per kg, in ground	Raw Material	tn.lg	-236
Coal, brown, 10 MJ per kg, in ground	Raw Material	tn.lg	1.98
Coal, brown, 8 MJ per kg, in ground	Raw Material	tn.lg	1.12
Coal, brown, in ground	Raw Material	tn.lg	89.9
Coal, hard, unspecified, in ground	Raw Material	tn.lg	550
Cobalt, in ground	Raw Material	g	6.48
Colemanite, in ground	Raw Material	g	480
Copper, 0.99% in sulfide, Cu 0.36% and Mo 8.2E-3% in crude	Raw Material	kg	16.8
ore, in ground		1	02.0
Copper, 1.18% in sulfide, Cu 0.39% and Mo 8.2E-3% in crude	Kaw Material	кg	92.9
Copper 1 42% in sulfide Cu 0.81% and Mo 8 2E-3% in crude	Raw Material	ko	24.6
ore, in ground	iuw muchu	~ 6	21.0
Copper, 2.19% in sulfide, Cu 1.83% and Mo 8.2E-3% in crude	Raw Material	kg	122
ore, in ground		0	
Copper, in ground	Raw Material	kg	1.23
Diatomite, in ground	Raw Material	mg	224
Dolomite, in ground	Raw Material	kg	225
Energy, gross calorific value, in biomass	Raw Material	MWh	122
Energy, kinetic, flow, in wind	Raw Material	MWh	19.1
Energy, potential, stock, in barrage water	Raw Material	TJ	2.74
Energy, solar	Raw Material	GJ	2.93
Feldspar, in ground	Raw Material	mg	170
Fluorine, 4.5% in apatite, 1% in crude ore, in ground	Raw Material	kg	2.53
Fluorine, 4.5% in apatite, 3% in crude ore, in ground	Raw Material	kg	1.13
Fluorspar, 92%, in ground	Raw Material	kg	74.4
Gas, mine, off-gas, process, coal mining/kg	Raw Material	kg	3.43
Gas, mine, otf-gas, process, coal mining/m3	Raw Material	m3	8120
Gas, natural, 30.3 MJ per kg, in ground	Raw Material	tn.lg	415
Gas, natural, 35 MJ per m3, in ground	Kaw Material	m3	20000
Gas, natural, in ground	Kaw Material	m3	121000
Gas, petroleum, 35 MJ per m3, in ground	Raw Material	m3	190
Granite, in ground	Raw Material	kg	7.05
Gravel, in ground	Raw Material	kton	10.1
Gypsum, in ground	Kaw Material	g	464
Iron, 46% in ore, 25% in crude ore, in ground	Kaw Material	tn.lg	91.8 14.2
Iron, in ground	Kaw Material	tn.lg	14.3
Kaomite, 24% in cruce ore, in ground	Kaw Material	кg	14.2
Nieserite, 25% in crude ore, în ground	Kaw Material	g	94.0

Substance	Compartment	Unit	Scenario 10
Land use II-III	Raw Material	m2a	158
Land use II-III, sea floor	Raw Material	m2a	193
Land use II-IV	Raw Material	m2a	11.4
Land use II-IV, sea floor	Raw Material	m2a	20
Land use III-IV	Raw Material	m2a	16.6
Land use IV-IV	Raw Material	m2a	6.63
Lead, 5%, in sulfide, Pb 2.97% and Zn 5.34% in crude ore, in	Raw Material	tn.lg	1.8
ground		U	
Lead, in ground	Raw Material	g	261
Limestone, in ground	Raw Material	tn.lg	32.8
Magnesite, 60% in crude ore, in ground	Raw Material	tn.lg	4.22
Magnesium, 0.13% in water	Raw Material	g	6.76
Manganese ore, in ground	Raw Material	g	34.8
Manganese, 35.7% in sedimentary deposit, 14.2% in crude ore,	Raw Material	tn.lg	1.18
in ground		U	
Manganese, in ground	Raw Material	g	20.2
Marl, in ground	Raw Material	kg	30.1
Molybdenum, 0.010% in sulfide, Mo 8.2E-3% and Cu 1.83% in	Raw Material	kg	2.27
crude ore, in ground			
Molybdenum, 0.014% in sulfide, Mo 8.2E-3% and Cu 0.81% in	Raw Material	g	323
crude ore, in ground			
Molybdenum, 0.022% in sulfide, Mo 8.2E-3% and Cu 0.36% in	Raw Material	kg	421
crude ore, in ground			
Molybdenum, 0.025% in sulfide, Mo 8.2E-3% and Cu 0.39% in	Raw Material	kg	1.19
crude ore, in ground		1	050
Molybdenum, 0.11% in sulfide, Mo 4.1E-2% and Cu 0.36% in	Raw Material	кд	850
Molyhdonum in ground	Row Matorial	шa	360
Nickel 1 13% in sulfide Ni 0.76% and Cu 0.76% in stude are in	Raw Material	μg ka	2 92
ground	Kaw Waterial	ĸg	2.92
Nickel 1 98% in silicates 1 04% in crude ore in ground	Raw Material	tn lø	4 76
Nickel in ground	Raw Material	σ	74 1
Occupation arable non-irrigated	Raw Material	6 m?a	120
Occupation, anote, non inigated	Raw Material	m2a	13900
Occupation, dump site	Raw Material	m2a	89100
Occupation, dump site benthos	Raw Material	m2a	114
Occupation, during site, benafos	Raw Material	m2a	24000
Occupation, forest, intensive	Raw Material	m2a	2 1 000 76100
Occupation, industrial area	Raw Material	m2a	2200
Occupation, industrial area honthos	Raw Material	m2a	1.26
Occupation, industrial area, benutios	Raw Material	m2a	1.26
Occupation, industrial area, built up	Raw Material	1112a	1460
		m2a	2550
Occupation, mineral extraction site	Raw Material	m2a	29700
Occupation, permanent crop, truit, intensive	Raw Material	m2a	29.7
Occupation, shrub land, scierophyllous	Raw Material	m2a	13800
Occupation, traffic area, rail embankment	Raw Material	m2a	661
Occupation, traffic area, rail network	Raw Material	m2a	731
Occupation, traffic area, road embankment	Raw Material	m2a	1570
Occupation, traffic area, road network	Raw Material	m2a	128000
Occupation, urban, discontinuously built	Raw Material	m2a	0.235
Occupation, water bodies, artificial	Raw Material	m2a	7250
Occupation, water courses, artificial	Raw Material	m2a	2230
Oil, crude, 41 MJ per kg, in ground	Raw Material	tn.lg	960
Oil, crude, 42.6 MJ per kg, in ground	Raw Material	tn.lg	3.78
Oil, crude, in ground	Raw Material	tn.lg	748
Olivine, in ground	Raw Material	g	23.8
Palladium, in ground	Raw Material	μg	432
Pd, Pd 2.0E-4%, Pt 4.8E-4%, Rh 2.4E-5%, Ni 3.7E-2%, Cu 5.2E-	Raw Material	mg	413
2% in ore, in ground			
Pd, Pd 7.3E-4%, Pt 2.5E-4%, Rh 2.0E-5%, Ni 2.3E+0%, Cu	Raw Material	mg	992
3.2E+0% in ore, in ground			22
Peat, in ground	Kaw Material	кg	23
Phosphorus, 18% in apatite, 12% in crude ore, in ground	Kaw Material	кg	4.75

Phosphorus, NS: in apulie, 4.5 in crude ore, in groundRaw MaterialNg.Ng.Phosphorus, in groundRaw MaterialNg.420Ph. PL 2.5F4.S, PL 3.5F4.S, Nh 2.0F5.S, Ni 3.7F6.2%, Cu 5.2F6.S,Raw MaterialNg.48.6Ph. PL 4.5F4.S, PL 2.0F4.S, Nh 2.AF5.S, Ni 3.7F6.2%, Cu 5.2F6.S,Raw MaterialNg.48.6Ph. PL 4.5F5.S, PL 2.5F4.S, Nh 2.AF5.2%, NL 2.5F7.S, Cu 5.2FRaw MaterialNg.48.7P. Pr. 4.8F4.S, PL 2.0F4.S, NJ 2.7F2.2%, Cu 5.2FRaw MaterialNg.49.7S.10.0001Raw MaterialNg.49.7P. N. 2.4F5.SK, PL 2.5F4.SK, PL 2.0F5.ZK, Su 5.2FRaw MaterialNg.49.7S.10.0001Raw MaterialNg.49.7S.10.0001Raw MaterialNg.49.7S.10.0001Raw MaterialNg.40.7S.10.0001Raw MaterialNg.40.7S.10.0001Raw MaterialNg.1.36S.10.0001Raw MaterialNg.1.36S.10.0001Raw MaterialNg.1.36S.10.0001Raw MaterialNg.1.36S.10.0001Raw MaterialNg.2.33S.10.0001Raw MaterialNg.2.33S.10.0001Raw MaterialNg.2.34S.10.0001Raw MaterialNg.2.34S.10.0001Raw MaterialNg.2.34S.10.0001Raw MaterialNg.2.34S.10.0001Raw MaterialNg.2.34S.10.0001Raw MaterialNg.2.34<	Substance	Compartment	Unit	Scenario 10
Phosphorns, in groundRaw MaterialRoot2.33Phinurun, in groundRaw Materialmg13.62.214-05, in ore, in groundRaw Materialmg48.6Phy 12.51-45, Pd 7.514-25, Ni 2.514-05, Cu 5.212-28, Raw Materialkg08Phy 12.516, in ore, in groundRaw Materialkg08RN, Rh 2.012-45, Ni 2.514-45, Ni 2.514-05, Cu 5.212Raw Materialkg10Sch05-55, Pf 2.516-45, Pd 7.514-45, Ni 2.574-25, Cu 5.215Raw Materialmg9.12.51, in one, in groundRaw Materialmg19.810.0Rh 2.545-55, Pf 4.812-45, Pd 2.014-45, Ni 2.572-56, Cu 5.216Raw Materialmg10.0Sch0arm, in groundRaw Materialmg10.010.0Sch0arm, in groundRaw Materialmg10.010.0Sch0arm, in groundRaw Materialmg12.010.0Sch0arm, in groundRaw Materialmg12.012.0Sch0arm, in groundRaw Materialkg12.012.0Sch0arm, Sch0ard, in groundRaw Materialkg12.012.0Sch0arm, Sch0ard, in groundRaw Materialkg12.012.0Sch0arm, Sch0ard, in groundRaw Materialkg13.012.0Sch0arm, Sch0ard, in groundRaw Materialkg6.012.0Task Sch0ard, in groundRaw Materialkg6.012.0Task Sch0ard, in groundRaw Materialkg6.012.0Task Sch0ard, in groundRaw Material <td>Phosphorus, 18% in apatite, 4% in crude ore, in ground</td> <td>Raw Material</td> <td>kg</td> <td>10.1</td>	Phosphorus, 18% in apatite, 4% in crude ore, in ground	Raw Material	kg	10.1
Platimum, in groundRaw Materialgg492Ph 72 SE-48, PA 254-98, N 254-58, Ni 3.7C-28, Cu 5.2E-28Raw Materialgg486Net Not 265-58, NI 254-58, Ni 3.7C-28, Cu 5.2E-28Raw Materialkg486Prite, in groundRaw Materialkg486Net Not 265-58, PL 25E-48, Pd 73E-48, Ni 2.5E-08, CuRaw Materialkg486Net Not 265-58, PL 25E-48, Pd 73E-48, Ni 2.5E-08, CuRaw Materialng487Net Not 265-58, PL 25E-48, Pd 73E-48, Ni 3.7E-28, Cu 52ERaw Materialng489Rhenium, in crude ore, in groundRaw Materialng460Rhenium, in crude ore, in groundRaw Materialng460Ruli, in groundRaw Materialg159Silve, in groundRaw Materialg159Silve, in groundRaw Materialg120Soliun sulphate, various forms, in groundRaw Materialg123Silve, in groundRaw Materialkg17.5Soliun sulphate, various forms, in groundRaw Materialkg17.5Soliun sulphate, various forms, in groundRaw Materialkg17.5Silve, in groundRaw Materialkg12.4Silve, in groun	Phosphorus, in ground	Raw Material	kton	2.93
PL PL 25E-4%, PL 20E-5%, NL 23E-0%, CuRaw Materialmg13.6PL PL 45E-4%, PL 20E-4%, Rh 2.4E-5%, NL 3.7E-2%, Cu 5.2E-2%Raw Materialkg48.6PL PL 45E-4%, PL 20E-4%, Rh 2.4E-5%, NL 3.2E+0%, CuRaw Materialkg498PL 41, DE-5%, PL 25E-4%, PL 2.0E-4%, NL 2.3E+0%, CuRaw Materialmg9.41Sch 100, DE-5%, PL 3.EE-4%, PL 2.0E-4%, NL 3.2E+0%, CuRaw Materialmg9.5Sch 100, Ci, Sch 100, DE-5%, PL 4.5E, PL 4.5K, PL 4.0E-4%, NL 3.7E-2%, Cu 5.2ERaw Materialmg9.8Rhenturn, in groundRaw Materialmg9.8400Rhenturn, in groundRaw Materialmg400Rhenturn, in groundRaw Materialg1.50Shuci, in groundRaw Materialg1.50Shuci, in groundRaw Materialg1.26Shuci, in groundRaw Materialg1.26Shuci, in groundRaw Materialkg1.23Soliure, choride, in groundRaw Materialkg1.23Soliure, in groundRaw Materialkg1.23Soliure, in groundRaw Materialkg1.23Soliure, in groundRaw Materialkg1.24Soliure, in groundRaw Materialkg1.24Soliure, in groundRaw Materialkg1.24Tak, in groundRaw Materialkg1.24Tak, in groundRaw Materialkg1.24Tak, in groundRaw Materialkg1.24Tak, in groundRaw Mat	Platinum, in ground	Raw Material	μg	492
321-09.Name84.6in ore: in groundRaw Materialkg498Prito, in groundRaw Materialkg498NR, Nb 206-5%, Pt 25E-4%, Nd 73E-4%, Ni 2.3E+0%, CuRaw Materialmg9.41221-05Raw Rh 24E-5%, Pt 425E-4%, Pt 73E-4%, Ni 2.3E+0%, CuRaw Materialmg29.528. in ore, in groundRaw Materialug449Rhenium, in crude ore, in groundRaw Materialug460Rudium, in groundRaw Materialug460Rudium, in groundRaw Materialug26.7Sand, unspecified, in groundRaw Materialg1.36Salae, in groundRaw Materialg1.36Salae, in groundRaw Materialg1.36Salae, in groundRaw Materialg1.22Solium sulphate, various forms, in groundRaw Materialkg1.75Solium sulphate, various forms, in groundRaw Materialkg1.75Soliur, in groundRaw Materialkg1.17Soliur, in groundRaw Materialkg1.17Tak, in groundRaw Materialkg2.34Soliur, in groundRaw Materialkg2.34Soliur, in groundRaw Materialkg2.34Tak,	Pt, Pt 2.5E-4%, Pd 7.3E-4%, Rh 2.0E-5%, Ni 2.3E+0%, Cu	Raw Material	mg	13.6
Pt, Pt 438-4%, Pd 208-4%, Ni 37E-2%, Cu 52E-2%Raw Materialmg48.6Princi, argoundRaw Materialkg498Rb, Rb 20E-5%, Pt 25E-4%, Pd 73E-4%, Ni 22E+0%, CuRaw Materialmg9.122E/0% in ore, in groundRaw Materialmg29.5Zk in ore, in groundRaw Materialug449Rhenium, in groundRaw Materialug449Rhenium, in groundRaw Materialug66.6Rutile, in groundRaw Materialg10.2Shad, unspecified, in groundRaw Materialg10.2Solium subjectified, in groundRaw Materialg10.2Solium subjectified, in groundRaw Materialg10.2Solium subjectified, in groundRaw Materialkg17.5Solium subjectified, in groundRaw Materialkg17.5Solium subjectified, in groundRaw Materialkg10.7Solium subjectified, in groundRaw Materialkg10.7Solium subjectified, in groundRaw Materialkg10.7Solium subjectified, in groundRaw Materialkg10.7Tak, in groundRaw Ma	3.2E+0% in ore, in ground		-	
in ore, in ground Prints, in ground Ray, Rh. 201-538, Pt 2.5E-438, Pd 7.318-448, NI 2.3E-40%, Cu SabeWs in ore, in ground Rh, Rh. 2.4E-538, Pt 2.8E-438, NI 3.7E-236, Cu 5.2E: Raw Material Robelum, in crude ore, in ground Rhenlum, in crude ore, in ground Robelum, in ground Raw Material g 460 Ruthe, in ground Raw Material g 467 State, in ground Raw Material g 467 State, in ground Raw Material g 159 State, in ground Raw Material g 10.2 Solium, culcoter, in ground Raw Material g 10.2 Solium, culcoter, in ground Raw Material g 10.2 Solium, in ground Raw Material g 10.7 Steel scrap Solium, in ground Raw Material g 42.2 Steel scrap Solium, from arable, non-irrigated, fallow Raw Material g 42.4 Stansformation, from arable, non-irrigated, fallow Raw Material g 42.3 Steel scrap Solium, from industrial area, bettu g Raw Material g 42.3 Steel scrap Solium, from industrial area, betu	Pt, Pt 4.8E-4%, Pd 2.0E-4%, Rh 2.4E-5%, Ni 3.7E-2%, Cu 5.2E-2%	Raw Material	mg	48.6
Pyrite, in groundRaw Materialkg498Pyrite, in groundRaw Materialmg94123E+0% in ore, in groundRaw Materialmg92528 in oro, in groundRaw Materialmg19.8Rhenium, in groundRaw Materialmg409Rhoni, in groundRaw Materialmg460Rhoni, in groundRaw Materialmg467Sand, unspecified, in groundRaw Materialg102Solitor, 01% in crude ore, in groundRaw Materialg102Solitor, 01% in crude ore, in groundRaw Materialg102Solitor, 01% in crude ore, in groundRaw Materialkg123Solitor, 10, in groundRaw Materialkg123Solitor, 10, in groundRaw Materialkg123Solitor, 10, in groundRaw Materialkg124Solitor, 10, in groundRaw Materialkg124Solitor, 10, in groundRaw Materialkg124Tac, in groundRaw Materialkg124Tac, in groundRaw Materialkg124Tarasformation, from arable, non-irrigatedRaw Materialkg124Tarasformation, from arable, non-irrigatedRaw Materialm2226Tarasformation, from dump site, satiary landfillRaw Materialm224Tarasformation, from dump site, satiary landfillRaw Materialm224Tarasformation, from dump site, satiary landfillRaw Materialm2 <td< td=""><td>in ore, in ground</td><td></td><td></td><td></td></td<>	in ore, in ground			
Rb, Rb 201-5%, Pt 251-4%, Pt 23E-4%, Nb 23E-10%, CuRaw Materialmg9.41S2H-0% in ore, in groundRaw Materialmg29.5Sk note, in groundRaw Materialµg449Rhenium, in erude ore, in groundRaw Materialµg460Rutile, in groundRaw Materialµg460Rutile, in groundRaw Materialµg460Rutile, in groundRaw Materialµg160Sand, unspecified, in groundRaw Materialg159Silver, fin groundRaw Materialg120Sodium chloride, in groundRaw Materialthg27.3Sodium sulphate, various forms, in groundRaw Materialthg27.3Sodium sulphate, various forms, in groundRaw Materialthg23.3Solithr, in groundRaw Materialthg2.32.3Sulfur, in groundRaw Materialkg10.711.4Staffur, in groundRaw Materialkg10.712.4Staffur, in groundRaw Materialkg10.712.4Tak, in groundRaw Materialkg6.911.7Tak, in groundRaw Materialkg6.911.7Tansformation, from arable, non-irrigatedRaw Materialm22.34Transformation, from arable, non-irrigatedRaw Materialm22.14Transformation, from dump site, inert material landfillRaw Materialm22.16Transformation, from dump site, inert material landfillRaw Mat	Pyrite, in ground	Raw Material	kg	498
3.21-63% in ore, in groundmg29.52% in ore, in groundRaw Materialmg19.8Rhenium, ic nucle ore, in groundRaw Materialµg449Rhenium, in groundRaw Materialµg460Rutle, in groundRaw Materialµg460Stale, in groundRaw Materialmg2.67Sand, unspecified, in groundRaw Materialg1.36Shler, in groundRaw Materialg1.36Silver, 0.01% in crude ore, in groundRaw Materialg1.22Solium sulphate, various forms, in groundRaw Materialthug2.73Solium sulphate, various forms, in groundRaw Materialthug2.33Sulprit, in groundRaw Materialthug2.33Sulprit, in groundRaw Materialkg1.07Tak, in groundRaw Materialkg1.07Tak, in groundRaw Materialkg1.07Tak, in groundRaw Materialkg6.69Tansformation, from arable, non-irrigatedRaw Materialkg6.9Transformation, from arable, non-irrigatedRaw Materialm22.21Transformation, from dump site, sainary landillRaw Materialm22.66Transformation, from dump	Rh, Rh 2.0E-5%, Pt 2.5E-4%, Pd 7.3E-4%, Ni 2.3E+0%, Cu	Raw Material	mg	9.41
Rh, Rh 241-5%, IV 2410-4%, Ni 3710-2%, Cu 5210Kaw Materialmg29.5Rhenitum, in groundRaw Materialmg449Rhenitum, in groundRaw Materialmg460Rutle, in groundRaw Materialmg26.7Stand, unspecified, in groundRaw Materialg159Stand, unspecified, in groundRaw Materialg159Silver, in groundRaw Materialg102Soliurs (Johnske, various forms, in groundRaw Materialg12.2Soliurs (Johnske, various forms, in groundRaw Materialkg10.2Soliurs (Johnske, various forms, in groundRaw Materialkg10.2Soliurs (Johnske, various forms, in groundRaw Materialkg10.7Stelfar, in groundRaw Materialkg10.7Staftar, in groundRaw Materialkg11Tin, 79% in cassiterite, 0.1% in crude ore, in groundRaw Materialkg234Tin, 79% in cassiterite, 0.1% in crude ore, in groundRaw Materialkg240Transformation, from arable, non-irrigatedRaw Materialm2246Transformation, from arable, non-irrigated, fallowRaw Materialm2241Transformation, from dump site, iseritau material landfillRaw Materialm2470Transformation, from dump site, senitary landfillRaw Materialm2257Transformation, from dump site, senitary landfillRaw Materialm2261Transformation, from dump site, senitary landfill<	3.2E+0% in ore, in ground			
2% in orce, in groundNaw Materialng19.8Rhenium, in cude ore, in groundRaw Materialµg449Rhodium, in groundRaw Materialµg460Rutle, in groundRaw Materialng26.7Sand, unspecified, in groundRaw Materialg159Silver, 0.01% in crude ore, in groundRaw Materialg102Solium, choirdo, in groundRaw Materialg102Solium, choirdo, in groundRaw Materialkg17.5SectorapRaw Materialng23.3Solium, sulphate, various forms, in groundRaw Materialng23.3Sulfur, in groundRaw Materialng23.3Sulfur, in groundRaw Materialkg10.7Talc, in groundRaw Materialkg10.7Talc, in groundRaw Materialkg24.1Tu, ng youndRaw Materialkg24.2Yolte, 2.5 % in assilterite, 0.1% in crude ore, in groundRaw Materialkg66.9Transformation, from arable, non-irrigatedRaw Materialkg24.1Transformation, from dump site, residual material landfillRaw Materialnu2270Transformation, from dump site, saigo compartmentRaw Materialnu2424Transformation, from dump site, saigo compartmentRaw Materialnu2424Transformation, from industrial area, buellupRaw Materialnu2424Transformation, from industrial area, buellupRaw Materialnu2 <td< td=""><td>Rh, Rh 2.4E-5%, Pt 4.8E-4%, Pd 2.0E-4%, Ni 3.7E-2%, Cu 5.2E-</td><td>Raw Material</td><td>mg</td><td>29.5</td></td<>	Rh, Rh 2.4E-5%, Pt 4.8E-4%, Pd 2.0E-4%, Ni 3.7E-2%, Cu 5.2E-	Raw Material	mg	29.5
Nethulin, in Clue Ore, in groundNaw Materialµg449Rhedium, in groundRaw Materialµg460Rhulic, in groundRaw Materialµg460Sulic, in groundRaw Materialµg150Sand, unspecified, in groundRaw Materialg130Silver, OUN is in ordeo re, in groundRaw Materialg102Sodium sulphate, various forms, in groundRaw Materialg102Sodium sulphate, various forms, in groundRaw Materialmlg2.33Sodium sulphate, various forms, in groundRaw Materialmlg2.33Sulfur, in groundRaw Materialmlg2.33Sulfur, in groundRaw Materialkg107Tale, in groundRaw Materialkg11Tale, in groundRaw Materialkg11Tale, in groundRaw Materialkg2.34Tale, in groundRaw Materialkg2.42Tole, in groundRaw Materialkg2.42Tale, in groundRaw Materialkg2.61Tansformation, from arable, non-irrigatedRaw Materialml22.91Transformation, from arable, non-irrigated, fallowRaw Materialm24.91Transformation, from dump site, inert material landfillRaw Materialm22.70Transformation, from dump site, santary landfillRaw Materialm22.70Transformation, from dump site, santary landfillRaw Materialm22.66Transformation, fr	2% in ore, in ground	Dary Matarial		10.9
And matchingpgpgpgRodium, in groundRaw Materialpg460Rutik, in groundRaw Materialpg65.6Sand, unspecified, in groundRaw Materialg1.36Silver, in groundRaw Materialg1.36Silver, in groundRaw Materialg1.36Silver, in groundRaw Materialg1.22Sodium chloride, in groundRaw Materialtn.lg2.73Sodium sulphate, various forms, in groundRaw Materialtn.lg2.33Silver, in groundRaw Materialtn.lg2.33Silvir, in groundRaw Materialtn.lg2.34Silvir, 0, 79% in sylvinite, in groundRaw Materialkg1.07Tak, in groundRaw Materialkg1.07Tak, in groundRaw Materialkg6.69Transformation, from arable, non-irrigatedRaw Materialkg6.69Transformation, from arable, non-irrigatedRaw Materialm22.24Transformation, from arable, non-irrigatedRaw Materialm22.21Transformation, from dump site, estidual material landfillRaw Materialm22.75Transformation, from dump site, sanitary landfillRaw Materialm22.75Transformation, from industrial areaRaw Materialm22.75Transformation, from industrial areaRaw Materialm22.75Transformation, from industrial area, butti upRaw Materialm22.75Transfo	Phonium in ground	Raw Material	nig	19.0
Nucleon in groundRaw Materialpg600Sand, unspecified, in groundRaw MaterialRaw Materialg159Shale, in groundRaw Materialg1.36Shale, in groundRaw Materialg1.36Silver, ULI's in crude ore, in groundRaw Materialg1.22Sodium Albriche, in groundRaw Materialtr.lg2.7.3Sodium Sulphate, various forms, in groundRaw Materialtr.lg2.33Sulfur, in groundRaw Materialtr.lg2.33Sulfur, in groundRaw Materialkg1.1Tale, in groundRaw Materialkg1.1Tale, in groundRaw Materialkg1.1Tale, in groundRaw Materialkg2.34Tue, in groundRaw Materialkg6.9Tarasformation, from arableRaw Materialkg6.9Transformation, from arable, non-irrigatedRaw Materialm29.1.4Transformation, from dump site, incestual handfillRaw Materialm22.26Transformation, from dump site, santary HandfillRaw Materialm22.40Transformation, from dump site, santary HandfillRaw Materialm24.91Transformation, from industrial areaRaw Materialm24.21Transformation, from industrial areaRaw Materialm24.24Transformation, from industrial areaRaw Materialm24.24Transformation, from industrial area, benthosRaw Materialm21.6	Rhedium in ground	Raw Material	μg	449
NumeRaw MaterialIng2.07Sand, unspecified, in groundRaw Materialg1.56Shale, in groundRaw Materialg1.36Silver, in groundRaw Materialg1.22Sodium chloride, in groundRaw MaterialRaw Materialg1.22Sodium chloride, in groundRaw Materialtn.lg2.23Stelle scrapRaw Materialtn.lg2.23Stilvir, in groundRaw Materialtn.lg2.23Stilvir, in groundRaw Materialtn.lg2.23Stilvir, in groundRaw Materialkg10.7Tale, in groundRaw Materialkg11In, 79% in cassiterite, 0.1% in crude ore, in groundRaw Materialkg2.44Tin, 79% in cassiterite, 0.1% in crude ore, in groundRaw Materialkg4.82TiO2, 45-60% in Illeneite, in groundRaw Materialkg9.14Transformation, from arable, non-irrigatedRaw Materialm.22.21Transformation, from arable, non-irrigated, fallowRaw Materialm.22.21Transformation, from dump site, residual material landfillRaw Materialm.24.91Transformation, from dump site, sanitary landfillRaw Materialm.24.24Transformation, from dump site, sanitary landfillRaw Materialm.24.24Transformation, from industrial area, begittoRaw Materialm.21.83Transformation, from industrial area, begittoRaw Materialm.21.83 <tr< td=""><td>Rutile in ground</td><td>Raw Material</td><td>μg</td><td>400</td></tr<>	Rutile in ground	Raw Material	μg	400
Cath. Unspectified. In groundRaw MaterialRouRouSale, in groundRaw Materialg159Silver, in groundRaw Materialtnl.g2.2Sodium solphate, various forms, in groundRaw Materialtnl.g2.23Sodium solphate, various forms, in groundRaw Materialtnl.g2.23Soliver, in groundRaw Materialtnl.g2.23Solivin, in groundRaw Materialtnl.g2.23Solivin, jorondRaw Materialkg11Tak, in groundRaw Materialkg11Tak, in groundRaw Materialkg11Tin, in groundRaw Materialkg2.34Tin, in groundRaw Materialkg66.9Transformation, from arable, non-irrigated, fallowRaw Materialm2221Transformation, from arable, non-irrigated, fallowRaw Materialm2226Transformation, from dump site, inser material landfillRaw Materialm22750Transformation, from dump site, residual material landfillRaw Materialm22750Transformation, from dump site, sanitary landfillRaw Materialm2266Transformation, from industrial areaRaw Materialm22750Transformation, from dump site, sanitary landfillRaw Materialm22750Transformation, from industrial areaRaw Materialm2266Transformation, from industrial area, built upRaw Materialm2266Transformation, from indust	Cond unenecified in ground	Raw Material	liter	20.7
Datase, in groundRaw Materialg1.36Silver, O.II's in crude ore, in groundRaw Materialg1.36Silver, in groundRaw Materialtn.lg27.3Sodium stlphate, various forms, in groundRaw Materialtn.lg2.23Silvit, in groundRaw Materialtn.lg2.23Silvit, in groundRaw Materialtn.lg2.26Sylvite, 25 % in sylvinite, in groundRaw Materialkg11.7Tale, in groundRaw Materialkg1.1Tale, in groundRaw Materialkg2.34Tin, 79% in cassierite, 0.1% in crude ore, in groundRaw Materialkg6.9Transformation, from arable, non-irrigatedRaw Materialm.2221Transformation, from arable, non-irrigated, fallowRaw Materialm.2226Transformation, from drable, non-irrigated, fallowRaw Materialm.22750Transformation, from drable, inert material landfillRaw Materialm.22750Transformation, from drups site, sag compartmentRaw Materialm.22750Transformation, from drups site, sag compartmentRaw Materialm.2286Transformation, from industrial area, built upRaw Materialm.22750Transformation, from industrial area, built upRaw Materialm.2261Transformation, from industrial area, built upRaw Materialm.22751Transformation, from industrial area, built upRaw Materialm.2276Transformation, f	Salu, inspectied, in ground	Raw Material	~	150
Solver, in groundRaw Materialg1.58Solver, in groundRaw Materialtn.lg27.3Sodium chloride, in groundRaw Materialtn.lg27.3Sodium sulphate, various forms, in groundRaw Materialtn.lg2.33Sulfur, in groundRaw Materialtn.lg2.33Sulfur, in groundRaw Materialtn.lg2.34Sulfur, in groundRaw Materialkg11Talc, in groundRaw Materialkg11Tin, '9's in cassiterite, 0.1% in crude ore, in groundRaw Materialkg2.34Tin, in groundRaw Materialkg66.9Transformation, from arable, non-irrigatedRaw Materialm29.14Transformation, from arable, non-irrigated fallowRaw Materialm22.91Transformation, from dump site, inst material landfillRaw Materialm22.91Transformation, from dump site, solarulary IndfillRaw Materialm22.42Transformation, from dump site, solarulary IndfillRaw Materialm22.66Transformation, from industrial areaRaw Materialm24.91Transformation, from industrial areaRaw Materialm24.91Transformation, from industrial areaRaw Materialm27.51Transformation, from industrial areaRaw Materialm27.51Transformation, from industrial area, vegataionRaw Materialm29.3Transformation, from industrial area, vegataionRaw Materialm29.	Silver 0.01% in grade are in ground	Raw Material	g	1.39
Solver, hirdford, in ground Raw Material hg 10.2 Sodium chloride, in ground Raw Material kg 17.5 Solium subphate, various forms, in ground Raw Material kg 17.5 Steel scrap Raw Material th.lg 22.3 Sulfur, in ground Raw Material th.lg 286 Sylvite, 25 % in sylvinite, in ground Raw Material kg 11 Tale, in ground Raw Material kg 11 Tin, 79% in cassiterite, 0.1% in crude ore, in ground Raw Material kg 2.34 Tin, in ground Raw Material kg 66.9 Transformation, from arable, non-irrigated Raw Material kg 66.9 Transformation, from arable, non-irrigated Raw Material m2 211 Transformation, from arable, non-irrigated Raw Material m2 212 Transformation, from arable, non-irrigated Raw Material m2 213 Transformation, from dump site, inert material landfill Raw Material m2 2750 Transformation, from dump site, inert material landfill Raw Material m2 491 Transformation, from dump site, savitary landfill Raw Material m2 470 Transformation, from forest extensive Raw Material m2 424 Transformation, from forest Raw Material m2 5751 Transformation, from forest Raw Material m2 15 Transformation, from industrial area, benthos Raw Material m2 15 Transformation, from industrial area, benthos Raw Material m2 15 Transformation, from industrial area, benthos Raw Material m2 61.6 Transformation, from industrial area, benthos Raw Material m2 15 Transformation, from industrial area, benthos Raw Material m2 16.1 Transformation, from industrial area, benthos Raw Material m2 170 Transformation, from industrial area, benthos Raw Material m2 170 Transformation, from mineral extraction site Raw Material m2 16.1 Transformation, from mineral extraction site Raw Material m2 170 Transformation, from shrub land, selerophyllous Raw Material m2 170 Transformation, from shrub land, selerophyllous Raw Material m2 170 Transformation, from shrub land, selerophyllous Raw Material m2 160 Transformation, to dump site, testidual material landfill Raw Material m2 170 Transformation, to dump site, testidual material landfill Raw Material m2 170 Transformation, to dump	Silver, in crucie ore, in ground	Raw Material	g	1.50
Solum ulphate, various forms, in groundRaw Materialthung2.73Stele scrapRaw Materialtn.lg2.23Stiblic, in groundRaw Materialtn.lg2.86Sylvite, 25 % in sylvinite, in groundRaw Materialkg10.7Tak, in groundRaw Materialkg10.7Tak, in groundRaw Materialkg11Tin, 79% in cassiterite, 0.1% in crude ore, in groundRaw Materialkg66.9Transformation, from arable, non-irrigatedRaw Materialkg66.9Transformation, from arable, non-irrigated, fallowRaw Materialsq.in226Transformation, from arable, non-irrigated, fallowRaw Materialm22750Transformation, from dump site, senitary landfillRaw Materialm2470Transformation, from dump site, sanitary landfillRaw Materialm2424Transformation, from dump site, sanitary landfillRaw Materialm2626Transformation, from industrial areaRaw Materialm215Transformation, from industrial areaRaw Materialm236.1Transformation, from industrial area, vegetationRaw Materialm2276Transformation, from industrial area, vegetationRaw Materialm2276 </td <td>Solium ablarida in ground</td> <td>Raw Material</td> <td>g ta la</td> <td>10.2</td>	Solium ablarida in ground	Raw Material	g ta la	10.2
Sodulm suppate, Various forms, in groundRaw MaterialRg1/.5Steel scrapRaw Materialing2.23Stibnite, in groundRaw MaterialInlg2.23Sulfur, in groundRaw Materialkg10.7Tak, in groundRaw Materialkg11Tin, 79% in cassiterite, 0.1% in crude ore, in groundRaw Materialkg2.34Tin, in groundRaw Materialkg66.9Transformation, from arable, non-irrigatedRaw Materialgd4.82Transformation, from arable, non-irrigated, fallowRaw Materialm2226Transformation, from dump site, inert material landfillRaw Materialm2227Transformation, from dump site, residual material landfillRaw Materialm2226Transformation, from dump site, sectural andfillRaw Materialm22750Transformation, from dump site, sectural andfillRaw Materialm2262Transformation, from forestRaw Materialm2253Transformation, from forestRaw Materialm2254Transformation, from forestRaw Materialm2262Transformation, from industrial area, built upRaw Materialm215Transformation, from industrial area, vegetationRaw Materialm215Transformation, from industrial area, vegetationRaw Materialm2161.6Transformation, from industrial area, vegetationRaw Materialm2270Transformation, from pasture and meadow<			tn.ig	27.3
Steel scrapRaw MaterialRug2.2.3Sulfur, in groundRaw Materialrn.Jg286Sylvite, 25 % in sylvinite, in groundRaw Materialkg11Talc, in groundRaw Materialkg11Tin, 79% in cassiterite, 0.1% in crude ore, in groundRaw Materialkg2.34Tin, 79% in cassiterite, 0.1% in crude ore, in groundRaw Materialkg6.9Transformation, from arableRaw Materialkg6.9Transformation, from arable, non-irrigatedRaw Materialm2221Transformation, from dump site, nert material landfillRaw Materialm2243Transformation, from dump site, residual material landfillRaw Materialm22750Transformation, from dump site, sanitary landfillRaw Materialm22750Transformation, from dump site, salitary landfillRaw Materialm2262Transformation, from forest, extensiveRaw Materialm2262Transformation, from industrial areaRaw Materialm2251Transformation, from industrial area, benthosRaw Materialm2263Transformation, from industrial area, benthosRaw Materialm2923Transformation, from mineral extraction siteRaw Materialcm2923Transformation, from mater and meadowRaw Materialm2276Transformation, from pasture and meadowRaw Materialm2276Transformation, from sea and oceanRaw Materialm2266 <td< td=""><td>Socium suipnate, various forms, in ground</td><td>Raw Material</td><td>Kg</td><td>17.5</td></td<>	Socium suipnate, various forms, in ground	Raw Material	Kg	17.5
Stabile, in groundRaw Materialng23.3Sylfur, in groundRaw Materialkg10.7Talc, in groundRaw Materialkg11Tin, 79% in cassiterile, 0.1% in crude ore, in groundRaw Materialkg2.34Tin, in groundRaw Materialkg66.9Transformation, from arable, non-irrigatedRaw Materialm2221Transformation, from arable, non-irrigated, fallowRaw Materialm2226Transformation, from dump site, inert material landfillRaw Materialm24.91Transformation, from dump site, inert material landfillRaw Materialm24.70Transformation, from dump site, salig compartmentRaw Materialm24.70Transformation, from forestRaw Materialm24.70Transformation, from forestRaw Materialm26.66Transformation, from forestRaw Materialm2751Transformation, from forestRaw Materialm21.83Transformation, from industrial area, built upRaw Materialm29.24Transformation, from industrial area, vegetationRaw Materialm29.23Transformation, from material and meadowRaw Materialm29.23Transformation, from muturial area, vegetationRaw Materialm29.24Transformation, from muturial area, vegetationRaw Materialm29.23Transformation, from muturial area, vegetationRaw Materialm29.24Transformation, from muturi	Steel scrap	Raw Material	tn.lg	2.23
Sultur, in groundNaw Materialthy kg286Talc, in groundRaw Materialkg10.7Talc, in groundRaw Materialkg11Tin, '79' in casiterite, 0.1% in crude ore, in groundRaw Materialkg2.34Tin, in groundRaw Materialkg66.9Transformation, from arable, non-irrigatedRaw Materialm291.4Transformation, from arable, non-irrigated, fallowRaw Materialm2226Transformation, from dump site, inert material landfillRaw Materialm22750Transformation, from dump site, residual material landfillRaw Materialm2491Transformation, from dump site, sanitary landfillRaw Materialm2424Transformation, from forestRaw Materialm2183Transformation, from forest, extensiveRaw Materialm215Transformation, from industrial areaRaw Materialcm215Transformation, from industrial area, benthosRaw Materialm2923Transformation, from industrial area, vegetationRaw Materialm2266Transformation, from industrial area, benthosRaw Materialm215Transformation, from matel extraction siteRaw Materialm2923Transformation, from material extraction siteRaw Materialm22770Transformation, from pasture and meadow, intensiveRaw Materialm2266Transformation, from sale non-irrigatedRaw Materialm2276	Stibnite, in ground	Raw Material	mg	23.3
Sylvite, 25 % in sylvinite, in groundRaw Materialkg10.7Tale, in groundRaw Materialkg11Tin, 79% in cassiterite, 0.1% in crude ore, in groundRaw Materialkg2.34Tin, in groundRaw Materialkg66.9Transformation, from arable, non-irrigatedRaw Materialm2221Transformation, from arable, non-irrigated, fallowRaw Materialm2221Transformation, from dump site, residual material landfillRaw Materialm22750Transformation, from dump site, sanitary landfillRaw Materialcm2470Transformation, from dump site, sanitary landfillRaw Materialcm2424Transformation, from dump site, slag compartmentRaw Materialm2250Transformation, from forestRaw Materialm2751Transformation, from industrial areaRaw Materialm2183Transformation, from industrial area, benthosRaw Materialcm236.1Transformation, from mindustrial area, vegetationRaw Materialcm2276Transformation, from mindustrial area, vegetationRaw Materialcm236.1Transformation, from mindustrial area, weither Raw Materialcm2226Transformation, from mindustrial area, weither Raw Materialcm236.1Transformation, from shub and occanRaw Materialcm236.1Transformation, from shub and occanRaw Materialcm2226Transformation, from shub and occanRaw Materialm2 </td <td>Sulfur, in ground</td> <td>Raw Material</td> <td>tn.lg</td> <td>286</td>	Sulfur, in ground	Raw Material	tn.lg	286
Tak:Raw Materialkg11Tin, 79% in cassiterite, 0.1% in crude ore, in groundRaw Materialkg2.34Tin, in groundRaw Materialg4.82TiO2, 45-60% in Ilmenite, in groundRaw Materialkg66.9Transformation, from arable, non-irrigatedRaw Materialm2221Transformation, from arable, non-irrigated, fallowRaw Materialm2226Transformation, from dump site, inert material landfillRaw Materialm2270Transformation, from dump site, sanitary landfillRaw Materialm2270Transformation, from dump site, sag compartmentRaw Materialcm2470Transformation, from forestRaw Materialm2626Transformation, from forestRaw Materialm2751Transformation, from industrial areaRaw Materialm215Transformation, from industrial area, benthosRaw Materialcm236.1Transformation, from industrial area, benthosRaw Materialcm236.1Transformation, from industrial area, benthosRaw Materialcm236.1Transformation, from meral extraction siteRaw Materialacre1.09Transformation, from meral extraction siteRaw Materialm2276Transformation, from sea and occanRaw Materialm2276Transformation, from sea and occanRaw Materialm2276Transformation, from shub land, sclerophyllousRaw Materialm2270Transfor	Sylvite, 25 % in sylvinite, in ground	Raw Material	kg	10.7
In, 7% in cassiterile, 0.1% in crude ore, in groundRaw Materialgg2.34Tin, in groundRaw Materialgg4.82TiO2, 45-60% in Ilmenite, in groundRaw Materialdm291.4Transformation, from arable, non-irrigatedRaw Materialm2221Transformation, from arable, non-irrigated, fallowRaw Materialm24.91Transformation, from dump site, inert material landfillRaw Materialm22750Transformation, from dump site, sanitary landfillRaw Materialm22750Transformation, from dump site, sanitary landfillRaw Materialm2226Transformation, from dump site, sanitary landfillRaw Materialm22750Transformation, from dump site, sanitary landfillRaw Materialm2266Transformation, from forestRaw Materialm2266Transformation, from industrial areaRaw Materialm2751Transformation, from industrial area, benthosRaw Materialm215Transformation, from industrial area, built upRaw Materialm2261Transformation, from minderal extraction siteRaw Materialm2261Transformation, from sea and oceanRaw Materialm2275Transformation, from sea and oceanRaw Materialm2276Transformation, from sea and oceanRaw Materialm2276Transformation, from suble and, sclerophyllousRaw Materialm2270Transformation, to arable, non-irrigatedRaw Ma	Talc, in ground	Raw Material	kg	11
Tin, in groundRaw Materialg4.82TiO2, 45-60% in llmenite, in groundRaw Materialkg66.9Transformation, from arableRaw Materialdm291.4Transformation, from arable, non-irrigated, fallowRaw Materialm2221Transformation, from dump site, inert material landfillRaw Materialm24.91Transformation, from dump site, sanitary landfillRaw Materialm24.70Transformation, from dump site, sanitary landfillRaw Materialcm24.24Transformation, from forestRaw Materialm2626Transformation, from forest, extensiveRaw Materialm21.83Transformation, from industrial areaNaw Materialm21.83Transformation, from industrial area, benthosRaw Materialcm236.1Transformation, from industrial area, vegetationRaw Materialm2923Transformation, from industrial area, vegetationRaw Materialm2923Transformation, from spature and meadow, intensiveRaw Materialm21.09Transformation, from sear and oceanRaw Materialm21.42Transformation, from shrub land, sclerophyllousRaw Materialm22.750Transformation, to arable, non-irrigatedRaw Materialm22.76Transformation, to arable, non-irrigatedRaw Materialm21.61Transformation, from shrub land, sclerophyllousRaw Materialm22.76Transformation, to arable, non-irrigated, fallow<	Tin, 79% in cassiterite, 0.1% in crude ore, in ground	Raw Material	kg	2.34
TiO2, 45-60% in Ilmenite, in groundRaw Materialkg66.9Transformation, from arable, non-irrigatedRaw Materialm2221Transformation, from arable, non-irrigated, fallowRaw Materialm2226Transformation, from dump site, inert material landfillRaw Materialm24.91Transformation, from dump site, residual material landfillRaw Materialm24.91Transformation, from dump site, sanitary landfillRaw Materialcm2470Transformation, from dump site, sag compartmentRaw Materialm2626Transformation, from industrial area, benthosRaw Materialm2751Transformation, from industrial area, benthosRaw Materialm236.1Transformation, from industrial area, built upRaw Materialcm236.1Transformation, from industrial area, vegetationRaw Materialcm236.1Transformation, from mineral extraction siteRaw Materialm2276Transformation, from shrub and oceanRaw Materialm2276Transformation, from shrub and oceanRaw Materialm2276Transformation, from unknownRaw Materialm2276Transformation, from unknownRaw Materialm22770Transformation, from unknownRaw Materialm22770Transformation, to arable, non-irrigated, fallowRaw Materialm2221Transformation, to arable, non-irrigated, fallowRaw Materialm2221Transformation, to dump s	Tin, in ground	Raw Material	g	4.82
Transformation, from arableRaw Materialm291.4Transformation, from arable, non-irrigatedRaw Materialm2221Transformation, from arable, non-irrigated, fallowRaw Materialm2226Transformation, from dump site, inert material landfillRaw Materialm24.91Transformation, from dump site, senitary landfillRaw Materialm24.92Transformation, from dump site, sanitary landfillRaw Materialm24.24Transformation, from dump site, sag compartmentRaw Materialm2626Transformation, from industrial areaRaw Materialm21.83Transformation, from industrial area, benthosRaw Materialm236.1Transformation, from industrial area, vegetationRaw Materialcm236.1Transformation, from mindustrial area, vegetationRaw Materialm2923Transformation, from pasture and meadow, intensiveRaw Materialm2276Transformation, from sea and oceanRaw Materialm2270Transformation, from subuland, clerophyllousRaw Materialm23680Transformation, to arable, non-irrigated, fallowRaw Materialm2221Transformation, to arable, non-irrigatedRaw Materialm2223Transformation, to arable, non-irrigatedRaw Materialm2276Transformation, to arable, non-irrigatedRaw Materialm2271Transformation, to arable, non-irrigatedRaw Materialm2221Transforma	TiO2, 45-60% in Ilmenite, in ground	Raw Material	kg	66.9
Transformation, from arable, non-irrigatedRaw Materialm2221Transformation, from dump site, inert material landfillRaw Materialsq.in226Transformation, from dump site, inert material landfillRaw Materialm24.91Transformation, from dump site, residual material landfillRaw Materialm2470Transformation, from dump site, sanitary landfillRaw Materialcm2424Transformation, from dump site, slag compartmentRaw Materialm2626Transformation, from forestRaw Materialm2751Transformation, from industrial areaRaw Materialm215Transformation, from industrial area, benthosRaw Materialcm236.1Transformation, from industrial area, built upRaw Materialcm236.1Transformation, from mindustrial area, vegetationRaw Materialm2923Transformation, from materal extraction siteRaw Materialacre1.09Transformation, from pasture and meadow, intensiveRaw Materialm22770Transformation, from sea and oceanRaw Materialm22770Transformation, from shub land, sclerophyllousRaw Materialm2227Transformation, to arable, non-irrigatedRaw Materialm2227Transformation, to arable, non-irrigatedRaw Materialm2227Transformation, to dump site, tenthesiRaw Materialm2227Transformation, to dump site, henthosRaw Materialm2221	Transformation, from arable	Raw Material	dm2	91.4
Transformation, from arable, non-irrigated, fallowRaw Materialsq.in226Transformation, from dump site, inert material landfillRaw Materialm24.91Transformation, from dump site, sanitary landfillRaw Materialcm2470Transformation, from dump site, sanitary landfillRaw Materialcm2424Transformation, from dump site, slag compartmentRaw Materialm2626Transformation, from forestRaw Materialm2751Transformation, from industrial areaRaw Materialm2183Transformation, from industrial area, benthosRaw Materialcm236.1Transformation, from industrial area, vegetationRaw Materialcm261.6Transformation, from industrial area, vegetationRaw Materialm2923Transformation, from pasture and meadowRaw Materialm2276Transformation, from sea and oceanRaw Materialm2276Transformation, from shub land, sclerophyllousRaw Materialm2270Transformation, from shue land, sclerophyllousRaw Materialm2270Transformation, to arable, non-irrigatedRaw Materialm2221Transformation, to arable, non-irrigatedRaw Materialm2221Transformation, to dump site, benthosRaw Materialm2221Transformation, to dump site, inert material landfillRaw Materialm2221Transformation, from shrub land, sclerophyllousRaw Materialm2221Trans	Transformation, from arable, non-irrigated	Raw Material	m2	221
Transformation, from dump site, inert material landfillRaw Materialm24.91Transformation, from dump site, residual material landfillRaw Materialm22750Transformation, from dump site, salag compartmentRaw Materialcm2470Transformation, from forestRaw Materialm2626Transformation, from forest, extensiveRaw Materialm2626Transformation, from industrial areaRaw Materialm21.83Transformation, from industrial area, benthosRaw Materialcm236.1Transformation, from industrial area, built upRaw Materialcm261.6Transformation, from industrial area, vegetationRaw Materialm292.3Transformation, from mineral extraction siteRaw Materialacce1.09Transformation, from pasture and meadow, intensiveRaw Materialm292.3Transformation, from sature and meadow, intensiveRaw Materialm2276Transformation, from sature and meadow, intensiveRaw Materialm22770Transformation, from sature and meadow, intensiveRaw Materialm2221Transformation, from sature and meadowRaw Materialm2221Transformation, from unknownRaw Materialm2221Transformation, from unknownRaw Materialm2221Transformation, to arable, non-irrigatedRaw Materialm2221Transformation, to dump site, benthosRaw Materialm222.7Transformation, to dump	Transformation, from arable, non-irrigated, fallow	Raw Material	sq.in	226
Transformation, from dump site, residual material landfillRaw Materialm22750Transformation, from dump site, sanitary landfillRaw Materialcm2470Transformation, from dump site, slag compartmentRaw Materialcm2424Transformation, from forestRaw Materialm2626Transformation, from forest, extensiveRaw Materialm2751Transformation, from industrial areaRaw Materialm215Transformation, from industrial area, benthosRaw Materialcm236.1Transformation, from industrial area, vegetationRaw Materialcm2923Transformation, from pasture and meadowRaw Materialm2923Transformation, from pasture and meadowRaw Materialacce1.09Transformation, from sea and oceanRaw Materialm22770Transformation, from unknownRaw Materialm22770Transformation, to arableRaw Materialm22770Transformation, to arable, non-irrigatedRaw Materialm2221Transformation, to dump site, benthosRaw Materialm222.7Transformation, to dump site, sanitary landfillRaw Materialm222.7Transformation, to dump site, senitary landfillRaw Materialm22.750Transformation, to dump site, senitary landfillRaw Materialm24.91Transformation, to dump site, senitary landfillRaw Materialm24.91Transformation, to dump site, senitary landfill	Transformation, from dump site, inert material landfill	Raw Material	m2	4.91
Transformation, from dump site, sanitary landfillRaw Materialcm2470Transformation, from dump site, slag compartmentRaw Materialcm2424Transformation, from forestRaw Materialm2626Transformation, from industrial areaRaw Materialm2751Transformation, from industrial area, benthosRaw Materialcm236.1Transformation, from industrial area, built upRaw Materialcm236.1Transformation, from industrial area, vegetationRaw Materialcm261.6Transformation, from mineral extraction siteRaw Materialm2923Transformation, from pasture and meadow, intensiveRaw Materialsq.in276Transformation, from sea and oceanRaw Materialsq.in276Transformation, from shrub land, sclerophyllousRaw Materialm22770Transformation, to arableRaw Materialm2221Transformation, to arable, non-irrigatedRaw Materialm2221Transformation, to dump site, benthosRaw Materialm222.7Transformation, to dump site, benthosRaw Materialm222.7Transformation, to dump site, penthosRaw Materialm2424Transformation, to dump site, inert material landfillRaw Materialm222.7Transformation, to dump site, inert material landfillRaw Materialm2424Transformation, to dump site, sanitary landfillRaw Materialm2424Transformation, to forest<	Transformation, from dump site, residual material landfill	Raw Material	m2	2750
Transformation, from dump site, slag compartmentRaw Materialcm2424Transformation, from forestRaw Materialm2626Transformation, from forest, extensiveRaw Materialm2751Transformation, from industrial areaRaw Materialm21.83Transformation, from industrial area, benthosRaw Materialcm236.1Transformation, from industrial area, vegetationRaw Materialcm261.6Transformation, from mineral extraction siteRaw Materialm2923Transformation, from pasture and meadowRaw Materialsq.in276Transformation, from sea and oceanRaw Materialm2114Transformation, from unknownRaw Materialm22770Transformation, from unknownRaw Materialm22770Transformation, to arableRaw Materialm2221Transformation, to arable, non-irrigatedRaw Materialm2221Transformation, to dump site, benthosRaw Materialm2221Transformation, to dump site, inert material landfillRaw Materialm222.7Transformation, to dump site, sanitary landfillRaw Materialm2424Transformation, to dump site, sanitary landfillRaw Materialm242.9Transformation, to dump site, sanitary landfillRaw Materialm242.7Transformation, to dump site, sanitary landfillRaw Materialm242.7Transformation, to dump site, sanitary landfillRaw Materialm2	Transformation, from dump site, sanitary landfill	Raw Material	cm2	470
Transformation, from forestRaw Materialm2626Transformation, from forest, extensiveRaw Materialm2751Transformation, from industrial areaRaw Materialm21.83Transformation, from industrial area, benthosRaw Materialcm236.1Transformation, from industrial area, vegetationRaw Materialcm261.6Transformation, from mineral extraction siteRaw Materialacre1.09Transformation, from pasture and meadow, intensiveRaw Materialsq.in276Transformation, from sea and oceanRaw Materialm2114Transformation, from unknownRaw Materialm22770Transformation, from unknownRaw Materialm2221Transformation, to arable, non-irrigated, fallowRaw Materialm2221Transformation, to dump site, benthosRaw Materialm222.5Transformation, to dump site, inert material landfillRaw Materialm222.7Transformation, to dump site, inert material landfillRaw Materialm222.7Transformation, to dump site, sanitary landfillRaw Materialm247.9Transformation, to forest, intensiveRaw Materialm242.5Transformation, to forest, intensiveRaw Materialm242.5Transformation, to forest, intensive, normalRaw Materialm247.9Transformation, to forest, intensive, normalRaw Materialm242.5Transformation, to forest, intensive, normalRaw	Transformation, from dump site, slag compartment	Raw Material	cm2	424
Transformation, from forest, extensiveRaw Materialm2751Transformation, from industrial areaRaw Materialm21.83Transformation, from industrial area, benthosRaw Materialcm215Transformation, from industrial area, benthosRaw Materialcm236.1Transformation, from industrial area, vegetationRaw Materialcm261.6Transformation, from mineral extraction siteRaw Materialm2923Transformation, from pasture and meadowRaw Materialsq.in276Transformation, from pasture and meadow, intensiveRaw Materialm22770Transformation, from sea and oceanRaw Materialm23680Transformation, from unknownRaw Materialm22770Transformation, to arableRaw Materialm2221Transformation, to arable, non-irrigatedRaw Materialm2221Transformation, to dump site, benthosRaw Materialm222.7Transformation, to dump site, inert material landfillRaw Materialm222.7Transformation, to dump site, sanitary landfillRaw Materialm24.91Transformation, to dump site, esidual material landfillRaw Materialm247.9Transformation, to dump site, sanitary landfillRaw Materialm24.91Transformation, to dump site, sanitary landfillRaw Materialm24.91Transformation, to dump site, sanitary landfillRaw Materialm2424Transformation, to forest, int	Transformation, from forest	Raw Material	m2	626
Transformation, from industrial areaRaw Materialm21.83Transformation, from industrial area, benthosRaw Materialcm215Transformation, from industrial area, built upRaw Materialcm236.1Transformation, from industrial area, vegetationRaw Materialcm2923Transformation, from mineral extraction siteRaw Materialm2923Transformation, from pasture and meadow, intensiveRaw Materialacre1.09Transformation, from sea and oceanRaw Materialm2276Transformation, from unknownRaw Materialm22770Transformation, from unknownRaw Materialm23680Transformation, to arableRaw Materialm2221Transformation, to arable, non-irrigatedRaw Materialm2221Transformation, to dump site, benthosRaw Materialm222.7Transformation, to dump site, benthosRaw Materialm222.7Transformation, to dump site, inert material landfillRaw Materialm225.7Transformation, to dump site, sanitary landfillRaw Materialm22750Transformation, to dump site, sanitary landfillRaw Materialm247.9Transformation, to forest, intensiveRaw Materialm22750Transformation, to forest, intensive, normalRaw Materialm22750Transformation, to forest, intensive, normalRaw Materialm23620Transformation, to forest, intensive, normalRaw Material<	Transformation, from forest, extensive	Raw Material	m2	751
Transformation, from industrial area, benthosRaw Materialcm215Transformation, from industrial area, built upRaw Materialcm236.1Transformation, from industrial area, vegetationRaw Materialcm2923Transformation, from mineral extraction siteRaw Materialm2923Transformation, from pasture and meadowRaw Materialacre1.09Transformation, from pasture and meadow, intensiveRaw Materialsq.in276Transformation, from sea and oceanRaw Materialm22770Transformation, from shrub land, sclerophyllousRaw Materialm23680Transformation, from unknownRaw Materialm2221Transformation, to arableRaw Materialm2221Transformation, to arable, non-irrigatedRaw Materialm222.1Transformation, to dump siteStell and fillRaw Materialm222.7Transformation, to dump site, benthosRaw Materialm232.7Transformation, to dump site, inert material landfillRaw Materialm24.91Transformation, to dump site, sanitary landfillRaw Materialm24.91Transformation, to forestStag compartmentRaw Materialm24.92Transformation, to forest, intensiveRaw Materialm24.91Transformation, to forest, intensive, normalRaw Materialm24.91Transformation, to forest, intensive, normalRaw Materialm24.92Transformation, to fores	Transformation, from industrial area	Raw Material	m2	1.83
Transformation, from industrial area, built upRaw Materialcm236.1Transformation, from industrial area, vegetationRaw Materialcm261.6Transformation, from mineral extraction siteRaw Materialm2923Transformation, from pasture and meadow, intensiveRaw Materialsq.in276Transformation, from pasture and meadow, intensiveRaw Materialm2114Transformation, from sea and oceanRaw Materialm22770Transformation, from shrub land, sclerophyllousRaw Materialm23680Transformation, from unknownRaw Materialm2221Transformation, to arablenon-irrigatedRaw Materialm2221Transformation, to arable, non-irrigated, fallowRaw Materialm222.7Transformation, to dump site, benthosRaw Materialm252.7Transformation, to dump site, inert material landfillRaw Materialm24.91Transformation, to dump site, sanitary landfillRaw Materialm24.91Transformation, to dump site, sanitary landfillRaw Materialm24.25Transformation, to forestRaw Materialm24.91Transformation, to forest, intensive, normalRaw Materialm24.91Transformation, to forest, intensive, normalRaw Materialm24.24Transformation, to forest, intensive, normalRaw Materialm24.24Transformation, to forest, intensive, normalRaw Materialm23620Transf	Transformation, from industrial area, benthos	Raw Material	cm2	15
Transformation, from industrial area, vegetationRaw Materialcm2923Transformation, from mineral extraction siteRaw Materialacre1.09Transformation, from pasture and meadow, intensiveRaw Materialsq.in276Transformation, from sea and oceanRaw Materialm2114Transformation, from shrub land, sclerophyllousRaw Materialm22770Transformation, from unknownRaw Materialm23680Transformation, to arableRaw Materialm2221Transformation, to arable, non-irrigatedRaw Materialm2221Transformation, to dump site, benthosRaw Materialm222.7Transformation, to dump site, inert material landfillRaw Materialm222.7Transformation, to dump site, sanitary landfillRaw Materialm222.7Transformation, to dump site, nert material landfillRaw Materialm222.7Transformation, to dump site, nert material landfillRaw Materialm24.91Transformation, to dump site, sanitary landfillRaw Materialm24.91Transformation, to forestRaw Materialm24.25Transformation, to forest, intensiveRaw Materialm24.91Transformation, to forest, intensive, normalRaw Materialm24.91Transformation, to forest, intensive, normalRaw Materialm24.25Transformation, to heterogeneous, agriculturalRaw Materialm24.91Transformation, to heterogeneous,	Transformation, from industrial area, built up	Raw Material	cm2	36.1
Transformation, from mineral extraction siteRaw Materialm2923Transformation, from pasture and meadowRaw Materialacre1.09Transformation, from pasture and meadow, intensiveRaw Materialsq.in276Transformation, from sea and oceanRaw Materialm2114Transformation, from shrub land, sclerophyllousRaw Materialm22770Transformation, from unknownRaw Materialm23680Transformation, to arableRaw Materialm2221Transformation, to arable, non-irrigated, fallowRaw Materialm2225Transformation, to arable, non-irrigated, fallowRaw Materialm252.7Transformation, to dump siteRaw Materialm24.91Transformation, to dump site, benthosRaw Materialm22750Transformation, to dump site, inert material landfillRaw Materialm22750Transformation, to dump site, sanitary landfillRaw Materialm2424Transformation, to forestRaw Materialm23620Transformation, to forest, intensiveRaw Materialm23620Transformation, to forest, intensive, normalRaw Materialm23620Transformation, to heterogeneous, agriculturalRaw Materialm23620Transformation, to heterogeneous, agriculturalRaw Materialm23620	Transformation, from industrial area, vegetation	Raw Material	cm2	61.6
Transformation, from pasture and meadowRaw Materialacre1.09Transformation, from pasture and meadow, intensiveRaw Materialsq.in276Transformation, from sea and oceanRaw Materialm2114Transformation, from shrub land, sclerophyllousRaw Materialm22770Transformation, from unknownRaw Materialm23680Transformation, to arableRaw Materialm2221Transformation, to arable, non-irrigatedRaw Materialm2221Transformation, to arable, non-irrigated, fallowRaw Materialm252.7Transformation, to dump sitePantonRaw Materialm2114Transformation, to dump site, benthosRaw Materialm24.91Transformation, to dump site, inert material landfillRaw Materialm22750Transformation, to dump site, sanitary landfillRaw Materialm22750Transformation, to forestIntensiveRaw Materialm2424Transformation, to forest, intensiveRaw Materialm23620Transformation, to forest, intensive, normalRaw Materialm23620Transformation, to heterogeneous, agriculturalRaw Materialm23620	Transformation, from mineral extraction site	Raw Material	m2	923
Transformation, from pasture and meadow, intensiveRaw Materialsq.in276Transformation, from sea and oceanRaw Materialm2114Transformation, from shrub land, sclerophyllousRaw Materialm22770Transformation, from unknownRaw Materialm23680Transformation, to arableRaw Materialm2221Transformation, to arable, non-irrigatedRaw Materialm2221Transformation, to arable, non-irrigated, fallowRaw Materialm222.5Transformation, to dump siteRaw Materialm252.7Transformation, to dump site, benthosRaw Materialm24.91Transformation, to dump site, inert material landfillRaw Materialm22750Transformation, to dump site, sanitary landfillRaw Materialm22750Transformation, to dump site, sanitary landfillRaw Materialm24.91Transformation, to forestSalg compartmentRaw Materialm2424Transformation, to forest, intensiveRaw Materialm23620Transformation, to forest, intensive, normalRaw Materialm23620Transformation, to forest, intensive, normalRaw Materialm2582Transformation, to heterogeneous, agriculturalRaw Materialm232.9	Transformation, from pasture and meadow	Raw Material	acre	1.09
Transformation, from sea and oceanRaw Materialm2114Transformation, from shrub land, sclerophyllousRaw Materialm22770Transformation, from unknownRaw Materialm23680Transformation, to arableRaw Materialm2221Transformation, to arable, non-irrigatedRaw Materialm2221Transformation, to arable, non-irrigated, fallowRaw Materialm2225Transformation, to dump siteRaw Materialm252.7Transformation, to dump site, benthosRaw Materialm24.91Transformation, to dump site, inert material landfillRaw Materialm22750Transformation, to dump site, sanitary landfillRaw Materialm2470Transformation, to forestRaw Materialm2250Transformation, to forest, intensiveRaw Materialm2250Transformation, to forest, intensive, normalRaw Materialm23620Transformation, to heterogeneous, agriculturalRaw Materialm23620Transformation, to heterogeneous, agriculturalRaw Materialm23620	Transformation, from pasture and meadow, intensive	Raw Material	sq.in	276
Transformation, from shrub land, sclerophyllousRaw Materialm22770Transformation, from unknownRaw Materialm23680Transformation, to arableRaw Materialm247.9Transformation, to arable, non-irrigatedRaw Materialm2221Transformation, to arable, non-irrigated, fallowRaw Materialm252.7Transformation, to dump siteRaw Materialm2114Transformation, to dump site, benthosRaw Materialm24.91Transformation, to dump site, inert material landfillRaw Materialm22750Transformation, to dump site, residual material landfillRaw Materialm2424Transformation, to dump site, sanitary landfillRaw Materialcm2424Transformation, to forestRaw Materialm23620Transformation, to forest, intensiveRaw Materialm23620Transformation, to forest, intensive, normalRaw Materialm23620Transformation, to heterogeneous, agriculturalRaw Materialm23620	Transformation, from sea and ocean	Raw Material	m2	114
Transformation, from unknownRaw Materialm23680Transformation, to arableRaw Materialm247.9Transformation, to arable, non-irrigatedRaw Materialm2221Transformation, to arable, non-irrigated, fallowRaw Materialm212.5Transformation, to dump siteRaw Materialm252.7Transformation, to dump site, benthosRaw Materialm2114Transformation, to dump site, inert material landfillRaw Materialm24.91Transformation, to dump site, residual material landfillRaw Materialm22750Transformation, to dump site, sanitary landfillRaw Materialcm2424Transformation, to forestRaw Materialm23620Transformation, to forest, intensiveRaw Materialm23620Transformation, to forest, intensive, normalRaw Materialm2582Transformation, to heterogeneous, agriculturalRaw Materialm232.9	Transformation, from shrub land, sclerophyllous	Raw Material	m2	2770
Transformation, to arableRaw Materialm247.9Transformation, to arable, non-irrigatedRaw Materialm2221Transformation, to arable, non-irrigated, fallowRaw Materialm212.5Transformation, to dump siteRaw Materialm252.7Transformation, to dump site, benthosRaw Materialm2114Transformation, to dump site, inert material landfillRaw Materialm24.91Transformation, to dump site, residual material landfillRaw Materialm22750Transformation, to dump site, sanitary landfillRaw Materialcm2470Transformation, to forestRaw Materialm23620Transformation, to forest, intensiveRaw Materialm2160Transformation, to forest, intensive, normalRaw Materialm2582Transformation, to heterogeneous, agriculturalRaw Materialm232.9	Transformation, from unknown	Raw Material	m2	3680
Transformation, to arable, non-irrigatedRaw Materialm2221Transformation, to arable, non-irrigated, fallowRaw Materialm212.5Transformation, to dump siteRaw Materialm252.7Transformation, to dump site, benthosRaw Materialm2114Transformation, to dump site, inert material landfillRaw Materialm24.91Transformation, to dump site, residual material landfillRaw Materialm22750Transformation, to dump site, sanitary landfillRaw Materialcm2470Transformation, to dump site, slag compartmentRaw Materialm23620Transformation, to forestRaw Materialm23620Transformation, to forest, intensive, normalRaw Materialm2582Transformation, to heterogeneous, agriculturalRaw Materialm232.9	Transformation, to arable	Raw Material	m2	47.9
Transformation, to arable, non-irrigated, fallowRaw Materialm212.5Transformation, to dump siteRaw Materialm252.7Transformation, to dump site, benthosRaw Materialm2114Transformation, to dump site, inert material landfillRaw Materialm24.91Transformation, to dump site, residual material landfillRaw Materialm22750Transformation, to dump site, sanitary landfillRaw Materialcm2470Transformation, to dump site, slag compartmentRaw Materialcm2424Transformation, to forestRaw Materialm23620Transformation, to forest, intensiveRaw Materialm2582Transformation, to heterogeneous, agriculturalRaw Materialm232.9	Transformation, to arable, non-irrigated	Raw Material	m2	221
Transformation, to dump siteRaw Materialm252.7Transformation, to dump site, benthosRaw Materialm2114Transformation, to dump site, inert material landfillRaw Materialm24.91Transformation, to dump site, residual material landfillRaw Materialm22750Transformation, to dump site, sanitary landfillRaw Materialcm2470Transformation, to dump site, slag compartmentRaw Materialcm2424Transformation, to forestRaw Materialm23620Transformation, to forest, intensiveRaw Materialm2160Transformation, to forest, intensive, normalRaw Materialm2582Transformation, to heterogeneous, agriculturalRaw Materialm232.9	Transformation, to arable, non-irrigated, fallow	Raw Material	m2	12.5
Transformation, to dump site, benthosRaw Materialm2114Transformation, to dump site, inert material landfillRaw Materialm24.91Transformation, to dump site, residual material landfillRaw Materialm22750Transformation, to dump site, sanitary landfillRaw Materialcm2470Transformation, to dump site, slag compartmentRaw Materialcm2424Transformation, to forestRaw Materialm23620Transformation, to forest, intensiveRaw Materialm2160Transformation, to forest, intensive, normalRaw Materialm2582Transformation, to heterogeneous, agriculturalRaw Materialm232.9	Transformation, to dump site	Raw Material	m2	52.7
Transformation, to dump site, inert material landfillRaw Materialm24.91Transformation, to dump site, residual material landfillRaw Materialm22750Transformation, to dump site, sanitary landfillRaw Materialcm2470Transformation, to dump site, slag compartmentRaw Materialcm2424Transformation, to forestRaw Materialm23620Transformation, to forest, intensiveRaw Materialm2160Transformation, to forest, intensive, normalRaw Materialm2582Transformation, to heterogeneous, agriculturalRaw Materialm232.9	Transformation, to dump site, benthos	Raw Material	m2	114
Transformation, to dump site, residual material landfillRaw Materialm22750Transformation, to dump site, sanitary landfillRaw Materialcm2470Transformation, to dump site, slag compartmentRaw Materialcm2424Transformation, to forestRaw Materialm23620Transformation, to forest, intensiveRaw Materialm2160Transformation, to forest, intensive, normalRaw Materialm2582Transformation, to heterogeneous, agriculturalRaw Materialm232.9	Transformation, to dump site, inert material landfill	Raw Material	m2	4.91
Transformation, to dump site, sanitary landfillRaw Materialcm2470Transformation, to dump site, slag compartmentRaw Materialcm2424Transformation, to forestRaw Materialm23620Transformation, to forest, intensiveRaw Materialm2160Transformation, to forest, intensive, normalRaw Materialm2582Transformation, to heterogeneous, agriculturalRaw Materialm232.9	Transformation, to dump site, residual material landfill	Raw Material	m2	2750
Transformation, to dump site, slag compartmentRaw Materialcm2424Transformation, to forestRaw Materialm23620Transformation, to forest, intensiveRaw Materialm2160Transformation, to forest, intensive, normalRaw Materialm2582Transformation, to heterogeneous, agriculturalRaw Materialm232.9	Transformation, to dump site, sanitary landfill	Raw Material	cm2	470
Transformation, to forestRaw Materialm23620Transformation, to forest, intensiveRaw Materialm2160Transformation, to forest, intensive, normalRaw Materialm2582Transformation, to heterogeneous, agriculturalRaw Materialm232.9	Transformation, to dump site, slag compartment	Raw Material	cm2	424
Transformation, to forest, intensiveRaw Materialm2160Transformation, to forest, intensive, normalRaw Materialm2582Transformation, to heterogeneous, agriculturalRaw Materialm232.9	Transformation, to forest	Raw Material	m2	3620
Transformation, to forest, intensive, normalRaw Materialm2582Transformation, to heterogeneous, agriculturalRaw Materialm232.9	Transformation, to forest, intensive	Raw Material	m2	160
Transformation, to heterogeneous, agricultural Raw Material m2 32.9	Transformation, to forest, intensive, normal	Raw Material	m2	582
	Transformation, to heterogeneous, agricultural	Raw Material	m2	32.9

Substance	Compartment	Unit	Scenario 10
Transformation, to industrial area	Raw Material	m2	36.3
Transformation, to industrial area, benthos	Raw Material	sq.in	278
Transformation, to industrial area, built up	Raw Material	m2	30.4
Transformation, to industrial area, vegetation	Raw Material	m2	51.7
Transformation, to mineral extraction site	Raw Material	m2	3440
Transformation, to pasture and meadow	Raw Material	sq.in	404
Transformation, to permanent crop, fruit, intensive	Raw Material	sq.in	777
Transformation, to sea and ocean	Raw Material	cm2	15
Transformation, to shrub land, sclerophyllous	Raw Material	m2	2760
Transformation, to traffic area, rail embankment	Raw Material	m2	1.54
Transformation, to traffic area, rail network	Raw Material	m2	1.69
Transformation, to traffic area, road embankment	Raw Material	m2	9.44
Transformation, to traffic area, road network	Raw Material	m2	1700
Transformation, to unknown	Raw Material	m2	59.1
Transformation, to urban, discontinuously built	Raw Material	cm2	46.8
Transformation, to water bodies, artificial	Raw Material	m2	611
Transformation, to water courses, artificial	Raw Material	m2	25.6
Ulexite, in ground	Raw Material	g	33.5
Uranium, 451 GJ per kg, in ground	Raw Material	kg	14.5
Uranium, 560 GJ per kg, in ground	Raw Material	g	41.3
Uranium, in ground	Raw Material	kg	12.7
Vermiculite, in ground	Raw Material	g	558
Volume occupied, final repository for low-active radioactive	Raw Material	1	26
waste			
Volume occupied, final repository for radioactive waste	Raw Material	cu.in	362
Volume occupied, reservoir	Raw Material	m3y	34700
Volume occupied, underground deposit	Raw Material	1	83.8
Water, cooling, surface	Raw Material	Mtn	8.24
Water, cooling, unspecified natural origin/m3	Raw Material	m3	14800
Water, lake	Raw Material	m3	585
Water, process, unspecified natural origin/kg	Raw Material	kton	15.6
Water, river	Raw Material	m3	62000
Water, salt, ocean	Raw Material	m3	654
Water, salt, sole	Raw Material	m3	419
Water, turbine use, unspecified natural origin	Raw Material	m3	17500000
Water, unspecified natural origin/kg	Raw Material	tn.lg	98.9
Water, unspecified natural origin/m3	Raw Material	m3	59600
Water, well, in ground	Raw Material	m3	185000
Wood, dry matter	Raw Material	kg	9.36
Wood, hard, standing	Raw Material	m3	7.31
Wood, soft, standing	Raw Material	m3	37.4
Wood, unspecified, standing/kg	Raw Material	kg	-989
Wood, unspecified, standing/m3	Raw Material	cm3	526
Zinc 9%, in sulfide, Zn 5.34% and Pb 2.97% in crude ore, in	Raw Material	kg	183
ground			
Zinc, in ground	Raw Material	g	6.17
Acenaphthene	Air	μg	530
Acetaldehyde	Air	kg	476
Acetic acid	Air	kg	2.5
Acetone	Air	g	246
Acrolein	Air	g	3.84
Actinides, radioactive, unspecified	Air	mBq	204
Aerosols, radioactive, unspecified	Air	kBq	3.59
Alcohols, unspecified	Air	kg	765
Aldehydes, unspecified	Air	g	423
Aluminum	Air	kg	131
Americium-241	Air	mBq	318
Ammonia	Air	kg	773
Ammonium carbonate	Air	mg	343
Antimony	Air	kg	3.08
Antimony-124	Air	mBq	285

Substance	Compartment	Unit	Scopario 10
Antimony 125		Ba	2.02
Arran 41	All	bq kBa	1780
Argonia	All	koq	E 21
Barium	All	кg	605
Barium 140	All	g Ba	-005
Benzaldehyde	All	рц	190
Pengena	All	g ka	1.97
Denzene	Alf	kg	73.4
Benzene, etnyl-	Air	кg	2.23
Benzene, nexachloro-	Air	mg	879 42 F
Benzele, pentacilloro-	Air	mg	42.5 E 02
Benzo(a)pyrene	Air	g	5.92
Berginum	Air	g 1	12
Bromine	Alf	кg	-2.62
Bromine	Air	g	-873
Butaulene	Air	μg	74.5
butane	Air	кg	529
	Air	кg	2.23
Cali	Air	tn.ig	4.64
Calcium	Air	Kg	-5.3
Carbon-14	Air	кВq	23800
Carbon dioxide	Air	kton	19.6
Carbon dioxide, biogenic	Air	kton	12.9
Carbon dioxide, fossil	Air	kton	10.8
Carbon disulfide	Air	kg	23.9
Carbon monoxide	Air	tn.lg	19.7
Carbon monoxide, biogenic	Air	kg	49.4
Carbon monoxide, fossil	Air	tn.lg	20.8
Cerium-141	Air	Bq	46.1
Cerium-144	Air	Bq	3.38
Cesium-134	Air	Bq	14.3
Cesium-137	Air	Bq	62.5
Chlorine	Air	kg	12.5
Chloroform	Air	mg	392
Chromium	Air	kg	8.76
Chromium-51	Air	Bq	3.01
Chromium VI	Air	g	92.7
Cobalt	Air	tn.lg	3.3
Cobalt-57	Air	μBq	29.4
Cobalt-58	Air	Bq	4.6
Cobalt-60	Air	Bq	37.1
Copper	Air	kg	6.51
Cumene	Air	g	366
Curium-242	Air	μBq	1.68
Curium-244	Air	μBq	15.3
Curium alpha	Air	mBq	506
Cyanide	Air	g	69.1
Dinitrogen monoxide	Air	tn.lg	1.08
Dioxins, measured as 2,3,7,8-tetrachlorodibenzo-p-dioxin	Air	mg	38.9
Ethane	Air	tn.lg	1.21
Ethane, 1,1,1-trichloro-, HCFC-140	Air	kg	34.5
Ethane, 1,1,1,2-tetrafluoro-, HFC-134a	Air	g	571
Ethane, 1,1,2-trichloro-1,2,2-trifluoro-, CFC-113	Air	kg	0
Ethane, 1,2-dichloro-	Air	g	26.4
Ethane, 1,2-dichloro-1,1,2,2-tetrafluoro-, CFC-114	Air	g	6.51
Ethane, 2-chloro-1,1,1,2-tetrafluoro-, HCFC-124	Air	kg	0
Ethane, dichloro-	Air	kg	132
Ethane, hexafluoro-, HFC-116	Air	g	11.9
Ethanol	Air	g	376
Ethene	Air	tn.lg	1.15
Ethene, chloro-	Air	g	50.4
Ethene, tetrachloro-	Air	kg	62.8
/		0	

Substance	Compartment	Unit	Scopario 10
Ethylene diamine	Air	ma	2 11
Ethylene ovide	All	nig	2.11
Ethylene oxide	All	g ka	29.4
Elizarida	All	ĸg	-2.72
Eluorine	All	g	127
Eluosilisis acid	All	g	137
Fuosifici aciu	Alf Ain	g ka	13.9
Heat waste	Alf A:	ку	2.74
Helium	Alf A:	1) ka	50.1 6.01
Henum	Air	кg	6.01 22.2
Heyene	Alf A:	kg ka	22.5 46 E
Hydroserhons alighetis alkanas gyalis	Alf Ain	кд	40.5
Hydrocarbons, anphatic, alkanes, cyclic	Air	g 1	1.01
Hydrocarbons, aliphatic, alkanes, unspecified	Alf Ain	kg ka	565 1 81
Hydrocarbons, aliphatic, arkenes, unspecified	Alf Ain	кд	-2.02
Hydrocarbons, anphatic, unsaturated	Air	g 1	921
Hydrocarbons, aromatic	Air	кд	802
Hydrocarbons, chlorenated	Alf A:	g ka	30 27E
Hydrocarbons, naiogenated	Air	kg	275
Hydrocarbons, unspecified	Air	tn.ig	20.4
Hydrogen	Air	Kg	227
Hydrogen-3, Iritium	Air	ква	100000
Hydrogen chloride	Air	tn.lg	5.33
Hydrogen fluoride	Air	kg	13.1
Hydrogen sulfide	Air	kg	22.8
lodine	Air	g	-171
lodine-129	Air	kBq	18.8
lodine-131	Air	кBq	654
lodine-133	Air	Bq	233
lodine-135	Air	Bq	8.47
Iron	Air	kg	-19.9
Iron-59	Air	μBq	665
Isocyanic acid	Air	g	98.7
Ketones, unspecified	Air	kg	91.8
Krypton-85	Air	kBq	1570000
Krypton-85m	Air	kBq	2820
Krypton-87	Air	kBq	670
Krypton-88	Air	kBq	926
Krypton-89	Air	кBq	347
Lanthanum	Air	g	-17.6
Lanthanum-140	Air	Bq	16.3
Lead	Air	tn.lg	4.82
Lead-210	Air	кBq	54.3
m-Xylene	Air	g	13.9
Magnesium	Air	kg	-18.3
Manganese	Air	tn.lg	54.8
Manganese-54	Air	Bq	1.53
Mercaptans, unspecified	Air	kg	176
Mercury	Air	kg	2.94
Metals, unspecified	Air	tn.lg	7.24
Methane	Air	tn.lg	664
Methane, biogenic	Air	kg	5.76
Methane, bromochlorodifluoro-, Halon 1211	Air	g	2.45
Methane, bromotrifluoro-, Halon 1301	Air	g	176
Methane, chlorodifluoro-, HCFC-22	Air	kg	26.2
Methane, chlorotrifluoro-, CFC-13	Air	mg	1.78
Methane, dichloro-, HCC-30	Air	mg	13.9
Methane, dichlorodifluoro-, CFC-12	Air	kg	29.5
Methane, dichlorofluoro-, HCFC-21	Air	mg	501
Methane, fossil	Air	tn.lg	8.21
Methane, monochloro-, R-40	Air	μg	11.2
Methane, tetrachloro-, CFC-10	Air	g	14.6

Substance	Compartment	Unit	Scenario 10
Methane tetrafluoro- FC-14	Air	σ	107
Methane, trichlorofluoro, CEC.11	Air	8 ma	13.1
Mothano, trifluoro, HEC 23	Air	шg	10.1
Methanol	All	µg ka	1 20
Melyhdenum	Air	кg	1.29
Morybaenan	Air	g	13.4
Nonoetnanolamine	Air	g 	22.9
Neptunium-237	Air	µвq	16./
	Air	m.ig	14
Niodium-95	Air	твq	183
Nitrate	Air	g tra 1 a	8.5 22 F
Nitric oxide	Air	m.ig	33.5
Nitrogen	Air	g	22.9
Nitrogen dioxide	Air	tn.ig	34.2 100
Nutrogen oxides	Air	th.ig	129
NMIVOC, non-methane volatile organic compounds,	Air	th.lg	3.16
Noble gases radioactive unspecified	Air	kBa	1.8F+08
Organic substances unspecified	Air	ko	2.05
Ozone	Air	ka	5.87
PAH polycyclic aromatic hydrocathons	Air	ng a	471
Paraffine	Air	8 ma	5.03
Particulatos	Air	tn la	3.38
Particulates < 10 um	Air	unig ka	11.0
Particulates, < 10 um (mobile)	All	ĸg	11.9
Particulates, < 10 um (nobile)	All	g ka	127 5 71
Particulates, < 15 um	All	kg ka	027
Particulates, < 2.5 um	Air	kg ta la	957
Particulates, > 10 um (process)	All	unig ka	2.43
Particulates, > 10 um (process)	Air	kg ta la	1.15
Particulates, ~ 2.5 uni, and < 10 uni	Air	unig ten la	1.05 16 E
Particulates, unspecified	Air	tn.ig	16.5
Pentane	Air	кд	131
Phenol	Air	g	354
Phenol, pentachioro-	Air	g	3.52
Phosphorus Dhaanhamaantaaida	Air	g	-436
Phosphorus penioxide	Air	mg	-355
Phosphorus, total	Air	ng	332 755
Platenium 229	All	μg mPa	2.50
Plutonium-238	Air	nibq Pa	2.39
Plutonium-241	Air	DQ Da	27.8
Planium 210	Air	bq 1.В	1.02
Polonium-210	Air	ква	91.7 1 FF
Polychiorinated diphenyls	Air	g 1	1.55
Potassium Batassium 40	Air	кg 1.р	-3.4
Potassium-40	Air	к оц В -	9.59
Prometnium-147	Air	БЧ	8.59 1.07
Propanal	Air	g	1.97
Propane	Air	кg	452
Propene	Air	кg	1.//
	Air	g	26.6
Propylene oxide	Air	g	26.7
Protactinium-234	Air	кВq	3.09
Radioactive species, other beta emitters	Air	kBq	359
Radioactive species, unspecified	Air	ква	1.27E+08
Radium-226	Air	kBq	113
Radium-228	Air	kBq	14
Kadon-220	Air	кBq	2.4
Kadon-222	Aır	квq	4.TTE+08
Kuthenium-103	Air	mВq	39.6
Kuthenium-106	Air	Вq	101
Scandium	Air	g	-5.52
Selenium	Air	g	-36.1

Substance	Compartment	Unit	Sconario 10
Gilicon	Air	ka	78 5
Silicon totrofluorido	Air	кg	-76.5
Cilver	Air	ling ka	10.3
Cilver 110	Air	mBa	19.5
Sadium	Air	lindq	408
Sodium chlorata	Air	кg	-1.4
Sodium dichromate	Air	ng	1 70
Sodium formate	Air	g	5.62
Strontium	Air	g ka	1.02
Strontium 80	Air	mBa	-1.02
Strontium 90	Air	Ba	16.7
Storene	Air	ma	10.7
Sulfate	Air	ling ka	9.85
Sulfur dioxide	Air	tn la	5.55
Sulfur bexafluoride	Air	σ	66 7
Sulfur ovides	Air	5 tn la	38.9
t-Butyl methyl ether	Air	σ	4 13
Tar	Air	6 mo	399
Technetium-99	Air	шВа	707
Tellurium-123m	Air	mBa	76.4
Thallium	Air	ko	3.4
Thorium	Air	σ	-10.6
Thorium-228	Air	5 kBa	2 34
Thorium-230	Air	kBa	11 7
Thorium-232	Air	kBa	2 75
Thorium-234	Air	kBa	3.09
Tin	Air	ko	6.11
Titanium	Air	ko	-1 84
Toluene	Air	ko	171
Uranium	Air	σ	-10.3
Uranium-234	Air	o kBa	36.2
Uranium-235	Air	kBa	1.75
Uranium-238	Air	kBa	43.2
Uranium alpha	Air	kBa	169
Vanadium	Air	kg	8.24
VOC, volatile organic compounds	Air	kg	216
water	Air	Mtn	8.32
Xenon-131m	Air	kBq	3450
Xenon-133	Air	kBq	126000
Xenon-133m	Air	kBq	165
Xenon-135	Air	kBq	50100
Xenon-135m	Air	kBq	31300
Xenon-137	Air	kBq	949
Xenon-138	Air	kBq	7160
Xylene	Air	kg	12.1
Zinc	Air	tn.lg	42.4
Zinc-65	Air	Bq	7.63
Zirconium	Air	g	-5.95
Zirconium-95	Air	Bq	7.38
Acenaphthene	Water	mg	234
Acenaphthylene	Water	mg	320
Acetic acid	Water	g	43
Acidity, unspecified	Water	tn.lg	5.93
Acids, unspecified	Water	mg	260
Actinides, radioactive, unspecified	Water	kBq	30.4
Aluminum	Water	tn.lg	610
Americium-241	Water	Bq	42
Ammonia	Water	tn.lg	635
Ammonia, as N	Water	g	124
Ammonium, ion	Water	kg	7.34
Antimony	Water	tn.lg	22

Substance	Compartment	Unit	Scenario 10
Antimony-122	Water	Ba	113
Antimony 124	Water	bq kBa	8.65
Antimony 125	Water	kBq kBq	7.80
ACX Adaethabla Organia Halagan as Cl	Water	кра	1.09
Avenia ion	Water	g ka	545
Barita	Water	kg ka	120
Barrie	Water	кg ka	150
Barium 140	Water	кg Р-	267
Barrum-140	Water	bq	495
Benzene shlere	Water	кд	F24
Benzene, chioro-	Water	ng	524 2 E
Berryllicen	Water	кд	2.5
BOD5 Biological Owners Demand	Water	g Iston	28
Boron	Water	to la	3.04
Bromato	Water	unig ka	2.46
Bromino	Water	tn la	10.2
Butono	Water	ma	79.2
Cadmium-109	Water	mBa	1 21
Cadmium ion	Water	tn la	308
Calcium compounds unspecified	Water	unig ka	115
Calcium ion	Water	kton	1.05
Carbon 14	Water	kBa	2.12
Carbon-14	Water	ka	2.12
Carbonate Carbonate	Water	kg ka	150
Carioxync actus, unspecified	Water	к <u>g</u> Ва	108
Corium 144	Water	bq kBa	1.02
Cosium	Water	кbq	1.02
Cosium 124	Water	8 1/Ba	49.7 5 70
Cosium 126	Water	кру Ва	25.1
Cosium 137	Water	bq kBa	3570
Chlorata	Water	ko	10
Chloride	Water	kton	3 47
Chlorinated solvants unspecified	Water	ka	9.47 8.05
Chlorine	Water	rg a	379
Chloroform	Water	g ma	37 <i>3</i> 80.1
Chromium	Water	hg	1 27
Chromium-51	Water	kBa	37 3
Chromium VI	Water	tn la	121
Chromium ion	Water	ka	237
Cobalt	Water	tn la	283
Cobalt-57	Water	kBa	1 11
Cobalt-58	Water	kBa	1.11
Cobalt-60	Water	kBa	157
COD, Chemical Oxygen Demand	Water	kton	3.03
Copper. ion	Water	tn lø	8.11
Cumene	Water	σ	880
Curium alpha	Water	Ba	55.5
Cvanide	Water	ko	76
Dichromate	Water	σ	6.62
DOC. Dissolved Organic Carbon	Water	8 kton	1 19
EDTA	Water	mø	583
Ethane, 1.1.1-trichloro-, HCFC-140	Water	ц9	225
Ethane, 1,2-dichloro-	Water	g	2.09
Ethane, dichloro-	Water	o mg	115
Ethane, hexachloro-	Water	μg	2.58
Ethene	Water	r o g	125
Ethene, chloro-	Water	g	1.11
Ethene, tetrachloro-	Water	σ μg	345
Ethene, trichloro-	Water	mg	21.9
Ethylene diamine	Water	mg	5.11
Ethylene oxide	Water	mg	33.7
,		0	
Fubstance	Compartment	Unit	Sconario 10
--	-------------	-------------	-------------
	Watar	laters	1((
Faity actus as C	Water	KION	1.00
Fluoride	Water	th.lg	29.5
	Water	g	25.1
Formaldenyde	Water	g	46.3
Glutaraldehyde	Water	g	9.07
Heat, waste	Water	MWh	134
Hydrazine	Water	mg	269
Hydrocarbons, aliphatic, alkanes, unspecified	Water	kg	13.5
Hydrocarbons, aliphatic, alkenes, unspecified	Water	g	800
Hydrocarbons, aliphatic, unsaturated	Water	g	451
Hydrocarbons, aromatic	Water	kg	54.9
Hydrocarbons, chlorinated	Water	g	27.8
Hydrocarbons, unspecified	Water	kg	57.8
Hydrogen-3, Tritium	Water	kBq	8110000
Hydrogen peroxide	Water	g	3.26
Hydrogen sulfide	Water	g	532
Hydroxide	Water	g	15.2
Hypochlorite	Water	g	208
Hypochlorous acid	Water	g	9.6
Iodide	Water	kg	10.8
Iodine-129	Water	kBq	6.07
Iodine-131	Water	kBq	2.02
Iodine-133	Water	Bq	311
Iron	Water	tn.lg	50.7
Iron-59	Water	Ba	85.4
Iron, ion	Water	tn.lg	8.23
Kieldahl-N	Water	g	8.06
Lanthanum-140	Water	Ba	527
Lead	Water	tn lø	415
Lead-210	Water	kBa	47.6
Lithium carbonate	Water	ma	30.1
Magneeium	Water	tn la	375
Manganoso	Water	kton	4 79
Manganese 54	Water	kBa	11 5
Mangallese-04	Water	kbq	262
Metallisions unemocified	Water	kg ta la	602
Methanic folis, unspecified	Water	un.ig	022
Methane, dichloro-, HCC-30	Water	g	328 4(E
Methane, tetrachloro-, CFC-10	Water	μg	465
Methanol	Water	g 1	42.6
Molybaenum	Water	кg	414
Molybdenum-99	Water	Вq	182
Morpholine	Water	g	2.85
Neptunium-237	Water	Bq	2.68
Nickel, ion	Water	kton	1.22
Niobium-95	Water	Bq	721
Nitrate	Water	tn.lg	3.89
Nitrilotriacetic acid	Water	kg	347
Nitrite	Water	kg	715
Nitrogen	Water	kg	5.12
Nitrogen, organic bound	Water	kg	11
Nitrogen, total	Water	kg	16.7
NMVOC, non-methane volatile organic compounds,	Water	kg	23.1
unspecified origin Oils, unspecified	Water	tn.lg	2.24
PAH, polycyclic aromatic hydrocarbons	Water	kg	1.19
Paraffins	Water	mσ	14.6
Phenol	Water	6 ko	11.0
Phenols unspecified	Water	-~6 σ	29.8
Phoenhata	Water	5 tala	120
Phosphorus	Water	ang	140
Phosphorus compounds unerosified	Water	g ma	60.4
r nosphorus compounds, unspecified	water	шg	07.4

ENVIRONMENTAL RESOURCES MANAGEMENT

Substance	Compartment	Unit	Scenario 10
Phosphorus pentoxide	Water	g	-9.88
Phthalate, dioctyl-	Water	μg	11.2
Phthalate, p-dibutyl-	Water	μg	30.9
Phthalate, p-dimethyl-	Water	μg	195
Plutonium-241	Water	kBq	4.15
Plutonium-alpha	Water	Bq	167
Polonium-210	Water	kBq	62.8
Potassium	Water	kton	1.16
Potassium-40	Water	kBq	26.8
Potassium, ion	Water	kton	1.09
Propene	Water	g	375
Propylene oxide	Water	g	64.2
Protactinium-234	Water	kBq	57.3
Radioactive species, unspecified	Water	kBq	1170000
Radioactive species, alpha emitters	Water	Bq	95.7
Radioactive species, from fission and activation	Water	Bq	126
Radioactive species, Nuclides, unspecified	Water	kBq	18200
Radium-224	Water	kBq	1890
Radium-226	Water	kBq	39300
Radium-228	Water	kBq	3770
Rubidium	Water	kg	1.04
Ruthenium	Water	g	1.38
Ruthenium-103	Water	Bq	38.4
Ruthenium-106	Water	kBq	10.1
Salts, unspecified	Water	kg	110
Scandium	Water	g	53.9
Selenium	Water	kg	341
Silicon	Water	kton	2.84
Silver	Water	kg	95.8
Silver-110	Water	kBq	145
Silver, ion	Water	tn.lg	1.72
Sodium-24	Water	кВq	1.38
Sodium formate	Water	g	13.5
Sodium, ion	Water	kton	2.82
Solids, inorganic	Water	кg	393
Solved organics	Water	kg	5.21 024
Solved solids	Water	кg	954
Solved substances	Water	g ka	343 287
Solved substances, morganic	Water	kg	207 630
Strontium 80	Water	kg kBa	3.12
Strontium 00	Water	kBq	18000
Sulfate	Water	kton	2 58
Sulfide	Water	ka	1 21
Sulfite	Water	σ	534
Sulfur	Water	5 ko	3.58
Sulfur trioxide	Water	σ	1 49
Suspended solids, unspecified	Water	5 ko	373
Suspended substances, unspecified	Water	tn lo	14.4
t-Butyl methyl ether	Water	σ	38.8
Technetium-99	Water	8 kBa	1.06
Technetium-99m	Water	kBa	4.18
Tellurium-123m	Water	Bq	557
Tellurium-132	Water	Bq	10.5
Thallium	Water	kg	1.55
Thorium-228	Water	kBq	7540
Thorium-230	Water	kBq	7820
Thorium-232	Water	kBq	4.35
Thorium-234	Water	kBq	57.3
Tin, ion	Water	tn.lg	18.9
Titanium, ion	Water	kg	20.4

ENVIRONMENTAL RESOURCES MANAGEMENT

Docume Component Component Component Component Tolucne Water kg 1.9 Tributylin compounds Water kg 5.3 Tributylin compounds Water kg 7.6 Undissolved subtances Water kg 8.8 Uranium-235 Water kg 8.8 Uranium-236 Water kg 3.30 VOC, volatile organic compounds as C Water kg 6.6 VOC, volatile organic compounds, as C Water kg 6.6 VDC, volatile organic compounds, as C Water kg 8.6 VDC, volatile organic compounds, as C Water kg 1.3 VDC, volatile organic compounds, as C Water kg 1.3 VDC, volatile organic compounds, as C Water kg 3.3 <t< th=""><th>Substance</th><th>Compartment</th><th>Unit</th><th>Scenario 10</th></t<>	Substance	Compartment	Unit	Scenario 10
No. Convertion (None Carlos)None (None Carlos)LaTrainal ColumeWaterNg134Trainaly thin compoundsWaterNg3.19Trainaly thin compoundsWaterNg3.19Trainaly thin compoundsWaterNg7.6Trainaly thin compoundsWaterNg7.6Uraniam-234WaterNg8.813.3Uraniam-235WaterNg1.63.00Uraniam-236WaterNg1.63.00Uraniam-236WaterNg1.63.00Uraniam-236WaterNg1.63.00Uraniam-236WaterNg3.003.00Uraniam-236WaterNg3.003.00Uraniam-236WaterNg3.003.00Uraniam-236WaterNg3.003.00Uraniam-236WaterNg3.003.00Uraniam-236WaterNg3.003.00Uraniam-236WaterNg3.003.00Uraniam-236WaterNg3.003.00Uraniam-236WaterNg3.003.00Uraniam-328WaterNg3.003.00Uraniam-328WaterNg3.003.00Uraniam-328WaterNg3.003.00Uraniam-328WaterNg3.003.00Uraniam-328WaterNg3.003.00Uraniam-328WaterNgNg<	TOC Total Organic Carbon	Water	kton	12
JoukanNatureNatur	Toluono	Water	ka	1.2
Induyinvalueupup104Theityline glycolWaterkg5.1Theityline glycolWaterkg3.12UngistenWaterkg7.1Uanism-236Waterkg13Uranium-235Waterkbq13Uranium-236Waterkbq300Uranium-236Waterkbq300Uranium-236Waterkbq300Uranium-236Waterkbq1.3VOC, volatile organic compounds, unspecified originWaterkg86VOC, volatile organic compounds, unspecified originWatermg84.3VOC, volatile organic compounds, unspecified originWatermg86.0VaterMatekg16.612.2Zinc-65Watermg32.212.3Zinc-65Watermg32.212.3Zinc-65Watermg32.212.3Zinc-65Waterkg17.312.4Zinc-65Waterkg13.212.4Zinc-65Waterkg12.212.4Zinc-65Waterkg12.412.4Zinc-65Waterkg12.412.4Zinc-65Silkg12.412.4Zinc-65Silkg12.412.4Zinc-65Silkg12.412.4Zinc-65Silkg12.412.4Zinc-66Silkg12.412.	Tributyltin	Water	ĸg	11.9
IndusymetoripointsValueg3.14TingstenWaterkg3.19TingstenWaterkg7.6Uranium-234WaterkBq13.3Uranium-235WaterkBq13.3Uranium-236WaterkBq3.00Uranium-236WaterkBq3.00Uranium-236WaterkBq3.00Uranium-236WaterkBq3.00Uranium-236WaterkBq3.3VOC, volatile organic compounds at CWatern.03.890000VOC, volatile organic compounds at CWatern.03.890000XyleneWatern.03.8900003.3XyleneWatern.03.90003.3XyleneWatern.03.900003.1XyleneWatern.03.900003.2Zinc, ionWaterkBq4.3XyleneWatern.03.90000XyleneWaterkBq4.3Zinc, ionWaterkBq4.3Zinc, ionWaterkBq1.3Zinc, ionWaterkBq1.2AluminumSoilng1.2AluminumSoilng1.3AluminumSoilkg3.2AluminumSoilkg3.2AluminumSoilkg3.2AluminumSoilkg3.2AluminumSoilkg3.3AluminumSoil<	Tributylin	Water	nig	134 EE 1
InternysionValueAg5.13UngliskinWaterkg7.11Undissolved substancesWaterkg6.8Uranium-23Waterkbq13.0Uranium-25Waterkbq3.00Uranium-25Waterkbq3.00Uranium-25Waterkbq3.00Uranium-25Waterkbq3.00Uranium-25Waterkbq3.00Uranium-25Waterkbq3.00Uranium-26Waterkbq3.00VOC, volatiti organic compounds as CWaterkg6VOC, volatiti organic compounds as CWaterkg6VOC, volatiti organic compounds as CWaterkg8.30000XyleneWaterkg3.038.0000XyleneWaterkg3.022.01XyleneWaterkg3.022.01XincionWaterkg3.022.01Zirconium-95Waterkg3.022.01AluminumSoilkg1.92.01AluminumSoilkg1.92.01AluminumSoilkg1.92.01ArsenicSoilkg1.92.01ArsenicSoilkg3.011.9BariumSoilkg3.011.9BariumSoilkg3.011.9CoroniumSoilkg3.011.9BariumSoilkg <td>Triothylene glycol</td> <td>Water</td> <td>g ka</td> <td>2 10</td>	Triothylene glycol	Water	g ka	2 10
LungsonValueg9.1Lungsolved substancesWaterkbq18.1Uranium-234Waterkbq13.2Uranium-235Waterkbq30.0Vanadium.ionWaterkbq13.3Vox volatile organic compounds as CWaterkg8.4VOC, volatile organic compounds and CWaterkg13.3VOC, volatile organic compounds, unspecified originWaterkg13.3Vock volatile organic compoundsWaterkg13.2ZincoinWaterkg13.213.2ZincoinWaterkg13.213.2ZincoinWaterkg12.213.2ZincoinWaterkg12.213.2ZincoinSoilkg12.213.2ZincoinSoilkg12.213.2ActinanSoilkg12.213.2ActinanSoilkg13.213.2ActinanSoilkg13.213.2ActinanSoilkg13.213.2ActinanSoilkg13.213.2ActinanSoilkg13.2 <td< td=""><td></td><td>Water</td><td>кд</td><td>5.19</td></td<>		Water	кд	5.19
Drusswind subsantesvalue	Tungsten Undiggelygd gybetengeg	Water	g ka	57.1 7.6
Dramm-2-4ValuerKbq113Uranium-23WakerKbq113Uranium-23WakerKbq130Vandum, ionWakerKbq130Vandum, ionWakerkbq133VOC, volatile organic compounds as CWaterg484VOC, volatile organic compounds, unspecified originWatermB3300000Voc, volatile organic compounds, unspecified originWatermB330Water vater/m3WaterMB43.3320Voc, volatile organic compounds as CWaterkBq18.6Voc, volatile organic compounds as CWaterkBq13.3Voc, volatile organic compoundsSoilkg13.2Voc, volatile organic compoundsSoilkg13.2Voc, volatile organic compoundsSoilkg12.4AutoinunSoilkg13.414.4Voc, volatile organic compoundsSoil </td <td>Undissolved substances</td> <td>Water</td> <td>ку 1-D -</td> <td>7.0</td>	Undissolved substances	Water	ку 1-D -	7.0
Uranium-259ValerKaleKaleKaleUranium alphaWaterkBq330Vanadium, ionWaterkg1.3VOC, volatile organic compounds as CWaterkg1.3VOC, volatile organic compounds, unspecified originWaterkg1.3VOC, volatile organic compounds, unspecified originWatern33890000XylencWatern3024.3Zinc-65WaterkBq18.621.3Zinc-65Waterkbq30.221.3Zincoinum-95Waterkpq30.221.3Zincoinum-95Waterkq30.221.3AluminumSoilng11.931.4AluminumSoilng11.931.4AluminumSoilng11.931.4ArtazineSoilng11.931.4BoronSoilng11.931.4CadriumSoilng12.433.4CadriumSoilg27.433.4CadriumSoilng13.433.4CadriumSoilg13.433.4CadriumSoilg13.533.4CadriumSoilg13.533.4CadriumSoilg13.533.4CadriumSoilg13.533.4CadriumSoilg13.533.4CadriumSoilg13.533.4Cadri	Uranium-234	Water	кDQ LD -	00.0 112
Uranium-2spWaterNameNod107Uranium-1sphaWaterkbq3300Vandum, ionWaterkbq1.63VOC, volatile organic compounds unspecified originWaterkg1.33Waterkg1.333800000VyleneWaterkg66Yttrium-90Waterkg66Yttrium-90Waterkg1.63Zinc, ionWaterkg1.62Zinc, ionWaterkg3.72Ziconium-95Waterkg3.72Ziconium-95Soilkg1.73AclomifenSoilkg1.73ActimonySoilkg6.89ArtarinonySoilkg6.89ArtarinoSoilng1.99BariumSoilkg6.47BariumSoilkg1.73BariumSoilkg1.73BoronSoilkg1.73CalciumSoilkg1.73CalciumSoilkg1.74CarbonSoilkg1.74CarbonSoilkg1.74ChoriduSoilkg1.74ChoriduSoilkg1.74ChoriduSoilkg1.74ChoriduSoilkg1.74ChoriduSoilkg1.74ChoriduSoilkg1.74ChoriduSoilkg1.74Choridu	Uranium-235	Water	кра	113
Dramum pinaValueValueNotSolVor, volatile organic compounds as CWaterkg1.63VOC, volatile organic compounds, unspecified originWaterkg3.3Waste water/m3Waterm33990000XyleneWatermBq24.3Zinc, fonWaterkg6Zinc, fonWaterkg16.3Zinc, fonWaterkg18.4Zinc, fonWaterkg13.2ActoritienSoilkg17.3AltiminySoilkg17.3AltiminySoilkg17.3AltiminySoilkg17.3ArtazineSoilng11.9BariumSoilkg67BariumSoilng12.9BoronSoilng12.9BoronSoilkg53CabriumSoilkg53CarbonSoilkg53CarbonSoilkg15.1Chomium VISoilkg15.1CopperSoilg16.1CopperSoilkg16.1CopperSoilkg16.1CopperSoilkg16.1CopperSoilkg16.1Chomium VISoilkg16.1Chomium VISoilkg16.1Chomium VISoilkg16.1Chomium VISoilkg16.1 <t< td=""><td>Uranium-238</td><td>Water</td><td>кDQ LD -</td><td>197</td></t<>	Uranium-238	Water	кDQ LD -	197
Vandulin, ionWaterWaterB.031.63VOC, volatile organic compounds as CWaterkg1.3.1Water volatile organic compounds, unspecified originWaterkg66VDC, volatile organic compounds, unspecified originWaterkg66Ytrium-90Waterkg6618.6Zinc-65Waterkg18.621.0Zinc-65Waterkdon3.723.72Zincnim-95Waterkg12.23.72Adunium-95Soilmg13.23.12AluminumSoilkg1.3.23.12AluminumSoilkg6.893.12AluminumSoilkg6.893.12ArsenicSoilkg6.473.12BertamSoilkg1.53.12BartamSoilkg3.23.12CadmiumSoilkg3.33.12CadmiumSoilkg3.33.3CadroideSoilkg3.33.3CadroideSoilkg3.33.3CabriumSoilkg3.33.3CadroiumSoilkg3.33.3CabriumSoilkg3.33.3CabriumSoilkg3.33.3CabriumSoilkg3.33.3CabriumSoilkg1.53.3CabriumSoilkg1.53.3<		Water	кра	3300
VOC, volatile organic compounds unspecified originWaterkg13.3Watern3.0389000XyleneWatern3.0389000XyleneWatermBq24.3Zinc, ionWaterkBq18.6Zinc, ionWaterkBq30.2Zinc, ionWaterkBq30.2AluminumSoilkg17.3AntimonySoilkg17.3AntimonySoilkg17.3AntimonySoilkg6.89ArtazineSoilmg11.9BariumSoilmg15.9BoronSoilmg15.9BoronSoilg2.7CalciumSoilg17.4CadmiumSoilg17.4CadmiumSoilg17.4CadmiumSoilg2.7CalciumSoilg12.4CarbetamideSoilmg6.84CarbonSoilg12.4ChoroniumSoilg12.4ChoroniumSoilg13.3CobaltSoilg13.4DinosebSoilg13.4ChoroniumSoilg14.4DinosebSoilg14.4DinosebSoilg14.4MagnesiumSoilg14.4MagnesiumSoilg14.4MagnesiumSoilg14.4M	Vanadium, ion	Water	th.lg	1.65
Vol, volatile organic compounds, inspectited originVaterRg1.5.3WaterRd3890000XyleneWaterRg66Yttrium-90Waterkg18.6Zine-65Waterkdq18.6Zinc.onWaterkdq18.6Zinc.onWaterkdq18.7Zirconium-95WaterSq312AluminumSoilkg17.3AluminumSoilkg6.89ArazineSoilg6.89ArazineSoilmg1.9BariumSoilg1.9BariumSoilg1.9BariumSoilg2.7CalciumSoilg2.7CalciumSoilg2.7CalciumSoilg3.3ChorideSoilkg5.3ChorideSoilg2.14ChorideSoilg2.3ChorideSoilg2.14ChorideSoilg2.3ChorideSoilg3.6ChorideSoilg3.6ChorideSoilg3.6ChorideSoilg1.4ChorideSoilg3.6ChorideSoilg3.6ChorideSoilg3.6ChorideSoilg3.6ChorideSoilg3.6ChorideSoilg	VOC, volatile organic compounds as C	Water	g 1	48.4
WaterWaterIndSolodoVisiterWaterkild66Yttrium-90WatermBq24.3Zinc.65WaterkBq86.6Zinc.10nWaterBq302Aluminum-95WaterBq302AclonifenSoilkg17.3AttimonySoilg17.3ArtimonySoilkg6.89ArtsenicSoilg6.99ArtsenicSoilg1.9BariumSoilkg6.47BariumSoilkg6.47BentazoneSoilg7.8CarbetamideSoilg7.8CarbetamideSoilkg5.3CarbetamideSoilkg5.3ChordhalonilSoilg1.5ChromiumSoilg1.5ChromiumSoilg1.5ChromiumSoilg2.3CobaltSoilg1.84CobaltSoilg1.6ChromiumSoilg1.6ChromiumSoilg1.6ChromiumSoilg1.6ChromiumSoilg1.6ChromiumSoilg1.6ChromiumSoilg1.6ChromiumSoilg1.6ChromiumSoilg1.6ChromiumSoilg1.6ChromiumSoilg<	VOC, volatile organic compounds, unspecified origin	Water	кg 2	15.5
AyleneWaterKgwoXittrium-90WaterRbq24.3Zinc, ionWaterkbq18.6Zinc, ionWaterkdq30.2Ziconium-95Waterkg30.2AclonifenSoilmg31.2AluminumSoilkg17.3AturninumSoilg6.89ArsenicSoilg6.89ArsenicSoilg6.47BentazoneSoilg19.9BoronSoilg27.CalciumSoilg27.CalciumSoilg27.CalciumSoilg27.CalciumSoilg27.CalciumSoilg12.4CarbetamideSoilg13.4CarbonSoilg12.4ChroniumSoilg12.4Chronium VISoilg23.3ColperSoilg23.3ColperSoilg3.36FenpiclonilSoilg3.36FenpiclonilSoilg3.36FenpiclonilSoilg14.4MancozebSoilg15.1Hat, wasteSoilg5.1InuronSoilg15.1Hat, wasteSoilg15.1Hat, wasteSoilg15.1InuronSoilg15.1MancozebSoil <td< td=""><td>waste water/m3</td><td>Water</td><td>m3</td><td>3890000</td></td<>	waste water/m3	Water	m3	3890000
IntrumodeWaterMaderIndiq2.4.3Zine-65Waterkton3.72Zinco, ionWaterbq302Aluminum-95Soilkg17.3AluminonySoilkg17.3AtumonySoilg6.89ArsenicSoilg6.89ArazineSoilkg6.47BariumSoilkg6.47BariumSoilg1.9BoronSoilg7.4CadmiumSoilg7.4CadmunSoilg7.1BariumSoilg7.2BoronSoilg7.3CadrumSoilg7.3CadrumSoilg7.4CadrumSoilg7.4CarbonSoilg3.3ChoroniumSoilg12.4ChromiumSoilg13.5ChoroniumSoilg13.6CopperSoilg3.36CopperSoilg3.36FengicloniiSoilg5.1Heat, wasteSoilg5.1InonSoilg5.1Heat, wasteSoilg5.1Heat, wasteSoilg15.1InuronSoilg15.1HuronSoilg15.1HuronSoilg15.1HuronSoilg16.1 <t< td=""><td>Xylene</td><td>Water</td><td>кg</td><td>66</td></t<>	Xylene	Water	кg	66
Zne. ionWaterköqködisbZirconium-95WaterBq302AlconifenSoilmg312AluminumSoilg17.3AntimonySoilg478ArsenicSoilg6.89ArsazineSoilg6.47BentazoneSoilg1.9BariumSoilg1.9BariumSoilg1.7BoronSoilg2.7CalcinumSoilg2.7CalcinumSoilg2.7CalcinumSoilg3.3CarbetamideSoilg3.3ChlorothalonilSoilg1.24ChromiumSoilg1.24Chromium VISoilg2.3CopperSoilg3.3CopperSoilg3.3FenpiclonilSoilg3.3FenpiclonilSoilg3.3CopperSoilg3.3FenpiclonilSoilg3.3FenpiclonilSoilg3.3FenpiclonilSoilg3.3CopperSoilg3.3FenpiclonilSoilg3.6InuronSoilg3.6InuronSoilg3.1Hat, wasteSoilg3.1InuronSoilg1.1 <trr>MancozebSoilg<t< td=""><td>Attrium-90</td><td>Water</td><td>mbq</td><td>24.5</td></t<></trr>	Attrium-90	Water	mbq	24.5
Zinc, ionWaterRon5.72Zircorium-95WaterBq302AclonifenSoilmg312AluminumSoilkg17.3AluminumSoilg4.8ArsenicSoilg6.89ArazineSoilmg11.9BariumSoilg6.47BentazoneSoilg174CadmiumSoilg174CadmiumSoilg2.7CalciumSoilkg70.8CarbotSoilkg53ChlorideSoilkg53ChlorideSoilg115ChroniumSoilg115Chronium VISoilg211CopperSoilg3.36CopperSoilg3.36CopperSoilg8.8GlyphosateSoilg8.8GlyphosateSoilg15.1Heat, wasteSoilg15.1LinuronSoilg16.1MagnesiumSoilg16.1MagnesiumSoilg17.8MetaldriyceSoilg16.1MagnesiumSoilg17.5MethalchyleSoilg17.5MagnesiumSoilg16.1MagnesiumSoilg16.1MagnesiumSoilg17.5MethalchyleSoilg <td>Zinc-65</td> <td>Water</td> <td>ква</td> <td>18.6</td>	Zinc-65	Water	ква	18.6
Zirconium-90Vaterpqg02AluminumSoilkg17.3AluminumSoilkg17.3AntimonySoilg6.89ArsenicSoilg6.89AtrazineSoilmg1.9BariumSoilkg6.47BentazoneSoilg174CadmiumSoilg2.7CadmiumSoilkg70.8CarbetamideSoilkg53ChlorothalonilSoilkg53ChlorothalonilSoilg12.4Chromium VISoilg12.4Chromium VISoilg23CobaltSoilg23CopperSoilg23CobaltSoilg23CopperSoilg23CobaltSoilg23CopperSoilg23CopperSoilg24PinotebSoilg23FuorideSoilg23CopperSoilg24CopperSoilg24CopperSoilg24CopperSoilg15.1LinuronSoilg15.1LinuronSoilg15.1LinuronSoilg15.1MagnesumSoilg15.1MagnesumSoilg16.1Magnesum <t< td=""><td>Zinc, ion</td><td>Water</td><td>Rton</td><td>3.72</td></t<>	Zinc, ion	Water	Rton	3.72
ActonitenSoilng312AluminumSoilkg17.3AntimonySoilµg478ArsenicSoilg6.89AtrazineSoilng11.9BariumSoilkg6.47BentazoneSoilng159BoronSoilg2.7CalciumSoilkg78CarbenSoilkg53CarbetamideSoilkg53ChlorideSoilkg53ChlorideSoilkg53ChlorideSoilg115ChromiumSoilg115Chromium VISoilg233ColperSoilng3.36CopperSoilng3.36CopperSoilg3.36FempiclonilSoilg3.36Chromium VISoilg3.36CopperSoilg3.36CopperSoilg3.36FempiclonilSoilg1.14DinosebSoilg1.84DinosebSoilg1.61Heat, wasteSoilg1.61MagnesumSoilg1.61MagnesumSoilg1.61MagnesumSoilg1.61MagnesumSoilg1.61MetaldehydeSoilg1.61MetaldehydeSoilg1.61<	Zirconium-95	Water	Bq	302
AluminumSoilkg1/3AntimonySoilµg478ArsenicSoilµg478ArsenicSoilµg119BariumSoilkg647BentazoneSoilµg159BoronSoilg174CadmiumSoilg27CarbetamideSoilkg708CarbetamideSoilkg53ChlorideSoilkg53ChlorideSoilkg53ChlorideSoilg124ChromiumSoilg124Chromium VISoilg203CopperSoilg203CopperSoilng203CopperSoilng336FenpiclonilSoilng144Soilg336FenpiclonilSoilng146UpyhosateSoilng561Heat, wasteSoilg561InnoroSoilg151MagnesiumSoilg161MagneseSoilg161MagneseSoilg178MetaldehydeSoilg161MetolachlorSoilg161MetolachlorSoilg178MetaldehydeSoilng161MagneseineSoilg161MetolachlorSoilg178Me	Acloniten	Soil	mg	312
AntmonySoilµg4/8ArsenicSoilg6.89AtrazineSoilng11.9BariumSoilkg6.47BentazoneSoilg174CadmiumSoilg2.7CalciumSoilkg70.8CarbonSoilkg53ChlorideSoilkg53ChlorideSoilkg53ChlorideSoilg115ChromiumSoilg115Chromium VISoilg213CopperSoilg213CopperSoilg336CopperSoilg336CopperSoilg336PenycioniaSoilg361CipperenthrinSoilg361DinosebSoilg561FluorideSoilg561Heat, wasteSoilg151LinuronSoilg151LinuronSoilg151LinuronSoilg151ManganeseSoilg151ManganeseSoilg151ManganeseSoilg151MartingSoilg151MartingSoilg151MartingSoilg151LinuronSoilg151MartingSoilg151MartingS	Aluminum	Soil	kg	17.3
ArsenicSoilg6.89AtrazineSoilmg11.9BariumSoilkg6.47BentazoneSoilg174BoronSoilg174CadmiumSoilg2.7CalciumSoilkg70.8CarbetamideSoilkg53CarbetamideSoilkg53ChlorideSoilkg53ChlorideSoilg12.4ChromiumSoilg253ChorothalonilSoilg233ChorothalonilSoilg3.36Chromium VISoilg3.36CopperSoilg3.36CopperSoilg3.36FenpicionilSoilg56.1Heat, wasteSoilg56.1Heat, wasteSoilg15.1LinuronSoilg15.1MagnesiumSoilg16.1ManganeseSoilg16.1MetaldehydeSoilg16.1MetaldehydeSoilg7.8MetaldehydeSoilmg7.9NapropanideSoilg2.1NickelSoilg2.1NickelSoilg1.6MetaldehydeSoilmg7.9NickelSoilg2.1NickelSoilg2.1MetaldehydeSoil <td< td=""><td>Antimony</td><td>Soil</td><td>μg</td><td>478</td></td<>	Antimony	Soil	μg	478
AtrazineSoilng11.9BariumSoilkg6.47BentazoneSoilng159BoronSoilg2.7CadmiumSoilkg70.8CarbetamideSoilkg53ChroniumSoilkg53ChlorothaloniSoilkg12.4ChronniumSoilg12.4ChronniumSoilg12.4Chronnium VISoilg233CobaltSoilg211CypermethrinSoilg211CypermethrinSoilg211CypermethrinSoilg3.36FenpiclonilSoilg818GlyphosateSoilg56.1Heat, wasteSoilg15.1LinuronSoilg15.1MancozebSoilg15.1MangenseSoilg15.1MangenseSoilg15.1MetaldehydeSoilg15.1MetribuzinSoilg15.1MetribuzinSoilg15.1MetribuzinSoilg15.1MetribuzinSoilg15.1MetribuzinSoilg15.1MetribuzinSoilg15.1MetribuzinSoilg15.1MetribuzinSoilg15.1MetribuzinSoilg15.1Mit	Arsenic	Soil	g	6.89
BariumSoilkg6.47BentazoneSoilng159BoronSoilg174CadmiumSoilg2.7CalciumSoilkg70.8CarbetamideSoilkg53ChlorideSoilkg53ChlorideSoilkg53ChlorideSoilg12.4ChroniumSoilg15Chronium VISoilg253CobaltSoilg211CyperSoilg231CopperSoilg3.6PinozebSoilg3.6FenpiclonilSoilg3.6FlourideSoilg3.6IronSoilg15.1IruronSoilg15.1IruronSoilg15.1IruronSoilg15.1IruronSoilg15.1IruronSoilg16.1MancozebSoilg16.1ManganeseSoilg17.8MetaldhydeSoilg17.9NickelSoilg2.3NickelSoilg2.4NickelSoilg2.4MancozebSoilg16.1MetaldhydeSoilg2.3NickelSoilg2.3NickelSoilg2.4MetaldhydeSoil <td>Atrazine</td> <td>Soil</td> <td>mg</td> <td>11.9</td>	Atrazine	Soil	mg	11.9
BentazoneSoilng159BoronSoilg27CadmiumSoilkg70.8CarbetamideSoilkg53CarbonSoilkg53ChlorideSoilkg53ChlorideSoilg124ChromiumSoilg253CobaltSoilg23CobaltSoilg211Chromium VISoilg23CobaltSoilg316CopperSoilg316SpremethrinSoilg316PenpiclonilSoilg818CilyosateSoilg56.1Heat, wasteSoilg12.1LinuronSoilg12.1MancozebSoilg13.1ManganeseSoilg16.1ManganeseSoilg16.1MetaldehydeSoilg16.1MarquetSoilg16.1ManganeseSoilg17.5MetribuzinSoilg17.5MetribuzinSoilg17.5MetribuzinSoilg17.5MetribuzinSoilg16.1NickelSoilg16.1MoltpenumSoilg17.5MetribuzinSoilg17.5MetribuzinSoilg17.5MetribuzinSoilg2	Barium	Soil	kg	6.47
BoronSoilg174CadmiumSoilkg27CalciumSoilkg70.8CarbetamideSoilng68.4CarbonSoilkg53ChlorothalonilSoilg12.4ChroniumSoilg12.4Chronium VISoilg233CobaltSoilg233CopperSoilg115Chronium VISoilg134CopperSoilmg134DinosebSoilmg1.84DinosebSoilg3.36FenpiclonilSoilg3.66IlynosateSoilg5.61Heat, wasteSoilg15.1LinuronSoilg15.1LinuronSoilg15.1MancozebSoilg15.1MancozebSoilg15.1MetuldhydeSoilg15.1MetuldhydeSoilg15.1MetuldhydeSoilg15.1MetuldhydeSoilg15.1MetuldhydeSoilg15.1MetuldhydeSoilg15.1MetuldhydeSoilg15.1MetuldhydeSoilg15.1MetuldhydeSoilg15.1MetuldhydeSoilg15.1MetuldhydeSoilg15.1MetuldhydeSoil	Bentazone	Soil	mg	159
CadmiumSoilg2.7CalciumSoilkg70.8CarbetamideSoilmg68.4CarbonSoilkg53ChlorothalonilSoilkg12.4ChroniumSoilg11.5Chronium VISoilg213CobaltSoilg213CopperSoilg213CopperSoilg213CopperSoilg213CypermethrinSoilg3.36DinosebSoilg3.36FenpiclonilSoilg818GlyphosateSoilg818GlyphosateSoilg15.1LinuronSoilg15.1LinuronSoilg16.1MangaesiumSoilg16.1MangaeseSoilg16.1MetaldehydeSoilg16.1MetolachlorSoilg17.5MetribuzinSoilg17.5MetribuzinSoilg24.1NitrogenSoilg24.1NitrogenSoilg24.1NitrogenSoilg24.1NitrogenSoilg24.1NitrogenSoilg24.1NitrogenSoilg24.1NitrogenSoilg24.1NitrogenSoilg24.1MetolachlorSoil <td< td=""><td>Boron</td><td>Soil</td><td>g</td><td>174</td></td<>	Boron	Soil	g	174
CalciumSoilkg70.8CarbotSoilkg53CarbonSoilkg53ChlorideSoilg12.4ChorothalonilSoilg12.4ChromiumSoilg115Chromium VISoilg253CobaltSoilg211Chromium VISoilg211CypermethrinSoilg211CypermethrinSoilg3.36FenpiclonilSoilg818GlyphosateSoilg818GlyphosateSoilg56.1Heat, wasteSoilg15.1LinuronSoilg15.1MagnesiumSoilg15.1MagneseSoilg16.1MarcozebSoilg16.1MarcozebSoilg16.1MetolachlorSoilg17.5MetolachlorSoilg17.5MetolachlorSoilg24.1MayneseinikSoilg24.1MetolachlorSoilg24.1MetolachlorSoilg24.1MitogenSoilg24.1MolybdenumSoilg24.1NitckelSoilg24.1MitogenSoilg24.1MolybdenumSoilg24.1MitogenSoilg24.1Molybdenum	Cadmium	Soil	g	2.7
CarbeamideSoilng68.4CarbonSoilkg53ChlorotideSoilg12.4ChlorothalonilSoilg115Chromium VISoilg233CobaltSoilg203CopperSoilg211CypermethrinSoilg3.36PinosebSoilg3.36FenpiclonilSoilg8.18GlyphosateSoilg56.1IfonSoilg8.18GlyphosateSoilg15.1LinuronSoilg15.1LinuronSoilg15.1LinuronSoilg16.1MancozebSoilg16.1MancozebSoilg16.1MetaldehydeSoilg17.5MetaldehydeSoilg17.5MetaldehydeSoilg17.5MetaldehydeSoilg16.1MolybdenumSoilg28.3NickelSoilg24.1NitrogenSoilg24.1NitrogenSoilg24.1NitrogenSoilg24.1NitrogenSoilg24.1NitrogenSoilg24.1Ofle, highenicSoilg24.1NitrogenSoilg24.1NitrogenSoilg24.1NitrogenSoil<	Calcium	Soil	kg	70.8
CarbonSoilkg53ChlorotideSoilkg53ChlorothalonilSoilg12.4ChromiumSoilg115Chromium VISoilg203CobaltSoilg211CypermethrinSoilg211DinosebSoilg3.36FenpiclonilSoilg3.36FulpiclonilSoilg818GlyphosateSoilg56.1Heat, wasteSoilg56.1IronSoilg15.1LinuronSoilg15.1LinuronSoilg15.1MagnesiumSoilg16.1MagnesiumSoilg16.1MangeneseSoilg17.8MetaldehydeSoilg17.8MetaldehydeSoilg17.5MetribuzinSoilg17.5MetribuzinSoilg24.1NitrogenSoilg17.5NitrogenSoilg17.9NitrogenSoilg24.1NitrogenSoilg24.1NitrogenSoilg17.5Oils, unspecifiedSoilg24.1NitrogenSoilg24.1Oils, unspecifiedSoilg24.1OrbencarbSoilg24.1OrbencarbSoilg24.1Orben	Carbetamide	Soil	mg	68.4
ChlorideSoilkg533ChloridholnilSoilg12.4ChromiumSoilg115Chromium VISoilg253CobaltSoilmg203CopperSoilg211CypermethrinSoilg3.36PenpiclonilSoilg3.36FenpiclonilSoilg818GlyphosateSoilg818GlyphosateSoilg15.1Heat, wasteSoilg15.1LinuronSoilg16.1MagnesiumSoilg16.1MagnesiumSoilg16.1MagnesiumSoilg16.1MetriduckleSoilg16.1MagnesiumSoilg16.1MagnesiumSoilg16.1MagnesiumSoilg16.1MancozebSoilg16.1MetriduckleSoilg17.8MetriduckleSoilmg16.1MetriduckleSoilg17.9NapropamideSoilg24.1NitrogenSoilg24.1NitrogenSoilg24.1NitrogenSoilg24.1Oils, unspecifiedSoilmg26.6Noil, SoigencifiedSoilmg26.6NitrogencifiedSoilmg26.6NitrogencifiedSoilmg	Carbon	Soil	kg	53
ChlorothalonilSoilg12.4ChromiumSoilg115Chromium VISoilg253CobaltSoilmg203CopperSoilg211CypermethrinSoilg3.36FenpiclonilSoilg3.36FenpiclonilSoilg818GlyphosateSoilg56.1Heat, wasteSoilg56.1LinoronSoilg56.1MagnesiumSoilg15.1LinuronSoilg15.1MancozebSoilg16.1ManganeseSoilg16.1MetaldehydeSoilg17.8MetaldehydeSoilg17.8MetaldehydeSoilg2.3NapropamideSoilg2.3NickelSoilg2.41NitrogenSoilg2.3Oils, unspecifiedSoilg2.3Oils, unspecifiedSoilg2.3OrbencarbSoilg2.3	Chloride	Soil	kg	533
ChromiumSoilg115Chromium VISoilg253CobaltSoilmg203CopperSoilg211CypermethrinSoilg3.84DinosebSoilg3.36FenpiclonilSoilg818GlyphosateSoilg5.61Heat, wasteSoilg5.61IronSoilg15.1LeadSoilg15.1LinuronSoilg16.1MagnesiumSoilg16.1MancozebSoilg16.1MetalehydeSoilg16.2MetalchlorSoilg17.5MetridurinSoilg16.2MolybdenumSoilmg16.2NorpamideSoilmg17.5MetridurinSoilmg16.2MolybdenumSoilmg24.1NitrogenSoilmg16.2MolybdenumSoilmg17.5NitrogenSoilmg24.1NitrogenSoilmg24.1NitrogenSoilmg24.1NitrogenSoilmg16.2MolybdenumSoilmg24.1NitrogenSoilmg24.1NitrogenSoilmg24.1NitrogenSoilmg24.1NitrogenSoilmg24.1Nitrogen <td< td=""><td>Chlorothalonil</td><td>Soil</td><td>g</td><td>12.4</td></td<>	Chlorothalonil	Soil	g	12.4
Chromium VISoilg253CobaltSoilmg203CopperSoilg211CypermethrinSoilmg1.84DinosebSoilmg3.36FenpiclonilSoilmg497FluorideSoilg818GlyphosateSoilg56.1Heat, wasteSoilg15.1LinuronSoilg15.1LinuronSoilg16.1MancozebSoilg832MetaldehydeSoilg16.1MancozebSoilg16.1MetudhyneSoilmg16.1MetudhyneSoilmg16.1ManpaneseSoilmg16.1MetulachlorSoilmg16.1MetulachlorSoilmg16.1MetulachlorSoilmg16.1MetulachlorSoilmg17.8MetribuzinSoilmg16.1MolybdenumSoilmg12.1NapropamideSoilmg28.3NickelSoilmg21.0Oils, biogenicSoilmg1.27OrbencarbSoilkg1.36	Chromium	Soil	g	115
CobaltSoilmg203CopperSoilg211CypermethrinSoilng1.84DinosebSoilg3.36Fenpiclonilmg497FluorideSoilg818ClyphosateSoilg56.1Heat, wasteSoilg15.1LionSoilg15.1LinuronSoilg16.1MancozebSoilg832MetaldehydeSoilg16.1ManganeseSoilg16.1MetolachlorSoilmg16.1MetolachlorSoilmg16.1MetolachlorSoilmg16.1MetolachlorSoilmg16.1MetolachlorSoilmg16.1MitogenSoilmg16.1MetolachlorSoilmg16.1MetolachlorSoilmg16.1MetolachlorSoilmg16.1MetolachlorSoilmg17.5MetribuzinSoilmg21.0NitrogenSoilmg21.0NitrogenSoilmg21.0Oils, biogenicSoilkg1.36Oils, unspecifiedSoilmg21.0Oils, unspecifiedSoilmg21.0Oils, biogenicSoilg3.05	Chromium VI	Soil	g	253
CopperSoilg211CypermethrinSoilmg1.84DinosebSoilg3.36FenpiclonilSoilg497FluorideSoilg818GlyphosateSoilg56.1Heat, wasteSoilg15.1LeadSoilg2.41MagnesiumSoilg15.1LinuronSoilg16.1MancozebSoilg16.1MetaldehydeSoilg17.8MetaldehydeSoilg17.5MetribuzinSoilg17.5MetribuzinSoilmg71.9NapropamideSoilmg24.1NitrogenSoilg12.5Oils, biogenicSoilg12.27OrbencarbSoilmg136OrbencarbSoilmg2.3OrbencarbSoilmg2.4DistorenceSoilmg1.27	Cobalt	Soil	mg	203
CypermethrinSoilmg1.84DinosebSoilg3.36FenpiclonilSoilmg497FluorideSoilg818ClyphosateSoilg56.1Heat, wasteSoilg56.1IronSoilkg120LeadSoilg2.41MagnesiumSoilg16.1MancozebSoilg16.1MetaldehydeSoilg16.1MetaldehydeSoilg17.8MetaldehydeSoilg17.5MetribuzinSoilmg71.9NapropamideSoilmg2.41NitrogenSoilg16.1MolybdenumSoilg16.1NitrogenSoilg17.5MitrogenSoilmg2.41NitrogenSoilmg2.41NitrogenSoilmg16.1MathribuzinSoilmg16.1NitrogenSoilmg2.41NitrogenSoilmg2.41NitrogenSoilmg2.41NitrogenSoilmg2.41NitrogenSoilmg2.41NitrogenSoilmg2.41NitrogenSoilmg2.41NitrogenSoilmg2.41NitrogenSoilmg2.41NitrogenSoilmg2.41Nitroge	Copper	Soil	g	211
DinosebSoilg3.36FenpiclonilSoilmg497FluorideSoilg818GlyphosateSoilg56.1Heat, wasteSoilMWh8.36IronSoilkg120LeadSoilg5.1LinuronSoilg2.41MagnesiumSoilg16.1MancozebSoilg832MercurySoilg832MetaldehydeSoilmg17.8MetaldehydeSoilmg17.5MetribuzinSoilmg71.9NapropamideSoilmg28.3NickelSoilmg24.1NitrogenSoilmg1.2Oils, unspecifiedSoilmg1.36OrbencarbSoilmg2.1OrbencarbSoilmg2.1OrbencarbSoilmg2.1OrbencarbSoilmg2.1OrbencarbSoilmg2.1OrbencarbSoilmg2.1OrbencarbSoilmg2.1OrbencarbSoilmg1.27OrbencarbSoilmg3.05	Cypermethrin	Soil	mg	1.84
FenpiclonilSoilng497FluorideSoilg818GlyphosateSoilg56.1Heat, wasteSoilMWh8.36IronSoilkg120LeadSoilg5.1LinuronSoilg2.41MagnesiumSoilg16.1MancozebSoilg832MercurySoilg17.8MetaldehydeSoilg17.8MetaldehydeSoilg17.9MolybdenumSoilg24.1NirogenSoilg24.1NirogenSoilg2.4.1OrbencarbSoilg1.6MetaldehydeSoilg1.6MetribuzinSoilg1.6MolybdenumSoilg1.6MirogenSoilg2.4.1OrbencarbSoilg2.4.1OrbencarbSoilg2.4.1MetribuzinSoilg2.4.1Soilg2.4.1Soil1.6MolybdenumSoilg2.4.1NirogenSoilg2.4.1OrbencarbSoilmg2.6.1OrbencarbSoilg2.4.1OrbencarbSoilmg2.6.1OrbencarbSoilmg2.6.1OrbencarbSoilkg3.6OrbencarbSoilg3.05 <td>Dinoseb</td> <td>Soil</td> <td>g</td> <td>3.36</td>	Dinoseb	Soil	g	3.36
FluorideSoilg818GlyphosateSoilg56.1Heat, wasteSoilMWh8.36IronSoilkg120LeadSoilg15.1LinuronSoilg2.41MagnesiumSoilkg10.6MancozebSoilg16.1ManganeseSoilg832MetuldehydeSoilmg17.8MetuldehydeSoilmg16.1MolybdenumSoilmg16.1NapropamideSoilmg17.8NitrogenSoilmg17.5NitrogenSoilmg16.1NitrogenSoilmg16.1NitrogenSoilmg16.1NitrogenSoilmg16.1NitrogenSoilmg17.5OrbencarbSoilmg28.3OrbencarbSoilmg21.0OrbencarbSoilmg1.36OrbencarbSoilmg3.05	Fenpiclonil	Soil	mg	497
GlyphosateSoilg56.1Heat, wasteSoilMWh8.36IronSoilkg120LeadSoilg15.1LinuronSoilg2.41MagnesiumSoilg16.1MancozebSoilg832MercurySoilg832MetaldehydeSoilmg16.1MetaldehydeSoilmg16.1MotophydenumSoilmg17.8MetaldehydeSoilmg16.1MotophydenumSoilmg16.1NapropamideSoilmg16.1NitrogenSoilmg16.1NitrogenSoilmg16.1NitrogenSoilmg16.1NitrogenSoilmg16.1NitrogenSoilmg24.1NitrogenSoilmg24.1NitrogenSoilmg24.1Oils, unspecifiedSoilmg24.1OrbencarbSoilmg24.1OrbencarbSoilmg24.1MatherSoilmg24.1MatherSoilmg24.1NitrogenSoilmg24.1OrbencarbSoilmg24.1MatherSoilmg24.1MatherSoilmg24.1MatherSoilmg24.1MatherSoilkg3.6Mather<	Fluoride	Soil	g	818
Heat, wasteSoilMWh8.36IronSoilkg120LeadSoilg15.1LinuronSoilg2.41MagnesiumSoilkg10.6MancozebSoilg832MercurySoilg832MetaldehydeSoilmg17.8MetaldehydeSoilmg16MetolachlorSoilg17.5MetribuzinSoilmg566MolybdenumSoilmg28.3NickelSoilmg21.0NitrogenSoilmg21.0Oils, biogenicSoilmg1.36Oils, unspecifiedSoilkg1.36OrbencarbSoiltn.lg1.27	Glyphosate	Soil	g	56.1
IronSoilkg120LeadSoilg15.1LinuronSoilg2.41MagnesiumSoilkg10.6MancozebSoilg832MercurySoilg832MetaldehydeSoilmg17.8MetaldehydeSoilg16MetolachlorSoilg17.5MetribuzinSoilmg566MolybdenumSoilmg566NickelSoilmg28.3NickelSoilg24.1NitrogenSoilmg210Oils, biogenicSoilkg1.36Oils, unspecifiedSoilkg1.27OrbencarbSoiltn.lg1.27	Heat, waste	Soil	MWh	8.36
LeadSoilg15.1LinuronSoilg2.41MagnesiumSoilkg10.6MancozebSoilg16.1ManganeseSoilg832MercurySoilmg17.8MetaldehydeSoilmg16MetolachlorSoilmg16MetolachlorSoilmg16MolybdenumSoilmg566MolybdenumSoilmg71.9NickelSoilmg24.1NitrogenSoilmg210Oils, biogenicSoilkg1.36OrbencarbSoilth.lg1.27	Iron	Soil	kg	120
LinuronSoilg2.41MagnesiumSoilkg10.6MancozebSoilg16.1ManganeseSoilg832MercurySoilmg17.8MetaldehydeSoilmg16MetolachlorSoilg16MetolachlorSoilmg16MolybdenumSoilmg566MolybdenumSoilmg71.9NapropamideSoilmg28.3NickelSoilg24.1NitrogenSoilmg210Oils, biogenicSoilkg1.36Oils, unspecifiedSoiltn.lg1.27OrbencarbSoilg3.05	Lead	Soil	g	15.1
MagnesiumSoilkg10.6MancozebSoilg16.1ManganeseSoilg832MercurySoilmg17.8MetaldehydeSoilmg16MetolachlorSoilg17.5MetribuzinSoilmg566MolybdenumSoilmg566NapropamideSoilmg28.3NickelSoilmg24.1NitrogenSoilmg210Oils, biogenicSoilkg1.36OrbencarbSoiltn.lg1.27	Linuron	Soil	g	2.41
MancozebSoilg16.1ManganeseSoilg832MercurySoilmg17.8MetaldehydeSoilmg16MetolachlorSoilg17.5MetribuzinSoilmg566MolybdenumSoilmg566NapropamideSoilmg28.3NickelSoilmg24.1NitrogenSoilmg210Oils, biogenicSoilkg1.36OrbencarbSoiltn.lg1.27	Magnesium	Soil	kg	10.6
ManganeseSoilg832MercurySoilmg17.8MetaldehydeSoilmg16MetolachlorSoilg17.5MetribuzinSoilmg566MolybdenumSoilmg71.9NapropamideSoilmg28.3NickelSoilmg210NitrogenSoilmg210Oils, biogenicSoilkg1.36OrbencarbSoiltn.lg3.05	Mancozeb	Soil	g	16.1
MercurySoilng17.8MetaldehydeSoilng16MetolachlorSoilg17.5MetribuzinSoilng566MolybdenumSoilng71.9NapropamideSoilng28.3NickelSoilng24.1NitrogenSoilng210Oils, biogenicSoilkg1.36OrbencarbSoiltn.lg3.05	Manganese	Soil	g	832
MetaldehydeSoilng16MetolachlorSoilg17.5MetribuzinSoilng566MolybdenumSoilng71.9NapropamideSoilng28.3NickelSoilg24.1NitrogenSoilng210Oils, biogenicSoilkg1.36OrbencarbSoiltn.lg1.27	Mercury	Soil	mg	17.8
MetolachlorSoilg17.5MetribuzinSoilmg566MolybdenumSoilmg71.9NapropamideSoilmg28.3NickelSoilg24.1NitrogenSoilmg210Oils, biogenicSoilkg1.36OrbencarbSoiltn.lg1.27	Metaldehyde	Soil	mg	16
MetribuzinSoilng566MolybdenumSoilng71.9NapropamideSoilng28.3NickelSoilg24.1NitrogenSoilng210Oils, biogenicSoilkg1.36Oils, unspecifiedSoiltn.lg1.27OrbencarbSoilg3.05	Metolachlor	Soil	g	17.5
MolybdenumSoilmg71.9NapropamideSoilmg28.3NickelSoilg24.1NitrogenSoilmg210Oils, biogenicSoilkg1.36Oils, unspecifiedSoiltn.lg1.27OrbencarbSoilg3.05	Metribuzin	Soil	mg	566
NapropamideSoilmg28.3NickelSoilg24.1NitrogenSoilmg210Oils, biogenicSoilkg1.36Oils, unspecifiedSoiltn.lg1.27OrbencarbSoilg3.05	Molybdenum	Soil	mg	71.9
NickelSoilg24.1NitrogenSoilmg210Oils, biogenicSoilkg1.36Oils, unspecifiedSoiltn.lg1.27OrbencarbSoilg3.05	Napropamide	Soil	mg	28.3
NitrogenSoilmg210Oils, biogenicSoilkg1.36Oils, unspecifiedSoiltn.lg1.27OrbencarbSoilg3.05	Nickel	Soil	g	24.1
Oils, biogenicSoilkg1.36Oils, unspecifiedSoiltn.lg1.27OrbencarbSoilg3.05	Nitrogen	Soil	mg	210
Oils, unspecifiedSoiltn.lg1.27OrbencarbSoilg3.05	Oils, biogenic	Soil	kg	1.36
Orbencarb Soil g 3.05	Oils, unspecified	Soil	tn.lg	1.27
	Orbencarb	Soil	g	3.05

ENVIRONMENTAL RESOURCES MANAGEMENT

Substance	Compartment	Unit	Scenario 10
Phosphorus	Soil	g	727
Phosphorus, total	Soil	g	199
Pirimicarb	Soil	mg	15.1
Potassium	Soil	kg	4.93
Silicon	Soil	kg	2.14
Silver	Soil	mg	111
Sodium	Soil	kg	27.3
Strontium	Soil	g	131
Sulfur	Soil	kg	10.4
Tebutam	Soil	mg	67
Teflubenzuron	Soil	mg	37.7
Tin	Soil	mg	165
Titanium	Soil	g	10.1
Vanadium	Soil	mg	290
Zinc	Soil	kg	2.29
Zinc phosphide	Soil	g	59.7

Annex E

Critical Review

Critical review

of the report

"Battery Waste Management Life Cycle Assessment Study"

> Final report, (12th July 2006) by ERM (UK).

Anders Schmidt, Ph.D. FORCE Technology Hjortekjaersvej 99 DK-2800 Lyngby

Executive summary

ERM authorized LCA Center Denmark to perform a critical review according to ISO 14040ff on the LCA study "Battery Waste Management Life Cycle Assessment" conducted by ERM. The critical review was performed by Anders Schmidt, Ph.D. and Senior Project Manager at FORCE Technology, one of the partners of LCA Center Denmark.

The review has first been conducted on the draft final report and – following amendments from ERM – also on the final report. Between the review of the two reports a telephone conference was held with participation of the authors and the reviewers, primarily discussing the issues raised in the first review. With this process the reviewer has not had the possibility of discussing main issues like Goal and Scope Definition, choice of methodologies, etc. prior to the review.

In summary the critical review of the study concludes the following:

- The methods employed for the study are consistent with the international standards ISO 14040ff.
- The methods considered for the study are scientifically valid and reflect the international state of the art for LCA.
- Considering the goals of the study, the used data are justified to be adequate, appropriate and consistent.
- The consistency of the interpretations with regard to the goals and the limitations
 of the study is regarded to be fully fulfilled.
- The report is certified to have a good transparency and consistency.
- Overall the critical review concludes that the study is in accordance with the requirements of the international standards ISO 14040ff.

Lyngby, July 20, 2006

Anders Schmidt Senior Project Manager

Goal and scope of the critical review

The goal and scope of the critical review is defined in accordance with ISO 14040, paragraph 7.1. Following ISO 14040, the critical review process shall ensure that:

- the methods used to carry out the LCA are consistent with this International Standard
- the methods used to carry out the LCA are scientifically and technically valid
- the data used are appropriate and reasonable in relation to the goal of the study
- the interpretations reflect the limitations identified and the goal of the study
- the study report is transparent and consistent

Within the budgetary frame it has not been possible to verify all details in the study. Some spot checks were conducted, but the focus of the review was on the formal requirements in the ISO 14040 standard series. For this purpose, a checklist for critical reviews of LCA, published by the Danish Standards Association, was used in the first review. Due to the time constraints, not all points in the checklist were addressed at the same level of detail. In-depth considerations were thus only included in the cases where the reviewer identified issues which at the first glance did not seem to be fully explained.

The reviewer has not looked into the financial cost considerations outlined in the study.

Elements in the critical review

Goal and scope definition

Following the first review, the Goal and Scope of the study has been defined in an appropriate way, together with the target group and intended use of the report.

Functional unit and System boundaries

The functional unit for the study – "management of consumer portable battery arisings in the UK between 2006 and 2030" – is well explained and supplemented with calculations of the actual amounts being handled in the different scenarios. The production and use stage for the batteries is not included as this will not change as a consequence of altered disposal.

The systems examined have been described in great detail, allowing the target group to understand the processes and actors involved in each scenario. Nine scenarios combine the three different collection scenarios with three different recycling scenarios, offering results for a wide and realistic range of options. Also included is a baseline scenario in which batteries are being disposed as residual waste, i.e. current practice. The overall system description is thus fully consistent with the goal and scope of the study, although it may be difficult for the reader to distinguish between the scenarios throughout the report on the basis of their name alone. There is no ready solution for this; on the one hand the study has a large scope and on the other hand the scenarios have many common elements. As with most other technical reports the reader will have to find a way to remember the differences. An overview could possibly be established by combining the key features/differences between the collection and recycling scenarios, respectively.

Additionally, a number of sensitivity analyses are conducted in accordance with the ISO 14040 standard series. They seem to be well chosen, improving the understanding of the important elements in the nine scenarios and the overall results.

Allocation rules

Rules for allocation and system expansion are in accordance with ISO 14040. They yhave been set is a way that shows the changes in environmental impacts caused in each scenario. An important element in this is the assumption that materials from recycled batteries will replace virgin raw material. In the reviewers opinion this is the best choice, reflecting the most possible outcome of increased recycling.

Database and data quality

The database used in the study reflects the state-of-the-art of LCA inventories today. Large efforts have been devoted to collection of primary data on the recycling processes affected. The data are well-documented, including a discussion of mass balances where appropriate. Secondary data from publicly available databases are used to describe processes that are common to all scenarios, e.g. transportation, electricity production and waste disposal. The authors rightly acknowledge that these data in some cases are relatively old and not necessarily related to processes situated in the UK. Being common processes to all scenarios and often with a small impact on the overall results their use is in full accordance with the goal and scope of the study. The reviewer, however, also share the authors' wish for better/newer data for such processes.

The data quality is thus judged to be adequate to fulfil the goal of the study. An extensive tabular overview is provided with respect to the representativeness as well as geographical, time-related and technological coverage of each of the included processes/materials. However, a legend is missing for the attributes given ("X", resp. " $\sqrt{"}$), making it difficult to pinpoint potentially critical data from the table.

Impact assessment method

The impact assessment method chosen (The CML-method) is commonly accepted and widely used all over the World. It focuses on the impact categories for which scientific consensus exist, but it also includes an assessment of human toxicity and ecotoxicity. The

latter two categories can only be assessed with a relatively high degree of uncertainty and this is acknowledged by the authors in both their introduction to the method and in their presentation of the results.

Results

The study approach generates a broad range of results. The inventory results are – as is usually the case – very comprehensive and they have therefore been annexed.

The results of the impact assessment are presented in tabular form, one for each scenario plus a comparison table, together with a short (2 page) summary of the findings identifying the key factors responsible for the differences between the scenarios. Unfortunately for the future decision-making process a high or best performing recycling scenario does not emerge, but the reviewer agrees to the conclusions drawn. A (subjective) weighting step could possibly be applied, but in accordance with the ISOstandards this possibility has not been utilized.

The subsequent sensitivity analysis examines the consequences of changing a number of important assumptions, i.e. battery waste arisings, collection targets, Directive implementation year, disposal assumptions, institutional collection points and electricity input to recycling.

This approach gives the Commissioner a good insight into the consequences of political decisions, e.g. regarding Directive implementation year. The approach, however, also pinpoints some of the uncertainties in the overall study approach. As the most prominent example, the choice of electricity input to recycling processes in Europe has a very large impact on abiotic resource depletion and global warming potential. The basic assumption is that the current mix of energy resources used to produce electricity in Europe (primarily France and Switzerland) will not change as a function of increased recycling of UK batteries. If, however, the extra need for electricity must be covered by power generated in combined cycle gas turbines, a significant extra draw on non-renewable resources is induced, together with a marked increase in emission of greenhouse gases. The inclusion of this sensitivity analysis is appreciated by the reviewer, but it is suggested that the implications are also addressed in the conclusions.

Study conclusions

The conclusions drawn from the study are not described in the same detail as the introductory parts. The most significant findings are emphasized, but no efforts have seemingly been devoted to use the results to point to how the best possible solution can be achieved by combining the best possible collection system with the best possible recycling system. It is acknowledged that this is outside the scope of the study, but it is suggested to include some remarks on how the study and results eventually can be used when the actual systems are specified in the near future.

Other comments

The first impression of the report is that an Executive Summary is missing. It is strongly recommended that this is included in the final report, giving the reader the possibility of understanding the background for the study, its technical implications and the results and their interpretation.

Review conclusions

The study has been conducted in accordance with all requirements of the ISO 14040 standard series on Life Cycle Assessment. The choices made are fully justified and well documented, and the results can therefore be assumed to reflect the consequences related to implantation of the nine different scenarios. As such they provide the information envisioned in the Goal and Scope of the study.

The choices made are transparent and consistent with the Goal and Scope. The data and their quality is state-of-the-art in European LCA, and especially the handling of recycling processes is exemplary. The data used are thus appropriate and reasonable in relation to the goal of the study as required by the ISO standard series.

The overall approach in the LCA study, including the allocation rules, is consistent with the ISO 14040 standard series. A special element, the impact assessment method, is internationally accepted as being scientifically and technically valid. The report describes its limitations in sufficient detail to avoid overinterpretation.

The study report is transparent and consistent, although it contains much technical information and data. The interpretation and conclusion sections are rather brief, but they address the main issues in a consistent manner as requested in the standard series.

Annex F

ERM Response to Critical Review

Dr Schmidt in his critical review (Annex E) concluded the following:

- The methods employed for the study are consistent with the international standards ISO 14040ff;
- The methods considered for the study are scientifically valid and reflect the international state of the art for LCA;
- Considering the goals of the study, the used data are justified to be adequate, appropriate and consistent;
- The consistency of the interpretations with regard to the goals and the limitations of the study is regarded to be fully fulfilled;
- The report is certified to have a good transparency and consistency; and
- Overall the critical review concludes that the study is in accordance with the requirements of the international standards ISO 14040ff.

The review identified no areas of non-conformance and as result no changes were required. However, a number of suggestions to improve the report were made by the reviewer.

These suggestions along with ERM's response to each are detailed below.

- 'The data quality is thus judged to be adequate to fulfil the goal of the study. An extensive tabular overview is provided with respect to the representativeness as well as geographical, time-related and technological coverage of each of the included processes/materials. However, a legend is missing for the attributes given ("X", resp. "√"), making it difficult to pinpoint potentially critical data from the table.' ERM Response: Change made.
- 2. 'As with most other technical reports the reader will have to find a way to remember the differences. An overview could possibly be established by combining the key features/differences between the collection and recycling scenarios, respectively.' ERM Response: We suggest the reader bookmarks Sections 1.7 and 1.8 for easy referral, as Dr Schmidt points out the scenarios are described in great detail in these sections.
- 3. 'A (subjective) weighting step could possibly be applied, but in accordance with the ISO-standards this possibility has not been utilized.' ERM Response: No action taken.
- 4. 'If, however, the extra need for electricity must be covered by power generated in combined cycle gas turbines, a significant extra draw on non-renewable resources is induced, together with a marked increase in emission of greenhouse gases. The inclusion of this sensitivity analysis is appreciated by the reviewer, but it is suggested that the

F1

implications are also addressed in the conclusions.' ERM Response: The conclusions have been amended to address this point.

- 5. 'The most significant findings are emphasized, but no efforts have seemingly been devoted to use the results to point to how the best possible solution can be achieved by combining the best possible collection system with the best possible recycling system. It is acknowledged that this is outside the scope of the study, but it is suggested to include some remarks on how the study and results eventually can be used when the actual systems are specified in the near future.' ERM Response: No action taken as this is outside the scope of the study.
- 6. 'The first impression of the report is that an Executive Summary is missing. It is strongly recommended that this is included in the final report.' ERM Response: An executive summary has been added to the report.