Peer-to-Peer Netw Appl
DOI 10.1007/s12083-007-0003-1

On peer-to-peer (P2P) content delivery

Jin Li

Received: 16 May 2007 / Accepted: 29 November 2007
© Springer Science + Business Media, LLC 2008

Abstract In both academia and industry, peer-to-peer
(P2P) applications have attracted great attentions. P2P
applications such as Napster, Gnutella, FastTrack, BitTor-
rent, Skype and PPLive, have witnessed tremendous
success among the end users. Unlike a client-server based
system, peers bring with them serving capacity. Therefore,
as the demand of a P2P system grows, the capacity of the
network grows, too. This enables a P2P application to be
cheap to build and superb in scalability. In this paper, we
survey the state of the art of the research and the
development of P2P content delivery application. Using
examples of the deployed P2P applications and research
prototypes, we survey the best practices in P2P overlay
building and P2P scheduling. We hope that the information
may help the readers to build a reliable, robust P2P content
delivery application.

Keyword Peer-to-peer (P2P) - P2P file sharing - P2P
streaming - P2P broadcast - Survey - Overlay - Scheduling -
Efficiency - Reliability - Robustness - Quality of service (QoS)

1 Introduction

In May 1999, an 18-year old college student, Shawn
Fanning, built Napster in the dormitory of Boston’s
Northeastern University [2]. One of Shawn’s college
roommates loved listening to MP3s and complained about
the unreliable MP3 sites these days. Music links on those

J. Li (B<)

Microsoft Research, Communication and Collaboration Systems,
One Microsoft Way,

Redmond, WA 98052, USA

e-mail: jinl@microsoft.com

sites were frequently dead, and indexes were often out of
date. In response, Shawn developed a real-time system to
help the music lovers to find and exchange music files on
the Internet. Unlike the popular approach of the day, which
sent out robots to roam the Internet periodically, search,
update, and remove music that it found on the Internet,
Shawn’s program had users listed the files they were
willing to share on a computer that others can access.
Moreover, users of Shawn’s program directly downloaded
the music from other users’ computer, bypassing the use of
central server. Shawn named the program Napster, which
was his nickname, email alias, and his username in IRC
rooms.

Napster was released in an era of rapid growth of the
Internet bandwidth, CPU power and disk storage capacity.
Couples with the fact that the Internet access in most
American homes and campuses was flat rate, Napster
quickly became popular. In Feb. 2001, Napster boasted a
peak of 1.5 million simultaneous users [3]. Although the
original Napster service was soon shut down by a court
order [1], it made a major impact on how people, especially
students used the Internet. The traffic analysis conducted by
CacheLogic [4], shown in Fig. 1, illustrates that ever since
year 2003, P2P file sharing traffic has surpassed web traffic
and becomes the single largest traffic type by volume on ISP
networks. Now on the Internet backbone, 65-70% of the
traffic can be attributed to the P2P. In the last mile, 50-65%
of downstream and 75-90% of upstream traffic is P2P traffic.
Moreover, P2P file sharing traffic continuous to grow.

Napster makes the term peer-to-peer (P2P) popular.
However, the concept and technology behind P2P may
find its origin in a number of much older technologies, such
as IP routers, DNS (domain name service), Usenet news
server system, FidoNet [7], etc., in which the technology
trend moves away from monolithic systems and toward

@ Springer

Peer-to-Peer Netw Appl

Fig. 1 Internet protocol trend, y
1993 to 2006 (source: Cache
Logic [4) 0o

50 -4

50

B
[=]
1

:

Percentage of Internet Traffic

2

10

Q-

@ Emall
@ FTP
@ PP
@ Web

1993 1994 1995 1996 1997 1938 1999 2000 2001 2002 2003 2004 2005 2006

distributed systems. The Usenet can be considered an
earlier implementation of P2P content delivery. The Usenet
server communicates in P2P fashion among each other to
exchange Usenet news article over the entire network. Each
individual user of Usenet then communicates in a client-
server fashion with the local Usenet news server to read and
post articles.

With Napster and the following P2P applications leading
a revolution in file sharing and other type of content
delivery, it is interesting to clarify what is exactly P2P. In
this paper, we take a resource centric approach to classify
P2P. Following the proposal of Clay Shirkey [5], P2P is
defined as a class of applications that take advantage of the
resources — storage, cycles, content, human presence —
available at the edges of the Internet. Compared with the
traditional client-server architecture of the Internet, a P2P
application has the important properties that each peer node
belongs to a different owner, and pays and contributes its
own resource in return of the service rendered by the P2P
network. Thus, the peer is both a resource provider and a
resource consumer. As more and more nodes join the P2P
network and demand on the system increases, the total
resource of the system also increases. Thus, a P2P
application is economy to run, robust and super-scalable.
This is in sharp contrast to the cost structure of the client-
server application, where it is the server that is paying for
the capacity. Moreover, since each peer in the P2P network
is a service provider, the servicing resource of the P2P
network is distributed with redundancy, this leads to a
robust service. Properly designed, P2P network may also
efficiently utilize the geographical and ISP diversity of
the peers to smartly route the content from the source to the
peer nodes, and reduce the traffic on the backbone of the
Internet.

Schollmeier [6] further defines a pure P2P network as
the one that any single, arbitrary chosen peer can be

@ Springer

Year

removed from the network without having the network
suffering any loss of network service. In comparison, a
hybrid P2P network has a central entity (server) which
renders certain central functionality of the service, e.g.,
keeps track of peers and responds to the request of peers.
Either pure and hybrid P2P network differs from the
traditional client-server application in that the peers
contribute the majority of the resource running the service,
which includes the CPU power, the bandwidth and the
storage.

We can also classify the P2P network based on how the
content is delivered and consumed. For simplicity, let us
assume that the source file to be distributed is a 400kbps
video file created on the fly, and use it as an example to
illustrate various content delivery method. The most
unrestrictive mode of delivery is bulk download. Most
popular P2P file sharing utilities, such as BitTorrent,
eDonkey, FastTrack and Gnutella belongs to this mode. In
the bulk download mode, the peer doesn’t care about the
source characteristics (video file at 400 kbps). Its operation
goal is simply to retrieve the file from the P2P network as
fast as possible. For efficiency, most modern P2P file
sharing applications, such as BitTorrent or eDonkey, chop
the file into blocks (also called pieces, packets) and deliver
the chopped block in non sequential order. Therefore, the
shared video is not playable until the entire video is
retrieved. But even on a slow connection, the video will
look great during playback. The bulk download guarantees
content quality with unbounded delivery time. As such,
when the actual network bandwidth is tight, say 33.6 kbps
modem, you may have to wait a long time, hours or days,
before you can play the file.

Since a large amount of content delivered over the
Internet is video or music, where the user favors fast
response, an alternative mode of content delivery, stream-
ing, is born. In the streaming mode, the application is aware

Peer-to-Peer Netw Appl

of the format, the required bandwidth, and the structure of
the delivered content, and allows the content to be played
smoothly during the delivery. This involves a variety of
technologies. For one, the streaming application usually
uses a playback buffer at the client. At the beginning of the
streaming, the playback buffer is filled with the arriving
content while the playback is suspended. The playback only
starts when the playback buffer reaches a certain level.
During the playback, the streaming application carefully
manages the buffer and ensures a certain buffer occupancy
level, so that the playback will not be interrupted due to
packet loss or jitter during the delivery, and the buffer is not
excessively long which consumes unnecessary server
bandwidth. The streaming application may also adapt the
delivery media according to the resource available in the
system and to the client. For example, for client at the end
of a slow Internet link or for P2P network with insufficient
total network bandwidth, a low bit rate version of the video
can be streamed to the client, if the video is encoded with
multiple bit rate (MBR) streams [8] or scalable stream.
Again using the 400 kbps video as an example, in the
streaming mode, the video may be transcoded, either
through a scalable video codec or through a MBR video
codec to different bit rates, say 200 kbps, 100 kbps, 50 kbps
and 25 kbps. For client at the end of a 33.6 kbps modem
link, we can opt to deliver only the 25 kbps video stream.
The streaming client may also opt to drop packets that have
a less impact on playback quality, e.g., a B frame video
packet, to ensure that the video can still be smoothly played
back using the available resource. Overall in streaming, the
target is to get a smooth playback experience and a bounded
delivery time, which is determined by the playback buffer.
However, the content quality may be sacrificed. The delivery
time delay depends on the fluctuation of the available
resource to the client and in the P2P network. In practical
P2P streaming implementations, such as PPLive, the
delivery time delay can be 15-120s.

A third mode of content delivery requires bounded delay
from the creation to the consumption (the content is played
back at the client). We call the delivery mode as delay
bounded broadcast, or simply broadcast. Broadcast mode
applications include: audio/video conferencing, interactive
gambling, earning conference call (or distribution of other
financial information), Internet gaming, etc. Compared with
the streaming application, the broadcast application not
only needs to sustain playback during delivery, but also
needs to put an upper bound on the maximum delay. As a
result, the content delivery algorithm has to be optimized
for minimizing delay, and certain tricks in the streaming
application, e.g., the use of the playback buffer to combat
packet loss and jitter, can not be used. There are many
research prototypes for P2P broadcast applications, such as
Microsoft ConferenceXP [63], NICE [30], Zigzag [31],

ESM [63]. However, compared with P2P file sharing and
P2P streaming, the current deployment scale of P2P
broadcast is much smaller in the real world.

Whether it is P2P file sharing, P2P streaming, P2P
broadcast, a well designed P2P application should have the
following characteristics. It is efficient, meaning that it uses
all resource available in the P2P network. It is robust, i.e., it
can cope effectively with the changes and the anomaly of the
peers and the network links. It satisfies the quality of service
(QoS) requirement of the delivery mode. With streaming,
this means that the playback is smooth with as high media
quality as possible. With broadcast, this means that it satisfy
certain delay constraint of the delivery of the media.

In this paper, we survey the state of the art of the
development of efficient and robust P2P content delivery
applications. The paper is organized as follows. We will
start by examining a number of widely deployed P2P
applications in Section 2. We then examine the two
important aspects to achieve the efficiency and robustness:
the P2P overlay construction (in Section 3) and the P2P
scheduling algorithm (in Section 4). We use both widely
deployed P2P applications, such as Gnutella, eDonkey,
FastTrack, BitTorrent, PPLive, and Skype, and highly cited
P2P research prototypes to illustrate the design strategies
adopted by developers and researchers. We summarize the
current state of the P2P delivery technologies and propose
future works in Section 5.

2 Anatomy of widely deployed P2P applications

In this section, we examine several P2P applications.
Between widely deployed P2P applications with large user
base and widely cited P2P research prototypes, our
discussion favors the former. We will delay the discussion
of the latter when we examine the components of P2P
overlay construction and P2P scheduling in Section 3 and
4. The purpose of the section is to use the real world P2P
application as guidance to steer the development of future
P2P applications.

2.1 P2P file sharing applications

After Napster raised the interest of P2P, a great number of
P2P file sharing applications have been developed all over
the world with different design philosophies and operation
modes. The most popular P2P file sharing applications are
Gnutella, FastTrack, eDonkey and BitTorrent.

a) Gnutella

Gnutella, developed by Justin Frankel and Tom Pepper
of Nullsoft in 2000, is one of the earliest P2P file sharing
tools following the Napster. Gnutella works as follows [9].

@ Springer

Peer-to-Peer Netw Appl

Upon initial connection, a Gnutella peer joins the network via
at least one known peer, whose IP address is obtained either
via an existing list of pre-configured addresses, or via a
bootstrapping process that talked to a known source of the
Gnutella peer, e.g., a web server, a UDP host, or even IRC.
Through this initial Gnutella peer, the new coming peer will
discover more new Gnutella peers until the number of its
direct neighbors reaches a predetermined threshold. When the
user wants to do a search, the source peer will send the search
request to all actively connected peers. The recipient peer
answers the query if it knows anything useful, or forwards the
request. The query thus propagates among the Gnutella
network until a predetermined number of hops is reached.
Essentially, Gnutella floods the network to conduct the search.
If a peer has the requested file of the search, it will contact the
source peer. If the user of the source peer decides to download
the file, it will negotiate the file download with the target peer.

Gnutella is one of those pure P2P applications that do not
have a centralized server. A noticeable feature is that
Gnutella is under nobody’s specific control and is effectively
impossible to shutdown. The purely decentralized Gnutella
is made popular by Napster’s legal trouble in early 2001, in
which Judge Madelyn Patel ruled that since Napster used
servers that indexed and routed copyright-infringing music
sharing, it was knowledgeable of the illegal file sharing
activity of its users and was thus liable. However, the
growing surge in popularity reveals that the initial Gnutella
protocol has limitation in scalability. The number of
Gnutella’s search requests grows exponentially to the
number of connected users [10, 11]. When the number of
Gnutella users grows, the search requests overwhelm the
Internet, and thus get prematurely dropped. As a result, the
search only reaches a small portion of the network. To
address the problems, later version of Gnutella implements
a two class system of supernodes and leaves, with only the
supernodes perform the search and routing functionality.
b) FastTrack

FastTrack was introduced in March 2001 by Niklas
Zennstrom, Janus Friis and Jaan Tallinn. Three popular P2P
clients use FastTrack - Kazaa, Grokster and iMesh. A
noteworthy feature of FastTrack is that it uses supernodes
to improve scalability. A FastTrack peer with powerful
CPU and fast network connection is automatically promot-
ed to become a supernode, which acts as an index server for
other slower FastTrack peers. FastTrack also employs
UUHash to find identical files in multiple peers so that it
can download the file simultaneously from multiple
sources. Unfortunately, though the UUHash is simple to
implement and fast to compute, it is rather weak, leading
FastTrack susceptible to pollution attacks [12].
c) eDonkey

The eDonkey was conceived in Sept. 2000 by Meta-
Machine Inc. The eDonkey network operates as a hybrid

@ Springer

P2P network similar to Napster [13]. The eDonkey network
consists of clients and servers. The eDonkey server acts as a
communication hub, indexes files and distributes addresses
of other eDonkey servers to the clients. The eDonkey client
downloads and shares the files. The eDonkey network is
based upon an open protocol. As a result, there are dozen
versions of eDonkey servers and clients. In the earlier days,
the most popular eDonkey client was the eDonkey2000.
However, since 2005, eMule, a free software implementa-
tion of eDonkey client that was started on Mar. 2002 by
Hendrik Breikreuz has taken over and becomes the most
popular one.

In the earlier days, eDonkey relies on users to run
servers on a volunteer basis to keep the network operating.
The small cluster of eDonkey servers often overloads, and
is vulnerable to attacks. To overcome the problem, both
eDonkey2000 and eMule have resorted to the Kademlia
DHT [38] (distributed hash table) algorithm to distribute the
load of the server. With the Kademlia DHT, eDonkey 2000
becomes Overnet, while eMule becomes the Kad network.
This solves the scaling problem.

d) BitTorrent

BitTorrent was created in 2002 by Bram Cohen. It runs
on an open protocol. The original BitTorrent client was
written in Python. But today, there are more than a dozen
compatible clients written in a variety of computer
programming languages [14]. To share a file or a set of
files through BitTorrent, a torrent file is first created. The
torrent file contains the metadata of the shared content,
which includes the information of the tracker that coor-
dinates the file distribution, and the hashes of the file blocks
to be distributed. BitTorrent protocol doesn’t specify how
the torrent file is distributed. In fact, the torrent file is
usually distributed by traditional means, e.g., posting on the
web, through a forum, BBS board, or through the search
engine run by specific BitTorrent society. When a BitTor-
rent client wants to retrieve a file, it first obtains the torrent
file. The client then contacts the tracker listed in the torrent
file, which can be a single computer or a distributed set of
computers in the trackerless BitTorrent implementation, to
obtain a list of peers that are sharing the file at the same
time. BitTorrent adopts a Tit-for-Tat content sharing
strategy. At a certain time instance, a BitTorrent peer
preferentially uploads to top m (default m=5) neighbors
that provide the peer with the best download rate. To
jumpstart sharing and to make sure that a new arrival
BitTorrent peer may contribute its resource, BitTorrent also
uses an optimistic unchoking strategy that violates strict
Tit-for-Tat. The optimistic unchoking allows the peer to
upload to a random neighbor peer regardless of its
download rate. BitTorrent also adopts a local rarest content
distribution rule. That is, a BitTorrent peer will first
download the block that is the rarest in its local neighbor-

Peer-to-Peer Netw Appl

hood. This ensures that with good probability, the newly
downloaded block can be further distributed to the other
peers, thus efficiently utilizing the upload bandwidth of the
current peer.

A number of unique features have allowed BitTorrent, a
relative late comer in P2P file sharing, to become a popular
file sharing utility. First, BitTorrent itself does not offer any
index or search mechanism to find sharing files, it thus
distances itself from copyright infringement accusation.
Second, the Tit-for-Tat content sharing mechanism, though
simple, is a remarkable effective mechanism to encourage
BitTorrent users to share and contribute. As a result,
BitTorrent suffers far less from the leech or the free-rider
problems that plaque the other P2P file sharing applica-
tions. Third, by recording hashes of sharing blocks in the
torrent file, BitTorrent avoids the pollution attack [12]
troubling prior file sharing applications. Fourth, the action
to split file into sharing blocks and to share blocks on a
local rarest basis is a very effective mechanism to utilize the
bandwidth resource of the peer and to achieve high
efficiency. In fact, BitTorrent can be considered the first
widely deployed P2P file sharing application that achieves
both efficiency and robustness.

BitTorrent has generated great enthusiasm for P2P file
distribution in academia and industry. Many open/free
source software projects, e.g., OpenOffice.org, SUSE and
Ubuntu Linux distribution, have used BitTorrent to distrib-
ute their source code and compiled binary. World of
Warcraft, a popular multiplayer online role-playing game
(MMORPG), uses BitTorrent to distribute game patches.
Warner Brothers Entertainment plans to distribute the films
and TV shows over the Internet using BitTorrent. Fan-film
producers and small music makers have made their file,
music, footage available via BitTorrent. A number of

100%

§ § g

Percentage Share of P2P Traffic

8
&

0%

conferences have distributed their conference video record-
ing through BitTorrent as well. Many small business
content owners comment that without BitTorrent, they
simply can not distribute content in a cost effective yet
efficient fashion.
e) P2P file sharing statistics

According to CacheLogic [4], BitTorrent, eDonkey, Fast-
Track and Gnutella are the four most popular P2P file
sharing utilities used today. In Fig. 2, we show the
percentage share of P2P traffic in different countries of the
four file sharing utilities. In general, BitTorrent and eDonkey
are by far the most popular file sharing tools, the FastTrack
(Kazaa, Grokster and iMesh) is a distant third, and Gnutella
takes a fourth position. The popularity of the file sharing
utilities is also very different in countries. For example, in
South Korea, eDonkey is much popular than BitTorrent;
while in Singapore, the reverse is true; and in United States
and China, eDonkey and BitTorrent are equally popular.

2.2 P2P volP-skype

Let’s take a look at Skype, a P2P VoIP (voice over Internet
protocol) application. Skype was released on Aug. 2003 by
Niklas Zennstrom and Janus Friis, who founded FastTrack
and Kazaa. Compared with public VoIP standard such as SIP
and H.263, Skype uses a proprietary protocol and relies on
the Skype P2P network for user directory and firewall/NAT
(network address translator) traversal. As a result, Skype can
bypass the costly infrastructure associated with the deploy-
ment of VoIP, and can easily scale to a very large size.

Like FastTrack built by the Skype founders, Skype uses
a two tier infrastructure, which consists of supernodes and
clients. When a peer joins the Skype network, it always

u BitTorrent
® eDonkey

| FastTrack
Gnutella

Australia
Sweden |
China I
|
Hungary
India !
Netherlands
United Kingdom
Chile i

i

i} !

Mexico
Germany

Denmark
Argentina
Switzerland
Brazil |
4
Belgium
Spain
Isr
South Korea

United States

Fig. 2 Percentage share of P2P Traffic (BitTorrent, eDonkey, FastTrack and Gnutella, source: CacheLogic [4])

@ Springer

Peer-to-Peer Netw Appl

starts as a client node. Then the Skype software checks if
the client has sufficient CPU, memory and network
bandwidth, and if it is directly connected to the Internet
(not behind any NAT or firewalls). If all the above
conditions are satisfied, Skype automatically promotes the
client to the supernode. Once becoming a supernode, the
Skype peer will performs user directory service to help
other Skype users, and to relay traffic for computers behind
firewall/NAT. The Skype client follows a set of rules to
detect the existence of firewall/NAT, and to ensure that a
Skype connection, either directly or indirectly, can always
be established between two Skype peers. This is performed
as follows. The Skype client always finds at least one
Skype supernode as its default gateway, and first tries to
establish a UDP connection to the supernode. If that fails, it
tries to establish a TCP connection on an arbitrary port to
the supernode. If that still fails, it tries to establish the
connection to the supernode on port 80 (the Http port) or
port 443 (the SSL port). Because most corporate firewalls at
least allow the Http and/or Https (SSL) traffic, the fall back
mechanism to connect on port 80 and port 443 almost
always works. The same fall back to port 80 and/or port
443 mechanism has been widely used in instant messenger
client, such as MSN/Live Messenger, Yahoo Messenger,
ICQ, etc.. When two Skype users intend to establish a
communication session, Skype first tries to establish a
direct connection with a certain NAT traversal mechanism.
If the direct connection fails, Skype relays the traffic
through the gateway supernode of the Skype clients. The
use of supernode relay enables Skype connection to work in
situation where SIP/H.263 fails, and enable Skype to use a
high bit rate wideband speech codec (24 kbps) to achieve
good perceptual voice quality while doesn’t incur the cost
of relaying traffic for peers behind firewall/NAT.

Another key distinction between Skype and SIP/H.263 is
that Skype utilizes a strong encryption protocol to protect
the confidentiality of the call. Skype certifies its user’s
public key during login via a 1536-bit (for unpaid Skype

Fig. 3 Skype gadgets: (a) Net-
gear Skype Wi-Fi phone, (b)
Motorola CN620 Skype Wi-Fi }

phone, (¢) IPEVO Free-1 USB [Lt
Skype phone, and (d) IPdrum B weman
mobile Skype cable e s
NETGEAR
e L
a

@ Springer

account) or a 2048-bit (for paid Skype account) RSA
certificate. It uses a 1024-bit RSA to negotiate symmetric
AES (advanced encryption standard) key, and uses 256-bit
AES to protect calls. The feature of encrypted Skype calls
has attracted many corporate and consumer users.

Skype is immensely popular. In October 2006, it boosts
136 million registered users with $50 million revenues.
This represents a 20% increase in the number of registered
users and a 13% increase in the revenue, compared with the
figure of July 2006, just three month ago. The revenue is
mainly derived from Skype users who use Skypeln and
SkypeOut service, in which Skypeln allows Skype users to
receive calls on their computer dialed by regular phone
subscribers, and SkypeOut allows Skype users to call
traditional telephone users. Skype has deployed both PSTN
(public switched telephone network) gateway and Skype-
to-SIP/H.323 gateway to allow Skypeln and/or SkypeOut
functionality.

Three years after its release, Skype handles 7% of
world’s long-distance minutes. Moreover, Skype has al-
ready gone beyond traditional PC platforms. Its client is
available for Microsoft Windows (2000, XP, CE), Mac OS
X and Linux. Netgear® and Motorola® has released Wi-Fi
Skype phone (shown in Fig. 3a,b). Wherever you have Wi-
Fi access, these phones will allow you to calls anyone else
on Skype, anywhere in the world for free, without using a
PC. And with Skypeln and/or SkypeOut, you can commu-
nicate with ordinary phones worldwide for pennies per
minute. Shown in Fig. 3¢, IPEVO’s USB Skype phone
allows the use of the traditional phone interface to call users
via Skype. The IPdrum mobile Skype cable, shown in
Fig. 3d, allows people with phone contracts that can make
free calls to pre-defined numbers (such as “friends &
family” plan) to make cheap VoIP calls from their mobile
phone to anywhere in the world. The trick is to hook one
mobile phone to the IPdrum mobile Skype cable, which is
further hooked to a computer running Skype, and make
calls use another mobile phone which is on the friends &

Peer-to-Peer Netw Appl

family plan of the stationary mobile phone. The fixed
mobile phone serves as a gateway for the Skype applica-
tion, and allows the user to receive and make mobile phone
calls to anyone in the world via Skypeln and/or SkypeOut.

2.3 P2P streaming

CacheLogic data [4] also shows that the average file size
for P2P file sharing is constantly growing, and the majority
of P2P traffic volume is generated by objects with an
average size greater than 1 GB. This suggests that P2P file
sharing is moving strongly towards video/music sharing.
The era of P2P streaming, which is a much favorable
delivery mode for large media, is coming. The target of P2P
streaming is to build a scalable P2P platform for TV/music
delivery. More than a dozen companies are actively
working in this area. Some example companies are Raw-
Flow [15], Abacast [16], PPLive [17], PPStream [18],
UUSee [19], Roxbeam [20], Mysee [21], etc.

Let us use PPLive, arguably the most popular P2P
streaming application nowadays, as an example. At the end
of 2005, PPLive has 20 million download, and has 1
million independent viewers per day. According to [17], it
supports over 200,000 concurrent users at bit rate in the
400-800 kbps for 2006 Spring Festival Gala on Chinese
New Year on January 28, 2006. In 2007, the number of
concurrent users for the most popular PPLive session raises
to 1.5 million [73]. This corresponds to an aggregate bit
rate in the vicinity of 600 Gbps, or 540TB transferred per
the 2 hour event. During the event, the PPLive server only
provides 10 Mbps distribution bandwidth, or 0.0017% of
the bandwidth. From the preliminary analysis of [22],
PPLive operates as follows. When the PPLive client is
launched, it retrieves from a channel server the metadata
information of all channels. Currently, PPLive offers
approximately 300400 channels, with all viewers at the
same channel watch the media at approximately the same
point. The PPLive client presents the channel list to the
user, who selects one particular channel to watch. After the
channel selection, the PPLive client further talks to a
tracker of that channel, and retrieves a list of peers that are
watching the same channel. The PPLive client connects to a
set of peers, and starts to exchange data. During the
exchange, it chops the streaming media to chunks, with
each chunk being about 1s worth of compressed media. The
PPLive client exchanges a buffer map that is coded chunk
availability within a future playback window that is about a
few minutes long, and makes decision on the particular
chunks to retrieve and/or to send via a proprietary
algorithm. At the same time, the retrieved chunks are
stored in a buffer in the PPLive engine, and are fed through
a local Http pipe to the Windows Media player or the Real
player, depending on the type of the media being streamed.

The challenge in P2P streaming is to provide a sustained
streaming bit rate to all peers joining the network. Unlike
P2P file sharing, where the content delivery can be carried
out on a best effort basis, in P2P streaming, insufficient
delivery bandwidth leads to poor quality of service, such as
playback stalling or freezing, which is very annoying to the
users. Through analysis of [22], we learn that the current
PPLive platform do experience playback freeze for as long
as 1 minute, and as frequent as 4 freezing incidents in a
7 minute interval. The experience of PPLive demonstrates
that large scale video streaming can be done. But there is
still room for improvement on efficiency and robustness.
PPLive also incurs a relatively long playback lag. It is
observed that PPLive can incur startup delay for about 20s
to 30s for popular channels, and up to 2 minutes delay for
unpopular channels, and some peers may watch frames in a
channel minutes behind others.

2.4 Lessons learnt from deployed P2P applications

P2P application revolutionizes the cost structure of the
Internet application, and makes large scale content delivery
with low server cost feasible. The successfully deployed
P2P application above shares some common traits. All
successful P2P applications greatly reduce the cost of
running the source server. Whether the system operates in
a pure P2P or in a hybrid P2P mode is inessential. In fact,
many P2P applications offer the capability to run the
system in both modes. For example, BitTorrent can be run
in either tracker mode or the trackerless mode. The
eDonkey application can be run either via an eDonkey
server or via a Kademlia DHT, which eliminates the server.
The end users do not care whether the system is pure P2P
per se.

Nearly all the widely deployed P2P applications have
improved the quality of service (QoS) from the end user
perspective. For many content owners on the long tail that
are without deep pocket, the P2P File sharing tools such as
BitTorrent remain their only choice to reach a large group
of users in a cost effective fashion. Their users are willing
to use the P2P application because it greatly improves the
speed that the content can be retrieved. By utilizing
supernode assisted relay, Skype is able to increases the
speech codec bit rate, and offers the user a higher quality of
service. Without P2P streaming tools, large scale distribution
of TV/video usually has to use a much lower media coding
bit rate, renders the resultant compressed video unattractive
from the end user’s perspective. Often, it is the improvement
of QoS that attracts the user to go through the trouble to
download and install the related P2P applications.

Most successful P2P applications have certain incentive
system to encourage the end users to contribute their
resource to the P2P network. This can be a voluntary

@ Springer

Peer-to-Peer Netw Appl

incentive or an involuntary incentive. BitTorrent uses a
voluntary incentive via the Tit-for-Tat sharing protocol.
BitTorrent allows the user to set the upload bandwidth.
However, if the user reduces the upload rate, his/her rate of
download suffers. This deters the user to become a free
rider, who consumes resource but does not contribute.
PPLive and Skype adopt an involuntary contribution
model. Both applications do not offer the user the choice
of whether he/she wants to contribute, and how much to
contribute. Rather, the peers with more resource are
automatically drafted to the service of the other less
resourceful peers. For Skype case, the peers that are not
behind NAT, with abundant bandwidth and CPU resource
are automatically drafted for the service. For PPLive, the
peers that have more upload bandwidth are automatically
drafted to serve the other peers. Because Skype and PPLive
offer their users a valuable service and good QoS, which for
Skype it is the VoIP that reaches anywhere, and for PPLive,
it is the opportunity to watch TV program not accessible in
its local market, such involuntary contribution is tolerated
by their user base so far.

Securities are key concerns in widely deployed P2P
applications. The relatively older P2P file sharing applica-
tions suffers from a variety of attacks. FastTrack and
eDonkey have suffered extensively from pollution and
index poisoning attacks [12, 23]. Gnutella has suffered
from the query flood DDoS (distributed denial of service)
attacks [24]. It is also demonstrated that Overnet can be
employed to perform DDoS attack on an ordinary, non P2P
host [25]. On the other hand, P2P applications with good
security measures gain popularity. For example, BitTorrent
includes hashes of the blocks in its torrent file and has
successfully fended off the pollution attack. The always
encrypted Skype call becomes an important feature that
attracts enterprise and residential customers.

3 P2P overlay

After reviewing the widely deployed P2P applications, let
us take a look at the key building components of a P2P
application. To achieve efficient and robust P2P content
delivery, we need to work on two primary modules: P2P
overlay construction and P2P scheduling.

All P2P networks run on top of the Internet. We often
consider the P2P network as an overlay network, with the
link of the overlay being a pair of connected peers. P2P
overlay construction is the first important task faced by an
architect of a P2P application. Sometimes, the task is called
peer matching, because it involves how a new peer finds
existing peers and connects to them; and how an existing
peer finds replacement peers to substitute those that leave
the P2P network.

@ Springer

In this section, we survey the technical approaches and
issues in building the P2P overlay network. The target is to
have an overlay construction strategy that may efficiently
utilize the resource in the network and may effectively deal
with the dynamics of the peers and the network conditions.
We survey centralized and decentralized approaches in
building the P2P overlay network in Section 3.1. We then
examine the tiered overlay in Section 3.2. The distributed
hash table, an active research area in the distributed system,
is covered in Section 3.3. Peer proximity and heterogeneity
is covered in Section 3.4.

3.1 Centralized vs. decentralized

The P2P overlay can be built via either a centralized
scheme or via a decentralized scheme. In a centralized
scheme, a central entity, e.g., a tracker, maintains informa-
tion of all peers in the P2P network, and is primarily
responsible in making decisions on how the peers are
matched. An example of centralized overlay building is
BitTorrent. The BitTorrent tracker is a central entity that is
responsible for building the overlay. It maintains the list of
peers that are currently sharing the file. When a new peer
joins a sharing session, it finds the address of the BitTorrent
tracker through the torrent file, and sends a request (usually
through Http and/or Https, but can be UDP as well) to the
tracker to discover peers that are sharing the file. The
BitTorrent tracker selects among its list of active peers a
random set of peers, and returns the peer list, which
includes the peer ID, IP address and port used by the peer
to the new incoming peer. The default number of peers in
the peer list returned by the BitTorrent tracker is 50, though
fewer peers may be returned if the size of the file sharing
group is small. The new coming peer then attempts to
connect to some of the peers in the list, and leaves the
addresses of the other in a cache. During the BitTorrent
sharing session, the peer maintains the number of
connected peers between an upper and lower bound. The
default upper bound is 55, and the default lower bound is
30. The BitTorrent peer admits peer connection request until
the number of connected peers has reached the upper bound.
When the number of the connected peers falls below the
lower bound, the peer will try to establish new contacts to
peers in the cache; and if the cache becomes empty, the
BitTorrent peer contacts the tracker for more peer addresses.
It is found that the parameter of the upper and lower bound of
the number of connected peers is important to the P2P file
sharing performance. If the number of connected peers is too
small, the peer may not be able to send and retrieve content
efficiently in its local neighborhood. If the number of
connected peers is too large, there is a high overhead in
exchanging status information among the neighborhood,
thus degrades the file sharing performance as well.

Peer-to-Peer Netw Appl

An example of decentralized overlay construction is
Gnutella. In Gnutella, there is no central entity. The Gnutella
peer discovers and connects to other Gnutella peers through a
random walk procedure. Each Gnutella node maintains a
neighborhood table, which contains the IP address and port of
known Gnutella nodes. Similar to BitTorrent, Gnutella has an
upper and lower bound of the number of connected peers that
it wishes to maintain. When a new Gnutella node comes
online, it first finds a bootstrap node. Gnutella uses a number
of different mechanisms to bootstrap, including a pre-
compiled list of Gnutella nodes that are always online, the
use of web caches/UDP caches of known node, or even IRC.
The new coming Gnutella node then sends a neighbor
discovery message to the bootstrap node with a count of
desired neighbors. Upon receiving the neighbor discovery
message, the Gnutella node checks if its number of connected
peers has reached the upper bound. If not, it connects the new
coming node, decreases the count in the neighbor discovery
message by one, and if the count is still greater than zero,
forwards the neighbor discovery message randomly to one of
its neighbors. If the number of the connected peers has reaches
the upper bound, it simply forwards the neighbor discovery
message randomly to one of its neighbors without decrement
the count. As a result, the neighbor discovery message
guarantees the new Gnutella node to find the desired number
ofneighbors, as long as there are enough Gnutella nodes in the
P2P network. The Gnutella node also issues the neighbor
discovery message to find new neighbors if its number of
connected peers falls below the lower bound.

In addition to the pure centralized and pure decentralized
overlay building, there are hybrid approaches. For example,
in PPLive, the new coming peer first retrieves a list of peers
from the tracker. Then, when it connects to other PPLive
peers, they further exchange their peer list to discover more
peers without involving the tracker.

Let us further take a look at some examples on how other
P2P applications build the overlay. CoopNet [29], a P2P
broadcast protocol, uses a centralized strategy for P2P
overlay building. CoopNet stripes content into multiple
streams, and distributes each stream via an independent
application-level multicast (ALM) tree. A central server in
CoopNet has the full knowledge of the P2P network, and is
in charge of assigning insertion points of the ALM tree.
NICE [30] and Zigzag [31] use a hierarchy of clusters to
form the overlay. Low latency peers are bound into a cluster,
in which a lead is selected to represent the cluster. The entire
overlay then turns into an ALM tree with the source node
being the root during the data delivery. ESM [32] uses a
decentralized protocol to self organize end hosts into a mesh
overlay. The new coming ESM node first finds a bootstrap
node, retrieves a peer list, and then randomly connects to a
few more nodes. It then continuously finds better neighbors
during the operation, thus evolves the overlay.

Compare with the decentralized overlay building, the
main advantage of the centralized overlay building is the
simplicity in implementation, and the flexibility to imple-
ment additional overlay optimization feature, e.g., optimiz-
ing the overlay by peer proximity, heterogeneity and the
progress of P2P content delivery. Because the central entity
has a global view of the entire P2P network, optimization
on the overlay can be easily implemented by using the
global knowledge of the P2P network. The main disadvan-
tage of the centralized overlay building is the robustness
and scalability. The central entity that is in charge of the
overlay building becomes a single point of failure for the
P2P network, as its failure leads to the failure of the entire
P2P overlay and the subsequent content delivery operation.
A single entity also can only support a limited number of
peers and file sharing sessions. For example, a BitComet
tracker, which is a high performance implementation of a
BitTorrent tracker, is reported [28] to capable of support up
to 80,000 torrents and up to 800,000 users with the use of a
combination of TCP and UDP tracker protocol. If the
tracker uses mainly TCP/Http/Https protocol, or involves
more complex overlay optimization algorithm, the number
of concurrent users that can be supported decreases further.
Nevertheless, even with elaborated client-tracker commu-
nication and authentication protocol and complicated
overlay optimization algorithm, the CPU and bandwidth
contributed by the central entity is still a very tiny portion
of the CPU and bandwidth resource used by the P2P
network. Due to the simplicity of implementation, the
centralized overlay building is a popular choice for
architects of the P2P applications.

A common method to improve the robustness and
scalability of the central tracker is to use multiple central
trackers. By establishing multiple trackers for a P2P
application, if one tracker fails, the peer may contacts an
alternative tracker to continue the service. Each tracker can
also be primarily responsible for a subset of peer peers, thus
balance the load among them, and allows the tracker cluster
to serve a peer crowd beyond the capacity of a single
tracker. Multiple central tracker implementation has been
widely used in P2P applications, e.g., in multi-tracker
torrent of BitTorrent, in eDonkey, etc.. The trackerless
BitTorrent and the serverless eDonkey can also be
considered as an instance of multiple tracker implementa-
tions, except the trackers are automatically identified
through node IDs in a global P2P overlay. This is discussed
in the following Section.

3.2 Tiered overlay
Tiered overlay is an important method in P2P overlay

construction. For example, FastTrack/Skype uses a two-tier
P2P network, which can be shown in Fig. 4. The

@ Springer

Peer-to-Peer Netw Appl

‘_ supernode
L] L] "‘”

client

supemode
to supemode
supernode
to client
................ client Iy
to client

Fig. 4 Two tier P2P overlay used in FastTrack and Skype. The
supernode overlay forms the core of the P2P network. Multiple clients
connect to the supernode and form the client overlay. During file
sharing, two clients may establish a temporarily link for file transfer

supernodes interconnect with the other supernodes and
form a supernode overlay which becomes the core of the
P2P network. The client node then picks one or a small
number of supernodes to associate with and form the client
overlay. During the file sharing session in FastTrack or
VoIP session in Skype, two clients may temporarily
establish a direct connection between themselves to
exchange files or conduct VoIP. However, the file search
and the user directory query in FastTrack/Skype are served
by the supernode overlay only. The method of forming the
supernode overlay and the client overlay is proprietary.
According to [26, 27], we do know that each supernode
connects to around 40-50 other supernodes, and connects
to around 50-160 client nodes. The supernode with more
bandwidth resource (e.g., on the university campus) also
serve more client nodes than the supernode with less
bandwidth resource (e.g., on the residential network).
Another common tiered overlay is to let all peer nodes in
a particular P2P application form a global overlay, and to
let a subset of peer nodes sharing the same content form a
small, localized overlay. Such tiered overlay can be shown
in Fig. 5. The examples are the trackerless BitTorrent and
the serverless eDonkey. In the trackerless BitTorrent, all
trackerless BitTorrent nodes sharing all sorts of content
form the global P2P network. In the serverless eDonkey,
either the Kad network used by the eMule or the Overnet
used by eDonkey 2000, all eDonkey nodes form the global
P2P network. This large P2P network forms a distributed
hash table (DHT), which is the Kademlia DHT implemen-
tation of different variants for BitTorrent, eMule and
eDonkey 2000, respectively. When a peer joins the P2P
network, the peer is assigned with a random ID. Each
shared file is also assigned an ID. The list of peers sharing
the same content is then stored in those peers with IDs close

@ Springer

to the ID of the shared file. In essence, the global DHT
network elects some peers with their IDs close to the
content ID to be a set of virtual trackers, and involuntarily
serve the track functionality. For example, in Azureus
BitTorrent, the global P2P network has 1.3 million nodes;
and the peer list of a particular sharing session is stored in
about 8 peers close to the ID of the session. While in the
official BitTorrent, which has 200 thousand nodes, the peer
list is stored in about 20 peers close to the ID of the sharing
session. A new coming peer wishes to share a certain file
may then retrieve the peer list from the DHT. This is
equivalent to retrieve the peer list from the virtual tracker
cluster. It then connects to peers in the peer list, and form a
small, localized P2P overlay for data exchange.

3.3 DHT: Distributed hash table

DHT is an active area in the distributed system research.
The first four DHTs, CAN [33], Chord [34], Pastry [35] and
Tapestry [36], were introduced in 2001. The common
approach of the DHT is to use a large key space, and to let
each participating node hold an ID in the key space. Each
node is then charged with a set of keys in its neighborhood,
as a result, the node can be considered as a slot in the hash
table formed by the key space. The resultant distributed
system is thus called the DHT (distributed hash table). The
DHT design philosophy is to develop a distributed system
that can scale to a large number of nodes and can handle
constant node arrival and failure. DHT schemes usually
implement two basic features: routing and hash table
operation. The DHT routing function can be abstracted to:
FindNode(ID), which takes an ID as the input, and finds

Glob
P2P overlay

Locai\

P2P overlay

Fig. 5 Global and local P2P overlay. The global overlay is formed by
all peer nodes of a particular application, e.g., all peers of the
trackerless BitTorrent or the serverless eDonkey. The local overlay is
formed by peers that share the same file. The global overlay provides
distributed tracker or distributed directory service. The heavy traffic
data flow is in the local overlay

Peer-to-Peer Netw Appl

one or a set of nodes that are in charge of the space
covering the ID. Those nodes are usually the nodes closest
to ID with some distance measure. Via routing, DHT may
implement two further hash table operations: Store(Key,
Value) and Retrieve(Key). In such a case, the DHT can be
considered a super reliable and always available hash table,
where the Store functionality stores a <Key, Value> pair
into the system, whereas the Retrieve functionality retrieves
the Value associated with the Key. To implement the Store
functionality, the DHT system first uses FindNode(Key) to
find a set of nodes covering the Key, and then stores the
<Key, Value> pair to each of the nodes. During the Retrieve
operation, the DHT uses FindNode(Key) again to find
nodes covering the Key, and then retrieves the Value
information associated with the Key in each of the node and
aggregates the retrieved information. The distributed sys-
tem formed by DHT guarantees information reliability as
even some nodes join, leave or fail in the system, there will
be enough nodes that hold the <Key, Value> pair alive and
cover the space associated with Key, thus return the Value
information associated with Key reliably and consistently.
To improve reliability, the DHT system may also migrate to
a new node the stored <Key, Value> pair as nodes join and
leave the system. Different DHT schemes differ primarily in
how the key space is formed, how the routing is performed,
how to handle node churn (arrival, departure and failure
event), and how to handle proximity and heterogeneity of
the node.

A thorough survey, study and comparison of all DHT
systems are beyond the scope of this paper. For interested
readers, please refer to [37]. In the follows, we explain the
Kademlia DHT [38] protocol used in the trackerless
BitTorrent and the serverless eDonkey.

In Kademlia, each node holds a 160-bit node ID. The
key space in Kademlia is thus [0, 2'°°-1]. The key
operation of the Kademlia DHT is FindNode(Key) called
upon by a certain node x, which finds k closest nodes to a
given Key. To perform the FindNode(Key) operation, the
node x first finds k£ nodes closest to Key in its own routing
table, and then picks « closest nodes (default a=3): x1, x;
and x3. The node x then sends FindNode(Key) message to
node x;, x, and x3, and requests each node to return its
knowledge of the & closest nodes to Key. If the FindNode
(Key) uncovers nodes closer to x;, x, and x3, the process
repeats with the newly discovered node being the target of
the inquiry. If no closer nodes are found, the node x
expands the search by contacting all £ closest nodes, and
requests them to return their knowledge of the k closest
nodes. If closer nodes are found, they again become the
target of the inquiry. The process repeats until no more
closer nodes to Key can be found. Kademlia then imple-
ments hash table operations Store(Key, Value) and Retrieve
(Key) as described above.

In Kademlia, the distance between two nodes is defined
by d(x,y) = x @y, where x and y are the ID of the node,
and @ is the XOR operation. Each Kademlia node
maintains a routing table. For any node that communicates
with the current node, its entry is added to the proper entry
of the routing table. And for nodes that repeatedly fail to
respond to query, its entry is removed. The Kademlia
routing table is organized by sub trees, with each sub tree
covers a portion of the ID space sharing the same prefix.
For example, sub tree cocic,... covers all IDs start with
coc1¢2. Each sub tree is assigned with a routing entry that is
implemented as a k-bucket, i.e., a bucket with at most k
nodes. At first, the Kademlia node x has only one routing
entry, i.e., one k-bucket, that covers the entire key space.
When the number of nodes known by node x exceeds £, the
original k-bucket is split into two k-buckets of two sub trees
0... and 1.... One of the k-bucket has a different prefix with
the node x. This k-bucket is not further split'. That is, if a
new node y is to be added to the k-bucket and if the bucket
has already k nodes, either the new node y or one of the
existing node in the k-bucket has to be thrown out. The
other k-bucket that has the same prefix with the node x can
be further split into two sub trees. Let the ID of the node x
be 0011.... The node x may have k-bucket entry for 1...,
01..., 000..., 0010..., 0011...; where the first four entries
cover sub trees with prefix differing from the node x by 1
bit, and the last entry is the sub trees with prefix covering
the node x. Each Kademlia node has approximately log,(N)
routing entries, with N being the number of nodes in the
P2P network, and each routing entry has at most k& nodes.

DHT has been well established in the distributed system.
As shown in Section 3.2, DHT has been employed to
implement a decentralized tracker for P2P file distribution.
However, except in rare cases such as SplitStream [39], it is
uncommon to directly use the overlay of DHT as the
overlay of content distribution.

3.4 Proximity and heterogeneity

A key issue in overlay building is to consider the proximity
and the heterogeneity of the peers. The heterogeneity
concerns the difference of the resource available to a peer,
e.g., the upload /download bandwidth, the CPU resource,
and the NAT/firewall that the peer is connected to. The
proximity concerns the distance between the two peers,
e.g., the latency, the throughput and the ISP locality. It is
beneficial to link neighbor peers in the overlay, and to use
peers with more resource as the hubs in the overlay.
However, P2P applications may differ in the most crucial
proximity and heterogeneity measure. For example, in P2P

!'Some optimization of Kademlia allows the k-bucket with different
prefix to split to a max depth d.

@ Springer

Peer-to-Peer Netw Appl

file sharing, a peer may want to find a matching peer with a
good throughput and in the same ISP. In P2P VoIP, a client
node may want to find a supernode with low latency.

Some examples of heterogeneity and proximity meas-
ures are as follows.

a) Latency

Latency is one of the basic proximity measures. The
latency between two peers can be easily measured by the
ping time, or the message round trip time between the two
peers. However, if the P2P network becomes large, it is
impractical for each peer to ping every other peer. Virtual
coordinate system has been an effective tool to estimate the
latency between two arbitrary peers in a large P2P system.
The scheme works the following way. First, we find a
coordinate system V* of k-dimensions, and map each peer
to a coordinate. We correspond the latency between the two
peers x and y to the distance d(x,y) in the coordinate system.
During the construction of the virtual coordinate system, a
set of well known hosts are established as reference points.
The roundtrip times are measured between the reference
points. After that, we map the reference points to a set of
coordinates which best preserve the roundtrip time meas-
ures obtained. For a new coming node, we just need to
measure its roundtrip time to the established reference
points, and then find a coordinate for the node which best
preserves the measure. Now, the latency between the new
node and any node in the system can be measured by
calculating the distance in the virtual coordinate systems.
Examples of research include the global network position-
ing (GNP) system [40], the practical internet coordinates
(PIC) [41], the Lighthouses [42], the virtual landmark and
the internet coordinate system [43]. The quoted approaches
above mainly differ in the dimensions of the coordinate
system used, the method to handle the distortion of the
measure, and the strategy in dealing with the triangle
inequality in the coordinate system.
b) ISP Locality

With the booming of P2P content delivery, the internet
service provider (ISP) is under tremendous pressure to carry
the P2P traffic. It is estimated that 92% of P2P traffic
crosses ISP boundaries. As the content servers use P2P
technologies to delivery content, their costs are being
passed onto the ISPs. To reduce the operation cost of ISP
and the traffic on the backbone of the Internet, and to
improve the QoS of the end users, it is crucial to develop
ISP friendly P2P solution. This involves developing P2P
overlay construction that considers the internet topology. In
the Internet, the widely exposed entity is the autonomous
system (AS), which is a collection of networks and routers
under the control of one entity, usually an ISP. Each AS is
allocated with a unique AS number (or ASN), which is
used in BGP (border gateway protocol) routing. By

@ Springer

preferentially matching up peers under the same AS, we
may effectively reduce the traffic across the ISP boundaries.

The Internet address to AS mapping information can be
obtained by parsing a BGP table dumped from a BGP
router. For applications that do not have access to a BGP
router, there are dozens of unpruned backbone BGP tables
available on the Internet from projects such as Skitter [46]
and RouterViews [47]. AS topology mapping project such
[48] may be further used to infer the number of AS hops
between two Internet addresses.
¢) Bandwidth and Throughput Estimation

An important heterogeneous measure of a peer node is its
upload bandwidth. Among the upload, download, and link
bandwidth measure, the upload bandwidth is also the most
important throughput measure. There are several reasons. In
terms of the contribution of a peer node to the network, it is
the upload bandwidth of the peer node that counts. In a P2P
network, we may characterize the network by assigning an
upload and a download bandwidth constraint on each peer
node, and a link bandwidth constraint between any two
nodes or any two groups of nodes. However, the bottleneck
is usually the upload bandwidths of the nodes. Since in P2P,
a peer node may upload content to multiple destinations, the
output of the peer node splits among multiple receivers. As a
result, the link bandwidth required between the two peer
nodes is only a fraction of the upload bandwidth of the
sending node, which usually does not become the bottleneck.
In increasingly common networks, the total upload band-
widths of the end-user nodes are much smaller than the total
download bandwidths. This is especially true for end-user
nodes on the cable modem and ADSL networks, for which
the balance is asymmetrically skewed towards larger
download bandwidth. Even for user nodes on the campus
networks or the corporate networks, the download band-
width can still be much larger than the available upload
bandwidth because the user may cap the upload bandwidth
to limit its participation in the P2P activity. As a result, the
performance of the P2P application is usually constrained by
the upload bandwidths of the peers. The simplest method to
measure the upload bandwidth of a peer is to measure the
upload TCP throughput of the peer to a well known node on
the network with ample download bandwidth. However,
such method of measurement is resource intensive, intrusive,
and relies on the upload destination to be placed at a server
with no bottleneck to the rest of the Internet. The Pathneck
algorithm [49] uses a set of low TTL (time-to-live)
measurement packets surrounding a sequence of load
packets to measure the upload bandwidth and the upload
bottleneck of a peer node. It is a good solution to estimate
the upload bandwidth without incurring the upload traffic.

Building a proximity and heterogeneity aware overlay is
relatively simple for a centralized P2P overlay building

Peer-to-Peer Netw Appl

solution. Since the central entity that is responsible for
overlay building has global knowledge of the P2P network,
it may easily take the proximity and heterogeneity into
consideration in building the overlay. The strategy is to
record the resource of the new coming peer, and to measure
the distances between it and the other peers with a certain
proximity measure. The central entity may then match the
new coming peer to a nearby peer or a peer with more
resource. Example of research in the area can be found in
[50, 44].

To build a proximity and heterogeneity aware overlay for
decentralized P2P application, the basic idea is to use the
proximity neighbor selection (PNS) or the proximity route
selection (PRS). Examples of research in the area can be
found in [45, 71, 72]. In general, the schemes rely on the
DHT to allow multiple peer candidates per each routing
entry. Then, in the routing table construction stage, a nearby
peer or a peer with more resource is used in the routing
table in preference over a far away peer or a peer with less
resource.

4 P2P scheduling

The P2P scheduling concerns the method for delivering the
data from the source to its destinations under a given
overlay. A good P2P scheduling algorithm has three
aspects. First, it is efficient in utilizing the bandwidth
resource available in the P2P network. Second, it is robust
in adapting to the changes in the conditions of the peer and
the network. Third, the delivery satisfies certain quality of
service requirement of the content.

We examine a number of issues in P2P scheduling. We
investigate the tree versus the mesh-based delivery scheme
in Section 4.1. We then compare pull, push and hybrid
delivery method in Section 4.2. We discuss the peer flow
control in Section 4.3. We take a look at the peer and block
selection issues in Section 4.4. Finally, the usage of block
coding and block mixing in P2P content delivery is
discussed in Section 4.5.

4.1 Tree-based vs. mesh-based delivery

We may roughly classify the P2P content delivery methods
into two categories: the tree-based delivery and the mesh-
based delivery. The tree-based P2P delivery can be traced
back to IP multicast [51], where a single block transmitted
from the source is replicated by the routers along a
distribution tree rooted at the source node, and is thereby
delivered to an arbitrary number of receivers. IP multicast
utilizes computation and bandwidth resource of the router
to replicate and distribute the block, thus, it is not a strict
P2P application per se. Though an efficient solution, IP

multicast deployment is slow in the real world because of
issues such as inter-domain routing protocols, ISP business
models (charging for multicast traffic), congestion control
along the distribution tree, security and so forth. The reality
is that IP multicast is only enabled in small, isolated island
on today’s Internet. The end user extension of IP multicast
is the application-level multicast (ALM). In ALM, each
peer in the distribution tree implements all multicast related
functionalities including block replication, membership
management and content delivery on the overlaid network.
Pioneer works in ALM includes ESM [32], Scattercast [52]
and Overcast [53]. ESM, Scattercast and Overcast all use a
single ALM tree to distribute content, with each non-leaf
peer in the tree replicates and forwards blocks upon their
arrival. Single ALM tree does not utilize the bandwidth of
the leaf peers in the system, and if an intermediate node
fails, the peers under the failing sub tree may not receive
content before the overlay is rebuilt. CoopNet [29] and
SplitStream [39] split the content into multiple stripes and
distribute the stripes across separate ALM trees with
disjoint interior nodes. Any peer computer can be an
interior node in one of the multicast trees, and contributes
to forwarding the content. CoopNet further utilizes multiple
description coding (MDC) and forward error correction
(FEC) to protect from block loss and node failure.
MutualCast [54] and FastReplica [55] push the tree-based
delivery to an extreme. In a P2P network of one source and
n peer nodes, FastReplica uses n trees in delivering the
content, and MutualCast uses a total of n+/ trees (n trees
with the interim node being one of the receiving peers, and 1
tree from source to all peers) to delivering the content.
MutualCast further uses the TCP buffer to adapt the
bandwidth of each delivery tree based on the available
upload bandwidth of each peer node, thus efficiently and
adaptively delivers the content in synchronous fashion to all
destinations. The primary feature of the tree-based P2P
content delivery is that each block traverses a deterministic
route from the source to its destinations based on the overlay.
Once the overlay is determined, the traverse paths of the
blocks are fixed during the delivery. If the peer and network
condition changes, the tree-based overlay generally needs to
re-adjust the overlay to achieve the optimal efficiency. The
exception is MutualCast, which re-adjusts the rate assigned
to each delivery tree in response to the change.

In contrast, in the mesh-based P2P delivery, the delivery
path of the block is based upon not only the overlay, but
also the feedback from the neighbor peers. It is customary
in the mesh-based delivery to create an over redundant
overlay. During the content distribution, each peer receives
status information from its directly connected neighbors,
and makes a distributed decision on how the content should
flow in the overlay. BitTorrent [14] and PPLive [17] are
examples of the mesh-based delivery in action.

@ Springer

Peer-to-Peer Netw Appl

Compare the tree-based with the mesh-based P2P
delivery, the mesh-based delivery can more robustly cope
with the change in the peer and network conditions, and
more efficiently utilize the peer resource. The tree-based
delivery relies on the adaptation of the overlay to adjust the
block distribution path, while the mesh-based delivery
relies on the exchanged status information to redirect the
flow of the blocks. It is apparent that the latter is easier to
implement and more timely reflects the network and peer
condition. To achieve efficient and reliable content delivery,
the tree-based delivery scheme needs to use a dense
distribution forest such as the one used in MutualCast
[54], which is difficult to scale to a large number of nodes.
The primary advantage of the tree-based delivery is in the
reduced latency in delivering the content. In tree-based
delivery, each intermediate node may immediately forward
a received block to its downstream peers. In comparison,
the mesh-based delivery has to delay the forward of the
received block until status information has been gathered to
make sure no duplicate delivery is performed. As a result,
the tree-based delivery is more suited for delay bounded
broadcast P2P applications.

4.2 Pull vs. push vs. hybrid delivery

Depend on whether the sender and/or the receiver take the
initiative in moving the blocks, three modes may be used in
the P2P delivery. In the push mode (also called the sender-
driven delivery mode), the sender takes the initiative, and
pushes the received block to a selected peer. In the pull mode
(also called the receiver-driven delivery mode), the receiver
takes the initiative, and pulls the block it wants from its
neighbor. In the hybrid mode, both the receiver and the sender
may take the initiative, and negotiate the block delivery.

The tree-based P2P delivery usually adopts a push based
delivery mode. The peer simply pushes the arriving blocks
towards its downstream peers in the tree. The mesh-based
P2P delivery is more flexible, and may use either the pull,
push or combined delivery mode. For example, BitTorrent
adopts a pull based delivery method. A BitTorrent node
exchanges with its neighbor peers the have information,
i.e., what blocks it holds, and make a decision on which
block to retrieve based on the available blocks in its
neighborhood. DISCOVR [56], a P2P delivery platform
combines file sharing and media streaming, uses a push
mesh-based delivery method. The peer gathers information
on what the neighbor peers have, and propose a set of
blocks that it wishes to send to the neighbor peers. Upon
receiving the list, the neighbor peer chooses to reject certain
proposed blocks if they are already proposed or are on the
way from the other senders, and confirms the rest. The
actual block delivery is then initiated by the sender after
receiving the confirmed list. Avalanche [57], a P2P file

@ Springer

sharing tool using the network coding to mix blocks during
the delivery, is also a push mesh-based delivery protocol. In
Avalanche, the sender first proposes to the receiver the code
vector of the transmitted block. The receiver checks
whether the code vector contains new information, and
accepts or rejects the code vector. The sender then sends the
network coded block after the confirmation. GridMedia
[58], an early P2P streaming platform, adopts a hybrid
push-pull mesh-based delivery. The media blocks are
classified into pushing blocks and pulling blocks. The node
uses the pull mode when it first joins the network, and then
uses the push mode to redelivery blocks to its neighbors for
reduced delay.

We note that the push mode used in the tree-based delivery
is rather different from the push mode used in the mesh-based
delivery. The former doesn’t need to consult the receivers for
the validity of the block, and may thus achieve low delay
block delivery. We also observe that in the mesh-based
delivery, the push and the hybrid modes are more efficient in
utilizing the upload bandwidths of the P2P network. Because
in either mode, the sender may take the initiative, it can easily
make sure that the sender’s available upload bandwidth is
fully utilized. The pull based mode is more beneficial to
maintain the quality of service (QoS) for the receiver. Because
the receiver can select blocks to receive, it has a better control
of the delivery process, and may more easily ensure the on
time delivery of a particular block.

4.3 Flow control

The flow control is an essential part of a P2P delivery
algorithm. For the sender, the flow control ensures that the
upload pipeline is fully utilized. For the receiver, it ensures
that a constant stream of blocks is arriving. P2P applica-
tions employ different flow control mechanisms. For
example, certain BitTorrent implementation suggests [59]
keeping a few unfulfilled requests on each connection in
order to avoid a full round trip interval of empty delivery
pipeline from the finishing of the download of one block to
the beginning of the download of another block. Peer-
Streaming [60], an on-demand P2P streaming platform with
pull mesh-based delivery, use a flow control strategy that
keeps the pipeline from each sender filled to the same
round trip interval between the request and the reply.
BulletPrime [61] uses a XCP-like [62] congestion control
scheme to maintain one waiting block in the sending TCP.
Examining these schemes, we notice two common traits of
a good flow control scheme in the P2P delivery. First, it
keeps the upload pipeline of the sending peer busy, so that
no upload bandwidth of the sending peer is wasted. Second,
it keeps the queuing delay between the sender and the
receiver low, so that the peer can quickly respond to the
condition change in the peer and the networks.

Peer-to-Peer Netw Appl

4.4 Peer and block selection

In either the push or the pull mode, the peer needs to decide
upon a delivery strategy, i.e., which block to push/pull, and
from/to which peer that the block is pushed and pulled. We
call this the block selection and the peer selection.

The peer selection chooses the peer that the block is to
be pulled from or pushed to. For the pull mode, the receiver
usually selects the sending peer based on the peer flow
control. For example, PeerStreaming [60] selects to pull
from the peer that offers the lowest roundtrip delay between
the time of the request to the time of the reply. For the push
mode, the sender may select the receiving peer based on a
fairness measure or a performance measure. For example,
the BitTorrent uses a fairness measure, which is the Tit-for-
Tat strategy. The BitTorrent peer preferentially uploads to
top m (default m=5) neighbors that provide the peer with
the best download rate. This prevents free riding, and
encourages the peers to contribute. However, the peer
nodes with inherent low resource (low upload bandwidth)
may suffer from low delivery throughput. An alternative
peer selection strategy is based on the performance
measure. For example, DISCOVR [56] allocates more
sending bandwidth to the peer that is running low in media
playing buffer. Such peer selection strategy allows high
resource peers to subsidize low resource peers, and
improves the QoS level in the overall system.

The block selection chooses one block among a list of
blocks that are pushable or pullable from a particular
neighbor. Some possible block selection schemes [61] are:

a) Sequential: Choose the first block that is pushable or
pullable.

b) Rarest: Choose the block that is the rarest in the local
neighborhood of the peers. There is no method for tie
breaking if there are multiple blocks that are equally rare.
BitTorrent uses the rarest selection strategy to pull blocks.

¢) Random: Select a random pushable or pullable block.

d) Random rarest: Choose the block that is the rarest in
the local neighborhood of the peers. If multiple blocks
are of equal rarity, a random block is selected.

Results from BitTorrent and BulletPrime [61] show that
the random rarest selection strategy performs the best in
terms of efficiency, the random selection or the rarest
selection trail close behind, while the sequential block
selection strategy performs very poor.

4.5 Block coding and network coding

In the above, we assume that the content to be delivered is
simply split into a set of blocks, each of which is then sent
in its original form into the overlay. In 1972, Edmonds [64]
established a fundamental graph theorem that if all nodes

other than the source are destinations, the delivery capacity
can be achieved by routing. Thus, for the P2P content
delivery that does not use IP multicast and with all nodes
being either the source or the receiver, routing can achieve
the network capacity. Theoretically, there is no gain for the
use of advanced coding technology.

Good P2P content delivery algorithms such as BitTorrent
do demonstrate remarkable efficiency during the bulk of the
content delivery period. Nevertheless, it has been shown [57]
that coding can be still used to improve the content delivery
throughput at the beginning of the P2P session and at the end
to resolve the “last coupon collector” problem if the source
node leaves the content delivery session in the interim.

To use erasure coding in the P2P content delivery, we
usually group a set of & blocks into a generation, and apply
erasure coding on each generation separately. Note that it is
possible to use just one generation to cover the entire file/
media to be delivered. However, since this may result in
many blocks and a long content file, it may greatly increase
the CPU and memory complexity of erasure encoding/
decoding. Erasure coding can be applied in one of two ways.
It can be applied just on the source node. That is, using either
a digital fountain [66], a Reed-Solomon [67] or a random
linear erasure code, we expand the original k£ blocks into n (n
is much larger than k) coded blocks at the source node. The
source node then ensures a distinct coded block is delivered
every time to its directly connected peer cluster. Each
directly connected peer further forwards the coded blocks
to its down streaming peers and so on, without peers mixing
or further coding the blocks. For each generation of coded
blocks, only & blocks® need to be received by each peer to
recover all the original k& blocks. Since in this scheme, the
erasure coding is only used at the source node to expand the
number of distinct blocks of each generation from £ to n, we
call this the block coding approach. BulletPrime [61] has
used the block coding for P2P file sharing.

If the intermediate peers further mix the coded blocks via
a random linear code, network coding is used in the P2P
delivery. The effectiveness of network coding in improving
the network delivery capacity is first established in [65],
and then ported by Avalanche [57] for P2P file sharing.
With network coding, each time a block is to be delivered
from the source node to its directly connected peers, the
source node generates a random vector g, encodes the
original k blocks with the vector, and sends the encoded
block b with the coding vector g to the peer. During content
delivery, the intermediate node may mix and redeliver
content. Let an intermediate node receive m blocks by,

2 Since Reed-Solomon is a maximum distance separable (MDS)
erasure code, only exact k£ distinctive coded blocks are needed. If
fountain code or random linear code is used, we may need (1+&)k
blocks, with € being a very small number for random linear code, and
being around 0.03—0.25 for fountain code.

@ Springer

Peer-to-Peer Netw Appl

b,,....bm with coding vectors gy, g;,...,gm. It may mix and
regenerate a new block b’ with coding vector g’ as:

b= Z:n:l a;by,
g=>" ag,

where «;, i=1,...,m are random non-zero values in the
Galois Field. With the network coding, each peer needs
only to receive a little more than & blocks to decode the
original set of k blocks’.

Both the block coding and the network coding can be
used to improve the content delivery throughput at the
beginning of the content delivery session. Because distinct
blocks are sending from the source node, all peers directly
connected to the source can forward useful information to
its neighbors, thus eliminate a potential bottleneck at the
source node. They can also resolve the “coupon collector”
problem during the end of the delivery session. Either
approach greatly increases the number of distinct blocks in
the P2P system, and makes the job of finding the last
distinct block easier. The network coding does create more
block diversity by mixing and generating new blocks.

One cautious note is that the network coding is more
susceptible to pollution attacks [12]. Because the network
coding generates new version of the block at the interme-
diate node, traditional counter pollution strategy of signing
the block at the source node or pre-delivering the hash of
the block in a secured channel (e.g., in the torrent file of
BitTorrent) is not effective any more. We need to either use
a homomorphic hash [68] to verify the hash of the mixed
block, or use a homomorphic signature [70] to sign the
mixed blocks. Either approach greatly increases the
computation complexity and implementation complexity,
as it requires a much larger Galois Field for security
reasons. An alternative is to use a cooperative protection
method [69]. The approach [69] doesn’t increase the
computation complexity that much. However, it requires
an authentication server to always be online to generate an
authenticated random mask for the new coming peer. This
can not solve the “coupon collector” problem that leads to
the system failure if the authentication server leaves the
system.

3 Avalanche 0 uses a push based confirmation process to ensure
exact k blocks are needed to decode the original. In Avalanche, the
sender first proposes to the receiver the code vector of the transmitted
block. The receiver checks whether the code vector is linearly
independent to the code vectors of the already received blocks, and
accepts or rejects the code vector. This way, no bandwidth is wasted.
Nevertheless, it may increase the latency in the delivery.

@ Springer

5 Summary and future works

In this paper, we survey the current state of the art of P2P
content delivery. We establish that a good P2P system
should reliably and efficiently deliver the content and
satisfy certain quality of service (QoS) constraint. We
examine P2P file sharing systems Gnutella, FastTrack,
eDonkey and BitTorrent, and P2P streaming systems
PPLive, as well as many research works on P2P file
sharing, P2P streaming, and P2P broadcast. Using these
systems as examples, we investigate good practices for P2P
overlay construction and P2P scheduling, and discuss
methods that can support efficient and reliable P2P content
delivery.

Currently, the research and the development in P2P file
sharing solution are mature. Existing P2P file sharing
applications, such as BitTorrent [14], have demonstrated
that they can efficiently and reliably transfer the file in P2P
fashion to a huge pool of users in the real world.

Though there are a number of deployed P2P streaming
solutions such as PPLive [17], and there are many P2P
streaming prototypes, the problem of efficiently and reliably
streaming content in P2P is still not solved. For example, it is
shown [22] that PPLive cannot sustain the streaming to all
peers without playback stalling. There are still many research
works to be done to use the network resource during
streaming more efficiently, to sustain the streaming rate
more robustly in case of peer and network anomaly, and to
make sure that the playback does not pause.

The research in the P2P broadcast concentrates around
tree-based P2P delivery schemes derived from the applica-
tion layer multicast (ALM). The best available P2P
broadcast systems are not as efficient, as robust, and as
scalable compared to solutions in the P2P file sharing and
P2P streaming space. It will be interesting to see more
works in the P2P broadcast and/or P2P conferencing space.

Another interesting research area is the hybrid mode P2P
delivery. Currently, most P2P applications serve content in
a single mode, either in file sharing, in streaming, or in
broadcast. It is rare to see works such as [56], which
supports both file sharing and streaming. A hybrid P2P
content delivery application may aggregate resource in the
P2P network and improve the QoS for users in the
streaming and the broadcast mode. Let us imagine a P2P
platform that supports file sharing, audio/video conferenc-
ing (VoIP), and music/video streaming simultaneously. The
user of such P2P platform tends to always be online, as it
can be used for so many tasks, and the file sharing task
alone can take a long time. This P2P system is capable of
diverting the resource of the P2P network to ensure that
those peers with stringent QoS demand are met first. It may
improve the QoS experience of the users beyond what is
capable of by a single mode P2P content delivery system.

Peer-to-Peer Netw Appl

P2P applications are being adopted at record speed. It is
estimated that 65-70% of the Internet backbone traffic can
be attributed P2P. If the majority of the P2P applications are
agnostic to the Internet architecture, they will quickly
overwhelm the Internet. It is crucial to build P2P
applications that are aware of the underlying Internet
architecture, and are friendly to the ISPs. Some works
along the directions are [74-76].

The most popular commercial solution of large scale
content delivery is the CDN (content delivery networks).
CDN deploy servers in multiple backbones and ISPs, and
often in multiple POPs (point of presences) within each ISP.
By providing a shared distribution infrastructure, CDNs
provide reliable delivery and cost-effective scaling. P2P
serves as a natural complement to CDN, with the main
difference being that P2P employ user peers not managed
by the CDN directly. The concept of using P2P to extend
the CDN network has been raised by many researchers,
e.g.,[77, 78]. Akamai, with its acquisition of Red Swoosh,
expects to combine P2P file management and distribution
software with the scalable backend control system and
global network of edge servers of Akamai. VeiSign [79],
CacheLogic, Grid Networks and Joost all announce their
own P2P CDN service as well. However, none of the
existing works analyze the key building blocks of P2P-
CDN, as well as quantifying the performance difference, in
term of latency and throughput, among the P2P, CDN and
hybrid P2P-CDN solutions.

References

1. A&M Records, Inc vs. Napster Inc, United States District Court,
Northern District of California, Mar. 2001

2. “Testimony of Mr. Shawn Fanning”, United States Senate
Committee on the Judiciary, hearings on the Utah’s digital
economy and the future: peer-to-peer and other emerging
technologies. Oct. 9, 2000

3. Report: Napster users lose that sharing feeling,” in CNN news, URL:
http://archives.cnn.com/2001/TECH/Internet/06/28/napster.usage/

4. Ferguson D (2006) Trends and statistics in peer-to-peer. Workshop
on technical and legal aspects of peer-to-peer television. Amster-
dam, Netherlands, Mar. 17

5. Winer D. Clary shirky on P2P. URL: http://davenet.scripting.com/
2000/11/15/clayShirkyOnP2p

6. Schollmeier R (2001) A definition of peer-to-peer networking for
the classification of peer-to-peer architectures and applications.
Proc. of 1st Intern. Conf. on Peer-to-Peer Computing, Linkoping,
Sweden, pp. 101-102, Aug

7. Sundsted T. The practice of peer-to-peer computing: Introduction and
history.” URL: http://www-106.ibm.com/developerworks/java/
library/j-p2p

8. Steve Saporta, “Multiple bit rate streams”, Jun. 1, 2002, URL:
http://www.midicorp.com/articles.php?section=articles&id=24

9. Ripeanu M (2002) Peer-to-peer architecture case study: Gnutella
network. Internet2 workshop: collaborative computing in higher
education: peer-to-peer and beyond. Tempe, Arizona, January 30-31

10.

11.

12.

13.
14.
15.
16.
17.
18.
19.
20.

21.
22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Ritter J. Why Gnutella can’t scale. No, really. URL: http:/www.
darkridge.com/~jprS/doc/gnutella.html

Llie D (2006) Gnutella network traffic measurements and
Characteristics. Licentiate Dissertation Series No. 2006:05, ISBN:
91-7295-084-6, April

Liang J, Kumar R, Xi Y, Ross KW (2005) Pollution in P2P file
sharing systems. Proc. of INFOCOM 2005. 24th Annual Joint
Conference of the IEEE Computer and Communications Socie-
ties, 13—17 March, Miami, FL

HoBfeld T, Leibnitz K, Pries R, Tutschku K, Tran-Gia P, Pawlikowski
K (2004) Information diffusion in eDonkey file sharing networks.
University of Wiirzburg, Research Report No. 341, Sept
Comparison of BitTorrent software. From Wikipedia, URL: http://
en.wikipedia.org/wiki/Comparison_of BitTorrent software
RawFlow Ltd., URL: http://www.rawflow.com/

Abacast Online, URL: http://www.abacast.com/

PPLive.com, URL: http://www.pplive.com/

PPStream, URL: http://www.ppstream.com/

UUSee, URL: http://www.uusee.com/

Roxbeam media network, URL: http://www.roxbeam.com/
Mysee, URL: http://www.mysee.com/

Hei X, Liang C, Liang J, Liu Y, Ross KW (2006) Insights into
PPLive: a measurement study of a large-scale P2P IPTV system. In:
Workshop on Internet Protocol TV (IPTV) services over World Wide
Web in conjunction with WWW2006, Edinburgh, Scotland, May
Liang J, Naoumov N, Ross KW (2006) The index poisoning
attack in P2P file-sharing systems. Proc. of INFOCOM 2006. 25th
Annual Joint Conference of the IEEE Computer and Communi-
cations Societies, Barcelona, Spain, Apr

Daswani N, Garcia-Molina H (2002) Query-flood DoS attacks in
Gnutella. 9th ACM Computer and Communications Security
Conference (CCS), Washington, Dc, Nov

Naoumov N, Ross KW (2006) Exploiting P2P systems for DDoS
attacks. International workshop on peer-to-peer information
management (keynote address). Hong Kong, May

Liang J, Kumar R, Ross KW (2005) The Kazaa overlay: a
measurement study. Computer networks: special issue on overlays
Guha S, Daswani N, Jain R (2006) An experimental study of the
Skype peer-to-peer VoIP system. In: Proceedings of the IPTPS’06.
Santa Barbara, CA, Feb

BitComet tracker overview, URL: http://www.bitcomet.com/tracker/
index.htm

Padmanabhan VN, Wang HJ, Chou PA, Sripanidkulchai K (2002)
Distributing streaming media content using cooperative network-
ing. ACM NOSSDAV, Miami Beach, FL, USA, May

Banerjee S, Bhattacharjee B, Kommareddy C (2002) Scalable
application layer multicast. In: Proceedings of ACM SIGCOMM
2002. Pittsburgh, PA, August

Tran D, Hua K, Do T (2003) Zigzag: an efficient peer-to-peer
scheme for media streaming. Proc. of INFOCOM 2003, the 22nd
Annual Joint Conference of the IEEE Computer and Communi-
cations Societies, San Francisco, CA, Apr

Chu Y, Rao SG, Seshan S, Zhang H (2002) A case for end system
multicast. IEEE Journal on Selected Areas in Communication
(JSACQ), Special Issue on Networking Support for Multicast 20(8)
Ratnasamy S, Francis P, Handley M, Karp R, Shenker S (2001) A
scalable content-addressable network. In: Proceedings of ACM
SIGCOMM 2001. San Diego, CA, Aug

Stoica I, Morris R, Karger D, Frans Kaashoek M, Balakrishnan H
(2001) Chord: a scalable peer-to-peer lookup service for internet
applications. In: Proceedings of ACM SIGCOMM 2001. San
Diego, CA, pp 149-160, August

Rowstron A, Druschel P (2001) Pastry: scalable, distributed object
location and routing for large-scale peer-to-peer systems. IFIP/
ACM International Conference on Distributed Systems Platforms
(Middleware). Heidelberg, Germany, pp 329-350, November

@ Springer

http://archives.cnn.com/2001/TECH/Internet/06/28/napster.usage/
http://davenet.scripting.com/2000/11/15/clayShirkyOnP2p
http://davenet.scripting.com/2000/11/15/clayShirkyOnP2p
http://www-106.ibm.com/developerworks/java/library/j-p2p
http://www-106.ibm.com/developerworks/java/library/j-p2p
http://www.midicorp.com/articles.php?section=articles&id=24
http://www.darkridge.com/~jpr5/doc/gnutella.html
http://www.darkridge.com/~jpr5/doc/gnutella.html
http://en.wikipedia.org/wiki/Comparison_of_BitTorrent_software
http://en.wikipedia.org/wiki/Comparison_of_BitTorrent_software
http://www.rawflow.com/
http://www.abacast.com/
http://www.pplive.com/
http://www.ppstream.com/
http://www.uusee.com/
http://www.roxbeam.com/
http://www.mysee.com/
http://www.bitcomet.com/tracker/index.htm
http://www.bitcomet.com/tracker/index.htm

Peer-to-Peer Netw Appl

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.
47.
48.

49.

50.

51.

52.

53.

54.

55.

Zhao BY, Huang L, Stribling J, Rhea SC, Joseph AD, Kubiatowcz
JD (2004) Tapestry: a resilient global-scale overlay for service
deployment. IEEE J Sel Areas Commun 22(1), Jan

Yla-Jadski A, Kasinskaja N (eds) (2005) Peer-to-peer technolo-
gies, networks and systems, Helsinki University of Technology, T-
110.551 Seminar on Internetworking in the spring

Maymounkov P, Maziéres D (2002) Kademlia: a peer-to-peer
information system based on the XOR metric. In: 1st international
workshop on peer-to-peer systems (IPTPS 2002). Cambridge,
MA, Mar

Castro M, Druschel P, Kermarrec A-M, Nandi A, Rowstron A, Singh
A (2003) SplitStream: high-bandwidth multicast in a cooperative
environment. SOSP’03, Lake Bolton, New York, October

Ng TSE, Zhang H (2002) Predicting Internet network distance
with coordinates-based approaches. Proc. of INFOCOM 2002, the
21st Annual Joint Conference of the IEEE Computer and
Communications Societies, New York, NY, June

Costa M, Castro M, Rowstron A, Key P (2004) Practical internet
coordinates for distance estimation. Proc. ICDCS 2004, the 24th
International Conf. on Distributed Computing Systems, Tokyo,
Japan, Mar

Pias M, Crowcroft J, Wilbur S, Bhatti S, Harris T (2003) Lighthouses
for scalable distributed location. In 2nd International Workshop on
Peer-to-Peer Systems (IPTPS 03). Berkeley, CA, Feb

Tang L, Crovella M (2003) Virtual landmarks for the internet.
Proc. of the ACM/SIGCOMM Internet Measurement Conference
2003. Miami, FL, pp 143-152, Oct

Bindal R, Pei C, Chan W, Medved J, Suwala G, Bates T, Zhang A
(2006) Improving traffic locality in BitTorrent via biased neighbor
selection. Proc. ICDCS 2006, the 26th IEEE International
Conference on the Distributed Computing Systems, Lisboa,
Portugal, July

Li J, Sollins K (2004) Exploiting autonomous system information
in structured peer-to-peer networks. Proc. ICCCN2004, the 13th
IEEE International Conference on Computer Communications and
Networks, Chicago, IL, October

Skitter, URL: http://www.caida.org/tools/measurement/skitter/
RouterViews, URL: http://www.routeviews.org/

Dimitropoulos X, Krioukov D, Riley G, Claffy KC (2006)
Revealing the autonomous system taxonomy: the machine
learning approach. Proc. Passive and active measurements
workshop (PAM). Adelaide, Austria, Mar

Hu N, Li LE, Mao ZM, Steenkiste P, Wang J (2004) Locating
Internet bottlenecks: algorithms, measurements, and implications.
Proc. SIGCOMM 2004. Portland, OR, Sept

Setton E, Noh J, Girod B (2006) Low latency video streaming
over peer-to-peer networks. Proc. ICME 2006, IEEE Int. Conf.
Multimedia and Expo. Toronto, Canada, July

Internet protocol multicast, ch 43 of Internetworking Technology
Handbook, http://www.cisco.com/univercd/cc/td/doc/cisintwk/
ito_doc/index.htm

Chawathe Y (2000) Scattercast: an architecture for internet
broadcast distribution as an infrastructure service. PhD thesis,
University of California, Berkeley, August

Jannotti J, Gifford DK, Johnson KL, Kaashoek MF, O’Toole Jr.
JW (2000) Overcast: reliable multicasting with an overlay
network. In Proc. of the Fourth Symposium on Operating System
Design and Implementation (OSDI), October

Li J, Chou PA, Zhang C (2005) Mutualcast: an efficient
mechanism for content distribution in a P2P network. Proc. Acm
Sigcomm Asia Workshop. Beijing, China, Apr. 10-12
Cherkasova L, Lee J (2003) FastReplica: efficient large file
distribution within content delivery networks. In: Proc. of the 4-th
USENIX Symposium on Internet Technologies and Systems.
Seattle, Washington, March 26-28

@ Springer

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

Huang C, Li J (2006) DISCOVR: distributed collaborative video
recorder. 2006 International Conference on Multimedia & Expo
(ICME’2006), Toronto, Canada, Jul. 9-12

Gkantsidis C, Rodriguez P (2005) Network Coding for Large
Scale Content Distribution. Proc. of INFOCOM 2005. 24th
Annual Joint Conference of the IEEE Computer and Communi-
cations Societies, Miami, FL, 13—17 March

Zhang M, Luo JG, Zhao L, Yang SQ (2005) A peer-to-peer
network for live media streaming using a push-pull approach.
Proc. ACM Multimedia 2005, Singapore, pp 287-290, Sept
BitTorrent Specification, URL: http://wiki.theory.org/BitTorrent
Specification

LiJ, Cui Y (2007) PeerStreaming: design and implementation of
an on-demand distributed streaming system. To be published in
ACM Multimedia Systems Journal

Kostic D, Braud R, Killian C, Vandekieft E, Anderson JW,
Snoeren AC, Vahdat A (2005) Maintaining high-bandwidth under
dynamic network conditions. Proceedings of 2005 USENIX
Annual Technical Conference (USENIX 2005). April

Katabi D, Handley M, Rohrs C (2002) Internet congestion control
for high bandwidth-delay product networks. In: Proceedings of
ACM SIGCOMM, August

Microsoft Research ConfXP, URL: http://www.learningwebservices.
com/

Edmonds J (1973) Edge-disjoint branchings. In: Rustin R (ed)
Combinatorial Algorithms. Academic Press, NY, pp 91-96

Chou PA, WuY, Jain K (2003) Practical network coding. Proc.
51st Allerton Conf. Communication, Control and Computing, Oct
Byers JW, Luby M, Mitzenmacher M, Rege A (1998) A digital
fountain approach to reliable distribution of bulk data. Proc. ACM
SIGCOMM. Vancouver, BC, Sept

Li J (2005) The efficient implementation of Reed-Solomon high
rate erasure resilient codes. Proc. IEEE International Conference
on Acoustics, Speech, and Signal Processing (2005). Philadelphia,
PA, Mar. 19-23

Krohn M, Freedman MJ, Mazieres D (2004) On-the-fly verification
of rateless erasure codes for efficient content distribution Proc.
IEEE Symposium on Security and Privacy, Oakland, CA, May
Gkantsidis C, Rodriguez P (2006) Cooperative security for network
coding file distribution. IEEE/INFOCOM’06. Barcelona, April
Charles D, Jain K, Lauter K (2006) Signatures for network
coding. Conf. on Information Sciences and Systems, Mar
Gummadi K, Gribble S, Ratnasamy S, Shenker S, Stoica I (2003)
The impact of DHT routing geometry on resilience and proximity.
Proc. Proc. ACM SIGCOMM’03. Karlsruhe, Germany

Castro M, Costa M, Rowstron A. Performance and dependability of
structured peer-to-peer overlays. Technical report MSR-TR2003-94
Huang G (2007) PPLive — a practical P2P live system with huge
amount of users. keynote speech at P2PTV workshop, Kyoto, Japan
LiJ (2007) Locality aware peer assisted delivery: the way to scale
Internet video to the world. 16th Packet Video workshop (PV
2007). Lausanne, Switzerland, Nov

Karagiannis T, Rodriguez P, Papagiannaki K (2005) Should Internet
service providers fear peer-assisted content distribution? In: Proc.
Internet Measurement Conference 2005. Berkeley, CA, Oct

Huang C, Li J, Ross K (2007) Can internet video-on-demand be
profitable. Proc. ACM Sigcomm’07. Kyoto, Japan, Aug

Pakkala D, Latvakoski J (2005) Towards a peer-to-peer extended
content delivery network. 14th IST Mobile & Wireless Commu-
nications Summit, Dresden, June

Xu D, Chai HK, Rosenberg C, Kulkami S (2003) Analysis of a
hybrid architecture for cost-effective streaming media distribution.
SPIE/ACM Conf. on Multimedia Computing and Networking
(MMCN’03). San Jose, CA, Jan

The VeriSign Intelligent CDN, VeriSign, 2007

http://www.caida.org/tools/measurement/skitter/
http://www.routeviews.org/
http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/index.htm
http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/index.htm
http://wiki.theory.org/BitTorrentSpecification
http://wiki.theory.org/BitTorrentSpecification
http://www.learningwebservices.com/
http://www.learningwebservices.com/

Peer-to-Peer Netw Appl

Dr. Jin Li is currently a principal researcher managing the communica-
tion system subgroup at Microsoft Research (Redmond, WA). He received
the Ph.D. with distinction from Tsinghua University (Beijing, China) in

1994. Prior to joining Microsoft in 1999, he has worked at the University
of Southern California (Los Angeles, CA) and the Sharp Laboratories of
America (Camas, WA). From 2000, Dr. Li has also served as an adjunct
professor at the Electrical Engineering Department, Tsinghua University
(Beijing, China). His research interests cover audio/image/video/graphic
compression, audio/video streaming, realtime audio/video conferencing,
peer-to-peer content delivery, distributed storage, etc. Dr. Li has published
80+ referred conference and journal papers. He is currently an Area Editor
for the Journal of Visual Communication and Image Representation and an
Associate Editor for the Peer-to-Peer Networking and Applications. He has
served as an Associate Editor for IEEE Trans. on Multimedia, and on
numerous TPC committees for major conferences. He was the recipient of
the 1998 Young Investigator Award from SPIE Visual Communication and
Image Processing.

@ Springer

	On peer-to-peer (P2P) content delivery
	Abstract
	Introduction
	Anatomy of widely deployed P2P applications
	P2P file sharing applications
	P2P voIP-skype
	P2P streaming
	Lessons learnt from deployed P2P applications

	P2P overlay
	Centralized vs. decentralized
	Tiered overlay
	DHT: Distributed hash table
	Proximity and heterogeneity

	P2P scheduling
	Tree-based vs. mesh-based delivery
	Pull vs. push vs. hybrid delivery
	Flow control
	Peer and block selection
	Block coding and network coding

	Summary and future works
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

