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ABSTRACT 

Earthquake prediction is one of the most important unsolved problems in the 

geosciences.  Over the past decade, earthquake prediction research has been revitalized, 

and predictability experiments are currently active worldwide.  In considering these 

experiments, a number of issues related to prediction evaluation are vital: a detailed 

experiment specification, the measure of success to be used, and a choice of appropriate 

reference model(s).  Here, we address each of these, with an emphasis on testing 

prospective earthquake predictions. 

 We consider a general class of earthquake forecasts for which the forecast format 

allows a binary interpretation; that is, for any given interval of space and time, we can 

infer whether or not an earthquake of a given size is expected.  This generalization allows 

us to test deterministic and probabilistic forecasts and compare the results; furthermore, 

the tests are easily understood because they are essentially the sum of many yes/no 

questions.  As an introduction to binary performance measures and their wide 

applicability, we considered Reverse Tracing of Precursors (RTP), a recent earthquake 

prediction algorithm intended to forecast damaging earthquakes.  We introduce and 

analyze several methods for measuring predictive performance but concede that the RTP 

experiment results are likely unstable due to the small number of earthquakes occurring 

to date.   

In the context of an experiment with three 10 year seismicity forecasts—Relative 

Intensity, Pattern Informatics, and National Seismic Hazard Map—we introduce the area 

skill score, a measure of success derived from the Molchan diagram.  Using this 

experiment and applying approaches from statistical hypothesis testing, we illustrate the 
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importance of choosing an appropriate reference model, and show that added model 

complexity does not necessarily yield a significant improvement in predictive skill. 

Having demonstrated the use of the area skill score as a performance metric, we 

explore its statistical properties and the related computational procedures in some detail.  

Based on this work and the previous experiment results, we used the area skill score to 

explore the evolution of regional seismicity and optimize simple forecast models.
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CHAPTER ONE: INTRODUCTION & OVERVIEW 

The problem of earthquake prediction has generated a vast body of literature 

including books (e.g., Press 1965, Wyss & Dmowska 1997, Keilis-Borok & Soloviev 

2003), special volumes (e.g., Wyss 1991, Knopoff et al. 1996, Hough & Olsen 2007), a 

multitude of peer-reviewed papers, and even, at one time, a dedicated journal (Rikitake 

1982).  The majority of this work is aimed at what Jordan (2006) denoted operational 

earthquake prediction: the ability to foretell large, damaging earthquakes with sufficient 

lead time to reduce potential losses.  In particular, a search for precursors to large 

earthquakes has dominated prediction research programs.  These precursors can be 

broadly divided in two categories: physical precursors based on direct observations—

for example, radon emission (Haukkson 1981), tidal loading (Yin et al. 2000), seismic 

velocity ratios (Feng, 1975), various hydrologic signals (Roeloffs 1987), etc.; and 

statistical seismicity patterns based on earthquake catalog analysis—for example, 

quiescence (Wyss & Habermann 1988), temporal changes in Gutenberg-Richter b-value 

(Enescu & Ito 2001), accelerating moment release (Bowman  et al. 1998), and a number 

of other patterns (see, e.g., Eneva & Ben-Zion 1997, Keilis-Borok 2002).  Unfortunately, 

in both instances, most of the publications have relied on selective case studies or 

retrospective experiments that declare that a particular large earthquake could have been 

successfully predicted because a signal was identified following the earthquake.  

Certainly such statements are less convincing than results from prospective experiments, 

where precise forecasts are made in advance of any observations. 

Recently, there has been a renewed vigor in earthquake prediction research, with 
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an emphasis on earthquake predictability through rigorous, systematic experimentation.  

For example, a large-scale experiment has been developed by the Southern California 

Earthquake Center (SCEC) Regional Earthquake Likelihood Models (RELM) working 

group (Field 2007, and references therein), and this experiment is now underway within 

the international Collaboratory for the Study of Earthquake Predictability (CSEP) (Jordan 

et al., in prep.).  Several time-invariant forecasts that estimate seismicity rates in 

California over a five-year period were submitted and observations are currently being 

collected (Schorlemmer & Gerstenberger 2007).   

To be properly specified, a predictability experiment should include descriptions 

of the following: the set of earthquakes being predicted and the earthquake catalog to use 

for verification; the geographical region of interest; the time period of interest; and any 

experiment- or forecast-specific rules.  We call the set of earthquakes being predicted the 

target earthquakes, and this set is typically defined as all earthquakes above some 

minimum magnitude, although it may be specified in terms of scalar moment and also 

include focal mechanism information.  If using magnitude information, a statement of the 

magnitude scale to be used is of particular importance, as some catalogs mix magnitude 

scales and this could lead to ambiguous results.  The geographical region of interest is the 

study region (sometimes natural laboratory) and its specification should be 

unambiguous—for example, “the region between 32.5°N and 37.5°N, -121°W and -

114°W” rather than “southern California”—and may include depth information.  The 

time period of interest is the test period and is characterized by a beginning and ending 

date.  Examples of forecast and experiment-specific rules include discretization 

parameter values, i.e., size of spatial grid, and declustering methods. 
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Vital to these experiments—and for that matter, to any rigorous predictability 

experiment—is the need for appropriate evaluation techniques, methods which quantify 

the predictive skill of a forecast.  To be effective, performance measures should be 

flexible, easily explained and well-understood, and should not produce counter-intuitive 

results.   

Flexibility refers to the breadth of experiments and forecasts that can be 

evaluated.  If a measure is mathematically sound but does not apply to any existing 

models, it cannot be practically used.  Furthermore, if a measure has extremely narrow 

requirements for its use and may only be applied to a small set of forecasts, it will not be 

useful for comparisons.   

A performance measure that is too complex to apply or too difficult to interpret is 

not useful.  Particularly in the case of earthquake predictability experiments, one ought to 

be able to interpret results in physical terms.  For a measure to be considered well-

understood, one should be able to determine the measure’s distribution under certain 

conditions; for example, how does the measure behave in experiments with very few 

target earthquakes, and how does this compare to experiments with many target 

earthquakes?  How well can a forecast do by chance and what is the distribution of the 

measure for random guessing?  Along these same lines, one must consider carefully the 

assumptions and approximations inherent in a given performance measure. 

The final requirement—to be consistent with intuition—is difficult to define 

explicitly but, for example, if one can obtain a statistically significant value of a 

performance measure with a very naïve approach, it is unlikely to characterize predictive 
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skill effectively.  If, on the other hand, one can never obtain the optimal value of a 

performance measure, the measure is unlikely to distinguish between forecasts of 

differing skill. 

Coupled with the importance of effective performance measures is the choice of 

appropriate reference models.  A poor choice of reference model can yield results that 

make a forecast seem more powerful than it is, or as Rhoades & Evison (1984) put it: 

“The enhanced significance that a prediction might seem to have could be illusory, for it 

might state in different terms no more than was known before.”  In earthquake prediction 

experiments, it is easy to illustrate the choice of a poor reference model.  Consider a 

reference forecast that suggests earthquakes are equally likely everywhere in space and 

time; we call this the uniform reference model.  One of the first order observations of 

seismicity is clustering in space and time.  While the form of clustering may not be 

known exactly, a forecast that includes some reasonable clustering component is likely to 

significantly outperform the uniform reference model. 

The issue of reference models has received some little attention (e.g., Michael 

1997, Marzocchi et al. 2003, Stark 1997), but it seems that emphasizing the role of the 

reference model is a prudent approach to advancing our understanding of earthquake 

predictability.  By starting with a simple reference model and an aim to iteratively 

improve it, we can determine which model enhancements have some effect on 

performance and which can be disregarded.  This will be most effective in prospective 

testing, where there is no chance for bias or data-fitting, unintentional or otherwise.  The 

importance of prospective testing cannot be over-emphasized.  Rhoades & Evison (1989) 

proposed a procedure by which earthquake precursors should be rigorously analyzed, 
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including application of the prediction algorithm to an independent data set.  They 

followed this procedure and later published two papers that are singular in the literature 

(Evison & Rhoades 1993, 1997): they report the failure of their algorithm to significantly 

outperform the reference model!  However discouraging this might be, prospective 

testing should yield a clear picture of what it is that we understand about earthquake 

processes, and what it is that we still have to learn. 

With these thoughts as motivation, this dissertation addresses issues related to 

measuring skill in earthquake predictability experiments. 

In Chapter 2, we consider Reverse Tracing of Precursors, a particularly complex 

earthquake prediction algorithm that combines several seismicity patterns.  This method 

differs from the RELM forecasts because it is alarm-based—it does not provide estimates 

of future seismicity, but rather produces binary statements about the occurrence of target 

earthquakes.  We describe several potential measures of success for alarm-based 

predictions and illustrate some of the difficulties involved in performing a rigorous, 

prospective predictability experiment.  We also provide an independent evaluation of the 

results of this ongoing experiment. 

In Chapter 3, we consider a very general class of earthquake forecasts based on 

what we call an alarm function, from which alarm-based forecasts can be derived.  In 

this context, we introduce a general performance measure called the area skill score.  As 

an illustration of the area skill score performance measure, we perform a comparative 

evaluation of three distinct earthquake forecasts: the Pattern Informatics forecast of 

Rundle et al. (2002), the Relative Intensity method of Rundle et al. (2002), and the rate 
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model of the 2002 national seismic hazard map (Frankel 2002).  We emphasize the 

importance of choosing an appropriate reference model and find that, for the pseudo-

prospective experiment under consideration, a simple forecast based only on the locations 

of past earthquakes is difficult to beat. 

In Chapter 4, we explore the area skill score’s statistical properties in detail and 

consider the relevant approximations and simulations.  While the measure itself is 

applicable to experiments that are continuous in space and time, we pay particular 

attention to the case of spatial discretization commonly employed in predictability 

experiments. 

In Chapter 5, we use the area skill score measure for forecast optimization, with 

an aim to produce a reference model for the RELM forecast experiment.  We provide 

exact analytic solutions for three distinct smoothing kernels; these solutions should aid in 

comparing different smoothing approaches.  We consider a class of simple smoothed 

seismicity models and three sets of retrospective experiments that explore forecast 

optimization.  We present in detail the results of these experiments and the accompanying 

interpretation leads us to offer a prospective earthquake forecast for the next five years of 

seismicity in California. 

In Chapter 6, we offer some brief concluding remarks and details of ongoing and 

potential future work. 
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CHAPTER TWO: 
Formal evaluation of the Reverse Tracing of Precursors 

earthquake prediction algorithm 

Abstract 

In 2003, prospective application of the Reverse Tracing of Precursors (RTP) 

earthquake prediction algorithm began in Japan, California, the Eastern Mediterranean, 

and Italy; a testing region in the North Pacific was added in 2006.  RTP is a pattern 

recognition algorithm that uses earthquake catalog data to declare alarms which indicate 

that a moderate to large earthquake is expected in the subsequent months.  The spatial 

extent of the alarms is highly variable and each alarm typically lasts nine months, 

although alarms may be extended in time and space.  RTP garnered the attention of the 

public and the seismological community when the first two alarms were declared 

successful.  In this chapter, we examine the record of alarms and outcomes since testing 

began, and we explore a number of measures to characterize the performance of RTP.  

For each alarm, we estimate the “prior probability” of the corresponding target 

earthquake using historical seismicity rates.  Formally, we do not include the first two 

successful alarms in our evaluation because they were not fully specified in advance of 

the earthquakes.  The contingency table measures we consider here indicate that RTP is 

not significantly different from a naïve method of guessing based on the historical rates 

of seismicity.  Likewise, the Molchan diagram analysis indicates that RTP performance 

to date is not statistically significant.  Given the small sample of earthquakes considered, 

however, the Molchan diagram analysis is unstable; if the first two alarms are considered, 

RTP does look to be significantly successful.  The RTP investigators have dutifully 
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specified and documented the RTP alarms, and we discuss the benefits of integrating 

RTP into Collaboratory for the Study of Earthquake Predictability (CSEP) testing center. 

2.1 Reverse Tracing of Precursors 

Keilis-Borok et al. (2004) presented a pattern recognition algorithm called 

Reverse Tracing of Precursors (RTP), intended to predict large earthquakes in a time 

window of nine months.  RTP comprises two distinct steps: short-term chain recognition 

and intermediate-term chain confirmation.  The first step consists of grouping all events 

in a declustered regional catalog into chains, which are comprised of neighbors.  Two 

events are neighbors if one follows the other by less than t0 days and has an epicenter 

within r km of the first event, where 

 )5.2( min10 −= mcr  (2.1) 

Here c is a region-specific model parameter and mmin is the smaller magnitude of the two 

events.  Upon decomposing the entire declustered catalog into chains, RTP determines 

which chains have 1) more than k0 events, 2) a spatial extent greater than l0 km, and 3) 

proportion γ >γ0, where 

 ( )
( ) ( )5.3

5.3
NmN

N

c −
=γ  (2.2) 

Here N(m) denotes the number of events in the chain with magnitude greater than or 

equal to m, mc is a region-specific minimum magnitude, and k0, l0, and γ0 are model 

parameters.  Chains that meet these three criteria are considered to exhibit a short-term 

precursor to a target earthquake.  The spatial domain of the chain is defined as the union 
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of circles of radius R centered on each epicenter in the chain, where R is a model 

parameter taken to be either 50 km or 100 km.  The second step of RTP seeks to confirm 

the short-term precursor by searching for intermediate-term precursors within each 

chain’s spatial domain.  In this step, values of 8 precursory functions (listed in Table 2.1) 

are computed.  These functions capture four types of precursory behavior: increase in 

seismic activity, increase of clustering, increase of correlation length, and transformation 

of the Gutenberg-Richter relation.  They have been used in previous prediction studies 

with limited success (Keilis-Borok 2002). 

Table 2.1: RTP Intermediate Term precursors 

Precursor Characterizes Formulation 
Activity Increase of activity ∑

<≤−

=
ttst k

tN
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Table 2.1 RTP precursor definitions, from Shebalin (written communication).  The following notation is 
used to formulate the precursors: m1/2 is the median magnitude of a set of earthquakes; ∩

rA  is the “total area 

of intersections of two or more circles of radius r in the same sequence”; ∪
rA  is the “total area of the union 

of the circles of radius r  centered at the epicenters in the sequence that occurred within interval (t – s, t)”; 
and mkl is the magnitude of the lth aftershock during the first two days after mainshock k. 
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The values of the intermediate-term precursory functions are computed in sliding 

time windows of length s, beginning T years before the first event in the chain.  For each 

chain, eight different combinations of s and T values are used.  In total, for each short-

term chain of interest, the values of 64 intermediate term precursory functions are 

computed.  Threshold values are defined for each of these 64 precursors.  If the threshold 

is exceeded, this precursor contributes a single positive vote.  If the number of positive 

votes exceeds a region-dependent meta-threshold, an alarm that lasts 9 months from the 

end of the chain’s formation is declared within the chain’s spatial domain.  Alarms can be 

extended if a chain continues to grow in space and/or time.  Declaration of an alarm 

indicates that one or more target earthquakes—those earthquakes that are targeted for 

prediction in a given region—are expected to occur within the spatial domain of the 

alarm within 9 months. 

The intermediate-term patterns used in RTP have been employed previously and 

seek to capture fluctuations in seismicity without being supported by a specific physical 

mechanism.  In contrast, the short-term component of RTP is based on a seismicity 

pattern that identifies a rapid increase of earthquake correlation range.  This pattern was 

found in seismicity models (Gabrielov et al. 1999, Gabrielov et al. 2000) and in regional 

earthquake observations (Shebalin et al. 2000, Zaliapin et al. 2000).  One physical 

interpretation of this pattern is that fault network elements that are geographically distant 

begin to interact as they approach a critical state, at which point several fault elements 

rupture simultaneously and produce a large earthquake.  The increase in correlation range 

is thought to highlight a coalescing instability in the fault network and may represent the 

range of lengthscales involved in earthquake processes.  The ideas that inform RTP have 
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been explored in a more theoretical context by researchers in the statistical physics 

community, particularly with respect to critical behavior in complex systems (Blanter & 

Shnirman 1997, Sornette 2000, Rundle 2003). 

Since the summer of 2003, RTP has been applied in an ongoing prospective 

prediction experiment.  Beginning in 2004, RTP alarms were disseminated by email and 

archived at http://www.igpp.ucla.edu/prediction/rtp.  In this chapter, we provide a current 

evaluation of the experiment results.  The geographical regions being studied using RTP 

are Japan, California, Italy, the Eastern Mediterranean, and the North Pacific.  The study 

regions are shown in Figures 2.1 through 2.5 and the details of each study region are 

listed in Table 2.2.   

 

Figure 2.1 Japan natural laboratory considered in this analysis.  The dashed polygon delineates the study 
region. 
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Figure 2.2 California natural laboratory considered in this analysis.  The dashed polygon delineates the 
study region. 
 

 
Figure 2.3 Eastern Mediterranean natural laboratory considered in this analysis.  The dashed polygon 
delineates the study region. 
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Figure 2.4 Italy natural laboratory considered in this analysis.  The dashed polygon delineates the study 
region. 
 

 
Figure 2.5 North Pacific natural laboratory considered in this analysis.  The dashed polygon delineates the 
study region. 
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Table 2.2: RTP study regions 

Name Catalog of interest Polygon enclosing study region 
Japan JMA 1923 – 31 Dec 2002 

CMT 1977 – 31 Dec 2002 

(30,140) , (38,136), (49,136), (49,153), (46,156), 
(31,144) 

California ANSS 1932 – 31 Dec 2002 (31.5,-114), (31.5,-120), (39,-124.75), (39,-130), (44,-
130), (44,-120), (41,-120), (41,-116), (35,-116), (35,-
114) 

Eastern 
Mediterranean 

CMT 1977 – 31 Dec 2002 (28,32), (36,32), (36,38), (28,38) 

Italy CMT 1977 – 31 Dec 2002 (41,18), (41,10), (43.84,10), (43,5), (47,5), (47,17), 
(45,17), (44.5,14) 

North Pacific CMT 1977 – 31 Dec 2002 (-175,45), (-140,53), (-130,40), (-115,21), (-105,25), (-
120,45), (-140,65), (-150,65), (180,55), (164,60), 
(134,41), (134,32), (148,32), (148,36), (165,50) 

Table 2.2 List of study regions and corresponding earthquake catalogs.  In the case of Japan, the JMA 
catalog is used for Alarms 1, 4, and 10; this was the catalog used to determine those alarms.  For 
subsequent alarms in the Japanese region, the CMT catalog is used. 
 

RTP has generated twenty-six alarms; the details of each are reported in Table 2.3.  

To date, eight target earthquakes have been observed during this experiment and these are 

listed in Table 2.4.  We have excluded some of the alarms and target earthquakes from 

this study; a detailed explanation follows. 

Table 2.3: RTP alarms and outcomes to date 

# Region Alarm 
Start 

Alarm End Magnitude Prior 
(%) 

Result 

1  Japan 27 Mar 2003 27 Nov 2003 MJMA ≥ 7.21 75.1 Hit 
2  California 5 May 2003 27 Feb 2004 MANSS ≥ 6.42 2.3 Hit 
3 California 13 Nov 2003 5 Sep 2004 MANSS ≥ 6.4 9.1 False alarm 
4 Japan 8 Feb 2004 8 Nov 2004 MJMA ≥ 7.2 32.0 False alarm 
5 Italy 29 Feb 2004 29 Nov 2004 Mw ≥ 5.5 2.1 False alarm3 
6 California 14 Nov 2004 14 Aug 2005 MANSS ≥ 6.4 4.1 False alarm 
7 California 16 Nov 2004 16 Aug 2005 MANSS ≥ 6.4 2.8 False alarm 
8 Italy 31 Dec 2004 1 Oct 2005 Mw ≥ 5.5 8.2 False alarm 
9 Italy 6 May 2005 6 Feb 2006 Mw ≥ 5.5 10.3 False alarm 

                                                 
 Alarm reported here but not used in analysis; see text for details. 

1 The magnitude range was not specified in advance of the target earthquake; see text for details. 
2 The magnitude range was not specified in advance of the target earthquake; see text for details. 
3 Magnitude ambiguously specified in original alarm statement; see text for details. 
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Table 2.3, Continued 

10  Japan 2 Jun 2005 2 Mar 2006 MJMA ≥ 7.2 61.2 Hit4 
11 California 17 Jun 2005 17 Mar 2006 MANSS ≥ 6.4 7.1 False alarm 
12 California 18 Mar 2006 18 Sep 2006 MANSS ≥ 6.4 2.1 False alarm 
13 California 24 Mar 2006 24 Dec 2006 MANSS ≥ 6.4 10.1 False alarm 
14 California 2 May 2006 2 Feb 2007 MANSS ≥ 6.4 9.2 False alarm 
15 Italy 2 May 2006 3 Feb 2007 Mw ≥ 5.5 8.3 False alarm 
16 Japan 11 May 2006 11 Feb 2007 Mw ≥ 7.2 16.1 False alarm 
17 California 23 Sep 2006 23 Jun 2007 7.6 ≥ MANSS ≥ 6.6 0.3 False alarm 
18 Japan 30 Sep 2006 30 Jun 2007 Mw ≥ 7.2 15.9 Hit 
19 N. Pacific 28 Oct 2006 28 Jul 2007 8.1 ≥ Mw ≥7.1 0 False alarm 
20 California 17 Jan 2007 17 Oct 2007 7.1 ≥ MANSS ≥ 6.1 2.1 False alarm 
21 California 3 May 2007 28 Jan 2008 6.9 ≥ MANSS ≥ 5.9 8.0 False alarm 
22 California 18 Oct 2007 14 Jan 2008 6.8 ≥ MANSS ≥ 5.8 0.3 False alarm 
23  N. Pacific 29 Jul 2007 28 Jan 2008 8.1 ≥ Mw ≥ 7.?5 0.0 False alarm?6 
24 N. Pacific 24 Aug 2007 24 May 2008 8.2 ≥ Mw ≥ 7.2 1.2 False alarm 
25  California 29 Jan 2008 26 Sep 2008 6.7 ≥ MANSS ≥ 5.7 6.3 — 
26  California 14 Apr 2008 14 Jan 2009 7.7 ≥ MANSS ≥ 6.7 0.3 — 

Table 2.3 List of all RTP alarms to date, including the prior probability of a target earthquake within the 
alarm region and the outcome of the alarm.  Alarms are listed in chronological order according to their start 
date.  The epicenters of each alarm region are listed in Appendix A. 
 
Table 2.4: Target earthquakes 

# Origin Time Magnitude Latitude  

(degrees) 

Longitude 

(degrees) 

Outcome 

1  25 Sep 2003 Mw = 8.3 42.21 143.84 Hit 

2  25 Sep 2003 Mw = 7.3 41.75 143.62 Hit 

3  22 Dec 2003 MANSS = 6.5 35.7002 -121.0973 Hit 

4 15 Jun 2005 MANSS = 7.2 41.292 -125.953 Miss 

                                                 
4 Due to delay of catalog data, the alarm was declared after a satisfactory target earthquake, see text for 
details. 
5 In the declaration of this alarm, the magnitude range was listed as Mw ≥ 7.2; in a supplementary technical 
file, the magnitude range was given as 8.1 ≥ Mw ≥ 7.1. 
6 An earthquake occurred within the alarm region on 19 Dec 2007 and was announced as having magnitude 
Mw=7.2.  It has since been downgraded to magnitude Mw=7.1.  Given the target magnitude ambiguity 
mentioned in Footnote 5, the assignment of this alarm to one of the contingencies is difficult.  See text for 
details. 

 Earthquake reported here but not used in analysis; see text for details. 
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Table 2.4, Continued 

5 17 Jun 2005 MANSS = 6.6 40.773 -126.574 Miss 

6  16 Aug 2005 Mw = 7.2 38.24 142.05 Miss7 

7 15 Nov 2006 Mw = 8.3 46.71 154.33 Hit 

8 13 Jan 2007 Mw = 8.1 46.17 154.80 Hit 
Table 2.4 Target earthquakes considered in this study.  Events with magnitude type Mw are taken from the 
global CMT catalog. 
 

2.2 Alarms and earthquakes excluded from this study 

In this study, we do not consider a number of the alarms listed in Table 2.3.  We 

exclude Alarm 1 and Alarm 2 because both were improperly specified: neither alarm 

announcement included an explicit statement of target earthquake magnitude or alarm 

time window, but rather included vague phrases such as “preparing for a major 

earthquake” (Aki et al. personal communication, Shebalin et al. 2003, Shebalin et al. 

2004).  To be fair, we do not consider the three target earthquakes corresponding to Alarm 

1 and Alarm 2 (Earthquakes 1-3 in Table 2.4).  Alarm 10 is also excluded from this study; 

data from the earthquake catalog used to determine chains was delayed, and therefore the 

alarm was not declared until after a qualifying target earthquake occurred (Shebalin, 

personal communication).  Accordingly, we also exclude this earthquake from our study 

(Earthquake 6 from Table 2.4).  Alarm 23 is a particularly difficult case.  In the official 

alarm announcement, the target magnitude was listed as Mw ≥ 7.2.  On 19 December 

2007, an earthquake occurred within this alarm region and was initially estimated as 

having moment magnitude Mw = 7.2 (Shebalin, personal communication).  In the 

                                                 
7 Due to delay of catalog data, this event was technically missed because no alarm was declared prior to the 
origin time; see text for details. 
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subsequent weeks, however, its magnitude was downgraded to moment magnitude Mw = 

7.1.  Complicating the case, a technical support document that accompanied the alarm 

declaration listed the target earthquake magnitude as 8.1 ≥ Mw ≥ 7.1.  Due to the 

problematic nature of this alarm and the earthquake that followed, we do not consider this 

alarm or the earthquake.  The final two alarms listed in Table 2.3 are also excluded from 

this study as they have not yet expired. 

2.3 Contingency table analysis of RTP 

RTP alarms belong to the realm of binary prediction and binary outcome.  In this 

regime, there are four possible results: if a positive prediction is made and the outcome is 

positive, this is a hit; if a positive prediction is made and the outcome is negative, this is a 

false alarm; if a negative prediction is made and the outcome is positive, this is a miss; 

and if a negative prediction is made and the outcome is negative, this is a correct 

negative.  In terms of RTP, a positive prediction corresponds to the declaration of an 

alarm and a positive outcome is the occurrence of one or more target earthquakes.  Each 

target earthquake that occurs within an alarm is considered a hit, and all target 

earthquakes occurring outside alarms are counted as misses.  Typically, these results are 

grouped into a contingency table, a matrix containing the counts of each result for a 

given experiment.  For each RTP alarm, we assign the appropriate result in the final 

column of Table 2.3.  We also list the result for each observed target earthquake in Table 

2.4.  Using these results, and accounting for the exclusions outlined in the previous 

section, we present a corresponding contingency table in Table 2.5 
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Table 2.5: RTP contingency table 

Did a target earthquake occur?  

Yes No 

Yes 2 hits 19 false alarms Was an  

alarm 

declared? 
No 2 misses 0 correct  

negatives 

Table 2.5 Contingency table for the RTP alarms listed in Table 2.3. 
 

Figure 2.6 shows an example RTP hit and Figure 2.7 shows an example RTP false 

alarm. 

 

Figure 2.6 Example RTP hit (corresponds to Alarm #18 in Table 2.3 and earthquakes 7 and 8 in Table 2.4); 
in fact, this is a double hit.  Red points are the earthquakes forming the chain, solid red line indicates alarm 
region with R = 50 km, dashed line corresponds to alarm region with R = 100 km. 
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Figure 2.7 Example RTP false alarm (corresponds to Alarm #20 in Table 2.3).  Red points are the 
earthquakes forming the chain, solid red line indicates alarm region with R = 50 km, dashed line 
corresponds to alarm region with R = 100 km. 
 

Research related to weather forecasting and medical testing has yielded several 

measures of skill based on the contingency table (Joliffe & Stephenson 2003).  No single 

measure is suited for all types of experiments.  Some measures permit an optimal score to 

be obtained by a simple strategy.  For example, if one never declares an alarm, the false 

alarm rate will be optimized.  Some measures consider false alarms to be as important as 

misses, e.g., the Critical Success Index combines false alarms and misses.  Considered 

alone, none of these measures seem ideal, and thus measures are often reported jointly.  

To evaluate the performance of RTP, we have chosen some common contingency table 

measures and computed RTP’s scores; these are reported in Table 2.6.  Each of these 

scores, when compared to the optimal score for each measure, indicates that RTP has not 
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been very effective at predicting target earthquakes in this experiment.  To further 

illustrate this point, we consider scores from an operational weather forecasting 

algorithm. 

Table 2.6: RTP contingency tables measures of success 

Name of measure Definition Range RTP Value
Hit rate, H 

ca
a
+
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False alarm rate, F 

db
b
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[1,0] 1 
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Table 2.6 Various contingency table measures for RTP alarms, using contingencies listed in Table 2.5 and 
RTP alarms in Table 2.3.  Here, the measure ranges are listed in order from least optimal to optimal. 
 

The Aviation Branch Forecast Verification Section of the U.S. National Oceanic 

and Atmospheric Administration maintains a system in which contingency table scores 

are automatically computed and archived for various meteorological forecasts (Mahoney 

et al. 1997, Loughe et al. 2001, Mahoney et al. 2002).  For example, Airman’s 

Meteorological Advisories (AIRMETs) are issued daily by the Aviation Weather Center to 

warn of potentially hazardous weather and are compared with Meteorological Aviation 
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Reports (METARs) collected by the U.S. National Weather Service to assess their 

accuracy.  AIRMETs have been tested since June 1999 and have obtained an average hit 

rate of 0.68, average false alarm ratio of 0.64, and average critical success index of 0.31, 

all of which are far better than the RTP measures reported in Table 2.6. 

It is important to note, however, that only a small number of observed target 

earthquakes are included in this analysis and therefore these contingency table measures 

are dominated by the large number of false alarms.  A further caveat to using contingency 

table measures to evaluate alarm-based earthquake predictions is the lack of correct 

negatives.  If an algorithm was required to make explicit predictions on a regular 

schedule, it is likely that “negative” predictions—indicating that no target earthquake was 

expected—would be made.  In this case, it would be trivial to determine the number of 

correct negatives.  In practice, however, alarm-based algorithms such as RTP generally 

only declare positive alarms, and there is no unambiguous method for inferring negative 

alarms.  Therefore, RTP will never obtain correct negatives.  In the following section, we 

consider other methods for evaluating RTP that do not require the explicit statement of 

negative alarms. 

2.4 Molchan diagram analysis of RTP 

The Molchan diagram (Molchan 1991, Molchan & Kagan 1992) is a useful 

diagnostic because it captures two intuitive measures: miss rate, ν—the proportion of 

target earthquakes falling outside all alarms—and the fraction of space-time occupied by 

alarm, τ.  Miss rate is the complement of hit rate: 
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Here, a is the number of hits and c is the number of misses.  For this study, we define the 

fraction of space-time occupied by alarm as:  
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In the numerator, x is the number of alarms, Ni(mj) is the number of past epicenters with 

magnitude greater than mj occurring within the spatial domain of the ith alarm, and ti is 

the duration of ith alarm.  In the denominator, y is the number of distinct study regions 

under consideration, Nj(mj) is the number of past epicenters with magnitude greater than 

mj occurring in the jth region, and tj is the duration of the RTP experiment in the jth region.   

Figure 2.8 shows the Molchan diagram for RTP.  Here, the dashed diagonal represents the 

average behavior of an unskilled prediction algorithm: one that essentially guesses based 

on the historical distribution of seismicity.  The shaded region corresponds to statistical 

significance above 95% (see Chapter 3 for details).  That the RTP (τ, ν) point does not 

fall within the shaded critical region indicates that RTP has not done significantly well in 

this experiment.  We concede that this result is not a very stable one because it takes into 

account only four target earthquakes.  For example, if we include the first two alarms in 

the analysis, the (τ, ν)  point does fall within the corresponding critical region (Figure 

2.9).  Moreover, having only a single point on the Molchan diagram greatly limits an 

analysis of RTP’s predictive skill.  For example, it is not possible to know what value of τ 
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would be required for RTP to successfully predict all of the target earthquakes (i.e., ν = 

0).  In the following chapter, we revisit the Molchan diagram in the context of many (τ, 

ν) points for a single prediction algorithm.  In the next section, we continue the RTP 

analysis using simulations based on prior probabilities. 

 

Figure 2.8 Molchan diagram for RTP experiment including 95% confidence bounds.  This indicates that 
RTP has not shown statistically significant performance in this experiment. 
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Figure 2.9 Molchan diagram for RTP experiment including 95% confidence bounds.  In this case, we use 
leniency and consider the first two alarms as successes.  Here, the diagram indicates that RTP has shown 
statistically significant performance in this experiment. 
 

2.5 Prior probability analysis of RTP 

Jackson (1996) outlined a simple procedure to estimate the skill of an alarm-based 

prediction algorithm.  For each alarm and for each missed target earthquake, a prior 

probability is computed.  For an alarm, the prior is the estimated probability of a target 

earthquake occurring within the alarm.  For a missed earthquake, the prior is the 

estimated probability of a target earthquake occurring anywhere in the study region in a 

time window equal to the typical alarm.  Once these priors are estimated, one can 

simulate a hit distribution in the following manner: for each prior, a random number is 

drawn from the uniform distribution on [0, 1], and if the random number is less than the 

prior, this corresponds to a hit.  Iterating over this simulation procedure yields an 
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empirical hit distribution, where each simulation corresponds to an alarm set from 

random guessing based on the prior.  To characterize the performance of a set of alarms, 

one can compare the simulated hit distribution with the observed number of hits.   

Our preferred method of estimating the prior probability for alarm region Ai is to compute 

the historical rate of target earthquakes in the spatial domain of Ai and assume that 

earthquake rates follow a Poisson distribution.  In this case, the probability of witnessing 

one or more target earthquakes in the magnitude range and geographic region specified 

by Ai, in a time window of duration ti is given by 

 ( )( )i
ii tmmrp 21 ,exp1~ −−=  (2.5) 

Here, ( )ii mmr 21 ,  is the daily rate of epicenters with magnitude in [ ]ii mm 21 ,  occurring 

within the spatial domain of Ai and ti is the duration (in days) of the alarm.  In the case 

where ( ) 0, 21 =ii mmr —that is, no target earthquakes have been observed in the past within 

the alarm space/magnitude domain—we compute ( )mmmmr ii Δ−Δ− 21 , , the rate of 

somewhat smaller earthquakes.  We do this because earthquake catalogs are finite and a 

prior probability of zero seems unrealistic.  To obtain the estimated rate of target 

earthquakes, we assume that the magnitude-frequency distribution follows a Gutenberg-

Richter relation with a b-value of unity, and rescale: 

 ( ) ( )
m

ii
ii mmmmrmmr Δ

Δ−Δ−
=

10
,,~ 21

21  (2.6) 

For alarms where ( ) 0, 21 =ii mmr , we let Δm=1 and use Equations 2.5 and 2.6 to estimate 

the prior probability.  These probabilities are reported in Table 2.3. 
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To estimate the prior probability of a missed target earthquake, we consider the entire 

study region and modify slightly Equation 2.5: 

 ( )( )jj tmrp ∞−−= ,exp1~  (2.7) 

Here, r(mj, ∞) is the daily rate of earthquakes in the jth study region with magnitude 

greater than mj —target earthquakes—and tj is the typical duration (in days) of an alarm 

in the jth study region; for this study, we take tj = 270 for all study regions.  For each of 

the two misses observed in the California study region, the prior probability is 30.5%.   

We present the results of 10,000 iterations of the simulation procedure in Figure 2.10.  To 

date, RTP has obtained 2 hits.  From the figure, we note that approximately 30% of 

simulations that declare alarms randomly based on prior probabilities obtained 2 hits, and 

65.4% of the simulations obtained at least 2 hits; this finding supports the contingency 

table result that RTP has not been exceptionally successful in this experiment. 

 

Figure 2.10 Results of 10,000 simulations based on prior probabilities.  Bars indicate the relative frequency 
of the number of hits obtained by random guessing.  Squares show the inverse cumulative probability—the 
fraction of simulations that obtained at least the number of hits. 
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2.6 Discussion and conclusions 

Our analysis of RTP sometimes includes an implicit assumption regarding 

independence.  One might claim that the miss rate we use in the Molchan diagram is 

incorrect because the second miss in California is obviously an aftershock of the first 

miss.  We argue that physical dependence, beyond being ambiguous, is not relevant in our 

analysis.  Rather, we are concerned with the independence of the ability to predict 

individual earthquakes.  For example, because RTP missed the first earthquake in the 

California region does not require that it miss the second earthquake.  Note that we treat 

the problem symmetrically: in the case of the two hits in Japan, it is likely that the second 

hit is physically related to the first earthquake, but it could happen that an algorithm 

successfully predicted the first earthquake and missed the second.  Therefore, we grant 

RTP credit for both hits.  In the next chapter, we consider time-invariant earthquake 

predictions, in which case the probabilities to predict two earthquakes that occur in the 

same spatial region are not independent; RTP is time-varying, however, and so we would 

consider these probabilities independent. 

The RTP archive notes that a number of the alarms have been “near misses”; that 

is, target earthquakes have occurred just outside an active alarm or just outside a study 

region.  As others have discussed, this is a difficulty in making binary predictions.  To 

avoid such unfortunate cases, many forecasts are made in probabilistic, rather than binary 

terms.  We consider a number of these forecasts and methods for evaluating them in the 

following chapters.  Other near misses include improper or incomplete magnitude 

specification; this highlights the care that is required in making detailed, unambiguous 
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forecast statements.   

Despite the negative results of the performance measures considered here, we 

emphasize the instability of these results due to the small sample of target earthquakes.  

Moreover, it seems that the contingency table measures in particular are affected by the 

form of predictions considered.  For example, RTP could be reformulated to declare daily 

negative alarms in all space/time regions not covered by an RTP alarm.  This would yield 

a large number of correct negatives and drastically change the values of the contingency 

table measures.  Under this reformulation, however, the simulation-procedure and the 

Molchan diagram results would not change.  To accelerate the evaluation of the RTP 

algorithm, it would be interesting to apply to other study regions, perhaps even on a 

global scale, and to smaller target earthquakes.  The rate of false alarms may be decreased 

by including known fault structures; if no fault large enough to host a target earthquake 

exists in the RTP alarm, that alarm may be cancelled.  Inclusion of faults might also allow 

one to shrink the spatial region of the alarms to only include areas surrounding major 

faults. 

The investigators of RTP have made great efforts to officially share, archive, and 

evaluate their prospective earthquake alarms.  It remains difficult, however, to reproduce 

the RTP results based only on RTP publications and alarm declarations.  Additionally, it is 

difficult to say if the RTP algorithm or any of the myriad model parameters are changing 

in time, and this effectively makes RTP a moving target.  The Collaboratory for the Study 

of Earthquake Predictability (CSEP) is designed to address these specific problems 

(Jordan 2006), and RTP can benefit from integration.  CSEP testing centers maintain 

earthquake prediction model codes in an automated, reproducible environment; during 
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prospective prediction experiments, codes and parameters remain unchanged (Jordan et 

al., in prep.).  Moreover, a number of evaluation techniques are in use or under 

development by CSEP, so the scientific community can monitor how well a given 

algorithm is doing.  Integrating RTP into a CSEP testing center would reduce controversy 

and ambiguity related to alarm declaration and evaluation.  The chains and alarms would 

be formally reproducible, as would be the results of any testing.  RTP is not unique in this 

respect; many such complex prediction algorithms can benefit from integration in a CSEP 

testing center.  One hope of the CSEP effort is that comparative testing of earthquake 

prediction algorithms will increase our understanding of the earthquake system, and RTP 

may yet provide some guidance in this direction. 
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CHAPTER THREE: 
Testing alarm-based earthquake predictions 

Abstract 

Motivated by a recent resurgence in earthquake predictability research, we present 

a method for testing alarm-based earthquake predictions.  The testing method is based on 

the Molchan diagram—a plot of miss rate and fraction of space-time occupied by 

alarm—and is applicable to a wide class of predictions, including probabilistic 

earthquake forecasts varying in space, time, and magnitude.  A single alarm can be 

simply tested using the cumulative binomial distribution.  Here we consider the more 

interesting case of a function from which a continuum of well-ordered alarms can be 

derived.  For such an “alarm function” we construct a cumulative performance measure, 

the area skill score, based on the normalized area above trajectories on the Molchan 

diagram.  A score of unity indicates perfect skill, a score of zero indicates perfect non-

skill, and the expected score for a random alarm function is ½.  The area skill score 

quantifies the performance of an arbitrary alarm function relative to a reference model.  

To illustrate the testing method, we consider the ten-year experiment by J. Rundle and 

others to predict 5≥M  earthquakes in California.  We test forecasts from three models: 

Relative Intensity, a simple spatial clustering model constructed using only smoothed 

historical seismicity; Pattern Informatics, a model that aims to capture seismicity 

dynamics by pattern recognition; and the USGS National Seismic Hazard Map, a model 

that comprises smoothed historical seismicity, zones of “background” seismicity, and 

explicit fault information.  Results show that neither Pattern Informatics nor National 

Seismic Hazard Map provide significant performance gain relative to the Relative 
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Intensity reference model. We suggest that our testing method can be used to evaluate 

future experiments in the Collaboratory for the Study of Earthquake Predictability and to 

iteratively improve reference models for earthquake prediction hypothesis testing. 

3.1 Introduction 

Despite the notable lack of success in reliably predicting destructive earthquakes, 

there has been a resurgence of research on earthquake predictability motivated by better 

monitoring networks and data on past events, new knowledge of the physics of 

earthquake ruptures, and a more comprehensive understanding of stress evolution and 

transfer. However, the study of earthquake predictability has been hampered by the lack 

of an adequate infrastructure for conducting prospective prediction experiments under 

rigorous, controlled conditions and evaluating them using accepted criteria specified in 

advance. To address this problem, the Working Group on Regional Earthquake 

Likelihood Models (RELM), supported by the Southern California Earthquake Center 

(SCEC) and U. S. Geological Survey (USGS), has recently established a facility for 

prospective testing of scientific earthquake predictions in California, and a number of 

experiments are now underway (Field 2007 and references therein). 

The RELM project conforms to the requirements for well-posed prediction 

experiments (e.g., Rhoades & Evison 1989; Jackson 1996) through a strict set of 

registration and testing standards. For a five year experiment, models are constructed to 

predict earthquakes in California above magnitude 4.95 during 2006-2010 by specifying 

time-invariant earthquake rates in prescribed latitude-longitude-magnitude bins. Three 

tests based on likelihood measures will be used to evaluate the forecasts (Schorlemmer et 
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al. 2007).  

The interest in the RELM project shown by earthquake scientists has motivated an 

international partnership to develop a Collaboratory for the Study of Earthquake 

Predictability (CSEP). CSEP is being designed to support a global program of research 

on earthquake predictability (Jordan 2006), and one of its goals is to extend the testing 

methodology to include alarm-based predictions. In this chapter, we outline such a 

methodology and apply it to the retrospective testing of three prediction models for 

California. 

3.2 Alarm-based prediction 

Earthquake alarms are a natural construct when we consider the problem of 

predicting the locations and origin times of earthquakes above some minimum 

magnitude—target earthquakes.  A common approach to this problem is to search for 

precursory signals that indicate an impending target earthquake in a given space-time 

window (Keilis-Borok 2003 and references therein, Kossobokov & Shebalin 2003, 

Keilis-Borok 2002).  These signals can be represented by precursory functions, the values 

of which are computed and analyzed in moving time windows.  For example, at the 

present time t we consider a region R where we wish to predict target earthquakes using 

precursory function f, which is based on information available up to time t.  If f(t) exceeds 

some threshold value (typically optimized by retrospective testing), an alarm is declared, 

indicating that one or more target earthquakes are expected in R during the period (t, t + 

Δt), a time of increased probability (TIP) (Keilis-Borok and Kossobokov 1990).  In 

practice, pattern recognition algorithms often combine several precursory functions.  For 
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example, the Reverse Tracing of Precursors (RTP) algorithm employs eight intermediate-

term precursory patterns and yields alarms with fixed duration but highly-variable spatial 

extent (Shebalin et al. 2006, Keilis-Borok et al. 2004), which makes testing difficult.  

To place alarm-based testing in the RELM context, we consider spatially-varying 

but time-invariant prediction models. At the beginning of the experiment, we assume 

there exists some (unknown) probability Pk  that the next target earthquake in the RELM 

testing region R will occur in rk , the kth subregion of R. We further assume that Pk  is 

identical for every target earthquake in the testing interval; i.e., the conditional 

probability that the nth earthquake locates in rk  after n −1 earthquakes have already 

occurred also equals Pk . We suppose that, prior to the experiment, some reference model 

of this time-invariant distribution, ˜ P k , is available. For example, the prior distribution 

might be the next-event probability calculated from the smoothed, average historical rate 

of earthquake occurrence in rk  (Kagan & Jackson 2000, Kafka 2002, Rhoades & Evison 

2004, Kossobokov 2004, Helmstetter et al. 2007). In this chapter, we will follow Tiampo 

et al. (2002) by calling this the Relative Intensity (RI) forecasting strategy. By definition, 

the summation of Pk  or kP~  over all subregions in R is unity. 

An alarm-based prediction uses fresh information or insights to identify a 

“domain of increased probability,” RA ⊆ , the alarm region, where the true probability is 

hypothesized to exceed the reference value: 

 PA  ≡  Pk  
rk ∈A
∑ >  ˜ P k   

rk ∈A
∑ ≡  ˜ P A . (3.1) 

At the end of the testing interval, we observe that N target earthquakes have occurred and 
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that h of these are located in the alarm region A. Under the null hypothesis AA PPH ~:0 = , 

the probability of h “hits” in A follows a binomial distribution, 

 hN
A

h
AA PP

h
N

PNhB −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= )~1(~     )~,|(  (3.2) 

H0 can be rejected in favor of H1 : PA > ˜ P A  if 

 B(n |N, ˜ P A )   ≤   α
n=h

N

∑ , (3.3) 

for some critical significance level α ; that is, if the probability of obtaining h or more 

hits by chance is less than or equal to α. Rejection of H0  in favor of H1 at a high 

confidence level (α  << 1) is evidence that the alarm-based prediction has significant skill 

relative to a prediction based on the reference model ˜ P k . 

Following Molchan (1990, 1991) and Molchan & Kagan (1992), we consider how 

the miss rate, ν = (N − h) /N , varies with the probability-weighted area of alarm region A, 

τ = ˜ P A . Plots of (τ,ν)  where [ ]1,0, ∈ντ  are called Molchan diagrams (“error diagrams” 

in Molchan’s terminology). At the end of the testing period, the total number of target 

events, N, is known, so the value of ν is restricted to the discrete set {n/N : n = 0, 1, … , 

N}. The boundary conditions are fixed: if no alarm is declared ( τ = 0; the optimist’s 

strategy), all events are missed (ν =1), whereas if an alarm is declared over the entire 

testing region R ( τ =1; the pessimist’s strategy), no events are missed (ν = 0). 
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Figure 3.1 Molchan diagram—a plot of miss rate versus fraction of space-time occupied by alarm—with 
dashed isolines of probability gain.  The descending diagonal, corresponding to unit probability gain, 
represents the expected performance when AA PP ~

= .  The dark line represents a hypothetical optimal 
trajectory which depends on the unknown “true” distribution. 
 

Under H0, the distribution of ν is given by Equation 3.2, and its expected value, 

ν , lies on the descending diagonal of the Molchan diagram, ν =1− τ  (Figure 3.1). 

More generally, 1− ν  measures the long-run probability of a subregion being in the 

alarm region conditional on it containing an event, P(A | E), while τ is the prior 

probability of the alarm region, P(A) = ˜ P A . The Bayes identity requires 

 P(E | A) =
P(A | E)

P(A)
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ P(E), (3.4) 

where the quantity in brackets is called the probability gain (Aki 1981, Molchan 1991, 

McGuire et al. 2005): 
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 ( )
( ) τ

ν−
=≡

1|    
EP

AEPG . (3.5) 

On the Molchan diagram, the sample value of G is the slope of the line connecting (0,1) 

to (τ, ν), and (3) provides a test of the null hypothesis H0 : G =1 against the alternative 

H1 : G >1. 

For the grid-based RELM models, the values of τ are also discrete, given by 

summations over the cell values ˜ P k . In the continuum limit where the cell size shrinks to 

zero, ˜ P k  becomes a probability density function (p.d.f) ˜ p (x)  of an event at a geographic 

location x ∈ R. The analysis is also simplified by representing target earthquakes as 

discrete points at their geographic epicenters { xn : n = 1, 2, … , N}. In this point-process 

limit, τ is a continuous variable on [0,1], and all realizable values of ν are stepwise 

constant functions of τ. Moreover, as cell size shrinks to zero, τ becomes the measure of 

false positives (false alarms) and ( )τ−1  becomes the measure of correct negatives. The 

Molchan diagram then describes the complete contingency table (Figure 3.2) and is 

equivalent to the Receiver Operating Characteristics (ROC) diagram, a plot of hit rate 

versus false alarm rate that has been employed in weather forecast verification, medical 

testing, and signal analysis (Mason 2003 and references therein). In the continuum limit, 

we can contour constant values ofα  on the Molchan diagram by finding the minimum 

value of τ that solves the equality in (3) for each discrete value of ν. These stepwise 

confidence intervals are illustrated in Figure 3.3. 
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Figure 3.2 Example alarms in the case of coarse spatial discretization (left panel) and in the continuum 
limit, where cell size approaches zero (right panel).  A full contingency table (with alternate names for each 
contingency) provides a legend.  In the left panel, the shaded boxes are hit regions, which are not explicitly 
represented in the contingency table because hits and misses describe events rather than cells.  In the right 
panel, the hit regions are infinitesimally small, so all alarm regions become false alarms. 
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Figure 3.3 Molchan diagram confidence bounds computed by solving Equation 3 for a) fixed N and 
varying α and b) fixed α and varying N.  In a), N = 15 and the curves are contours for α = {1%,5%, 25%, 
50%}.  Here, point A represents an alarm region that has obtained 8 hits and indicates that the null 
hypothesis AA PPH ~:0 =  can be rejected at a confidence level greater than 99% while the point B (11 hits) 
supports rejection at just above 75% confidence.  In b), α = 5% and the curves are contours for N = {5, 15, 
50, 100}.  As N increases, the contours approach the descending diagonal. 
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3.3 Optimal Molchan trajectories 

Minimizing ν  for a fixed value of τ  yields an optimal alarm region A*. We 

consider the special case where two conditions apply:  

(a)  the prior distribution is uniform over R; i.e., the values of the p.d.f. ( )xp~  are 

everywhere equal, and τ  measures the normalized geographic area covered by an 

alarm; and  

(b) the true distribution has no flat spots; i.e., in general, the contours 

{ x(λ)  : p(x)  = λ} are sets of measure zero (lines, points, or empty) for all contour 

levels λ.  

The optimization problem is then solved by the “water-level principle”, which states that 

a region on a map above a contour level λ has the highest average elevation of any region 

with the same area (Figure 3.4). In the case we consider here, the optimal alarm is the 

domain of R where the topography represented by p(x)  rises above a water level λ; this 

alarm can be expressed as ( )λ*A  = {x ∈ R : H(p(x) − λ) =1}, where H is the Heaviside 

step function. Dropping the water level from the maximum value of p(x)  to zero traces 

out an optimal trajectory, 

 ∫ −=
R

dpH xx ))((  )(* λλτ , (3.6a) 

 ( )∫ −−=
R

dpHp xxx ))((1  )(* λλν . (3.6b) 

The optimal trajectory lies on or below the descending diagonal of the Molchan diagram 

(Figure 3.1). 
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Figure 3.4 Illustration of alarm optimization technique via water-level threshold procedure.  Here, the 
curved surface on R represents a gain function g(x); the plane intersects the surface at a height of λ.  The 
resulting region above this threshold is the optimal alarm region *A , or the region of this fixed area with 
the highest average elevation.  A map view of this alarm region is shown in Figure 3.2. 

 

We can relax condition (a) by considering an arbitrary prior p.d.f. satisfying 

0)(~ >xp for all x in R. In this case, the optimal alarm is given by  

 }1))(*(:{  )(* =−∈= λλ xx gHRA ,  (3.7) 

where ( )
( )x
xx

p
pg ~)(* =  is the optimal local probability gain at x. The optimal trajectory 

becomes 

 ( ) ( ) ( )( ) *
~  *~  * AR
PdgHp =−= ∫ xxx λλτ , (3.8a) 

 ( ) ( ) ( )( ) *1  *1  * AR
PdgHp −=−−= ∫ xxx λλν . (3.8b) 

We note that the probability gain of the optimal trajectory can be written as the weighted 

average of the local gain over the optimal alarm region, 
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( )
( )

 ~

~*
  *

*

*

∫
∫

=
λ

λλ
A

A

dp

dpg
G

xx

xxx
. (3.9) 

We can relax condition (b) by considering an arbitrary optimal local gain function 

( )x*g  that may contain flat spots. We consider a flat spot domain D ⊂ R where 

)(~)( xx pp Dλ= for all x in D and let  

 )(* DA λ±  = }1))(*(:{lim
0

=±−∈
→

ελ
ε DgHR xx ,  (3.10) 

such that DAA ∪= −+ ** . Then, the optimal trajectory “jumps” from )*,*( −− ντ  to 

)*,*( ++ ντ  at λD .  Sampling any two subsets of the same size from D yields the same 

Molchan trajectory point, and therefore relaxing condition (b) can lead to non-unique 

optimal alarms.  We note, however, that such a sampling can only yield points on the line 

connecting )*,*( −− ντ  to )*,*( ++ ντ , and therefore the Molchan trajectory remains 

unique and no alarm region can achieve a lower value of ν . 

In statistical hypothesis testing, the power of a test is the probability that a false 

null hypothesis is rejected—in other words, that a Type II error is not committed—and is 

equal to β−1  where β is the Type II error rate (Lehman & Romano 2005).  In our 

problem, where the Type I error rate is measured by τ and the Type II error rate by ( )τν , 

an appropriate measure of the power of an alarm is ( )τν−1 .  In these terms, )(* λA  is 

the most powerful alarm of size )(λτ . As the reference model approaches the true 

distribution, **
~

AA PP → , the power of the optimal alarm approaches the average power of 

a random alarm, ( ) ( )λττν →− *1 , and a larger number of events N is needed to 
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discriminate H1 from H0.  

When ( ) ( )xx pp =~  for all x in R, )(* xg  is flat—and in particular, equal to 

unity—throughout R, and the optimal trajectory coincides with the descending diagonal 

of the Molchan diagram. In this case, no alarm-based strategy can reject H0, and the time-

invariant prediction problem for the simple RELM set-up is solved. 

3.4 Alarm functions and the area skill score 

We consider alarm sets ( ){ }0: ≥λλA  that are ordered by )(λτ  such that 

 ( )( ) ( )( ) ( ) ( )'' λλλτλτ AAAA ⊂⇒< ; (3.11) 

and complete on 0 ≤ τ ≤1; i.e., sufficient to generate complete Molchan trajectories 

( ){ }]1,0[ : ∈ττν }. A complete, ordered alarm set can be represented as an unscaled 

contour map on R (Figure 3.5). Such a set can be generated from a continuous, positive-

semidefinite alarm function g(x) by water-level contouring, 

 }1))((:{  )( =−∈= λλ xx gHRAg . (3.12) 

An example of an alarm function is the optimal gain function, ( )x*g .  In fact, any p.d.f. 

constitutes an alarm function; not all alarm functions, however, specify a p.d.f. 

Alarm functions that have Molchan trajectories with the same values as g(x) form 

an equivalence class indexed by g: 

 [ ]}1,0 ),()(:)({  ∈∀== ττντν gfg fC x . (3.13) 

An infinite number of alarm functions yield the same alarms as g(x). For example, 
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consider any order-preserving functional; i.e., one that satisfies ( ) ( ) '' zzzhzh <⇔< .  

Then ( ) ( )( )xx ghf =  is also in the equivalence class Cg.  Such a functional only rescales 

the contour map, so that gf AA = , and the trajectory )(τν f  is identical to )(τν g . 

 
Figure 3.5 Map view of an example alarm function; here, the contour map corresponds to the spatial alarm 
function shown in Figure 3.4.  Hashed contours indicate descending values. 
 

All members of a given equivalence class Cg provide equal probability gain 

relative to the prior ˜ p (x) . The interesting extremes are C1, comprising functions 

equivalent to g(x) = 1, and *C , comprising functions equivalent to *g . Alarm functions 

belonging to C1 yield trajectories with expected values lying on the descending diagonal 
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and thus provide no gain in the long run, whereas alarm functions belonging to *C  yield 

the optimal trajectory.  For any alarm function f(x), we seek to test the null hypothesis 

H0 : f ∈ C1, against the alternative that f performs “better” than alarm functions 

belonging to C1. (An alarm function with an expected trajectory above the descending 

diagonal is “worse” than C1; however, as noted by Molchan & Kagan (1992), we can use 

it to generate a set of “anti-alarms” whose complements in R have probability gains 

greater than unity. We therefore consider only one-sided tests.) 

The performance of an alarm function f(x) can be measured by the area above its 

Molchan trajectory evaluated at a given τ, a statistic we call the area skill score: 

 ∫ −=
τ

ν
τ

τ
0

)](1[1  )( dtta ff  (3.14) 

This statistic is normalized such that its value is between 0 and 1 and under H0 its 

expectation is 

 ( )
2
ττ =fa . (3.15) 

We can use this statistic to assess the skill of f(x) relative to ˜ p (x)  by testing the 

null hypothesis ( ) 2/:0 ττ =faH  against the alternative ( ) 2/:1 ττ >faH .  In the limit of 

infinitesimal discretization in τ, the area skill score is equivalent to the area under curve 

(AUC) measure used in ROC analyses (Mason 2003).   

In order to use the area skill score for hypothesis testing, we have explored the 

score distribution of unskilled alarm functions with an arbitrary prior (see Chapter Four).  

We have an analytic approach for generating moments of the distribution and find that 
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this distribution is related to the distribution of cross-sectional wedge “area” of an N-

dimensional hypercube along its principal diagonal.  An application of the Central Limit 

Theorem shows that, in the case of continuous alarm functions, the area skill score 

distribution at τ = 1 is asymptotically Gaussian with a mean of ½ and a variance of 

1/(12N).  Furthermore, the distribution’s kurtosis excess—a factor dependent on the 

second and fourth central moments and an indicator of deviation from the Gaussian 

distribution—is equal to -5/(4N).  For N on the order of a dozen or more, the Gaussian 

approximation provides an excellent estimate of confidence bounds.   

We can estimate the area skill score distribution by simulation for any number of 

target events N at any value of τ.  It can be shown that the power of the area skill score, 

while dependent on the prior, tends to increase with increasing τ, and therefore it is best 

to use ( )1=τfa  for the hypothesis test.  In the illustrative experiment described below, 

we consider discrete alarm functions and the observed seismicity yields multiple 

earthquakes in a single forecast cell.  In this case, the Molchan trajectory and area skill 

score confidence bounds are most easily estimated by simulation of unskilled alarm 

functions (i.e., those belonging to C1). 

3.5 Models and data 

To demonstrate the area skill score testing procedure, we consider three models of 

spatial predictability—Relative Intensity (RI), Pattern Informatics (PI), and the United 

States Geological Survey National Seismic Hazard Map (NSHM)—in a quasi-

prospective prediction experiment.  For visual comparison, the alarm function values for 

each model are shown in Figures 3.6-3.8.  
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Figure 3.6 Illustration of testing Relative Intensity (RI) alarm function relative to a uniform spatial prior.  
Top left frame shows map of RI alarm function values and observed target earthquakes (stars), created with 
Generic Mapping Tools software (Wessel & Smith 1998).  Panels a), b), and c) show alarm regions for 
three decreasing threshold values.  The corresponding Molchan diagram points are labelled in the plot on 
the left of the second row.  The left panel in the third row shows the corresponding area skill score 
trajectory.  The shaded areas on the plots are the α = 5% critical region. 
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Figure 3.7 Same as Figure 3.6 for the Pattern Informatics (PI) alarm function. 



 48

 
Figure 3.8 Same as Figure 3.6 for the National Seismic Hazard Map (NSHM) alarm function. 
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These models make for an interesting set of examples because they represent 

distinct hypotheses about the spatial distribution of earthquakes.  RI suggests that future 

earthquakes are most likely to occur where historical seismicity rates are highest (Tiampo 

et al. 2002).  RI uses a particularly simple measure of seismicity—the rate of past 

earthquakes occurring in each spatial cell—and belongs to a general class of smoothed 

seismicity models.  Proximity to Past Earthquakes (Rhoades and Evison 2004), Cellular 

Seismology (Kafka 2002), and others (e.g., Kagan and Jackson 2000, Kossobokov 2004, 

Helmstetter et al. 2007) are members of this class that offer slightly different 

representations of the same basic hypothesis; each has been recommended as a reference 

model. 

PI suggests that the locations of future earthquakes are indicated by anomalous 

changes in seismic activity.  Regions undergoing seismic activation or seismic quiescence 

are found by computing the short-term seismicity rate in a given spatial cell—say, for the 

previous ten years—and comparing with the long-term seismicity rate in this cell—say, 

for the previous fifty years.  If the short-term rate is anomalously low/high, the cell is 

considered to be undergoing seismic quiescence/activation in preparation for a target 

earthquake in the near future (Tiampo et al. 2002).  As shown in Figures 3.6 and 3.7, the 

PI and RI alarm functions are highly correlated—in particular, many regions with a high 

PI index also have a high RI index. 

NSHM suggests that future earthquakes will occur where past earthquakes have 

occurred, with the qualification that moderate to large earthquakes are likely to occur 

near mapped faults and some earthquakes will be surprises.  Therefore, the NSHM 

earthquake rate model combines smoothed historical seismicity, fault information, and 
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“background” zones where a spatially uniform seismicity rate is assumed.  According to 

Frankel et al. (1996, 2002), this combination represents the best knowledge of faults and 

spatial distribution of earthquakes.  The NSHM alarm function values in Figure 3.8 

reveal a forecast that is much smoother than that of RI and PI. 

Rundle et al. (2003) issued ten-year “hotspot” maps based on RI and PI .  The 

hotspots are alarms that last the duration of the experiment and are derived from 

underlying alarm functions.  The alarm function of the PI model is not a p.d.f. and does 

not provide explicit forecasts of earthquake rate; PI simply provides a ranking of cells 

and therefore the RELM likelihood testing procedures cannot be applied in a 

straightforward way.   We were provided the PI hotspot map values by J. Holliday 

(personal communication).  The RI alarm function constitutes a next-event spatial p.d.f. 

and, upon assumption of a magnitude distribution and regional seismicity rate, can be 

tested using the RELM methods (e.g., Zechar et al. 2007).  For this experiment, we 

computed the RI values using the parameters suggested by Rundle et al. (2002).  The 

alarm function of the NSHM model is a p.d.f. of space and magnitude and yields a 

forecast of expected seismicity rates; a previous version of the model is currently being 

tested by RELM (Petersen et al. 2007).  We computed the 2002 NSHM values using the 

OpenSHA platform (Field et al. 2005).  These three models also make for an interesting 

set of examples as they demonstrate the potential to compare heterogeneous forecasts.   

We consider the experiment specified by Rundle et al. (2003): to forecast the 

epicentral locations of M ≥ 5 earthquakes during the ten year period starting 1 January 

2000 in the gridded region with latitude ranging from 32° to 38.3°, longitude ranging 

from -123° to -115°, and a spatial discretization of 0.1°.  We consider this a quasi-
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prospective experiment because the PI and RI forecasts were issued in 2002; none of the 

forecasts, however, use data collected after the beginning of the experiment.  Although 

the magnitude scale and earthquake catalog to be used for verification were not stated in 

the original experiment specification, we followed the RELM project in taking the ANSS 

composite catalog to be the authoritative data source for this natural laboratory.  We 

selected all tectonic earthquakes in this region since 2000 that had ANSS reported 

magnitudes greater than or equal to 5.0, regardless of the reported magnitude scale.  This 

selection process yielded the 15 target earthquakes listed in Table 3.1. 

Table 3.1: Target earthquakes 

# Origin Time Magnitude Latitude  
(degrees) 

Longitude 
(degrees) 

1 2001/02/10 21:05 5.13 ML 34.2895 -116.9458 
2 2001/07/17 12:07 5.17 Mw 36.0163 -117.8743 
3 2001/10/31 07:56 5.09 ML 33.5083 -116.5143 
4 2002/02/22 19:32 5.70 Mw 32.3188 -115.3215 
5 2003/12/22 19:15 6.50 Mw 35.7002 -121.0973 
6 2004/09/18 23:02 5.55 Mw 38.0095 -118.6785 
7 2004/09/18 23:43 5.40 Mw 38.0187 -118.6625 
8 2004/09/28 17:15 5.96 Mw 35.8182 -120.3660 
9 2004/09/29 17:10 5.00 Mw 35.9537 -120.5022 
10 2004/09/29 22:54 5.03 Mw 35.3898 -118.6235 
11 2004/09/30 18:54 5.00 Mw 35.9890 -120.5378 
12 2005/04/16 19:18 5.15 ML 35.0272 -119.1783 
13 2005/06/12 15:41 5.20 Mw 33.5288 -116.5727 
14 2005/09/02 01:27 5.10 Mw 33.1598 -115.6370 
15 2006/05/24 04:20 5.37 Mw 32.3067 -115.2278 

Table 3.1 Fifiteen target earthquakes occurring in the testing region with latitude ranging from 32° to 
38.3°, longitude ranging from -123° to -115°, during the interval 1 January 2000 – 30 June 2007. 

3.6 Models and data 

Earthquakes cluster in space and time and therefore any forecast that captures this 

clustering behavior should outperform a uniform reference model (Kagan 1996, Stark 

1996, 1997, and Michael 1997).  Figures 3.6-3.8 confirm the expectation that RI, PI, and 

NSHM provide significant gain relative to a spatially uniform prior distribution.  From 
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the area skill score trajectories, and in particular, the points at τ = 1, it can be seen that, at 

greater than 95% confidence, each forecast obtains an area skill score that is greater than 

½. 

To include time-invariant spatial clustering in the reference model, we use the RI 

alarm function values as the prior distribution—in other words, the RI index defines the 

measure of space for τ—and compute the Molchan trajectory and corresponding  area 

skill score curve for the PI and NSHM forecasts.  Computationally, this means that the 

“cost” of declaring an alarm in a given cell is proportional to the RI alarm function value 

of this cell; in the case of a uniform prior distribution, the cost is everywhere equal.  

Figure 3.9 shows the result of testing for the 15 target earthquakes since 1 January 2000.  

In the calculation of τ and ν, we include the margin of error suggested by Rundle et al. 

(2003); namely, if a target earthquake occurs in an alarm cell or in one of the alarm cell’s 

immediate neighbors (Moore neighborhood), it is considered a hit.  Accordingly, all cells 

in the Moore neighborhood of alarm regions are counted as alarms when computing τ.  

We note that our method for generating alarms from an alarm function is exact and 

efficient; we use as the alarm thresholds all of the unique values of the alarm function, 

rather than iterating the thresholds by some constant.  The codes for generating the 

Molchan and area skill score trajectories are available upon request. 

With RI as the reference model, the Molchan trajectories for PI and NSHM are 

closer to the descending diagonal, indicating much smaller probability gains than in the 

case of a uniform reference model.  The NSHM forecast, however, yields three 

exceptional trajectory points at low values of τ.  These points arise from the fact that  
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Figure 3.9 Results of Molchan trajectory/area skill score analysis for PI (squares) and NSHM (triangles) 
relative to the RI reference model.  Top panel shows complete Molchan trajectories for both predictions 
and bottom panel shows corresponding area skill score curve.  Each plot also shows the α = 1%, 5%, and 
10% critical boundaries.  In the Molchan trajectory plot, points below these boundaries reject the alarm 
region null hypothesis; in the area skill score trajectory plot, points above the boundaries reject the alarm 
function null hypothesis.  We test the area skill score points at unit τ—the filled points on the bottom 
panel—and find that neither PI nor NSHM provides significant gain relative to RI. 
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three of the target earthquakes—numbers 3, 8, and 13 in Table 3.1—occurred in cells 

where NSHM had very high alarm function values and RI had low values.  These three 

hits also manifest themselves in the area skill score trajectory, where NSHM obtains a 

few exceptional points at small τ.  Because the statistical power of the area skill score 

increases with increasing τ, however, we test the area skill score value at τ = 1; here, 

neither PI nor NSHM obtain a score that is significantly greater than ½. Given these 

results and because we test at standard significance values α = 1%, 5% and 10%, we 

cannot reject at the 90% confidence level the null hypothesis that PI and NSHM belong 

to C1.  In other words, the observed set of 15 target earthquakes during this experiment is 

consistent with the spatial distribution forecast by RI and neither PI nor NSHM provide 

significant gain relative to this simple model of smoothed seismicity. 

3.7 Conclusions 

In an illustration of an alarm-based earthquake prediction evaluation technique, 

we have shown that, contradictory to the retrospective testing of Rundle et al. (2002, 

2003), the Pattern Informatics forecast model does not yield statistically significant 

performance in a quasi-prospective earthquake forecast .   In particular, at the 90% 

confidence level, we are unable to reject the null hypothesis that PI and NSHM provide 

no gain relative to RI.   

With respect to NSHM, we note that this model was constructed to forecast large 

earthquakes in the long term, and we have tested it for a period of only 7.5 years during 

which only one damaging earthquake occurred.  By increasing either the duration of the 

experiment or the minimum magnitude of target earthquakes, the fault information 
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included in the NSHM forecast might provide better spatial resolution and accuracy than 

purely statistical methods.  Both of these increases require more time to collect a 

meaningful number of events but may offer insight into the spatial predictability of a 

region’s largest earthquakes.  Fault-based experiments and testing thereof will be 

investigated further by CSEP researchers. 

While the alarm functions considered here focus on forecasting the geographic 

location of future earthquakes above a minimum magnitude, our method can be applied 

to more complex forecasts, including time-varying, magnitude-varying, and fault-based 

alarm functions.  In the experiment considered here, we have disregarded catalog errors.  

Because the forecasts are time-invariant, timing errors are irrelevant to the test.  The 

spatial discretization of the forecasts is of such a scale that location errors are probably 

negligible.  Because this experiment concerns earthquakes above a minimum magnitude 

without magnitude discretization, magnitude errors are only relevant for earthquakes 

close to the minimum target magnitude and are also unlikely to change the result of the 

hypothesis test.  In general, however, it is important to consider catalog errors when 

testing earthquake forecasts (e.g., Werner & Sornette 2007), and our testing method can 

account for such errors by using simulations comparable to those planned for the RELM 

experiments (Schorlemmer et al. 2007).   

The framework for evaluating multi-level alarms has been described by Molchan 

and Kagan (1992); applying these principles would allow further disaggregation of 

testing results.  For example, magnitude discretization can reveal that one model 

accurately predicts small earthquakes and another is better at predicting intermediate size 

earthquakes.  A bootstrap approach where these models are combined may be an effective 
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way to proceed with earthquake prediction research.  Hypothesis testing using the area 

skill score can be used as a guide in this process. 

The consistent failure to find reliable earthquake precursors leads us to believe 

that a more effective way to advance earthquake prediction is a “brick-by-brick” 

approach that synthesizes hypotheses, models, and data across space- and time-scales 

(Jordan 2006).  Rigorous testing methods like the one described here are vital in 

identifying the most robust characteristics of seismicity and improving reference models.  

Such testing may provide a better means of communicating earthquake forecast 

performance and progress to the public. 
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CHAPTER FOUR: 
The area skill score statistic for evaluating earthquake 

predictability experiments 

Abstract 

Rigorous predictability experimentation requires a profound understanding of the 

performance metric in use.  Here we explore in detail the area skill score metric and 

issues related to experimental discretization.  For the case of continuous alarm functions 

and continuous observations, we present exact analytic solutions describing the 

distribution of the area skill score for unskilled predictors, and the approximation of this 

distribution by a Gaussian with known mean and variance.  We also quantify the 

deviation of the exact area skill score distribution from the Gaussian estimate by 

specifying the kurtosis excess as a function of the number of observed earthquakes.  In 

the case of discretized alarm functions, and particularly in the case of discretized 

observations, it is most efficient to simulate the area skill score distribution, and we 

present detailed analysis of simulations and shortcuts for numerically estimating the 

distribution.  Particular attention is paid to the case in which experiment discretization 

and/or the target earthquake distribution is such that more than one of the observed target 

earthquakes occurs within the same space/time/magnitude cell, in which case the 

probabilities of predicting these events are not independent, thus requiring special 

attention. 
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4.1 Earthquake forecasting with an alarm function 

Earthquake forecasts can be stated in various forms: one may estimate the time of 

the next major earthquake on a given fault or fault segment; one might predict that a large 

earthquake will occur within a specified space/time/magnitude range; or one might 

forecast the future rate of seismicity throughout a geographical region.  In practice, 

predictions of the first type are difficult to evaluate because they may require decades of 

waiting for large earthquakes, and fault structures are not uniquely defined, making the 

assignment of an earthquake to a specific fault or fault segment a subjective procedure.  If 

properly specified, the latter two types of experiments can be evaluated formally, and 

such experiments are currently underway.  For example, the Reverse Tracing of 

Precursors (RTP) algorithm (Keilis-Borok et al. 2004, Shebalin et al. 2006) has been used 

to make predictions of target earthquakes in several regions, and a formal evaluation is 

presented in Chapter 2.  Additionally, many researchers have submitted 5 year seismicity 

rate forecasts in prescribed latitude/longitude/magnitude bins in California as part of the 

Regional Earthquake Likelihood Model (RELM) working group project (Field 2007, and 

references therein).  The RELM forecasts are being evaluated within the Collaboratory 

for the Study of Earthquake Predictability (CSEP) testing center (Jordan et al. in prep). 

A difficulty arises, however, when we compare forecasts stated in different forms, 

even when forecasts apply to the same space/time/magnitude domain.  For example, 

RELM likelihood tests used for evaluation require a gridded rate forecast and cannot be 

used to compare forecasts that are not of this type.  One way to address this problem is to 

consider earthquake forecasts in the basest terms.  Most forecast statements can be 
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reduced to an ordering of space/time/magnitude bins by the expected probability of each 

bin to host a specified future earthquake (or earthquakes).  In other words, most forecasts 

can be translated to a statement not unlike the following: space/time/magnitude bin r1 is 

more likely to host a future earthquake than bin r2, which in turn is more likely than r3, 

and so on.  This yields a very general approach by which we can compare forecasts 

originally stated in different formats: if we consider the region R, each forecast provides 

an ordering of its bins r1, r2, …, rj.  In this context, a forecast does well when many 

earthquakes occur in the most highly-ranked bins and few earthquakes occur in bins with 

low ranking.  We could compare two such forecasts by considering the ten most highly-

ranked bins for each forecast and counting the number of earthquakes that occur within 

these bins, i.e., those that have been successfully predicted.  Implicit in this evaluation is 

the choice of a threshold, below which the rankings are disregarded—this yields a binary 

prediction.  We call any bin above the threshold an alarm, where one or more target 

earthquakes are expected.  Furthermore, we call this form of prediction alarm-based, and 

we consider the ranking to be an alarm function.  We note that an alarm function need 

not be stated in terms of rank, but the implicit ordering should be unambiguous.  For 

example, each of the RELM forecasts is an alarm function with values specified by 

expected rates—the bin with the highest forecasted rate is ranked the highest.  Likewise, 

any algorithm that computes a seismicity index provides an alarm function with values 

specified by the index.   

Alarm functions are multidimensional; they can be defined over space, time, 

magnitude, focal mechanism, etc.  To compare two alarm functions, each must be 

specified on the same parameter space; that is, they should cover the same 
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space/time/magnitude range, although they need not specify the same discretization.  The 

simple threshold testing method described above can be iterated to consider the entire 

alarm function by varying the threshold from the highest rank to the lowest.  In the rest of 

this chapter, we explore a testing framework based on alarm functions and a threshold 

approach to testing. 

4.2 Molchan diagram for testing alarm functions 

Given an alarm function, a threshold, and an observed target earthquake catalog—

that is, a catalog containing the events we wish to predict—we can compute a number of 

contingency table measures (see Chapter 2 for details).  The Molchan diagram (Molchan 

1991, Molchan & Kagan 1992) is a useful diagnostic because it captures two such 

measures and the tradeoff between them: miss rate, ν—the proportion of target 

earthquakes falling outside all alarms—and the fraction of space-time occupied by alarm, 

τ.  The latter metric requires a reference model ( )xp~  to define the measure of space.  The 

reference model should be a probability density function that estimates the future 

distribution of target earthquakes; typically, reference model values are computed using 

the historical distribution of earthquakes.  By applying a threshold λ to the alarm function 

f(x), we obtain an alarm set:  

 ( ){ }λ>= ii xfxA |  

At the end of a prediction experiment, N—the number of target earthquakes observed 

during the experiment—is known.  For example, if we have gridded a region into j 

distinct bins, we write  
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where N(xi) is the number of target earthquakes bin xi.  The number of hits, h, is the 

number of target earthquakes located inside A, and the miss rate is: 
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The fraction of space-time occupied by alarm is: 
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For any threshold λ ≥ sup{f(x)}, no alarm is declared and all events are missed: (τ, ν) = 

(0, 1).  Likewise, for any threshold λ < inf{f(x)}, all of R is an alarm region and no events 

are missed: (τ, ν) = (1, 0).  We can repeat the threshold process for many different 

thresholds and obtain what we call a Molchan trajectory, the set of (τ, ν) points on [0, 

1] x [0, 1] that completely characterize the performance of the alarm function during the 

experiment.  Without any loss of information, we can reduce this set to only the set of 

points where one or more hits occur, points which we call Molchan trajectory jumps.  

We write this reduced Molchan trajectory as the set of minimum τ values such that a 

given number of hits is obtained.  In other words, τi is the minimum fraction of space-

time that the alarm function must occupy to obtain i hits: 

 ( ) [ ]{ }NiΤ ii ,1,|inf ∈== νντ  

Here, Τ is the set of τ values from the complete Molchan trajectory, and we use the 

following indexed notation to specify the miss rate: 
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We can also express the Molchan trajectory in terms of miss rate as a stepwise continuous 

function of τ: 

 ( ) ( ){ }1|sup =<= iif H ττντν  (4.5) 

Here, H is the Heaviside function.  We prove in Appendix B that the expected value for a 

Molchan trajectory jump for an unskilled alarm function is: 
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We note that Equation 4.6 tells us that for any given observational experiment the 

canonical Molchan trajectory diagonal (<τi> = i/N) does not represent the average 

behavior of an unskilled alarm function for a given experiment; rather, the diagonal 

should be replaced by a stairstep function starting at (τ, ν) = (0, 1) with stairs of width 

1/(N+1) and height 1/N (see Figure 4.1). 

Using the Molchan diagram and its confidence bounds to evaluate an entire alarm 

function can yield ambiguous results.  In particular, an alarm function may yield some 

alarm sets that demonstrate significant skill (i.e., trajectory points outside the confidence 

bounds) and some alarm sets that demonstrate otherwise (trajectory points well within the 

confidence bounds).  To naïvely address this problem, one might choose a specific value 

of τ, or a specific value of ν, at which to examine the trajectory.  This process is 

subjective, however, and does not fully characterize the alarm function.  Therefore, in the 

following section, we suggest a scalar cumulative measure that depends on multiple 

Molchan trajectory points. 
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Figure 4.1 Schematic Molchan diagram for N=10.  The stairstep proto-diagonal represents the long run 
average behavior of an unskilled alarm function.  Also shown are the 90%, 95%, and 99% confidence 
bounds. 

4.3 Area skill score 

Recall from Chapter 3 that we define the area skill score for alarm function f: 
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This is the normalized area above the continuous Molchan trajectory νf up to the given 

value of τ.  For an experiment with N target earthquakes, the area skill score evaluated at 

τ=1 measures the predictive skill of f throughout the entire space of the experiment—that 

is, all N target earthquakes and the entire forecast region R are considered.  Evaluating the 
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area skill score of the entire trajectory addresses how well an alarm function estimates the 

distribution of target earthquakes, rather than how well it predicts individual earthquakes.  

In this case, we can write (see also Figure 4.2): 

 ( ) [ ]( )∑
−
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1

0
11

N

i
iiifa ττν  (4.8) 

By substituting Equation 4.4 into Equation 4.8 and combining terms, we find 
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Equation 4.9 shows that the area skill score for an alarm function is proportional to the 

average of its Molchan trajectory jumps {τi}. 

 
Figure 4.2 Molchan diagram for N=10, shown here with a sample trajectory based on an unskilled alarm 
function.  The shaded region is the area skill score, shown here as a sum over the vertical strips.  The dots 
are the trajectory jumps. 
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4.4 Area skill score distribution 

Hypothesis testing with the area skill score requires knowledge of its distribution 

for unskilled alarm functions.  By unskilled, we mean an alarm function that essentially 

guesses the future distribution of seismicity according to the reference model, ranking the 

subregions of R randomly.  In practice, we represent an unskilled alarm function by a 

function whose values are random uniform variables on (0, 1].  A straightforward method 

for estimating the distribution of the area skill score for a given experiment is to use 

brute-force simulation: generate a large number of random alarm functions and compute 

Molchan trajectories and corresponding area skill scores for each random alarm function.  

This process can become quite computationally cumbersome, particularly as experiment 

discretization decreases and the number of target earthquakes increases.  Fortunately, we 

can often optimize this simulation method. 

Owing to experiment discretization and/or the distribution of target earthquakes, it 

may occur in some experiments that more than one target earthquake occurs in a single 

forecast bin.  The case of discretized experiments and, in particular, the case in which 

more than one target earthquake may occur in a single bin, are addressed separately in 

Section 4.6; for the remainder of this section, we consider experiments wherein the 

reference model is a continuous function and therefore any value of τ can be realized.  In 

this case, the Molchan trajectory for an unskilled alarm function can be considered as an 

ordered sequence of independent and identically distributed (i.i.d.) uniform random 

variables on (0, 1].  That is, rather than simulating many random alarm functions and 

computing a Molchan trajectory for each alarm function, we can repeatedly select N 
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uniform random variables on (0, 1], where N is the number of observed target 

earthquakes.  For each simulation, we sort these values in ascending order and analyze 

their distribution.  To understand the equivalence of these methods, consider an 

experiment with N target earthquakes.  In the former method, because the alarm functions 

randomly rank the sub-regions of the study region R, the resultant Molchan trajectory 

points will be random samples from (0, 1].  Therefore, the latter method is equivalent and 

offers a simple computational shortcut. 

We can use Equation 4.6 to determine the average area skill score for unskilled 

alarm functions.  We recall the following properties of expectation: 
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where c is a constant.  By applying these properties to Equation 4.9, we determine the 

expected value of the area skill score for unskilled alarm functions: 
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Given that the Molchan trajectory for an unskilled alarm function can be treated 

as an ordered sequence of i.i.d. uniform random variables on (0, 1], and having shown 

that the area skill score is proportional to the normalized sum of these variables (Equation 

4.9), we write the additive complement of the area skill score, or the area under the 

Molchan trajectory: 
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We claim (and prove analytically in the following section) that the area skill score 

distribution is symmetric.  Therefore, to know the distribution of the area skill score, it 

suffices to know the distribution of the complement â ; in turn, we can obtain the 

distribution of â  if we know the distribution of u.  The distribution of u—namely, the 

distribution of the sum of N uniform random variables on (0, 1]—is known (e.g., 

Sadooghi-Alvandi et al. 2007) and, in terms of probability density, is described by the 

following: 
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Here, ⎣ ⎦u  denotes the floor function.  The variable u is defined over (0, N] but we seek 

the distribution of â , which is defined over [0, 1), so we need to rescale f(u).  In general, 

if we know f1(x)—the probability density of x—and we want to know f2(y)—the 

probability density of y—where y = g(x), then we can use the following: 
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Here g' is the first derivative of g.  In terms of Equation 4.14, we know f1(x) (where x = u) 

and want to know f2(y) (where y = â ): 
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By combining Equations 4.12—4.16, we find: 

 
( ) ( )

( ) ( ) ( ) ( )
⎣ ⎦

∑
=

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=⇒

=
aN

k

Nk kaN
k
N

N
Naf

uNfaf
ˆ

0

1ˆ1
!1

ˆ

ˆ
 (4.17) 

We can use Equation 4.17 to compute the cumulative density for any area skill score for 

arbitrary N, thereby establishing the statistical significance of any area skill score: 
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We note that, by applying the Central Limit Theorem to the i.i.d. trajectory values, the 

area skill score distribution asymptotically approaches a normal distribution with mean 

μ=½ and variance σ2 that depends on N; in the next section, we provide an analytic 

solution for σ2.  For larger values of N, the normal approximation is computationally 

advantageous compared to the exact solution provided by Equation 4.17 and the 

simulation methods described above.  In the following section, we quantify the accuracy 

of the Gaussian approximation through a discussion of the moments of the area skill 

score distribution. 

4.4 Higher moments of the area skill score distribution 

The exact area skill score distribution described in Equation 4.17 can be better 

understood through an examination of its moments.  Because the Central Limit Theorem 

allows us to approximate the exact distribution with a normal distribution, we need to 

determine the second central moment—the variance—in order to fully specify the normal 

approximation.  The fourth moment is also of particular interest because it allows us to 
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quantify the difference between the exact distribution and the Gaussian approximation.  

For any distribution, the nth central moment nμ̂  can be expressed in terms of 

moments about the origin, μk (Abramowitz & Stegun 1965, p 928): 
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In the case of the area skill score distribution, we have found a general method for 

computing any moment about the origin; the details are provided in Appendix C, and the 

first four moments about the origin are listed in Table 4.1.   

Table 4.1: Moments about origin 

n μn 
1 

2
1  

2 N12
1

4
1 +  

3 N8
1

8
1 +  

4 32 120
1

48
1

8
1

16
1

NNN −++
Table 4.1 The first four moments about the origin of the area skill score distribution. 
 
By substituting values from Table 4.1, we find 

2
1ˆ1 =μ  

This is in agreement with the expected value we found in Equation 4.11; additionally, we 

find the second central moment to be 
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We can combine Equation 4.11 and Equation 4.20 to express the Gaussian approximation 

to the area skill score distribution, suitable for large N: 
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Again using the entries in Table 4.1 and Equation 4.19, we find the third central moment 

to be: 

 0ˆ3 =μ  (4.22) 

Equation 4.22, which describes the skewness of the distribution and measures its 

asymmetry, serves as proof that the area skill score distribution is symmetric. 

To approximate how large N must be to use Equation 4.21 (the Gaussian 

approximation) in the place of Equation 4.17 (the exact distribution), we are interested in 

quantifying the differences in the distributions these equations describe.  These 

distributions have identical central moments up to and including the third moment.  To 

measure the deviation from normality of the distribution described in Equation 4.17, we 

therefore derive the kurtosis excess γ2, which is dependent on the second and fourth 

central moments and is defined (Abramowitz & Stegun 1965, p 928): 
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Kurtosis describes the peakedness of a probability distribution and the normal 

distribution has a kurtosis of 3; the kurtosis excess of a given distribution indicates how 

much more peaked the distribution is.  For example, the kurtosis excess of the uniform 

distribution is -1.2 and the Laplace distribution has a kurtosis excess of 3.  Using 

Equation 4.19 and the terms in Table 4.1, we find the fourth central moment of the exact 

area skill score distribution is 
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By substituting Equation 4.20 and Equation 4.24 into Equation 4.23, we determine that 

the kurtosis excess of the area skill score distribution is  

 N4
5

2
−=γ  (4.25) 

 
Figure 4.3 Comparison of exact area skill score probability density given by Equation 4.17—shown here as 
dashed blue curves—and the Gaussian approximation given by Equation 4.21—shown here in red.  As N, 
the number of target events being considered, increases, the Gaussian approximation quickly approaches 
the exact density. 
 

Equation 4.25 shows that the exact area skill score distribution is platykurtic—

that is, it has a negative kurtosis excess—which indicates “thin tails” relative to the 

normal distribution.  Indeed, this must be the case because the range of the area skill 
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score distribution is [0, 1), whereas the normal distribution has infinite range.  This 

analysis also shows that as the number of observed target earthquakes increases, the 

kurtosis excess approaches zero, in agreement with a Central Limit Theorem application 

that suggests the distribution asymptotically approaches normality.  Figure 4.3 shows 

how the approximation differs from the exact solution for several values of N, indicating 

that for N as small as 5, the normal approximation provides a satisfying estimate. 

4.5 Experimental discretization 

In the two previous sections, for the purpose of deriving analytic results, we have 

considered the distribution of the area skill score only in the case where the reference 

alarm function was assumed to be continuous.  In practice, however, this is an unlikely 

case as predictability experiments almost always deal with discretized regions to reduce 

computations and to informally address uncertainties (e.g., epicenter uncertainties).  

Under certain circumstances, despite discretization, the analytic solutions and 

approximations presented in the previous sections can provide accurate estimates of 

predictive skill.  As experiment cell size decreases toward the continuum limit, and in the 

case where no one space/time/magnitude cell contains more than one target earthquake, 

the analysis above becomes increasingly accurate.  In the case of more coarsely-grained 

experiments, however, we rely on simulation methods as previously suggested; here, we 

discuss some caveats that ought to be considered when computing the significance of a 

given area skill score.  To illustrate these caveats, we will refer to the alarm function 

shown in Figure 4.4 and the experiment results shown in Figure 4.5. 
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Figure 4.4 Illustrative alarm function, shown here in continuous form. 
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Figure 4.5 Hypothetical predictability experiments comparing the results between the continuous version 
(left column) and a discretized version (right column) of the alarm function shown in Figure 4.4. a) Map 
view of the continuous alarm function, with four hypothetical target earthquakes denoted by stars. b) 
Molchan trajectory (blue points) for the experiment shown in a), using a uniform reference model. c) Area 
skill score trajectory corresponding to experiment shown in a). d) Map view of a very coarsely discretized 
version of the alarm function.  e) Molchan trajectory for the experiment shown in d) Note that all values of 
both τ and ν are now discrete, and that the trajectory has infinite slope at τ=1/16, owing to two target 
earthquakes being in the same cell. f) Area skill score trajectory corresponding to experiment shown in d). 
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In the case of a uniform reference model and a discrete alarm function f defined 

on study region R with j distinct sub-regions (e.g., Figure 4.5.d),  
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the only attainable values of τ are members of the following set: 
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This is illustrated in Figure 4.5.e.  If we use the computational shortcut described in the 

Section 4.4, we violate this constraint and therefore may obtain incorrect results, results 

which become less accurate as j decreases.  We can return to the original simulation 

procedure, or we can modify slightly the computational shortcut; rather than drawing N 

random numbers uniformly distributed on (0, 1], we draw N random non-negative 

integers uniformly distributed on (0, j] and divide each by j.   

In principle, we could modify this shortcut for any arbitrary reference model, 

where the only attainable values of τ are given by the nonzero sums of the reference 

model values.  If we construct the set of all reference model value sums, we could draw N 

entries from this set to simulate the trajectory from an unskilled alarm function.  

Constructing this set is prohibitively expensive, however, particularly when dealing with 

a reference model defined by thousands of cells.  As we prove in Appendix D, if our 

reference model has j values, the set of sums has (2j-1) elements.  As j becomes large, it is 

more efficient to use the original alarm function simulation method.  There is some trade-

off here, though.  For a fixed reference model alarm function, as j becomes large, the set 

of attainable τ values approaches the continuum between 0 and 1.  In practice, for j on the 
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order of a thousand or more, the computational shortcuts we suggest offer a good trade-

off between approximation accuracy and speed. 

There is one important special case remaining: the case when discretization and 

the observed target earthquake distribution are such that more than one target earthquake 

occurs in a single bin (e.g., Figure 4.5.d).  When this happens, the probabilities of 

correctly predicting these events are not independent of each other—this independence is 

an implicit assumption in the computational shortcuts suggested so far.  To correct for 

this, we can examine the target earthquake distribution and construct the simulated 

unskilled trajectory appropriately: for a bin containing more than one earthquake, we 

draw a random number from (0, 1] and append it to the simulated unskilled trajectory.  

Unlike in the computational shortcut described in Section 4.4, however, rather than 

appending this random number once and moving on, we append the random number n 

times, where n is the number of target earthquakes in this bin.  This method captures the 

idea that, when this bin is covered by an alarm, all the target earthquakes within the bin 

are successfully predicted. 

We note that, in practice, almost all predictability experiments take place in a 

discretized, finely gridded framework.  In all cases, the alarm function simulation 

procedure will be accurate and appropriate but, as we have pointed out, it can be 

computationally cumbersome.  A careful examination of the experimental discretization, 

the target earthquake distribution, and the reference model should be conducted prior to 

evaluation using the area skill score; based on the outcome of this examination, it is very 

likely that one of the shortcut simulation methods discussed here is applicable.  In the 

rare case of the predictability experiment in a continuum—for example, the RTP 
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experiment discussed in Chapter 2, the analytic solutions are applicable and, as N 

becomes large, the Gaussian approximation for determining statistical significance is 

advantageous. 

4.6 Discussion 

Imagine we have a set of n candidate alarm functions, { f1(x), f2(x), …, fn(x)}, and 

we want to determine whether any has predictive skill in a given experiment.  We can 

begin with a uniform test by selecting a uniform reference model ( ( ) Rcp ∈∀= xx   ,~ , 

where c is any arbitrary constant), computing the area skill scores ( ) ( ) ( ){ }1,1,1
21 nfff aaa K , 

and their significance using Equation 4.18.  Because earthquakes cluster in space and 

time and do not occur everywhere, it is likely that most candidate alarm functions will 

incorporate some form of clustering and thus obtain a statistically significant area skill 

score relative to the uniform reference model.  Therefore, the goal of further testing is to 

improve the reference model and thereby distinguish the alarm functions.  For all those 

candidate alarm functions that pass the uniform test, we continue with the self test.  In the 

self test of alarm function f1, we take f1 as the reference model ( ) ( ) Rfp ∈∀= xxx   ,~
1  and 

recalculate its Molchan trajectory and area skill score ( )1
1f

a .  If f1 is a reasonable 

reference model—that is, it approximates the distribution of seismicity well—we expect 

that ( )1
1f

a  will not deviate significantly from the corresponding area skill score 

distribution.  If it does, this indicates that f1 is not an appropriate reference model.  For all 

those alarm functions that pass the self test, we proceed with a round-robin test.  In the 

round-robin test, each surviving alarm function is fixed as the reference model and the 
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area skill scores for all other alarm functions are computed.  An alarm function is 

supported as a good reference model if none of the area skill scores deviate from the 

expected distribution.  If any one area skill score deviates significantly, the reference 

alarm function is considered to be an inappropriate reference model. 

4.7 Conclusion 

In this chapter, we have explored the concept of an alarm function, a general 

format for specifying earthquake forecasts that is defined by an ordering of 

space/time/magnitude regions in terms of their estimated probability to contain future 

target earthquakes.  We described the Molchan diagram and Molchan trajectories, and 

presented relevant analysis that includes a corrected proto-diagonal describing the 

behavior of unskilled alarm functions and the explicit use of a reference model.  We 

presented the exact distribution of the area skill score.  We also presented a Gaussian 

approximation of the area skill score distribution and, to determine the applicability of 

this approximation, performed an analysis of the moments of the exact distribution.  We 

have dealt carefully with potential pitfalls regarding experimental discretization and the 

special case of more than one target earthquake occurring in a given 

space/time/magnitude bin. 
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CHAPTER FIVE: 
Optimizing earthquake forecasts based on smoothed seismicity 

Abstract 

Recently, the momentum of earthquake prediction research has shifted from 

predicting individual large earthquakes to a slightly different problem: forecasting the 

distribution of seismicity—including small to moderate events—in space, time, and 

magnitude.  This change has been accompanied by an increased emphasis on rigorous 

testing and evaluation of earthquake forecasts.  The development of reasonable reference 

models is vital to earthquake forecast evaluation, and improving standard reference 

models is paramount to improving our understanding of the earthquake system.  Perhaps 

the simplest reasonable reference model is one based on the distribution of past 

earthquakes; such a model incorporates the intuition that future earthquakes will occur in 

regions near past earthquakes, or the corresponding notion that each earthquake has some 

influence on the tectonic system in which it occurs.  Taking this approach typically 

involves smoothing the distribution of observed past earthquakes with a given kernel.  In 

this study, we seek a smoothing kernel that is optimal, in the sense that this kernel yields 

the best forecast of future seismicity.  We present a framework in which time-varying, 

scale-dependent smoothing kernels can be optimized.  We illustrate the procedure with a 

series of retrospective predictability experiments in California, taking M ≥ 5 events as the 

target earthquakes and attempting to predict their locations using previous M ≥ 4 events.  

We present analytic solutions for three functional forms of smoothing and consider 

experiments with a number of smoothing lengthscales.  Our results indicate that, for these 

experiments, the optimal smoothing lengthscale slowly decreases through time.  These 
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experiments have yielded a new five-year forecast that can be considered as a simple 

reference model for evaluating RELM models currently being tested within the SCEC 

CSEP testing center. 

5.1 Smoothed seismicity reference models 

Evaluation of earthquake forecast experiments requires careful consideration of 

appropriate reference models.  For example, because earthquakes cluster in space, a 

forecast that incorporates some form of spatial clustering is likely to perform significantly 

better than a reference model based on a uniform seismicity distribution.  Therefore, it 

seems reasonable to expect that a reference model captures the clustering observed in 

seismicity (e.g., Michael 1997).  One method for incorporating observed clustering is to 

smooth past seismicity; that is, to allow each past earthquake in the catalog to make some 

smoothed contribution to an estimate of seismic density.  Smoothing can take a number 

of forms and it is not clear which form is best.   

In Chapters 3 and 4, we introduced a performance metric called the area skill 

score for evaluating earthquake forecasts.  Testing based on the area skill score explicitly 

specifies the reference model in terms of an alarm function, which is a general method for 

ranking regions of space/time/magnitude in terms of the probability that a future target 

earthquake will occur within a given region.  A wide class of earthquake forecasts can be 

interpreted in terms of alarm functions, and this allows for rigorous comparative testing.  

One important goal of such testing is an iterative improvement of the reference model 

and indeed, our understanding of earthquake predictability is likely to proceed in this 

manner.  In experiments such as that described in Chapter 3, we have found that quite 
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complex prediction algorithms typically do not significantly outperform very crude 

smoothed seismicity models. This has inspired us to essentially invert the testing 

problem: rather than building increasingly complex models to forecast seismicity, can we 

optimize simple smoothed seismicity models?  In this study, we consider simple forms of 

smoothing and take an empirical approach to optimizing them with respect to the area 

skill score. 

Smoothed seismicity is also one of the building blocks of modern seismic hazard 

analysis, which in a sense is a particular type of earthquake forecast experiment.  When 

estimating seismic hazard in regions with low seismicity rates or where little is known 

about regional fault structure, the locations of past earthquakes in the region are 

smoothed.  For example, this is the procedure followed by the United States Geological 

Survey National Seismic Hazard Map (NSHM) working group when estimating hazard in 

the Central and Eastern United States (Frankel 1995, Frankel et al. 1996); in other 

regions, smoothed seismicity is used to model “background seismicity.”  While using 

smooth seismicity reduces the subjectivity inherent in polling expert opinion, the choice 

to use a Gaussian smoothing kernel seems itself subjective.  Moreover, the standard 

smoothing lengthscale used in the NSHM is justified quite qualitatively, by examining 

resulting forecasts by eye.  Here, we take a more rigorous approach, considering 

alternative kernels and quantifying the differences between various lengthscale values.  

The experiments that we describe here could be used to optimize future revisions of such 

large-scale seismic hazard maps. 
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5.2 Functional forms of smoothing kernels 

To simply smooth seismicity, one might discretize the region of interest and count 

the number of earthquakes that occur in each cell, allowing each point source epicenter to 

be smoothed over the cell in which it falls.  Rundle et al. (2002) called this the Relative 

Intensity method.  The results of such smoothing, however, will be unstable with respect 

to discretization parameters such as cell size and grid alignment, and the smoothing itself 

is anisotropic and un-physical.  For example, epicenters occurring in opposite corners of 

a cell are treated as though they both occurred in the center of the cell.  To minimize these 

effects, and to relax the constraint that each epicenter contribute only to the cell in which 

it occurs, we smooth earthquakes using continuous kernel functions that allow for a wider 

region of influence.  In this study, we explored a simple isotropic two-dimensional 

smoothing kernel governed by a single lengthscale parameter.  It was our goal to optimize 

the smoothing lengthscales.  For a given functional form of smoothing, our primary task 

is to calculate the contribution of an earthquake epicenter at (xeqk, yeqk) to a grid cell with 

bounds x1, x2, y1, y2.  In general, for the bivariate smoothing kernel K(x, y), this 

contribution takes the form: 

 ( ) ( )∫ ∫=
2

1

2

1

,,,,,, 2121

y

y

x

x
eqkeqkeqkeqk dxdyyxKyyxxyxK  (5.1) 

A Gaussian kernel has been used in several previous studies of smoothed 

seismicity (Stock & Smith 2002a, Stock & Smith 2002b, Helmstetter et al. 2007) and it 

forms the basis for modeling “background” seismicity in the national seismic hazard 

maps of the United States (Frankel et al. 2002) and New Zealand (Stirling et al. 2002).  

Frankel (1995) first formulated Gaussian smoothing for seismic hazard, but that study 
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formulated the kernel in terms of a correlation distance c rather than using a pure 

Gaussian form, so we will explicitly detail our formulation.  Because we are interested in 

an isotropic kernel with a single smoothing lengthscale, we can write the bivariate 

Gaussian as: 

 ( ) ⎟⎟
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Here, σ is the classic standard deviation parameter.  We substitute Equation 5.2 into 

Equation 5.1 and solve for the Gaussian contribution of an epicenter to a cell: 
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  (5.3) 

Analytically, the kernel described by Equation 5.2 extends infinitely in both dimensions.  

Within the precision provided by modern computers, however, erf(a)=sgn(a) when |a| 

>~3.86.  Therefore, any cell satisfying the following conditions will cause Equation 5.3 to 

equal zero; that is, the cell will obtain no contribution from the epicenter: 
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To save computation, we determine which cells will obtain some contribution from the 

epicenter before evaluating Equation 5.3 everywhere in the gridded regions.  Cells will 

obtain some contribution from the epicenter if: 
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Particularly for small σ and large catalogs, using the condition in 5.5 will provide 

a significant reduction in computing time.  For the smoothing experiments described 

below, we only consider the kernel contributions described by Equation 5.3.  In Appendix 

E, we present comparable analytic solutions for a power-law kernel and an Epanechnikov 

kernel. 

5.3 Smoothing experiments 

The Regional Earthquake Likelihood Model (RELM) working group recently 

began a prospective earthquake predictability experiment in California (Field 2007, and 

references therein).  Nineteen forecasts were submitted, each of which provides the 

expected number of earthquakes with magnitude greater than or equal to 4.95 for the 

subsequent five years; the forecasts are specified in latitude/longitude cells.  Some of the 

submitted forecasts include a component of smoothed seismicity (Ebel et al. 2007, 

Holliday et al. 2007, Ward 2007) and others are based solely on smoothed seismicity 

(Helmstetter et al. 2007, Kagan et al. 2007).  These forecasts employ complex and/or 

adaptive smoothing kernels, and the smoothing parameters have either been arbitrarily 

fixed or chosen by maximum likelihood.  One goal of this work was to develop a simple 

smoothed seismicity forecast optimized using the area skill score; it will be interesting to 

compare such a forecast in a prospective test with those based on more complex 

smoothing.  Evaluation of these forecasts, using either the likelihood testing framework 
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(Schorlemmer et al. 2007) or that proposed in Chapters 3 and 4, provides a level of 

granularity that might allow us to understand why one forecast outperforms another, 

thereby indicating what model complexities provide significant benefit. 

In order to be formally defined, a smoothed seismicity predictability experiment 

requires the following to be specified: the geographic region of interest and choice of 

discretization (i.e., cell size); the magnitude range of target earthquakes and the 

magnitude range of earthquakes to be used for smoothing—including the magnitude scale 

and earthquake catalog; the period of earthquakes to be used for smoothing (the learning 

period); the period of earthquakes to be predicted (the testing period); and the form and 

parameter values of the smoothing kernel.   

In each of the experiments described below, we have chosen parameters that 

closely match the current 5-year forecast experiment designed by RELM.  We consider 

the California natural laboratory, following the RELM parameterization and spatial 

discretization of 0.1° by 0.1° latitude/longitude cells (see Table 5.1 for details).  We use 

the Advanced National Seismic System (ANSS) catalog and ignore the magnitude type. 

Table 5.1: California study region 

Latitude 
(degrees) 

Longitude 
(degrees) 

43.0 -125.2 
43.0 -119.0 
39.4 -119.0 
35.7 -114.0 
34.3 -113.1 
32.9 -113.5 
32.2 -113.6 
31.7 -114.5 
31.5 -117.1 
31.9 -117.9 
32.8 -118.4 
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Table 5.1, Continued 

33.7 -121.0 
34.2 -121.6 
37.7 -123.8 
40.2 -125.4 
40.5 -125.4 

Table 5.1 Coordinates of the California study region considered in this study, after the Regional 
Earthquake Likelihood Models natural laboratory (Schorlemmer & Gerstenberger 2007). 

5.4 Fixed test period 

Table 5.2: Target earthquakes 

# Origin Time Magnitude Latitude 

 (degrees)

Longitude  

(degrees) 

1 22 Feb 2002 Mw = 5.70 32.3188 -115.3215 

2 17 Jun 2002 ML = 5.09  40.8098 -124.5520 

3 07 Feb 2003 ML = 5.00 31.6280 -115.5110 

4 22 Dec 2003 Mw = 6.50 35.7002 -121.0973 

5 18 Sep 2004 Mw = 5.55 38.0095 -118.6785 

6 18 Sep 2004 Mw = 5.40 38.0187 -118.6625 

7 28 Sep 2004 Mw = 5.96 35.8182 -120.3660 

8 29 Sep 2004 Mw = 5.00 35.9537 -120.5022 

9 29 Sep 2004 Mw = 5.03 35.3898 -118.6235 

10 30 Sep 2004 Mw = 5.00 35.9880 -120.5378 

11 16 Apr 2005 ML = 5.15 35.0272 -119.1783 

12 12 Jun 2005 Mw = 5.20 33.5288 -116.5727 

13 02 Sep 2005 Mw = 5.11 33.1598 -115.6370 

14 24 May 2006 Mw = 5.37 32.3067 -115.2278 

15 19 Jul 2006 Mw = 5.00 40.2807 -124.4332 
Table 5.2 Parameters of earthquakes with magnitude greater than or equal to 5.0 in the California study 
region during the test period T*=1 Jan 2002 to 31 Dec 2006. 



 87

 
We consider a series of experiments in which we attempt to best forecast 

California earthquakes of magnitude greater than mtarget = 5.0 during the test period T* 

starting 1 Jan 2002 and ending 31 Dec 2006 (duration Δt* = 5 years); the target 

earthquakes for this experiment are listed in Table 5.2.  We denote these as the “fixed test 

period” experiments.  In the first of these experiments, we use the Gaussian kernel given 

by Equation 5.3 to smooth all earthquakes in this region with magnitude greater than 

msmooth = 4.0 during a preceding learning period T1 1 Jan 1997 to 31 Dec 2001, inclusive 

(duration Δt = 5 years).  We generate ten distinct alarm functions by iterating over each 

smoothing lengthscale element in the set: 

 { }km 1000 200, 100, 50, 30, 25, 20, 15, 10, 5,=Σ  (5.6) 

We repeat this procedure for many distinct learning periods, setting the start date of the 

learning period progressively earlier (δt = 1 year), until we reach the beginning of the 

catalog, 1 Jan 1932.  The temporal discretization yields 66 distinct, though not 

independent, experiments.  This procedure is illustrated in Figure 5.1. 

We provide an example alarm function, the target earthquake distribution, and the 

resultant Molchan trajectory and area skill score trajectory in Figure 5.2.  In this 

experiment, we have computed the trajectories relative to a uniform reference model, 

following the procedures described in Chapter 3.  We note that the two target earthquakes 

near 121W, 36N—earthquakes 4 and 7 as listed in Table 5.2—are not forecast well, as 

they occur in regions that have obtained no contribution from earthquakes in the 
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Figure 5.1 Schematic of smoothing optimization experiments with a fixed test period T*.  Light blue 
indicates a learning period and dark blue indicates the test period—that is, epicenters in the light blue 
period are smoothed to forecast target earthquakes in the dark blue period.  In these experiments, the 
learning period grows backward in time by δt = 1 year. 
 
preceding learning period.  In contrast, the earthquake near 119W, 38N—earthquake 6—

occurs near a peak in the alarm function and is thus well forecast (predicted at a small 

value of τ).  This corresponds to a situation where a target earthquake occurred near the 

location of many previous earthquakes.  The prominent alarm function peak near 116W, 

35N, however, would yield false alarms because no target earthquake occurs nearby.  As 

indicated by the area skill score at τ=1, this alarm function shows significant skill relative 

to a uniform reference model. 

 For each experiment in the series, we want to determine the optimal smoothing 

lengthscale for that experiment, so we evaluate the performance of each alarm function.  

We begin by examining the performance of each smoothed alarm function relative to a 

uniform reference model.  For each alarm function, we compute a Molchan trajectory and   
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Figure 5.2 Example of smoothed seismicity predictability experiment.  a) Seismic density alarm function 
and the target earthquakes for the fixed testing period experiments.  In this case, earthquakes during 
learning period T1=1 Jan 1997 to 31 Dec 2001 were smoothed with the Gaussian kernel with σ=15km; 
warm colors indicate high density, white regions indicate zero density.  Stars denote target earthquakes that 
occurred during the test period T*=1 Jan 2002 to 31 Dec 2006. b) Molchan trajectory corresponding to the 
alarm function and target earthquake distribution shown in a), using a uniform reference mode.  Also 
shown are the 95% and 99% confidence bounds on the random diagonal. c) Area skill score trajectory 
corresponding to the example forecast experiment, with 95% and 99% confidence bounds; the final area 
skill score indicates statistically significant performance relative to the uniform reference model.  We claim 
that the performance of the alarm function in this experiment can be characterized by the area skill score at 
τ=1, the right-most point in the area skill score plot. 
 
corresponding area skill score trajectory.  As discussed in Chapter 3 and Chapter 4, the 

performance of an alarm function in a given experiment can be characterized by its area 

skill score at τ=1; therefore, in Figure 5.3, we report only this measure for each of the 66 

experiments.  We note that, for every experiment, area skill scores from every smoothed 

alarm function are better than random with respect to the uniform reference model at 95% 

confidence.  With few exceptions, the smoothed alarm functions obtain area skill scores 

that are significant at 99% confidence for each experiment.  We also note that the area 

skill scores are monotonically decreasing with increasing smoothing start date.  This 
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indicates that the performance of each smoothing kernel is enhanced by extending the 

learning period, thus integrating more earthquake data.  In other words, these kernels 

benefit from inclusion of older earthquakes, despite the fact that location uncertainty 

increases as we approach the beginning of the catalog. 

 
Figure 5.3 Temporal evolution of area skill scores for each lengthscale for each experiment illustrated in 
Figure 5.1, relative to a uniform reference model.  The result of the first experiment in Figure 5.1 is 
reported at the far right of this plot and subsequent experiments proceed to the left.  The two ‘+’ lines 
demarcate the area skill score confidence bounds corresponding to α=0.05 (bottom) and α=0.01 (top).  The 
dashed lines are the average area skill score at τ=1 over the 66 experiments. 
 

The results in Figure 5.3 indicate that all smoothing lengthscales outperform the 

uniform reference model, but it is difficult to say from this plot which smoothing 

lengthscale yields the optimal reference model for each experiment.  To address this 

problem, as before, we compute Molchan trajectories and area skill score trajectories for 

every experiment; in this step, however, we consider the alarm functions themselves as 
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reference models, iterating over each one.  That is, for the first experiment (learning 

period from 1997 to 2001 inclusive), we first fix the σ = 5km smoothed alarm function as 

the reference model and compute trajectories for all smoothed alarm functions, including 

the σ = 5km alarm functions itself.  We next use the σ = 10km smoothed alarm function 

as the reference model and compute trajectories for all lengthscales, repeating this 

process until each lengthscale’s  alarm function has been used as the reference model.  

We repeat this procedure for the next experiment and for all those remaining, until we 

have reached the beginning of the catalog.  As before, we analyze the results in terms of 

the area skill score at τ = 1.  We provide in Figure 5.4 two examples of results.  In Figure 

5.4.a we have employed a reference model of σ = 1000km.  We note that because this is 

such a large smoothing value, the results are nearly identical to those of Figure 5.3; in the 

limit where ∞→σ , the smoothed seismicity alarm function becomes the uniform alarm 

function.  In Figure 5.4.b, we set σ = 30km andthe results are quite different due to the 

differences between this reference model and the uniform distribution.  In this case, many 

of the area skill scores fall below the corresponding critical region and, at least in the case 

of alarm functions from smaller lengthscales, these results provide a clearer distinction 

between alarm functions.  Again, with little exception, we note a general decrease in 

performance with an increase of smoothing start date. 
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Figure 5.4 Temporal evolution of area skill scores for each lengthscale for each experiment illustrated in 
Figure 5.1, relative to smoothed seismicity alarm functions with smoothing lengthscale a) σ = 1000 km and 
b) σ = 30 km.  Plot details are as described in Figure 5.3. 
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Figure 5.5 Temporal evolution of a) the optimal reference model smoothing lengthscale for the 
experiments illustrated in Figure 5.1 and b) the corresponding misfit.  
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We recall from Chapter 4 that if we have found an appropriate reference model, 

the area skill scores of competing alarm functions will go to ½.  In the present case, we 

have a set of candidate reference models; to distinguish between them, we define an 

average misfit parameter that measures the deviation of each alarm function’s area skill 

score from ½: 
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Here, brackets denote absolute value, n is the number of competing alarm 

functions, and ASS(ti, σk | σj) is the area skill score at τ = 1, in the experiment where the 

smoothing begins at ti, of the alarm function with smoothing lengthscale σk relative to a 

reference model with smoothing lengthscale σj.  For the experiment where the smoothing 

begins at ti, we define the optimal smoothing lengthscale as the value of σj that minimizes 

Equation 5.7.  In Figure 5.5, we report the optimal smoothing lengthscale and 

corresponding minimum average misfit for each of the experiments.  We note from 

Figure 5.5.a a systematic increase in the optimal smoothing lengthscale with increasing 

start time of smoothing.  Viewed in reverse time, the systematic decrease indicates that, 

as we include more and older earthquakes, it is best to smooth less.  This can be 

understood intuitively: if we had an infinitely long catalog, we would know the exact 

spatial distribution of seismicity (assuming stationarity), and we could the optimal 

reference model would be obtained by smoothing the observed epicenters with an 

infinitesimally small lengthscale.  With few exceptions, we observe a systematic increase 

of misfit in Figure 5.5.b with starting smoothing date.  Again, we can consider this in 

reverse time, in which case we find a systematic decrease in misfit as we include older 
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earthquakes, which means that these alarm functions benefit from including as many data 

as possible.  This principle guides the experiments described in the following section. 

5.5 Moving test period, growing learning period 

Previous studies that optimized smoothed seismicity model parameters considered 

a single retrospective experiment in which epicenters from learning period T1 were 

smoothed to forecast epicenters occurring in a subsequent testing period T2.  The results 

of such an experiment are likely to be unstable to changes in the temporal division; in the 

following set of experiments, which we denote “moving test period, growing learning 

period,” we iterate over several such retrospective experiments.  In addition to addressing 

instability issues, this also permits an analysis of the temporal evolution of the optimal 

lengthscale and corresponding misfit.   

In the first experiment, we smooth the epicenters of all earthquakes with 

magnitude at least msmooth = 4.0 occurring in learning period T1 = t0 to t1, iterating over the 

elements in the set of smoothing lengthscales listed in Equation 5.6.  Each of these yields 

a seismic density map, which we take as an alarm function for this experiment; we use 

each seismic density alarm function to forecast earthquakes with magnitude at least mtarget 

= 5.0 occurring in the testing period *
21

*
1   to ttT += , where +

1t  indicates the moment 

immediately following t1.  For each kernel and each lengthscale value, we compute a 

Molchan trajectory and an area skill score.  In the subsequent experiment, we repeat this 

process for learning period T2 = t0 to t2 and testing period *
32

*
2   to ttT += ; that is, we allow 

the learning period to grow, rather than simply discarding the older events.  We repeat 

this procedure as many times as the earthquake catalog and our temporal discretization 
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parameters allow, yielding n learning periods denoted Ti = t0 to ti and n corresponding 

testing periods denoted *
1

*   to +
+= iii ttT .  The temporal discretization parameters are δt = 

ti+1 - ti (for i > 0) = 1 year, the amount by which the learning period grows from one 

experiment to the next, and  *
1

* +
+ −=Δ ii ttt  = 5 years, the length of each testing period.  

This experimental procedure is illustrated in Figure 5.6.  These experiments differ from 

those in the previous section because the test period changes for each experiment and the 

learning period always captures the entire catalog preceding the test period. 

 
Figure 5.6 Schematic comparison of past seismicity smoothing optimization studies and the present study.  
Colors are as in Figure 5.1.  The typical approach is to optimize smoothing based on a single experiment, 
whereas this study includes several experiment iterations, where the learning period grows in time while 
the length of the testing period remains fixed. 
 

Figure 5.7 shows the results of the experiments relative to a uniform reference 
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model, with t0 = 1 Jan 1932 and t1 = 31 Dec 1936 (Δt = 5 years).  We note that, as in 

Figure 5.3, it is difficult to distinguish between the performances of different lengthscales 

on this plot.  It is clear, however, that nearly all of the alarm functions are significantly 

better than the uniform reference model in every experiment.  This is expected due to 

spatial clustering of seismicity.  An exception occurs at 1973, indicating that target 

earthquakes occurring between 1 Jan 1973 and 31 Dec 1977 were particularly difficult to 

forecast.  We can gain intuition for these experiments by considering this case in detail.  

In Figure 5.8, we show the alarm function and corresponding trajectories for smoothing 

lengthscale σ = 1000 km.  From the map of the alarm function and target earthquakes, it 

is clear why the area skill score is relatively low: the cluster of earthquakes west of 124W 

and between 40N and 41N are located in a region where the alarm function values are 

relatively low, and few earthquakes occur contiguous to the alarm function peak near 

119W, 35.5N.  As shown by this example, plots of the area skill score evolution for 

simple smoothed seismicity alarm functions characterize regional seismicity; a sudden 

dip in these curves indicates that target earthquakes during the corresponding test period 

occurred where very few earthquakes occurred in the learning period.  On the other hand, 

a sudden spike in such curves indicates that target earthquakes occurred where a great 

many earthquakes occurred in the learning period: for example, a high degree of spatial 

clustering would yield a spike. 

Following the same procedure as for the fixed test period experiments, we have 

computed the optimal smoothing lengthscale and corresponding minimum average misfit 

for each of the moving test period, growing learning period experiments; these are shown 

in Figure 5.9.  We do not notice any strong systematic patterns in either of the plots in 
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Figure 5.7 Temporal evolution of area skill scores for each lengthscale for each experiment illustrated in 
Figure 5.6, relative to a uniform reference model.  The result of the first experiment in Figure 5.6 is 
reported at the far left of this plot and subsequent experiments proceed to the right.  The two ‘+’ lines 
demarcate the area skill score confidence bounds corresponding to α=0.05 (bottom) and α=0.01 (top).  The 
dashed lines are the average area skill score at τ=1 over the 66 experiments. 
 
this figure.  There is a weak signal indicating that the optimal smoothing lengthscale is 

lower in the later experiments, but this does not correspond to a systematically decreasing 

minimum average misfit.  In terms of the misfits, however, we do note that the peak 

value—indicating the lowest predictability—occurs at 1974, immediately following the 

example experiment analyzed above and corresponding to a relatively low point for all 

curves in Figure 5.7. 



 99

 
 
 
 
 
 
 
 
 

 
Figure 5.8 Smoothed seismicity predictability experiment for the learning period 1 Jan 1932 to 31 Dec 
1972, test period 1 Jan 1973 to 31 Dec 1977.  a) Seismic density alarm function and the target earthquakes.  
In this case, earthquakes during learning period were smoothed with the Gaussian kernel with σ = 1000 
km; warm colors indicate high density, white regions indicate zero density.  Stars denote target earthquakes 
that occurred during the test period. b) Molchan trajectory corresponding to the alarm function and target 
earthquake distribution shown in a), using a uniform reference mode.  Also shown are the 95% and 99% 
confidence bounds on the random diagonal. c) Area skill score trajectory corresponding to the example 
forecast experiment, with 95% and 99% confidence bounds. 
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Figure 5.9 Temporal evolution of a) the optimal reference model smoothing lengthscale for the 
experiments illustrated in Figure 5.6 and b) the corresponding misfit. 
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5.5 Moving test period, moving learning period 

Re-examining Figure 5.5b, we observe that the most notable exceptions to the 

trend of decreasing optimal lengthscale with decreasing smoothing start date fall at the 

right of the plot; we interpret these data points as likely caused by short-term clustering 

of earthquakes.  That is, it seems that several of the earthquakes in the test period occur 

close to earthquakes from the recent past (1995-1997) and, when the learning period 

begins somewhat before these events (i.e., between 1992 and 1994), the optimal 

performance decreases because many events far from the target earthquakes make 

smoothed contributions.  Based on this observation, and the general observation of short-

term clustering of earthquakes, we consider a third class of experiments that we call 

“moving test period, moving learning period.”  These experiments are very similar to 

those in the previous section, with the only difference being that the learning period, 

rather than growing in time, is of a fixed duration and advances with the test period.  This 

procedure is depicted in Figure 5.10.  All experiment parameter values are the same as in 

the previous section.  Likewise, the test periods in these experiments coincide with those 

of the previous section. 

In Figure 5.11, we have plotted the experiment results relative to a uniform 

reference model.  As in the other experiments, most smoothed alarm functions are 

consistently significantly better than the uniform model.  As before, however, there are a 

few sharp dips in the curves.  In particular, we consider the absolute minimum in the σ = 

5 km curve at 1965.  In Figure 5.12, we provide the corresponding alarm function, target 

earthquakes, and trajectories.  This is a clear case of undersmoothing; seven out of the 
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Figure 5.10 Schematic of smoothing optimization experiments with moving learning periods and moving 
test periods.  Colors are as in Figure 5.1.  In these experiments, the learning period advances with the test 
period. 
 
twelve target earthquakes fall in regions obtaining no contribution from smoothed 

seismicity.  Indeed, we see in Figure 5.11 that the σ = 5 km curve often obtains the 

minimum area skill score of all alarm functions considered.  We attribute this to 

consistent undersmoothing; it is more pronounced in these experiments than those 

described in the previous section because the number of events being smoothed is 

smaller. 

In Figure 5.13, we have plotted the optimal smoothing lengthscale and 

corresponding minimum average misfit for each of the moving test period, moving 

learning period experiments.  As in the previous section, we do not note any strong 

systematic patterns in either of these plots.  The optimal lengthscale plot indicates that 

small to intermediate lengthscales are preferred, with these optimal values being, on the 

whole, slightly higher than in the previous section’s experiment.  Again, this is consistent  
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Figure 5.11 Moving learning results relative to uniform reference model 
 

 
Figure 5.12 As in Figure 5.8, low predictability in 1965 moving test period, moving learning period 
experiment with σ = 5km. 
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with the fact that the learning periods in this experiment are smaller and therefore contain 

fewer earthquakes.  To further compare these two different approaches, we have 

superposed the minimum average misfit data for the moving test period, growing learning 

period experiments.  Considered as a whole, this plot indicates some small advantage to 

smoothing the entire catalog up to the test date, as opposed to smoothing only the 

previous five years of seismicity, although this advantage may not be large.  There also 

seems to be some time-varying behavior indicated by this plot: it seems that during the 

first half of the experiments, the short-term smoothing is superior to the long-term 

smoothing, whereas the pattern is reversed in the second half of the experiments. 

5.6 Discussion and conclusion 

 In this chapter, we presented exact analytic expressions for three types of spatial 

smoothing kernels in a gridded natural laboratory, where each kernel is controlled by a 

single lengthscale parameter.  We developed and exercised an empirical framework for 

exploring optimality within a class of smoothed seismicity forecast models.  With the 

goal of developing a simple, optimized reference forecast, we conducted three series of 

experiments and analyzed the results: in the first, we fixed the test period and allowed the 

learning period to grow backward in time; in the second, we moved the test period in a 

sliding time window and allowed the learning period to cover all previous seismicity; in 

the third, we moved the test period in a sliding time window and moved the learning 

period simultaneously.   

Based on the results of the experiments described in this chapter, we have 

computed the prospective smoothed seismicity forecast shown in Figure 5.14, and we 
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Figure 5.13 Temporal evolution of a) the optimal reference model smoothing lengthscale for the 
experiments illustrated in Figure 5.10 and b) the corresponding misfit.  Red points are results from the 
moving test period, growing learning period experiments. 
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plan to submit such a forecast for evaluation within a CSEP testing center.  Here, we 

smoothed all earthquakes in the California testing region with magnitude greater than 4.0 

occurring from 1 Jan 1932 to 31 Mar 2008.  We chose to smooth over the entire catalog 

rather than only the previous five years based on the results of the fixed test period 

experiments, which indicate that predictability increased with increasing learning period 

duration (e.g., Figure 5.5.b).  We used the Gaussian smoothing kernel described by 

Equation 5.3 with σ = 10 km.  As justification for this lengthscale value, we consider the 

results shown in Figure 5.9.a.  Ideally, we would like to see a stronger signal in this plot, 

but as it stands, we can most likely rule out σ values larger than 100 km.  We note that the 

optimal smoothing lengthscale, with only two exceptions, does not change by more than 

20 km from one experiment to the next and, over the final 25 experiments, it hasn’t 

changed by more than 10 km from one experiment to the next.  Therefore, we chose the 

optimal lengthscale from the ultimate experiment in this series. 

In this chapter, we have also quantified the limits of predictability for a given 

target earthquake distribution and class of smoothed seismicity models.  For example, 

Figure 5.5.b, the plot of the minimum average misfits corresponding to the optimal 

reference models of Figure 5.5.a, indicate the limits of predictability.  That is, these 

misfits quantify how close we can get to the “true” reference model for the chosen 

smoothing kernel and set of possible lengthscales.  The experimental procedures 

described in this chapter can be applied to other types of forecast models and indeed, 

could be used to further explore parameter space (e.g., at a finer discretization) for the 

very simple model we have considered here.  Along these lines, it would be interesting to 

use these methods to produce simple short-term forecasts to compare with those from  
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point process models (e.g., Ogata, 1988, Kagan & Jackson 2000, Gerstenberger et al. 

2005).  The pursuit of anisotropic, fault-based kernels should also be considered. 

 
Figure 5.14 Prospective forecast to be submitted to CSEP as reference model.  This forecast is the product 
of smoothing all events in the ANSS catalog with magnitude greater than or equal to 4.0, using the 
Gaussian smoothing kernel described by Equation 5.3 with σ = 10 km. 
 

We mentioned briefly that the temporal evolution of the area skill score 
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characterizes the predictability of regional seismicity.  Further study of this evolution 

could drive new approaches to modeling seismicity dynamics.  For example, if the 

periods wherein simple smoothing techniques perform poorly (i.e., when we observe a 

sudden spike in minimum average misfit) could be forecast, hybrid models that switch 

modes to incorporate some other form of forecasting might be developed.  It is also likely 

that the evolution of the area skill score is strongly affected by the occurrence of very 

large events; in this case, we would expect the number of target earthquakes near the 

epicenter/fault rupture of large earthquakes to increase.  Time-varying, adaptive 

smoothing that responded to large earthquakes would be beneficial. 
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CHAPTER SIX: 
Conclusions, ongoing work, and potential extensions 

6.1 Introduction 

The work described in this dissertation has addressed several questions related to 

earthquake predictability.  In this space, rather than making broad generalizations or 

reiterating the conclusions of each chapter, I will describe ongoing related work and 

propose some potential extensions of this research. 

In the near-term, many of the ideas presented here will be implemented for wide 

use within the Southern California Earthquake Center (SCEC) Collaboratory for the 

Study of Earthquake Predictability (CSEP) testing center.  In particular, there are plans to 

integrate the Reverse Tracing of Precursors (RTP) codes and the accompanying testing 

procedures described in Chapter 2.  The testing method outlined in Chapter 3 and 

illustrated in Chapter 4 will also be incorporated in CSEP testing centers, allowing for 

comparative testing of a wide class of forecasts.  The prospective forecast presented in 

Chapter 5 will be submitted as a potential reference model for testing in the CSEP 

California natural laboratory, and an analogous global forecast is under development. 

Concurrent with these technical implementations, we plan to compare alarm-

based testing methods, such as the area skill score, with probabilistic methods, in 

particular likelihood-based tests.  A comprehensive comparison of these two approaches 

should include analytic work, numerical experimentation, and exploration with actual 

forecasts and observations. An analytic comparison can be based on forecasts and 

observations with exact, known distributions and preliminary analysis along these lines 
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has been conducted by Kagan (2007). Numerical experiments can be performed using 

simple synthetic models that include a stochastic component. The final step in this 

comparison can leverage existing RELM forecasts in both prospective and retrospective 

observations; this will be an extension of the work begun by Zechar et al. (2007). 

The smoothed seismicity experiments described in Chapter 5 were kept simple 

intentionally, but the framework we have established is very flexible.  Along these lines, 

there are a number of potentially productive experiments one could pursue.  For example, 

one may explore a class of hybrid models (e.g., Gerstenberger & Rhoades 2007) in which 

recent earthquakes are smoothed using a kernel distinct from that used for older 

earthquakes, thereby explicitly incorporating temporal clustering.  To this end, the 

Omori-Utsu relation could be incorporated directly via a weighting scheme.  

Alternatively, one may explore the use of a single spatial kernel and supplement it with 

weights that are time-dependent or magnitude-dependent.  One might also consider 

spatial smoothing kernels with a variable lengthscale; again, this may depend on the time 

elapsed since the earthquake of interest, local earthquake density, or the magnitude of the 

earthquake being smoothed.  Certainly the parameter space of smoothed seismicity 

modeling is something that begs for further exploration.  Even beyond this class of 

models, however, the area skill score minimum average misfit statistic can be useful; for 

example, it may be applied to the 5 year RELM experiments to determine which forecast 

most closely approximates the observed distribution of seismicity. 

The issue of reference models is key to advancing earthquake predictability 

research.  Many assumptions implicit in smoothing seismicity remain as of yet untested.  

For example, in the case where earthquake data are not numerous, researchers often 
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estimate the spatial distribution of large earthquakes based on the observed distribution of 

smaller earthquakes.  There are regions for which this procedure will clearly yield 

incorrect results—for example, the Geysers geothermal region in California—but a 

quantitative analysis remains to be done.  Smoothed seismicity forecasts also operate 

under a weak assumption of stationarity, which is a hypothesis that should be tested 

independent of the forecasting problem. 

The earthquake predictability experiments discussed here are conceptually very 

similar to efforts within the earthquake early warning (EEW) community.  While some 

EEW algorithms are presently in operational status, many underlying hypotheses have 

not been tested rigorously, particularly in a prospective sense.  The work described in this 

dissertation seems ideally suited for EEW evaluation as the relevant algorithms are 

inherently alarm-based. 

6.2 Proposed experiments in southern California 

Many current forecast models are based on seismicity patterns and use a regional 

earthquake catalog as the only input data source.  High-precision relocated catalogs are 

now readily available to describe tectonic activity in southern California (Lin et al. 2007), 

and these ought to be integrated into prediction experiments.  By using such catalogs, we 

can gain spatial resolution and may construct hypocentral—rather than epicentral—

forecasts.  Moreover, by leveraging the reduced hypocenter uncertainties, we may design 

experiments with a much finer spatial discretization than those currently under 

consideration.  

Fault networks are critical to understanding the accommodation of plate boundary 
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motion and, in particular, the spatial distribution of seismicity.  By conducting prediction 

experiments that  explicitly integrate the SCEC Community Fault Model (Plesch et al. 

2007), we may test the hypothesis that seismicity rates correlate with fault density, and 

also quantify the amount of seismicity that is not readily associated with a known, 

mapped fault.  Moreover, smoothed seismicity forecasts and stochastic triggering 

methods such as the Epidemic Type Aftershock Sequence model (Ogata 1988) can be 

extended to use anisotropic kernels that depend on local fault orientations. 

Through the Plate Boundary Observatory component of EarthScope, a great number of 

GPS data covering southern California are now freely available.  These data can be used 

for predictability experiments that systematically test the hypothesis that intermediate-

term strain transients, observable over a period of several years, precede large 

earthquakes (e.g., Ogata 2007).  By combining GPS data with seismicity catalogs, there is 

some hope that forecasts can be developed based on the idea that catalogs tell us where 

future earthquakes will occur and GPS data tell us when. 

6.3 Proposed experiments in Japan and Taiwan 

While southern California is well-monitored and studied by many earthquake 

scientists, prospective prediction experiments of large earthquakes in this region will 

require years to decades to amass a statistically significant sample size.  To accelerate 

experiments of potentially damaging earthquakes, and to capitalize on a wealth of 

existing data, Japan and Taiwan should be developed as natural laboratories in which to 

conduct prediction experiments. 

Taiwan experiences a plate deformation rate that is nearly double that of the 
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boundary between the North America and Pacific plates and a seismicity rate that is 

estimated to be five to ten times that of California.  Likewise, Japanese seismicity 

presents the opportunity to study predictability of deep earthquakes in a subduction zone 

setting.  One may take advantage of the much higher seismicity rates to test models for 

intermediate to large earthquakes on a one-year timescale, as compared with the five-year 

time scale for California.  Additionally, this development will allow for testing the rate 

models and assumptions used in the Japanese national seismic hazard maps. 

6.4 Proposed repeating micro-earthquake experiments 

The Parkfield Earthquake Prediction Experiment (Bakun & Lindh 1985) has 

yielded a unique set of repeating micro-earthquake (Mw<2) data (e.g., Nadeau et al. 1994, 

Nadeau & Johnson 1998, Nadeau & McEvilly 1997) and these provide an excellent 

opportunity for new predictability experiments.  Clearly, microrepeaters are in some 

sense predictable: not only do they occur in roughly the same hypocentral region, they 

appear to have highly similar source mechanisms and repeatedly rupture the same source 

material, yielding highly similar seismograms.  To date, however, there have been no 

formal predictions of these events.  Parkfield microrepeaters can be used to further push 

predictability experiment resolution and to develop forecasts that include estimates of 

focal mechanism.  Moreover, they can be used to explore the possibility of deterministic 

prediction, including occurrence-time forecasts. 



 114

BIBLIOGRAPHY 
 
Abramowitz, M. and Stegun, I. A. (eds.), 1972. Handbook of mathematical functions 

with formulas, graphs, and mathematical tables. Dover, New York, 1046 pp. 
 

Aki, K., 1981.  A probabilistic synthesis of precursory phenomena,  in Earthquake 
Prediction: An International Review, pp 566—574, eds. Simpson, D. & Richards, 
P., Am. Geophys. Union, Washington, D.C. 

 
ANSS Earthquake Catalog.  Produced by Advanced National Seismic System (ANSS) 

and hosted by the Northern California Data Center (NCEDC), 1932-2007.  
http://quake.geo.berkeley.edu/anss. 

 
Bakun, W.H., & Lindh, A.G., 1985.  The Parkfield, California, earthquake prediction 

experiment, Science 229(4714), 619—624. 
 
Blanter, E.M., & Shnirman, M.G., 1997. Simple hierarchical systems: stability, self-

organized criticality and catastrophic behavior. Phys. Rev. E 55 (6), 6397–6403. 
 
Bowman, D.D., Ouilon, G., Sammis, C.G., Sornette, A. and Sornette, D., 1998.  An 

observational test of the critical earthquake concept. J. Geophys. Res. 103, 24359–
24372. 

 
Cao, T., Petersen, M.D., & Reichle, M.S., 1996.  Seismic hazard estimate from 

background seismicity in southern California.  Bull. Seismol. Soc. Am., 86(5), 
1372-1381. 

 
CMT Earthquake Catalog.  Produced by the Global Centroid Moment Tensor (GCMT) 

group, 1976-2007.  http://www.globalcmt.org. 
 
Ebel, J.E., Chambers, D.W., Kafka, A.L., & Baglivo, J.A., 2007.  Non-Poissonian 

earthquake clustering and the hidden markov model as bases for earthquake 
forecasting in California.  Seismol. Res. Lett., 78(1), 57—65. 

 
Enescu, B., & Ito, K. , 2001.  Some premonitory phenomena of the 1995 Hyogo-Ken 

Nanbu (Kobe) earthquake: seismicity, b-value and fractal dimension, 
Tectonophys., 338 (3-4), 297-314. 

 
Eneva, M., & Ben-Zion, Y., 1997. Techniques and parameters to analyze seismicity 

patterns associated with large earthquakes.  J. Geophys. Res., 102, 17785-17795. 
 
Evison, F.F., & Rhoades, D.A., 1993.  The precursory earthquake swarm in New 

Zealand: hypothesis tests. New Zealand J. Geol. and Geophys., 36, 51-60. 
 



 115

Evison, F.F., & Rhoades, D.A., 1997.  The precursory earthquake swarm in New 
Zealand: hypothesis tests II. New Zealand J. Geol. and Geophys., 40, 537-547. 

 
Feng, D. Y., 1975. Anomalies of seismic velocity ratio before the Tangshan-Daguan 

earthquake (M = 7.1) on May 11, 1974. Chinese Geophys., 1, 47-53. 
 
Field, E.H., 2007.  Overview of the working group for the development of regional 

earthquake likelihood models (RELM), Seismol. Res. Lett., 78(1), 7—16. 
 
Field, E.H., Gupta, N., Gupta, V., Blanpied, M.L., Maechling, P.J. & Jordan, T.H., 2005.  

Hazard calculations for the WGCEP-2002 forecast using OpenSHA and distributed 
object technologies, Seismol. Res. Lett., 76, 161—167. 

 
Frankel, A., 1995.  Mapping seismic hazard in the central and eastern United States.  

Seismol. Res. Lett., 66(4), 8-21. 
 
Frankel, A., Mueller, C., Barnhard, T., Perkins, D., Leyendecker, E., Dickman, N., 

Hanson, S. & Hopper, M., 1996.  National seismic-hazard maps: Documentation 
June 1996, U.S. Geol. Surv. Open-file report 96-532, 41 pp. 

 
Frankel, A., Petersen, M., Mueller, C., Haller, K., Wheeler, R., Leyendecker, E., Wesson, 

R., Harmsen, S., Cramer, C., Perkins, D. & K. Rukstales, 2002.  Documentation for 
the 2002 update of the national seismic hazard maps, U.S. Geol. Surv. Open-file 
report 02-420, 33 pp. 

 
Gabrielov, A., Keilis-Borok, V., Zaliapin, I., & Newman, W.I., 2000. Critical transitions 

in colliding cascades. Phys. Rev. E 62, 237–249. 
 
Gabrielov, A., Newman, W.I., Turcotte, D.L., 1999. An exactly soluble hierarchical 

clustering model: inverse cascades, self-similarity and scaling. Phys. Rev. E 60, 
5293–5300. 

 
Gerstenberger, M.C., & Rhoades, D.A., 2007.  Natural laboratories: the New Zealand 

earthquake forecast testing center, Seism. Res. Lett., 78(2), 237. 
 
Hauksson, E., 1981. Radon content of groundwater as an earthquake precursor: 

Evaluation of worldwide data and physical basis.  J. Geophys. Res., 86(B10), 
9397—9410. 

 
Helmstetter, A., Kagan, Y.Y. & Jackson, D.D., 2007.  High-resolution time-independent 

forecast for M>5 earthquakes in California. Seismol. Res. Lett., 78(1), 78—86. 
 
Holliday, J.R., Chen, C., Tiampo, K., Rundle, J.B., Turcotte, D.L., & Donnellan, A., 

2007. A RELM earthquake forecast based on pattern informatics.  Seismol. Res. 
Lett., 78(1), 87—93. 



 116

 
Hough, S., & Olsen, K.B. (eds.), 2007. Special issue on: Regional earthquake likelihood 

models.  Seismol. Res. Lett., 78(1).  
 
Jackson, D.D., 1996.  Hypothesis testing and earthquake prediction.  Proc. Natl. Aca. Sci. 

USA, 93(9), 3772-3775. 
 
JMA earthquake catalog.  Produced by the Japanese Meteorological Agency (JMA), 

1921-2007. 
 
Jolliffe, I.T. & Stephenson, D.B. (eds.), 2003. Forecast Verification.  Wiley, Hoboken, 

254 pp. 
 
Jordan, T.H., 2006.  Earthquake predictability, brick by brick, Seismol. Res. Lett., 77(1), 

3—6. 
 
Jordan, T.H., Schorlemmer, D., Wiemer, S., Gerstenberger, M.C., Jackson, D.D., 

Maechling, P.J., Liukis, M., Marzocchi, W., & Zechar, J.D., in preparation. 
Collaboratory for the Study of Earthquake Predictability: progress and plans. 

 
Kafka, A.L., 2002.  Statistical analysis of the hypothesis that seismicity delineates areas 

where future large earthquakes are likely to occur in the Central and Eastern United 
States, Seismol. Res. Lett., 73, 990—1001. 

 
Kagan, Y.Y., 1996.  VAN earthquake predictions—an attempt at statistical evaluation, 

Geophys. Res. Lett. 23(11), 1315—1318. 
 
Kagan, Y. Y., 2007. On earthquake predictability measurement: information score and 

error diagram, Pure Appl. Geoph., 164(10), 1947-1962. 
 
Kagan, Y.Y, & Jackson, D.D., 1994.  Long-term probabilistic forecasting of earthquakes.  

J. Geophys. Res., 99(B7), 13685-13700. 
 
Kagan, Y.Y, & Jackson, D.D., 1999.  Testable earthquake forecasts for 1999.  Seismol. 

Res. Lett., 70(4), 393-403. 
 
Kagan, Y.Y, & Jackson, D.D., 2000.  Probabilistic forecasting of earthquakes.  Geophys. 

J. Int., 143, 438-453. 
 
Kagan, Y.Y., Jackson, D.D., & Rong, Y., 2007.  A testable five-year forecast of moderate 

and large earthquakes in southern California based on smoothed seismicity, 
Seismol. Res. Lett., 78(1), 94-98. 

 
Keilis-Borok, V.I., & Kossobokov, V., 1990. Premonitory activation of earthquake flow: 

algorithm M8, Phys. Earth Planet. Inter., 61(1/2), 73—83. 



 117

 
Keilis-Borok, V.I., & Soloviev (eds.), 2003.  Nonlinear Dynamics of the Lithosphere and 

Earthquake Prediction.  Springer-Verlag, Berlin, 337 pp. 
 
Keilis-Borok, V.I., 2002. Earthquake prediction, state-of-the-art and emerging 

possibilities, Annu. Rev. Earth Planet. Sci.,  30, 1—33. 
 
Keilis-Borok, V.I., 2003.  Fundamentals of earthquake prediction: four paradigms, in 

Nonlinear Dynamics of the Lithosphere and Earthquake Prediction, pp 1—36, eds. 
Keilis-Borok, V.I. & Soloviev, A., Springer-Verlag, Berlin. 

 
Keilis-Borok, V.I., Shebalin, P.N., Gabrielov, A. & Turcotte, D.L., 2004. Reverse tracing 

of short-term earthquake precursors, Phys. Earth Planet. Inter., 145, 75—85. 
 
Knopoff, L., Aki, K., Allen, C., Rice, J., & Sykes, L. (eds.), 1996.  NAS Colloquium on 

Earthquake Prediction: The Scientific Challenge.  Proc. Natl. Acad. Sci. USA, 
93(9). 

 
Kossobokov, V. and Shebalin, P.N., 2003.  Earthquake prediction, in Nonlinear 

Dynamics of the Lithosphere and Earthquake Prediction, pp 141—205, eds. Keilis-
Borok, V.I. & Soloviev, A., Springer-Verlag, Berlin. 

 
Kossobokov, V., 2004.  Earthquake prediction: basics, achievements, perspectives.  Acta 

Geod. Geoph. Hung., 39(2/3), 205—221. 
 
Lehman, E.L. & Romano, J.P., 2005.  Testing Statistical Hypotheses, 3rd edn, pp. 784, 

Springer, New York. 
 
Lin, G., Shearer, P.M., & Hauksson, E., 2007.  Applying a three-dimensional velocity 

model, waveform cross correlation, and cluster analysis to locate southern 
California seismicity from 1981 to 2005, J. Geophys. Res. 112(B12309), 
doi:10.1029/2007JB004986. 

 
Loughe, A.F., Henderson, J.K., Mahoney, J.L., & Tollerud, E.I., 2001.  A  verification 

approach suitable for assessing the quality of model-based  precipitation forecasts 
during extreme precipitation events.  Preprints,  Symposium on Precipitation 
Extremes: Prediction, Impacts, and Responses, January 14-19 2001, Albuquerque, 
NM. 

 
Mahoney, J. L., Henderson, J.K., & Miller, P.A., 1997.  A description of the Forecast 

Systems Laboratory's real-time verification system (RTVS).  Preprints, 7th 
Conference on Aviation, Range, and Aerospace Meteorology, Long Beach, CA, 
Amer. Meteor. Soc., J26-J31. 

 



 118

Mahoney, J.L., Henderson, J.K., Brown, B.G., Hart, J.E., Loughe, A.F., Fischer, C., & 
Sigren, B., 2002.  Real-Time Verification System (RTVS) and its application to 
aviation weather forecast. 10th Conference on Aviation, Range, and Aerospace 
Meteorology, 13-16 May, Portland, OR. 

 
Marzocchi, W., Sandri, L., & Boschi, E., 2003.  On the validation of earthquake-

forecasting models: the case of pattern recognition algorithms.  Bull. Seismol. Soc. 
Am., 93(5), 1994-2004. 

 
Mason, I.B., 2003. Binary events, in Forecast Verification, pp. 37—76, eds. Jolliffe, I.T. 

& Stephenson, D.B., Wiley, Hoboken. 
 
McGuire, J.J., Boettcher M.S. & Jordan, T.H., 2005.  Foreshock sequences and short-

term earthquake predictability on East Pacific Rise transform faults, Nature, 
434(7032), 457—461. 

 
Michael, A.J., 1997. Testing prediction methods: earthquake clustering versus the 

Poisson model, Geophys. Res. Lett., 24(15), 1891—1894. 
 
Molchan, G.M., 1991.  Structure of optimal strategies in earthquake prediction, 

Tectonophysics, 193, 267—276. 
 
Molchan, G.M. & Kagan,Y.Y., 1992. Earthquake prediction and its optimization, J. 

Geophys. Res., 97, 4823—4838. 
 
Molchan, G.M., 1990.  Strategies in strong earthquake prediction, Phys. Earth Planet. 

Inter., 61, 84—98. 
 
Nadeau, R.M., Antolik, M., Johnson, P.A., Foxall, W., & McEvilly, T.V., 1994.  

Seismological studies at Parkfield III: Microearthquake clusters in the study of 
fault-zone dynamics, Bull. Seismol. Soc. Am., 84(2), 247—263. 

 
Nadeau, R.M., & Johnson, L.R., 1998.  Seismological studies at Parkfield VI: Moment 

release rates and estimates of source parameters for small repeating earthquakes, 
Bull. Seismol. Soc. Am., 88(3), 790—814. 

 
Nadeau, R.M., & McEvilly, T.V., 1997.  Seismological studies at Parkfield V: 

Characteristic microearthquake sequences as fault-zone drilling targets, Bull. 
Seismol. Soc. Am., 87(6), 1463—1472. 

 
Ogata, Y., 1988. Statistical models for earthquake occurrences and residual analysis for 

point processes. J. Am. Stat. Assoc., 83, 9 –27. 
 



 119

Ogata, Y., 2007.  Seismicity and geodetic anomalies in a wide area preceding the Niigata-
Ken-Chuetsu earthquake of 23 October 2004, central Japan, J. Geophys. Res., 112, 
B10301, doi:10.1029/2006JB004697. 

 
Petersen, M., Cao, T., Campbell, K. & Frankel, A., 2007.  Time-independent and time-

dependent seismic hazard assessment for the state of California: uniform California 
earthquake rupture forecast model 1.0, Seismol. Res. Lett., 78(1), 99—109. 

 
Plesch, A., Shaw, J.H., Benson, C., Bryant, W.A., Carena, S., Cooke, M., Dolan, J.F., 

Fuis, G., Gath, E., Grant, L., Hauksson, E., Jordan, T.H., Kamerling, M., Legg, M., 
Lindvall, S., Magistrale, H., Nicholson, C., Niemi, N., Oskin, M., Perry, S., 
Planansky, G., Rockwell, T., Shearer, P.M., Sorlien, C., Suss, P., Suppe, J., 
Treiman, J., & Yeats, R., 2007.  Community fault model (CFM) for southern 
California, Bull. Seismol. Soc. Am., 97(6), 1793—1802. 

 
Press, F. (ed.), 1965.  Earthquake prediction: A proposal for a ten year program of 

research.  Ad Hoc Panel on Earthquake Prediction, White House Office of Science 
and Technology, 134 pp. 

 
Rhoades, D.A., & Evison, F.F., 1984.  Method assessment in long-range earthquake 

forecasting. In Earthquake Prediction: Proceedings of the International Symposium 
on Earthquake Prediction. Terra, Tokyo, pp. 497-504. 

 
Rhoades, D.A., & Evison, F.F., 1989.  Time-variable factors in earthquake hazard,  

Tectonophysics, 167, 201—210. 
 
Rhoades, D.A., & Evison, F.F., 2004.  Long-range earthquake forecasting with every 

earthquake a precursor according to scale, Pure and App. Geophys., 161, 47—72. 
 
Rikitake, T. (ed.), 1982.  Earthquake prediction research 1(1). 
 
Roeloffs, E.A., 1988.  Hydrologic precursors to earthquakes: A review.  Pure & App. 

Geoph., 126(2-4), 177-209. 
 
Rundle, J.B., Tiampo, K., Klein, W. & Sa Martins, J., 2002.  Self-organization in leaky 

threshold systems: the influence of near-mean field dynamics and its implications 
for earthquakes, neurobiology, and forecasting, Proc. Natl. Aca. Sci. USA, 99, 
2514—2521. 

 
Rundle, J.B., Turcotte, D.L., Shcherbakov, R., Klein, W., Sammis, C., 2003. Statistical 

physics approach to understanding the multiscale dynamics of earthquake fault 
systems. Rev. Geophys. 41, 1019. 

 



 120

Sadooghi-Alvandi, S.M., Nematollahi, A.R., & Habibi, R., 2007.  On the distribution of 
the sum of independent uniform random variables.  Stat. Papers, DOI 
10.1007/s00362-007-0049-4.  

 
Schorlemmer, D., & Gerstenberger, M.C., 2007.  RELM Testing Center.  Seismol. Res. 

Lett., 78(1), 30—36. 
 
Schorlemmer, D., Gerstenberger, M.C., Wiemer, S., Jackson, D.D. & Rhoades, D.A., 

2007.  Earthquake likelihood model testing, Seismol. Res. Lett., 78(1), 17—29. 
 
Shebalin, P., Zaliapin, I., Keilis-Borok, V.I., 2000. Premonitory rise of the earthquakes’ 

correlation range: lesser Antilles. Phys. Earth Planet. Inter. 122, 241– 249. 
 
Shebalin, P.N., Keilis-Borok, V.I., Gabrielov, A., Zaliapin, I., & Turcotte, D., 2006.  

Short-term earthquake prediction by reverse analysis of lithosphere dynamics.  
Tectonophys., 413(2006), 63-75. 

 
Shebalin, P.N., Keilis-Borok, V.I., Zaliapin, I., Uyeda, S., Nagao, T., & Tsybin, N., 2003.  

Short-term premonitory rise of the earthquake correlation range.  IUGG Abstracts, 
Sapporo, Japan. 

 
Sornette D., 2000. Critical Phenomena in Natural Sciences. Chaos, Fractals, Self-

organization and Disorder. Springer Ser. Synerg., Springer–Verlag, Heidelberg, 
432 pp. 

 
Stark, P.B., 1996.  A few considerations for ascribing statistical significance to 

earthquake predictions, Geophys. Res. Lett., 23(11), 1399—1402. 
 
Stark, P.B., 1997. Earthquake prediction: the null hypothesis, Geophys. J. Int., 131, 

495—499. 
 
Stirling, M.W., McVery, G.H., & Berryman, K.R., 2002.  A new seismic hazard model 

for New Zealand.  Bull. Seismol. Soc. Am., 92(5), 1878-1903. 
 
Stock, C., & Smith, E.G.C., 2002a.  Adaptive kernel estimation and continuous 

probability representation of historical earthquake catalogs.  Bull. Seismol. Soc. 
Am., 92(3), 904-912. 

 
Stock, C., & Smith, E.G.C., 2002b.  Comparison of seismicity models generated by 

different kernel estimations.  Bull. Seismol. Soc. Am., 92(3), 913-922. 
 
Tiampo, K. F., Rundle, J.B., McGinnis, S., Gross, S.J. & Klein, W., 2002. Mean-field 

threshold systems and phase dynamics: an application to earthquake fault systems, 
Europhys. Lett., 60(3), 481—488. 

 



 121

Ward, S.N., 2007.  Methods for evaluating earthquake potential and likelihood in and 
around California, Seismol. Res. Lett., 78(1), 121—133. 

 
Werner, M.J. & D. Sornette, 2007.  Magnitude uncertainties: impact on seismic rate 

estimates, forecasts and prediction experiments, in preparation. 
 
Wessel, P. & W. Smith, 1998.  New, improved version of Generic Mapping Tools 

released, Eos Trans. AGU, 79(47), 579.  
 
Wyss, M. (ed.), 1991.  Special issue on earthquake prediction.  Tectonophys., 193. 
 
Wyss, M., & Dmowska, R. (eds.), 1997.  Earthquake prediction - state of the art.  

Birkhauser, Basel, 264 pp. 
 
Wyss, M., & Habermann, R.E., 1988.  Precursory seismic quiescence.  Pure & App. 

Geoph., 126(2-4), 319-332. 
 
Yin, X.C., Wang, Y.C., Peng, K.Y., Bai, Y.L, Wang, H.T., & Yin, X.F., 2000.  

Development of a new Approach to earthquake prediction: load/unload response 
ratio (LURR) theory.  Pure & App. Geoph., 157(11-12), 2365-2383. 

 
Zaliapin, I., Keilis-Borok, V.I., Axen, G., 2002. Premonitory spreading of seismicity over 

the faults’ network in southern California: precursor accord. J. Geophys. Res., B 
107, 2221. 

 
Zechar, J.D., Jordan, T.H., Schorlemmer, D. & Liukis, M., 2007. Comparison of two 

earthquake predictability evaluation approaches, Molchan error trajectory and 
likelihood.  Seism. Res. Lett., 78(2), 250. 



 122

APPENDIX A: 
Reverse Tracing of Precursors alarm specifications 

Below we list the epicentral latitudes and longitudes for events forming each alarm 

Alarm 1: 
lats=38.60,38.60,38.90,39.75,37.40,36.73,34.95,37.89,35.42,35.29,35.28,38.17,35.31,36.40,37.72,37.74,38
.05,37.76,36.43,35.83,36.86,40.35,36.36,39.81,37.06,42.87,40.35,38.89,35.92,41.74,41.53,38.70,38.47,38.
02,42.50,40.14,39.62,37.32,42.52,42.66,41.73,37.67,37.25,37.62,40.15,40.11,37.16,38.62,39.13,38.00,38.7
6,40.38,40.39,35.42,33.54,37.01,39.56,35.40,41.03,41.05,35.40,34.20,35.40,36.04,42.08,39.29,38.84,36.73
,37.83,33.75,34.05,35.21,41.62,37.39,44.11,36.98,38.47,42.20,41.93,35.63,36.47,41.88,38.04,37.96,37.68,
41.88,38.25,41.94,37.18,36.08,36.11,35.36,39.63,40.15 
 
lons=141.14,141.14,142.55,141.83,143.12,141.29,140.10,141.90,139.02,140.60,140.58,141.67,140.55,141.
04,142.80,142.11,142.42,142.77,140.69,140.90,141.81,142.97,141.12,139.96,141.20,142.73,142.08,142.14
,139.68,143.72,142.90,141.13,140.52,141.84,145.01,142.45,142.10,141.94,145.01,143.96,143.51,141.79,1
42.16,141.66,142.47,142.45,144.05,143.16,142.89,143.41,143.49,142.07,144.09,139.74,141.62,142.38,143
.91,140.42,143.28,143.25,140.81,139.25,140.44,140.10,142.56,144.27,144.26,141.43,138.40,140.81,139.3
9,140.24,142.17,141.15,141.85,140.51,144.35,141.08,142.44,140.05,140.53,139.21,143.40,139.72,141.78,
139.22,138.77,140.83,141.88,139.85,139.31,141.28,142.11,142.42 
 
Alarm 2: 
lats=36.60,35.85,36.04,36.64,36.56,35.88,38.80,38.80,36.55,38.45,37.31,36.97,37.76 
 
lons=-120.74,-120.39,-120.61,-121.23,-120.71,-121.42,-122.73,-122.80,-121.10,-122.69,-121.67,-120.18,-
122.57 
 
Alarm 3: 
lats=33.18,33.21,33.40,34.03,33.05,34.65,33.36,33.69,33.80,33.37 
 
lons=-115.60,-116.15,-116.40,-116.39,-115.90,-116.29,-116.40,-116.03,-116.18,-116.31 
 
Alarm 4: 
lats=38.11,37.83,38.29,38.57,37.35,37.72,33.35,32.98,37.83,38.58,38.15,36.45,38.17,38.06,36.43,33.73,32
.62,35.06,35.57,34.58,32.97,33.28,33.52,34.48,32.72,32.04,34.27,34.27,34.26,32.25,34.18,31.90,31.42,31.
95,31.70,32.72,31.55,32.20 
 
lons=139.27,138.13,140.25,144.34,140.01,144.54,140.58,139.57,142.70,139.94,143.59,140.61,143.58,143.
66,141.17,140.91,141.84,141.08,141.13,140.67,141.88,142.03,140.90,140.54,140.42,141.88,139.19,139.20
,139.18,141.59,140.42,140.85,140.05,142.62,141.40,140.64,141.40,140.83 
 
Alarm 5: 
lats=45.66,45.05,45.67,46.21,46.54,45.22,46.53,45.03,46.43,46.47 
 
lons=14.32,14.55,14.19,13.98,13.85,14.92,13.23,14.83,12.69,12.83 
 
Alarm 6: 
lats=33.86,34.34,34.72,35.03,34.72,34.35,34.17,33.85 
 
lons=-117.72,-116.91,-116.04,-116.91,-116.04,-116.84,-117.44,-117.77 
 
Alarm 7: 
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lats=42.96,43.06,43.76,43.78,44.34,44.31,42.90,42.99,43.66,42.29,43.34,43.14,44.66,42.59,43.47,43.18,43
.27,43.53,43.53,43.61,43.90,44.02,43.22 
 
lons=-126.65,-127.04,-127.91,-128.08,-124.49,-124.56,-126.48,-126.35,-127.90,-126.52,-126.81,-127.75,-
124.30,-126.81,-128.35,-126.31,-126.69,-127.03,-127.60,-127.28,-128.05,-128.66,-127.88 
 
Alarm 8: 
lats=41.68,42.08,41.69,41.87,41.65,42.53,42.51,43.08,41.87,43.46,43.19,43.09,42.81,42.67 
 
lons=14.77,12.74,14.17,12.99,14.84,13.18,13.32,13.51,13.53,14.83,15.15,15.36,13.82,15.80 
 
Alarm 9: 
lats=42.52,42.41,41.83,43.08,43.09,43.27,41.92 
 
lons=13.28,12.33,13.57,13.34,13.38,12.73,13.64 
 
Alarm 10: 
lats=37.16,36.63,34.79,36.94,36.37,35.41,37.69,35.68,35.79,35.14,33.99,37.41,37.06,37.20,37.37,32.90,31
.86,33.61,35.73,36.90,35.49,36.78,33.33,31.80,36.66,32.27,33.35,34.30,36.03,35.84,33.91,35.63,36.63,35.
27,36.63,34.29,33.84,38.54,34.51,32.53,33.68,32.20,35.55,35.55,39.29 
 
lons=140.76,139.83,139.69,141.62,137.23,136.27,137.37,140.74,137.17,135.66,140.01,136.91,141.14,139.
95,141.75,141.83,142.69,139.24,140.62,137.56,138.96,137.86,141.00,141.51,138.30,142.53,140.87,139.11
,139.45,138.19,137.21,139.43,139.49,138.52,139.49,140.25,137.24,140.58,137.70,140.91,140.47,141.02,1
39.82,139.82,140.36 
 
Alarm 11: 
lats=34.11,34.13,34.80,34.84,33.84,33.45,33.22,32.56,34.33,33.49,33.52,34.05 
 
lons=-117.30,-116.84,-116.27,-116.32,-117.05,-116.62,-116.20,-117.52,-116.46,-116.52,-116.57,-117.01 
 
Alarm 12: 
lats=34.60,34.33,33.61,35.13,34.24,33.91 
 
lons=-116.36,-116.83,-117.27,-117.56,-117.45,-116.88 
 
Alarm 13: 
lats=32.11,32.42,32.44,32.15,32.25,32.34,32.19,32.17,32.19,32.06,32.18,32.62,34.02,32.57,34.29,32.87,34
.58,32.29,33.79 
 
lons=-116.43,-115.42,-115.40,-115.89,-115.19,-115.15,-115.07,-115.07,-115.87,-115.88,-115.87,-115.77,-
117.56,-115.57,-116.83,-116.22,-116.26,-115.21,-116.18 
 
Alarm 14: 
lats=32.04,32.21,32.40,32.31,32.10,32.68,31.80,31.80,34.16,33.24,33.86,33.73,33.69,34.11 
 
lons=-114.97,-115.08,-115.37,-115.23,-116.30,-115.86,-116.27,-116.27,-117.77,-116.04,-117.11,-117.48,-
116.80,-117.32 
 
Alarm 15: 
lats=44.30,44.26,42.74,44.44,43.02,44.23,43.40,43.98,43.66,44.91,44.06,44.79,44.60 
 
lons=10.67,11.01,12.77,9.89,12.91,10.47,13.49,11.82,10.19,9.23,9.01,11.83,10.41 
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Alarm 16: 
lats=45.16,44.00,44.07,43.26,43.90,45.24,43.62,45.34,43.02,44.28,43.15,44.80,44.83,43.54,43.71,43.12,44
.95,44.07,44.58,43.10,44.78,43.05,43.71,43.16,44.64,44.37,43.65,43.40,44.82,43.50,44.70,44.88,45.00,44.
23,44.57,44.27,45.88,44.50,45.76,43.91,44.38,42.85,45.56,45.22,43.81,45.03,44.04,45.57,43.90,45.21,44.4
9,43.92,44.44,45.52,46.01,44.94,43.10,46.66,45.12,43.17,43.48,42.34,44.84,41.78,43.62,41.76,41.71,41.57
,42.22,43.16,44.43,44.29,43.84,41.94,45.47,42.82,43.14,45.20,42.37 
 
lons=147.59,148.30,148.17,146.25,146.76,149.13,149.63,150.33,148.46,148.38,146.87,148.30,151.47,146.
73,146.40,146.80,147.59,148.18,146.79,146.78,146.73,147.77,147.26,147.33,146.67,147.33,147.26,148.14
,149.17,147.25,148.76,148.76,149.63,146.65,147.96,146.10,151.02,150.74,150.90,147.56,149.18,147.26,1
52.50,149.54,147.72,150.88,147.91,151.26,148.30,151.70,149.72,150.46,149.69,150.94,151.14,150.12,148
.46,151.92,149.69,147.65,147.46,144.62,150.36,143.68,144.91,142.89,144.26,142.05,144.41,146.92,148.3
5,147.36,147.46,142.32,149.60,143.37,146.10,149.66,143.92 
 
Alarm 17: 
lats=44.20,44.80,44.24,44.14,44.53,44.10,44.73,43.56,42.99 
 
lons=-128.60,-128.29,-129.87,-129.27,-129.77,-128.37,-129.34,-128.58,-126.59 
 
Alarm 18: 
lats=44.78,44.16,43.03,42.43,45.35,45.20,44.80,43.77,45.14,45.35,43.24,44.50,44.37,43.12,44.40,43.87,44
.74,45.49,46.38,42.50,44.21,46.02,45.46,43.71,45.37,43.44,43.19,45.13,43.02,43.51,43.18,43.57 
 
lons=149.39,148.25,146.73,147.38,148.26,149.72,149.51,149.96,147.57,150.31,146.83,148.64,148.85,146.
91,151.15,147.47,147.91,152.38,153.84,148.78,149.12,151.08,150.99,145.56,150.28,148.88,147.72,148.85
,146.78,147.37,144.47,147.69 
 
Alarm 19: 
lats=51.52,51.43,52.94,52.16,52.47,52.10,51.64,51.48,51.43,50.17,50.74,51.76,50.02,51.01 
 
lons=184.69,185.72,185.26,184.96,183.99,182.85,186.10,185.19,182.47,181.09,186.89,183.16,181.19,178.
37 
 
Alarm 20: 
lats=35.86,36.24,35.63,38.65,36.85,36.17,36.17,37.86,36.47,37.86,36.59,38.39,38.39,37.12 
 
lons=-120.41,-120.81,-120.75,-122.26,-121.45,-120.29,-120.29,-122.24,-121.04,-122.25,-121.19,-122.62,-
122.62,-121.52 
 
Alarm 21: 
lats=32.39,32.40,32.18,32.69,33.45,32.77,32.18,33.07 
 
lons=-115.12,-115.15,-115.88,-116.06,-116.59,-115.44,-115.89,-116.50 
 
Alarm 22: 
lats=35.78,37.18,37.86,37.31,37.34,37.90,36.76,36.56,35.52,35.78,37.12,36.25,35.60,36.74 
 
lons=-121.38,-121.96,-122.24,-121.08,-121.71,-122.11,-121.27,-121.15,-120.81,-120.33,-121.52,-120.81,-
120.84,-121.34 
 
Alarm 23: 
lats=51.32,51.44,51.92,51.40,52.28,51.44,53.19,52.23,52.65,52.89 
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lons=-178.17,178.28,-179.17,-176.53,-176.25,-177.19,-172.35,-173.94,-176.10,-175.57 
 
Alarm 24: 
lats=43.44,43.96,44.43,44.46,44.52,44.40,44.67,43.80 
 
lons=-126.52,-127.61,-129.59,-129.67,-130.19,-129.76,-129.06,-128.29 
 
Alarm 25: 
lats=33.36,33.51,33.17,32.11,31.80,32.67,32.41,32.37,32.65,32.72,31.77,32.13 
 
lons=-116.32,-116.47,-116.55,-115.83,-115.55,-116.12,-116.40,-115.22,-116.16,-115.41,-116.18,-115.89 

 

Alarm 26: 
lats=43.83,42.41,43.15,44.11,43.95,44.33,44.64,44.38,44.36,44.74 

lons=-128.40,-126.84,-126.08,-129.32,-130.08,-129.07,-128.39,-130.43,-129.34,-128.94 
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APPENDIX B: 
Finding expected value of Molchan trajectory jumps 

 
We seek iτ , the expectation of the ith Molchan trajectory jump of an unskilled 

alarm function, where expectation is defined as 

 ( )∫
∞

∞−

= xxfX  (B.1) 

Here f(x) is the probability density function; therefore, we need to find the probability 

density for iτ .  

We can find the probability density by taking the derivative of the cumulative 

density function.  For τ1, this is the probability that the trajectory has experienced at least 

one jump prior to reaching τ.  In other words, it is the probability of covering τ and 

obtaining 1, 2, 3,…, or N hits.  This probability is given by summing binomial terms: 
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We can express Equation B.2 in the following closed form: 
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By differentiating Equation B.3 with respect to τ, we obtain the probability density: 
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Now we can substitute Equation B.4 into Equation B.1 to obtain the expectation, 
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changing the limits of integration to isolate the region where the probability density is 

nonzero: 
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This shows that the first hit is expected to be obtained by unskilled alarm functions when 

they cover 1
1
+N  of the study region.  Similarly, we can express the c.d.f., p.d.f., and 

expectation for the next jump: 
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In words, on average, unskilled alarm functions obtain 2 hits once they have covered 1
2
+N  

of the study region. Likewise for the following jump, we have 
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For an inductive proof, we assume that 
1
1

1 +
−

=− N
N

Nτ  and compute Nτ .  At this 

point, we can get a compact expression for the c.d.f. by returning to the original 

formulation in Equation B.2, such that 
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Then, 

 ( ) ( ) 1−= NNp
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τττ  (B.13) 
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This completes the proof and thus, for all jumps, the expected value of the jump is 

described: 
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APPENDIX C: 
Method for finding area skill score moments 

 
We find the following relation for moments about the origin: 
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Here, N is the number of observed target earthquakes and 
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( ) ( )NC k
t  is the number of distinct permutations of each N-tuple of type ( )pTt K,2,1∈  

with sum k.  We’re interested in integral tuples that are of a given length, are ordered, and 

produce a given sum.  If we express a tuple as 

 ( )xkkkkK ,,,, 321 K=   

we say its length is x  (or, alternatively, call it a x -tuple), its sum is ∑
=

=
x

i
iks

1
, and it is 

ordered if and only if  

 [ ]1,11 −∈∀≥ + xikk ii   

We also restrict our study to integral tuples such that (k1, k1, …, kN) are non-negative 

integers. 

We’ll denote the number of ordered x-tuples with sum s as Nx(s), and the number of such 
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tuples beginning with a given first digit d as Nx(s | d).  For example, N1(1) is the number 

of 1-length ordered tuples with unit sum.  It should be apparent that there is only one such 

1-tuple: K = (1).  Likewise, N2(2 | 2) is the number of 2-tuples with sum 2 and leading 

digit 2.  It should be apparent that there is only one such 2-tuple: K = (2, 0). In general, 

we make the following observations: 

i. We can find the number of ordered x-tuples with sum s by fixing the first digit and 

reducing by one the length of tuples we seek; we repeat this process for each 

value between 1 and s and sum the number of tuples found for each value. 

ii. For any length x, there is only one ordered tuple with a sum of zero.  In particular, 

this tuple is
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

48476
K

 terms

0,,0,0,0
x

K . 

iii. For any length x, there is only one ordered tuple with unit sum.  In particular, this 

tuple is
( )

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

− 48476
K

 terms1

0,0,0,1
x

K . 

iv. For any length x, there is only one ordered tuple with sum s having leading digit s.  

In particular, this tuple is
( )

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

− 48476
K

 terms1

0,,0,0,
x

sK . 

v. For any length x > 1, there is only one ordered tuple with sum s with leading digit 

(s-1).  In particular, this tuple is 
( )

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=

− 48476
K

 terms2

0,0,0,1,1
x

sK . 

vi. For any length x, there is only one ordered tuple with sum x with leading digit 1.  
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In particular, this tuple is
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

876
K

 terms

1,1,1
x

K . 

vii. For any length x, there are no ordered tuples with sum s if the leading digit is 

greater than s. 

viii. The number of x-tuples with sum s and leading digit d can be obtained by finding 

the number of (x-1)-tuples with sum (s-d) minus the number of (x-1)-tuples that 

have a leading digit greater than d.   

 

Using the notation above, we can express these observations more compactly: 

1. ( ) ( )∑
=

=
s

i
xx isNsN

1

|   

2. ( ) 10 =xN  

3. ( ) 11 =xN  

4. ( ) 1| =ssN x  

5. ( ) 1,11| >∀=− xssN x  

6. ( ) 11| =sNx  

7. ( ) syysN x >∀= ,0|  

8. ( ) ( ) ( )∑
>

−− −−−=
dj

xxx jdsNdsNdsN || 11  

To find Tp, the number of ordered p-tuples with sum p, we need only find Np(p) using 
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equations 1-8.  Table C.1 provides results for small p: 

Table C.1: Number of tuples 

p Tp 
1 1 

2 2 

3 3 

4 5 

5 7 

6 11 

7 15 

8 22 

9 30 

10 42 

11 56 

12 77 

13 101 

14 135 

15 176 

Table C.1 For p = 1 to 15, the number of ordered p-tuples with sum p 
 
We can use these findings to determine moments about the origin.  In the case where n = 

1, we have 

 

( )

( )

( ) ( ) NNC

B

A

=

=

=

1
1

1
1

1
1

2
1
1

 

By substitution, we find that μ1 = ½. 
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APPENDIX D: 
Number of nonzero sums of a set’s elements 

 
In the case of a discretized reference model, the set of attainable values of τ is 

finite and its elements are the nonzero linear combinations of the reference model values 

with coefficients equal to zero or one.  In other words, for a reference model specified in j 

bins, the set Τj of attainable τ values is comprised of the nonzero sums of the j reference 

model values.  We denote the cardinality of this set |Τj|.   

Theorem. |Τj| = 2j-1. 

Proof. In the case where j=1, it is clear that there is only one nonzero sum: Τ1={1}, 

|Τ1|=1.  In the case where j=2, we represent a reference model as the set {n1, n2}.  In this 

case, the set of attainable τ values is {n1, n2, n1+n2}; |Τ2|=3.  When j=3, we represent a 

reference model as the set {n1, n2, n3} and the set of sums is {n1, n2, n3, n1+n2, n1+n3, 

n2+n3, n1+n2+n3}; |Τ3|=7.  We assume that the relation holds for all values of j up to and 

including (x-1) and we consider j=x.  The set Τx will contain all elements of Τ(x-1) as well 

as each of these elements added to n(x+1); the only additional sum in Τx is n(x+1).  Thus the 

cardinality |Τx| is twice the cardinality |Τ(x-1)| plus one additional element:  

 ( )
( )( ) 12112212 1

1 −=+−=+Τ=Τ −
−

xx
xx  


