
 0

 200

 400

 600

 800

 1000

 1200

 1400

0
1

 J
a

n
.

2
0

0
0

0
1

 J
a

n
.

2
0

0
1

0
1

 J
a

n
.

2
0

0
2

0
1

 J
a

n
.

2
0

0
3

0
1

 J
a

n
.

2
0

0
4

0
1

 J
a

n
.

2
0

0
5

0
1

 J
a

n
.

2
0

0
6

0
1

 J
a

n
.

2
0

0
7

0
1

 J
a

n
.

2
0

0
8

0
1

 J
a

n
.

2
0

0
9

0
1

 J
a

n
.

2
0

1
0

0
1

 J
a

n
.

2
0

1
1

0
1

 J
a

n
.

2
0

1
2

0
1

 J
a

n
.

2
0

1
3

A
c
c
u

m
u

la
te

d
 u

n
iq

u
e

 d
e

v
e

lo
p

e
rs

 o
v
e

r
ti
m

e

Accumulated unique developers over time as a proxy for developer engagement

git
hg

svn
bzr
cvs

darcs
fossil

mtn
vv

SCM RANKING, Q3 2013

Number crunching by Knud Poulsen & Aske Olsson

Switch-Gears ApS

info@switch-gears.dk

mailto:info@switch-gears.dk

CONTENTS

1 About Switch-Gears 2

2 Introduction 2

2.1 Application of network effect analysis to SCM systems . 3

2.2 SCM systems investigated . 3

3 User community engagement analysis 4

3.1 Google trends . 4

3.2 Mailing list traffic . 4

4 Developer Community engagement analysis 5

4.1 Code activity . 5

4.2 Developer renewal and diversity . 6

4.3 COCOMO cost modelling . 6

4.4 Secondary developer engagement . 7

5 Conclusion 7

5.1 Business recommendations . 7

Copyright © 2013 Switch-Gears ApS page 1 of 7

1 ABOUT SWITCH-GEARS

Switch-Gears ApS is a software development productivity company based in Copenhagen, Denmark, spun off

from Nokia’s closure of its Copenhagen Research and Development site.

We provide training, migration, best-practices and bespoke development in the software tools and processes

field (aka. “DevOps” or “Continuous Software Delivery”). We specifically focus on the highest innovation

rate, highest ROI, continuous delivery stack: Git SCM, Gerrit Code Review, Jenkins CI, Redmine, etc.

We help our customers transition smoothly from legacy to leading-edge tools, then we help them make the

most of those tools; with offerings such as installation, hosting, configuration, on-site, phone and e-mail

support, upgrades, refresher courses, in-depth trainings and custom plugin and script development.

This and similar tools ranking analyses are intended to help Switch-Gears customers make the quantitatively

best, most well informed, decisions within the software development tools landscape.

For an informal chat about how we can help improve your software development activities, please don’t

hesitate to email us at info@switch-gears.dk or call us on +45 20819928.

Also be sure to check out our latest product offerings on gitgear.com.

2 INTRODUCTION

SCM (Software Configuration Management) selection is arguably the most important tooling decision you

can make as a software development team. SCM is the one tool that sits at the center of your entire software

development process.

Whether you are a developer tasked with implementing a new feature or hunting down an illusive bug; a

manager tracking development progress against requirements; or an operations engineer working towards

automatically testing and deploying your applications: you are constantly leveraging and interacting with

your SCM system.

There are many considerations when selecting an SCM system, but the key questions are simple: is the system

technically up to scratch?, will the system be around in 10 years or will you need to change it again soon?,

is there a large online community so your users can support themselves via online search?, are you able to

hire pre-qualified staff?, will the tool develop advantageously over time allowing improved workflows and

processes? Is it easy to migrate again in the future, when a new and better SCM system emerges?

The ranking criteria outlined in this study are not boilerplate “feature XYZ vs. feature ABC” comparison

lists and charts. Such side-by-side feature lists are useful, but also short-lived and fragile, especially when

the tools are evolving at breakneck pace. Instead we go to the root of the problem: the tool users and tool

developers. This approach is more akin to modern marketing metrics like net promoter score and similar

community engagement metrics. So the questions narrow down to: What does the development effort look

like?, What does the user engagement look like?, How many surrounding and supporting tools are available

for the system?, What does the sunk cost investment look like?

In our experience applying these “network effect analyses” rapidly and effectively narrows the list of selection

candidates for any given class of tool, to 2-3 serious contenders and one clear frontrunner. This is also the

case for SCM.

The network effect argument is simple and intuitive: “the more people use, develop and extend a system,

the more valuable it becomes”, conversely: “the more valuable a system is, the more people will use, develop

and extend it”, i.e. a positive feedback loop. This is the same positive feedback loop underlying the rapid

growth and dominance of Google for searching the web, Jenkins for CI, Facebook for social networking, etc.

Copyright © 2013 Switch-Gears ApS page 2 of 7

mailto:info@switch-gears.dk
http://gitgear.com

2.1 APPLICATION OF NETWORK EFFECT ANALYSIS TO SCM SYSTEMS

Several network effect indicators are used to evaluate the SCM systems on two key axes.

User engagement

1) Google trends - search volume as a proxy for user engagement.

2) Mailing list traffic - monthly mailing list volume as a proxy for user engagement.

Developer Engagement

1) Code activity - accumulated code changes over time as a proxy for developer engagement.

2) Developer renewal and diversity - accumulated unique developers over time as a proxy for developer

engagement.

3) Secondary developer engagement - GUI’s, frontend’s, surrounding and integrating tools and systems.

4) COCOMO cost modelling - to get a rough idea of the investment sunk into each system.

2.2 SCM SYSTEMS INVESTIGATED

All current open source SCM systems are investigated, most are not worthy of serious consideration and are

included solely for comparison and context. The following list enumerates the candidates, including overall

architecture (distributed vs. centralized) and main development languages. In this and the following charts

and graphics the three main contenders (git, hg and svn) are listed first, after them the listing is alphabetical.

SCM System Architecture Main dev. languages

Git Distributed sh, c, tcl

Mercurial (hg) Distributed python, sh, c

Subversion (svn) Centralized c, python, java

Bazaar (bzr) Distributed python, sh, c

CVS Centralized c, perl, asm

Darcs Distributed sh, c

Fossil Distributed c, tcl

Monotone (mtn) Distributed lua, cpp, sh

Veracity (vv) Distributed js, c, cpp

Copyright © 2013 Switch-Gears ApS page 3 of 7

3 USER COMMUNITY ENGAGEMENT ANALYSIS

3.1 GOOGLE TRENDS

Google trends search volume over time within the “Programming/Development Tools” category.

The conclusion from this graphic is clear: Subversion is rapidly being ~1:1 replaced by Git within the soft-

ware industry as a whole. Another logical conclusion is that if you are selecting a tool based on minimal

support load going forward, i.e. leveraging the end users ability to support themselves through online search,

then Git is the preferred option.

3.2 MAILING LIST TRAFFIC

Monthly mailing list traffic over the last 13 ½ years.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

0
1

 J
a

n
.

2
0

0
0

0
1

 J
a

n
.

2
0

0
1

0
1

 J
a

n
.

2
0

0
2

0
1

 J
a

n
.

2
0

0
3

0
1

 J
a

n
.

2
0

0
4

0
1

 J
a

n
.

2
0

0
5

0
1

 J
a

n
.

2
0

0
6

0
1

 J
a

n
.

2
0

0
7

0
1

 J
a

n
.

2
0

0
8

0
1

 J
a

n
.

2
0

0
9

0
1

 J
a

n
.

2
0

1
0

0
1

 J
a

n
.

2
0

1
1

0
1

 J
a

n
.

2
0

1
2

0
1

 J
a

n
.

2
0

1
3

M
a

ili
n

g
 l
is

t
m

e
s
s
a

g
e

s
 p

e
r

m
o

n
th

Mailing list messages per month as a proxy for user engagement (smoothed for clarity)

git
hg

svn
bzr
cvs

darcs
fossil

mtn
vv

Copyright © 2013 Switch-Gears ApS page 4 of 7

This metric indicates results similar to the Google trends analysis. SVN Q&A is rapidly declining and is being

largely replaced by Git, and to a lower degree by Mercurial. CVS Q&A effectively died in 2008.

4 DEVELOPER COMMUNITY ENGAGEMENT ANALYSIS

4.1 CODE ACTIVITY

Accumulated changes to the core SCM system over time (one code change is equivalent to one multifile task

or commit).

 0

 10000

 20000

 30000

 40000

 50000

0
1

 J
a

n
.

2
0

0
0

0
1

 J
a

n
.

2
0

0
1

0
1

 J
a

n
.

2
0

0
2

0
1

 J
a

n
.

2
0

0
3

0
1

 J
a

n
.

2
0

0
4

0
1

 J
a

n
.

2
0

0
5

0
1

 J
a

n
.

2
0

0
6

0
1

 J
a

n
.

2
0

0
7

0
1

 J
a

n
.

2
0

0
8

0
1

 J
a

n
.

2
0

0
9

0
1

 J
a

n
.

2
0

1
0

0
1

 J
a

n
.

2
0

1
1

0
1

 J
a

n
.

2
0

1
2

0
1

 J
a

n
.

2
0

1
3

A
c
c
u

m
u

la
te

d
 n

r.
 c

o
d

e
 c

h
a

n
g

e
s

Accumulated code changes over time as a proxy for developer engagement

git
hg

svn
bzr
cvs

darcs
fossil

mtn
vv

An interesting trend when looking at the key DVCS systems (Git and Mercurial), is the curvature of the graph.

I.e. even though Git and Mercurial development started at the same time, almost twice as many code changes

(requirements and bug fixes) have been incorporated into Git, the trajectory of the lines would indicate that

this trend will continue for the foreseeable future.

SVN has a head start over the distributed systems when it comes to code changes over time; but due to it’s

“single file” CVS/RCS-inspired nature there is still today a tendency among the core developers to create

a new change every time a single file is changed, somewhat inflating numbers as compared to the other

systems.

Copyright © 2013 Switch-Gears ApS page 5 of 7

4.2 DEVELOPER RENEWAL AND DIVERSITY

Accumulated unique developers that have contributed to developing the core SCM system over time.

 0

 200

 400

 600

 800

 1000

 1200

 1400
0

1
 J

a
n

.
2

0
0

0

0
1

 J
a

n
.

2
0

0
1

0
1

 J
a

n
.

2
0

0
2

0
1

 J
a

n
.

2
0

0
3

0
1

 J
a

n
.

2
0

0
4

0
1

 J
a

n
.

2
0

0
5

0
1

 J
a

n
.

2
0

0
6

0
1

 J
a

n
.

2
0

0
7

0
1

 J
a

n
.

2
0

0
8

0
1

 J
a

n
.

2
0

0
9

0
1

 J
a

n
.

2
0

1
0

0
1

 J
a

n
.

2
0

1
1

0
1

 J
a

n
.

2
0

1
2

0
1

 J
a

n
.

2
0

1
3

A
c
c
u

m
u

la
te

d
 u

n
iq

u
e

 d
e

v
e

lo
p

e
rs

 o
v
e

r
ti
m

e

Accumulated unique developers over time as a proxy for developer engagement

git
hg

svn
bzr
cvs

darcs
fossil

mtn
vv

Like the previous graphic this one also illustrates the ~2x ratio between developer engagement in git and

mercurial, indicating higher innovation rate and significantly shorter requirement and issue turnaround time

for Git.

It is also clear from the above graphic that some development communities are better able to integrate

changes from new contributors than others, which could indicate better architecture and certainly broader

developer mindshare.

4.3 COCOMO COST MODELLING

Estimated man years and cost to recreate based on COCOMO cost modelling, using current average US

developer salary data.

SCM System Lines of code Man Years Development Cost (USD)

git 327,740 87.57 19,124,432

mercurial 76,113 18.90 4,128,710

bazaar 231,550 60.80 13,278,825

cvs 174,327 45.13 9,856,336

darcs 47,234 11.46 2,501,786

fossil 217,821 57.02 12,453,384

monotone 209,944 54.86 11,980,950

svn 553,385 151.78 33,148,309

veracity 420,189 113.67 24,825,588

Copyright © 2013 Switch-Gears ApS page 6 of 7

4.4 SECONDARY DEVELOPER ENGAGEMENT

Frontends, wrapper scripts and usability tools play an important role in the day to day use of any SCM system,

here we tabulate the number of surrounding tools mentioned on the different SCM’s web and wiki pages.

SCM System Surrounding Source

tools

Git ~175 https://git.wiki.kernel.org/index.php/Interfaces,_frontends,_and_tools

Mercurial (hg) ~76 http://mercurial.selenic.com/wiki/OtherTools

Subversion (svn) ~50 https://en.wikipedia.org/wiki/Comparison_of_Subversion_clients

Bazaar (bzr) ~30 http://wiki.bazaar.canonical.com/3rdPartyTools

CVS ~20 http://ximbiot.com/cvs/cvshome/dev/addons.html

Darcs ~30 http://darcs.net/RelatedSoftware

Fossil - -

Monotone (mtn) ~10 http://wiki.monotone.ca/InterfacesFrontendsAndTools/

Veracity (vv) - -

5 CONCLUSION

For maximum ROI select only tools with

• highest adoption

• highest mindshare

• largest active user community

• largest active developer community

• highest investment to date

• bright and predictable future

Looking at the above graphs and numbers it is clear that only Git is currently worth granting serious consid-

eration.

SVN can be easily excluded as it applies the legacy centralized data storage model, which is no longer

considered technically current or relevant within the SCM field. Mercurial can be excluded based on very

low Google trends search volume, low and declining mailing list traffic, a significantly lower accumulated

number of developers over time, which taken together all indicate lower innovation and development rate.

Basically the field quickly narrows to only one sensible choice, namely Git.

For further (more classical feature comparison based) reasons for adopting Git, please refer to one of the

many online system comparisons, such as http://thkoch2001.github.com/whygitisbetter/

5.1 BUSINESS RECOMMENDATIONS

Switch-Gears makes the following SCM system recommendations.

• If you are not using an SCM system today, you should adopt Git as a matter of course.

• If you are currently using a proprietary, homemade, or lower-ranked open source SCM system, you

should migrate to Git as soon as possible.

• If you are currently implementing SCM in a heterogeneous manner, using a combination of various

SCM systems, you should standardise on Git as soon as possible.

Copyright © 2013 Switch-Gears ApS page 7 of 7

https://git.wiki.kernel.org/index.php/Interfaces,_frontends,_and_tools
http://mercurial.selenic.com/wiki/OtherTools
https://en.wikipedia.org/wiki/Comparison_of_Subversion_clients
http://wiki.bazaar.canonical.com/3rdPartyTools
http://ximbiot.com/cvs/cvshome/dev/addons.html
http://darcs.net/RelatedSoftware
http://wiki.monotone.ca/InterfacesFrontendsAndTools/
http://thkoch2001.github.com/whygitisbetter/

	1 About Switch-Gears
	2 Introduction
	2.1 Application of network effect analysis to SCM systems
	2.2 SCM systems investigated

	3 User community engagement analysis
	3.1 Google trends
	3.2 Mailing list traffic

	4 Developer Community engagement analysis
	4.1 Code activity
	4.2 Developer renewal and diversity
	4.3 COCOMO cost modelling
	4.4 Secondary developer engagement

	5 Conclusion
	5.1 Business recommendations

