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Abstract

The reliability of a file system considerably depends
upon how it deals with on-disk data corruption. A file sys-
tem should ideally be able to detect and recover from all
kinds of data corruptions on disk. ZFS is a new filesys-
tem that arrives almost a generation after the introduction
of other desktop filesystems like ext and NTFS and makes
strong claims about its reliability mechanisms.In this pa-
per we examine how ZFS deals with on disk data corrup-
tions. We use the knowledge of on disk structures of ZFS to
perform corruptions on different types of ZFS objects. This
“type aware” corruption enables us to perform a systematic
exploration of the data protection mechanism of ZFS from
various types of data corruptions. This paper performs 90
experiments on ten different ZFS disk objects. The results of
these corruption experiments give us information about the
classes of on disk faults handled by ZFS. We also get a mea-
sure of the robustness of ZFS and gain valuable lessons on
building a reliable and robust file system.

1. Introduction

The integrity and long term availability of the data is of
prime importance for any computer system. Unfortunately,
the persistent data of a computer system stored on hard
disks is susceptible to corruptions. There are various rea-
sons for on disk corruptions and many artifacts of literature
discuss such on disk corruptions [8]. Further, bugs in the
software stack such as in device drivers and the filesytems
themselves also lead to data corruption. ZFS [3] claims to
provide robust reliability mechanisms like using checksums
in a self validating tree structure. In this project, we aim to
perform a type aware corruption analysis of ZFS. In partic-
ular, by performing type aware corruption analysis we re-
duce the large search space of random data corruption pos-
sible on disk to a representative subset of interesting faults
possible and analyse the file system’s policy to deal with
them. Section 2 discusses the ZFS organization and on disk
structures. It also discusses in brief, their relationships and

hierarchy. Section 3 details our corruption framework and
methodology. Sections 4 and 5 discuss the analysis and re-
sults which is followed by conclusions and future work.

2. Background on ZFS

2.1. Overview

ZFS is an object based filesystem and is very differ-
ently organized from most regular file systems. ZFS pro-
vides transactional consistency and is always on-disk con-
sistent due to copy-on-write semantics and strong check-
sums which are stored at a different location than the data
blocks.

ZFS uses the concept of a common storage pools for dif-
ferent filesystems on a system instead of using the tradi-
tional concept of volumes. The pool can be viewed as a gi-
ant tree sized structure comprising of data at its leaf nodes
and metadata at its interior nodes. The storage pool allo-
cator which manages this pool is responsible for data in-
tegrity amongst its host of other functions. This allocator
uses a checksum mechanism for detection of corruption.
For each node (of the tree structure) in the storage pool, the
64 bit checksum of its child is stored with its parent block
pointer. This mechanism has several advantages like elimi-
nating separate I/O for fetching checksums and fault isola-
tion by separating data and checksum. It also gives a mech-
anism to store checksum of checksums because of the in-
herent tree nature of the storage pool. ZFS uses 64-bit sec-
ond order Fletcher checksums for all user data and 64-bit
fourth order Fletcher checksums for all metadata. Using this
checksum mechanism, ZFS is able to detect bit rot, misdi-
rected reads, phantom writes, misdirected writes and some
user errors. It is significant here that all blocks are check-
summed, since checksums are considered traditionally ex-
pensive and ZFS is one of the the first commercial file sys-
tem to have end to end checksums. In addition to the above
mechanisms, ZFS also provides automatic repairs in mir-
rored configurations and also provides a disk scrubbing fa-
cility to detect the latent sector errors while they are re-
coverable [3]. By providing these comprehensive reliabil-
ity mechanisms, ZFS claims to eliminate the need of fsck.



.-+)355F.-+ .-+.-+ .-+

Figure 1. ZFS pool organization

To summarize, ZFS presents a data integrity model consist-
ing of an always consistent on-disk state therby giving “no-
window of vulnerability”. Another feature of ZFS is that all
the data and metadata blocks are compressed in ZFS. While
one can disable the data compression, metadata cannot be
stored decompressed. This is understandable for this 128
bit, copy-on-write filesystem which duplicates (and even
triplicates) all its metadata for reliability purposes.

We now look at some of the features and specification re-
garding reliability and also review the on-disk structuresof
ZFS. This helps us in understanding the corruption experi-
ments and results.

2.2. ZFS organization

ZFS presents a unique pooled storage model for mount-
ing multiple instances of filesystem. This pool structure en-
ables ZFS to perform the role of an Logical Volume Man-
ager. This pool structure is represented in Figure 1.

ZFS is a object based transactional file system. Every
structure in ZFS space is an object. The write operations on
ZFS objects are grouped and are referred to as a transac-
tion group commit. Entire ZFS file system is represented in
terms of either objects or object sets. The objects are repre-
sented on disk asdnodephyst structure while an object set
is represented as anobjsetphyst structure. The object set
data pointed to by thisobjsetphyst structure is an array of
dnodephyst structures. Thisdnodephyst structure con-
tains a bonus buffer in thedn bonusfield which describes
specific information about each different ZFS object. This
is analogus to the use of objects and templates in a program-
ming language where each template type(dnodephyst) can
be instantiated to different object types (usingdn bonus
field). These objects are stored on disk in terms of blocks
and these objects connect to one another using block point-
ers. Block pointers are not traditional pointers in ZFS but
are represented by a specific structure called asblkptr t.
This pointer gives us a fair idea about what to expect about
the block (or sequence of blocks) being read. The pointer
tells us the checksum and compression algorithm informa-
tion of the next block being read. It also tells us the sizes be-
fore and after compression of the logical blocks and whether
the blocks are gang blocks. Gang blocks provide a tree of
runs(block pointers) to store more data in blocks than would
be stored by any single contiguous run of blocks. The ad-
dresses of the location of the blocks on disk are calculated

using a combination of fields in the block pointer. This ad-
dress is called as the Data Virtual Address(DVA). The block
pointer can store upto three copies of the data each pointed
by a unique DVA. These blocks are referred to as “ditto”
blocks in ZFS terminology. The ability of block pointers to
store multiple valid DVA’s is referred to as the wideness of
the block pointer. This wideness is three for pool wide meta-
data, two for file system wide metadata and one for data.
The wideness for the file system data is configurable.

2.3. Other structures

Another important structure worth describing is the ZAP
(ZFS attribute processor) object. The ZAP objects are used
to store various attributes to handle arbitary (name, object)
associations within an object set. Common attributes in-
clude contents of a directory or specific pool wide meta-
data information.

To organize the above information in filesystem termi-
nology, we summarize as follows. Everything in ZFS is an
object. The objects when represented as an array form ob-
ject sets. Filesystems, volumes, clones and snapshots are
each examples of objectsets. A snapshot is point in time
copy of the filesystem while a clone is a child copy of
a snapshot. A dataset is a collection of multiple object-
sets along with spacemaps(free space management informa-
tion) and snapshot information. A dataset directory groups
datasets and provides properties such as quotas, compres-
sion etc. Various dataset relationships are also encapsulated
using a dataset directory.

2.4. ZFS On-disk Structures

A complete description of individual ZFS On-disk struc-
tures can be found at the ZFS website. [6] In this section we
use the knowledge of on-disk structures to perform a com-
plete traversal of the on-disk structures that lead to file and
directory data. We thus attempt to create a top-to-bottom
picture of ZFS on disk data. The illustration in figure 2
represents the ZFS on-disk structure with one filesystem
“myfs”. The figure illustrates the traversal starting from the
vdev (virtual device) labels to the data blocks of files in
“myfs”. The figure is divided in two portions by the dot-
ted line. The top half represents the pool wide metadata
while the lower half represents the file system metadata and
data. As discussed in the section 2.2, the pool wide meta-
data has three copies of the same block. All metadata is al-
ways compressed in ZFS while data compression is config-
urable and is disabled by default. Also, all blocks are check-
summed in ZFS and stored with the parent as mentioned in
section 2.1. The block pointers contain checksum informa-
tion which is compared with the calculated checksum of the
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Figure 2. ZFS on disk structures



block being read. Upon checksum mismatch, ZFS resorts to
the correct ditto copy of the block.

The storage pool (ZFS formatted disk) contains four
copies of vdev labels. These labels are identical in con-
tents and can be interchangabily used to verify pool con-
tents. These vdev labels are the only contents in the pool that
have fixed location on-disk (two labels at the starting blocks
of the disk and two labels towards the end) and do not have
copy on write semantics. ZFS performs a two staged trans-
actional update to ensure on-disk consistency. To overwrite
any label data, the even labels are updated first followed by
update of the odd labels. To access the pool information, we
need to locate the “active” uberblock. The active uberblock
is the latest copy of the uberblock. Semantically, uberblock
is like a ext3 superblock, with the difference that uberblock
contains information about the entire pool and not just one
file system. Each vdev contains an array of 128 uberblocks
of size 1K each. ZFS locates the latest uberblock using the
transaction group number(txg number). The uberblocks are
located in the uberblock array at the txg number mod 128 lo-
cation. The uberblock contains a pointer to the metaobject
set (MOS). The MOS contains pool wide information for
describing and managing relationships between and prop-
erties of various object sets. There is only one MOS per
pool pointed to by the block pointer in the uberblock. The
MOS also contains the pointer to ZIL or the ZFS Intent Log
which contains the transaction records for ZFS’s intent log-
ging mechanism.

To traverse towards the filesystem metadata, we must
read the contents of the object directory. The object direc-
tory is always in a fixed location and in the second element
of the dnode array. The object directory is a ZAP object and
contains references to various other objects which can be
located by traversing through the object references given in
this ZAP object. As indicated in Figure 2, common object
references in the object directory ZAP include the follow-
ing :

a)root dataset- This is a pointer to the root dataset di-
rectory. This dataset directory in contains references to all
top level datasets in the pool.

b)config -This is a name/value list describing the pool
vdev configuration.

c)syncbplist - This object contains the list of block
pointers that need to be freed during the next transaction.

The root dataset directory contains further child dataset
directories representing different file systems in the pool.
The root dataset directory always contains a default dataset
directory called as $MOS. Along with this it also contains
a dataset directory for our file system “myfs’. From this
“myfs” dataset directory we locate its active dataset. The
active dataset object contains a block pointer which points
to the “myfs”objsetphyst structure.

As we move towards the file system metadata the “myfs”

objsetphyst strucutre points to several layers of indirect
objects which eventually lead to a large logical object set
array. There are two redundant copies of this filesystem ob-
ject set. We now start traversing this objectset in a similar
fashion as we traversed the meta object set.The second en-
try in this object set array contains the master node object.
The ZAP here gives us a reference(in “myfs” objectset) to
the root directory. The is the root directory of the “myfs”
filesystem. The root directory ZAP object can be traversed
to find further child directories and files in the “myfs” file
system. The file objects contain the block pointers to their
corresponding data blocks.

To summarize, ZFS offers layers of object based indi-
rection which gives sufficient opportunity to perform cor-
ruption on this file system. ZFS offers significant reliabil-
ity features like end to end checksum, concept of wideness
and ditto blocks. The metadata compression also restricts
our type aware corruption scope. The copy-on-write seman-
tics always helps ZFS maintain an on-disk consistent state.
We now describe our corruption framework to corrupt the
above mentioned ZFS structures.

3. Methodology

We now describe the corruption framework that we de-
veloped for performing the analysis followed by a descrip-
tion of the corruption experiments.

3.1. Corruption Framework

We introduce a pseudo device driver called the “cor-
rupter” driver which is a standard Solaris layered driver ex-
posing the LDI (Layered Driver Interface). This pseudo lay-
ered driver creates two minor nodes in the /devices tree. One
device node is used for block I/O while the other has ex-
poses a raw character device necessary to perform corrup-
tion related ioctl calls.

We create a storage pool on the block device minor node
exposed by the “corrupter”. The corrupter thus interposes
between the ZFS Virtual devices (VDEVs) and the disk
driver beneath. The kernel interface of the LDI exposed by
the “corrupter” driver is called in by the VDEVs to perform
I/O for the pool. The “corrupter” in turn calls into the ac-
tual disk driver using LDI for performing the I/O.

We have also developed an application called the “ana-
lyzer” which uses the device nodes exposed by the driver.
The “analyzer” uses the block device minor node for read-
ing the on-disk ZFS data. It reads the on-disk structures and
uses the knowledge of these structures to selectively cor-
rupt different types of ZFS on-disk objects. It presents the
on-disk picture to the user who can then instruct the “ana-
lyzer” to selectively corrupt objects. For corrupting an on-
disk object, the “analyzer” finds the physical disk block and



Figure 3. Corruption analysis framework

offset to corrupt. It then uses the raw character device node
to call into the driver via an ioctl. The ioctl passes a struc-
ture to the driver containing the physical block, offset, new-
value for corruption and the driver adds this to its corruption
table. For performing the corruption, the driver always per-
form a check on reads and looks for a match in its corrup-
tion table. In case of a match, the driver modifies the given
offset with the new value and sends this modified block to
the caller.

We use an application as the “consumer” which calls
into ZFS using the POSIX filesystem APIs. For different
filesystem operations performed by the “consumer” such as
reads and writes, the corrupter driver injects the faults inthe
blocks read by ZFS. It does this corruption only once for
each block. To simulate errors on disk, the driver performs
corruption only once for the selected block. When writes are
performed back to the identified blocks, the corrupter driver
monitors these writes and doesn’t further corrupt them on
reads. We then analyze the behavior of ZFS to recover from
faults injected by our driver. To analyse this behavior, we
see the return values, system logs and also trace the system
calls. Figure 3 describes this corruption framework devel-
oped.

3.2. Corruption Experiments

We must first briefly look at the setup and assumptions
used to perform the experiments. In our setup, we have
used ZFS version 6 in a Solaris 10 virtual machine on
VMWare server. This is used only to facilitate the experi-
mentation process and does not interfere with any of the re-
sults. The experiments bear the same significance as on a
real hardware. We have simplified the storage pool by us-
ing a single disk device. So the SPA layer deals with a sin-
gle vdev and does not employ any replication or redundancy
at the disk device level. This is representative of the com-
mon case where commodity systems use a single hard disk
and avoid any device replication to minimize storage cost.
At the file system level, ZFS uses compression on all its
metadata while data compression for files and directories
is an optional feature. In our experiments we have disabled
compression for file system data. Further, we have used the
ZFS default configuration for ditto blocks. ZFS uses 3 ditto
blocks for pool level metadata, 2 ditto blocks for file sys-
tem level metadata and no replication for file system data.

We use a type aware fault injection mechanism where the
analyzer application presents the user with the on-disk pic-
ture consisting of all ZFS objects traversed on the disk to
read a specific file in a mounted file system. It facilitates
the selection of a specific object for corruption by the user.
The analyzer uses the block device minor node of the cor-
rupter and reads the on disk ZFS structures. It then presents
a summary of all the objects traversed and the correspond-
ing physical device block numbers to the user. Once the
user selects an object for corruption, the analyzer applica-
tion uses the raw character device node to inform the driver
about the specific physical block on disk. It uses an ioctl
to send a structure to the corrupter informing it about the
specific block, offset in the block and the new value to use
for corruption. As an example, the application can ask the
driver to corrupt the nth block by changing the value of the
kth byte to zero. For all the ZFS metadata including the pool
and the file system level metadata, the corruption can be ef-
fectively viewed as a block level corruption on the com-
pressed metadata. In the experiments we performed, we cor-
rupted the compressed ZFS metadata objects and analyzed
the behaviour of ZFS in response to these corruptions. For
file and directory data, we corrupted the uncompressed data
blocks on disk. In all cases, we tried to corrupt random off-
sets in the physical blocks occupied by the selected object.
The values to use of corruption are not relevant; we used the
corrupted value as zero.

The following is a list of the different ZFS objects on
which the corruption experiments were performed along
with the number of corruption tests performed (in paran-
theses).

• vdev labels (5)



• uberblocks (10)

• MOS object (objsetphyst) (10)

• MOS Object set array (10)

• File System object (objsetphyst) (10)

• Indirect objects to FS object set data (10)

• FS Object set array (10)

• FS directory data (10)

• File data (10)

• ZFS Intent Log (5)

We performed a total of 90 corruption tests on the 10 ob-
jects listed. Each set of tests are performed and the corre-
sponding observations are explained in section 4 .

4. Experimental Analysis

The set of tests performed and their results have been ex-
plained below in terms of the class of objects corrupted.

4.1. Vdev Labels

4.1.1. Corrupting the labels
There are 4 vdev labels in each physical vdev in the stor-

age pool. These are named as L0, L1, L2 and L3 and are self
checksummed. Each label update causes these labels to be
overwritten in place. ZFS uses a 2 stage transaction update
for the labels. The even labels (L0 and L2) are written out to
disk in a single atomic transaction followed by the odd la-
bels (L1 and L3). We performed corruptions on different
vdev labels. On performing corruptions to vdev labels, ZFS
does not detect these corruptions. We unmount and mount
the file system (“myfs”) in order to make ZFS read the la-
bels on disk. On a mount, ZFS is able to read the correct
vdev label (one with the correct checksum) as long as a cor-
rect vdev label exists on disk. However on performing cor-
ruptions on all 4 vdev labels and then unmounting and re-
mounting the file system, ZFS is unable to recover from this
error and causes a panic. It is peculiar that ZFS does not use
the correct the vdev label to fix the corrupted labels even on
a transaction group commit. We are not sure when these la-
bels are written out to disk.

4.1.2. Corrupting the uberblock
Uberblocks are stored in a 128 slot array in each of the

4 vdev labels. In our tests for the uberblocks, we performed
the following experiments -

• Corrupting the active uberblock in 1, 2, 3 and all 4 vdev
label(s).

• Corrupting a large number of uberblocks (including
the active one) in 1,2,3 and all 4 vdev label(s).

• Performing the above corruptions when file system is
mounted and when file system is unmounted.

We first performed the corruptions with “myfs”
mounted. We observed that as per the specification,
uberblocks are never overwritten. A new modified ver-
sion of the uberblock is written in the uberblock array
whenever a txg commit occurs. The corruption exper-
iments did not cause any failure in ZFS due to the
copy-on-write property. Even on corrupting all copies
of uberblocks, ZFS was oblivious to the corruptions be-
cause it uses the in-memory copy of the uberblock. In or-
der to cause ZFS to access the corrupted on-disk copy of
uberblock, we attempted to unmount the “myfs” file sys-
tem from the pool. The unmount causes a txg commit and
a new copy of the uberblock is written to the disk using the
correct in-memory copy. This uberblock becomes the ac-
tive uberblock because it is written out in the latest txg
commit. In this way, the old corrupted uberblock is never
accessed. Instead of unmounting “myfs”, we tried to cre-
ate a new file in the myfs file system. This causes exactly
the same behavior because it causes a txg commit to hap-
pen and ZFS writes a correct copy of the uberblock to the
disk using its in-memory copy.

Next, we unmounted “myfs” file system from the pool
and then performed the corruptions. After performing each
corruption we mounted the file system to check how ZFS re-
acts. In all test cases, ZFS remained oblivious to the corrup-
tions because the in-memory copy of the active uberblock
is always present as long as the storage pool exists. Even
after unmounting “myfs” and corrupting all the copies of
uberblocks, ZFS does not detect any error on a mount be-
cause, it still uses the in-memory active uberblock. The next
commit that follows puts a correct copy of this in-memory
uberblock on disk.

4.2. Meta Object Set

4.2.1. Corrupting the MOS objset phys t object
The uberblock contains a pointer(blkptr t) to a com-

pressed object which is the MOSobjectphyst. This pointer
has wideness of three which means that there are three ditto
blocks containing the sameobjsetphyst structure of MOS.
We performed the following set of corruptions on this ob-
ject -

• Corrupting 1, 2 and all 3 ditto blocks of this object.

• Performing the above corruptions when file system is
mounted and when file system is unmounted.

We first performed the corruptions with “myfs”
mounted. All the corruption tests go undetected by ZFS be-
cause it uses the in-memory copy of theobjectphyst ob-
ject. On the next txg commit this consistent in-memory



copy is used to write new objects to disk. As a side ef-
fect, even the on-disk corruption of all three ditto blocks
does not cause any error in ZFS. We tried to unmount
“myfs” which again causes a txg commit and ZFS writes
new objects to disk using its in-memory copy of theob-
jset physt object. However, a crash at this stage will
cause ZFS to read the corrupted objects after reboot, and
ZFS would fail to mount the storage pool. Next, we per-
formed the corruptions with myfs unmounted. We observed
that ZFS still uses the in-memory copy of theobjsetphyst
object which is a pool wide object. However, we ob-
served that immediately after a mount ZFS does a txg
commit which writes new MOS objects on disk. The cor-
ruptions induced cause no errors in ZFS and go undetected
because of the in-memory copy.

4.2.2. Corrupting the MOS dnode phys t array
The MOS objsetphyst object contains a pointer

(blkptr t) to the compressed MOS object array. This pointer
has wideness of three which means that there are three ditto
blocks containing the same MOS object array. We per-
formed similar set of corruptions on this object as we did
on the MOSobjsetphyst object.

All the results obtained were similar to the results ob-
tained for the set of tests performed on the MOSob-
jset physt object.

4.3. File System Object Set

4.3.1. Corrupting the myfs objset phys t Object
A file system is contained as a dataset. A dataset has an

associated object set. A blkptr in dataset points to the ob-
ject containing theobjsetphyst structure for the object set.
This blkptr has wideness=2 and the block containingob-
jset physt is compresssed. So in effect there are two copies
of objsetphyst for myfs which are both compressed. We
conducted the following corruptions on theobjsetphyst
object -

• Corrupting a single copy of this object.

• Corrupting both copies of this object.

• Performing the above corruptions when file system is
mounted and when file system is unmounted

We first performed the corruptions when myfs is
mounted. As in previous experiment, the corruptions
done on the object on disk are not visible to ZFS be-
cause it uses the in-memory object it caches. Even the
corruption of both the ditto blocks is not detected. On try-
ing to create a new file in myfs or unmounting myfs, a txg
commit is done and new objects are written on disk.

Next we performed corruptions onobjsetphyst objects
when myfs is unmounted. We first corrupt a single copy of

the object and mount the myfs filesytem. ZFS does not re-
port this corruption. It silently used the other copy and then
the next txg commit causes new objects to be created and
new copies for both these objects are created. Next, we cor-
rupt both the ditto blocks of the “myfs”objsetphyst object
and try to mount myfs. In this case ZFS, fails to mount the
file system and reports an “I/O error” on mount. In short,
two single bit errors on disk can cause the file system to be
corrupted as is obvious with having two replicas.

4.3.2. Corrupting the indirect block pointers myfs Ob-
ject Set

ZFS assumes the file system object set to be a large ob-
ject set and hence creates seven levels of compressed in-
direct objects which eventually lead to the object set ar-
ray consisting of the file systems objects like files and di-
rectories. The indirect blocks were not present in case of
the Meta Object Set because that object set is small enough
to be pointed to directly. Theobjsetphyst structure corre-
sponding to myfs points to indirect objects with block point-
ers (blkptr t) leading to the object set data. All these point-
ers have wideness of two. We performed similar set of tests
to these indirect objects and obtained the same results as
with the “myfs” objsetphyst object.

4.3.3. Corrupting the myfs Object Set dnode phys t ar-
ray

The indirect objects pointed to by “myfs”objsetphyst
object further lead to the compressed myfs object set
dnodephyst array. The indirect objects have point-
ers with wideness of two. We performed the same set
of tests on this object as we did for the “myfs”ob-
jset physt object and obtained the same results.

4.4. File System Data

The individual objects in the file system are represented
by dnodephyst objects in the file system object set. The
dnodephyst objects contain pointers (blkptr t) to the disk
blocks containing the corresponding file or directory data.
The directory data is formatted as a ZAP object contain-
ing name value pairs for the files contained in the directory.
ZFS treats directories as file system metadata and has 2 ditto
blocks for them. However, unlike all other metadata, direc-
tory data is not compressed by default. For our corruption
tests, we used the default configuration in ZFS which keeps
only one ditto block (wideness ofblkptr t= 1) for file data,
two ditto blocks for directory data. We performed the fol-
lowing tests -

• Corrupting the file data.

• Corrupting the directory data.

• Performing the above corruptions when file system is
mounted and when file system is unmounted.



Object Type Detection Recovery Correction
vdev label Yes/Checksum Yes/Replica No
uberblock Yes/Checksum Yes/Replica No/COW

MOS Object Yes/Checksum Yes/Replica No/COW
MOS Object Set Yes/Checksum Yes/Replica No/COW

FS Object Yes/Checksum Yes/Replica No/COW
FS Indirect Objects Yes/Checksum Yes/Replica No/COW

FS Object Set Yes/Checksum Yes/Replica No/COW
ZIL Yes/Checksum No No

Directory Data Yes/Checksum No/Configurable No/COW
File Data Yes/Checksum No/Configurable No/COW

Table 1. Results of the type aware corruption on ZFS.

We first performed the corruptions on file data when
myfs is mounted. In this case, ZFS uses the cached
blocks and does not detect any error on corrupting the file
data. However, on unmounting and subsequent mount-
ing of myfs, ZFS detects the corruption and reports an
“I/O error”. On performing the corruption with myfs un-
mounted and then mounting it, ZFS detects and reports an
“I/O error”.

Next we performed the corruptions on directory data. We
performed the corruptions first with myfs mounted. On cor-
rupting a single ditto block of directory data, ZFS is unable
to detect the error immediately. However on unmounting
and subsequent mounting myfs and then accessing the di-
rectory, ZFS detects this as a checksum error but does not
do any recovery. It still has a correct ditto block of the direc-
tory contents and uses that for further operations. Only the
next write to the directory causes a txg commit and new ob-
jects are written to the disk. A mount or unmount of the file
system without any writes to the directory has no effect and
the data remains corrupted. Further, on corrupting both the
ditto blocks and unmounting and remounting “myfs”, ZFS
detects the error as a “checksum error” but is unable re-
cover from it. Further operations on the infected directory
lead to further “checksum errors” on the pool and ZFS re-
ports an “I/O error” to the user. Directory deletion is also
not possible.

We further perform the directory data corruptions with
myfs unmounted. On performing corruptions on a single
ditto block of directory data and then accessing the direc-
tory after mounting “myfs”, ZFS is able to detect the error
as a “checksum error” but doesn’t recover from it as stated
earlier. Corrupting both the ditto blocks also has the same
effect as discussed earlier.

4.5. ZFS Intent Log

ZFS uses an intent log to provide synchronous write
guarantees to applications. When an application issues a
synchronous write, ZFS writes this transaction in the intent
log (ZIL) and request for the write returns. When there is

sufficiently large data to write on to the disk, ZFS performs
a txg commit and writes all the data at once. The ZIL is not
used to maintain consistency of on-disk structures; it is only
to provide synchronous guarantees. We have done some ini-
tial corruption tests on ZIL. ZIL blocks are uncompressed
and do not have any ditto blocks. In our experiments, we
did not simulate a crash after corrupting the intent log. So
the results of these tests are not conclusive. However, our
tests suggest that because there is no replication, the cor-
ruption of ZIL followed by a crash will cause ZFS to de-
tect the ZIL checksum error on the next mount. This will
cause ZFS to skip replaying the log and will result in a bit
old, yet consistent on-disk data.

The results of the experiments performed and the obser-
vations can be summarized as shown in Table 1.

5. Result Summary

ZFS is able to detect all corruptions performed in the
tests because of its use of checksums inblkptr t. On de-
tecting such corruption, ZFS checks for ditto blocks. For
metadata, ZFS is able to access the correct copy of the ditto
block and hence recover from the error. For file data, there
are no ditto blocks by default and ZFS is not able to recover
from any errors in it. It flags an I/O error in such cases. Ear-
lier work done on the reliability analysis of file systems in
IRON File System [8] describes a taxonomy for reliabil-
ity of file systems. For detection of errors, ZFS uses redun-
dancy in the from of checksums in parent block pointers,
thus incorporating the best level of detection described. For
recovery of errors, ZFS again uses redundancy in the form
of ditto blocks pointed to by parent block pointers, incorpo-
rating the best level of recovery as per the taxonomy.

It is peculiar though that ZFS does not perform any cor-
rection immediately when it detects checksum errors. It
silently uses the correct copy and waits for a transaction
group commit to happen which has copy-on-write seman-
tics, thus causing new correct objects to be written out to
the disk.



6. Related work

There has been significant research in failure and cor-
ruption detection for file systems and many fault injection
methodologies and techniques have been developed [2] [7]
. The techniques range from dynamic injection of errors
[5] to static and model checking [9] for detection of fail-
ure points and scenarios. Our study of ZFS uses type in-
formation for fault injection to understand the failure be-
haviour of file systems. This study of ZFS is related to pre-
vious fault injection based failure behavior analyses [8] [1]
from ADSL research group in our deparment. These anal-
yses also use type information for fault injection in order
to understand the failure behavior of file systems. ZFS also
provides a ztest utility to perform various types of tests in-
cluding data corruption [4]. These tests are aimed at user
level functional testing and do not perform a fine grained
type aware block corruption as is performed in this paper.

7. Future work

The copy on write method of ZFS to fix errors raises
questions on the integrity of snapshots. We look forward to
exploring this area in our future studies on reliability anal-
ysis of ZFS. We also look forward to explore the striping,
mirroring and RAID-Z configurations of ZFS and seek to
understand the reliability policies and mechanisms associ-
ated with these multiple device configurations.

8. Conclusions

There are some useful conclusions that we can draw
from our analysis of ZFS and from the corruption experi-
ments performed. These conclusions can also be viewed as
lessons for building reliable file systems.

• Use of one generic pointer object with checksums and
replication

ZFS uses a single type of pointer (blkptrt) struc-
ture for all the on disk objects. This pointer is used to
store the checksum of the object being pointed to thus
enabling the physical separation of objects from their
checksums. The pointer structure also points to ditto
blocks i.e. replicas of the object. This whole organiza-
tion creates a Merkel tree structure for the entire stor-
age pool which makes the file system robust.

• Use of replication and compression in commodity file
systems

Earlier work on file systems [8] has pointed to-
wards the use of replication to provide robustness
against disk corruption and the use of compression for
achieving high disk density in terms of cost per us-
able byte. However, commodity file systems have been

conservative in the use of these techniques for perfor-
mance and space considerations. ZFS effectively uses
both replication and compression while still providing
the performance required of large scale production file
systems.

• Copy-on-write as an effective tool
While copy-on-write is used by ZFS as a means

to achieve always consistent on-disk structures, it also
enables some useful side effects. ZFS does not per-
form any immediate correction when it detects errors
in checksums of objects. It simply takes advantage of
the COW mechanism and waits for the next transac-
tion group commit to write new objects on disk. This
technique provides for better performance while rely-
ing on the frequency of transaction group commits.
In terms of robustness, this technique does provide
weaker guarantees than eager correction of errors.
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