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Abstract
When a Fourier series is used to approximate a function with a

jump discontinuity, an overshoot at the discontinuity occurs. This
phenomenon was noticed by A. Michelson [Mi] and explained by J.W.
Gibbs [Gi] in 1899. This phenomenon is known as the Gibbs effect.

In this paper, possible Gibbs effects will be looked at for wavelet
expansions of functions at points with jump discontinuities. Certain
conditions on the size of the wavelet kernel will be examined to de-
termine if a Gibbs effect occurs and what magnitude it is. An if and
only if condition for the existence of a Gibbs effect is presented, and
this conditions is used to prove existence of Gibbs effects for some
compactly supported wavelets. Since wavelets are not translation in-
variant, effects of a discontinuity will depend on its location. Also,
computer estimates on the sizes of the overshoots and undershoots
were computed for some compactly supported wavelets with small
support.

1 Gibbs Phenomenon for Fourier Series

To illustrate what is happening in the Gibbs effect, let us examine the partial
sums of a Fourier series. Let g(x) be a periodic, piecewise smooth function
with a jump discontinuity at x0. For any fixed x1, not equal to x0, the partial
sums of g(x) at x1 approach g(x1). That is, if sn is the partial sum of g, then

lim
n→∞ sn(x1) = g(x1) .

However, if x is allowed to approach the discontinuity as the partial sums
are taken to the limit, an overshoot, or undershoot, may occur. That is,

lim
n→∞

xn→x+
0

sn(xn) �= g(x+
0 )
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and
lim
n→∞

xn→x−
0

sn(xn) �= g(x−0 )

are possible. This overshoot, or undershoot, is called the Gibbs phenomenon.

Proposition 1.1 Let f be a function of bounded variation, 2π-periodic func-
tion. At each jump discontinuity x0 of f , the Fourier series for f will over-
shoot (undershoot) f(x+

0 ) and undershoot (overshoot) f(x−0 ) if f(x+
0 )−f(x−0 )

is positive (negative). The overshoot and undershoot will be approximately

9% of the magnitude of the jump
∣∣∣f(x+

0 ) − f(x−0 )
∣∣∣.

For further details for the Fourier series, see [Zy].

2 General wavelet structure and compactly

supported wavelets

A general structure, called a multiresolution analysis, for wavelet bases in
L2(R) was described by S. Mallat [Ma].

Let
... ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ ...

be a family of closed subspaces in L2(R) where⋂
m∈Z

Vm = {0} , ⋃
m∈Z

Vm = L2(R),

f ∈ Vm ⇐⇒ f(2·) ∈ Vm+1 .

and there is a φ ∈ V0 such that {φm,n}n∈Z is an orthonormal basis of Vm,
where

φm,n(x) = 2m/2φ(2mx− n) . (1)

Define Wm such that Vm+1 = Vm⊕Wm. Thus, L2(R) =
∑⊕Wm. Then there

exists a ψ ∈ W0 such that {ψm,n}n∈Z is an orthonormal basis of Wm, and
{ψm,n}m,n∈Z is a wavelet basis of L2(R),where

ψm,n(x) = 2m/2ψ(2mx− n) . (2)

The function φ is called the scaling function, and ψ is called the mother
function.
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Two special sums will be used in this paper. For f ∈ L2(R), the projec-
tion map of L2(R) onto Vm is

Πm : L2(R) → Vm

defined by

Πmf(x) =
m−1∑

j=−∞

∞∑
k=−∞

〈f, ψj,k〉ψj,k(x) =
∑
n∈Z

〈f, φm,n〉φm,n(x) ,

and Πmf(x) will be called a dyadic sum of f . Also, a general partial sum of
f will be defined by a projection of L2(R) into Vm+1, namely,

S lσ
m : L2(R) → Vm+1

is defined by

S lσ
mf(x) =

m−1∑
j=−∞

∞∑
k=−∞

〈f, ψj,k〉ψj,k(x) +
l∑

k=0

〈
f, ψm,σ(k)

〉
ψm,σ(k)(x) ,

where {σ(k)}l
k=0 is a set of l + 1 distinct integers.

Compactly supported wavelets will be used to illustrate the Gibbs effects.
The basic structure and properties needed for this paper are provided below.
Further details can be found in I. Daubechies paper [Da].

Based on a decomposition and reconstruction algorithm of S. Mallat
which utilizes wavelet’s multiresolution analysis structure, I. Daubechies ex-
tracted the necessary conditions for constructing wavelets from a sequence
of numbers {h(n)} without reference to a multiresolution analysis.

Proposition 2.1 Define m0(ξ) = 1√
2

∑
n∈Z h(n)e−inξ, where the h(n)’s sat-

isfy ∑
n∈Z

|h(n)| |n|ε <∞ for some ε > 0, (3)

∑
n∈Z

h(n) =
√

2, (4)

and ∑
n∈Z

h(n)h(n+ 2k) = δ0,k =

{
0, k �= 0
1, k = 0.

(5)
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Also, m0(ξ) can be written in the following form:
m0(ξ) = [1

2
(1 + e−iξ)]NF (ξ), N ∈ Z+, with F (ξ) =

∑
n∈Z f(n)e−inξ, where

∑
n∈Z

|f(n)| |n|ε <∞ for some ε > 0, (6)

and
sup
ξ∈R

|F (ξ)| < 2N−1. (7)

Then define g(n) = (−1)nh(−n + 1), and let φ̂(ξ) =
∏∞

j=1m0(2
−jξ),

φ(x) = lim
l→∞

ηl(x), (8)

where

ηl(x) =
√

2
∑
n∈Z

h(n)ηl−1(2x− n) and η0(x) = χ[− 1
2
, 1
2
)(x). (9)

Also, define ψ(x) =
√

2
∑

n∈Z(−1)nh(−n + 1)φ(2x − n). Then, the set
of φm,n(x) = 2m/2φ(2mx − n) defines a multiresolution analysis, and the
{ψm,n(x)}m,n∈Z is the associated wavelet basis.

Remark. Condition (3) guaranties that φ̂ is well defined; (4) makes∫
R φ(x) dx = 1; (5) gives the orthonormality to the {φm,n}; and (6) and (7)

ensure that φ is continuous.

Note that if N = 1 and F (ξ) = 1 in the above proposition, then φ(x) =
χ[0,1)(x), and one gets the Haar system. In this case, the continuity condition
(7) fails. I. Daubechies showed that φ(x) and ψ(x) have compact support if
and only if only a finite number of the h(n)’s in Proposition (2.1) are nonzero.

The following definition of I. Daubechies will be used in the following
sections.

Definition 2.2 Let Nφ and Nψ be the function defined by {h(n)} satisfying
the conditions of Theorem (2.1), h(n) = 0 for n < 0 and n > 2N − 1,
h(0) �= 0 and h(2N − 1) �= 0.

With these assumptions, the support size of Nφ can be determined.
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Proposition 2.3 The smallest interval which contains the support of Nφ is
[0, 2N − 1].

Remark. In this paper, the fact that this is the smallest such interval is
needed. A proof of this was not provided in [Da], so a proof of this will be
provided here.

Proof. From (8), it follows that the supp Nφ ⊂ [0, 2N − 1]. It is left to
show that this interval is the smallest such interval.
Claim: There does not exist an ε > 0 such that Nφ |[0,ε] ≡ 0.
Assume there does exist such an ε, and let ε0 be the largest such ε; a largest
must exist since Nφ is continuous. By (8),

Nφ(x) =
√

2
2N−1∑
n=0

h(n) Nφ(2x− n) , (10)

and for x ≤ min(ε0, 1/2 + ε0/2),

0 = Nφ(x) =
√

2h(0)φ(2x) . (11)

Since h(0) �= 0, (11) implies that φ(x) ≡ 0 for x ≤ min(2ε0, 1 + ε0). This
violates the maximality of ε0, hence there does not exist such an ε and the
claim is true.
To show that there does not exist an ε > 0 such that Nφ |[2N−1−ε,2N−1] ≡ 0,
the same procedure can be carried out, using x ≥ 2N − 1−min(ε0, 1/2+ε0/2)
in (10) and using the fact that h(2N − 1) �= 0. �

3 Gibbs phenomenon at the origin

To study the Gibbs effect of functions of bounded variation with a jump
discontinuity at zero, it suffices to look at wavelet expansions of the function

f(x) =

⎧⎪⎨
⎪⎩

−1 − x, −1 ≤ x < 0
1 − x, 0 < x ≤ 1
0, else

(12)

since other functions with a jump discontinuity at zero can be written in
terms of f plus a function which is continuous at the origin.
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3.1 A general formula for dyadic sums

We first restrict attention to the study of dyadic sum wavelet expansions of
f(x).

Πm : Lp(R) −→ Vm

Πmf(x) =
∫
R
f(y)Km(x, y) dy (13)

where Km(x, y) =
∑

n∈Z φm,n(x)φm,n(y), and φ is the scaling function. Now,

Πmf(x) =
∫ 0

−1
(−1 − y)Km(x, y) dy +

∫ 1

0
(1 − y)Km(x, y) dy

=
∫ ∞

0
χ[0,2m](u)(1 − 2−mu){K0(2

mx, u) −K0(2
mx,−u)} du .

Since what is of interest is the region about the origin as m tends to
infinity, x will be set to 2−ma, where a is a fixed real number (see remark
below). The above expression then becomes

Πmf(2−ma) =
∫ ∞

0
χ[0,2m](u)(1 − 2−mu){K0(a, u) −K0(a,−u)} du. (14)

The absolute value of the argument of the integral is bounded by |K0(a, u)|+
|K0(a,−u)|, which is an integrable function because of the rate of decay
of wavelets. Also, the limit of this argument as m tends to infinity is
χ[0,∞)(u){K0(a, u) − K0(a,−u)}. Thus, applying the Dominated Conver-
gence Theorem to (14), one has

lim
m→∞Πmf(2−ma) =

∫ ∞

0
{K0(a, u) −K0(a,−u)} du

= 2
∫ ∞

0
K0(a, u) du− 1,

since integrating the kernel over all reals is one.

Remark. If instead of choosing a as a fixed number, we had a sequence
2−mam, there would be two possibilities: If am → 0, then we would end up
with equation (15) with a = 0, and we would have the same expression as if
we had chosen a = 0. If am → ∞, since 2−mam must tend to zero, am must
tend to infinity slower that 2m. Thus, because of the decay conditions of φ,
the expression of equation (14) would tend to zero, and there would be no
overshoot. This explains our choice of x = 2−ma.
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The following theorem has now been obtained.

Theorem 3.1 For f defined in (12), a ∈ R and using the notation of (13)

lim
m→∞Πmf(2−ma) = 2

∫ ∞

0
K0(a, u) du− 1. (15)

Thus, studying a Gibbs phenomenon reduces to looking at the above integral
of the wavelet kernel. Specifically, a Gibbs effect occurs near the origin if and
only if ∫ ∞

0
K0(a, u) du > 1, for some a > 0

and (or) ∫ ∞

0
K0(a, u) du < 0, for some a < 0.

A similar result was proved independently by S.M. Gomes and E. Cortina
[GoCo] for a more general class of expansions.

So far, results pertain to all wavelets. We will now look at wavelets which
have compact support. It is easy to see from Theorem (3.1) that for the Haar
system, where φ(x) = χ[0,1)(x), there is no Gibbs effect at the origin.

The existence of a Gibbs effect near the origin for wavelet expansions of f
can be proved for certain compactly supported wavelets using the following
result.

Theorem 3.2 A Gibbs phenomenon for a dyadic wavelet expansion of f(x)
generated by the function Nφ, defined in Definition (2.2), occurs at the right
hand side of f(x) if and only if there exists an a > 0 such that

Nφ(a+ 1)
∫ 1

0
Nφ(t) dt + Nφ(a+ 2)

∫ 2

0
Nφ(t) dt+ ...

+ Nφ(a+ (2N − 2))
∫ 2N−2

0
Nφ(t) dt < 0. (16)

Proof. From Theorem (3.1), there exists a Gibbs effect at the right hand
side of the origin if and only if there exists an a > 0 such that

∫ ∞

0
K0(a, u) du > 1

(
=
∫
R
K0(a, u) du

)
. (17)
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Since the support of Nφ is contained in [0, 2N − 1] and the integral of Nφ
over the reals is one, (17) reduces to finding an a > 0 such that

2N−2∑
n=−∞

Nφ(a+ n)
∫ 2N−1

n
Nφ(t) dt >

2N−2∑
n=−∞

Nφ(a+ n)
∫ 2N−1

0
Nφ(t) dt. (18)

Subtracting the appropriate terms of (18) yields (16). Thus, the theorem is
proved. �

To prove the existence of a Gibbs effect for some compactly supported
wavelets, the following technical lemmas will be needed.

Lemma 3.3 For Nφ, N > 2, h(2N − 2) + h(2N − 1) �= √
2.

Proof. Assume the Lemma is false and h(2N −2)+h(2N−1) =
√

2. That
would imply that h2(2N − 2) + 2h(2N − 2)h(2N − 1) + h2(2N − 1) = 2.
Equation (5) implies that the sum of the first and last term is less than or
equal to 1. Thus,

h(2N − 2)h(2N − 1) ≥ 1

2
,

which by the assumption of the proof can be rewritten as

[
h(2N − 1) − 1√

2

]2

≤ 0.

This statement is only true if h(2N − 1) = 1/
√

2. By the assumption, this
implies that h(2N − 2) = 1/

√
2 and then by equation (5), h(n) would have

to be zero for N ≤ 2N − 3. This last statement is false since h(0) �= 0, from
the construction requirements for these wavelets. Hence, the assumption in
the proof is false and the Lemma is proved. �

Lemma 3.4 For Nφ, N > 2, there exists a positive integer n < 2N −1 such
that

∫ n
0 Nφ(t) dt �= 0.

Proof. Assume that the lemma is false; that is, assume that
∫ n
0 Nφ(t) dt = 0

for all integers n < 2N − 1. Then, since
∫ 2N−1
0 Nφ(t) dt = 1,

∫ 2N−1

2N−2
Nφ(t) dt = 1 (19)
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and ∫ k

k−1
Nφ(t) dt = 0 for k = 0, ..., 2N − 2. (20)

Using equations (19) and (20), and integrating equation (10) over
[2N − 2, 2N − 1], one obtains

1 =
∫ 2N−1

2N−2
Nφ(t) dt

=
√

2{h(2N − 2)
∫ 2N−1

2N−2
Nφ(2t− (2N − 2)) dt

+h(2N − 1)
∫ 2N−1

2N−2
Nφ(2t− (2N − 1)) dt}

=

√
2

2
{h(2N − 2)

∫ 2N−1

2N−2
Nφ(t) dt

+h(2N − 1)
∫ 2N−1

2N−3
Nφ(t) dt}

=

√
2

2
{h(2N − 2) + h(2N − 1)}.

Thus, h(2N − 2) + h(2N − 1) =
√

2, which is false by Lemma (3.3). The
assumption made in the proof is incorrect, and the lemma is true. �

The following result can now be proved.

Theorem 3.5 If h(2N − 1) < 0, then there exists a Gibbs phenomenon on
the right hand side of the origin for the dyadic sum wavelet expansion of f(x)
generated by Nφ.

Proof. Letting n be the smallest integer to satisfy Lemma (3.4), equation
(16) reduces to looking for an a > 0 such that

Nφ(a+ n)
∫ n

0
Nφ(t) dt+ Nφ(a+ (n + 1))

∫ n+1

0
Nφ(t) dt+ ...+

Nφ(a+ (2N − 2))
∫ 2N−2

0
Nφ(t) dt < 0. (21)

To simplify the above expression, a can be chosen such that 2N−2 ≤ a+n <
2N − 1. Then, equation (21) reduces to

Nφ(a+ n)
∫ n

0
Nφ(t) dt < 0. (22)
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By the assumption on n,
∫ n
0 Nφ(t) dt �= 0, and (22) can be verified if two

numbers x1, x2 ∈ [2N−2, 2N−1] can be found such that Nφ(x1) and Nφ(x2)
have opposite signs.

Choose x1 ≥ 2N − 1.5 such that Nφ(x1) �= 0. Then,

Nφ(x1) =
√

2h(2N − 1)Nφ(2x1 − (2N − 1)).

Since h(2N − 1) < 0, letting x2 = 2x1 − (2N − 1), the needed numbers x1

and x2 have been found. The theorem is now proved. �

The question now is for what values ofN is h(2N−1) negative? To answer
this question, we need to look at I. Daubechies construction of her compactly
supported wavelets, [Da]. In Section 4C of this paper, I. Daubechies defines
a specific family of compactly supported wavelets. The coefficients, h(n) of

Nφ satisfy the following condition

[1/2(1 + eiξ)]N
N−1∑
n=0

q(n)einξ = 2−1/2
2N−1∑
n=0

h(n)einξ, (23)

where

∣∣∣∣∣
N−1∑
n=0

q(n)einξ

∣∣∣∣∣
2

=
N−1∑
n=0

(
N − 1 + n

n

)[
1

2
− 1

4
(eiξ + e−iξ)

]n
. (24)

See [Da] for details.
In Equation (24), the highest exponential term on the left hand side is

q(N −1)q(0)ei(N−1)ξ, and on the right hand side, the coefficient on ei(N−1)ξ is
negative when N is even. Thus, for N even, q(0) and q(N −1) have opposite
signs.

In looking at the lowest and highest exponential terms in (23), we see that
h(0) and h(2N − 1) have the same signs as q(0) and q(N − 1) respectively.
Thus, when N is even, h(0) and h(2N − 1) have opposite signs. Since the
coefficients can be reversed without effecting the wavelet properties, we can
choose h(0) to be positive, as done in [Da]. Thus, h(2N −1) is negative, and
we can use Theorem (3.5) to get the following result.

Corollary 3.6 If N is even, then there exists a Gibbs phenomenon on the
right hand side of the origin for the dyadic sum wavelet expansion of f(x)
generated by Nφ.
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Remark. In [Da], the coefficients h(n) were listed for the compactly sup-
ported wavelets N = 2, 3, ..., 10 and it can be seen that h(0) and h(2N − 1)
do not have opposite signs for the odd N wavelets listed.

Remark. The proofs for these arguments have only worked for Gibbs effects
on the right hand side of the discontinuity. To illustrate why this argument
does not work for the left hand side, we can examine the wavelets generated
by 2φ and we would need to show that

∫∞
0 K0(a, u) du < 0 , where K0(a, u) =∑

k∈Z 2φ(a+k)2φ(u+k). Since the support of 2φ is in [0, 3], our work simplifies
to showing that 2φ(a + 1)

∫ 3
1 2φ(t) dt + 2φ(a + 2)

∫ 3
2 2φ(t) dt < 0. Using the

argument of the above proof, we would restrict a between -2 and -1 and wish
to show 2φ(a+ 2)

∫ 3
2 2φ(t) dt < 0 by showing that the integral is nonzero and

that 2φ(a1 + 2) and 2φ(a2 + 2) have opposite signs for some a1 and a2 in
(−2,−1). This can not be done with arguments used above. In fact, on the
interval (0, 1), 2φ does not change sign; this can be seen in Daubechie’s paper
[Da] . In the numerical estimates of Gibbs effects which follow, Gibbs effects
were observed on the left hand side, but the author has been unable to prove
the existence.

Theorem (3.1) has been used to prove the existence of a Gibbs phe-
nomenon. Now, sizes of Gibbs effects for some of I. Daubechies compactly
supported wavelets will be approximated by values obtained in FORTRAN
programs based on Theorem (3.1).

It is first necessary to determine where a possible Gibbs phenomenon
could occur. To do this, Theorem (3.1) will be used to determine where a
Gibbs effect could not occur for compactly supported wavelets.

Let
K0(a, u) =

∑
n∈Z

Nφ(a+ n)Nφ(u+ n).

For a > 0, when is

∫ ∞

0
K0(a, u) du = 1

(
=
∫
R
K0(a, u) du

)
(25)

true? Since the support of Nφ is contained in [0, 2N − 1],

∫ ∞

0
K0(a, u) du =

2N−2∑
n=−∞

Nφ(a+ n)
∫ 2N−1

n
Nφ(t) dt. (26)
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Also, ∫
R
K0(a, u) du =

2N−2∑
n=−∞

Nφ(a + n)
∫ 2N−1

0
Nφ(t) dt.

The two above sums are equal if Nφ(a+ n) = 0 for n ≥ 1. This will at least
be true if a+n ≥ 2N −1, and thus, (25) is satisfied when a ≥ 2N −2. Thus,
there is no Gibbs effect, as defined in Theorem (3.1), for a ≥ 2N − 2 for the
wavelet expansion generated by Nφ.

Similarly, for a < 0, a Gibbs effect will not occur if∫ ∞

0
K0(a, u) du = 0. (27)

As seen from the sum of this integral, equation (26), equation (27) is true if

Nφ(a + n) = 0 for 1 ≤ n ≤ 2N − 2. This is true if a + n ≤ 0, which implies
that there is no Gibbs effect for a ≤ −(2N − 2).

Thus, in searching for a Gibbs effect of dyadic wavelet expansions of f
generated by Nφ, one only needs to examine the region
{2−ma : a ∈ (−(2N − 2), 2N − 2)} as m tends to infinity.

The next step is to use computer analysis to approximate the value of
the integral

∫∞
0 K0(a, u) du for values of a in [−(2N − 2), 2N − 2]. From (8),

Nφ(x) will be approximated by Nηl(x) =
√

2
∑2N−1

n=0 h(n) Nηl−1(2x − n) for
various values of l, where Nη0(x) = χ[− 1

2
, 1
2
](x). Several values of l were used

until little change was noted in the output and computer time limited going
any further.

Results from this computer analysis are approximate, but they do give a
good idea of the size of the Gibbs effect. For any expansion by compactly
supported wavelets, the Gibbs phenomenon on each side of the origin may
differ because of the lack of symmetry of these wavelets. This is reflected in
the results given in Table (1).

It can also be noted that the net Gibbs effect of both sides of the dis-
continuity seems to be decreasing with higher order wavelets. This agrees
with work on periodic spline approximations done by F.B. Richards [Ri]. He
examined higher order splines in approximating the function

g(x) =

{ −1, −1 ≤ x < 0
1, 0 ≤ x < 1

(28)

in L2[−1, 1]. F.B. Richard numerically calculated the overshoot at g(0+)
for splines of degree one through seven, and found that the overshoot was
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left side of origin right side of origin

Nφ Nφ ≈ Nηl a limm→∞ Πmf(2−ma) a limm→∞ Πmf(2−ma)

2φ 2η11 -1.01 -1.04 .99 1.61

3φ 3η8 -1.0 -1.25 1.0 1.25

4φ 4η7 -0.9 -1.33 1.6 1.12

5φ 5η7 -0.8 -1.20 0.8 1.22

Table 1: Approximate maximum overshoot and undershoot for dyadic sum
wavelet expansions limm→∞ Πmf(2−ma) generated by Nφ

larger than that of the Fourier series. He conjectured that this overshoot
approaches the Fourier overshoot as the order of the splines goes to infinity.
In a later paper with J. Foster [FoRi], this conjecture was proved.

3.2 A general formula for partial sums

For general wavelet expansions, again, f(x) will be defined as in (12), and
S lσ

mf(x) is defined as its general partial sum,

S lσ
m f(x) = Πmf(x) +

∫
R
f(y)Glσ

m(x, y) dy

where

Glσ
m(x, y) =

l∑
k=0

ψm,σ(k)(x)ψm,σ(k)(y). (29)

It follows as in the dyadic sums case that

lim
m→∞S lσ

mf(2−ma) =
{
2
∫ ∞

0
K0(a, u) du− 1

}

+
{∫ ∞

0
Glσ

0 (a, u) du−
∫ ∞

0
Glσ

0 (a,−u) du
}
.

Since
∫
R ψ = 0, the following result is obtained.

Corollary 3.7 For f defined in (12), a ∈ R, and using the notation of (29),

lim
m→∞S lσ

m f(2−ma) = 2
∫ ∞

0
K0(a, u) du− 1 + 2

∫ ∞

0
Glσ

0 (a, u) du

= lim
m→∞Πmf(2−ma) + Glσ(a)
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The term Glσ(a) gives the value of the limit dependent on which additional
terms are added to the dyadic sum. The Glσ(a) term could shift the peak of
the Gibbs effect, and could also change the size of it.

It is easy to see from Corollary (3.7) that there is no Gibbs phenomenon
for partial sum Haar expansions of f .

To examine the addition of more terms for compactly supported wavelets,
lets begin by examining our new term.

Glσ(a) = 2
l∑

k=0

Nψ(a+ σ(k))
∫ ∞

σ(k)
Nψ(t) dt.

Since the support of Nψ is [−N
2
, N ], as shown in ([Da]), and

∫
R Nψ(t) dt = 0,∫∞

σ(k) Nψ(t) dt �= 0 implies that −N
2
< σ(k) < N , and Glσ(a) �= 0 implies

that −N
2
< a + σ(k) < N . Thus, in looking for values of Glσ(a), the only

time that a nonzero value is obtained is when −N − N
2
< a < N + N

2
, and

−N
2
< σ(k) < N .

For the wavelets generated by 2φ, σ(k) = 0 and 1 are the only values
of concern. To illustrate that there is a change in the Gibbs effect, one can
examine the case where σ(k) = 0 is the only term added. In this case, in
looking at the value of Glσ(a) = 22ψ(a)

∫∞
0 2ψ(t) dt, when a = .99, where the

right hand Gibbs effect was observed in the numerical computations above,
it can be seen from values in [Da] that this term is nonzero. Thus, either the
size of the Gibbs effect is changed, or the value a for which the maximum
jump occurs must moved.

To further look at this case, we shall investigate the numerical values
obtained on the computer. From the above work, when σ(k) = 0, the values
of −1 < a < 2 are of interest, and when σ(k) = 1, the interval −2 < a < 1
is what needs to be examined. Thus, the computer programs for this part
will compute values for limm→∞ S lσ

m f(2−ma) over the region −2 < a < 2;
this includes estimating the values for Glσ(a), where σ(k) = 0 or −1 or both.
Results are given in Table (2).

In this case, the data suggests that adding additional terms in the partial
sum has lessened the Gibbs effect, but that the effect appears to occurs in
the same location.
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left side of origin right side of origin
l σ(k) a limm→∞ S lσ

mf(2−ma) a limm→∞ S lσ
mf(2−ma)

0 -1.01 -1.04 0.99 1.61
1 σ(1) = 0 -1.01 -1.04 0.99 1.30
1 σ(1) = −1 -1.01 -1.02 0.99 1.61
2 σ(1) = 0

σ(2) = −1 -1.01 -1.02 0.99 1.30

Table 2: Approximate maximum overshoot and undershoot for the general
partial wavelet sums limm→∞ S lσ

mf(2−ma) generated by 2φ for various values
of l and σ(k) in Glσ(a) (2φ is approximated by 2η11.)

4 Gibbs phenomenon at a general point

Because of the translation and dilation procedure used to generate wavelets,
wavelets are not translation invariant. With this fact, it is important to
study Gibbs effects for wavelet expansions of functions with a discontinuity
at a general point. We will work with the function

g(x) = f(x− b) =

⎧⎪⎨
⎪⎩

(b+ 1) − x, b < x ≤ (1 + b)
(b− 1) − x, b− 1 ≤ x < b
0, else

(30)

which has a discontinuity at the point b.

4.1 A general formula for dyadic sums

A dyadic sum expansion for the function g, defined in (30) will now be found.

Πm : Lp(R) → Vm (31)

Πmg(x) =
∫
R
g(y)Km(x, y) dy

=
∫ b

b−1
[(b− 1) − y]Km(x, y) dy +

∫ b+1

b
[(b+ 1) − y]Km(x, y) dy

=
∫ 2mb

2m(b−1)
[(b− 1) − 2−mt]K0(2

mx, t) dt

+
∫ 2m(b+1)

2mb
[(b+ 1) − 2−mt]K0(2

mx, t) dt .

15



As m tends to infinity, points close to b are of interest, so we will let x =
2−ma + b, where a is a fixed real number. With some changes of variables
and combining, one gets

Πmg (2−ma+ b) (32)

=
∫ 2m

0
(1 − 2−mu){K0(a+ 2mb, u+ 2mb) −K0(a+ 2mb,−u+ 2mb)} du.

As m approaches infinity, the 2mb term in the argument of the kernels causes
some difficulty. We want to remove the m dependence in the kernels. Note
that

K0(x, y) =
∑
n∈Z

φ(x+ n)φ(y + n) =
∑
n∈Z

φ(x+ n′ + n)φ(y + n′ + n),

where n′ is any integer. Thus,

K0(a + 2mb, u+ 2mb) = K0(a + 2mb− [[2mb]], u+ 2mb− [[2mb]]) .

where [[x]] is the greatest integer less that or equal to x. Since, as m varies,
the value of 2mb− [[2mb]] may vary, we will restrict m values to a set J such
that this expression will be fixed for all m in J . If b is a rational number,
there will be a finite number of such sets of m values, if b is irrational, there
will be an infinite number of such sets and each will contain one value of m.
The notation used is the following:

bJ = 2mb− [[2mb]], for m ∈ J. (33)

Using the convention of (33), (32) becomes

Πmg(2
−ma+ b)=

∫ 2m

0
(1− 2−mu){K0(a+ bJ , u+ bJ) −K0(a+ bJ ,−u+ bJ)} du

for m ∈ J . Since the m dependence has been taken out of the above kernel’s
argument, the limit as m tends to infinity can now be taken, as was done in
Section 3.1.

lim
m∈J

m→∞
Πmg(2

−ma + b) =
∫ ∞

0
{K0(a+ bJ , u+ bJ ) −K0(a+ bJ ,−u+ bJ )} du

=
∫ ∞

bJ

K0(a+ bJ , u) du−
∫ bJ

−∞
K0(a+ bJ , u) du

This yields a statement more general than that of Theorem (3.1).
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left side of origin right side of the origin
J a limm→∞ Πmg(2

−ma+ b) a limm→∞ Πmg(2
−ma+ b)

even -0.34 -1.15 0.66 1.34
odd -1.67 -1.002 * 1.33 1.33

* Computer calculated number smaller, but digits insignificant

Table 3: Approximate maximum overshoot and undershoot for dyadic sum
wavelet expansions limm→∞ Πmg(2

−ma+ b) generated by 2φ, where b = 1
3

(2φ
is approximated by 2η11).

Theorem 4.1 If g is defined as in (30), a ∈ R, and using the notation of
(31),

lim
m∈J

m→∞
Πmg(2

−ma + b) = 2
∫ ∞

bJ

K0(a + bJ , u) du− 1 ,

where 2mb− [[2mb]] = bJ for m ∈ J .

Remark. If b = 2k for some integer k, then Theorem (4.1) simplifies to the
case b = 0, which is Theorem (3.1).

Again, using Theorem (4.1) it is easy to show that there is no Gibbs
phenomenon in this case.

The next examples we look at are the compactly supported wavelets.
Again, as done previously, it can be shown that in looking for a Gibbs phe-
nomenon, the region that needs to be checked is −(2N − 1) < a < 2N − 1,
where a is the number from Theorem (4.1).

Computer computations were done for the wavelet expansions of g gener-
ated by 2φ, where the point of discontinuity is b = 1/3. In this case, bJ = 1/3
when J = {m : m is even}, and bJ = 2/3 when J = {m : m is odd }.
The function 2φ was approximated by 2η11, and the Gibbs phenomenon was
checked for −3 < a < 3. Result are given in Table (3)

4.2 A general formula for partial sums

The last type of expansion that will be looked at is general partial sums of a
function with a jump discontinuity at any point. This can be done by looking
at partial sum of g. We will write,

S lσ
m g(x) = Πmg(x) +

∫
R
g(y)Glσ

m(x, y) dy, (34)
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where

Glσ
m(x, y) =

l∑
k=0

ψm,σ(k)(x)ψm,σ(k)(y).

Similar to the work done for Πmg(2
ma+b), and using the notation of equation

(33),

lim
m∈J

m→∞

∫
R
g(y)Glσ

m(2−ma+ b, y) dy

=
∫ ∞

bJ

Glσ
0 (a+ bJ , u) du−

∫ bJ

−∞
Glσ

0 (a+ bJ , u) du

= 2
∫ ∞

bJ

Glσ
0 (a+ bJ , u) du.

This gives us the following corollary.

Corollary 4.2 For g defined in (30), a, b ∈ R, and using the notation of
equation (34),

lim
m∈J

m→∞
S lσ

m g(2
−ma+ b) = lim

m∈J
m→∞

Πmg(2
−ma+ b) + Gl,σ

J,b(a),

where
Gl,σ

J,b(a) ≡ 2
∫ ∞

bJ

Glσ
0 (a+ bJ , u) du.

Again it can be verified that there is no Gibbs effect for the general
partial Haar sum expansion of a function with a jump discontinuity at any
point. This shows that in all cases concerning the Haar system, no Gibbs
phenomenon occurs.

For the specific case of 2φ, nonzero Gl,σ
J,b(a) terms may occur for values

of σ(k) equal to −1, 0 and 1 and −3 < a < 3. This area for a is the same
area that was checked for a Gibbs phenomenon in the dyadic sum case. The
computer program for this part estimated the Gl,σ

J,b(a) term for −3 < a < 3,
l = 0, 1, 2 or 3, σ(n) taking any one of the values −1, 0, and 1, and J being
the set of odd or even values of m. As with the dyadic case, b will be chosen
to be 1/3. The results of the computer estimates are given in Tables (4) and
(5).

This data seems to suggest that the size and the location of the maximum
overshoot and undershoot may vary with the addition of extra terms in a
general partial sum.
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J l σ(n) a limS lσ
m g* a limS lσ

m g*

even 0 -0.34 -1.15 0.66 1.34
even 1 σ(1) = −1 -0.34 -1.15 0.66 1.32
even 1 σ(1) = 0 -0.34 -1.15 0.66 1.34
even 1 σ(1) = 1 -0.34 -1.19 0.66 1.34
even 2 σ(1) = −1

σ(2) = 0 -0.34 -1.15 0.66 1.33
even 2 σ(1) = −1

σ(2) = 1 -0.34 -1.19 0.66 1.32
even 2 σ(1) = 0

σ(2) = 1 -0.34 -1.18 0.66 1.34
even 3 σ(1) = −1

σ(2) = 0
σ(3) = 1 -0.34 -1.18 0.66 1.33
* stands for lim m∈J

m→∞
S lσ

mg(2
−ma+ b)

Table 4: Approximate maximum overshoot and undershoot for general par-
tial wavelet sums lim m∈J

m→∞
S lσ

mg(2
−ma + b) generated by 2φ, where J =

{m : m even } and b = 1
3
. (2φ is approximated by 2η11).
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J l σ(n) a limS lσ
mg* a limS lσ

mg*

odd 0 -1.67 -1.002** 1.33 1.33
odd 1 σ(1) = −1 -1.67 -1.002** 1.33 1.16
odd 1 σ(1) = 0 -1.67 -1.002** 1.33 1.33
odd 1 σ(1) = 1 -1.17 -1.004** 1.33 1.33
odd 2 σ(1) = −1

σ(2) = 0 -1.67 -1.002** 1.30 1.16
odd 2 σ(1) = −1

σ(2) = 1 -1.17 -1.004** 1.33 1.16
odd 2 σ(1) = 0

σ(2) = 1 -1.67 -1.001** 1.33 1.33
odd 3 σ(1) = −1

σ(2) = 0
σ(3) = 1 -1.67 -1.001** 1.33 1.16
* stands for lim m∈J

m→∞
S lσ

mg(2
−ma+ b)

** last digits may be insignificant.

Table 5: Approximate maximum overshoot and undershoot for general par-
tial wavelet sums lim m∈J

m→∞
S lσ

mg(2
−ma + b) generated by 2φ, where J =

{m : m odd } and b = 1
3
. (2φ is approximated by 2η11).
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In Section 3.2, the addition of extra terms to the dyadic sum seemed to
reduce the Gibbs effect. The results in this section seem to show that the
addition of terms can also increase the Gibbs phenomenon. Another point
of interest occurs when J = {m : m odd }. The value for a for greatest
undershoot appears to change. Both of these points appear to be true, but
further analysis is needed here. The author hopes to get further details on
the behavior of the Gibbs effect with additional terms in future work.

To conclude, this paper has given an if and only if condition for a Gibbs
phenomenon for wavelets The existence of Gibbs effects has been demon-
strated for some compactly supported wavelets, and size estimates for Gibbs
effects for some compactly supported wavelets were found.

Acknowledgments: The author wishes to thank Dr. Richard Rochberg
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