## REPRESENTATION OF GENERALISED CREATION AND ANNIHILATION OPERATORS IN FOCK SPACE

## BY JERZY B. STOCHEL

## Dedicated to the memory of Professor Włodzimierz Mlak

1. Introduction. In [2] Bargmann defines a Hilbert space  $B_n$  of all complex holomorphic functions on  $\mathbb{C}^n$ , square integrable with respect to the Gaussian measure. Similarly in [3] he defines a Hilbert space  $B_{\infty}$  of all complex holomorphic functions on  $l^2$  such that its basis is an amalgamation of basis of  $B_n$  over all integers  $n \geq 1$ . One would like to have an appropriate Gauss measure  $\mu$  on  $l^2$  such, that the space  $B_{\infty}$  can be regarded as a space of all complex holomorphic functions on  $l^2$  and square integrable with respect to this measure. But such measure doesn't exist ([25]).

The Bargmann spaces  $B_n$  and Toeplitz operators on these spaces appeared to be very useful to describing certain physical observables [2, 4, 5, 18; and also 15, 16, 19]. The Bargmann space  $B_{\infty}$  was suggested by Bargmann [3] in 1961 as a convenient functional model to realize ideas of Fock [10], Dirac [9], Friedrichs [11], Cook [7] and Segal I.E. [22; see also 23, 24].

In [3; pages 202–203] Bargmann defined the generalised creation and annihilation operators in direction  $a \in l^2$  and pointed out that these operators are the same as those introduced by Friedrichs [11; pages 38–41]. The detailed account Bargmann intended to publish later. Because it has not happened and because of importance of the above outlined Bargmann model, we present here a complate proof of this theorem (Section 4).

In Section 3 unitary isomorphisms between  $\operatorname{Exp} H$  and  $B_{\infty}$  is completely described.

Section 2 is devoted to describing the Bargmann spaces  $B_n$ ,  $B_{\infty}$  and generalised creation and annihilation operators.

2. The Bargmann space of infinite order. In this section we recall Bargmann's definition of the Hilbert space  $B_{\infty}$  and some properties of this space which are useful in the sequel.

We denote by  $\tau$  the set of all sequences of nonnegative integers with finite number of nonzero entries. In the sequel the set  $\mathbf{Z}_{+}^{n}$  (resp.  $\mathbf{C}^{n}$ ) will be interpreted as a subset of the set  $\tau$  (resp.  $l^{2}$ ). Throughout this paper we shall use the following notation:

$$||z||^2 := \sum_{i=1}^{\infty} |z_i|^2, \ z^{\alpha} = z_1^{\alpha_1} \cdot \ldots \cdot z_n^{\alpha_n}, \ \alpha! = \alpha_1! \cdot \ldots \cdot \alpha_n!,$$

$$\alpha + \beta := (\alpha_1 + \beta_1, \dots, \alpha_n + \beta_n, \dots), \ |\alpha| = \sum_{i=1}^{\infty} \alpha_i, \ e_{\alpha}(z) = \frac{z^{\alpha}}{\sqrt{\alpha!}},$$

for 
$$z := (z_1, ..., z_n, z_{n+1}, ...) \in l^2$$
 and  $\alpha := (\alpha_1, ..., \alpha_n, 0, ...) \in \tau$ .

We now recall Bargmann's definition of the Hilbert space  $B_{\infty}$  ([3; p. 200]), called the Bargmann's space of an infinite order. Denote by  $l^2(\tau)$  the set of all square-summable sequences indexed by the set  $\tau$ . For any sequence  $(f) := (f_{\alpha})_{\alpha \in \tau} \in l^2(\tau)$  we define the function  $f: l^2 \to \mathbb{C}$  as follows:

(2.1) 
$$f(z) := \sum_{\alpha \in \tau} f_{\alpha} e_{\alpha}(z), \ z \in l^2$$

Then f is well defined ([26; pages. 1013-1014]). Let  $B_{\infty} := \{f : (f) \in l^2(\tau)\}$ . Then the function  $l^2(\tau) \ni (f) \to f \in B_{\infty}$  is a linear bijection ([26; p. 1014]). Let now  $\langle f, g \rangle := \langle (f), (g) \rangle_{l^2(\tau)}$ . Then the map  $l^2(\tau) \ni (f) \to f \in B_{\infty}$  is an isometric and in consequence  $(B_{\infty}, \langle \cdot, \cdot \rangle)$  is a Hilbert space. The set  $\{e_{\alpha} : \alpha \in \tau\}$  is an orthonormal basis of  $B_{\infty}$  ([26; p. 1014]). All functions from  $B_{\infty}$  are entire as functions from  $l^2$  into C ([14; chap. 3, sec. 3], [2; p. 1018], see also for definition [6], [8]).  $B_{\infty}$  is a Hilbert space with reproducing kernel ([1; pages 342-346], [26; p. 1014])

(2.2) 
$$K(w, z) := \exp \langle w, z \rangle \text{ for } w, z \in l^2$$

and the reproducing formula is fulfilled:

$$(2.3) f(z) = \langle f, K(\cdot, z) \rangle, f \in B_{\infty}.$$

The following property is very important for  $B_{\infty}$ :

(2.4) 
$$\begin{cases} \text{If } f \in B_{\infty} \text{ then } f(z) = \sum_{\alpha \in \tau} f_{\alpha} e_{\alpha}(z), \ z \in l^{2}. \\ \text{Conversely if } f(z) = \sum_{\alpha \in \tau} f_{\alpha} e_{\alpha}(z), \ z \in l^{2} \text{ and } \sum_{\alpha \in \tau} |f_{\alpha}|^{2} < \infty, \\ \text{then } f \in B_{\infty} \ ([2; \text{ p. } 1018]). \end{cases}$$

Note that:

a) there are entire functions on  $l^2$  such that  $f \notin B_{\infty}$ , e.g.

$$f(z) := \sum_{j=0}^{\infty} (j!)^{\frac{-1}{4}} (z_j)^j.$$

b) in general the product  $f \cdot g$  of two functions  $f, g \in B_{\infty}$  need not to be in  $B_{\infty}$  e.g. the function

$$f(z) = \sum_{m \in N} \sum_{n_1, \dots, n_m \in N} \left[ m \cdot 2^{\frac{m}{2}} \cdot (n_1 + 1) \cdot \dots \cdot (n_m + 1) \right]^{-1} \cdot e_{(0, \dots, 0, n_1, \dots, n_m, 0, 0, \dots)}$$

is in  $f \in B_{\infty}$  and  $f^2 \notin B_{\infty}$ .

c) in general, the inequality  $||f \cdot g|| \le ||f|| \cdot ||g||$  in  $B_{\infty}$  is not true e.g. if  $f(z) := z^{\alpha}$  and  $g(z) = z^{\beta}$  with  $\alpha = (2, 1, 0, 0, ...)$  and  $\beta = (1, 2, 0, 0, ...)$ , then  $||f|| = ||g|| = \sqrt{2}$  and  $||f \cdot g|| = 3 > ||f|| \cdot ||g|| = 2$ . For others properties of the Hilbert space  $B_{\infty}$  we refer to [25], [26], [27].

Finally we recall definitions and fundamental properties of generalised creation and annihilation operators ([26; pages 1021-1022]). We define generalised creation and annihilation operators in  $B_{\infty}$  in direction  $a \in l^2$  as follows:

(2.5) 
$$D(A_a^+) := \{ f \in B_i nfty : \langle \cdot, a \rangle f(\cdot) \in B_{\infty} \}$$

$$(2.6) D(A_a^-) := \{ f \in B_\infty : (z \to \frac{d}{d\lambda} f(z + \lambda a)|_{\lambda=0}) \in B_\infty \}$$

$$(2.7) (A_a^+ f)z := \langle z, a \rangle f(z), \ f \in D(A_a^+), \ z \in l^2$$

(2.8) 
$$(A_a^- f)z := \frac{d}{d\lambda} f(z + \lambda a)|_{\lambda = 0}, \ f \in D(A_a^-), \ z \in l^2.$$

We can also describe domains of the creation and the annihilation operators:

(2.9) 
$$f \in D(A_a^+)$$
 if and only if  $\sum_{\beta \in \tau} |\sum_{i \in \mathbb{N}} f_{\beta - \delta_i} \overline{a}_i \sqrt{\beta_i}|^2 < \infty$ 

where  $\delta_i = (0, \dots, 0, 1, 0, 0, \dots) \in \tau$  (1 is on "i"- position) and  $f_{\beta - \delta_i} := 0$  if  $\beta_i = 0$ .

If 
$$f \in D(A_a^+)$$
, then  $A_a^+ f = \sum_{\beta \in \tau} (\sum_{i \in \mathbb{N}} f_{\beta - \delta_i} \overline{a}_i \sqrt{\beta_i}) e_{\beta}$ .

$$(2.10) f \in D(A_a^-) if and only if \sum_{\beta \in \tau} |\sum_{i \in \mathbf{N}} f_{\beta + \delta_i} a_i \sqrt{\beta_i + 1}|^2 < \infty.$$

If 
$$f \in D(A_a^-)$$
, then  $A_a^- f = \sum_{\beta \in \tau} (\sum_{i \in \mathbb{N}} f_{\beta + \delta_i} a_i \sqrt{\beta_i + 1}) e_{\beta}$ .

In addition we have:

$$(2.11) K(\cdot, w) \in D(A_a^+) \cap D(A_a^-)$$

(2.12) 
$$A_a^- K(\cdot, w) = \langle a, w \rangle K(\cdot, w) \text{ for } w \in l^2.$$

For others properties of generalised creation and annihilation operators we refer the readers to [26].

3. Fock representation of  $B_{\infty}$ . In this section we describe unitary isomorphism between Bargmann space  $B_{\infty}$  and an exponential Hilbert space.

First we recall some definitions [12]. Let H be a separable Hilbert space with basis  $\{b_i\}_{i\in\mathbb{N}}$ . Let  $H^{\otimes^n}$  (resp.  $f^{\otimes^n}$ ) be the tensor product of n-copies of H (resp.  $f\in H$ ) and let  $u_{\delta}$  be a unique unitary operator such that

$$u_{\delta} := H^{\otimes^n} \ni f_1 \otimes \ldots \otimes f_n \to f_{\delta(1)} \otimes \ldots \otimes f_{\delta(n)} \in H^{\otimes^n}.$$

where  $\delta$  is a permutation of n-variables. Let  $Q_q$  stand for the Hilbert subspace of  $B_{\infty}$  spanned by the vectors  $\{e_{\alpha} : \alpha \in \tau \text{ and } |\alpha| = q\}$ , where  $q \in \mathbf{Z}_{+}$ . We know that  $B_{\infty} = \bigoplus_{q \in \mathbf{Z}_{+}} Q_q$  ([26; p. 1015]).

Let  $H^{\otimes^o} := \mathbf{C}$  and let  $P_n := \frac{1}{n!} \sum_{\delta} u_{\delta} \colon H^{\otimes^n} \to H^{\odot^n}$  be the orthogonal projection (the summation is over all *n*-permutations). We define

 $\operatorname{Exp} H := \bigoplus_{n=0}^{\infty} H^{\odot^n}$ , where  $H^{\odot^n} := P_n(H^{\otimes^n})$ , and  $\operatorname{Exp} f := \sum_{n=0}^{\infty} \frac{f^{\otimes^n}}{\sqrt{n!}}$  for each  $f \in H$ . Then  $< \operatorname{Exp} f, \operatorname{Exp} g > = \exp < f, g >$ , the set  $\{\operatorname{Exp} f : f \in H\}$  is linearly dense in  $\operatorname{Exp} H$  and the set

$$\left\{ \left( \frac{n!}{G!} \right)^{\frac{1}{2}} P_n(b_{\gamma_1} \otimes \ldots \otimes b_{\gamma_n}) : \gamma_1 \leq \ldots \leq \gamma_n \right\} \\
= \left\{ \left( \frac{n!}{\alpha!} \right)^{\frac{1}{2}} P_n(b_{\beta_1}^{\otimes^{\alpha_1}} \otimes \ldots \otimes b_{\beta_s}^{\otimes^{\alpha_s}}) : s \in \{1, \ldots, n\}, \alpha, \beta \in \mathbf{N}^s, \\
|\alpha| = n \text{ and } \beta_1 < \ldots < \beta_s \right\}$$

is an orthonormal basis of the Hilbert space  $H^{\odot^n}$ , where  $G = G(\gamma) \in \tau$  and

$$G_k := \operatorname{card}\{s \in \{1, \dots, n\} : \gamma_s = k\}$$

(the map  $\{\gamma \in \mathbf{N}^n : \gamma_1 \leq \ldots \leq \gamma_n\} \ni \gamma \to G(\gamma) \in \tau$  is an injection). It is clear that |G| = n.

Now we define a unitary isomorphism between  $B_{\infty}$  and Exp H.

Let  $J_q\left(\left(\frac{q!}{G!}\right)^{\frac{1}{2}}P_q(b_{\gamma_1}\otimes\ldots\otimes b_{\gamma_q})\right):=e_G$  for all  $q\in N$ . Since  $J_q$  transforms the orthonormal basis of  $H^{\odot^q}$  to the orthonormal basis of  $Q_q$ , it can be extend to the unitary isomorphism between  $H^{\odot^q}$  and  $Q_q$ . Let  $J_o:=\operatorname{Id}_{\mathbf{C}}$ . Then  $J:=\bigoplus_{q\in\mathbf{Z}_+}J_q$  is a unitary isomorphism from  $\operatorname{Exp} H$  into  $B_\infty=\bigotimes_{q\in\mathbf{Z}_+}Q_q$ .

Let in the sequel  $\{\delta_i\}$  denote the canonical orthonormal basis of  $l^2$  and let the function u stands for antylinear, isometric isomorphism from H onto  $l^2$  such that  $U(\alpha b_i) = \overline{\alpha} \delta_i$  for all  $\alpha \in \mathbb{C}$ , and  $i \geq 1$ . We now show that the isomorphism J can be describe as follows:

Proposition 1.

(3.1) 
$$J(\operatorname{Exp} f) = K(\cdot, Uf),$$

$$(3.2) (J\Phi)z = <\Phi, \operatorname{Exp}(U^{-1}z)>_{\operatorname{Exp}H} = \sum_{n=0}^{\infty} \frac{1}{\sqrt{n!}} <\Phi_n, (U^{-1}z)^{\otimes^n}>_{H^{\otimes^n}}$$

for each  $\Phi \in \text{Exp } H$ , where  $\Phi = \bigoplus_{n=0}^{\infty} \Phi_n$ ,  $\Phi_n \in H^{\odot^n}$ ,  $z \in l^2$ .

PROOF. Since  $\langle K(\cdot, Uf), K(\cdot, Ug) \rangle = \langle \operatorname{Exp} f, \operatorname{Exp} g \rangle_{\operatorname{Exp} H}$  and the set  $\{\operatorname{Exp} f : f \in H\}$  is linearly dense in  $\operatorname{Exp} H$ , then there exists a unique isomorphism F from  $B_{\infty}$  to  $\operatorname{Exp} H$  such that  $F(\operatorname{Exp} f) = K(\cdot, Uf)$ . More precise we can write:

$$F(\text{Exp } f)z = K(z, Uf) = \exp(\langle z, Uf \rangle_{l^2}) = \exp(\langle f, U^{-1}z \rangle_H)$$
  
=  $\langle \text{Exp } f, \text{Exp}(U^{-1}z) \rangle_{\text{Exp } H}$ .

But the functions  $F(\cdot)z$  and  $\langle \cdot, \operatorname{Exp} U^{-1}z \rangle$  are linear and continuous, and the set  $\{\operatorname{Exp} f: f \in H\}$  is lenearly dense in  $\operatorname{Exp} H$ . So the isomorphism F obtain the following from:

$$F(\Phi)z = \langle \Phi, \operatorname{Exp}(U^{-1}z) \rangle_{\operatorname{Exp} H}$$
 for each  $\Phi \in \operatorname{Exp} H$ .

If we now show that F = J, then our proof will be finished. We show this equation on vectors from the basis of  $\operatorname{Exp} H$ :

$$\begin{split} F\Big(\Big(\frac{n!}{G!}\Big)^{\frac{1}{2}}P_n\big(b_{\gamma_1}\otimes.\otimes b_{\gamma_n}\big)\Big)z\\ &=\frac{1}{\sqrt{G!}}< P_n\big(b_{\gamma_1}\otimes.\otimes b_{\gamma_n}\big), (U^{-1}z)^{\otimes^n}>_{H^{\otimes^n}}\\ &=\frac{1}{\sqrt{G!}}< b_{\gamma_1}\otimes...\otimes b_{\gamma_n}, (U^{-1}z)^{\otimes^n}>_{H^{\otimes^n}}\\ &=\frac{1}{\sqrt{G!}}\prod_{i=1}^n < b_{\gamma_i}, U^{-1}z>_{H}=\frac{1}{\sqrt{G!}}\prod_{i=1}^n z_{\gamma_i}=e_G(z). \end{split}$$

Thus F = J. QED.

PROPOSITION 2.

(3.3) 
$$J\Phi = \sum_{\alpha \in \tau} \sqrt{\frac{|\alpha|!}{\alpha!}} < \Phi_{|\alpha|}, b^{\otimes^{\alpha}} > e_{\alpha}$$

for all 
$$\Phi = \bigoplus_{n=0}^{\infty} \Phi_n \in \operatorname{Exp} H$$
, where  $b^{\otimes^{\alpha}} := \bigotimes_{i=1}^{\infty} b_i^{\otimes^{\alpha_i}}$ 

PROOF. It follows from the Proposition 1 that

(3.4) 
$$(J\Phi)z = \sum_{n=0}^{\infty} \frac{1}{\sqrt{n!}} < \Phi_n, (U^{-1}z)^{\otimes^n} >_{H^{\otimes^n}} \text{ for all } z \in l^2.$$

We note that the following analogue of multinomial Newton formula is true

$$(\sum_{i=1}^{\infty} x_i)^{\otimes^n} = \sum_{\substack{\alpha \in \tau \\ |\alpha| = n}} \frac{n!}{\alpha!} P_n(x^{\otimes^{\alpha}}),$$

where  $x = (x_1, \dots, x_m, \dots)$  is a sequence of elements of some Hilbert space such, that the series  $\sum_{i=1}^{\infty} x_i$  is convergent.

The proof of (3.3) follows from linearity, continuity of the tensor product and the projection  $P_n$ , and the following computations. The condition (3.4) implies:

$$(U^{-1}z)^{\otimes^n} = (\sum_{i=1}^{\infty} \overline{z}_i b_i)^{\otimes^n} = \sum_{\substack{\alpha \in \tau \\ |\alpha| = n}} \frac{n!}{\alpha!} \overline{z}^{\alpha} P_n(b^{\otimes^{\alpha}})$$

for all  $z = (z_1, \ldots, z_m, \ldots) \in l^2$ . Hence

$$\langle \Phi_n, (U^{-1}z)^{\otimes^n} \rangle_{H^{\otimes^n}} = \sum_{\substack{\alpha \in \tau \\ |\alpha| = n}} \frac{n!}{\alpha!} z^{\alpha} \langle \Phi_n, P_n(b^{\otimes^{\alpha}}) \rangle_{H^{\otimes^n}}$$

$$= \sum_{\substack{\alpha \in \tau \\ |\alpha| = n}} \frac{n!}{\sqrt{\alpha!}} \langle \Phi_n, P_n(b^{\otimes^{\alpha}}) \rangle e_{\alpha}(z).$$

So by (3.4) we have

$$(J\Phi)z = \sum_{n \in \mathbf{Z}_{+}} \frac{1}{\sqrt{n!}} \sum_{\substack{\alpha \in \tau \\ |\alpha| = n}} \frac{n!}{\sqrt{\alpha!}} < \Phi_{|\alpha|}, b^{\otimes^{\alpha}} > e_{\alpha}(z)$$
$$= \sum_{\alpha \in \tau} \sqrt{\frac{|\alpha|!}{\alpha!}} < \Phi_{n}, b^{\otimes^{\alpha}} > e_{\alpha}(z).$$

According to (2.4), the proof is completed. QED.

4. Representation of generalised creation and annihilation operators in Fock space. In this section we precisely describe a representation of generalised creation and annihilation operators in Fock space  $\operatorname{Exp} H$  with help of the transformation J.

Bargmann in [3; pages 202–203] only stated these in the case  $H = L^2(\mathbf{R}^3)$ . We first describe the above mentioned representation in general framework.

Proposition 3. Let  $a \in l^2$ . Then

(4.1) 
$$J(H^{\odot n}) \subset D(A_a), \quad and \\ J^{-1}A_a^+ J(\Phi_n) = \sqrt{n+1} P_{n+1}(\Phi_n \otimes U^{-1}a)$$

for all  $\Phi \in H^{\odot^n}$ ,  $n \ge 0$ , and

(4.2) 
$$J^{-1}A_a^{-}J(\operatorname{Exp} f) = \langle f, U^{-1}a \rangle_H \operatorname{Exp} f$$

for each  $f \in H$ .

 $<sup>^{-1}</sup>J(\operatorname{Exp} f)=K(\cdot,Uf)\in D(A_a^-).$  See the property (2.11).

PROOF. We first prove the condition (4.1). Let  $\Phi_n \in H^{\odot^n}$ . From the condition (3.2) we obtain:

$$\begin{split} A_a^+ J(\Phi_n) z = & < z, a > < \Phi_n, \operatorname{Exp}(U^{-1}z) >_{\operatorname{Exp}H} \\ = & < U^{-1}a, U^{-1}z >_H \frac{1}{\sqrt{n!}} < \Phi_n, (U^{-1}z)^{\otimes^n} >_{H^{\otimes^n}} \\ = & \frac{1}{\sqrt{n!}} < \Phi_n \otimes U^{-1}a, (U^{-1}z)^{\otimes^{n+1}} >_{H^{\otimes^{n+1}}} \\ = & \frac{1}{\sqrt{(n+1)!}} < \sqrt{n+1}\Phi_n \otimes U^{-1}a, (U^{-1}z)^{\otimes^{n+1}} >_{H^{\otimes^{n+1}}} \\ = & < P_{n+1}(\sqrt{n+1}\Phi_n \otimes U^{-1}a), \operatorname{Exp}(U^{-1}z) >_{\operatorname{Exp}H} \\ = & J(P_{n+1}(\sqrt{n+1}\Phi_n \otimes U^{-1}a))z \quad \text{ for all } a, z \in l^2. \end{split}$$

But 
$$J(P_{n+1}(\sqrt{n+1}\Phi_n \otimes U^{-1}u)) \in B_{\infty}$$
. So  $J(\Phi_n) \in D(A_a^+)$  and 
$$J^{-1}A_a^+J(\Phi_n) = \sqrt{n+1}P_{n+1}(\Phi_n \otimes U^{-1}a).$$

We now show the condition (4.2).

From Proposition 1 and the property (2.12) we obtain:

$$\begin{split} A_a^- J(\text{Exp}\, f) &= A_a^- K(\cdot, Uf) = < a, Uf > K(\cdot, Uf) \\ &= < f, U^{-1}a >_H K(\cdot, Uf) \\ &= J(< f, U^{-1}a >_H \text{Exp}\, f), \end{split}$$

This ends our proof. QED.

Proposition 3 shows us, that the generalised creation operator can be regarded as a weighted-operator shift

$$\operatorname{Exp} H \ni (\Phi_0, \Phi_1, \dots) \to (0, A_0^+ \Phi_0, A_1^+ \Phi_1, \dots) \in \operatorname{Exp} H$$

with the operator-weights  $A_i^+ = \sqrt{i+1}P_{i+1}(\cdot \otimes U^{-1}a) \colon H^{\odot^i} \to H^{\odot^{i+1}}$ . Let now M is a  $\sigma$ -field on  $\Omega$  and let m is a nonnegative measure on M. Then  $L^2(\Omega, M, m)$  is a Hilbert space.

A measure m is called separable if there exists a countable subfamily  $M' \subset M$  such that for any  $\sigma \in M$  with  $m(\sigma) < \infty$  and any  $\epsilon > 0$  one can find a set  $\gamma \in M'$  with  $m(\gamma - \sigma) + m(\sigma - \gamma) < \epsilon$ .

If m is a separable measure, then  $L^2(\Omega, M, m)$  is a separable Hilbert space. On the other hand, if  $L^2(\Omega, M, m)$  is separable and m is  $\sigma$ -finite, then m is a separable measure ([20; pages 82–83]).

For the Hilbert space  $H=L^2(\Omega,M,m)$  we can rewrite Proposition 3 as follows:

PROPOSITION 4. Let  $H = L^2(\Omega, M, m)$  and m be a separable, nonnegative measure. Then:

$$(4.3) \qquad [(J^{-1}A_a^+J)\Phi_n](x_1,\ldots,x_{n+1}) = \frac{1}{\sqrt{n+1}} \sum_{i=1}^{n+1} \Phi_n(x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_{n+1}) \cdot U^{-1}a(x_i)$$

$$a.e. \bigotimes^n]^2$$

for each  $n \geq 1$  and  $\Phi_n \in H^{\odot^n}$ .

(4.4) 
$$[(J^{-1}A_a^-J)\Phi_n](x_1,\ldots,x_{n-1})$$

$$= \sqrt{n} \int_{\Omega} \Phi_n(x_1,\ldots,x_{n-1},t) \overline{U^{-1}a(t)} m(dt) \quad a.e. \bigotimes^n m$$

for each  $n \ge 1$  and

$$\Phi = \bigoplus_{n=0}^{\infty} \Phi_n \in \operatorname{Exp} H \quad such \ that \quad J\Phi \in LIN\{\operatorname{Exp} f \colon f \in H\}$$

PROOF. The proof of (4.3) follows immediately from the condition (4.1), symmetry of  $\Phi_i$  and the following computations:

$$P_{n+1}(\sqrt{n+1}\Phi_n \otimes U^{-1}a)(x_1, \dots, x_{n+1})$$

$$= \frac{1}{(n+1)!} \sum_{\sigma \in \beta(I,I)} (\sqrt{n+1}\Phi_n \otimes U^{-1}a)(x_{\sigma(1)}, \dots, x_{\sigma(n+1)})$$

$$= \frac{\sqrt{n+1}}{(n+1)!} \sum_{\sigma \in \beta(I,I)} \Phi_n(x_{\sigma(1)}, \dots, x_{\sigma(n)}) \cdot U^{-1}a(x_{\sigma(n+1)})$$

$$= \frac{\sqrt{n+1}}{(n+1)!} \sum_{i=1}^{n+1} U^{-1}a(x_i) \sum_{\sigma \in \beta(I_{n+1},I_i)} \Phi_n(x_{\sigma(1)}, \dots, x_{\sigma(n)})$$

$$= \frac{1}{\sqrt{n+1}} \sum_{i=1}^{n+1} \Phi_n(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_{n+1}) U^{-1}a(x_i) \quad a.e. \bigotimes^n m,$$

 $<sup>^2 \</sup>bigotimes L^2(\Omega, M, m) \cong L^2(\Omega^n, \bigotimes^n M, \bigotimes^n m)$ , where  $\Omega^n$  denotes the Cartesian product of n-copies of the set  $\Omega$  and  $(\bigotimes^n M, \bigotimes^n m)$  denotes the tensor product of n-copies of the measure space (M, m) ([21, pages 51–52], [12]).

where  $I := \{1, \ldots, n+1\}, I_k := I \setminus \{k\}$  and  $\beta(I_k, I_l)$  (resp.  $\beta(I, I)$ ) is the set of all bijections from  $I_k$  to  $I_l$  (resp. from I onto I).

We now prove condition (4.4). It follows from condition (4.2):

$$\begin{split} &P_{n-1}J^{-1}A_a^{-}J(\operatorname{Exp} f) = P_{n-1}(< f, U^{-1}a>_{H} \operatorname{Exp} f) \\ &= < f, U^{-1}a>_{H} \frac{f^{\otimes^{n-1}}}{\sqrt{(n-1)!}} = \int\limits_{\Omega} f(t)\overline{U^{-1}a(t)}m(dt) \cdot \frac{f^{\otimes^{n-1}}}{\sqrt{(n-1)!}}. \end{split}$$

So we obtain

$$[P_{n-1}J^{-1}A_{a}^{-}J(\operatorname{Exp} f)](x_{1},\ldots,x_{n-1})$$

$$=\int_{\Omega} f(t)\overline{U^{-1}a(t)}m(dt) \cdot \frac{f^{\otimes^{n-1}}}{\sqrt{(n-1)!}}(x_{1},\ldots,x_{n-1})$$

$$=\frac{1}{\sqrt{(n-1)!}}\int_{\Omega} f^{\otimes^{n-1}}(x_{1},\ldots,x_{n-1})f(t)\overline{U^{-1}a(t)}m(dt)$$

$$=\frac{1}{\sqrt{(n-1)!}}\int_{\Omega} f^{\otimes^{n}}(x_{1},\ldots,x_{n-1},t)\overline{U^{-1}a(t)}m(dt)$$

$$=\sqrt{n}\int_{\Omega} \frac{f^{\otimes^{n}}}{\sqrt{n!}}(x_{1},\ldots,x_{n-1},t)\overline{U^{-1}a(t)}m(dt)$$

$$=\sqrt{n}\int_{\Omega} (P_{n}\operatorname{Exp} f)(x_{1},\ldots,x_{n-1},t)\overline{U^{-1}a(t)}m(dt) \quad a.e. \quad \bigotimes^{n} m.$$

Now by linearity we obtain our statement. QED.

The condition (4.4) from Proposition 4 is true also for all  $\Phi \in \operatorname{Exp} H$  such, that  $J\Phi \in D(A_a^-)$ , but only if we additionally assume that measure m is  $\sigma$ -finite. Then we can use the Fubini theorem ([13; p. 148]).

Proposition 5. Let  $H=L^2(\Omega,M,m)$  and let m is separable and  $\sigma$ -finite. Then

$$[(J^{-1}A_a^-J)\Phi_n](x_1,\ldots,x_{n-1}) = \sqrt{n} \int_{\Omega} \Phi_n(x_1,\ldots,x_{n-1},t) \overline{U^{-1}a(t)} m(dt)$$

for 
$$n \ge 1$$
 and

$$(J^{-1}A_a^-J)\Phi_0 = 0.$$

PROOF. We known from [26; p. 1025] that  $(A_a^+)^* = A_a^-$ . So obviously  $J^{-1}A_a^-J = (J^{-1}A_a^+J)^*$ . It follows from the above remarks, Fubini theorem and the conditions (4.1), (4.3), that for any  $\Psi = \bigoplus \Psi_n$ ,  $\Phi = \bigotimes \Phi_n \in \operatorname{Exp} H$  such, that  $J\Psi \in D(A_a^-)$ ,  $J\Phi \in D(A_a^+)$  we have:

$$\langle P_{n-1}J^{-1}A_{a}^{-}J\Psi, \Phi \rangle_{\operatorname{Exp}L^{2}(m)}$$

$$= \langle \Psi, (J^{-1}A_{a}^{+}J)P_{n-1}\Phi \rangle_{L^{2}(m)}\otimes^{n}$$

$$= \langle \Psi_{n}, \frac{1}{\sqrt{n}}\sum_{i=1}^{n}\Phi_{n-1}(\mathbf{x}_{i})U^{-1}a(x_{i})\rangle_{L^{2}(m)}\otimes^{n}$$

$$= \frac{1}{\sqrt{n}}\sum_{i=1}^{n}\int_{\Omega^{n}}\Psi_{n}(\mathbf{x})\overline{\Phi_{n-1}(\mathbf{x}_{i})}\cdot\overline{U^{-1}a(x_{i})}\bigotimes^{n}m\ (d\mathbf{x})$$

$$= \frac{1}{\sqrt{n}}\sum_{i=1}^{n}\int_{\Omega^{n-1}}\overline{\Phi_{n-1}(\mathbf{x}_{i})}\left(\int_{\Omega}\Psi_{n}(\mathbf{x})\overline{U^{-1}a(x_{i})}(dx_{i})\right)\bigotimes^{n-1}m\ (d\mathbf{x}_{i})$$

where  $\mathbf{x} = (x_1, \dots, x_n)$ ,  $\mathbf{x}_i = (x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n)$ ,  $d\mathbf{x} = (dx_1, \dots, dx_n)$  and  $d\mathbf{x}_i = (dx_1, \dots, dx_{i-1}, dx_{i+1}, \dots, dx_n)$ . However the function

$$\Psi_{n-1}(\mathbf{x}_i) := \int\limits_{\Omega} \Psi_n(\mathbf{x}) \overline{U^{-1}a(x_i)} m(dx_i)$$

is symmetric and it belongs to  $L^2(m)^{\odot^{n-1}}$ . So we can write:

$$<(P_{n-1}J^{-1}A_a^-J)\Psi, \Phi>_{\operatorname{Exp}L^2(m)} = \frac{1}{\sqrt{n}}\sum_{i=1}^n \int_{\Omega^{n-1}} \Psi_{n-1}(\mathbf{x}_i)\overline{\Phi_{n-1}(\mathbf{x}_i)}m(dx_1)\dots m(dx_{i-1})m(dx_{i+1})\dots m(dx_n)$$

It is obvious, that the number

$$N := \int_{\Omega^{n-1}} \Psi_{n-1}(\mathbf{x}_i) \overline{\Phi_{n-1}(\mathbf{x}_i)} m(dx_1) \dots m(dx_{i-1}) m(dx_{i+1}) \dots m(dx_n)$$

$$= \int_{\Omega^{n-1}} [\Psi_{n-1}(y_1, \dots, y_{n-1}) \overline{\Phi_{n-1}(y_1, \dots, y_{n-1})} m(dy_1) \dots m(dy_{n-1})$$

is independent of "i". So finally we obtain:

$$\begin{split} &< (P_{n-1}J^{-1}A_a^-J)\Psi, \Phi>_{\operatorname{Exp}L^2(m)} \\ &= \frac{1}{\sqrt{n}} \cdot n \cdot N = \sqrt{n} \ <\Psi_{n-1}, \Phi_{n-1}>_{L^2(m)^{\odot^{n-1}}} \\ &= <\sqrt{n} \int\limits_{\Omega} \Psi_n(\cdot,t) \overline{U^{-1}a(t)} m(dt), \Phi>_{\operatorname{Exp}L^2(m)}. \end{split}$$

It follows from the above, the property:

 $A_a^-(Q_q \cap D(A_a^-)) = Q_{q-1} \cap R(A_a^-)$  ([26; conditions (2.10), (5.6), (5.8)]) and the density of  $D(A_a^+)$  in  $B_\infty$  ([26; Proposition 4]) that our statement is true, where  $R(A_a^-)$  denotes the image of the operator  $A_a^-$ . QED.

Proposition 5 shows us that for  $H = L^2(\Omega, M, m)$  under appropriate assumptions about m, the generalised annihilation operator can be regarded as a weighted-operator shift

$$\operatorname{Exp} H \ni (\Phi_0, \Phi_1, \dots) \to (A_1^- \Phi_1, A_2^- \Phi_2, \dots) \in \operatorname{Exp} H$$

with the operator weights

$$(A_i^-\Phi_i)z=\sqrt{i}\int\limits_{\Omega}\Phi_i(z,t)\overline{U^{-1}a(t)}m(dt) ext{ for } i\geq 1, ext{ where } A_i^-:H^{\odot^i} o H^{\odot^{i-1}}.$$

Such a definition for generalised annihilation and creation operators was proposed by Friedrichs ([11; pages 38–40]). If we take  $a = \delta_i = (0, \ldots, 0, 1, 0, \ldots)$  then the generalised creation and annihilation operators in direction a are the following operator-weighted shifts with operator-weights

$$A_n^+\Phi_n(x_1,\ldots,x_{i+1}) = \frac{1}{\sqrt{n+1}} \sum_{i=1}^{n+1} \Phi_n(x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n) b_i(x_i)$$

and respectively

$$A_n^-\Phi_n(x_1,\ldots,x_{n-1})=\sqrt{n}\int\limits_\Omega\Phi_n(x_1,\ldots,x_{n-1},t)\overline{b_i(t)}m(dt),$$

and they represent the multiplication operator by n-th coordinate on  $B_{\infty}$  and the complex differentiation operator with respect to n-variable on  $B_{\infty}$ , respectively.

## References

- Aronszajn N., Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950), 337–404.
- Bargmann V., On a Hilbert space of analytic functions and associated integral transform I, Comm. Pure Appl. Math. 14 (1961), 187-214.
- Bargmann V., Remarks on a Hilbert space of analytic functions, Proc. Nat. Acad. Sci. U.S.A. 48 (1962), 199-204.
- Berger C.A., Coburn L.A., Toeplitz operators and quantum mechanics, J. Funct. Anal. 68 (1986), 273-299.
- Berger C.A., Coburn L.A., Toeplitz operators on the Segal-Bargmann space, Trans. Amer. Math. Soc. 301 (1987), 813-829.
- Bochnak I., Siciak J., Analytic functions in topological vector spaces, Studia Math. 39 (1971), 77-112.
- Cook I.M., The mathematics of second quantization, Trans. Amer. Math. Soc. 74 (1953), 222-245.
- 8. Dinnen S., Complex Analysis in Locally Convex Spaces, North Holand (1981).
- 9. Dirac P.A.M., The Principles of Quantum Mechanics, Oxford University Press, Toronto, 1947.
- Fock V., Zur Quanten Elektrodynamik, Physikalische Zeitschrift der Sovietunion 6 (1934), 425–469.
- Friedrichs K.O., Mathematical Aspects of the Quantum Theory of Fields, Interscience, New York, 1953.
- 12. Guichardet A., Symmetric Hilbert Spaces and Related Topics, Lecture Notes in Math., Springer-Verlag 261 (1972).
- 13. Halmos P.R., Measure Theory, Springer Verlag, New Jork, Heidelberg, Berlin, 1974.
- 14. Hille E., Phillips R.S., Functional Analysis and Semi-Groups,, American Math. Society., Providence R.I., 31 (1957).
- Janas J., Unbounded Toeplitz operators in the Bargmann-Segal space, Studia Math. 99 (1991), 87-99.
- 16. Janas J., Unbounded hyponormal operators, Studia Math. 112 (1994), 75-82.
- 17. Janas J., Rudol K., Toeplitz operators on the Segal-Bargmann space of infinitely many variables, Opererator Theory: Adv. Appl. 43 (1990), 87-102.
- 18. Janas J., Rudol K., Toeplitz Operators in infinitely many variables, 15-th OT Conference Procidings, IMAR, Bucharest, 1995, pp. 147–160.
- 19. Janas J., Stochel J., Unbounded Toeplitz operators on the Segal-Bargmann space II, J. Funct. Anal. 126 (1994), 418-447.
- Mlak W., Hilbert Spaces and Operator Theory, Polish Scientific Publishers, Warszawa, Kluwer Academic Publishers, Dodrecht, Boston, London, 1991.
- Reed M., Simon B., Methods of Modern Mathematical Physics, I., Academic Press, New York, San Francisco, London, 1972.
- Segal I.E., Tensor algebras over Hilbert space, I, Trans. Amer. Math. Soc. 81 (1956), 106-134.
- 23. Segal I.E., Lectures at the Summer on Applied Math., Boulder, Colorado, 1960.
- 24. Segal I.E., The complex wave representation of the free boson field, Adv. in Math., Suppl. Studies 3. (1978), 321-343.
- Stochel J. B., A remark on Bargmann's Hilbert space of an infinite order, Opuscula Math. 10 (1991), 171-181.

- 26. Stochel J. B., Subnormality of generalised creation operators on Bargmann's space of an infinite order, Integral Equation Operator Theory 15 (1992), 1011-1032.
- 27. Stochel J. B., A remark on Bargmann's space of an infinite order II, Opuscula Math. 16 (1996), 97-110.

Received October 12, 1996