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1. Introduction. In [2] Bargmann defines a Hilbert space B,, of all com-
plex holomorphic functions on C", square integrable with respect to the Gauss-
ian measure. Similarly in [3] he defines a Hilbert space B, of all complex
holomorphic functions on 12 such that its basis is an amalgamation of basis
of B, over all integers n > 1. One would like to have an appropriate Gauss
measure g on [? such, that the space B, can be regarded as a space of all
complex holomorphic functions on {2 and square integrable with respect to
this measure. But such measure doesn’t exist ([25]).

The Bargmann spaces B,, and Toeplitz operators on these spaces appeared
to be very useful to describing certain physical observables [2, 4, 5, 18; and
also 15, 16, 19]. The Bargmann space B, was suggested by Bargmann [3] in
1961 as a convenient functional model to realize ideas of Fock [10], Dirac [9],
Friedrichs [11], Cook (7] and Segal L.E. [22; see also 23, 24].

In [3; pages 202-203] Bargmann defined the generalised creation and anni-
hilation operators in direction a € [? and pointed out that these operators are
the same as those introduced by Friedrichs [11; pages 38-41]. The detailed
account Bargmann intended to publish later. Because it has not happened
and because of importance of the above outlined Bargmann model, we present
here a complate proof of this theorem (Section 4).

In Section 3 unitary isomorphisms between Exp H and B, is completely
described.
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Section 2 is devoted to describing the Bargmann spaces B,, By, and gen-
eralised creation and annihilation operators.

2. The Bargmann space of infinite order. In this section we recall
Bargmann’s definition of the Hilbert space B, and some properties of this
space which are useful in the sequel.

We denote by 7 the set of all sequences of nonnegative integers with finite
number of nonzero entries. In the sequel the set Z% (resp. C") will be
interpreted as a subset of the set 7 (resp. [?). Throughout this paper we
shall use the following notation:

o0
P = Sl 2 = ol = ol
i=1
0 Za
Ol+ﬂ2= (al +ﬁ17"' 7an+/8n"")a 'a' :Zah ea(z) = "—",
i=1 Vo
for z:= (21, Zn, Znt1,...) €% and a:= (ay,... ,0,,0,...) € T.

We now recall Bargmann’s definition of the Hilbert space Bo, ([3; p. 200]),
called the Bargmann’s space of an infinite order. Denote by [2(7) the set
of all square-summable sequences indexed by the set 7. For any sequence
(f) := (fa)aer € 1?(7) we define the function f: (> — C as follows:

(2.1) f(2) =" fatal2), z€1”

a€T

Then f is well defined ([26; pages. 1013-1014]}).

Let Bo := {f: (f) € 1?(7)}. Then the function I*(1) 3 (f) = f € Bw
is a linear bijection ([26; p. 1014]). Let now < f,g9 >:=< (f),(9) >u(+).
Then the map 12(7) D (f) = f € By is an isometric and in consequence
(Boo, < +,- >) is a Hilbert space. The set {eq: a € 7} is an orthonormal basis
of Boo ([26; p. 1014]). All functions from B, are entire as functions from /2
into C ([14; chap. 3, sec. 3], [2; p. 1018], see also for definition [6], [8]). Buo
is a Hilbert space with reproducing kernel ([1; pages 342-346], [26; p. 1014])

(2.2) K(w,z) :=exp < w,z > forw,z € I
and the reproducing formula is fulfilled:

(2.3) f(z) =< f,K(-,2z) >, f € Bo.
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The following property is very important for B,:

If f € By then f(2) = ZaeT fotal?), z €12
(2.4) Conversely if f(z) = Y fa€a(z), z€ 12 and Y |fol? < oo,
a€T

aET

then f € B ([2; p. 1018]).

Note that:
a) there are entire functions on [? such that f € B, e.g.

(G T ().

=
X
li

b) in general the product f - g of two functions f,g € By, need not to be in
By e.g. the function

=3 X [meP et n )] e om0

meN My, ,TlmEN

isin f € By and f? ¢ B.
¢) in general, the inequality ||f - g|| < ||f]| - |lgl| in B is not true e.g.
if f(z) := z® and g(2) = 2# with @ = (2,1,0,0,...) and 8 = (1,2,0,0,...),
then {|f|| = llgll = v2 and [If - gl =3 > 1] - llgll = 2.
For others properties of the Hilbert space B, we refer to [25], [26], [27].
Finally we recall definitions and fundamental properties of generalised cre-
ation and annihilation operators ([26; pages 1021-1022]). We define generalised
creation and annihilation operators in B, in direction a € I2 as follows:

(2.5) D(A}Y):={f € Binfty: <-,a> f(-) € Boo}
(26)  D(AD) = {f € Boo: (2= = f(z+ Ma)lamo) € Buo)
(2.7) (AT flz =< z,a > f(2), f € D(A}), z €2

(2.8) (45 2= S [+ Ma)lrmo, f € D(AT), 2 € 12



138

We can also describe domains of the creation and the annihilation operators:
(2.9) feD(A}) ifand only if » | fa-s,8iV/Bil* <0
BET i€EN
where 6; = (0,...,0,1,0,0,...) € 7 (1 is on “”- position) and fg_s, := 0 if
pi =0.
If f € D(A}), then AT f = Y (3 fp-5.8VBi)es-

BeT €N

(2.10) fe€D(A,) if and only if Z | Z fa+s.0iV/Bi + 11? < oo.

Ber 1€EN

If f € D(A;), then A;f = ﬁz: ( %fﬂwi‘lﬂ/ﬂi + l)eﬁ.
€T i€
In addition we have:

(2.11) K(,w) € D(AT)ND(A;)

(2.12) ATK(,w) =<a,w> K(-,w) forw € 12,

For others properties of generalised creation and annihilation operators we
refer the readers to [26].

3. Fock representation of B,,. In this section we describe unitary iso-
morphism between Bargmann space B, and an exponential Hilbert space.

First we recall some definitions [12]. Let H be a separable Hilbert space
with basis {b;}ien. Let H ®" (resp. f®") be the tensor product of n-copies of
H (resp. f € H) and let us be a unique unitary operator such that

Uus = H®" 3f1®..-®fn-—>f5(1)®--.®f6(n)€H®n-

where § is a permutation of n-variables. Let Q4 stand for the Hilbert subspace
of B,, spanned by the vectors {e,: o € 7 and |a| = ¢}, where ¢ € Z;. We
know that Boo = @ ez, Qg ([26; p. 1015]).

Let H®® := C and let P, := 4 Y ;us;: H®" — H" be the orthogonal
projection (the summation is over all n-permutations). We define
Fxp H = @, HO", where HO" := P,(H®"), and Exp f := Y00y L for
each f € H. Then < Exp f,Expg >=exp < f,g >, the set {Expf:feH}
is linearly dense in Exp H and the set

{(%)%pn(bﬁ ®..®by)im <. 5%}
= {(Z—i)%Pn(b;?f‘ ®...®b5 ):se{l,...,n}a,BeN,

|a|=nandﬁ1<...<ﬁs}
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is an orthonormal basis of the Hilbert space H®", where G = G(y) € 7 and
Gy :=card{s€{l,... ,n}:vs =k}

(the map {y e N* : v < ... <.} 29 — G(y) € 7 is an injection). It is
clear that |G| = n.
Now we define a unitary isomorphism between B, and Exp H.

1
Let Jq((g—’!) qu,(b,n ®.. .®b.,q)) :=eg for all ¢ € N. Since J; transforms the

orthonormal basis of H®" to the orthonormal basis of Qq, it can be extend
to the unitary isomorphism between H®" and Qq. Let J, := Idc. Then
J:= @q€z+ Jy is a unitary isomorphism from Exp H into By, = ®q€Z+ Qq-

Let in the sequel {§;} denote the canonical orthonormal basis of {2 and let
the function u stands for antylinear, isometric isomorphism from H onto [2
such that U(ab;) = @d; for all @ € C, and 1 > 1. We now show that the
isomorphism J can be describe as follows:

PROPOSITION 1.

(3.1) J(Exp f)=K(, Uf)

(3.2) (J®)z =< ®,Exp(U™'2) >pxpu= Z —= < &, (U12)®" >pgen

for each ® € Exp H, where ® = @, ®,,, ®, € HO", z € I2.

n=0

ProOF. Since < K(-,Uf),K(-,Ug) >=< Exp f,Expg >gxp g and the set
{Exp f: f € H} is linearly dense in Exp H, then there exists a unique isomor-
phism F from By, to Exp H such that F(Exp f) = K(-,Uf). More precise we
can write:

F(Exp )z = K(z,Uf) = expl(< 2, Uf >p) = exp(< £,0"5 > )
=< Exp f, Exp(U“lz) >ExpH -

But the functions F(-)z and < -,ExpU~!z > are linear and continuous, and
the set {Exp f : f € H} is lenearly dense in Exp H. So the isomorphism F
obtain the following from:

F(®)z =< ®,Exp(U™'2) >g.pnu for each ® € Exp H.
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- If we now show that F = J, then our proof will be finished. We show this
equation on vectors from the basis of Exp H:

nly %
F((%) Palbn ® . ©b,))z
1 n
- —‘\/G' P‘”(b“rl ®.®by,), (U_lz)® >Hon
1 n
= 7 <bn ®-- @by, (U >per
1 ¢ R
=——|]<b,,Ulz2>y=— L= .
\/—C—ﬁg ¥i Z~H \/(—;*!i:I—[lZ% eg(z)

Thus F = J. QED.

PROPOSITION 2.

' o
(3.3) J@:Z,/“C’)‘[—E' < By, b7 > e

a€T

o 0 ..
for all ® = @ ®, € Exp H, where b&" := @ b
i=1

n=0

ProoF. It follows from the Proposition 1 that
= 1
3.4 J®)z=Y —= < &,, (U 12)®" >yen forall z €l
B =D 5 <UD >ne

We note that the following analogue of multinomial Newton formula is true

(e = Y SR,

€T
lal=n

where z = (£1,... ,Tm,...) is a sequence of elements of some Hilbert space
o0
such, that the series Y z; is convergent.
i=1 .
The proof of (3.3) follows from linearity, continuity of the tensor product and
the projection P,, and the following computations.
The condition (3.4) implies:

- n > _ n 'ﬂ!_a a
U2)®" = (> zb)® = Y N P, (%)
i=1 ’

a€T
laj=n
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for all z = (21,... ,2Zm,-..) € [2. Hence

_ n n' o
< B, (U 12)® >gyen = Z &—!z" < ®,,P,(b%") >pgen

a€Tr
lal=n

n! a
— E i &
- agr \/Oj < @n,Pn(b ) > ea(z)'

laj=n

So by (3.4) we have

o)z = ¥ —\/%. Z: —\/% < By, B2 > ea(2)

ﬂ€Z+ laj=n
||t 2"
ZZ o < @,,0% > eql2).
aeT '

According to (2.4), the proof is completed. QED.

4. Representation of generalised creation and annihilation oper-
ators in Fock space. In this section we precisely describe a representation
of generalised creation and annihilation operators in Fock space Exp H with
help of the transformation J.

Bargmann in [3; pages 202-203] only stated these in the case H = L?(R3).
We first describe the above mentioned representation in general framework.

PROPOSITION 3. Let a € 2. Then

@) J(H®™) c D(A), and
JYATJ(®,) = Vi + 1Py 41(®, ® U 'a)

for all ® € H®", n >0, and

4.2) JYAZJ(Expf) =< f,U 'a>y Expf

for each f € H.2

LJ(Exp f) = K(-,Uf) € D(A;). See the property (2.11).
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PROOF. We first prove the condition (4.1). Let ®, € H®". From the
condition (3.2) we obtain:

AFJ(®,)2 =< z,a >< @, Exp(U™'2) Spupn

- _ 1 n
=<Uta,U 2>y — < ®,,(U12)®" >pen

Vn!
1
=—<®,0U ta, (U 12)®
\/~ ( )

\/ n+1
=< Pn+1(\/n +1®, @ U™ ta),Exp(U™12) >Expn
= J(Poy1(vVn + 19, ® U 'a))z for all a,z € I%.

But J(Pny1(vn+18, @ U"u)) € By. So J(®,) € D(A}) and
JYATJ(®,) = Vn+ 1P, 1(®, ® U a).

We now show the condition (4.2).
From Proposition 1 and the property (2.12) we obtain:
A, J(Exp f) = A; K(, Uf) =<a,Uf > K(,Uf)
=< f,U a>yg K(-,Uf)
=J(< f,U'a >p Exp f),

n+1
>H®n+1

n+1

<vn+ 10, U~ a(U ) >H®n+1

This ends our proof. QED.

Proposition 3 shows us, that the generalised creation operator can be re-
garded as a weighted-operator shift

EXPH > ((I)Oa(pl"") - (07A(Tq)0aAi’-q)la) € Epo

with the operator-weights A = i+ 1P, (- ® U™ a): H o' gO',

Let now M is a o-field on Q and let m is a nonnegative measure on M .
Then L2(Q2, M, m) is a Hilbert space.

A measure m is called separable if there exists a countable subfamily

M’ C M such that for any o € M with m(o) < o0 and any € >0

one can find a set vy € M' with m(y — o) +m(oc —7) <e.
If m is a separable measure, then L%(§2, M, m) is a separable Hilbert space.
On the other hand, if L?(Q, M, m) is separable and m is o-finite, then m is a
separable measure ([20; pages 82-83]).

For the Hilbert space H = L2(2, M,m) we can rewrite Proposition 3 as

follows:
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PROPOSITION 4. Let H = L?(Q, M, m) and m be a separable, nonnegative
measure. Then:

[(J71 AT D®a)(z1,- - Zngr)
1 n+1

= ® e s T 1y Tt Ly e - U Yalz:
(4.3) m; n(z1 Ti—1,Tit1 Tnt1) a(z;)
n
a.e. ® ?

for each n > 1 and ®, € H®".

[(J7rA; N)®,)(z1,. .. 5, Tn-1)

4.4 — L
(44 = \/ﬁ/nfbn(ml,... 2 Tn—1,t) U ta(t)m(dt) a.e. ®m

for each n > 1 and

o0
=P P, €ExpH suchthat J& e LIN{Expf: f € H}

n=0

PROOF. The proof of (4.3) follows immediately from the condition (4.1),
symmetry of ®; and the following computations:

Pn+1(V n -+ l(I)n ® U_la)(:vl, e ,$n+1)
1
= Z (vn+1<I>n®U"1a)(:ca(1),... 7$U(n+l))

]
(n+1)! e o003

:

n + _
= n+ 1) Z (I)n(-'ra(l), e ,J?U(n)) U 1(1(.’13(,(“_,_1))
ToeB(I,I)

n+1 n+1
-1
T+ 1) ZU o) Z On(Zo@)s- -+ > To(m))
i=1

0€B(Iny1,13)

—~

n+1

1 —_ n
= o Z‘I)n(xla--- s L1y Tigly e+ Tpar1)U la(xi) a.e. ® m,
v i=1

2QL2(Q, M,m) = L2(Q", ®@" M, ®" m), where Q" denotes the Cartesian product of
n-copies of the set Q and (Q" M, ®" m) denotes the tensor product of n-copies of the
measure space (M, m) ([21, pages 51-52], [12]).
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where I :={1,... ,n+ 1}, Iy := I\{k} and B(Ix,I;) (vesp. B(I,I)) is the set
of all bijections from Ij to I; (resp. from I onto I).
We now prove condition (4.4). It follows from condition (4.2):

P, J A, J(EXPf) Po_i(< f,U 'a >y Expf)

F(OU-Ta(t)m(dt) - f®

\/—n—-—l_ / (n—1)1

=< f,U 'a>g

So we obtain

[Po-1J 7 AL J(Bxp f)](z1,- - s Zn1)

1 f®n1
/f U~ Ta(t)m(dt) - —

———(Z1,... ,Tp—1)

m(dt)

_ m!f® @1 En1) f(OTTa(d)

yTn_1,t)U"ta(t)m(dt)

— 1 "
__—————————(n—l)_'n/f ($1,...
_ \/ﬁ/%(ml,... 21, T Ta@)m(dt)

n

—*\/—/(P Exp f)(z1,... ,Zn-1,t) U La(t)m(dt) a.e. ®m.

Now by linearity we obtain our statement. QED.

The condition (4.4) from Proposition 4 is true also for all ® € Exp H such, that
J® € D(A7), but only if we additionally assume that measure m is o-finite.
Then we can use the Fubini theorem ([13; p. 148]).

PROPOSITION 5. Let H = L?(2, M, m) and let m is separable and o-finite.
Then

(T~ AT D) B)(z1y s Tne) = \/ﬁ/d)n(xl,...,xn_l,t)U‘la(t)m(dt)
Q

forn>1 and
(J7*A; J)®o = 0.
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. PrROOF. We known from [26; p. 1025] that (A})* = A;. So obviously
J YA7J = (JTrAFJ)*. Tt follows from the above remarks, Fubini theorem
and the conditions (4.1), (4.3), that for any Y =P ¥, ® = R, € ExpH
such, that J¥ € D(A;), J® € D(A}) we have:

< Pn_l,]_lAa_'J\P,@ >ExpL2(m)
=< U, (JTTAYT)Poo1® > 12 m)en

1 « -
=< ¥p, ﬁ ;‘I’n—l(xi)U ‘a(x;) > L2(m)®"

. / ()T () - U Ta(@) R m (dx)
- L3 [ T ([ 40w )@ m )
Q

where X = (Z1,... ,Zn), Xi = (T1-.. ,Tie1, Tigly--- ,Tn),
dx = (dz1,... ,dz,) and dx; = (dzy,... ,dz;—1,dT;iy1, ... ,dTy,).
However the function

U,_1(x;) := /\Iln(x)U‘la(a:i)m(dxi)
Q

is symmetric and it belongs to L2(m)®" .
So we can write:

1 n
Po 1 JTYAZ DN, ® >pp12(m)= —=
< (Pn-1 ) >Exp L2(m) \/ﬁ;/nn—l
U1 (%) Pp—1(xi)m(dzy) ... m(dz;—1)m(dzit1) . .. m(dzy,)

It is obvious, that the number

N = / U,y (%) Boa () m(das) . .. m{ds_1)m(dziss) - .. m(d)
Qn-1

= / [\I’n-l(yla s ’yn—l)q)n-l(yla o 1yn—1)m(dy1) se m(dyn—l)
Qn-1

is independent of “s”. So finally we obtain:
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< (Pn..lJ*lA;J)\I/, ® >Exp12(m)

1
.—_-—— -n-N= \/_ <\Iln 1,@1, 1>L2( yor= 1

=< \/_/ U-Ta(t)m(dt), ® >Exp L2(m) -

It follows from the above, the property:

A7 (Q,ND(A7)) = Qq—1 N R(A;) ([26; conditions (2.10), (5.6), (5.8)])
and the density of D(A}) in By ([26; Proposition 4]) that our statement is
true, where R(A, ) denotes the image of the operator A7. QED.

Proposition 5 shows us that for H = L?(2, M, m) under appropriate as-
sumptions about m, the generalised annihilation operator can be regarded as
a weighted-operator shift

EXpH9 ((I)o,‘I)l,...) — (A;@l,A;q)g,) EEXPH

with the operator weights
(A7 ®; z—\/fcb 2,)U-Ta(t)m(dt) for i > 1, where A, : H®' — HO"

Such a definition for generalised annihilation and creation operators was pro-
posed by Friedrichs ([11; pages 38-40]). If we take a = ¢; = (0,...,0,1,0,.. )
then the generalised creation and annihilation operators in direction a are the
following operator-weighted shifts with operator-weights

n+1

A:{@n(ml,... ,1‘1‘_',1) = \/m Zq)n(ml,... sy Lj—1y Ljplye-- ,a:n)bz(xl)

i=1

and respectively

AZ®, (21,0 Tpo1) = Jﬁ/@n(ml,... y Tr—1,1)b; (t)m(dt),

Q

and they represent the multiplication operator by n-th coordinate on B
and the complex differentiation operator with respect to n-variable on B,
respectively.
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